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Abstract

This doctoral dissertation delves into three distinct yet interconnected problems in the
realm of interactive image-space computing in computer graphics, each of which has not
been tackled by existing literature.

The first problem centers on the prediction of visual error metrics in real-time applications,
specifically in the context of content-adaptive shading and shading reuse. Utilizing
convolutional neural networks, this research aims to estimate visual errors without
requiring reference or rendered images. The models developed can account for 70%-90%
of the variance and achieve computation times that are an order of magnitude faster than
existing methods. This enables a balance between resource-saving and visual quality,
particularly in deferred shading pipelines, and can achieve up to twice the performance
compared to state-of-the-art methods depending on the portion of unseen image regions.

The second problem focuses on the burgeoning field of light-field cameras and the
challenges associated with depth prediction. This research argues for the refinement
of cost volumes rather than depth maps to increase the accuracy of depth predictions.
A set of cost-volume refinement algorithms is proposed, which dynamically operate at
runtime to find optimal solutions, thereby enhancing the accuracy and reliability of depth
estimation in light fields.

The third problem tackles the labor-intensive nature of hand-drawn animation, specifically
in the detailing of character eyes. An unsupervised network is introduced that blends
inpainting and image-to-image translation techniques. This network employs a novel
style-aware clustering method and a dual-discriminator optimization strategy with a
triple-reconstruction loss. The result is an improvement in the level of detail and artistic
consistency in hand-drawn animation, preferred over existing work 95.16% of the time
according to a user study.

Optimization techniques are the common thread that ties these problems together. While
dynamic optimization at runtime is employed for cost volume refinement, deep-learning
methods are used offline to train global solutions for the other two problems. This
research not only fills gaps in the existing literature but also paves the way for future
explorations in the field of computer graphics and optimization, offering new avenues for
both academic research and practical applications.
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CHAPTER

Introduction

Optimization, in the mathematical sense, is the process of finding the most effective
set of parameters that yields the optimal solution to a problem, among a set of feasible
alternatives. In this context, ‘parameters’ broadly encompass not only numerical values
but also choice of algorithms, model structures, loss functions or pipelines — anything
that can be adjusted to enhance the outcome or efficiency of the solution. The objective
is to minimize or maximize a real-valued function, often called the objective” or cost”
function, subject to certain constraints. Historical records suggest that the seeds of
optimization were sown in antiquity, with early civilizations grappling with challenges in
geometry and number theory using primitive optimization strategies. In 1827, Joseph
Fourier first introduced a technique for resolving systems of linear inequalities, a method
that later inspired the Fourier-Motzkin elimination approach [SZ15]. However, modern
optimization as we know it today can be argued to have been born in the 20th century:
this period witnessed the advent of linear and nonlinear programming, along with a
suite of other mathematical methodologies [Sch98| [Dan82]. These innovations not only
reshaped the landscape of optimization but also cemented its role as an indispensable
asset across diverse sectors. Today, optimization has a wide range of applications, from
engineering and physics to the logistics behind global supply chains, the algorithms
powering financial markets, or the research propelling healthcare advancements. Of
particular significance to this work, optimization plays a crucial role in the field of applied
mathematics and computer science.

In the realm of visual computing, the role of optimization already had an established
foothold in computer vision, but is now also gaining prominence within computer graphics,
especially when it comes to neural network training and differential rendering. Training
a neural network entails fine-tuning its parameters to align closely with a specific
dataset. The objective is to minimize a given measure of success, often referred to as the
loss function, which quantifies the discrepancy between the network’s output and the
expected results. Commonly, algorithms like stochastic gradient descent are employed to




Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

1.

INTRODUCTION

Figure 1.1: Optimization Pervasiveness. Searching for the arguments that result
in the lowest value of a function - known as minimizing the function - is one of the
computational problems commonly addressed using optimization. Figure from [Guo21].

iteratively refine these parameters and reduce this loss (see Figure |1.1). In the case of
differential rendering, optimization aids in identifying the best settings for generating
visuals, including factors like lighting conditions, shading techniques, and camera angles.
Additionally, optimization methods have been leveraged to enhance various computer
graphics algorithms, from simplifying the geometric complexity of 3D models to elevating
the visual quality of rendered images.

Expanding upon these foundational applications, this thesis will delve into three specific,
yet largely unexplored, problems in computer graphics where optimization techniques
have great potential to be applied.

The first area of focus in this thesis is adaptive rendering mode selection in the context
of increasing display resolutions and refresh rates. As hardware capabilities continue
to grow, so does the complexity of shading and rendering effects. This has led to
the development of both software and hardware solutions aimed at dynamically and
locally reusing rendering information from previous frames or optimizing the shading
resolution based on the content displayed. As neural networks are increasingly executed
on GPUs, optimization-based techniques now have further potential to be crucial for the
dynamic allocation of resources, ensuring that high-quality rendering is achieved without
unnecessary computational overhead.

The second focus is depth reconstruction in light-field cameras, also known as plenoptic
cameras. These specialized cameras offer unique post-capture refocusing capabilities
but present a complex challenge in depth reconstruction. The narrow baselines of the
micro-lenses make traditional techniques unsuitable, creating a need for specialized
depth-reconstruction methods tailored for light-field imagery. By leveraging iterative
refinement optimization strategies, there is the potential to improve upon these existing
specialized methods.

The third focus is the automation of detail in hand-drawn animation, particularly in
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1.1. Motivation

Chapter

Chapter

Input

Predicted

Figure 1.2: Problem Overview. This thesis focuses on the key theme of extrapolating
new information from existing data. In Chapter [3, arbitrary perceptual metrics are pre-
dicted from screen-space material information (view-space normals and LPIPS
shown). In Chapter 4, better cost volumes are inferred from existing ones (shown are the
depth predictions from these volumes, due to the complexities in visually representing
these 3D entities). Finally, in Chapter 5 art details are redrawn according to arbitrary
provided designs.

character faces and eyes. Despite its resurgence in popularity, traditional animation has
not significantly benefited from recent advances in computer graphics. The labor-intensive
nature of drawing character details often leads to compromises in design complexity
and artistic consistency, highlighting the need for optimization-based techniques that
can streamline the workflow. Among these techniques, deep learning is particularly
promising, as it has the potential to understand the abstract representation and replicate
the nuances of hand-drawn styles, where traditional algorithms might struggle.

1.1 Motivation

Optimization techniques have the potential to address a broad spectrum of challenges in
the field of computer graphics, ranging from algorithmic performance improvements to
the generation of high-quality visuals. While optimization has long been a cornerstone in
various research domains, there has been a notable intensification in its application and
development in recent years (particularly with the advent of more computationally and
data-intensive methods), and it is important to acknowledge that many potential use cases
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for optimization techniques remain largely unexplored, as discussed in Chapter 2. By
identifying and investigating different untapped use cases, this thesis seeks to uncover new
opportunities and the limitations inherent to the application of optimization techniques
in computer graphics problems and thus contribute to the expansion of knowledge in the
field.

One such use case that exemplifies the need for further research is adaptive rendering
mode selection. The quest for more realistic and interactive rendering has led to a race for
ever-increasing display resolutions and refresh rates in the hardware market. At the same
time, shading costs also keep increasing due to higher software shading complexity and
the intricacy of effects being used. Neither trend is expected to halt, especially considering
the recent introduction of GPUs with real-time ray-tracing capabilities and the surge
in popularity of virtual reality (VR) headsets, as visual quality for VR requires much
higher resolutions and framerates than regular screens for the same level of perceived
visual fidelity.

In light of these developments, the perceptual relevance of each pixel can change drastically
depending on the view configuration and the content being viewed. To exploit this fact in
real-time applications, both software and hardware solutions have recently been proposed
for dynamically and locally reusing rendering information from previous frames ﬂm
or changing the shading resolution across the screen depending on the displayed content
[YZK*19| Dro20]. However, the key question then becomes: how does one choose how to
render each region of the screen, without knowing the end result of the shading operations
for the current frame? Current methods for dynamically adjusting rendering settings are
limited by their reliance on information from previous frames. This approach has two
significant limitations:

1. Only metrics that can be estimated from previous renderings in a computationally
efficient manner may be used. This rules out most image metrics, with simple
estimates becoming the norm among perceptual problems.

2. Estimation is only possible for previously seen content. The higher the amount of
motion in the scene (and thus the frequency of disocclusion of previously unseen
regions), the smaller the impact of these methods becomes.

Transitioning to a second use case, depth reconstruction in light-field cameras is motivated
by the limitations of current methods. Light-field cameras first became popular among
professional photographers due to their ability to precisely refocus images after acquisition
INLB*05, VRAT07], but depth reconstruction remains a complex and unresolved issue.
These cameras capture both the light direction and intensity emanating from a scene
simultaneously. Typically, this is implemented as an array of micro-lenses placed in front

of a conventional image sensor [GYLG13, PW12].

This data redundancy from the multiple micro-lenses also allows, in theory, to predict
the depth of the scene from the camera. Yet, when compared to multi-camera systems,
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1.2. Problem Statement

the major limitation of light-field cameras for depth reconstruction is that all their lenses
are extremely close together. This results in very narrow baselines [YGL¥13, BJKIT].
Thus, typical multi-camera depth-reconstruction techniques are not appropriate to use
with light-field imagery. On the other hand, light-field cameras are generally cheaper
than multi-camera setups, more portable, and need no synchronization between different
cameras. This has sparked an interest in depth-reconstruction methods specific for
light-fields.

Finally, the third use case we focus on is the automation of detail in hand-drawn animation,
particularly in the eye region of characters. Traditional hand-drawn animation has seen a
massive resurgence in the last decade [MSRF19] due to the increased control and freedom
it affords artists, granting the medium a distinctive look. However, it has struggled
to benefit from advances in computer graphics: techniques used in production remain
largely the same, with productions relying on repetitive manual labor from a large
workforce. As a result, studios often have to compromise character design complexity and
art consistency. Character faces, and especially the eyes, are the most time consuming to
draw, and thus are generally the first to be significantly simplified.

Recent advances in deep learning offer a promising avenue for breaking this impasse. Un-
like traditional computer graphics methods, which have struggled to integrate seamlessly
into the hand-drawn animation workflow, deep learning algorithms have the potential
to adapt to the unique artistic styles and complexities inherent in this medium. By
leveraging data-driven techniques, deep learning could offer more flexible and automated
solutions for intricate details like character faces and eyes, thereby reducing manual labor
without sacrificing artistic integrity.

In essence, each of the challenges presented poses complex problems that defy straight-
forward solutions. Optimization techniques stand out as a powerful tool capable of
navigating these complexities to discover optimal solutions. Whether it’s determining
the most efficient rendering settings, fine-tuning depth estimates, or automating intricate
artistic details, optimization provides a structured yet flexible framework for problem-
solving. By employing optimization-based techniques, this thesis aims to unlock new
avenues for innovation and efficiency in the realm of computer graphics.

1.2 Problem Statement

The purpose of this work is to advance computer graphics systems by addressing key
challenges that remain unexplored in existing literature, in particular depth prediction
refinement, pre-rendering visual error estimation, and character eye redrawing. By jointly
focusing on these three research areas, we aim to enhance the accuracy, efficiency, and
realism of computer graphics algorithms, enabling improved scene understanding, error
detection, and artistic representation in various domains.

To accomplish this goal, we propose addressing three distinct problems leveraging op-
timization techniques, illustrated in Figure (1.2, that have not yet been adequately
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investigated in the existing literature:

1. Improving rendering-resource saving techniques such as content-adaptive shading
and shading reuse, by being able to accurately and consistently predict in real time
the visual error incurred by future renders under different settings. The proposed
method is capable of using any arbitrary perceptual metric from existing literature
to predict the visual error. The goal is to achieve a balance between resource
saving and visual quality, and the proposed method will be evaluated in a variety
of rendering scenarios and settings.

2. Improving depth estimation in light-fields by moving estimate refinement from
the traditional depth-map refinement techniques to refinement of cost volumes.
Cost volumes are popular intermediary products for depth estimation, and they
contain more information regarding the light-field than the traditional depth-maps.
The proposed method aims to leverage this additional information to improve the
accuracy of depth estimation in light-fields.

3. Improving the quality of hand-drawn animation by developing a method that
provides automatic and plausible suggestions for redrawing character eyes, notorious
for being the most laborious elements. The goal is to improve the level of detail and
art consistency while preserving the animation artist’s intended pose and expression.
The proposed method will be evaluated using a dataset of hand-drawn animation
frames and compared against state-of-the-art methods, in order to demonstrate its
effectiveness in improving the visual quality of hand-drawn animation.

By addressing these issues, this research endeavors to fill gaps in existing literature,
providing novel solutions that have the potential to advance computer graphics systems
and to push the boundaries of the field of visual computing.

1.3 Challenges

In the context of this thesis, several notable overarching challenges emerge, each bearing
significant implications for the research outcomes and practical applications. Addressing
these challenges is crucial to ensure that the goals of this thesis are met.

First, the problems explored in this thesis offer compelling practical applications, par-
ticularly in domains where real-time or near real-time performance is of paramount
importance. For example, visual error prediction can be used to optimize rasterization,
but only if the savings make up for the cost of prediction; character redrawing can be used
while hand-drawing, but only if results are provided at a responsive rate. Striking an
equilibrium between satisfactory output quality and the desired performance
thus becomes a central concern in the choice and design of algorithms, as allocating
excessive resources may prove wasteful, while insufficient resources may compromise
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1.4. Contributions and Publications

the efficacy of the solutions. Therefore, navigating this delicate balance emerges as a
significant challenge throughout the research process.

Another challenge arises from the lack of established datasets. In emerging problem
spaces, acquiring appropriate datasets for ablation or optimization through training can
be particularly challenging. This scarcity may arise due to limited access to relevant data
sources or simply the novelty of the problem itself. For instance, while there are available
open source datasets of 3D environments [Amal7, [Epil7], we were unable to find
datasets specifically encompassing uniformly sampled viewpoint collections or deferred
shading data. Similarly, although labeled datasets of illustrations in animation style are
well established [AcB22], datasets of animation production data are not readily available.
Consequently, overcoming these obstacles required the use of various strategies. Transfer
learning, for instance, was employed to introduce domain-specific data in Chapter 4.
Data augmentation was utilized to enhance object detection accuracy in Chapter 5. The
creation of novel synthetic datasets was crucial to provide sufficient resources for training
and ablation studies, and is described in detail in Chapters 3| and 5.

Furthermore, the scarcity of existing work to draw upon for comparative analysis,
commonly known as the “ablation of results”, represents a significant hurdle. In this thesis,
by definition, the explored problems limit the availability of direct benchmarks and often
even established methodologies for comparison. For example, a standardized approach
to evaluate the efficacy of individual stages in cost volume based depth prediction is
lacking, as existing work primarily compares different pipelines directly. This challenge
demands the identification and implementation of suitable evaluation approaches for each
contribution to demonstrate the significance and efficacy of the proposed solutions.

In addition to these overarching challenges, each of the three tackled problems encompasses
a set of additional hurdles that must be overcome. These specific challenges, carefully
described in later chapters of this thesis, further contribute to the depth and complexity
of the research endeavor.

1.4 Contributions and Publications

The main contributions of this thesis lies in the development and evaluation of our
proposed optimization solutions for three novel problems in computer graphics, as
outlined in the problem statement. These solutions are not only rigorously evaluated
across a range of scenarios and rendering settings but also compared against existing
state-of-the-art methods.

The first set of contributions of this thesis is in the area of adaptive rendering mode
selection. The work on this topic has been published in the Proceedings of the ACM in
Computer Graphics and Interactive Techniques, under the title “ Training and Predicting
Visual Error for Real-Time Applications” ﬂm The research introduces a compact
Convolutional Neural Network (CNN) specifically designed for the real-time prediction
of error metrics. This is a significant advancement over traditional methods, which often
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rely on heuristics or are computationally expensive. Additionally, the work introduces
novel metric transforms that facilitate a more balanced training loss, making the model
easily generalizable across new metrics and scenes. A unique correction method is
also proposed, which eliminates the need for measuring perceptual thresholds explicitly,
thereby embedding these thresholds into the trained model’s predictions. The work also
conducts a comprehensive analysis of which current-frame screen-space data is most
valuable for predicting error metrics, providing guidelines for future research in this
area. Finally, the research evaluates the quality, performance, and generalizability of this
learning-based approach in the context of Variable Rate Shading (VRS), setting a new
standard in the field.

Following this, the thesis delves into the problem of depth reconstruction in light-field
cameras using cost volumes. This second set of contributions has been published in the
25th International Conference on Pattern Recognition, under the title “Cost Volume
Refinement for Depth Prediction” [CGW21]. The work introduces a modular framework
for cost-volume refinement, a step forward in making depth reconstruction more accurate
and efficient in light-field cameras. The framework is versatile and can be applied
to both regular and multi-view stereo imagery. Additionally, the research proposes a
floating-point method for artifact-removal on cost volumes, which is robust to smooth
surfaces and object complexity. A fast local smoothing technique is also introduced
for noise and discontinuity reduction on cost volumes, which is robust to sharp depth
changes. Furthermore, the work presents a method for combining different types of
depth prediction methods before regression, offering a more holistic approach to depth
estimation.

The third area of investigation is in the automation of detail in hand-drawn animation.
This research is to be presented at the 33rd International Joint Conference on Artificial
Intelligence under the title “Re:Draw - Context Aware Translation as a Controllable
Method for Artistic Production”. Meanwhile, its contributions have already been made
available on arXiv [CBCW24]. The work introduces a dual-discriminator-based training
structure for adversarial training that takes into account both the original pose and design
translation requirements, which we call context-aware translation. This is a significant
advancement over traditional methods, which often struggle with maintaining the integrity
of the original design. The research also introduces a triple-reconstruction loss, a novel
approach that yields greater unsupervised level-of-detail generation than traditional loss
functions. Furthermore, the work presents a character design recognition network that
uses a production style-aware latent space. This network not only outperforms existing
work but also generates a robust training dataset for adversarial supervision, setting a
new benchmark in the field.

In addition to these primary contributions, the thesis also offers a review of relevant
background knowledge and existing literature in Chapter 2, detailed discussions and
solutions for each problem in Chapters 3, 4, and 5, and a thorough summary and
discussion of the findings in Chapter 6. This final chapter also highlights potential future
directions and areas for further exploration, thereby laying the groundwork for subsequent
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research in this field.
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CHAPTER

Background

This chapter explores fundamental concepts and techniques in computer graphics and
optimization. It aims to provide a foundation for the research and findings discussed in
later chapters. These fields encompass various theories, methodologies, and applications,
which have evolved significantly over the years.

The chapter is organized into four main sections, each focusing on a specific area of
knowledge that is crucial to understanding the problems we tackle in this work. The
bulk of this chapter are Sections 2.1 and [2.2, which form the central focus of this
discussion: Section 2.1| delves into the fundamental concepts of optimization, along
with the principles and techniques that hold specific relevance to this thesis; Section
2.2| discusses the application of these optimization techniques in work related to this
thesis. The remaining sections provide foundational knowledge for some of the subjects
discussed: Section 2.3, offers an overview of how human perception has been studied and
modeled computationally, with a focus on perceptual metrics and depth cues; Section [2.4
transitions to an exploration of drawn animation, introducing its fundamental principles
and the essential components of the prevalent animation pipelines.

By the end of this chapter, readers should have a solid understanding of the critical areas
and state of the art relevant to this thesis, the theoretical and practical foundations of
our research, and the gaps in the current body of knowledge that our research aims to
fill.

2.1 Optimization

Optimization has found applications in diverse fields. In engineering, it is used to design
efficient systems, minimize costs, and improve performance. In economics, it guides
resource allocation, portfolio optimization, and supply chain management. Environmen-
tal optimization focuses on waste management, energy optimization, and more. The

11
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applications are vast and varied, and the impact of optimization is profound, shaping
the way we live, work, and interact with the world around us. Current trends and
challenges in optimization include big data optimization, multi-objective optimization,
and real-time optimization. Handling large-scale optimization problems requires inno-
vative algorithms and computational techniques. Multi-objective optimization deals
with problems where multiple conflicting objectives must be optimized simultaneously.
Real-time optimization is concerned with optimizing systems that operate in dynamic
and uncertain environments.

Optimization is a mathematical field that encompasses a broad range of concepts, which
has led to the development of a wide array of algorithms to solve optimization problems.
These algorithms can be categorized into various groups, such as linear, nonlinear, integer-
based, and multi-objective optimization. Constraints must be defined in these problems
to carve out a specific feasible solution space, and it is within this delineated boundary
that a search for the optimal solution unfolds. Linear programming algorithms, such as
Simplex Method and the Interior Point Method, deal with the problem of optimizing
a linear objective function, subject to linear equality and linear inequality constraints,
while non-linear programming algorithms, such as Gradient Descent, tackle problems
where either the objective function, the constraints, or both are non-linear. Metaheuristic
algorithms, inspired by natural processes, are more uncommon methods used to solve
complex optimization problems when traditional methods are not applicable or prove to
be too inefficient. Yet, in the realm of optimization, perhaps the most groundbreaking
advancement has been the integration of machine learning, particularly deep learning.

2.1.1 Regression

Regression analysis a statistical method used primarily for modeling and exploring
relationships between variables and one of the more straightforward applications of
optimization. It is used for several reasons: firstly, it enables the identification of
significant predictors or features in large datasets; secondly, it assists in forecasting
trends, which is particularly beneficial in dynamic optimization scenarios where future
states of the system need to be anticipated; thirdly, regression models can be used to
optimize the parameters of a system, ensuring that the system’s output is maximized or
minimized as per the defined objective function.

In regression analysis, the selection of appropriate models and estimation methods is
crucial. Initially, a suitable model is chosen for estimation. Subsequently, a loss function
and minimization method is employed for estimating the model’s parameters. The
components integral to regression models include:

1. Unknown parameters to be determined and used to describe the relationships
between variables, commonly denoted as a vector 6.

2. Independent variables, which are observed in the data and usually represented by a
vector X.
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3. Dependent variables, also observed in the data and often expressed using Y.

4. Error terms, not directly observable in the data, typically denoted by e.

The effectiveness of these models relies heavily on the data quality, the relevance of the
selected model to the data, and the precision of the parameter estimation methods used.
For example, while linear regression often utilizes least squares for analytical parameter
estimation, more complex methodologies are required for non-linear models.

Linear Regression The simplest form of regression, linear regression, models the
relationship between a dependent variable y and an independent variable x as a linear
function:

y =00+ 0z +e¢ (2.1)

where 6y and 0, are the intercept and slope of the regression line, respectively, and €
represents the error term. This model can be extended to multiple linear regressions
when there are multiple independent variables.

Non-Linear Regression Non-linear regression, on the other hand, is used when the
relationship between the variables is not linear. This might involve polynomial terms,
exponential functions, logarithms, or other non-linear transformations of the independent
variables. For example, the nth degree polynomial can be represented as:

y:90—|—01a:+02x2+...+9nx”+6 (2.2)
where 0y, 01, 02, ... 0, are the coeflicients of the model, and ¢ is the error term. This

model can capture the curvature in the data, which a linear model (i.e., a first-degree
polynomial) cannot. The choice between linear and non-linear regression depends on the

nature of the data and the specific requirements of the optimization problem at hand.

For example, while a polynomial regression can fit a wide range of curvature, over-fitting
is more likely to occur when using higher-degree polynomials, especially when dealing
with a limited number of data points.

2.1.2 Iterative Methods

When dealing with complex, non-linear, or large-scale problems where analytical solutions
are either infeasible or non-existent iterative methods can be employed. These methods
work by repeatedly refining an approximation of the solution, using an iterative process
to gradually converge towards an optimal or near-optimal solution. The choice of an
iterative method depends on the nature of the optimization problem, including the type
of objective function, the presence and type of constraints, and the size of the problem.

13
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Gradient Descent Gradient Descent is traditional method of iterative optimization,
utilized for minimizing a differentiable objective function. It operates by iteratively
moving in the direction of the steepest descent, defined by the negative gradient of the
function, with the aim to progressively update a set of parameters 6 to a better solution.
Each step is defined as:

9t+1 == 9t - (JZVJ(Gt) (23)
where J(#) is a differentiable cost function, #; represents the parameters of the model
in the current step, and VJ(6;) the current derivative of the cost function. The goal of
gradient descent is to find the values of 6 that minimize J(#). Stochastic Gradient Descent
is a variant of the more traditional Gradient Descent algorithm. The primary difference
between gradient descent and the stochastic variant lies in the computation of the gradient.
In traditional gradient descent, the gradient is computed using the entire dataset, which
can be computationally expensive for large datasets. In contrast, stochastic gradient
descent estimates this gradient using a single data point (or a mini-batch) randomly
chosen from the dataset. Each step thus becomes:

9t+1 = 9,5 — OZVJZ(H,:) (24)

where J; is the cost for the i*" data point. While this stochastic nature introduces
variability, with the right hyper-parameters and learning rate schedules, it can converge
to a solution effectively, making the algorithm much more efficient and the preferred
choice for many large-scale learning tasks. This feature made SGD the standard algorithm
for optimizing parameters in neural networks.

Conjugate Gradient The Conjugate Gradient method is particularly effective for
large-scale linear systems, and generally improves convergence rates over traditional
Gradient Descent in those scenarios. It selects search directions that are mutually
conjugate, optimizing the process particularly for sparse systems. The update rule in its
basic form is given by:

9t+1 = Gt + O[tdt (25)
where z; is the solution vector at iteration ¢, a; is the step size, and d, is the conjugate
direction.

Newton’s Method and Quasi-Newton Methods Newton’s method uses second-
order derivatives for optimization, involving the Hessian matrix H. The update rule
is:

01 = 0 — H 1 (0,)V.J(6y) (2.6)
Here, H~1(6;) is the inverse of the Hessian matrix at §;. Quasi-Newton methods, like
BFGS, approximate H ! to improve computational efficiency:

ytytT . BtALL‘tAZL'?Bt
yl Az, Azl BiAxy

with B; 1 being the approximation of H~!, Ax; the change in 6, and y; the change in
the gradient.

Biy1 = B + (2.7)
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2.1.3 Deep Learning

As a subset of machine learning, deep learning has redefined the boundaries of what is
achievable using iterative optimization. The essence of deep learning lies in training neural
networks, a process underpinned by the backpropagation algorithm. This algorithm
computes the gradient of a loss function with respect to each weight, and iterative
optimization algorithms, notably Stochastic Gradient Descent, tweak these weights to
minimize the loss. The synergy between deep neural networks and optimization algorithms
enables the modeling of complex intricate patterns and relationships in data, bridging
traditional optimization techniques with the avant-garde, data-driven methodologies of
today.

Convolutional Neural Networks Given the image-centric challenges addressed in
this thesis, when it comes to deep learning, in this work we are particularly interested in
a specific type of network: the convolutional neural network. This category of neural
networks has proven to be highly effective in a wide variety of image problems, such
as image recognition, classification, or generation, becoming the de-facto standard in
computer graphics and vision. While vision transformers, a type of neural network
architecture inspired by natural language processing techniques and adapted for image
recognition tasks ﬂm, have gained traction as a promising approach for image
processing, their computational demands are generally more intensive. This makes them
unsuited for real-time scenarios and limiting in high performing or interactive ones, which
are the type of problems we deal with in this thesis. Consequently, this section focuses on
convolutional networks, exploring their origins, basic concepts, mathematical principles,
and applications particularly relevant to this work.

The concept of convolutional processing dates back to the biological studies conducted by
Hubel and Wiesel in the 1960s, which were inspired by the visual cortex in the brain. The
first practical implementation of a convolutional network was by LeCun et al. ﬂm,
who applied backpropagation to train a network on handwritten digit recognition. A
convolutional network is comprised of an input layer, several hidden layers, and an output
layer. The hidden layers consist of a series of convolutional layers, interlaced by activation
layers, pooling layers, normalization layers. Sometimes, fully connected layers, also known
as linear layers, are also used. However, the cornerstone of this category of network is
the convolutional layer, which applies a convolution operation to the input, passing the
result to the next layer. This convolution operation can be represented as:

fconv(xay) = I(x7y) ®K(xay) = ZZI@: -—m,y — n) : K(m, n) (2'8)

where feonyv(,y) is the output, ® denotes the convolution operation, I(z,y) is the input
and K(x,y) is the kernel, which is composed of weights to be learned during training
— optimization through backpropagation. The kernel slides over the input image and
multiplies its values with the corresponding values in the input, summing them up to
produce the output — see Figure 2.1 for reference.

15
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Figure 2.1: Convolution Layer. This illustration [DV16] depicts the convolution
operation, where each pixel in the output matrix (top) is computed as a weighted sum of
its corresponding local neighborhood in the input matrix (bottom). The dimensions of
this neighborhood are determined by the size of the weight matrix W. Optional padding
can be applied to the input to ensure that output pixels can be centered around a greater
number of input pixels. In this illustration, padding is used to preserve the dimensions
of the input.

Linear Layers Linear layers, commonly known as fully connected layers, are a cor-
nerstone in various neural network architectures, which includes convolutional networks.
These layers are responsible for learning a linear transformation that maps the input
space to the output space. The output is computed as a weighted sum of its input vector
x, along with a bias term b. For a weight matrix W, composed of weight vectors for each
neuron in x, the output is given by:

flinear(x) = XWT +b (29)

Despite their apparent simplicity, linear layers are incredibly versatile and effective. They
find applications in a myriad of tasks, ranging from traditional regression problems to
the latest text transformer models.

Activation Functions While convolutional and linear layers serve as foundational
elements in neural architectures, using them in isolation has inherent limitations. Specifi-
cally, the composition of multiple linear or convolutional transformations remains a linear
or convolutional transformation. This means that stacking multiple such layers, would
still result in a model that can only capture relationships in data a single layer could.
This is often insufficient for tackling complex tasks that require understanding intricate
patterns and relationships.
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Activation functions are thus a pivotal component in convolutional neural networks,
introducing non-linearity into the model. This non-linearity allows the network to learn
from the error and make adjustments, which is essential for learning complex patterns.
We will now discuss some of the most commonly used activation functions and their
mathematical expressions. Rectified Linear Unit function (ReLU) has become the default
activation function for neural networks because of its simplicity and effectiveness in
various contexts. The function returns 0 if the input x is negative and returns the input
itself if it is positive. It is given by:

frelu(x) = maX(O7 .%') (210)

Despite its popularity, the ReLLU function has some drawbacks, such having no derivative
for x < 0, where it can sometimes get stuck during training and stop updating. Another
common activation function is the sigmoid, an S-shaped curve that can take any real-
valued number and map it between 0 and 1. It’s given by:

1

T 1+ exp(—x) (211)

fsigmoid (.T)

However, the sigmoid function is often avoided in deep networks due to the vanishing
gradient problem. This challenge arises particularly in networks using gradient-based
optimization methods like gradient descent and is exacerbated by network depth. The
issue refers to the shrinking of gradient values to infinitesimally small numbers as one
propagates backward from the output layer to the input layer during training. Specifically
for the sigmoid function, its output is € [0, 1], and derivatives can become very small,
causing the network to effectively stall or becoming stuck during the training process.

Normalization Functions Normalization functions play a pivotal role in the realm of
machine learning and data science, serving as essential preprocessing steps to condition
the data for optimal performance. These functions aim to scale, center, and sometimes
even standardize the data, thereby making it easier for algorithms to learn the underlying
patterns. The primary objective is to transform the features so that they conform to a
standard range or distribution, which in turn helps in accelerating the convergence of
optimization algorithms like gradient descent.

One of the most straightforward normalization techniques is min-max scaling, which
rescales the features to lie in a given range, usually € [0,1]. Mathematically, given
min(X) and max(X) as the minimum and maximum values of a feature X, the min-max
normalization for a data point = is given by:

x — min(X)
max(X) — min(X)

fmin-max(x) = (212)

Another commonly used normalization technique is Z-score normalization or zero-mean
normalization. This method transforms the data into a distribution with a mean of zero

17



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

2.

BACKGROUND

18

and a standard deviation of one. Glven p as the mean and o as the standard deviation
of the a feature X, the formula for Z-score normalization is:

fz—score(x) = ’ ; K (213)

Batch Normalization has gained significant attention. It normalizes the output from a
hidden layer in a way that the mean output activation is close to zero, and the output
standard deviation is close to one. Given a mini-batch B of size m, the mean pup and
the variance op of this mini-batch and a small constant ¢ added for numerical stability,
the output y is computed as:

Tr; — UB
fbatch—norm(xi) = i (214)

\/U% +e€

Normalization functions are not just limited to feature scaling and data conditioning.
They also find applications in the regularization of models, preventing overfitting, and
even aiding in better generalization. The choice of normalization function often depends
on the specific requirements of the problem at hand, the nature of the data, and the
algorithm being used. Overall, normalization functions serve as indispensable tools in the
machine learning pipeline, contributing significantly to the performance and robustness
of models.

Pooling Functions Pooling functions serve as a critical component in the architecture
of convolutional neural networks, aiding in the reduction of spatial dimensions and
computational complexity. These functions operate on each feature map separately and
are designed to aggregate information in a local neighborhood. By doing so, pooling
layers introduce a form of translation invariance and reduce the risk of overfitting.

The most commonly used pooling function is max pooling. Given a n X m region R
in a feature map, max pooling selects the maximum value within this region as the
representative value. Mathematically, max pooling is defined as:

fmax—pool(R) = Iiléi}}%cﬂf (215)

Another widely used pooling function is average pooling, which computes the average
value of all the pixels in the n x m region R. The formula for average pooling is:

favg—pool(R) - Z T (216)

In addition to max and average pooling, there are more specialized pooling functions like
min pooling, which selects the minimum value in the region, or global-average pooling,
which takes the entire feature map as its region to average over, and its often used
as a replacement for the linear layers in classification tasks. Pooling functions are not
merely dimensionality-reducing mechanisms; they also contribute to the model’s ability
to generalize by focusing on the most salient features and ignoring irrelevant details. The
choice of pooling function can significantly impact the performance and interpretability
of the convolutional neural network.




Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

2.2.  Applications of Optimization

(a) Full rate (b) Adaptive (c) Shading Rate (d) Adaptive (e) Shading Rate
(stationary) (stationary) (stationary) (in motion) (in motion)

Figure 2.2: Content Adaptive Shading. Image quality comparison of adaptive shading
on and off (Wolfenstein IT scene) as shown in the work of Yang et al. [YZK*19|. Different
colored tiles in the top right image represent different shading rates.

2.2 Applications of Optimization

This section examines the areas of research relevant to this thesis where optimization
plays a role. The first subsection, Real-Time Shading, discusses how optimization helps in
balancing image quality with computational demands during rendering. Next, in the Cost
Volumes subsection, we explore how optimization contributes to effective depth estimation
in light field imaging. The section then moves to Imaging, highlighting advancements in
image editing and manipulation driven by deep learning. In essence, each of these section
roughly corresponds to work related to each of the three problems covered in this thesis.

2.2.1 Real-Time Shading

In the context of real-time graphics, the concept of optimization manifests itself mostly
as a quest to minimize computational resources while maximizing image quality — a
multi-objective optimization problem. In particular, methods for reducing the amount
of shading computation required are a well-studied concept. Mixed-resolution shading
[Sho09] [YSLOS| renders expensive and low-frequency shading components at low resolution
and bilaterally upsamples the results to full resolution. This is akin to constraint
optimization, where the objective function aims to maximize image quality subject to
computational and memory constraints. Decoupled shading [CTMT13, LD12, RKLC*11]
separates the shading rate from the visibility sampling rate by establishing a mapping
between the visibility samples and shading samples and sharing or reusing shading
samples where possible. Texture-space shading [AHTAM14, [CTHT 14,
computes shading in texture or patch space in an appropriate density controlled by the
mip level. These software-based techniques are available for use on a wider variety of
hardware but require more complicated implementation and maintenance due to their
significant deviation from the hardware rasterization pipeline.

Variable-rate shading (VRS) does not suffer from this issue, as it fits within traditional
rasterization pipelines. VRS can be seen as a generalization of multi-sample anti-aliasing,
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by which a single shading operation can be used to color not only multiple samples within
a single pixel but multiple pixels. Software-based VRS implementations commonly divide
the screen into n X n pixel tiles (where n is an integer number) and assign shading rates—
the ratio of actual pixels to the number of shading operations—independently to each tile.
Current hardware implementations are even more specific and operate on 16 x 16 tiles, with
a fixed set of possible shading rates [NVII8] Int19]. Some use cases for VRS have been
targets of growing interest, such as foveated rendering [Bhol9, [FFM™21, I TAKW 19|, a
technique which uses eye-tracking hardware to direct rendering resources to the region
the user focuses on [PSKT16], or lens-optimized shading [Kral8, [YZ19], which aims
at warping screen space to more closely match the final lens-corrected image [LiulT].
However, these techniques are only usable with specific peripherals, such as a VR display
with eye-tracking capabilities, and do not take advantage of scene-dependent information.

Content-adaptive shading, first proposed by Yang et al. ﬂm, can be seen as a
real-time optimization technique that provides a more general solution, being usable
in the rendering of any 3D scene. It does so by dynamically varying the shading rate
across the screen according to the perceivable level of detail of the content being rendered
(see Figure 2.2)): the rendering result of the previous frame and the previous shading
rate choices are reprojected into the current screen space and used as cues to choose
the required shading rate. Drobot et al. [Dro20] developed a variant of this concept,
designed with software-based VRS in mind. Mueller et al. [MNV7T21] showed that shading
information from previous frames can be reused for quite some time if properly sampled.
Jindal et al. [JWMM21] proposed a more elaborate VRS-specific metric that adapts to
known texture IDs. However, these techniques share several common limitations: First,
they rely solely on analyzing the content from previous frames. Thus, they are unable
to make predictions where reprojection data isn’t available. Further, they are unable
to make any predictions regarding how a surface’s light response or texture aliasing
might change over time, which can be especially problematic with visual edges, shiny
and animated materials. Finally, due to the constraints of real-time rendering, image
quality needs to be measured using a computationally efficient estimator, and some form
of Just-Noticeable-Difference (JND) [T'GI5] threshold. Thus, these methods have to
rely on multiple approximations, leading to imprecise shading-rate decisions, which, in
theory, could accumulate error over time. In practice, adaptive shading is only used after
significant engine- and scene-specific tuning, such as ensuring it is only enabled in highly
diffuse materials.

2.2.2 Cost Volumes

Cost volumes are a tool that can be used when an optimization problem seeks to balance
computational efficiency with required precision. In particular to this thesis, their use for
depth estimation from light fields has been an active research topic over the past few
years, and for which a large body of recent research already exists.

We now explain the basic concepts surrounding cost volumes and how they are generally
used. Cost volumes serve as a three-dimensional objective function to be minimized in
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Figure 2.3: Depth Estimation Pipelines. Comparison of the pipelines proposed by
Tao et al. [THMRI13], Jeon et al. [JPCF15] and Williem et al. [WWLIS], and how they
fit within the main five stages for depth prediction using cost volumes from light-field
images. Images are only illustrative.

this optimization problem, and are typically generated by measuring a visual cue across
a range of depths, thereby defining the feasible solution space for depth estimation. Let
C(u, z) be some cost volume, a three-dimensional function parameterized by the image
coordinates u and depth z that, when minimized along the depth axis, should result in
an accurate prediction D¢ of ground-truth depth D:

D(u) ~ De(u) = argmin C(u,z) (2.17)

The pipelines used by cost-volume based depth prediction methods can be generalized
to 5 stages: first, a cost volume is estimated from depth-cue(s) in the light-field — see
Section [2.3.2| for information on common cues. Second, the cost volume might be refined

to improve further predictions. Third, a depth-map is estimated from the cost volume.

While directly minimizing the cost volume, as in Equation 2.17) is the simplest possible

depth estimation optimization method, more complex methods have been proposed.

Fourth, the depth prediction itself might be refined using refinement methods for range
images. Finally, camera properties and calibration are taken into account to compute a
map of calibrated depth from the depth prediction. We illustrate all stages in Figure 2.3
and how some of the existing work we will mention fit into them.

Yet, our primary focus with cost volumes lies not in how these are generated, but rather
in how they are processed and how depth is regressed from them. Depth estimations
from existing work often exhibit sharp discontinuities, which are particularly problematic
in flat and smooth surfaces. This occurs due to a strict trade-off between computational
efficiency and cost precision, as both are tied to the number of layers of the volume. For
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example, classification methods can solve ambiguities in the cost volume, in particular
in out-of-focus background regions, and thus remove unwanted artifacts. However, they
can also further exacerbate discontinuity artifacts by reducing the number of possible
depths to a limited set of classes, or create new artifacts of their own due to mislabeling.
Both Jeon et al. [JPCT15, JPCT19] and Williem et al. [WWLIS]| suffer from this issue,
as they perform multi-label optimization, using graph cuts [KZ02], to propagate SIFT
feature matches.

To compensate limitations of the regression methods, previous work often performs
refinement operations on the disparity or depth maps obtained from regression. After
their multi-label regression, both Jeon et al. [JPCT15, [JPCT19] and Williem et al.
[WWL18] perform median weight transfer, followed by an iterative spatial-depth super-
resolution method first proposed by Yang et al. 2007 [Y'YDNQT].

Different cues can also be integrated. For example, Jeon et al. ﬂmﬂ use four
different cues, which result in a total of 16 cost volumes, to compensate for each other’s
shortcomings. Defocus and correspondence are the most often combined [LCBKYT5,
KGB95, SYT97]: Tao et al. first combined these two cues using Markov
random field propagation with the Peak Ratio, introduced by Hirschm‘uller et al. [HIG02],
as the confidence measure. Later, Tao et al. |[TSM™15] improved it by also using a
shading constraint as the regularization term.

However, depth refinement methods are unable to take full advantage of the light-field
properties, as they are reduced to work in 2D color and depth space. Due to the lack of
information, we found they are prone to creating artifacts or misreading the shape of the
scene. It is also important to point out that recent deep learning based methods have
shown promise. For example, Shin et al. ﬂm proposed a fully convolutional network
capable of estimating depth from epipolar images. Zhou et al. proposed three
unsupervised loss functions, which remove the need for large amounts of ground-truth
data for training.

2.2.3 Imaging

In the rapidly evolving field of using convolutional neural networks for visual content,
remarkable strides have been made that are revolutionizing the way we can edit and
manipulate images. One of the seminal works that ignited this transformative journey
was the work by Gatys et al. [GEBI16], which showed how to edit an image by varying its
overall style by transferring the style of a target image using deep learning optimizations.

This work has generated a prolific field [HB17, KLAT9, KLAT20, KAL"21, [KLA21].

Image-to-image translation, the task of converting an image from one representation to
another, has been a topic of significant interest in recent years. This task can involve
a wide range of functions, such as converting a daytime scene to a nighttime scene,
changing the season in a landscape photo, or converting a photo into a painting in the
style of a famous artist. Lee et al. proposed a method for producing diverse
outputs without the need for paired training images by embedding images onto two
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(a) Input (b) Inpainted (d) Inpainted

Figure 2.4: Inpainting. Images with marked missing regions and the corresponding
inpainted results, as shown in the work of Liu et al. [LRST18].

spaces: a domain-invariant content space and a domain-specific attribute space. Liu
et al. introduced FUNIT, a few-shot unsupervised image translation model
based on MUNIT [HLBK18]. Compared to earlier image-to-image translation methods
[ZPTE17, IZZE1T], this approach has the ability to translate from an unseen domain with
unpaired data. FUNIT achieves this by coupling an adversarial training scheme with
a novel multi-task adversarial discriminator. Park et al. [PLWZI19] introduces a new
layer for synthesizing photo-realistic images given an input semantic layout. Lee et al.
[LLWTL.20] presented a framework for diverse and interactive facial image manipulation.
Park et al. proposed maximizing mutual information between corresponding
input and output patches, using a framework based on contrastive learning.

Image inpainting, the task shown in Figure 2.4] of predicting missing parts of images, has
also seen significant advancements with the application of deep learning techniques. Liu
et al. ﬂm proposed a method for image inpainting using partial convolutions, where
the convolution is masked and normalized to be conditioned on only valid pixels. They
also introduced a mechanism to automatically generate an updated mask for the next
layer as part of the forward pass, demonstrating the efficacy of training image-inpainting
models on irregularly shaped holes. Yi et al. m presented a residual aggregation
mechanism for ultra high-resolution image inpainting, which reduces the cost of memory
and computing power, and also alleviates the need for high-resolution training datasets.
Nazeri et al. proposed a two-stage adversarial model that consists of an edge
generator followed by an image completion network. The edge generator hallucinates
edges of the missing region of the image, and the image completion network fills in
the missing regions using these hallucinated edges as a priori. Liu et al. ﬂm
proposed a mutual encoder-decoder network for joint recovery of both structures and
textures, effectively removing blur and artifacts caused by inconsistent structure and
texture features.

Illustration and Animation Deep learning techniques have started to be applied to
comic book [ATKIS§| and illustration editing; most literature focused on the colorization of
either sketches or shaded manga drawings and main line extraction. Regarding this latter
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topic, Simo-Serra et al. [SSISI16] proposed one of the first deep learning methods based
on a simple encoder-decoder CNN architecture for sketches. Li et al. [LLW17] generalized
the approach for patterns in drawings by employing a U-Net, a type of convolutional
neural network known for its ‘U’-shaped architecture, which includes skip connections to
merge low-level detail information from early layers with high-level features in deeper
layers. This design enhances the network’s ability to capture both local and global
patterns effectively. Line extraction methods can be improved when they are paired
with user inputs [SSITI8D| or adversarial training [SSIT18a] or unpaired data with the
synthesis of paired ones [LKY™19].

Concerning colorization, Yuanzheng et al. [CMWT18] employed a conditional GAN to
color illustration line art using scribbles from the user. This approach was improved by
Zhang et al. ﬂm, who proposed a two-stage sketch colorization for illustration:
first, the user marks colors as points on a sketch and the system generates a colorized draft
using a GAN; the user can then correct mistakes on the draft with further color points
which are propagated using a refinement GAN. The illustration dataset by Zhang et al.
was used for training, and it has also become a staple for many other methods.
A different approach for manga colorization was proposed in [SACIMI9, [SEO*21], where
the user, instead of scribbling or splashing colors, provides an input image with basic
colors. In particular, Shimizu et al. [@ﬂ showed that providing a flat colored
image of the sketch image can generate high-quality colorization with little training
data. Note that this flat-filling colorization can also be automated using deep learning
ﬂm and user inputs for complex line art. In this domain, researchers have also
focused on specific parts to colorize using user inputs [AMT20], or combined with text
tags [KJPY19]. While at first, this might appear appropriate for animation, as they do
not require input per frame, they suffer from limitations when it comes to artistic control.
Both remove control of lighting conditions, and the first removes control over pose and
expression by virtue of being an in-painting method, while the second entirely removes
control over shading. Akinobu et al. [MKST21] proposed the first colorization method
tailored for anime production, using an ad-hoc sampling method for patches that is
capable of associating patches throughout frames in the same shot and thus transferring
coloring on manually colored reference frames to other frames in the same shot — see
Figure [2.5.

An emerging topic is manga generation using adversarial training and some character
parameters [JZLT17], photos [WY20, [SNL*21], and sketches [YYP19]. Although they
can generate high-quality results, they lack precise artistic control; especially for modifying
existing drawings.

Recently, researchers have applied classic methods such as segmentation [ZJL20] and
clustering [NRS22] to illustration and cartoon art. Nir et al. [NRS22] proposed a method
to learn a style-specific semantic for animated content using self-supervision. They
introduce a semantic clustering based on a CNN and self-supervision where style is
encoded in the training. However, it needs to be trained separately on each production
and is more suited for tracking characters and not their designs.
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reference — generated — reference

Figure 2.5: Colorization. The method proposed Akinobu et al. [MKST21], as shown
here, is a rare example of colorization that fits within the hand-drawn animation needs
and constraints. Final line drawings are colorized based on manual reference colorings
performed on select frames of the same shot.

Drawing these threads together, it’s evident that while there has been a significant
amount of research dedicated to comic books and illustrations, the field of hand-drawn
animation is comparatively underrepresented. Despite its unique production challenges,
very few methods have been developed that are compatible with the nuances of anime
production. Even rarer are generalizable methods that do not require fine-tuning to
adapt to each production’s distinct style.

2.3 Human Vision

One of the main challenges that face the field of computer vision is replicating human
visual perception, enabling algorithms to interpret and interact with the world in a way
similar to human cognition. Thus, modeling human perception in computer vision goes
beyond recognizing patterns or objects; it involves understanding how humans perceive,
interpret, and respond to visual stimuli.

While human perception is a widely studied topic, it is also a complex interplay of
physiological processes and cognitive interpretations. The human eye captures light,
processes it through a series of photoreceptor cells, and then transmits this information
to the brain. The brain, in turn, deciphers this data, extracting meaningful patterns,
colors, motion, and depth.

2.3.1 Perceptual Metrics

Computationally measuring the multifaceted nature of human perception has led to the
development of perceptual metrics. These metrics aim to quantify the visual quality
of images and videos in a manner that aligns closely with human judgments. General
error metrics, such as Mean Squared Error (MSE), have been found lacking in capturing
the nuances of human perception. As a result, the concept of the perceptual metric has
emerged, considering factors like luminance, contrast, and structural integrity, to better
resonate with how humans evaluate visual quality.
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(a) Reference (b) Degraded (c) Aggregated Users Markings

Figure 2.6: Perceptual Metrics. Image pair from the dataset proposed by Wolski et
al. [WGY™18§|, displaying a reference image, its distorted counterpart and annotations
of user-identified visual discrepancies. Perceptual metrics attempt to computationally
approximate precise per-pixel markings or overall score of the visual difference perceived
by humans of arbitrary image pairs.

Conventionally, a reference perceptual metric f(I,.J) aims to compute the perceptual
difference between a reference image I and a candidate image J, while no-reference meth-
ods f(J) guess perceptual issues given the expected proprieties and common distortions
in natural images. Values may be computed for the entire image domain or regions
thereof. The most commonly referenced metrics in image quality assessment include Peak
Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM). PSNR, while not
a perceptual metric, is frequently used for its simplicity and historical significance in
signal processing. It is derived from the Mean Squared Error and applies a logarithmic
scale, coincidentally aligning with the logarithmic nature of human vision. For a color
value range € [0, 1], it can be defined as:

SN = Ji)?

where I; and J; are pixels in the original and reconstructed images, respectively, and N is
the number of elements (pixels) in the images. A higher PSNR value generally indicates
better quality, but it may not always correlate well with human perception. SSIM is
a metric that considers luminance, contrast, and structure to evaluate the similarity
between two images. Unlike MSE and PSNR, which focus on pixel-wise differences, SSIM
aims to compare the structural information of the images as a whole:

(2urpg +0.01M,) (2075 + 0.03),)
(12 + 1% + 0.01),) (07 + 03 + 0.03),)

frsnr(Z,J) = 10 - logy, <N> (2.18)

fssm(Z, J) = (2.19)
where p; and py are the means, a% and a?] are the variances, oy ; is the covariance,
Ar is the dynamic range of the color values and the constants avoid instability when
denominators are close to zero.

However, by expanding upon the foundational concepts of perception and traditional
metrics, recent research has introduced more advanced options, paving the way for
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Figure 2.7: Light-Field Imagery. The raw photos taken by light-field cameras show
an array of lenses focusing on different parts of a scene. Yet, by slicing them into
sub-aperture images, we can see these images are equivalent to multi-view images with
very narrow baselines. Figure from [JPCT19)].

more nuanced and accurate evaluations of visual quality. The following publications are
highlighted: Anderson et al. ﬂm presented the FLIP estimator, inspired by
models of the human visual system and designed with particular focus on the differences
between rendered images and corresponding ground truths. Zhang et al.
discovered that, during neural image classification, the intermediate image representation
produced by the classification network could be used for comparison with other images.
Wolski et al. ﬂm created a data set of image pairs with user markings of where
they perceive distortions (example shown in Figure 2.6) and a convolutional network
trained on it capable of predicting markings in new images. However, all of these elaborate
metrics share the drawback of remaining inaccessible in real-time environments, with
more naive metrics such as the one proposed by Yang et al. ﬂm being used in
those scenarios instead.

This ongoing development of more advanced techniques to more closely mirror human
perception underscores the complexity of human vision and the ongoing challenge of
balancing perceptual accuracy with computational efficiency, a theme central to the first
use-case of optimization approached in this thesis.

2.3.2 Depth Cues

Depth perception plays a crucial role in how we interpret the world around us. When
capturing multiple images of the same scene, the interrelationship among these images
provides valuable insights into the spatial structure of the scene itself. Drawing parallels
to the human ability to gauge depth through stereo vision, computer vision methodologies
have been developed to mirror this innate capability. Commonly adopted heuristics,
such as defocus, correspondence, and epipolar plane analysis, serve as pivotal cues for
discerning depth in multi-view imagery.

In this section, we delve into these depth cues, placing special emphasis on their use in
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light-field images, a topic of particular significance to the second problem tackled in this
thesis. As highlighted in Chapter |1, light-field images capture both the direction and
intensity of light from a scene. Essentially, they are multi-view images with minuscule
disparities between each perspective (see Figure 2.7)).

Defocus serves as a depth cue by measuring the optimal local sharpness at various focus
distances. This is achieved by capturing images refocused at different depths, as detailed
by Tao et al. 2013 [THMR13]. In traditional photography, this implies taking the same
photo with the camera focused at different depths, while light-field photos have the
advantage that a single image can be refocused through computation alone. An adaptive
defocus response, proposed by Tao et al. 2015 ﬂm, extends this cue to enhance
robustness against occlusion. Taking it a step further, Williem et al. 2018 [WWL18]
introduced the concept of constrained adaptive defocus, which offers invariance to noise
and occlusion, making it even more effective for depth estimation.

Correspondence refers to the process of finding matching points on different images that
represent the same point in the scene. However, in the case of light-field images, these
generally have very narrow baselines, which cause stereo correspondence matching to
obtain sub-par results due to sub-pixel shift [LLCT10]. Thus, correspondence generally
refers to angular patch-based estimation methods, even though standard multi-view
stereo data cost, calculated from the sum of absolute differences, is also used [TSMT15].
Jeon et al. used the phase-shift theorem to estimate sub-pixel shift in the image
frequency domain. Tao et al. 2013 [THMRI3] estimated correspondence as the variance
in the angular patch of refocused images. As they did for the defocus cue, Williem et
al. 2018 [WWLI8] proposed constrained angular entropy, a cue invariant to noise and
occlusion.

Epipolar plane image analysis, related to the concept of angular estimation, is specific to
light-field images, as it refers to slicing an image along the epipolar planes, and taking
advantage of properties of the resulting images to estimate properties [BBM87]. In
particular, light-field images tend to form diagonal lines whose angles are linearly related
to depth [MTLP96]. However, not only is this method only usable in problems that deal
with light-fields, these diagonal lines only allow for sparse estimations, making them
sub-optimal for problems that require dense depth information.

2.4 Basics of Drawn Animation

Animation, in its essence, is the art of breathing life into static images, allowing them to
move and interact in a dynamic sequence. Historically, this art form has been deeply
intertwined with human culture, evolving from primitive cave paintings that hinted at
motion to the intricate hand-drawn animations we recognize today. Understanding the
basics of drawn animation is crucial to this thesis as it lays the foundation for exploring
the optimization of animation production pipelines — the third use case approached in
this thesis.
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Drawn animation, unlike other forms of animation that rely on stop-motion or computer-
generated imagery (either 3D or 2D), is predicated on the sketching of each frame to
create movement. This creates a visual storytelling medium that is both evocative and
distinctly unique. The production of this type of animation is complex, time consuming
and requires the combined efforts of many professional artists and technicians, specializing
in various fields. This results in the need for pipelines with precisely defined steps to
allow the easy exchange of work between different artists.

At the core of drawn animation lies the depiction of characters, and two critical aspects
define a character’s appearance and interaction in any frame: pose and expression. A
character’s pose refers to the arrangement or posture of their body, highlighting their
stance, orientation, and position in relation to other objects or characters in the scene. It
provides crucial context about the character’s current activity or intention. On the other
hand, a character’s expression pertains to the portrayal of their emotions or sentiments,
primarily through facial features but also influenced by body language. Expressions offer
a direct window into a character’s mindset, feelings, and reactions, making them pivotal
for conveying narrative elements and driving viewer empathy.

Nowadays, the vast majority of drawn animation produced is limited animation, which is
a sub-category within drawn animation that represents an ingenious blend of efficiency
and artistry. Instead of redrawing every frame from scratch, as done in full animation,
limited animation re-purposes the moving parts, also known as cels, across multiple
frames, as shown in Figure 2.10. While full animation is generally more fluid, limited
animation not only economizes the production process but also lends itself to more
stylistic direction choices and characteristic animation styles.

A foundational step in the production of limited animation encompasses the creation
of a storyboard and color guides. The storyboard is a sequence of rough sketches that
sets the narrative trajectory, acting as a comprehensive blueprint for the animation’s
progression. In parallel, color guides are meticulous documents that communicate how
the characters should be drawn, as to standardize their appearance, including their shape,
colors, poses and expressions, ensuring consistency throughout the production. Integral
to the process, both the storyboard and color guides collectively serve to articulate the
intended visual and thematic objectives to the entire team. This alignment is essential to
maintain a consistent art style — a distinctive combination of design, color, shading, and
animation techniques that gives each production its unique visual signature. Typically,
each production adheres to a singular art style, ensuring a cohesive visual experience for
the viewer.

The standard limited animation pipeline can be roughly divided into 4 main stages:
drawing keys, inbetweening, coloring and compositing, as illustrated in Figures 2.8/ and
2.9 Initiated by the storyboard, the layout emerges, setting the groundwork for planning
frame sequences and drafting key frames. These key frames undergo multiple reviews
and alterations, and might be passed between various artists. Key frames are pivotal
frames that define the start and end points of any motion or transformation. By focusing
on these frames, animators can create the illusion of movement without having to draw
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Figure 2.8: Animation Pipeline. Diagram of the standard production workflow for
limited drawn animation [Furl6]. In this thesis, we mostly interact with the color check
and compositing stages.
30
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(a) Colored Cell (b) Final Composition

Figure 2.9: Animation Frames. Each frame in drawn animation is composed of two
major components: the foreground, also known as cell, which is generally composed of
characters and objects they interact with; and the background, which contains the scene
and static objects. Artwork provided by OtakuVS et al. [OT21].

(a) Fully Drawn Key (b) Partially Drawn (c) Fully Drawn Key
Figure 2.10: Limited Animation. In this type of drawn animation, characters might
only be partially drawn, with the intention that parts of drawings from previous frames
will be re-purposed. In this example from [IK'T23|, only the arms and book were drawn

for the inbetweens, as the face and body remained static.

every intermediate frame. The inbetween frames, which are frames that fill in the gaps
between the key frames, are then added and together with the key frames are drawn
in a strict format that contains information on how elements should be handled by the
coloring team. Starting with coloring, all operations are digital, while paper is still
prevalent in the previous stages (see Chapter 5 for more information from our industry
survey). Finally, compositing assembles the drawn animations with other elements, such
as background or 3D digital effects.
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CHAPTER

Predicting Perceptual Error in
Real-Time Applications

In this chapter, we delve deeper into the topic of adaptive rendering mode selection,
initially introduced in Chapter [1. As previously discussed, much of the content in
this chapter has been published in the Proceedings of the ACM in Computer Graphics
and Interactive Techniques — titled ‘ Training and Predicting Visual Error for Real-Time
Applications [CKYT22]. We explore the pressing need for innovative solutions in dynamic
rendering adjustments. This need is fueled by the escalating demands for higher display
resolutions and refresh rates, particularly in applications involving real-time ray tracing
and virtual reality (VR). Traditional methods for rendering adjustments often fall short,
especially when faced with challenges such as rapid scene motion or fluctuating view
configurations. It is here that optimization-based techniques could come into play, offering
the potential to more accurately adapt rendering modes in real time, thereby improving
both performance without compromising visual fidelity.

Our goal is to enable the use of arbitrary screen-space visual metrics in real-time
applications and their efficient prediction, even for previously unseen regions of the scene
resulting from, e.g., fast camera movement. This forms an optimization problem where
the objective function is the minimization of the error when predicting these metrics. To
find a solution to this minimization problem, we propose a convolutional neural network
(CNN) that takes as input both reprojected renders, similarly to previous work and
current-frame screen-space information that is often readily available in G-buffers before
final shading, such as material properties or light visibility buffers. We demonstrate this
approach by applying our network to solve the broad problem of adaptive rendering mode
selection: given a viewport that is divided into equally sized tiles, select the suitable
fidelity mode for each one. By approaching the problem in this way, our solution becomes
applicable as a selection mechanism for most rendering settings that could be varied
across the screen. Possible examples in current hardware include variable-rate shading
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(a) Suntemple scene (b) VRS with JNFLIP (¢) VRS with JNFLIP
(full render) (network predicted) (ground-truth)

Figure 3.1: Chapter Overview. The network described in this chapter predicts image
error metrics for real-time use cases, such as variable rate shading (VRS). The shading
rate (OJ full, @ fine, = medium, M coarse) is selected for each image region based on a
neural network’s prediction from G-buffer data. In addition to established metrics (e.g.,
FLIP), we can learn Weber-corrected variants (JNFLIP) that respect perceptual context.

(VRS), software multi-sampling, temporal shading reuse, and hybrid rendering. By
enabling consistent prediction of arbitrary metrics on the entire screen regardless of scene
motion, we also open the door for new methods, use cases, and perceptual metrics to
appear in a real-time context.

Metric prediction for seen and unseen regions as a learning effort confronts us with novel
challenges: balanced selection of training samples becomes non-trivial since conventional
data preparation methods cannot be applied. Furthermore, for many practical use cases
(including VRS), perceptually correct threshold values may be required, which cannot be
measured for unseen regions. In this chapter, we present solutions to these challenges
and, as a proof of concept, use this approach to implement content-adaptive VRS. The
discussed contributions are:

1. A compact CNN for learning and predicting error metrics in real-time applications
for seen and unseen regions.

2. Two metric transforms to produce a more balanced training loss that easily gener-
alizes for new metrics and scenes.

3. A correction to metrics that removes the need for explicitly measuring perceptual
thresholds, embedding them into the trained models’ predictions.

4. Analysis and discussion of which current-frame screen-space data is most valuable
for predicting error metrics.

5. An evaluation of achievable quality, performance, and ability to generalize our
learning-based approach for VRS with the current state of available hardware
support.

Section [3.1 describes our network and how to train it to consistently achieve high-accuracy
image-error estimation in real time. Section 3.2 describes how to use the network in the



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hub

3.1. Metric Prediction

context of adaptive rendering mode selection, including a concrete example for application
to VRS (see Figure 3.1). Finally, Section 3.3 considers the performance and quality
aspects of our approach and provides an analysis of the obtained results.

3.1 Metric Prediction

Conventionally, a reference image metric f(I,.J) computes the perceptual difference
between a reference image I and a candidate image .J. No-reference methods f(J) guess
perceptual issues given the expected proprieties and common distortions in natural images.
Values may be computed for the entire image domain or regions thereof. In this thesis,
we aim instead to estimate f(I,I’), where I’ represents an informed approximation of
the reference I, such as a lower-resolution rendering of I. Our goal is to predict f(I, 1)
directly, without explicitly computing either I or I’ by exploiting other, more easily
available screen-space scene information instead.

Our deep learning-based approach enables fast prediction of complex metrics that would
otherwise incur significant computational overhead. However, one challenge to overcome
is the sensitivity of machine learning to unbalanced training data sets; another is that
the practical applications of f(I,I") often involves spatially varying parameters, e.g., the
local just noticeable difference (JND) at each point in I [YZKT19]. These challenges and
performance requirements can be seen as the constraints in our optimization problem,
where the objective is to minimize the prediction error while satisfying these constraints.
In this section, we introduce our network architecture, discuss which input data should
be used to predict metrics, and present our solution to the output imbalance problem.
Furthermore, we show how the spatially varying JND threshold can be integrated directly
into the trained model. For the sake of brevity, the visual illustrations of our approach
will focus exclusively on the example of predicting the error when I and I’ vary in shading
rate. In the figures displayed in this article, plotted or color-coded values of f(I,1I")
show the difference between reference I and corresponding I’ obtained with coarser 2 x 2
shading rate for a given metric f.

[ - o0 - )
‘
ith block
Batch Max Pool
> G - X - 8 B o

Figure 3.2: Predictor Architecture. Proposed network architecture for prediction of
perceptual metrics. Each block i performs down-pooling at size A(7).
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Table 3.1: Predictor Parameters. Example of the dynamic parameters values for the
layers of the predictor network given w = 16.

Layer In Channels Out Channels Groups Pooling Factor

1 # input data 16 1 1
2 16 16 1 2
3 16 16 4 2
4 16 16 8 2
5 16 # predictions 1 2

3.1.1 Convolutional Network Architecture

Figure 3.2/ shows the schematic of our convolutional network architecture. It consists of
3x3 convolutions, interlaced with rectified linear units (ReLU) and batch normalization,
and with a stride, padding, and dilation equal to 1 to ensure the image output size of the
convolution matches the input size. We optimize for prediction performance by pooling
as early as possible in the network and maintain a consistent amount of parallelism by
dividing hidden channels into independent groups at the same rate at which down-pooling
is performed—that is, we try to keep the number of independent groups times the number
of pixels remains the same. We chose a latent channel dimension of 16 as our testing
showed us that it is the lowest one can pick before there is an evident loss of prediction
quality. However, one can go as low as 8 latent channels before the network becomes
unusable. A single final sigmoid layer is used to constrain the output to the range [0, 1].

To support optimized generation of (conservative) predictions for arbitrarily-sized image
regions (e.g., for application to hardware VRS), maximum pooling is done depending
on an intended region size wxw (for per-pixel predictions, w = 1). The size A(7) in
down-pooling layer ¢ is:

2 if ¥ >2 j
A(i):{ if 57 >2 and i <5 (3.1)

[57] otherwise

As an illustrative example, Table [3.1] shows how grouping and max-pooling is used
throughout the network five layers when the intended output tiling size is 16 x 16 pixels
(w = 16).

The design of our network is governed by its intended use in real-time applications: given
sufficient training time, the network is capable of learning sophisticated features while
prediction remains fast. Its layout makes it compatible with optimized, massively parallel
inferencing solutions, such as TensorRT. Furthermore, the per-region predictions for
w > 1 can be passed on directly to tile-based procedures. Training was performed using
Root Mean Square Propagation [Hinl2].

We converged on our eventual design after comparing more complex alternatives, which
all underperformed or provided no visible benefit over the simpler solution. These
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(d) Both (e) Optimal 4 Channels (f) Target

Figure 3.3: Input Comparison. Network predictions for FLIP error between the
full-resolution reference image and a coarser, 2 x 2-shaded versions. Results were obtained
from networks trained with different screen-space input sets. Number of input channels
used are 3, 16, 19 and 4 in (b), (c), (d) and (e), respectively.

alternatives included using partial convolutions—with and without data masking—and
rendering-aware denormalization. We also decided on maximum pooling as it provided
higher accuracy than downscaling purely through convolution.

3.1.2 Input Data

Our solution aims to leverage as input any screen-space information that becomes available
in real-time rendering pipelines prior to expensive stages that can benefit from accurate
metric predictions. Hence, it presents an ideal fit for ubiquitous deferred shading pipelines,
which provide a range of screen-space information via the G-buffer. Outputs of previous
frames are also commonly obtained as a byproduct of rendering or at little additional
cost through temporal reprojection. The question then becomes which of these resources
to choose as inputs for the network to yield high accuracy while keeping the input set
compact. We assessed commonly available G-buffer contents and statistically analyzed
how influential each is on the prediction of perceptual error metrics. Our reference
rendering pipeline uses deferred shading, with cascading shadow maps, screen-space
ambient occlusion, fast approximate anti-aliasing, and tone mapping with automatic
exposure selection. The pipeline was implemented on top of Falcor [BYC™20] and the
network trained on established ORCA scene assets (Amazon Bistro [Amal7] and Unreal

Engine 4’s Suntemple [Epil7]).

We found that directly available information in the G-buffer—such as view-space normals,

diffuse color, or roughness—enables reasonable predictions across the entire screen.

However, it lacks a myriad of information that otherwise would have to be explicitly
encoded, such as lighting, tone mapping, or other effects. As shown in Figure 3.3, we
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Table 3.2: Input Contribution. Analysis using DeepLIFT of the contribution of each
potential network input towards prediction accuracy.

Channels Format Seen Regions Unseen
Reprojected Color ~ RGB 31.37% —

Reprojection Mask ~ Bool 17.26% 8.67%
View Normals RGB 16.89% 33.63%
Diffuse Color RGB 14.8% 42.59%
View Normal Z Float 10.12% 20.15%
Shadowing Float 7.48% 9.36%
Roughness Float 5.41% 6.77%
Specular Color RGB 5.73% 10.61%
Reflect Product Float 1.06% 1.33%
Emissive Color RGB 0.01% 0.03%

found the temporal reprojection of final color from previous frames to be a valuable
asset (similar to [YZKT19] and [Dro20]), as it contains most of this missing information.
However, color reprojection is spatially limited to previously seen regions only and thus
presents decreasing benefits in use cases with more obstructions, animated scenes or
fast-paced camera movement. Figure |3.3| proves that using temporal reprojection with
a quickly changing view or scene does not suffice to produce adequate predictions for
the current frame. Hence, a good prediction solution should weight available inputs
differently, depending on whether it is predicting for recently seen or newly disoccluded,
unseen regions. We assumed (and experimentally confirmed) that the network’s prediction
quality is highest if reprojected color is paired with a binary mask (seen = 1, unseen =
0).

To quantify the contribution of each input candidate, we used DeepLIFT [SGKIT,
on a model trained on all pre-selected candidate inputs and computed attri-
bution scores on a large validation set from our test suite. Table 3.2 lists the mean
absolute attribution score of each candidate input, as identified on the FLIP metric. As
expected, reprojected color contributes the most, but even more so if masked (accepted
if previously seen, zero otherwise). The contribution of diffuse material colors is highest
for unseen regions. Other inputs are less important, such as emissive material color,
for which we found no anecdotal or statistical benefit, or the dot product between the
surface normal and the reflection vector, which is redundant if view-space normals are
provided directly. Most RGB channels are relatively redundant, with whichever channel
being first in the input order becoming the dominant one and representing the majority
of the accuracy of the whole group. The only exception was normals, where the Z-axis
is always the dominant one. We also found no advantages of training with HDR for
RGB input data instead of 8-bit color channels. Using this knowledge, we can derive
effective yet compact input data sets. For real-time applications, we propose to use a
single 4-channel texture containing the reprojection mask, one RGB channel (any) of
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3.1. Metric Prediction

(a) Helmet scene (b) Ground-Truth ) MSE Loss ) MAE Loss (e) Clamped MAE

Figure 3.4: Transforms Motivation. Example of the network predicting FLIP on
an extremely unbalanced scenario [Carl@], containing mostly background and highly
reflective surfaces. Training this network to predict this error (b) with traditional losses
causes it to underestimate the metric (c,d). Applying our transform on the parameter
space remedies the issue (e).

the reprojected color, one RGB channel of diffuse material color, and the Z-axis of the
view-space normals. This provides a good tradeoff between desired low inference time
and prediction quality since these four account for 52.08% of the network’s prediction
capability, according to DeepLIFT.

3.1.3 Reparameterization

For a given perceptual metric, its output value distribution can change drastically with
different environments and rendering settings. We noticed in our experiments that, for
most metrics, the tested scenes produced mostly low output values and only a few very
high outliers. Such an unbalanced target distribution might prevent the network from
converging to a reasonable solution altogether when trained on arbitrary scenes. In
theory, this problem becomes less noticeable the more data and a greater variety of scenes
are provided. However, our goal is to provide a solution that can be efficiently trained
with a limited training set, as well as arbitrary metrics, scenes, and rendering settings,
yet still, generalize across them well.

We note that for many real-time applications, high metric prediction accuracy is most
relevant within a limited range of values that drive performance-related optimizations,
such as render mode selection. Thus, we choose to tackle the data imbalance issue by
using a modified parameter space that balances the data distribution while preserving
the relevant information in it.

Let L(Y,Y) be a given loss function, where ¥ € [0,1] is a set of predicted values in
transformed space, and Y = f(I,I') € [0,1] the corresponding target values. We define a
new loss function that measures the difference between predictions ¥ and targets Y after
transforming them to a new parameter space according to a function 7:

A

Eadaptive(K }A/) = E(T(Y)’ Y) (32)

We then use mean absolute error (MAE) as our £ loss function:

£MAE' adaptwe Y Y Z ‘7- (33)
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If predictions in non-transformed space are required (e.g., for comparison with perceptual
thresholds), they can be obtained as 71(Y). In the following, we describe our two
proposed different reparameterization transforms. Figures|[3.5, 3.6/ demonstrate how they
compare to each other and to non-transformed space.

Clamped Transform

A computationally efficient but lossy reparameterization solution is to re-scale the metric,
so its output distribution is centered at 0.5, and clamp outlier values to [0, 1] —existing
work on HDR imagery shows us this is not unreasonable [LAKIS]. Let Y; be a value to
be transformed and py the mean value of all target values in the data set. We define the
clamped transform:

’Tclamped(Y;) = max(min(zi, 1)7 0) (34)
Ky

where py can either be precomputed before training or estimated on-the-fly as a running

average of previously seen values for Y. We found this transform to improve prediction

efficacy on all of our tests, exemplified by Figure [3.4, and suggest it as the default choice.

Note that due to its lossy nature, 7! only exists in the [0, 1] range.

Logistic Transform

Due to its assumptions, the clamped transform may fail to generalize in special cases.
This could occur when training on a data set with higher values—and thus, higher
uy—or if using a metric with a vastly different distribution. Additionally, it also removes
information and zeroes out derivatives for the high outlier values. In cases where this
becomes an issue, we propose using instead a transform based on the logistic function S,
which is a bounded function with a bell-shaped derivative that is defined everywhere and
has its peak at the curve’s midpoint. We use the standard logistic function, centered on

Ky
1

S = T v

(3.5)

This function allows us to re-center the prediction distribution for any value of uy, while
establishing increased importance of accuracy for values near puy, without zeroing any
derivatives. Furthermore, it allows adjusting the relative impact of outliers using the
logistic growth rate hyperparameter k. In practice, we found that k = 10 works best
across the evaluated data sets. S, as defined above, does not produce values € [0, 1].
Hence, we normalize it as:

(3.6)

3.1.4 Weber Correction

Several use cases of real-time perceptual metrics, such as content-adaptive shading

[YZK*19, Dro20] or decoupled shading [MNVT21] use the just-noticeable difference
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3.1. Metric Prediction

Bistro Scene Detail - No Transform Detail - Logistic k = 10

—— Logistic k = 10
— Clamped
No Transform

Frequency

]
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Figure 3.5: Metric Distribution. Visualization of region in the training set distribution,
according to different FLIP parameter spaces. The clamping transform approaches a
uniform distribution, at the cost of ignoring differences between the highest values (notice
the spike at ¥ = 1.0). The logistic transform achieves a similar result but gives greater
importance to nuanced decisions. Both methods preserve all available information.
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Figure 3.6: Parameter Spaces. Visualization of the parameter spaces created as a
result of our transforms, for a training distribution average value py = 0.25.
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AN

(d) PSNR (e) INYang (f) INFLIP

Figure 3.7: Perceptual Metrics. Ground-truth side by side comparison of the metrics
mentioned in this Chapter, including two proposed novel metrics, shown for the same
frame when considering half-resolution rendering.

(JND) threshold to inform performance decisions, like render mode selection. However,
state-of-the-art approaches rely on explicit computation or reprojection to obtain this—
spatially varying—value. Hence, it is only available after rendering or for previously
seen regions, but not for unseen regions before shading. We solve this issue for our
learning-based approach by embedding the visual component of the prediction directly
into the model. To enable visually-based decisions, for the current frame, we must
estimate the final image error F and compare it with the JND threshold Y. Based
on Weber’s law [T'G15], Yang et al. define this threshold WW; and its applied
relation to the visual image error F; at each location 7 as:

B <W;=t(Li+1) (3.7)

where L; is the average luminance at location i, ¢ is a user-selected sensitivity threshold,
and [ is the environment luminance, which affects the sensitivity to dark areas. This
definition is only valid assuming a metric whose output values F directly represent visual
error on a luminance scale (e.g., FLIP). The relation is equivalent to:

o<y 3.8
Li—i-li ( )

Hence, instead of computing the perceptually-corrected threshold in real time, we can
train the network to estimate an already corrected metric Y’, enabling the model to
specialize for its eventual real-time application and reducing computational cost at
runtime:

E
Y = — 3.9
L+1 (39)
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3.2. Real-Time Render Mode Selection

Image Space Data User

Predicted Metrics Threshold
Neural | Perceptual Render Mode
@ Network Extrapolation Selection

L1 Loss

Reparameterization

Figure 3.8: VRS Pipeline. Proposed rendering mode selection pipeline for content-
adaptive shading with VRS. Inputs are provided to a network that has been trained to
predict a perceptual metric, with Weber correction and reparameterization applied. At
run-time, the network predicts the implied image error for selecting different shading
rates. Based on these predictions and a user-defined threshold, the final shading rate (H
full, ™ fine, = medium, M coarse) is selected for each image region.

Ground Truth Metrics

Our experiments include Weber-corrected variants derived from existing metrics: just-
noticeable FLIP (JNFLIP) and the just-noticeable variant of the image error estimation

used in [YZKT19] (JNYang). A comparison of all the metrics used in this Chapter is
shown in Figure |3.7].

3.2 Real-Time Render Mode Selection

We describe how our metric prediction network can be used for render mode selection.
Furthermore, we describe optimizations for applying it to content-adaptive shading with
VRS (see Figure 3.8).

3.2.1 Dataset Generation

In order to train a metric prediction network for render mode selection, capturing of
training data should be performed with the same render engine that the model is intended
to be used with eventually. For the computation of perceptual metrics, reference images
for different rendering modes generally must be rendered simultaneously for each captured
frame. This is necessary for generating the training and validation targets of any metric
that relies on I, I’ image pairs. Further, they should be captured only after all post-
processing and image effects have been applied, since the computed errors should capture
the perceived visual difference.

We capture the environments at representative viewpoints and then compute the metric
between each render mode and the reference image obtained without any optimizations
active. We also capture the corresponding network input data for each rendered frame,
both temporarily reprojected and from the current frame.
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(a) Suntemple Scene (b) Added Boundaries (c¢) Volume Marching (d) Chosen Viewpoints

Figure 3.9: Viewpoint Capture Pipeline. The different stages in our viewpoint data
capture pipeline, which runs on Blender [Com18]. (b) is the only manual step required,
and is only required on maps that are not self-enclosed.

While there is not a single methodology for selecting representative scene viewpoints/s-
tates, and its perfectly reasonable to obtain the training data by capturing it during
normal application usage, we chose to implement a pipeline to automate the generation
of our datasets, as to avoid bias in the training data and ensure consistency in dataset
generation during development and analysis. It runs as a combination of a Blender
[Com18§]| script tool and custom render jobs on our Falcor renderer. See Figure 3.9 for an
overview of its stages.

For any given scene, we define a cube in the scene centered on a valid viewpoint. Then, we
perform flood fill using the cube geometry to create a voxel domain for potentially valid
viewpoints. Flooding alone works in closed environments but would leak on any open
environment to an infinite domain. To solve this, we take inspiration from game-level
design and manually add invisible walls to the scene to limit the valid voxel domain (see
Figure 3.9b). Finally, we select random 3D points in the voxel space paired with random
3D directions and test whether they would make valid viewpoints.

Different criteria could be used to validate viewpoints. We filter them based on two:

1. Whether a template camera geometry placed on the viewpoint position and direction
intersects with the scene.

2. Whether it renders a minimum amount of visible geometry, measured in percentage
of rendered pixels (80%).

The first requirement prevents the dataset from containing viewpoints where the camera
intersects with the scene geometry, while the latter avoids an exterior dataset being filled
with viewpoints looking at the skybox, for example.

Having a predefined amount of valid viewpoints selected, we randomly select for each
a corresponding “previous viewpoint”. This simulates the environment being explored
by the player and is necessary to generate reprojection training data. To do so, we
select random valid viewpoints just as before, but each in very close proximity to its
corresponding “next frame”. Besides the two aforementioned criteria, we also check
whether a raycast from one viewpoint to the next intersects with geometry to verify there
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3.2. Real-Time Render Mode Selection

is an open path between the two. Finally, for each previous/next viewpoint pair entry,
we render the set of g-buffers, reprojected color, and final renders at different shading
rates in Falcor.

3.2.2 Mode Inference

Rather than predicting render modes directly, we suggest producing a continuous er-
ror prediction and perform mode selection based on user-defined thresholds, e.g., the
JND threshold, as this allows for greater control by artists and application users alike.
Consequently, we can exploit our metric prediction network for this task. We set the
layout for our network such that the predicted metric between a render mode and the
reference image is computed in a separate output channel for each available mode. We
can therefore iterate these channels in order of increasing computational cost and check
if any presents a perceptual loss lower than the defined threshold. If no available channel
presents an acceptable value for a given tile, we apply the highest quality mode instead:

chooseMode (metric, tile)
for each mode in increasing cost
if metric[mode, tile] < threshold
return mode
return reference mode

3.2.3 Rate Extrapolation for VRS

Many modern real-time graphics solutions offer support for VRS, which allows selecting
different shading rates for individual objects or image regions to economize on expensive

) 2x2 ) 4x2 ) 4x4

) 2x2 Extrapolated ) 4x2 Extrapolated ) 4x4 Extrapolated

Figure 3.10: Extrapolation for VRS. FLIP at different shading rates. Ground truth
versus extrapolation of them as described in Equation [3.10.
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fragment shader invocations. Commonly supported shading rates include fundamental
squares (1 x 1, 2 x 2 and 4 x 4) and rectangles with conforming side lengths. For this
particular use case, the metric values for similar shading rates are strongly correlated:
similar to Yang et al. [YZKT19], we can reduce the number of output channels by
extrapolating the outputs of multiple channels from just a few. Let ?UX , be an output
channel of the network, where u and v are its corresponding horizontal and vertical
shading strides, respectively. Let k = 2.13 capture the constant relative change in error
when switching from a shading rate to its half (e.g., 2 x 2 — 4 x 4), as derived by Yang
et al. [YZKF19]. We can approximate lower shading rates from higher ones, allowing for
using only two output channels—the network predictions for 1 x 2 and 2 x 1 shading
rates:

>
>

max( XU uX%) fu=v
Yuxo = qmax(Yuy e -k, Vuy,) ifu>v (3.10)
maX(A%X% k,ffuxg) ifu<w

The values for shading rate 2 x 2 can be extrapolated from 1 x 2 and 2 x 1. Following
Equation [3.10, 2 x 4 can further be obtained from 1 x 2 and 2 x 2, 4 x 2 from 2 x 1 and
2x2,4x4 from 2 x4 and 4 x 2, and so on. We found that square rates are approximated
with higher precision than non-square rates (see Figure 3.10| for an example). Thus,
in practice, we recommend using 4 output channels (1 x 2, 2 x 1, 2 x 4, 4 x 2) and
extrapolating the others for good quality/performance trade-off.

3.3 Evaluation

We assess our approach based on prediction quality, performance, and robustness, (its
reliability to handle various scenarios, including edge cases and new scenes). We utilize
the 4-channel input set suggested in Section 3.1.2] and simulate camera movement across
a total of 8 different scenes by randomly capturing 12,820 viewpoint pairs. The results
are computed on a Windows 10 PC equipped with an i7 CPU @ 3.40GHz, 16GB RAM,
and an NVIDIA RTX 2080TT GPU.

3.3.1 Metric Prediction

To evaluate the network’s prediction capability, we trained and tested it with three
established error metrics (PSNR, FLIP, and LPIPS), as well as the Weber-corrected
variants (JNFLIP and JNYang). Validation was performed for each scene from Section
3.1.2, using 64 random viewpoint pairs that were withheld during training, as well as
on three scenes the network was never trained on: Emerald Square (day/dusk) [NHB17]
and Sibenik Cathedral [McG17]. For the approximation I’ of I that the network should
learn, we chose images rendered for the same frames at full resolution (/) and at four
different reduced shading rates (I’).

Table 3.3/ shows the measured statistics per scene for predicting each metric between
reference images and their reduced versions on each scene’s test set. Its consistent high



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

3.3. Evaluation

Table 3.3: Ablation of Metric Prediction. Prediction quality on test sets across six
different scenes. The network has only been trained on the three scenes in the left column
(Suntemple and Amazon Bistro). For each scene, we give the number of triangles (A),
unique materials (®), and the achieved R? score (coefficient of determination), mean
average error (MAE;, i.e., the discrepancy between measured and predicted perceptual
metric, both total and underestimation only) and variance (op4x) of the total MAE.

Suntemple, 606k A, 48 ® Amazon Bistro (Exterior), 2.8M A, 132 ®

Rz MAEtotal MAEundeh OMAE RZ MAEtotal MAEunde'rn OMAE

FLIP 90% 5.99e-2 4.40e-2 7.30e-2 | 81% 8.55e-2 4.40e-2 1.08e-1
PSNR 92% 3.15e-2 1.42e-2 3.21e-2 | 82% 4.06e-2 1.98e-2 4.55e-2
LPIPS 79% 4.32e-2 2.46e-2 4.54e-2 | TT% 4.15e-2 2.23e-2 4.51e-2
JNYang | 87% 7.75e-2 5.02e-2 1.11e-1 | 84% 7.93e-2 4.15e-2 1.29e-1
JNFLIP | 88% 7.37e-2 4.78e-2 9.56e-2 | 82% 9.52e-2 4.10e-2 8.21e-2

Amazon Bistro (Interior), IM A, 71 ® Emerald Square (Day), 10M A, 220 ®

Rz MAEtotal MAEunde'n OMAE RZ MAEtotal MAEunder OMAE

FLIP 78% 7.88e-2 4.46e-2 9.87e-2 | 94% 4.98e-2 2.51e-2 7.56e-2
PSNR 80% 3.85e-2 1.25e-2 4.71e-2 | 83% 5.45e-2 3.22e-2 5.72e-2
LPIPS 72% 3.39e-2 1.52e-2 3.83e-2 | 80% 4.15e-2 2.29e-2 4.55e-2
JNYang | 78% 8.59e-2 4.72e-2 1.32e-1 | 94% 5.03e-2 1.83e-2 9.50e-2
JNFLIP | 79% 9.51e-2 4.12e-2 8.21e-2 | 90% 7.30e-2 2.37e-2 8.15e-2

Emerald Square (Dusk), 10M A, 222 & Sibenik Cathedral, 75k A, 15 &

Rz MAEtotal MAEunde'rt OMAE RZ MAEtotal MAEunde'n OMAE
FLIP 94% 6.18e-2 1.24e-2 6.99¢-2 | 91% 4.07e-2 2.50e-2 6.18e-2
PSNR 92% 4.95e-2 6.4e-3 4.30e-2 | 88% 2.95e-2 1.15e-2 4.05e-2
LPIPS | 81% 3.56e-2 1.38e-2 3.85e-2 | 7T0% 3.28e-2 2.09e-2 3.68e-2
JNYang | 92% 5.15e-2 1.55e-2 1.04e-1 | 86% 6.61e-2 2.34e-2 9.61e-2
JNFLIP | 82% 9.62e-2 0.61e-2 1.53e-1 | 81% 9.18e-2 1.06e-2 9.17e-2

accuracy, high coefficient of determination, and low variance in each scene’s test set
indicate that the network generalizes rather well: the model is capable of explaining
most of the variance in each metric (high R?) without over-fitting to specific scenes or
states (visual examples of predictions are provided in Figure |3.11). We did not find a
direct correlation between triangle/material count and the network’s ability to predict
perceptual metrics. In fact, the highest prediction accuracy was achieved on the most
demanding scene in terms of geometry and the number of unique materials, Emerald
Square at dusk, despite the network having only been trained on daylight scenes. The
lowest scores were obtained in Bistro (Interior), which can be explained by the large
number of specular objects it contains: since light sources are not explicitly encoded in
the input, the network struggles to produce accurate predictions in previously unseen
regions with specular materials.

To test this theory, we created two variations of this scene, shown in Figure |3.12: one
with highly specular chrome materials and one with flat checkerboard textures applied
everywhere (see supplemental material). As expected, the prediction quality, as indicated
by R2, is lower for the completely specular scene (FLIP: 71%, PSNR: 76%, LPIPS: 64%,
JNYang: 70%, JNFLIP: 70%). However, for the same scene with only flat, checkered
textures, the opposite is true: prediction quality rises, conversely, bringing it closer to
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Ground-Truth Seen Regions Mask

LPIPS FLIP PSNR

JNFLIP

Figure 3.11: Prediction Results. Examples of our network predicting metrics in tested
scenes. Black in the center column indicates unseen regions in the current frame. All
metrics performed similarly across tested scenes, with no obvious outliers or catastrophic
failures.

the other scenes.

As demonstrated in Figure 3.13, the network does not require a large number of training
samples to achieve generalization: in our experiments, we found a negligible decrease in
test accuracy—0.04%—when an environment is not included as part of the training and
found no benefit in using more than 500 — 2000 captured frames on any environment
(the exact number depends on the scene size).

Finally, we recorded the run time for prediction and compared it against reference imple-
mentations of the corresponding metrics on the CPU and on the GPU (Python+PyTorch).
For our neural network, timings are independent of the metric it was trained on since
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3.3. Evaluation

(a) Bistro, interior, highly specular (b) Bistro, interior, high-frequency textures

Figure 3.12: Modified Scenes. We modified a scene to be used for evaluating the
influence of (a) highly specular materials and (b) simple checkerboard textures on the
prediction quality and performance of our approach.

(a) Suntemple, exterior (b) Ground-Truth FLIP (c) Predicted FLIP

Figure 3.13: Predictor Generalizability. Our prediction network, when trained strictly
indoors in the Suntemple scene, still produces accurate FLIP predictions for bushes and
rocks on the exterior.

Scene FLIP JNFLIP (ours) Yang  JNFLIP

Figure 3.14: Adaptive Shading Comparison. While FLIP is not normalized for
local brightness and thus underestimates dark regions, and the method by Yang et al.
can struggle in shiny or overly exposed regions, JNFLIP handles both cases
gracefully which can provide visual benefits in content-adaptive shading.
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it does not influence its architecture. Inference with our network took 0.58s/2ms on
CPU/GPU, respectively. It is thus significantly faster than explicitly computing FLIP
(2.465/190ms — 4.24x /95.9x ) and LPIPS (13.6s/16.4ms — 23.5x/8.2x). For the much
simpler PSNR, our approach is between 2x and 10x slower.

3.3.2 Content-Adaptive Shading Application

To assess a real-time use case, we implemented content-adaptive deferred shading in
Falcor ﬂm using our network, trained on JNYang and running on 16 x 16 tiles at
1080p resolution. We load the network into TensorRT and provide it with GBuffer-texture
inputs in Falcor directly. For comprehensive results, we ran performance evaluation on five
scenes that exhibit varying complexity in terms of geometry and materials: Suntemple,
Bistro (Exterior), and the regular/specular/checkered Bistro (Interior). Frame times of
our approach was compared with full-rate shading and a state-of-the-art VRS method
[YZK*19]. We considered two types of camera motion between frames: slow (resulting
in 14% previously unseen pixels per frame on average), and fast (31% unseen on average),
and evaluated 15 corresponding viewpoint pairs per scene and speed.

Inference with TensorRT requires a constant = 2.3 ms per frame. For our approach to
provide a benefit, it must amortize this overhead, which can only occur under appre-
ciable fragment shader load. To simulate a pipeline comparable to interactive graphics
applications (e.g., AAA video game titles), we created a synthetic load (50:1 arithmetic
to memory) in the deferred fragment shader to bound full-rate shading performance to
60 FPS. In combination with our network’s prediction, GPU hardware support for VRS
yields a considerable performance gain across the board. For a slow-/fast-moving camera
between frames, we achieved a 1.12/1.14x speedup for Suntemple, 1.17/1.18x for Bistro
(Exterior), and 1.42/1.41x for the regular Bistro (Interior). The purely specular and
checkered versions of the latter performed slightly better (1.5/1.54x and 1.48/1.52x,
respectively): in both cases, this can be explained by the reduction of sharp features
and high-frequency visual details in the scene, which enables the network to choose
lower shading rates. In summary, VRS using our network reduced average frame times
by at least 10% compared to full-rate shading in all examined scenarios. The relative
performance gain is boosted by the reduction of high-frequency features, permitting the
use of lower shading rates.

For comparison with Yang et al. , we used the same setup and configured
the synthetic load so to have their approach match the target frame rate. Since their
base overhead is significantly lower than our network’s inference time, our method trails
behind Yang et al. ’s at 60 FPS with slow camera motion on static scenes (52.1 FPS
on average across all scenes — 0.87x). For fast camera motion, however, our method
performs better (1.03x) due to its ability to predict and use lower shading rates in unseen
regions, rather than defaulting to full resolution. Using an even heavier load (30 FPS
target), our method prevails as soon as camera motion occurs (1.11x at slow, and 2.16x
at fast motion). Hence, even given the early state of dedicated GPU inferencing hardware,
our learning-based approach can provide clear benefits in such demanding scenarios.
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(a) Light flash through windows (b) Delayed predicted metric

T =)

(e) Ground-Truth (f) Predicted

Figure 3.15: Predictor Limitations. (a,b) Reliance on reprojection can cause the
network to react to sudden lighting changes in previously seen regions with a delay of
one frame. (c¢,d) Changing tone-mapping method also does not result in immediate
different predictions. (e,f) Incorrect previous frame reprojections can cause our network
to hallucinate duplicated objects due to surface information mismatch.

Finally, we compared using Yang et al. , FLIP and JNFLIP as metrics for use
within content-adaptive shading. We found some benefits to the use of JNFLIP, as FLIP
is not normalized for local brightness and Yang et al. can struggle with shiny
or overly exposed regions. An example comparison is shown in Figure [3.14.
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3.3.3 Limitations

The key purpose of our approaches is to enable optimizations in real-time applications
by predicting the—otherwise expensive—pixel shading result. This naturally impedes its
ability to account for factors that are unknown prior to pixel shading. We circumvent this
issue by relying on reprojection and G-buffer data, the latter of which may not contain
all information affecting the final color generation (e.g., light source position, cf. Figure
3.3). Hence, similar to other state-of-the-art methods [YZK*19], the network is bound to
make assumptions about such effects based on previously seen regions. If an effect cannot
be predicted from G-buffer data alone, it may only react to it in the next frame, when
its reprojection becomes available. This includes temporal inconsistencies in the scene
(e.g., sudden disocclusion of a strong light source), reflections, and modifying of rendering
settings or post-processing effects (Figure |3.15). However, in this Chapter, we have shown
that our approach can be trained to discard reprojected color and substitute information
derived from G-buffer data instead. Hence, it may be trained to adapt to sudden changes
immediately. For instance, in the case of a disoccluded light source, this could be achieved
by providing additional input tracking changes in the binary screen-space shadowing
information between frames. For more complex effects, like reflections or fog, more
sophisticated solutions may be needed to provide suitable, inexpensive approximations of
the required information to the network. The decision of trading a single-frame delay
of predicted effects for larger input sets should then depend on the user’s expected
attention to them. Future work may explore under which circumstance reprojection may
be omitted and instead replaced by additional, equally expressive encodings or estimates
of important scene features, such as light sources and reflections. Tackling this challenge
would come with the advantage of providing a unified solution for both seen and unseen
regions.

Although the achieved performance in real-time applications is acceptable with our
approach, it incurs an overhead that limits its applicability. For slow-moving changes,
selective reuse of predictions could significantly alleviate this issue, which we aim to
pursue in future work. In our proof-of-concept, the naive screen-space reprojection
used is not precise, which can sometimes cause our network to hallucinate thin objects’
duplicates due to material and reprojection data inconsistency (Figure 3.15). This could
be improved upon by using state-of-the-art, non-screen-space reprojection.
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CHAPTER

Refining Cost-Volumes for Depth
Prediction

In this chapter, we turn our attention to the issue of depth reconstruction in light-field
cameras, the second subject initially broached in Chapter 1. The research presented here
has been published at the 25th International Conference on Pattern Recognition under the
title ‘ Cost Volume Refinement for Depth Prediction’ [CGW21]. As we previously outlined,
light-field cameras offer a unique set of capabilities, including the ability to refocus images
after they have been captured. However, they also present specific challenges that are
not encountered in traditional single-camera or multi-camera systems, particularly when
it comes to depth estimation. The narrow baselines of the micro-lenses in light-field
cameras make conventional depth-reconstruction techniques unsuitable, necessitating
the development of new methods tailored to this technology. This need aligns with the
discussions in Section 2.2.2 where we explored cost volumes and their application in
light fields.

It is worth noting that, to the best of our knowledge, the majority of existing research
in this area focuses on generation of cost volumes and depth estimation from this cost,
which are arguably the most important steps. Often, these methods resort to existing
range-image refinement techniques to compensate for their limitations. We argue that
this is a sub-optimal approach, as it disregards most of the rich cost-volume information
(and thus, the inherent data redundancy provided by light-field cameras). Instead, our
work proposes a shift in focus towards the cost-refinement stage, aiming to leverage this
untapped potential for more accurate depth estimation. We employ iterative optimization
to refine cost volumes, as it provides a computationally efficient solution compared
to alternatives like deep learning methods. Additionally, it removes the necessity for
extensive datasets of light-field images and their corresponding ground-truth depths.
Figure 4.1] provides a preview of how our refinements improve upon existing methods.
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Light-Field Tmage [RE16] Depth Prediction [JPCT15] Improved Prediction (Ours)

X
.

Figure 4.1: Chapter Overview. The refinements described in this chapter improve
upon existing methods for depth prediction using light-field cost volumes. Notice that
our proposed cost volume refinements are less prone to artifacts and better preserve
details of far away objects (the street and far away building on the top, the grass and
metallic cylinders on the bottom).

In summary, our innovation in this chapter lies squarely within the novel iterative-
optimization algorithms proposed and their modular application within the
cost-volume stage of depth prediction, resulting in the following contributions:

1. A modular framework for cost-volume refinement, which can be applied for depth
reconstruction on light-fields, regular and multi-view stereo imagery.

2. A floating-point method for artifact-removal on cost volumes based on classification
methods robust to smooth surfaces and object complexity.

3. A fast local smoothing method for noise and discontinuity reduction on cost volumes
robust to sharp depth changes.

4. A method for combining cost-volume based depth prediction with other prediction
methods before regression.

Section describes the standard stages for depth reconstruction from light-fields using
cost volumes. Section describes our proposed refinement framework and methods.
Furthermore, in Section [4.3| we present an extensive testing of the importance of cost-
volume refinement and of the efficacy of our methods on multiple previously proposed
cost cues.
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4.1. Minimal Pipeline

FIELD CAPTURE COST ESTIMATION COST REFINEMENT DEPTH REGRESSION DEPTH REFINEMENT

External Sources*

Figure 4.2: Minimal Depth Estimation Pipeline. Overview of our minimal pipeline
for depth estimation using cost volumes. Images are only illustrative. See Figure 2.3
for a comparison with Tao et al. [THMRI3], Jeon et al. and Williem et al.
[WWL18] pipelines. Note that, due to its specificity, the results in this thesis and the
accuracy comparisons in Section 4.6 do not use combination of external predictions or
domain-specific knowledge as outlined in Section 4.2.1, unless specifically noted.

4.1 Minimal Pipeline

To test our proposed cost-volume refinements, we present a simplified pipeline, which
abstains from complex depth regression and depth refinement techniques. This is done
for three reasons: first, one of the advantages of cost refinement is the reduced necessity
of such techniques, which we want to show. Second, some existing regression methods,
such as graph cuts label propagation [JPCT15] [WWILIg], cause a great loss of detail
and a portion of our improvements could be lost. Third, we want to refrain from giving
the results of our refinements any unfair advantage by working with the most traditional
and naive pipeline as possible. This approach also aligns itself with the well-tested
optimization principle of parsimony, focusing on achieving the best results with the least
complexity.

All of our results are computed using this minimal pipeline, illustrated in Figure |4.2. For
comparison, results of previous work are always computed using their respective original
pipelines. As explained in Section 2.2.2 and shown in Figure [2.3], all of these pipelines
used by cost-volume based depth prediction methods can be generalized into 5 stages,
and ours is no exception. First, for cost-volume generation, we use cues from existing
work. Then, for each volume, our refinement methods are applied in succession: obvious
artifacts are removed using our classification-based global artifact-removal, described
in Section [4.2.2 Noise and unwanted sharp discontinuities are vastly reduced using
our iterative local smoothness refinement, described in Section 4.2.3. Optionally, depth
predictions from non cost-volume based methods can also be combined in this stage, a
form of ensemble learning we describe in Section 4.2.1l

After our proposed refinements have been applied, we make use of a classical solution to
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estimate depth from the cost. The theoretical depth regression, described in Equation
2.17, assumes that cost is a continuous function. However, cost volumes are computed
and stored in discrete steps. Reducing this step £ increases depth precision but at
the cost of computational performance, and precision is required to effectively use cost
refinement. Thus, we use parabolic interpolation [AST7] [KOKI4], which takes into
account information from the immediate neighbors of the minimum step D¢ (u):

D(u) ~ De(u) = Do(u) — (1 + 2

C(u, Dc(u) - §) — C(u, Do(u)) )1
C(u, Do(u) +£) — C(u, De(u) - &)

(4.1)

This interpolation method minimizes the error in depth estimation by utilizing local cost
information to interpolate between the volume’s discrete steps, effectively optimizing the
depth value at each point without increasing computational costs.

4.2 Refinement Algorithms

Let k € [0,n,[ be the number of cost-volume refinements that have been performed by a
pipeline, where n, is the total number of refinement algorithms being used. We generalize
modular refinement as a function Ry that takes as input the current cost volume C}, and
outputs a refined volume Cj41:

Ck:-l—l(u’ Z) = Rk(ck‘a u, z, )\k') (42)

In this thesis, we present three different modular refinement algorithms, all of which
follow the definition of Equation 4.2 and can be used interchangeably in any order. The
strength of refinement Ry can be controlled with hyper-parameter A\, € R. That is,
each refinement R serves as a regularizer in the optimization problem, and Ag allows to
fine-tune the balance between the different objectives (the original cost function and the
applied refinements) during minimization.

4.2.1 Independent Predictor Combination

We first describe our simplest refinement. Our goal is to define a generic method that
can make use of any independent depth prediction to inform our own. Independent
predictions can be obtained from non cost-based light-field methods, from existing
methods for monocular or stereo imagery, or from any domain specific knowledge.

To do so, we increase the original cost according to the difference between depth and
the independent method’s prediction. There should be no increase when in agreement,
but cost should increase as the two diverge. Additionally, the increased cost should have
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(a) Not Refined (b) Refined

Figure 4.3: Neural Network Combination. Depth reconstruction from a light-field
portrait picture with and without refinement from Section |4.2.1. Here, we use our
refinement to combine information from the facial neural network proposed by Sela et al.

2017 [SRK17].

a known maximum € R, so that the refinement impact can be controlled. Given these
properties, we define the increased cost G(t) € [0,1] as normalized inverted Gaussian
distributions centered around the independent predictions:

+2

Git)=1—¢ 27 (4.3)

where ¢ is a chosen deviation. We choose this Gaussian-based cost adjustment to serve
as a soft constraint, optimizing the agreement between independent depth predictions
and the cost volume. For each image point u for which the independent method has a
prediction P,, the refinement operation becomes:

Cr+1(u, 2) = C(u, 2) + M G(Py — 2) (4.4)

As an example, we explore the case of facial reconstruction. We make use of the trained
neural network presented by Sela et al. 2017 [SRK17] for facial reconstruction from color
images as our domain-specific prior knowledge. We estimate prior depth P from the
neural network depth prediction and, for each pixel that we have a prior P, for, we apply
the refinement. The result can be seen in Figure |4.3.

4.2.2 Classification Artifact Removal

We propose a variation of the previous refinement for the purposes of artifact removal.
In particular, as described in Chapter [2, we found that some multi-label classification
methods (where discrete steps in depth correspond to labels) are robust to artifacts,
but tend to reduce accuracy due to lack of precision or miss-assignment between close
labels. To take advantage of the artifact detection while maintaining accuracy, we define
a increased cost different from Section 4.2.1l
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As before, we increase cost according to the difference between depth and the multi-label
classification. However, it should not be bound to a known maximum and should instead
quickly rise with divergence. As such, we define the increased cost as a polynomial
of degree m, where m is an even number. Additionally, artifacts are more likely the
higher the difference between predicted parabolic depth D and multi-label classification
L is. Thus, we scale the increased cost according to the difference between these two
predictions computed from the current cost volume C}.

Our refinement thus becomes:

Cri1(u,2) = Cr(u, 2) + A\g|Ly — D(Cyu)| - (Ly — 2)™ (4.5)

As an example, we use the graph-cuts implementation of Jeon et al. for
propagation of SIFT feature matches to estimate each label L,, at pixel u with m = 2. A
direct comparison of our refinement to the original algorithm can be seen in Figure 4.4.

4.2.3 Iterative Local Smoothness

Two common issues with depth predictions from cost volumes are noise and local artifacts.
We vastly reduce these by looking at the neighborhood Z,, of each image point w. For
each neighbor v € 7, we create an added cost based on the difference between the
depth predictions at v and u. To weight the importance of each neighbor, we estimate
point confidence using the peak ratio coefficient W (as proposed by Hirschmiiller et al.
[HIGO02]), which produces lower values when multiple local minima are similar:

C(u, Dc(u))

4.
C(ua a‘rgminz#@c(u) C(u7 Z)) ( 6)

We(a) =

Just as for the refinement in Sections |4.2.1, we want agreeing predictions to have no
additional cost, but to increase cost as local differences raise up to a chosen maximum.
As such, we use the same normalized inverted Gaussian distribution G. However, we want
to define the increased cost as a function of depth prediction at the neighbors, which is
in turn dependent on the cost increase. To deal with the conundrum, we take inspiration
from traditional optimization techniques like gradient descent, which systematically
update parameters to minimize a given cost function. In our case, we compute our
refinement iteratively to achieve more accurate depth predictions. Let j € [0, n;[ be the
current iteration number. We define new temporary volumes S as:

So = Ch
Siy1(u, z) =Ci(u, 2)+
M Y G(Dgi(v) = 2) - Wes (v)

v GIu

(4.7)

where Dg; is the parabolic depth prediction and Wg; the Peak Ratio coefficient computed
from temporary cost volume S}, according to Equations |4.1 and 4.6| respectively. n; is the
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(a) Scene (b) Ground-Truth (c) No Refinement 44

(d) Graph Cuts (e) Artifact Removal (ours) (f) Difference of (d) and (e)

Figure 4.4: Artifact-Removal. Reconstructions of a bust on an intentionally poorly
estimated cost volume, which overestimates depth and is unable to predict depth of far
away objects, resulting in multiple visible artifacts. Graph cuts prediction (d) removes
the background artifacts, but at the cost of depth accuracy of the bust itself. The artifact-
removal refinement (e) from Section 4.2.2 outperforms previous methods, being able to
both remove artifacts and reduce depth overestimation without decreasing accuracy.

total number of iterations to be performed, which can be either statically or dynamically
controlled by the pipeline. We make use of the Peak Ratio because different neighbors
might have more or less reliable cost predictions than others, and thus should be weighted
differently.

Having the last iteration been performed, we define our refinement as:

Cit+1(u, z) = Sy, (u, 2) (4.8)

In our implementation, we set a static maximum number of iterations, but we also
monitor the ratio of change between depth maps Dg; and Dg;+1. Once the ratio is below
a predefined threshold, we stop iterating. This stopping criterion is a form of early
termination, an optimization technique to save computational resources when further
iterations yield diminishing returns. We found that our implementation never requires
more than 2 iterations before converging.
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(c) Artifact-Removal (ours) (d) Iterative Smoothing (ours)

Figure 4.5: Iterative Smoothing. Depth regression before any image-based refinement
is applied on a real-life light-field image from a dataset [RE16]. Previous work often
forfeits detail and accuracy (b) to reduce artifacts and noise. Our use of cost volume
refinement methods (c,d) from Sections and solve these issues while preserving
detail. Depth from volumes was predicted using parabolic interpolation (a,c,d).

4.3 Evaluation

To test the effectiveness of our refinement algorithms, we look at three very different cost-
volume generation cues proposed by three different authors: Tao et al. [THMRI3] lenslet
variance (LV), Jeon et al. [JPCT15, . JPCT19] sum of absolute differences computed using
sub-pixel phase-shift (SAD) and Williem et al. [WWLIS] constrained angular entropy
(CAE). We compare the depth maps regressed from these volumes with our minimal
pipeline (as described in Section , which includes cost volume refinement, to the ones
regressed using the pipelines publicly provided by their authors (see Figure .

To do the comparisons, we use the synthetic dataset by Honauer [HJKGI6], which
contains 30 pairs of light-field images and corresponding ground-truth depth maps of
different scenes. We also present a visual comparison using the dataset by Rebarek and
Ebrahimi [RET6], as shown in Figures and For each scene, we generate cost
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volumes according to the three mentioned cues. Then, for each volume, we regress depth
maps using our minimal pipeline and the originally corresponding one. This results in a
total of 6 different depth maps per scene.

Note that both Tao et al. and Jeon et al. [JPCT15,JPCT19] combine multiple
cues using weighted sums of different cost volumes in their works. However, we are not
proposing an end-to-end depth prediction method, but a set of operations that, given an
arbitrary cost volume, are able to generate a better and more consistent volume. Thus,
we analyze the performance of refinement on different cues individually.

Additionally, the absolute error between predictions and ground-truth of a specific
example are not relevant, as they are largely constrained by the quality of the input cost
volume. Instead, we look at how this error changes with the introduction of refinements.
Thus, Figure 4.6| displays the change of error when our refinements (with our minimal
pipeline) are used, color coded in green for reduced and red for increased error. Color is
normalized to the highest change.

We do not tweak the configurable variables Ax and o from Equations 4.2 and |4.3| for each
scene and use the same for all tests. We also do not perform any additional operations,
such as vignetting and distortion estimation and correction, as these should affect all
6 cases equally, and operations before cost-volume generation are out of scope of this
thesis.

Statistical Analysis We calculate the mean squared error and the structural similarity
index between the ground-truth maps and the regressed ones. Table 4.1 shows the average
of these metrics for each of the 6 combinations. Our minimal pipeline outperforms the
original ones in all cases, presenting a lower average error and higher similarity, even
though it is not performing complex depth regression or depth refinement. We also found
that our refinements are the more effective the worse the cost prediction is. For example,
the differences are more visible in real photographs than synthetic (perfect) images, or
in intentionally poor reconstructions. As such, the real error and similarity differences
might be higher than suggested by our synthetic dataset.

Detail Preservation As displayed in Figure |4.5, alternative proposed methods often
oversimplify depth predictions. Most detail can be lost and only regained through
depth-map refinement, which does not take advantage of the light-field properties over
traditional images. Our algorithm is able to vastly reduce unwanted artifacts and noise,
while preserving the details present in the scene by performing operations at a cost
volume level. As such, the shape of objects in the final results more closely resembles the
ground-truth than previous methods, as shown in Figure 4.6.

Limitations While functional, our smoothing refinement is still not able to remove all
noise without removing details. As shown in Figure 4.5|, the refined result still exhibits
some noise. We also do not have a solution for optical effects such as flares, which can
mislead predictions locally, as also shown in Figure 4.5. However, we are not aware of any
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4. REFINING COST-VOLUMES FOR DEPTH PREDICTION
Pipeline MSE SSI
LV (Tao et al. [THMRI13]) 2.1672%  9.6871
Refined Lenslet Variance 1.5297% 10.8989
SAD (Jeon et al. [JPCT1H]) 1.2829% 11.3914
Refined Sum of Absolute Differences  0.7165% 11.6619
CAE (Williem et al. [WWLIS]) 3.2723%  8.6063
Refined Constrained Angular Entropy 2.1083%  9.9078
Table 4.1: Ablation of Refinements. Comparison of the average of mean squared error
(MSE) and structural similarity index (SSI) for each tested pipeline when predicting
on the synthetic dataset by Honauer [HIKG16]. Lower MSE and higher SSI are better
[HIKG16].
existing depth refinement method to deal with this issue, and previous work frequently
suffers from the same issue.
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LV (TAO) SAD (JEON) CAE (WILLIEM)

ORIGINAL
PIPELINES

OUR PIPELINE

ERROR
COMPARISON

LV (TAO) CAE (WILLIEM)

SAD JEON)

ORIGINAL
PIPELINES

OUR PIPELINE

ERROR
COMPARISON

Figure 4.6: Refinement Results. Analysis of refinement performance in two scenes
from synthetic dataset [HJKG16]. Top rows show depth predictions using three existing
cost volume estimation methods, each processed exactly as in their original work (see
Figure 2.3). Middle rows show predictions of the same cost volumes, but processed with

our pipeline instead (which includes refinements described in Sections 4.2.2| and 4.2.3).

Finally, we compare the per pixel ground-truth reconstruction errors between each top
and middle row pair, as explained in Section 4.6, Green means a lower error, red a higher.
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CHAPTER

Context-Aware Translation

In this chapter, we delve onto the subject of automation of detail in hand-drawn anima-
tion, the final topic first introduced in Chapter [1. The research findings discussed will be
published at the 33rd International Joint Conference on Artificial Intelligence under the
title ‘Re:Draw - Context Aware Translation as a Controllable Method for Artistic Pro-
duction'. Meanwhile, it is publicly available at arXiv [CBCW24|. Despite the resurgence
of traditional hand-drawn animation over the past decade, the labor-intensive techniques
that have remained largely unchanged despite advances in computer graphics. Specifically,
we focus on the time-consuming process of drawing character faces, particularly the
eye region of characters, and how this often leads to compromises in design complexity
and artistic consistency. Our aim is to introduce computational methods, particularly
optimization techniques, that can alleviate some of these challenges without sacrificing
the artistic integrity of the medium. Figure 5.1 provides an illustrative example of how

Input

Figure 5.1: Chapter Overview. The context-aware translation proposed in this chapter
is capable of automatically redrawing parts of images according to any provided design,
without the need for fine-tuning. Unlike image-to-image translation ﬂm, which
neglects surrounding context, our approach considers the entire frame. Unlike inpainting
[Lah23], which lacks artistic control by ignoring the original content, our method honors
the artist’s input. This facilitates the production of more consistent artwork and allows
for more complex design choices.
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Figure 5.2: Industry Survey. Average reported time spent in the different stages of
production of a cut, in percentage.

our method can automatically redraw the eyes of characters to produce consistent and
detailed designs.

We conducted a survey among 17 professional animators, of which 29.4% (5/17) work at
established studios, and the rest either freelanced or worked for smaller studios. We asked
them multiple questions about time consumption, (not mandatory answer), of which the
full breakdown is shown in Figures 5.2/ and 5.3 Character faces were reported to be
the most complex part of animation, with 50% (8/16) reporting it as the element they
spend the most time on. Of the remaining animators, 75% (6/8) voted either anatomy or
hair as the most time-consuming element. Drawing was estimated to constitute the vast
majority of the work (84.8%), and doing it at the highest level of detail was estimated
to take 1.7 times the amount of work than on average, for a total of 66m of additional
human effort per key frame from 1st key through coloring. Sadly, the fact that 52.9%
(9/17) still use paper drawings in their studios, despite 100% preferring to draw digitally,
indicates that using computational tools during the early drawing stages might not be
possible yet in practical terms.

Deep learning, powered by stochastic gradient descent, is a promising solution for
applications within hand-drawn animation. This approach allows the training of models
that can learn the meaning of animation frames and the different styles and techniques of
different artists. Yet, existing deep learning methods present significant limitations within
artistic applications. Inpainting, while capable of generating detailed art that fits within
existing content, offers little control over the generated content, making it unsuitable for
most precise artistic endeavors [AMT20]. Image-to-image translation, while being able
to take artistic input, is constrained by only being applicable to entire images, as it does
not take into account the context surrounding target regions.

We propose context-aware translation as the solution to these limitations. We then apply
it in a novel pipeline that automates increasing consistency and amount of detail in
the eyes of hand-drawn animation characters. It effectively mimics the work of cleanup
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Figure 5.3: Industry Survey. Reported ranking of common elements in animation from
most to least time consuming. Labels ’1st’, 2nd’, etc., indicate how often it was ranked
as the most time-consuming, second-most time-consuming, etc.
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Figure 5.4: Color Guide. Also known as a model sheet, this type of document depicts
all the information an artist is expected to need to know how to draw a character in
accordance with the production direction and style. Example from [KSP11].
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animators, who redraw frames to fix mistakes and better match the character color guides
— despite the misleading name, color guides, also known as model sheets, depict all the
information an artist would need to draw a character while remaining true to its intended
design and the art style of the production (see Figure 5.4 for an example). We also
tackle an additional problem this use-case raises: the lack of training datasets of anime
production, which we address by proposing methods to negate the need for production
data entirely, including a novel character recognition method.

In this chapter, we present several key innovations spread across different areas of opti-
mization. These include a novel model structure, the development of new reconstruction
and adversarial loss functions, and a new training method that we call context-aware
translation, which leverages both the aforementioned loss functions to offers significant
advantages over existing methods. Here’s a breakdown of our core contributions:

1. Context-aware translation, a novel general deep-learning method that avoids
the limitations of both inpainting and image-to-image translation. This includes:

e A dual discriminator structure and novel adversarial losses that enforce
simultaneous respect for input content, translation requirements, and context
constraints.

¢ A triple-reconstruction loss that yields greater generation capabilities than
traditional loss.

2. A novel network architecture for character design recognition, that employs
a production style-aware latent space to outperform existing work, and is able to
generate a robust training dataset for adversarial supervision.

3. A novel pipeline that takes advantage of the aforementioned contributions to
automatically increase the consistency and amount of detail in the eye region of
characters, and without the need of production data during training.

Furthermore, we present ablation and a large user study on the perceived quality of our
method in Section 5.2. Section 5.1| describes the proposed pipeline and its contributions.

5.1 Method

The goal of our method is to ensure the design and level of detail of animation frames
match the desired look in subpar drawn regions. In this chapter, we concentrate on the
eye regions, as they are often the most salient features in an animation and, as character
identifiers, artists treat them differently, not following the same anatomical rules as the
rest of the artwork. As input, our approach takes the animation frames to be improved
and a character color guide (a set of cels of the character drawn by the character director
in high quality and in different poses and/or expressions); see Figure 5.5. We use an



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

5.1. Method

Conv(k X k,n) +
Instance Norm. +
ReLU

Design Guide

Input Cut

k=7 n=bd
E=d nmim

E=1 =256

k=4
n=512

k=4
n=512

Residual
Block(k x k, n)

Convik x k,n) +
Tanh

Convik x k, 1) +
RelU

AdalN Residual
Block(k x k, n)

Upsample +
Convik X k,n) +
Instance Norm. 4

RelLU

Adaptive Global
Average Paol

Denss
Fully Connected

k=7 n=64

k=4 n=128

k=4 n=25%

|

Output Cut

Figure 5.5: Redrawing Pipeline. Starting from a sequence of frames and a color guide,
eyes are detected, fed to our neural redrawer generator G, and the resulting styled eyes
are post-processed into the original art.
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unsupervised convolutional network trained alongside classification networks, capable of
telling designs apart, as its adversaries.

Using such a model would require artists to manually associate regions to redraw and
color guides manually, which is not practical. Even more problematic, to train this type of
adversarial structure, one would normally use pairs of these images, labeled into different
classes (character designs). In particular, to ensure our model is capable of generalizing
to new designs, we need to train on a large enough variety of them. Yet, art direction is
not easily available and generally not created in high enough quantities that would be
needed for a robust training. Moreover, manually tagging and cropping this data would
be extremely labor intensive and hard to replicate. Instead, we solve the association
problem, making Re:Draw both practical and only require a set of randomly sampled
frames from different productions for training, with no internal production data being
needed; see Figure 5.6, In Section 5.1.1, we propose a deep learning approach, reliant
on a novel character design clustering method, and use it to automatically infer enough
training data from random frames.

Image in-painting has shown to be capable of completing missing regions, yet predictions
based only on the surrounding of the area to be redrawn, do not allow artists to finely
control the output results using art or style direction examples. Image-to-image translation
and style transfer are capable of using both of these inputs, yet existing work is incapable
of generating art that fits and correctly matches within the actual context of the drawing:
they can be very unreliable in preserving the artwork pose. For these reasons, in Section
5.1.2 we introduce a novel approach distinct from both image translation and inpainting.
We make use of two adversarial discriminators built using partial convolutions, allowing
them to weight images differently and independently, and a novel triple reconstruction
loss based on the concept of the generation of image triplets. To our knowledge, this
approach for style-guided detail enriching is different from existing literature.

5.1.1 Dataset Generation

We aim at translating art to any given design by leveraging a high variety of target
classes during training, which allows the multi-classification adversarial networks to learn
to tell apart. We will now describe how we automatically cluster art by character design
to create this high variety of classes and how we split them into low- and high-levels of
detail.

Object Detection We first train an object-detection network — we use the well-
established Faster R-CNN network [RHGS15|] — to identify character faces and details in
them (such as eyes) and run it on the randomly sampled frames. This results in a dataset
of character faces in a variety of poses, split by the sources they were sampled from.

Style-Aware Clustering Although re-identification of human faces is a long studied
topic [Ball5], we found existing work to be ineffective at automatically identifying
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