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In the last decade, there has been increasing interest in extensions of answer set programming 
(ASP) that cater for quantitative information such as weights or probabilities. A wide range of 
quantitative reasoning tasks for ASP and logic programming, among them probabilistic inference 
and parameter learning in the neuro-symbolic setting, can be expressed as algebraic answer set 
counting (AASC) tasks, i.e., weighted model counting for ASP with weights calculated over 
some semiring, which makes efficient solvers for AASC desirable. In this article, we present
aspmc, a new solver for AASC that pushes the limits of efficient solvability. Notably, aspmc

provides improved performance compared to the state of the art in probabilistic inference by 
exploiting three insights gained from thorough theoretical investigations in our work. Namely, 
we consider the knowledge compilation step in the AASC pipeline, where the underlying logical 
theory specified by the answer set program is converted into a tractable circuit representation, 
on which AASC is feasible in polynomial time. First, we provide a detailed comparison of 
different approaches to knowledge compilation for programs, revealing that translation to 
propositional formulas followed by compilation to sd-DNNF seems favorable. Second, we study 
how the translation to propositional formulas should proceed to result in efficient compilation. 
This leads to the second and third insight, namely a novel way of breaking the positive 
cyclic dependencies in a program, called T -Unfolding, and an improvement to the Clark 
Completion, the procedure used to transform programs without positive cyclic dependencies into 
propositional formulas. Both improvements are tailored towards efficient knowledge compilation. 
Our empirical evaluation reveals that while all three advancements contribute to the success of
aspmc, T -Unfolding improves performance significantly by allowing us to handle cyclic instances 
better.

1. Introduction

In the last decades but especially in recent years, there has been an increasing interest in reasoning frameworks that combine 
logical and numerical aspects, in order to deal with both qualitative and quantitative uncertainty. This is of particular importance for 
the integration of machine learning and knowledge representation [1–3], probabilistic planning [4], bio informatics [5,6], natural 
language processing [7], etc.

The trend of tackling these problems is especially visible in the context of logic programming (LP) [8] and answer set pro-
gramming (ASP) [9]. There, different approaches for probabilistic reasoning were introduced, among them LPMLN [10], P-log [11], 
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ProbLog [12], PITA [13], CP-logic [14], SMProbLog [15], and many others [16–18]. Neuro-symbolic reasoning, which builds on top of 
probabilistic inference for a fixed distribution, is explored by NeurASP [19], SLASH [20], and DeepProbLog [1]. The idea is natural: 
the semantics for a given set of weights is that of one of the previous probabilistic extensions of LP/ASP but instead of assuming 
the weights to be given, we learn (to predict) them. Apart from this, also model counting [21,22], optimization [23,24], and other 
quantitative extensions [25–28] enable reasoning with ASP on problems that go beyond the solution of yes/no questions.

Motivation The plethora of reasoning tasks and settings raises the need to develop a range of algorithms and implementations. This 
motivates us to consider quantitative reasoning over the set of models in ASP from a general and unifying perspective. Fortunately, 
while many reasoning tasks in the formalisms above are vastly different at first glance, it was shown that they can be approached 
in a uniform manner by considering them from an algebraic point of view [29–32]. Specifically, in the Semiring Paradigm one uses 
the abstract algebraic structure of a semiring  = (𝑅, ⊕, ⊗, 𝑒⊕, 𝑒⊗) to capture a multitude of different quantitative semantics by 
expressions over a set 𝑅 of elements using an “addition” ⊕ and a “multiplication” ⊗ that satisfy some axiomes, such as associativity 
and commutativity. For example, the probabilistic semiring  = ([0, 1], +, ⋅, 0, 1) enables probabilistic inference; the tropical semiring 
max,+ = ( ∪{−∞}, max, +, −∞, 0) corresponds to optimization by choosing the solution with the maximal weight; and Eisner’s [33]
gradient semiring allows for parameter learning. By performing algebraic answer set counting (AASC), which is to sum up the (semiring) 
values associated with each answer set of a given program, we then immediately obtain a solution to the original quantitative 
reasoning task at hand.

Main aim However, solving AASC efficiently poses a challenge. It is well-known that quantitative reasoning may be (much) harder 
than qualitative reasoning, e.g., lifting in ASP problems from NP-completeness to PNP-completeness or to #P-hardness (see [34] and 
references therein). This calls for the need of methods and techniques in order to advance the performance of AASC in practice, 
which is the main goal of our work.

Existing work Since there already exists a wide range of implementations and diverse approaches [35,36,13,37,38,21,39,40], it 
is suggestive to improve upon an existing idea. However, there is no consensus regarding which evaluation strategy is generally 
favorable. Thus, it is unclear which approach to choose as the basis of our work. Specifically, in enumeration-based approaches [19,
38,37], one enumerates all the answer sets one after the other and sums up their weights one by one. While the idea is simple, it works 
well for “few” (less than a billion) answer sets. However, it does not scale when there are many answer sets, even for structurally 
very simple programs. In contrast, knowledge compilation-based approaches [36,40,13] are more sophisticated and produce a so called 
tractable circuit representation of a given program. They represent the answer sets of a program, using knowledge compilation [41,42], 
in a manner that can be vastly more succinct than an explicit representation of all the answer sets while still allowing one to perform 
AASC using linearly many semiring operations in the size of the resulting circuit [30]. Apart from that, there is also the option to 
perform dynamic programming [21] when the treewidth of the program is low enough. Here, treewidth is a parameter that intuitively 
gives an upper-bound on how complex the structure of a program (or more generally a graph) is by measuring how “treelike” the 
shape of rule dependencies is, which determines how expensive it is to decompose the problem into smaller ones in a recursive 
manner.

However, there are not only different basic approaches. For knowledge compilation, for instance, there are different classes of 
tractable circuits that one can compile to; we may compile some circuits either in a “bottom up” [43,44] or in a “top down” [45–47]
manner; and we may either compile the program directly or convert it before compilation into a propositional formula in Conjunctive 
Normal Form (CNF).

Approach and methods In a first step, we therefore investigate different strategies in depth from a theoretical perspective using 
recent results from the field of parameterized complexity [48–52]. While these results do not give us general lower bounds for 
complexity, they do give us upper bounds in terms of structural parameters, such as treewidth or pathwidth, which we can use to 
derive performance guarantees for the considered strategies. Based on this analysis, we conclude that the most promising strategy is to 
first translate programs into CNFs and compile them using one of the highly advanced tools from the SAT community [46,45,53,47].

Naturally, this CNF translation should be chosen in such a manner that it leads to good performance of knowledge compilation. 
From the previous theoretical analysis, we know that small CNFs of low treewidth allow for good worst case guarantees. In fact, 
there is recent empirical evidence that shows that explicitly exploiting the treewidth of CNFs during knowledge compilation can lead 
to significantly improved performance [47]. Apart from the size and treewidth, we assume that it is beneficial if the CNF encoding 
is not very “semantically complex” such that intuitively the knowledge compiler can easily identify parts of the search space that 
it may discard. This last measure is rather imprecise; nonetheless, we try to use it by drawing intuition from known rules of thumb 
from CNF encodings for SAT.

The translation of answer set programs to CNFs usually proceeds in two steps. First the cyclic positive dependencies in the 
program need to be taken care of in cycle breaking. Only then, in the second step, Clark’s Completion [54] is guaranteed to produce a 
CNF that correctly captures the semantics of the program. For Clark’s Completion itself, we consider it rather unlikely that there is a 
way to significantly reduce the size or semantic complexity of the resulting CNF. However, previous work by Hecher [55] has shown 
that we can modify the completion to limit the treewidth increase compared to the primal treewidth of the program to a low constant 
factor. We improve this result to use the incidence treewidth of the program [22], which provides bounds that are better or equal.

As for cycle breaking, a wide range of approaches exists [56–59,55], and so we again need a more in-depth analysis. Some 
2

of the approaches do not preserve answer sets in a bijective fashion [59,55] and thus have to be discarded, while we examine 
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encoding properties of the rest. Here, we see that the “semantic complexity” of Janhunen and Niemelä’s work [56] may due to 
the use of binary counters prove to be problematic, but the asymptotic guarantees for CNF size and treewidth are far better than 
those from Mantadelis and Janssens’s [58] work. Nevertheless, previous empirical results showed that the asymptotic guarantees 
do not necessarily translate to better performance, which is presumably due to high constant factors hidden by the Big-O notation 
and the high “semantic complexity” [36]. We thus introduce a novel strategy for cycle breaking called T -Unfolding, where we aim 
to reach a middle ground between the previous approaches. That is, we obtain similarly low “semantic complexity” and constant 
factors as Mantadelis and Janssens [58] but only moderately higher asymptotic size and treewidth guarantees than Janhunen and
Niemelä [56]. In order to achieve this, we resort not only to the number of atomic formulas that are involved in cyclic dependencies, 
but we also provide a novel, more sensitive measure of the cyclicity of the positive dependencies. This measure, which we call the 
component-boosted backdoor size,1 is related to the notion of backdoor size into acyclicity [60], which intuitively asks how many atoms 
we must remove to make the (dependency) graph acyclic.

In addition to our theoretical advancements, we implemented our findings in the open source AASC solver aspmc and use it 
to validate that our theoretical considerations indeed result in an increased performance in practice. To this end, we conducted a 
thorough empirical evaluation on typical benchmarks from the probabilistic logic programming community, which confirms previous 
expectations regarding the CNF sizes and treewidths as well as the performance increase.

Main contributions Summing up, we make in this work briefly the following main contributions:

1. Our analysis of different approaches to the knowledge compilation step in AASC highlights possible strengths and weaknesses 
allowing for a more informed choice of the knowledge compilation method in the AASC pipeline and provide explanations as to 
why some strategies may work better than others.

2. We introduce an improved version of Clark’s Completion [54] that can, in some cases, provide even better treewidth guarantees 
than Hecher’s [55] previous modification with minimal overhead otherwise.

3. By employing a more fine-grained measure of cyclicity in answer set programs, we define T -Unfolding, a new approach for 
cycle breaking that has favorable properties when it comes to knowledge compilation.

4. We provide an open source implementation of our improved and specialized algorithms for Clark’s Completion and cycle breaking 
in the AASC solver aspmc. In addition, aspmc enables the use of recent advancements in knowledge compilation by integrating 
state of the art implementations [47,46,45,53].

5. We report on an extensive empirical evaluation using our implementation. The results reveals that all three improvements provide 
significant performance benefits:

• our modification to Clark’s Completion outperforms previous versions in most cases;
• T -Unfolding, results in small CNF encodings with a moderate increase in the treewidth;
• the overall performance is further boosted by employing state of the art tools for knowledge compilation.

Additional contributions of the extended version Some of the results in this article were presented, in preliminary form, at the KR 2021 
conference [61] and the PLP 2021 workshop [62]. The additional contributions of this work, are twofold. First, we significantly 
improved the implementation. Here, we on the one hand improved efficiency, by incorporating additional specialized tools, e.g., to 
compute approximations of our measure of cyclicity [63] and for the knowledge compilation step [47,53]. On the other hand, we 
enabled inference for the full class of probabilistic logic programs, with annotated disjunctions. Second, we incorporated an in-depth 
analysis of the different approaches to AASC. Here, we not only added a wide ranges of theoretical tractability guarantees but also 
significantly extended our practical evaluation by comparing a wide range of internal configurations and by including more solvers 
and benchmarks to the general comparison to the state of the art.

Relation to AI and usage of our results Algebraic operations and counting solutions are fundamental tasks in mathematics and 
computer science [64–66], with applications to areas such as mathematical combinatorics [67], learning [68,10], neuro-symbolic 
reasoning [38,69], and probabilistic inference [70,15,11]. Given this strong basis, AI researchers and developers can benefit from the 
results of our work in different regards. On the foundational side, researchers can acquire new insights in properties of knowledge 
compilation methods. This is particularly interesting also for propositional formulas that encode properties like transitive closure, 
acyclicity, or are based on cyclic derivations, e.g., reachability in a graphical network. Our work also implies how to overcome 
these challenging barriers without destroying structural properties that are essential for efficiently employing algebraic (semiring) 
operations. On the practical side, researchers can directly take advantage of our new notions and methods, in particular, the improved 
Clark’s Completion, component-boosted backdoors, and the T -Unfolding for developing novel reasoning engines or advancing 
existing engines. Furthermore, on the application side, developers may employ aspmc as a back-end solver or library for easy off-the-
shelf evaluation. Indeed, our excessive empirical evaluation underlines the strengths of aspmc, paving the way to future applications 
in systems utilizing counting, quantitative reasoning, or neurosymbolic learning and reasoning.
3

1 Unsurprisingly, like other parameters it is NP-hard to compute in general, however we find that approximations are both efficient and precise enough to be useful.
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Organization The remainder of this article is organized as follows. We first provide the necessary preliminaries in Section 2 and 
then introduce AASC in Section 3. After this, we shortly go over some instantiations of AASC highlighting its broad applicability for 
quantitative inference in Section 4, before directing our attention to AASC evaluation in Section 5, where we give special attention to 
different approaches for the knowledge compilation step. We finish the theoretical considerations with a study of Clark’s Completion 
and cycle breakings, in Section 6 and Section 7, respectively. Based on this, we outline the practical realization in our solver aspmc, 
in Section 8, which we evaluate empirically, in Section 9. Finally, we conclude and highlight possible further points of attack for 
improved performance in Section 10.

2. Preliminaries

We begin by giving the background on ASP, graph representations of programs, their associated structural parameters, and the 
algebraic structure of semirings.

2.1. Logic programming

A (normal) answer set program Π is a finite set of rules 𝑟 of the form

𝑎← 𝑏1,… , 𝑏𝑚,not 𝑐1,… ,not 𝑐𝑛,

where 𝑎 and all 𝑏𝑗 , 𝑐𝑘 are propositional atoms. Given such a rule 𝑟, we let

𝐻(𝑟) = 𝑎, 𝐵+(𝑟) = {𝑏1,… , 𝑏𝑛},

𝐵−(𝑟) = {𝑐1,… , 𝑐𝑛}, 𝐵(𝑟) = {𝑏1,… , 𝑏𝑛,not 𝑐1,… ,not 𝑐𝑛}.

We slightly abuse notation and write

← 𝑏1,… , 𝑏𝑚,not 𝑐1,… ,not 𝑐𝑛
for

⊥← 𝑏1,… , 𝑏𝑚,not 𝑐1,… ,not 𝑐𝑛,not⊥,

where ⊥ is a propositional atom that otherwise does not occur in Π.
Furthermore, we allow choice rules {𝑎} ← 𝐵+(𝑟), 𝐵−(𝑟) as a shorthand for the two rules 𝑎 ← 𝐵+(𝑟), 𝐵−(𝑟), not 𝑛𝑎 and 𝑛𝑎 ←

𝐵+(𝑟), 𝐵−(𝑟), not 𝑎, where 𝑛𝑎 is a fresh propositional atom. We denote by (Π) the set of propositional atoms that occur in Π.
An interpretation, denoted , is a subset of (Π); it satisfies an atom 𝑎 ∈ (Π) (resp. not 𝑎 for 𝑎 ∈ (Π)), written  ⊧ 𝑎 (resp. 

 ⊧ not 𝑎), if 𝑎 ∈  (resp. 𝑎 ∉ ). It satisfies Π (is a model of Π), if for each rule 𝑟 ∈ Π it holds that either  ⊧ 𝐻(𝑟) or  ̸⊧ 𝐵(𝑟), 
i.e. there exists some 𝑙 ∈ 𝐵(𝑟) such that  ̸⊧ 𝑙. Furthermore,  is an answer set of Π if it is a ⊆-minimal model of the reduct2

Π = {𝑟 ∈ Π ∣ 𝐵+(𝑟) ⊆ , 𝐵−(𝑟) ∩  = ∅}, of Π with respect to , i.e. the set of rules 𝑟 in Π where 𝐵(𝑟) is satisfied. We denote the set 
of answer sets of a program Π by (Π).

As usual the schematic rules with variables 𝑋, 𝑌 , … are implicitly universally quantified and their semantics is given by grounding 
(instantiation) with concrete values (constants).

Example 1 (Smokers). We consider the smokers program, which is a standard example from probabilistic logic programming [12].

{stress(𝑋)}← person(𝑋)

smokes(𝑋)← stress(𝑋)

{inf(𝑋,𝑌 )}← friend(𝑋,𝑌 )

smokes(𝑌 )← smokes(𝑋), inf(𝑋,𝑌 )

This encodes that for each person it is randomly determined whether they are stressed. Stressed persons smoke may influence friends, 
which is again random, to also smoke. We shall abbreviate stress(.) and smokes(.) by st(.) and sm(.), respectively.

2.2. Propositional logic

We aim to translate programs into formulas of propositional logic.
We use propositional formulas in Conjunctive Normal Form (CNF). A CNF , defined for a set 𝑉 of variables, is a finite conjunction 

of clauses 𝐶𝑖, where each clause consists of a finite disjunction of literals 𝑙 ∈ {𝑣, ¬𝑣} for some 𝑣 ∈ 𝑉 .
We use the standard satisfaction relation and call an interpretation  ⊆ 𝑉 that satisfies a formula a model.
4

2 All our results hold for both the FLP-reduct [71] and GL-reduct [72].
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Fig. 1. Different graphs associated with the running example program Π𝑠𝑚 for simplicity restricted to non-choice rules (i.e. with rules of the form {stress(𝑥)}← etc.)

2.3. Graphs and digraphs

Especially in Section 7.4 we will consider graphs and digraphs, using the following notation. The vertex- and edge-set of a 
(di)graph 𝐺 = (𝑉 , 𝐸) is denoted by 𝑉 (𝐺) and 𝐸(𝐺), respectively. We denote the undirected edge between vertices 𝑎, 𝑏 ∈ 𝑉 (𝐺) of a 
graph 𝐺 by {𝑎, 𝑏}, whereas for the directed edge from 𝑎 to 𝑏 of a digraph, we use the notation (𝑎, 𝑏). For 𝑉 ⊆ 𝑉 (𝐺) we let 𝐺[𝑉 ]
be the (di)graph obtained by removing all vertices not in 𝑉 from 𝑉 (𝐺) (i.e. 𝑉 (𝐺[𝑉 ]) = 𝑉 (𝐺) ∩ 𝑉 ) and removing all edges which 
use a vertex not in 𝑉 (i.e. 𝐸(𝐺[𝑉 ]) = 𝐸(𝑉 ) ∩ 𝑉 × 𝑉 ). Further, we define 𝐺 ⧵ 𝑉 as 𝐺[𝑉 (𝐺) ⧵ 𝑉 ]. The subgraph 𝐶 =𝐺[𝑉 ] is strongly 
connected if every vertex in 𝐶 is reachable from any other vertex in 𝐶 . We denote by SCC(𝐺) the set of strongly connected components 
(SCC) of 𝐺, which are strongly connected subgraphs 𝐺[𝑉 ], where 𝑉 is subset-maximal.

The (positive) dependency graph DEP(Π) of a program Π is the digraph 𝐺 with 𝑉 (𝐺) =(Π) and (𝑏, 𝑎) ∈ 𝐸(𝐺) if there is a rule 
𝑟 ∈Π such that 𝑎 ∈𝐻(𝑟) and 𝑏 ∈𝐵+(𝑟). The primal graph PRIM(Π) of Π is the graph 𝐺 with 𝑉 (𝐺) =(Π) and {𝑥, 𝑦} ∈𝐸(𝐺) if there 
is a rule 𝑟 ∈ Π such that 𝑥, 𝑦 ∈ {𝐻(𝑟)} ∪ 𝐵+(𝑟) ∪ 𝐵−(𝑟). The incidence graph INC(Π) of Π is the graph 𝐺 with 𝑉 (𝐺) =(Π) ∪ Π and 
{𝑎, 𝑟} ∈𝐸(𝐺) if there is a rule 𝑟 ∈ Π such that 𝑎 ∈ {𝐻(𝑟)} ∪𝐵+(𝑟) ∪𝐵−(𝑟).

Intuitively, all three graphs represent that the truth values of atoms (and rules in the case of the incidence graph) connected via an 
edge directly depend on one another. More specifically, the dependency graph is related to whether an atom could positively occur 
on a derivation of another one and the primal graph is related to whether satisfaction of one atom may directly limit the possible 
truth values of another atom in models of a program. The incidence graph is similar to the primal graph but allows for a more fine 
grained analysis by including not only atoms but also rules.

Example 2 (cont’d). Given the input data person(𝑖) for 𝑖 = 1, … , 3 as well as friend(𝑖, 𝑗) for (𝑖, 𝑗) = (1, 2), (2, 3), (3, 1), we can ground 
and reduce (by omitting facts and removing them from the bodies of rules, etc.) the smokers program to Π𝑠𝑚

{st(1)}← {st(2)}← {st(3)}←

{inf(3,1)}← {inf(1,2)}← {inf(2,3)}←

𝑟1 = sm(1)← st(1) 𝑟2 = sm(1)← inf(3,1), sm(3)

𝑟3 = sm(2)← st(2) 𝑟4 = sm(2)← inf(1,2), sm(1)

𝑟5 = sm(3)← st(3) 𝑟6 = sm(3)← inf(2,3), sm(2)

The dependency, primal, and incidence graph of the resulting program Π𝑠𝑚 without choice rules is given in Fig. 1a, Fig. 1b, and 
5

Fig. 1c, respectively.
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sm(1), sm(2), sm(3)

sm(1), sm(3), inf(3,1) sm(2), sm(3), inf(2,3) sm(1), sm(2), inf(1,2)

sm(3), st(3 sm(2), st(2) sm(1), st(1)

Fig. 2. An optimal tree decomposition of the graph in Fig. 1b. Each vertex is labeled by the vertices in the corresponding bag.

Next, we recall the definition of treewidth.

Definition 1 (Tree Decomposition, Treewidth). A tree decomposition of a graph 𝐺 is a pair (𝑇 , 𝜒), where 𝑇 is a tree and 𝜒 is a labeling 
of 𝑉 (𝑇 ) by subsets of 𝑉 (𝐺) s.t.

• for all nodes 𝑣 ∈ 𝑉 (𝐺) there is 𝑡 ∈ 𝑉 (𝑇 ) s.t. 𝑣 ∈ 𝜒(𝑡);
• for every edge {𝑣1, 𝑣2} ∈ 𝑉 (𝐸) there exists 𝑡 ∈ 𝑉 (𝑇 ) s.t. 𝑣1, 𝑣2 ∈ 𝜒(𝑡);
• for all nodes 𝑣 ∈ 𝑉 (𝐺) the set of nodes {𝑡 ∈ 𝑉 (𝑇 ) ∣ 𝑣 ∈ 𝜒(𝑡)} forms a (connected) subtree of 𝑇 .

The width of (𝑇 , 𝜒) is max𝑡∈𝑉 ′ |𝜒(𝑡)| − 1. The treewidth of a graph is the minimal width of any of its tree decompositions.

Intuitively, treewidth is a measure of the distance of a graph from a tree. It is motivated by the fact that many computationally 
hard problems are tractable on trees. Correspondingly, trees are the only graphs that have treewidth 1. Given low treewidth it is 
then often possible to generalize tractability results by decomposing problems recursively into smaller subproblems using a tree 
decomposition witnessing the low width.

A more restricted parameter than treewidth is pathwidth.

Definition 2 (Path Decomposition, Pathwidth). Let 𝐺 be a graph. Then, a path decomposition is a tree decomposition (𝑇 , 𝜒), where 𝑇
is a path.

The pathwidth of a graph is the minimal width of any of its path decompositions.

Pathwidth is more restricted than treewidth but has similar properties, i.e. it allows for the generalization of tractability results 
on graphs that are paths. Notably, when the treewidth of an 𝑛-vertex graph 𝐺 is 𝑘, then the pathwidth of 𝐺 is in (𝑘 ⋅ log(𝑛)) [73].

Then, the primal (resp. incidence) treewidth of a program is the treewidth of its primal (resp. incidence) graph. The same applies 
to pathwidth.

Example 3 (cont’d). The treewidth of the graph in Fig. 1b is 2, as its tree decomposition in Fig. 2 which has width 2 shows. A smaller 
width is not possible here, since the graph contains a clique over three vertices (e.g. sm(1), sm(2), sm(3)). The treewidth of the graph 
in Fig. 1c is also 2, since it is not a tree as the cycle 𝑟2 → sm(3) → 𝑟6 → sm(2) → 𝑟4 → sm(1) → 𝑟2 shows.

Apart from the logical aspects specified using the program, we also need semirings to specify the quantitative aspects.

2.4. Semirings

A semiring  = (𝑅, ⊕, ⊗, 𝑒⊕, 𝑒⊗) consists of a non-empty set 𝑅 equipped with two binary operations ⊕ and ⊗, called addition 
and multiplication, where

• (𝑅, ⊕) is a commutative monoid with identity element 𝑒⊕ ,
• (𝑅, ⊗) is a monoid with identity element 𝑒⊗,
• multiplication left and right distributes over addition, and
• 𝑒⊕ annihilates 𝑅, i.e. ∀𝑟 ∈𝑅 ∶ 𝑟⊗𝑒⊕ = 𝑒⊕ = 𝑒⊕⊗𝑟.

A semiring is commutative, if (𝑅, ⊗) is commutative, and is idempotent, if ∀𝑟 ∈𝑅 ∶ 𝑟⊕𝑟 = 𝑟.
In the following, we restrict ourselves to commutative semirings. Some examples of well-known semirings are

• 𝔽 = (𝔽 , +, ⋅, 0, 1), for 𝔽 ∈ {ℕ, ℤ, ℚ, ℝ} the semiring of the numbers in 𝔽 with addition and multiplication,
• max = (ℕ ∪ {−∞}, max, +, −∞, 0), the max-plus semiring,
• 𝔹 = ({0, 1}, ∨, ∧, 0, 1), the Boolean semiring,
6

•  = ([0, 1], +, ⋅, 0, 1), the probability semiring.
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All of the aforementioned semirings are commutative.
For a more comprehensive list of semirings and applications see [30].

3. Algebraic answer set counting

We now introduce ASP with algebraic measures as a basic formalism for Algebraic Answer Set Counting (AASC). Technically, 
ASP with algebraic measures extends ASP with capabilities for quantitative reasoning over the set of answer sets such that algebraic 
Prolog, ProbLog, LPMLN and P-log can all be expressed.

We use a variant of weighted logics [74] restricted to propositional formulas.

Definition 3 (Weighted Logic). Let  = (𝑅, ⊕, ⊗, 𝑒⊕, 𝑒⊗) be a semiring. A weighted formula 𝛼 over  is of the form

𝛼 ∶∶= 𝑘 ∣ 𝑣 ∣ ¬𝑣 ∣ 𝛼 + 𝛼 ∣ 𝛼 ∗ 𝛼

where 𝑘 ∈𝑅 and 𝑣 is a propositional atom. The semantics of 𝛼 w.r.t. an interpretation , denoted �𝛼�(), is

�𝑘�() = 𝑘,

�𝑣�() =
{
𝑒⊗ 𝑣 ∈ 

𝑒⊕ otherwise
,

�¬𝑣�() =
{
𝑒⊕ 𝑣 ∈ 

𝑒⊗ otherwise
,

�𝛼1 + 𝛼2�() = �𝛼1�()⊕�𝛼2�(),

�𝛼1 ∗ 𝛼2�() = �𝛼1�()⊗�𝛼2�().

We can use weighted formulas to express calculations over a semiring, depending on the truth values of atoms with respect to an 
interpretation.

Example 4 (cont’d). As mentioned before, the smokers program is a typical example from the probabilistic domain. Using weighted 
formulas, we can introduce probabilities. We define

𝛼 =Π3
𝑖=1st(𝑖) ∗ 0.4+ ¬st(𝑖) ∗ 0.6 (1)

∗ Π𝑖,𝑗=1,2,3,𝑖+1≡𝑗 mod 3inf(𝑖, 𝑗) ∗ 0.3+ ¬inf(𝑖, 𝑗) ∗ 0.7. (2)

Line (1) tells us that every person 𝑖 is either stressed, with probability 0.4, or not stressed, with probability 0.6. With line (2) we 
capture that for (𝑖, 𝑗) = (1, 2), (2, 3), (3, 1) person 𝑖 is influenced by person 𝑗 with probability 0.3 and not influenced with probability 
0.7.

Using weighted formulas, we define algebraic measures as follows:

Definition 4 (Algebraic Measure). An algebraic measure 𝜇 = ⟨Π, 𝛼, ⟩ consists of an answer set program Π, a weighted formula 𝛼, and 
a semiring . Then, the weight of an answer set  ∈(Π) under 𝜇 is defined by

𝜇() = �𝛼�().

Additionally, the result of an (atomic) query for an atom 𝑎 ∈(Π) is given by

𝜇(𝑎) =
⨁

∈(Π),𝑎∈𝜇(),

and the result of the overall weight query of Π is

𝜇(Π) =
⨁

∈(Π)𝜇().

Example 5 (cont’d). Using algebraic measures, we perform probabilistic reasoning. We combine the weighted formula 𝛼, which 
handles the probabilities, and the program Π𝑠𝑚, which handles the logical background theory, in the measure 𝜇𝑠𝑚 = ⟨Π𝑠𝑚, 𝛼, ⟩. 
Then, the answer set  = {st(1), sm(1)} has weight 𝜇𝑠𝑚() = 0.4 ⋅ 0.62 ⋅ 0.73.

The query 𝜇(sm(1)) corresponds to the probability that sm(1) holds. To evaluate it, we need to perform AASC, i.e. sum up the 
probabilities of all answer sets s.t. sm(1) holds. Since Π𝑠𝑚 has 26 answer sets out of which 25 + 23 + 2 include sm(1), we refrain from 
computing 𝜇(sm(1)) naïvely by considering all the answer sets separately. Instead, we consider the following three disjoint cases in 
which sm(1) holds:
7

1. st(1) is true and the other probabilistic atoms take an arbitrary truth value;
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2. st(1) is false, inf(3, 1) and st(3) are true and the other probabilistic atoms take an arbitrary truth value;
3. st(1) and st(3) are false, inf(3, 1), inf(2, 3) and st(2) are true, and inf(1, 2) takes an arbitrary truth value.

These three cases are exclusive, i.e. no answer set falls in any two of the cases, and furthermore, they cover all the answer sets 
in which sm(1) is true. Thus, we can compute the probability of sm(1) as a sum of the probabilities of the three cases. These are 
0.4, 0.6 ∗ 0.3 ∗ 0.4(= 0.072) and 0.6 ∗ 0.6 ∗ 0.3 ∗ 0.3 ∗ 0.4(= 0.01296), respectively, since it is enough to take the product of the 
probabilities of the atoms whose truth values we assert as the other atoms that are left arbitrary only contribute a factor of 1. Thus, 
𝜇(sm(1)) = 0.48496.

Following the conventions of [75], we also introduce factorized measures.

Definition 5 (Factorized Measure). Let 𝜇 = ⟨Π, 𝛼, ⟩ be an algebraic measure and 𝐹 ⊆(Π). Then, 𝜇 is factorized w.r.t. 𝐹 , if there is 
a weight function 𝛽 ∶ 𝐹 ∪ {¬𝑓 ∣ 𝑓 ∈ 𝐹 } →𝑅 s.t. for all  ∈(Π) it holds that

𝜇() =
⨂

𝑓∈𝐹∩𝛽(𝑓 )⊗
⨂

𝑓∈𝐹⧵𝛽(¬𝑓 ).

The difference between factorized and non-factorized measures is intuitively how complicated the weight function is. The former 
must be expressible as a product of weights of literals that are true in a given interpretation, whereas the latter allow complex 
arithmetic expressions using both the addition and multiplication of weights in dependence on the true literals in the interpretation.

The motivation behind considering factorized measures is that current frameworks, such as ProbLog and algebraic Prolog only 
use factorized measures. This raises the question of whether this covers everything we need.

Example 6 (cont’d). The measure 𝜇𝑠𝑚 is factorized over st(𝑖), 𝑖 = 1, 2, 3 and inf(𝑖, 𝑗), 𝑖 +1 ≡ 𝑗 mod 3, by letting 𝛽(st(𝑖)) = 0.4, 𝛽(¬st(𝑖)) =
0.6 and 𝛽(inf(𝑖, 𝑗)) = 0.3, 𝛽(¬st(𝑖, 𝑗)) = 0.7.

Not every measure is factorized however.

Example 7 (Non-factorized). For an example of a non-factorized measure, consider the following problem: Given a program Π, whose 
answer sets correspond to feasible applicants for a software development position and which include whether the selected applicant 
knows C++ (denoted by knows(𝑐)) and python (denoted by knows(𝑝)). We aim to give candidates an additional score of 2, if they 
know both languages, a score of 1 of they know one of them, and a score of −1 if they know neither language.

We implement this using the measure

𝜇𝑤 = ⟨Π,knows(𝑐)+ knows(𝑝)+ (−1 ∗ ¬knows(𝑐) ∗ knows(𝑝)),ℤ⟩.
This measure is not factorized over 𝐹 = {knows(𝑐), knows(𝑝)} as there are no values 𝛽(knows(𝑐)), 𝛽(knows(𝑝)), 𝛽(¬knows(𝑐)),
𝛽(¬knows(𝑝)) ∈ℤ, s.t.

𝛽(knows(𝑐)) ⋅ 𝛽(knows(𝑝)) = 2 𝛽(knows(𝑐)) ⋅ 𝛽(¬knows(𝑝)) = 1

𝛽(¬knows(𝑐)) ⋅ 𝛽(knows(𝑝)) = 1 𝛽(¬knows(𝑐)) ⋅ 𝛽(¬knows(𝑝)) = −1

Note that there are also no such values in ℝ.

While not every algebraic measure is factorized, there always exists a factorized measure that preserves weights of queries. To 
establish this, we need some notation for sets of indexed subformulas of a weighted formula 𝛼.

Definition 6 (Subformulas). Let 𝛼 be a weighted formula. Then, (𝛼) is the set of pairs (𝑖, 𝛽), where 𝛽 is a subformula of 𝛼 indexed 
by a position-string 𝑖 ∈ {0, 1}∗ in the syntax-tree of 𝛼, that is:

• For 𝛼 ∈ {𝑝(𝑥⃗), ¬𝑝(𝑥⃗), 𝑘} we let (𝛼) = {(𝜖, 𝛼)}.
• For 𝛼 ∈ {𝛼1 + 𝛼2, 𝛼1 ∗ 𝛼2} we let (𝛼) = {(𝜖, 𝛼)} ∪ {(0𝑟, 𝛽) ∣ (𝑟, 𝛽) ∈ (𝛼1)} ∪ {(1𝑟, 𝛽) ∣ (𝑟, 𝛽) ∈ (𝛼2)}.

Theorem 7 (Factorization). Let 𝜇 = ⟨Π, 𝛼, ⟩ be an algebraic measure. Then, we can construct a factorized algebraic measure 𝜇′ =⟨Π′, 𝛼′, ⟩ s.t. for 𝑎 ∈(Π) ∶ 𝜇(𝑎) = 𝜇′(𝑎) in linear time.

Proof (sketch). Intuitively, we implicitly apply the distributive law. For this, we introduce a new atom 𝛼𝑖 for every indexed subfor-
mula (𝑖, 𝛽) ∈ 𝑆(𝛼), which is true if the value of the subformula 𝛽 at index 𝑖 is included in the current product. To implement this, we 
8

let Π′ = Π ∪Πroot ∪Π∗ ∪Π+ ∪Πleaf, where Π𝑟𝑜𝑜𝑡 = {← not 𝛼0} ensures that the value of the formula at the root is included.
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Π∗ =
⎧⎪⎨⎪⎩
𝛼𝑖 ← 𝛼𝑖.0, 𝛼𝑖.1
← 𝛼𝑖.0,not 𝛼𝑖.1 (𝑖, 𝛽1 ∗ 𝛽2) ∈ (𝛼)
← not 𝛼𝑖.0, 𝛼𝑖.1

⎫⎪⎬⎪⎭
ensures that a subformula that uses multiplication is only included if both subformulas are included. Further, we ensure that either 
both or none of the subformulas are included.

Π+ =
⎧⎪⎨⎪⎩

𝛼𝑖 ← 𝛼𝑖.1
𝛼𝑖 ← 𝛼𝑖.0 (𝑖, 𝛽1 + 𝛽2) ∈ (𝛼)
← 𝛼𝑖.0, 𝛼𝑖.1

⎫⎪⎬⎪⎭
ensures that a subformula that uses addition is only included if one of the subformulas is included. Furthermore, we ensure that at 
most one of the subformulas is included.

Πleaf ={{𝛼𝑖}← 𝑎 ∣ (𝑖, 𝑎) ∈ (𝛼)} ∪

{{𝛼𝑖}← not 𝑎 ∣ (𝑖,¬𝑎) ∈ (𝛼)} ∪

{{𝛼𝑖}← ∣ (𝑖, 𝑘) ∈ (𝛼), 𝑘 ∈𝑅}.

Formally, we define

𝛼′ = Π(𝑖,𝑘)∈(𝛼),𝑘∈𝑅 𝛼𝑖 ∗ 𝑘+ ¬𝛼𝑖.

Then, 𝜇′ = ⟨Π′, 𝛼′, ⟩ is factorized, by choosing 𝐹 = {𝛼𝑖 ∣ (𝑖, 𝑘) ∈ (𝛼), 𝑘 ∈𝑅} and 𝛽(𝛼𝑖) = 𝑘, 𝛽(¬𝛼𝑖) = 𝑒⊗.
Furthermore, along a similar line of reasoning as in [34] it follows that 𝜇(Π) = 𝜇′(Π′). □

Hence, any AASC instance given as an algebraic measure can be reduced to AASC for a factorized measure. Thus, we can focus 
on factorized measures during evaluation but allow for the specification of measures in the general form.

4. Applications of AASC

We covered the introductory theory necessary when dealing with AASC and algebraic measures. In the following, we shortly 
reiterate some of the prominent applications of AASC via instantiation with fixed semirings.

The idea behind AASC is ubiquitous in quantitative reasoning: one takes a Boolean logic and turns it into a weighted logic, by 
replacing conjunctions by multiplications and disjunctions by additions over a semiring. Other such semiring reasoning frameworks 
are for example Semiring-based Constraint Satisfaction Problems [76], provenance semantics for datalog [77], and Algebraic Model 
Counting (AMC) [30], to name only a few. Due to this, a wide range of applications of the semiring semantics are already known. 
Kimmig et al. [30] give an extensive list of different reasoning tasks that can be performed using the semiring semantics and discuss 
the appropriate semirings for it.

We therefore do not extensively list all the different possibilities here but focus on some that relate to existing extensions of ASP 
and, thus, have higher relevance for our setting. Namely, we focus on two different classes of problems and touch upon a third. First, 
we consider problems that are #P-hard, i.e. at least as hard as counting the number of satisfying assignments of a propositional 
formula. For these problems knowledge compilation is a well-established and competitive technique [46,45]. Second, when we work 
over idempotent semirings, algebraic measure evaluation is often equivalent to OPTP-hard problems. Here, at least in the area of 
Weighted MaxSAT, a prototypical OPTP-hard problem, knowledge compilation does not seem to be a good strategy, given that none 
of the solvers of the recent MaxSAT Evaluation [78] is knowledge compilation based. Thus, while we relate AASC to OPTP-hard 
problems here and cover their solution also with our implementation (which works for general commutative semirings), we do not 
expect performance improvements compared to specialized tools such as clingo [79] here.

We note that there are relevant problems that are in a complexity class above #P. Recent work [32] showed that many such 
problems can be solved by AASC over two semirings but not over one of them. Here, the problems are typically harder than AASC 
over one semiring, since they remain NP-hard on the usual tractable circuit representations [80]. Note that, as with the OPTP-hard 
problems, an implementation that works for general semirings is available but not further considered here, since we focus on the 
evaluation of problems that are #P-hard but solvable on typical tractable circuit representations. For details we refer the interested 
reader to [32].

4.1. #P-hard problems

Probabilistic reasoning The most common application that involves weighted model counting over the answer sets, in the typical 
sense, is probabilistic inference as in ProbLog, LPMLN, or P-log. The specification and semantics of probabilistic programs as well as 
the allowed class of programs varies between the languages. In fact, there is also Credal Semantics for probabilistic programs [81], 
which we however leave untreated in this work.

The main difference between the treated languages is that ProbLog uses Sato’s distribution semantics [82], which assumes that 
9

the only non-determinism in the program is due to a set of probabilistic facts and that the program has no constraints. This means 
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that any given truth assignment to the probabilistic facts can be uniquely extended to a stable model of the program. The benefit of 
this restriction is that the measure specified by the program directly satisfies the axioms of a probability distribution, e.g. the weights 
of all answer sets add up to one. On the other hand, LPMLN and P-log do not impose such a restriction, thus allowing for a broader 
class of programs. Here, in order to obtain a probability measure, the probability of an answer set is not its weight but its normalized

weight. That is, its weight is divided by the sum of the weights of all answer sets.
Apart from that, LPMLN features another property. Namely, while ProbLog and P-log only allow for weights of atoms or rules that 

are between 0 and 1, LPMLN allows for any real number as a weight.
For probabilistic inference by means of AASC, both of these differences are not significant. We can perform probabilistic inference 

in any of the three languages by evaluating an algebraic measure over an answer set program. For ProbLog programs, it is sufficient 
to evaluate 𝜇(𝑎) for the algebraic measure 𝜇 corresponding to the program to obtain the probability that the query atom 𝑎 is true 
according to the program. In the ProbLog case, we can use the probabilistic semiring  since only weights in [0, 1] occur. For LPMLN

and P-log programs, we can compute the probability of a query atom 𝑎 by evaluating 𝜇(𝑎) and 𝜇(not 𝑎) over the semiring ℝ of the 
real numbers. Then, 𝑃𝑟(𝑎), the probability of 𝑎, is 𝜇(𝑎)∕𝜇(𝑎)+𝜇(not 𝑎). For a closer look at the relationship of the different probabilistic 
logic programming languages we refer to [83,10,38].

Neuro-symbolic reasoning Neuro-symbolic reasoning, as for example in DeepProbLog [1], takes the idea of probabilistic reasoning 
with programs one step further. Here, instead of assuming that the probabilities of rules and facts are given, they are determined by 
a machine learning model that predicts the probability of a fact or rule for a given ground instantiation of it. Instead of having the 
same probability of stress for each person

0.4 ∶∶ stress(𝑋) ∶ ∓ person(𝑋),

we might have a neural predicate nn∓stress(𝐴𝑔𝑒, 𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡) that models the probability of a person being stressed based on age 
and employment. In the DeepProbLog language, this would be expressed as

nn∓stress(𝐴,𝐸) ∶∶ stress ∶ ∓ person(𝑋), age(𝐴,𝑋), employment(𝐸,𝑋).

We consider two tasks in neuro-symbolic reasoning that need to be solved.

(T1) Determine the probability of a query, given a neuro-symbolic program.

For DeepProbLog, this again corresponds to a query using an algebraic measure: when the machine learning model that predicts 
the probabilities of facts and rules is fixed we can see DeepProbLog programs as ProbLog programs and, thus, evaluate probabilistic 
queries using algebraic measures. Here, we can again use the probabilistic semiring  .

(T2) Train the model to predict the correct probabilities.

Usually, this is done using gradient descent to minimize some error function 𝑒𝑟𝑟 that depends on the output of the neural networks. 
In order to use gradient descent, it is necessary to compute the derivative of 𝑒𝑟𝑟. In the DeepProbLog setting, this can be rather 
complicated, as 𝑒𝑟𝑟 is not limited to measuring whether the predicted value was correct. Instead, the error can also be determined 
by the probability of a derived atom. E.g. in the smokers setting, we may have data about whether a person smokes but not about a 
persons stress. Thus, applying gradient descent to the error function of the smokers model involves obtaining its derivative in terms 
of the output of the neural network.

Manhaeve et al. [1] showed that we can compute this gradient by weighted model counting over the gradient semiring 𝐺𝑅𝐴𝐷. 
Therefore, we can also model this task using an algebraic measure over

𝐺𝑅𝐴𝐷 = ([0,1] ×ℝ,⊕,⊗, (0,0), (1,0)),

where

(𝑝1, 𝑑1)⊕(𝑝2, 𝑑2) = (𝑝1 + 𝑝2, 𝑑1 + 𝑑2)

(𝑝1, 𝑑1)⊗(𝑝2, 𝑑2) = (𝑝1𝑝2, 𝑑1𝑝2 + 𝑑2𝑝1).

Intuitively, the first entry corresponds to the probability, as before, whereas the second entry computes the derivative of the first 
with respect to some parameter.

Knowledge compilation Using the AASC approach we may further obtain a tractable circuit representation of the program. This may 
seem counterintuitive, since we said in the Introduction that we use knowledge compilation to perform AASC and not the other 
way around. However, it shows that when we can do weighted model counting over semirings, then we can also do knowledge 
compilation.

For knowledge compilation, we need a somewhat non-standard semiring similar to the provenance semirings of Green et al. [77]. 
Given a semiring  and a set of propositional atoms  , we define the knowledge compilation semiring of algebraic circuits over 
10

and  as
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( ,) = (( ,),+,∗,⊥,⊤)

( ,) = {𝛼 ∣ 𝛼 is an algebraic circuit over  and }

𝛼 + 𝛽 = 𝛼 + 𝛽

𝛼 ∗ 𝛽 = 𝛼 ∗ 𝛽

Here, an algebraic circuit over  and  is a directed acyclic graph (DAG), where each vertex is labeled by either +, ∗, a literal 
𝑙 ∈ Lit() with Lit() =  ∪ {¬𝑣 ∣ 𝑣 ∈ }, or a semiring value 𝑟 ∈ 𝑅, in such a manner that vertices without incoming edges are 
either labeled by a literal or a semiring value and vertices with incoming edges are either labeled by + or ∗. Furthermore, there must 
be exactly one vertex that does not have outgoing edges, which we refer to as the output.

Clearly, using the standard equality in the sense of syntactical equality is inadequate, since ( , ) is not commutative:

𝑎+ 𝑏 ≠syntax 𝑏+ 𝑎.

We instead use semantic equality, i.e. two algebraic circuits 𝛼, 𝛽 ∈( , ) are semantically equal if for every weight assignment 
𝜎 ∶ Lit() →𝑅 it holds that

�𝛼[𝜎]� = �𝛽[𝜎]�.

Here, 𝛼[𝜎] denotes that we replace every literal 𝑙 in 𝛼 by 𝜎(𝑙) its semiring value under 𝜎. Then, �𝛼[𝜎]� corresponds to evaluating 
the circuit by inductively defining the value of a node with a semiring label 𝑟 as 𝑟 and the value of a node labeled by + (resp. ∗) with 
incoming nodes with values 𝑟1, … , 𝑟𝑛 as 

⨁𝑛
𝑖=1𝑟𝑖 (resp. 

⨂𝑛
𝑖=1𝑟𝑖. The final value of �𝛼[𝜎]� is then given by the value of the output of 

the circuit.
Note that this idea is not new: Kimmig et al. [29] introduced a BDD semiring, where conjunction and disjunction correspond to 

the respective operation on BDDs, thus, allowing knowledge compilation to a BDD. However, in contrast to the BDD semiring, our 
semiring allows any kind of algebraic circuit, even those that classically do not correspond to a tractable circuit class such as BDD, 
SDD, or d-DNNF.

Apart from this, we may obtain syntactically different results depending on how we evaluate a query over ( , ). This, 
however, is of no concern to us. We can show that given any such syntactic representation of the result, we can evaluate meaningful 
queries.

Lemma 8 (Semiring Knowledge Compilation). Let 𝜇 = ⟨Π, 𝛼, ⟩ be a factorized algebraic measure with weight function 𝛽 that factorizes 𝜇. 
Furthermore, let

𝜇𝐾𝐶 = ⟨Π, 𝛼𝐾𝐶 ,((Π),)⟩
𝛼𝐾𝐶 =Π𝑣∈(Π)(𝑣 ∗ 𝐯 + ¬𝑣 ∗ ¬𝐯),

where we write atoms in italics 𝑣 and semiring values in boldface 𝐯.

Then, given any algebraic circuit 𝛾 that represents the result of 𝜇𝐾𝐶 (Π), we have that 𝜇(Π) = �𝛾[𝜎𝛽 ]�(∅), where 𝜎𝛽 ∶ Lit((Π) →𝑅 is 
given by 𝜎𝛽 (𝑙) = 𝛽(𝑙).

Thus, given any algebraic circuit 𝛾 that corresponds to the result of the knowledge compilation query 𝜇𝐾𝐶 (Π), we can evaluate 
any factorized measure query over  using 𝛾 in linearly many semiring operations in the size of 𝛾 . Thus, the key is to compute a 
small circuit 𝛾 and the latter efficiently. It is well-known that such arithmetic circuits can easily be obtained from BDDs, SDDs, or 
d-DNNFs [26], by replacing disjunctions and conjunctions by additions and multiplications, respectively.

For us the algebraic circuit semirings are not only of theoretical but also of practical interest. Namely, as we describe in more 
detail later in the section on implementation, we use SHARPSAT-TD [47], which enables weighted model counting over semirings. 
Thus, we can use it for knowledge compilation using the idea of the algebraic circuit semirings. This again shows the power of the 
semiring paradigm. Since SHARPSAT-TD is implemented in such a manner that it works for general commutative semirings, we can 
solve a variety of different interesting tasks by performing a minor modification. In fact, the adaptation of SHARPSAT-TD to enable 
knowledge compilation to smooth d-DNNF was possible in less than 500 lines of code, including the parsing of additional input 
arguments and the adaptation of the preprocessor to handle weights over general semirings. Details and an independent evaluation 
can be found in the corresponding conference paper [84].

4.2. OptP-hard problems

The applications discussed above share the fact that they are Weighted Model Counting problems in the strict sense, i.e. they are
#P-hard. We thus expect that they are practically harder to solve using current implementations than other AASC problems which 
are not #P-hard. For example, AASC over the Boolean semiring 𝔹 corresponds to checking the consistency of an answer set program 
11

and is therefore NP-complete. Arguably, it makes sense to consider such problems which are practically easier to solve separately.
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Another class of problems that are affected by this reasoning are optimization problems. There is a broad variety of extensions of 
ASP that introduce different ways to add preferences to programs [23,24]. We focus instead on the Most Probable Explanation (MPE) 
task from the probabilistic logic programming literature [85], which also fits into the context of optimization problems.

Most probable explanation The Most Probable Explanation (MPE) task is to determine the most likely probabilistic choices that led 
to a set of observed facts. We consider it in the setting of ProbLog programs.

Definition 9 (MPE). Given a ProbLog program Π and a set 𝐸 = {𝑒1, … , 𝑒𝑛} of atoms called evidence, MPE is to determine the most 
likely assignment to the probabilistic facts such that 𝐸 is entailed. That is to compute

𝑝∗ = argmax
∈(Π),𝐸⊆

∏
𝑝∶∶𝑓∈Π,𝑓∈

𝑝 ⋅
∏

𝑝∶∶𝑓∈Π,𝑓∉
(1 − 𝑝). (3)

As we have seen before, we can define a measure 𝜇 over the probabilistic semiring  such that

𝜇() =
∏

𝑝∶∶𝑓∈Π,𝑓∈
𝑝 ⋅

∏
𝑝∶∶𝑓∈Π,𝑓∉

(1 − 𝑝).

Naturally, we could use 𝜇 as a function to optimize for modeling MPE. However, it would be desirable to have an algebraic measure 
whose overall weight corresponds to the solution of MPE.

Indeed, we can construct such a measure based on the max-times semiring max,⋅. Recall that the multiplication of max,⋅
corresponds to the usual product and that the addition corresponds to taking the maximum. Then, we can use the following formula 
𝛼𝐿 over max to compute the likelihood, i.e. the logarithm of the probability of a given assignment to the probabilistic facts:

Π𝑝∶∶𝑓∈Π(𝑓 ∗ 𝑝+ ¬𝑓 ∗ (1 − 𝑝)).

Lemma 10 (MPE as AASC). Given a ProbLog program Π and evidence 𝐸, the overall weight of the algebraic measure 𝜇 = ⟨Π ∪{ ∶ ∓ not 𝑒 ∣
𝑒 ∈ 𝐸}, 𝛼𝐿, max,⋅⟩ is equal to 𝑝∗ in Equation (3), the maximum likelihood of any assignment to the probabilistic facts in Π such that 𝐸 is 
entailed.

Notably, this does not solve MPE strictly speaking, since we do not know the assignment that leads to the maximum probability. 
However, we can extend the max-times semiring max,⋅ to perform bookkeeping that tracks which interpretation was used. For this, 
we use pairs (𝑝, ), where 𝑝 ∈ ℝ and  is a partial interpretation. Then, addition of two such pairs (𝑝𝑖, 𝑖), 𝑖 = 1, 2 takes that pair, 
where 𝑝𝑖 is maximal, breaking ties with an arbitrary but fixed order on the partial interpretations. Multiplication of two such pairs 
results in (𝑝1 ⋅ 𝑝2, 1 ∪ 2). By changing the probabilistic facts 𝑓 with weight 𝑝 to have weight (𝑝, {𝑓}) instead, we obtain the desired 
output.

4.3. Harder problems

There are also problems harder than #P, i.e. problems that stay hard on d-DNNFs without additional restrictions. Such problems 
frequently occur in probabilistic logic programming. Some examples are Maximum A Posteriori (MAP) problems, probabilistic infer-
ence using the semantics for general answer set programs of Totis et al. [15] and Skryagin et al. [20], and Maximum Expected Utility 
(MEU) problems [26,25].

What all these problems share is that they come with a partition 𝑋𝑂, 𝑋𝐼 of the variables and two semirings 𝑂, 𝐼 such that 
their final result can be expressed as⨁𝑂

𝑂⊆𝑋𝑂

⨂𝑂
𝑙∈lit(𝑋𝑂),𝑂⊧𝑙

𝛼𝑂(𝑙)⊗𝑂𝑡
(
𝐴𝐴𝑆𝐶(𝑂)

)
, where (4)

𝐴𝐴𝑆𝐶(𝑂) =
⨁𝐼

𝐼⊆𝑋𝐼 ,𝑂∪𝐼∈(Π)
⨂𝐼

𝑙∈lit(𝑋𝐼 ),⊧𝑙
𝛼𝐼 (𝑙), (5)

for functions 𝛼𝑂 and 𝛼𝐼 that assign the literals over 𝑋𝑂 and 𝑋𝐼 a weight from 𝑂 and 𝐼 , respectively, and a transformation 
function 𝑡 that maps semiring values from 𝐼 to 𝑂 . Intuitively, this means that we have to solve one AASC instance 𝐴𝐴𝑆𝐶(𝑂)
for each assignment 𝑂 to the outer variables 𝑋𝑂 and sum up the results, i.e. we need to perform nested AASC.

Consider for example the MAP problem. It is similar to MPE in the sense that both problems we ask for the most likely assignment 
to a set of variables 𝑋𝑂 , given some evidence. However, while for MPE the probability of the most likely assignment is determined 
as the product of the probabilities of the assignments to the variables in 𝑋𝑂, in MAP this product is multiplied by the marginal 
probability over the remaining probabilistic variables in the set 𝑋𝐼 . Thus, for MAP the expression in (5) corresponds to

argmax
𝑂⊆𝑋𝑂

∏
𝑙∈lit(𝑋𝑂),⊧𝑙

𝛼𝑂(𝑙) ⋅
∑

𝐼⊆𝑋𝐼 ,𝑂∪𝐼∈(Π)

∏
𝑙∈lit(𝑋𝐼 ),⊧𝑙

𝛼𝐼 (𝑙)

= argmax𝑃𝑟(𝑂) ⋅ 𝑃𝑟(𝐸 ∣ 𝑂),
12

𝑂⊆𝑋𝑂
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Fig. 3. Schema of the overall workflow of existing solvers for the evaluation of AASC problems.

where 𝑃𝑟(𝑂) and 𝑃𝑟(𝐸 ∣ 𝑂) denote the probability of 𝑂 and the probability of the evidence 𝐸 given 𝑂 , respectively. The inner 
sum computes 𝑃𝑟(𝐸 ∣ 𝑂), the conditional probability of 𝐸 given the assignment 𝑂 to the outer variables 𝑋𝑂 and the outer sum 
takes the maximum over all assignments to the outer variables. Here, we assume that Π includes the constraints that the evidence 
should hold, as in Lemma 10.

Since all these problems are also definable algebraically and can be solved by compilation to constrained tractable circuits instead 
of arbitrary tractable circuits, the results of the rest of the paper are also relevant for this setting. Again, we see the flexibility of the 
algebraic approach that allows us to consider a large variety in the same manner. For more details, including the adaptations that 
are necessary in the knowledge compilation step to allow for constrained knowledge compilation we refer to [32].

5. Solving AASC problems

The main goal of our work is to solve AASC problems more efficiently. In order to do so, we need to aggregate the values 
associated with each answer set of a program by the weighted formula. Already computing one answer set is NP-hard and computing 
an aggregate of over all of them can be even harder, depending on the chosen aggregate, which in our setting corresponds to the 
addition of the semiring. There has, however, been a lot of research on different approaches that can be used to overcome this 
hardness in an effort to provide an efficient implementation [36,35,58,39,13]. While these approaches differ significantly in their 
details, they usually follow a similar overall workflow.

In this section, we give a broad overview of both the shared workflow and the differences between the approach to arrive at a 
solution. Especially, we investigate the conditions under which each of the approaches is likely to succeed. This is interesting, on the 
one hand, from a user perspective, as it can allow one to make an informed choice for a tool, depending on the conditions satisfied 
by the instances at hand. On the other hand, it is useful for us since we can select the most promising approach as the basis for our 
work.

5.1. Overall workflow

A schema of the general pipeline that is usually shared between different solvers is shown in Fig. 3. Many steps are optional 
and different solvers use different paths through this pipeline. Usually, solvers accept possibly non-ground programs Π with some 
additional annotations for the algebraic measure. Often, this program is then grounded, resulting in a propositional program, which 
is simplified in the next step. Afterwards, the actual AASC starts, by converting the program into an equivalent tractable circuit 
representation  via some form of knowledge compilation (KC). In the last step, the result is obtained by evaluation over the circuit . 
Before we go into more details, we would like to note that in some solvers these steps are intertwined instead of being executed one 
after the other.

We focus on the knowledge compilation step. First, there has already been a lot of work on the other steps of the pipeline: Fierens
et al. [35] showed that for probabilistic inference with ProbLog programs, it is sufficient to restrict oneself to the relevant ground 
part of the program, which can significantly reduce the size of the problem. Tsamoura et al. [86] went even further and used the 
magic set technique [87] to identify the relevant part during grounding, thus, eliminating the need to even produce the remaining 
irrelevant part in this phase. Additionally, Shterionov [88, Chapter 3] thoroughly investigated a wide range of simplifications for 
13

probabilistic logic programs that were shown to lead to significantly improved solving times on many benchmark sets.
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Table 1

Different possibilities for the knowledge compilation step accompanied by 
a tractability guarantee in terms of an appropriate parameter. Here, 𝑝𝑡𝑤 is 
short for primal treewidth, 𝑝𝑑𝑡𝑤 (resp. 𝑝𝑑𝑝𝑤) are short for the treewidth 
(resp. pathwidth) of the primal graph that additionally includes an edge be-
tween any two atoms that are in a positive cyclic dependency. Furthermore, 
𝐶 denotes a CNF and Π a program.

KC Step Tractability Guarantee Implemented in

program to MODS Θ(|(Π)| ⋅ |(Π)|) LPMLN, plingo
CNF to sd-DNNF (2𝑝𝑡𝑤|𝐶|) ProbLog

acyclic program to SDD 

(
22(𝑝𝑡𝑤+2)2

(𝑝𝑡𝑤+1)+1+1|Π|) ProbLog

acyclic program to OBDD 

(
2(𝑝𝑝𝑤+2)2(𝑝𝑝𝑤+2) |Π|) PITA

program to sd-DNNF - (ProbLog)

dynamic programming 

(
22𝑝𝑡𝑤+2 |Π|) dynasp

Second, we argue that the knowledge compilation step has the largest potential for improvement and is likely to lead to the 
biggest effect. Due to these reasons, we focus on the knowledge compilation step, as we assume its investigation to be the most 
fruitful.

5.2. Knowledge compilation

The idea behind knowledge compilation is the following: while certain problems, such as AASC, are hard on general logical 
theories, there are so called tractable circuit representations, where this is not the case. Here, we shortly summarize the different 
theoretical guarantees associated with compiling a given representation of programs to prominent circuit classes in addition to 
implementations that support them. For a more in-depth introduction and discussion, we refer the interested reader to Appendix B.

A summary is given in Table 1. We see that compiling to MODS leads to a circuit of size linear in the number of answer sets. 
Thus, this strategy is tempting, when there are “few” of them, which is however rarely the case for probabilistic logic programs, 
where the number of answer sets grows exponentially in the number of probabilistic facts. For the compilation of CNFs and acyclic 
programs as well as the explicit dynamic programming approach [21], we see that the guarantees strongly depend on the structural 
parameters, i.e., treewidth or pathwidth of associated structures. Here, the guarantee for CNFs seems to be the most desirable, due to 
the single exponential dependency on treewidth compared to the at least double exponential dependency for the other approaches. 
It is, however, important to note that (1) these are only upper bounds, rather than lower bounds, and (2) Amarilli et al. [52] were 
able to obtain an upper bound of  

(
25(𝑘+1) ⋅ |Vars(𝐶)|) by slightly loosening the requirements for SDDs. Therefore, we may obtain 

much better performance in practice as the guarantees suggest.
For the direct compilation of programs to sd-DNNF as given by Aziz et al. [89], no guarantees are known. It is interesting, since 

contrary to CNF and acyclic program compilation, here, the requirement for stability of models is taken care of during compilation 
rather than beforehand. Taking care of it in advance during cycle breaking requires transformations that may increase the treewidth 
and size of programs. Here, this is solved by adding so called loop formulas [90], which are clauses that prohibit cyclic derivations, 
during compilation. However, loop formulas as introduced by Lin and Zhao [90] may span a whole SCC of the dependency graph of 
the program.3 This can destroy previously low treewidth and be devastating for the compilation performance. Apart from that, not 
only the treewidth may suffer: we may end up with exponentially many additional clauses in the size of the largest SCC [91]. This 
version of DSHARP was removed from the ProbLog implementation, presumably for the above reasons. While there are strategies 
to reduce the number of necessary loop formulas [92,93], their adaptation would not circumvent the exponential worst case lower 
bound on the number of added clauses.

Summary Summing up, we see that there is a wide range of different approaches to knowledge compilation or more generally solving 
AASC problems, coming with different theoretical guarantees. Mostly, the guarantees are exponential in a structural parameter 
associated with the formula that is to be compiled. The only exception is the approach of the solvers LPMLN [10] and plingo [38]
that enumerate all the models.

The most promising theoretical results are known for the compilation of CNFs to sd-DNNFs. Furthermore, the recent work of 
Korhonen and Järvisalo [47] showed that one can achieve performance improvements by using the latter explicitly. This begs the 
question whether and how we can convert programs of low treewidth into CNFs of low treewidth, in order to fruitfully exploit these 
recent advancements.

6. Clark’s completion

A crucial step in the translation of programs to CNF formulas is the well-known Clark’s Completion [54]. While it is defined on 
general programs, it is only guaranteed to lead to an equivalent CNF, when the program it was applied to does not have cycles in 
14

3 They usually contain even more variables, however already this is devastating for knowledge compilation.
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its positive dependence graph. The traditional, most well-known version of Clark’s Completion does not allow for bounds on the 
treewidth of the resulting CNF in terms of the treewidth of the primal graph of the original program. There has, however, already 
been work by Hecher that does imply such bounds. In the following, we first discuss the original version of Clark’s Completion and 
its limitations as well as the modifications by Hecher. After that we show that even Hecher’s version allows for further improvements 
and introduce an extended version for which we can obtain better bounds.

The idea behind Clark’s Completion is the following: if we have an atom 𝑎 that is in the head of the rules 𝑟1, … , 𝑟𝑛, then 𝑎 is only 
included in a stable model if we are forced to derive it due to one of these rules. More formally, the definition is as follows:

Definition 11 (Clark’s Completion). Let Π be a normal answer set program. Then, Clark’s Completion of Π is defined as the proposi-
tional formula

ClarkProp(Π) =
⋀

𝑎∈(Π)
𝑎↔

⋁
𝑟∈Π𝑎

⋀
𝑙∈𝐵(𝑟)

𝑙,

where for an atom 𝑎 ∈(Π), we let Π𝑎 = {𝑟 ∈Π ∣𝐻(𝑟) = 𝑎}.
For convenience reasons, we also introduce Clark(Π) as the CNF⋀

𝑎∈(Π)

(
¬𝑎 ∨

⋁
𝑟∈Π𝑎

forced𝑟 ∧
⋀
𝑟∈Π𝑎

𝑎 ∨ ¬forced𝑟

)
∧

⋀
𝑟∈Π

(
forced𝑟 ∨

⋁
𝑙∈𝐵(𝑟)

¬𝑙 ∧
⋀
𝑙∈𝐵(𝑟)

¬forced𝑟 ∨ 𝑙

)
,

where forced𝑟 for 𝑟 ∈ Π is an auxiliary variable such that intuitively forced𝑟 is true iff every literal in the body of 𝑟 is satisfied, which 
is ensured by the second line.

Formally, we obtain:

Lemma 12 (Folklore). Let Π be an answer set program. Then, (i) every model  of ClarkProp(Π) can be uniquely extended to a model 
′ of Clark(Π) by assigning forced𝑟 to true, if ′ ⊧ 𝐵(𝑟) and to false, otherwise, and (ii) for every model  of Clark(Π) the interpretation 
′ =  ∩(Π) is a model of ClarkProp(Π).

The way we use Clark’s Completion is to translate programs into equivalent propositional formulas. The following gives a sufficient 
condition for this to work.

Theorem 13 ([54]). Let Π be a normal answer set program. If the dependency graph DEP(Π) of Π is acyclic, then every model of 
ClarkProp(Π) is an answer set of Π and vice versa.

6.1. Primal tree decomposition guidance

For now, we disregard the acyclicity requirement of Clark’s Completion and consider only the change in treewidth as a result of 
applying Clark’s Completion. Unfortunately, as the following example shows, we cannot give treewidth guarantees for Clark(Π) in 
terms of the treewidth of Π.

Example 8 (Treewidth Bounds I). Consider the program Π𝑛 consisting of rules

𝑟1 ∶ 𝑎← 𝑏1,… , 𝑟𝑛 ∶ 𝑎← 𝑏𝑛

The treewidth of PRIM(Π𝑛) is 1, since the only edges are for the form (𝑎, 𝑏𝑖), which means that PRIM(Π𝑛) is a tree. On the other 
hand, the CNF version of Clark’s Completion of Π𝑛 contains the following clauses to model the truth of the atom 𝑎:

¬𝑎 ∨
𝑛⋁
𝑗=1

forced𝑟𝑗 , 𝑎 ∨ ¬forced𝑟𝑖 , for 𝑖 = 1,… , 𝑛

forced𝑟𝑖 ∨ ¬𝑏𝑖, ¬forced𝑟𝑖 ∨ 𝑏𝑖, for 𝑖 = 1,… , 𝑛.

Due to the clause ¬𝑎 ∨
⋁𝑛

𝑖=1 forced𝑟𝑖 , the primal graph of Clark(Π𝑛) contains a clique of size 𝑛 + 1. Therefore, the treewidth of 
Clark(Π𝑛) is 𝑛.

This is a problem, if we want to use the treewidth of the CNF we obtain from Clark’s Completion to bound the time needed to 
solve an AASC instance. However, this problem can be avoided by introducing further auxiliary variables that intuitively save partial 
15

results and thus limit the dependence of the variables among each other.
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Example 9 (cont.). Consider instead of the set of clauses from Example 8 the following alternative clauses:

¬𝑎 ∨ part𝑛, 𝑎 ∨ ¬part𝑛 (6)

¬part𝑖 ∨ 𝑏𝑖 ∨ part𝑖−1, part𝑖 ∨ ¬𝑏𝑖, part𝑖 ∨ ¬part𝑖−1 for 𝑖 = 1,… , 𝑛 (7)

¬part0. (8)

Here, part𝑖 for 𝑖 = 0, 1, … , 𝑛 are auxiliary variables. Intuitively, part𝑖 is responsible for storing a partial result. Namely, part𝑖 is true 
iff one of 𝑏1, … , 𝑏𝑖 is true and consequently there is a reason to derive 𝑎 from one of the first 𝑖 rules. This is ensured by the clauses 
in (8) and (7). Indeed, as part0 is false, so part1 ↔ 𝑏1 holds as well as part𝑖 ↔ part𝑖−1 ∨ 𝑏𝑖 for 𝑖 = 1, … , 𝑛. Finally, the clauses in (6)
ensure that 𝑎 is true iff any of the (first 𝑛) rules fires by ensuring that it 𝑎 is equivalent to part𝑛.

While the primal graph of this CNF has treewidth 2 which is higher than the one of PRIM(Π𝑛) that has treewidth 1, it is 
independent of 𝑛, in contrast to the treewidth of Clark(Π𝑛).

The idea of the previous example is formalized as PClark(Π,  , 𝑡r) a revised definition of ClarkProp(Π) given by Hecher [55]
that uses a tree decomposition  with root 𝑡r of the primal graph of Π for guiding the Clark Completion. It leads to the following 
guarantee:

Theorem 14 ([55]). Given a normal answer set program Π and a tree decomposition  = (𝑇 , 𝜒) of PRIM(Π) with width 𝑘 and root 𝑡r , the 
CNF PClark(Π,  , 𝑡r) can be constructed in time linear in |Π| + |𝑇 | and satisfies that

(i) every model of ClarkProp(Π) can be uniquely extended to a model of PClark(Π,  , 𝑡r),
(ii) the size of PClark(Π,  ) is in (𝑘|Π|), and

(iii) the treewidth of PRIM(PClark(Π,  , 𝑡r)) is at most 3(𝑘 + 1).

Intuitively, we can avoid a higher increase in treewidth by avoiding long clauses introduced by large disjunctions 𝑎1 ∨⋯ ∨ 𝑎𝑛. 
For this, we apply the Tseitin transformation to obtain multiple shorter clauses that correspond to 𝑎1 ∨ 𝑎2 ∨ part1, part1 ↔ 𝑎3 ∨
part2, … , part𝑛−3 ↔ 𝑎𝑛−1 ∨ 𝑎𝑛.

We do not spell out PClark(.), as we will give a further improved version. Notably, Clark’s Completion may also introduce large 
conjunctions, which we also wish to avoid if they artificially increase the treewidth.

6.2. Incidence tree decomposition guidance

We have seen that we can use a tree decomposition of the primal graph of a program to limit the increase in the treewidth during 
translation to CNF that is caused by many rules that have the same atom in the head. Another factor that can lead to artificially high 
treewidth are long rules:

Example 10 (Treewidth Bounds II). Consider the program Π𝑛 with the single rule

𝑟 ∶ 𝑎← 𝑏1,… , 𝑏𝑛.

The treewidth of PRIM(Π𝑛) is 𝑛, since it is a clique on 𝑛 + 1 vertices. Thus, Theorem 14 guarantees us a CNF of treewidth at most 
3(𝑛 + 1). In this case, this upper bound is not helpful, since already the usual version of Clark’s Completion results in the following 
clauses to model the truth of atom 𝑎:

𝑎 ∨ ¬forced𝑟, ¬𝑎 ∨ forced𝑟,

forced𝑟 ∨
𝑛⋁
𝑖=1

¬𝑏𝑖,
𝑛⋀
𝑖=1

(
¬forced𝑟 ∨ 𝑏𝑖

)
.

The primal graph of this CNF also has treewidth 𝑛, which is better than our upper bound.
We can avoid the long clauses by using the following propositional formula instead:

𝑎↔ 𝑏1 ∧ part1,

part𝑖 ↔ 𝑏𝑖+1 ∧ part𝑖+1, for 𝑖 = 1,… , 𝑛− 3,

part𝑛−2 ↔ 𝑏𝑛−1 ∧ 𝑏𝑛.

The treewidth of the primal graph of the corresponding CNF is 2 and therefore independent of 𝑛.

As previously, we see that we can decrease the treewidth of the CNF resulting from Clark’s Completion by introducing auxiliary 
16

variables. The difference here is that we introduce them for conjunctions instead of disjunctions. Unfortunately, as we have also seen 
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𝑎 𝑏1

…𝑏𝑛

𝑎 𝑏1 … 𝑏𝑛

𝑟

Fig. 4. The primal graph (left) and the incidence graph of the program Π𝑛 from Example 11.

in the example, a tree decomposition of the primal graph of the program is unlikely to help us: it also assigns a high treewidth to the 
program even if has a simple representation.

We overcome this problem by considering the incidence graph of the program instead of the primal graph.

Example 11 (cont.). The incidence graph of Π𝑛 in Example 10 is shown in Fig. 4; as it is a tree, it has treewidth 1.

Definition 15 (Incidence Tree Decomposition-guided Clark’s Completion). Let Π be a normal answer set program and  = (𝑇 , 𝜒) a tree 
decomposition of INC(Π) with root 𝑡r . Then, IClark(Π,  , 𝑡r) the Incidence Tree Decomposition-guided Clark’s Completion of Π with 
respect to (𝑇 , 𝜒) and root 𝑡r is defined as the propositional formula

upto𝑎𝑡 ↔
⋁

𝑡′∈children(𝑡),𝑎∈𝜒(𝑡′)
upto𝑎

𝑡′
∨

⋁
𝑟∈𝜒(𝑡),𝐻(𝑟)=𝑎

forced𝑟 for 𝑡 ∈ 𝑇 , 𝑎 ∈ 𝜒(𝑡) (9)

𝑎↔ upto𝑎
𝑡′

for 𝑡, 𝑡′ ∈ 𝑇 , 𝑎 ∈ 𝜒(𝑡′) ⧵ 𝜒(𝑡), 𝑡′ ∈ children(𝑡) (10)

𝑎↔ upto𝑎𝑡r for 𝑎 ∈ 𝜒(𝑡r) (11)

upto𝑟𝑡 ↔
⋀

𝑡′∈children(𝑡),𝑟∈𝜒(𝑡′)
upto𝑟

𝑡′ ∧
⋀

𝑏∈𝜒(𝑡),𝑏∈𝐵(𝑟)
𝑏 for 𝑡 ∈ 𝑇 , 𝑟 ∈ 𝜒(𝑡) (12)

forced𝑟 ↔ upto𝑟
𝑡′ for 𝑡, 𝑡′ ∈ 𝑇 , 𝑟 ∈ 𝜒(𝑡′) ⧵ 𝜒(𝑡), 𝑡′ ∈ children(𝑡) (13)

forced𝑟 ↔ upto𝑟𝑡r for 𝑟 ∈ 𝜒(𝑡r) (14)

The basic intuition here is the same as with the original CNF version of Clark’s Completion, i.e. we introduce additional variables 
that are defined as equivalent to subformulas. The variables of the form upto𝑎𝑡 for 𝑡 ∈ 𝑇 and 𝑎 ∈(Π) intuitively capture whether 𝑎 is 
derived by any of the rules that occur in 𝜒(𝑡) or 𝜒(𝑡′) for a descendant 𝑡′ of 𝑡. This is ensured in (9). Then, in (10) and (11) we ensure 
that the atom 𝑎 holds if it was derived by any rule, by checking whether it was derived in the bag of the tree decomposition that 
contains it and is closest to the root (which may be the root). Similarly, the atoms of the form upto𝑟𝑡 for 𝑡 ∈ 𝑇 and 𝑟 ∈ Π intuitively 
capture whether all the body atoms of 𝑟 that occur in 𝜒(𝑡) or 𝜒(𝑡′) for all descendants 𝑡′ of 𝑡 are satisfied due to (12). Accordingly, 
in (13) and (14) we ensure that forced𝑟 holds iff all the body atoms of 𝑟 are satisfied, by checking whether upto𝑟𝑡 holds in the unique 
bag 𝑡 ∈ 𝑇 such that 𝑟 ∈ 𝜒(𝑡) and 𝑡 does not have any ancestors that contain 𝑟.

This leads to the following result as desired:

Theorem 16. Given a normal answer set program Π and a tree decomposition  = (𝑇 , 𝜒) of INC(Π) with width 𝑘 and root 𝑡r , the CNF 
IClark(Π,  , 𝑡r) can be constructed in time linear in |Π| + |𝑇 | and satisfies that

(i) every model of ClarkProp(Π) can be uniquely extended to a model of IClark(Π,  , 𝑡r),
(ii) the size of IClark(Π,  ) is in (𝑘|Π|), and

(iii) the treewidth of PRIM(IClark(Π,  , 𝑡r)) is at most 3(𝑘 + 1).

Proof (sketch). Roughly, we construct a new tree decomposition by adding for each node 𝑡 ∈ 𝑇 with vertices 𝜒(𝑡) the atoms upto𝑥𝑡
for each 𝑥 ∈ 𝜒(𝑡) and forced𝑟 for 𝑟 ∈ 𝜒(𝑡). Then, we are interested in the cardinality of the set

(𝜒(𝑡) ⧵ {𝑟 ∣ 𝑟 ∈ 𝜒(𝑡) ∩ Π}) ∪ {forced𝑟 ∣ 𝑟 ∈ 𝜒(𝑡) ∩ Π} ∪ {upto𝑥𝑡 ∣ 𝑥 ∈ 𝜒(𝑡)},

which is 2(𝑘 +1). However, this does not cover the clauses in (12) and (9). We can assume w.l.o.g. that every node 𝑡 ∈ 𝑇 has at most 
2 children (e.g. by introducing duplicates of 𝑡) and add upto𝑥

𝑡′
for every child 𝑡′ of 𝑡 to naively achieve an upper bound of 4(𝑘 +1). By 

instead using in the new tree decomposition copies (𝑡, 1), … , (𝑡, |𝜒(𝑡)| + 1) of 𝑡 for each 𝑡 ∈ 𝑇 and processing the clauses in (12) and 
(9) one by one, we achieve the upper bound of 3(𝑘 + 1). Assuming 𝜒(𝑡) = {𝑥1, … , 𝑥|𝜒(𝑡)|}, we start with the bag (𝑡, |𝜒(𝑡)| + 1) that 
contains upto

𝑥|𝜒(𝑡)|
𝑡 , 𝑥, upto𝑥𝑡1 , and upto𝑥𝑡2 for the children 𝑡1, 𝑡2 of 𝑡 and all 𝑥 ∈ 𝜒(𝑡). Then, we define 𝜒 ′(𝑡, 𝑖) for 𝑖 = 1, … , |𝜒(𝑡)| as
17

{upto𝑥𝑖−1𝑡 } ∪ 𝜒 ′(𝑡, 𝑖+ 1) ⧵ {upto𝑥𝑖𝑡 ,upto𝑥𝑖𝑡1 ,upto𝑥𝑖𝑡2 }.
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This means that we start with bag (𝑡, |𝜒(𝑡)| + 1) of size 3(𝑘 + 1) + 1 and decrease the size of the following bags by 2 in each step, 
resulting in a width of at most 3(𝑘 + 1). □

Recall that a graph of primal treewidth 𝑘 has incidence treewidth less or equal to 𝑘 + 1. Thus, in the worst case the guarantees 
of Theorem 16 only differ from those of Theorem 14 by a constant factor. However, since incidence treewidth may be arbitrarily 
smaller than primal treewidth, the guarantees with respect to incidence treewidth can be much better. The latter can also be seen 
in Example 11, where we consider a family of programs with constant incidence treewidth but unbounded primal treewidth. Thus, 
Theorem 16 broadens the range of cases, where we can fruitfully use CNF-translation followed by algebraic model counting on the 
CNF for algebraic answer set counting.

In order to solve AASC with knowledge compilation via a version of Clark’s Completion, we however first need to ensure that the 
resulting CNF preserves the models of the original program bijectively.

7. Cycle breaking

Recall that Clark’s Completion is only guaranteed to capture the answer sets of a program if the program is acyclic. Thus, for a 
program with a cyclic dependency graph, we first need to make some further effort to ensure that Clark’s Completion will be correct. 
This process is commonly referred to as cycle breaking and transforms a program Π into a program (Π).

There has been a lot of work on cycle breaking both in the ASP community [59,57,55] for translations to SAT as well in the 
probabilistic reasoning community [58] specifically for weighted model counting. The basic idea of cycle breaking is to modify the 
program in such a way that afterwards the models of the Clark Completion and the modified program are the same. In the context of 
general AASC, it is moreover important that the answer sets before and after cycle breaking are in a specific one-to-one relationship. 
Formally, the cycle breaking needs to be faithful:

Definition 17 (Faithfulness). A cycle breaking (.) is faithful (for Π), if:

(i) |(Π)| = |((Π))|, and
(ii) (Π) = { ∩(Π) ∣  ∈((Π))}.

As expected, faithfulness guarantees that we can perform AASC over the program obtained by cycle breaking without changing 
the result.

Lemma 18 (Faithfulness Implies Query Invariance). Let 𝜇 = ⟨Π, 𝛼, ⟩ be a measure and let (.) be a faithful cycle breaking for Π. Then, 
for 𝜇′ = ⟨(Π), 𝛼, ⟩ it holds that 𝜇(𝑎) = 𝜇′(𝑎) for every 𝑎 ∈(Π).

The translations of Lin and Zhao [59] and Hecher [55] do not satisfy this requirement for all program, as they serve to check the 
existence of an answer set.

In contrast, the two cycle breakings of Janhunen and Niemelä [56] and Mantadelis and Janssens [58] are faithful for all pro-
grams. In fact, both have been considered in the context of probabilistic reasoning. Janhunen and Niemelä’s was considered for the 
implementation of Problog (cf. [36]) and Mantadelis and Janssens’s is still part of the standard Problog implementation.

In this section, our aim is to find a cycle breaking that will result in good AASC-performance. As mentioned before, our main 
criterion here is whether we can bound the increase of the treewidth. However, of course also the increase in program size and 
insights regarding the semantic complexity are relevant for us. In the following, we thus first analyze the state of the art of faithful 
cycle breakings. Afterwards we introduce a novel cycle breaking called T -Unfolding, which we use in our implementation, and 
argue that it has favorable properties.

7.1. Necessity of cycle breaking

Before we consider existing cycle breakings, we first motivate the need for it by giving an example program, where the models of 
Clark’s Completion do not align with the stable models.

Example 12. Consider again the program Π𝑠𝑚 from the running example.

{st(1)}← {st(2)}← {st(3)}←

{inf(3,1)}← {inf(1,2)}← {inf(2,3)}←

sm(1)← st(1) sm(1)← inf(3,1), sm(3)

sm(2)← st(2) sm(2)← inf(1,2), sm(1)

sm(3)← st(3) sm(3)← inf(2,3), sm(2)

Recall that {𝑎} ← is a shorthand for the two rules 𝑎 ← not 𝑛𝑎 and 𝑛𝑎 ← not 𝑎. Thus, each of the stress and influence atoms contribute 
18

the following equivalences to Clark’s Completion, respectively:
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st(𝑖)↔ ¬nst(𝑖) ninf(𝑖, 𝑗)↔ ¬inf(𝑖, 𝑗)

nst(𝑖)↔ ¬st(𝑖) inf(𝑖, 𝑗)↔ ¬ninf(𝑖, 𝑗)

Without any additional constraints, this means that we can choose the truth values of st(𝑖) and inf(𝑖, 𝑗) arbitrarily as long we assign 
nst(𝑖) and ninf(𝑖, 𝑗) the negation, respectively. Since this is the intended behavior of choice constraints, we see that Clark’s Completion 
works as expected here. On the other hand, for the smokes atoms, we obtain the following equivalences:

sm(𝑖)↔ st(𝑖) ∨ (inf(𝑗, 𝑖) ∧ sm(𝑗)),

where 𝑖 + 1 ≡ 𝑗 mod 3. I.e. 𝑖 smokes iff 𝑖 is stressed or 𝑗 influences 𝑖 and 𝑗 smokes. Under the stable model semantics, we can only 
derive that any person smokes if at least one person is stressed. However, for Clark’s Completion there is a model, where every person 
smokes but nobody is stressed, namely:

{sm(1), sm(2), sm(3),nst(1),nst(2),nst(3), inf(3,1), inf(1,2), inf(2,3)}.

While this is also a model of Π𝑠𝑚 it is not stable, since the strict subset

{nst(1),nst(2),nst(3), inf(3,1), inf(1,2), inf(2,3)}

is also a model of Π𝑠𝑚.

The previous example clearly shows that the problem with Clark’s Completion on general problem is caused by cyclic derivations. 
Cyclic derivations are those that use that an atom 𝑎 is true to derive that 𝑎 is true.

7.2. The MJ(.) cycle breaking [58]

The strategy of Mantadelis and Janssens’s [58] cycle breaking MJ(.) to avoid such cyc’lic derivations is to introduce copies 𝑎𝐹 of 
an atom 𝑎 for 𝐹 ⊆(Π) that intuitively capture derivations of 𝑎 that do not positively use any atom from 𝐹 . Then, we can use the 
atom 𝑎{𝑏} in a derivation of 𝑏 from 𝑎, even if 𝑎 and 𝑏 are in a cyclic dependency. Naturally, introducing a copy 𝑎𝐹 for every subset 
𝐹 ⊆(Π) is undesirable as it would lead to an exponential number of atoms.

In order to avoid this whenever possible, the cycle breaking MJ(.) makes use of two ideas. Firstly, it uses the fact that sometimes 
the derivations for 𝑎 that do not use atoms from 𝐹 or 𝐹 ′ align. Then, it does not make sense to introduce two separate atoms 𝑎𝐹 , 𝑎𝐹 ′

and one can use one of them for both cases. Second, if every derivation for 𝑏 uses the atoms in 𝐹 ⊆(Π) before using the atom 𝑎, 
then no atom 𝑎{𝑏} will be created but only an atom 𝑎𝐹∪{𝑏}.

We illustrate the idea behind MJ(.) on our running example.

Example 13 (cont.). First consider the rules for the guesses of the stressed and influences predicate.

{st(1)}← {st(2)}← {st(3)}←

{inf(3,1)}← {inf(1,2)}← {inf(2,3)}←

Here, we do not need to change anything, since these atoms are not involved in any cycles. Next, we consider the remaining atoms 
in the rules

sm(1)← st(1) sm(1)← inf(3,1), sm(3)

sm(2)← st(2) sm(2)← inf(1,2), sm(1)

sm(3)← st(3) sm(3)← inf(2,3), sm(2)

Here, sm(1), sm(2) and sm(3) are in a cyclic dependency. We first consider sm(1). Due to the cycle, we cannot use all derivations of 
sm(3) to derive sm(1) using the rule

sm(1)← inf(3,1), sm(3).

Instead, we introduce a copy sm(3){sm(1)} of the atom sm(3) that captures all derivations of sm(3) that do not make use of sm(1):

sm(1)← st(1) sm(1)← inf(3,1), sm(3){sm(1)}

Similarly, in order to capture all derivations of sm(3) from inf(2, 3), sm(2) using the rule

sm(3)← inf(2,3), sm(2)

we create a copy sm(2){sm(1),sm(3)} of the atom sm(2) that captures all derivations of sm(2) that use neither sm(1) nor sm(3):
19

sm(3){sm(1)} ← st(3) sm(3){sm(1)} ← inf(2,3), sm(2){sm(1),sm(3)}
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Finally, to capture the derivations of sm(2) that captures all derivations of sm(2) that use neither sm(1) nor sm(3) we use the rule

sm(2){sm(1),sm(3)} ← st(2).

Here, we cannot use the rule

sm(2)← inf(1,2), sm(1)

since it would make use of sm(1).
The derivations for sm(2) and sm(3) are handled analogously to those of sm(1) using the following rules:

sm(2)← st(2) sm(2)← inf(1,2), sm(1){sm(2)}

sm(1){sm(2)} ← st(1) sm(1){sm(2)} ← inf(3,1), sm(3){sm(2),sm(1)}

sm(3){sm(2),sm(1)} ← st(3)

sm(3)← st(3) sm(3)← inf(2,3), sm(2){sm(3)}

sm(2){sm(3)} ← st(2) sm(2){sm(3)} ← inf(1,2), sm(1){sm(3),sm(2)}

sm(1){sm(3),sm(2)} ← st(1)

Note that here we only used the second idea of Mantadelis and Janssens’s cycle breaking, e.g. by not creating an atom sm(1){sm(3)}
since every derivation of sm(3) that uses sm(1) also uses sm(2). The first idea does not apply here, since the derivations for sm(1)
without {sm(2)} and without {sm(3), sm(2)} differ (and similarly for the derivations of sm(2), sm(3)).

This brings us to the question of how the treewidth changes when we apply this cycle breaking. The strategy in Theorem 16 was 
intuitively to add every copy of an atom to every bag in a tree decomposition that contains that atom. If we do the same with every 
copy 𝑎𝐹 for an atom 𝑎 and 𝐹 ⊆(Π), we only get an upper-bound that is exponential in the number of atoms of Π. We may do 
slightly but not significantly better as the following two theorems show.

We first recall that a simple cycle in a directed graph 𝐺 is a (directed) path in 𝐺 from a vertex 𝑣 ∈ 𝑉 (𝐺) to 𝑣 such that the only 
vertex that is visited twice is 𝑣.

Theorem 19. Let Π be a normal answer set program of treewidth 𝑘 such that the largest strongly connected component of DEP(Π) has size 
𝑠 and any strongly connected component of DEP(Π) has at most 𝑐 directed simple cycles. Then, the treewidth of MJ(Π) is in (𝑘 ⋅ 𝑠 ⋅ 𝑐).

As in Theorem 16, we add all copies of 𝑎 to every bag that contains atom 𝑎 to obtain the desired result.

Proof. Let (𝑇 , 𝜒) be a tree decomposition of PRIM(Π). Then, (𝑇 , 𝜒 ′), where

𝜒 ′(𝑡) = 𝜒(𝑡) ∪ {𝑎𝐹 ∣ 𝐹 ⊆(Π), 𝑎𝐹 ∈(MJ(Π))}

is a tree decomposition of MJ(Π). This follows from the fact that (𝑇 , 𝜒) is a tree decomposition of the original program and since for 
every rule

𝑟𝑐 = 𝑎𝐹 ← 𝑏1𝐹1 ,… , 𝑏𝑛𝐹𝑛 ,not 𝑐1,… ,not 𝑐𝑚
in MJ(Π) there is a rule

𝑟 = 𝑎← 𝑏1,… , 𝑏𝑛,not 𝑐1,… ,not 𝑐𝑚
in Π. From the definition of 𝜒 ′ it follows that 𝑟𝑐 ∈ 𝜒 ′(𝑡) iff 𝑟 ∈ 𝜒(𝑡). Therefore, every rule is contained completely in some bag as 
required. □

This upper bound is not very helpful, since the strongly connected components of DEP(Π) can be large and can have exponentially 
many directed simple cycles in their size. Unfortunately, we cannot do much better.

Theorem 20. There is a family of programs (Π𝑛)𝑛∈ℕ such that

1. DEP(Π𝑛) has exactly one simple cycle,

2. the treewidth of Π𝑛 is bounded by a constant (independent of 𝑛),

3. the number of atoms and rules of Π𝑛 is linear in 𝑛, and
20

4. the treewidth of MJ(Π𝑛) grows linearly with 𝑛.
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Proof (Sketch). We define a family of programs as follows

Π𝑛 ={{𝑣(𝑖)}←∣ 𝑖 = 1,… , 𝑛}∪

{{𝑒(𝑖, 𝑗)}←∣ 𝑖, 𝑗 = 1,… , 𝑛, 𝑖+ 1 ≡ 𝑗 mod 𝑛}∪

{𝑖𝑛(𝑖)← 𝑣(𝑖) ∣ 𝑖 = 1,… , 𝑛}∪

{𝑖𝑛(𝑖)← 𝑒(𝑖, 𝑗), 𝑖𝑛(𝑗) ∣ 𝑖, 𝑗 = 1,… , 𝑛, 𝑖+ 1 ≡ 𝑗 mod 𝑛}.

Intuitively, Π𝑛 takes the directed graph over 𝑛 vertices with arcs

(1,2), (2,3),… , (𝑛− 1, 𝑛), (𝑛,1),

thus inducing exactly one cycle 1, 2, … , 𝑛, 1. Then, it guesses a random subset of its vertices (𝑣(𝑖)) and arcs (𝑒(𝑖, 𝑗)). All vertices are 
kept such that 𝑣(𝑖) holds or the edge of the predecessor is present 𝑒(𝑖, 𝑗) and the vertex 𝑗 was kept. In other words, the latter means 
that all vertices on maximal paths of guessed edges, whose starting vertex was guessed are also kept.

1.-3. can be easily verified. To show 4., we show that PRIM(MJ(Π𝑛)) has a graph minor such that every vertex has at least 
degree 𝑛. From this it follows that the treewidth of PRIM(MJ(Π𝑛)) is at least 𝑛 by employing standard results from the treewidth 
literature [94,73]. □

We see that the cycle breaking MJ(.) does not have desirable properties when it comes to treewidth.

7.3. The JN(.) cycle breaking [56]

We continue with the second cycle breaking JN(.) due to Janhunen and Niemelä [56]. The previous strategy was to capture partial 
derivations explicitly by introducing auxiliary atoms leading to an acyclic and answer set preserving program. The cycle breaking 
JN(.) introduced in this work instead leaves the original program untouched but adds constraints that ensure each true atom can be 
derived. For this, it makes use of level rankings [95]. Intuitively, the levels of atoms specify in which order they can be used in a 
derivation, i.e. when the level of atom 𝑎 is lower than that of atom 𝑏, then we can use a rule that has 𝑏 in the head and 𝑎 in the body 
to derive 𝑏. It was shown that it is possible to characterize the answer sets of a program in terms of Clark’s Completion in combination 
with level ranking constraints. Furthermore, by adding constraints on the level ranking we obtain a one-to-one correspondence [95].

We illustrate the idea behind JN(.) on our running example and refer the interested reader to [56] for details.

Example 14 (cont.). As already mentioned, we keep the original set of rules untouched. That is JN(Π) = Π ∪ Π′, where Π′ contains 
additional rules that specify level ranking constraints.

The level ranking constraints for Π𝑠𝑚 are as follows. As before, the guesses of the stressed and influences predicates do not require 
additional rules. More generally, atoms 𝑎 that can only be derived from rules whose positive body atoms are not in a cycle with 𝑎 do 
not require level ranking constraints.

Thus, we only need to take care of the following rules:

sm(1)← st(1) sm(1)← inf(3,1), sm(3)

sm(2)← st(2) sm(2)← inf(1,2), sm(1)

sm(3)← st(3) sm(3)← inf(2,3), sm(2)

For sm(1), this leads to the following additional rules:

𝐣𝐮𝐬𝐭(sm(1))← st(1) (15)

𝐣𝐮𝐬𝐭(sm(1))← inf(3,1), sm(3), 𝐥𝐭(sm(3), sm(1)) (16)

← sm(1),not 𝐣𝐮𝐬𝐭(sm(1)) (17)

𝐧𝐞𝐱𝐭(sm(1))← st(1) (18)

𝐧𝐞𝐱𝐭(sm(1))← inf(3,1), sm(3), 𝐬𝐮𝐜𝐜(sm(3), sm(1)) (19)

← sm(1),not 𝐧𝐞𝐱𝐭(sm(1)) (20)

Here, we introduce the following new atoms in order to model the level ranking constraints:

• 𝐣𝐮𝐬𝐭(sm(1)) means that sm(1) is justified, i.e. there is a rule that is applicable also when taking into account level rankings.
• 𝐥𝐭(sm(3), sm(1)) means that sm(3) is at a lower level than sm(1). In this case sm(3) can be used in a derivation of sm(1).
• 𝐧𝐞𝐱𝐭(sm(1)) means that sm(1) is at the next level compared to some atom that is used to derive it. i.e. there is a rule with sm(1)

in the head and an atom in the body that is exactly one level lower than that of sm(1). E.g., in (19) we derive 𝐧𝐞𝐱𝐭(sm(1)) when 
21

we can derive sm(1) from inf(3, 1) and sm(3) and the level of sm(1) is equal to 1 plus the level of sm(3).
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• 𝐬𝐮𝐜𝐜(sm(3), sm(1)) means that the level of sm(3) is exactly one level lower than the level of sm(1).

The atoms of the form 𝐣𝐮𝐬𝐭(𝑎) and 𝐧𝐞𝐱𝐭(𝑎) are defined by the given rules. For the other auxiliary atoms of the form 𝐬𝐮𝐜𝐜(𝑏, 𝑎) and 
𝐥𝐭(𝑏, 𝑎) we still need to add definitions based on the levels associated with the atoms 𝑎 and 𝑏. To model the level of an atom 𝑎, we use 
atoms that act as a binary counter that represents the level. i.e. if the SCC of the dependency graph of the program that contains 𝑎 has 
size 𝑛, we introduce atoms 𝐛𝐢𝐧(𝑎, 𝑖) that are guessed via rules {𝐛𝐢𝐧(𝑎, 𝑖)} ← for 𝑖 = 0, … , ⌈log2(𝑛)⌉. Then, for a given interpretation 
of these atoms the level of 𝑎 is given by

⌈log2(𝑛)⌉∑
𝑖=0

{
2𝑖 if 𝐛𝐢𝐧(𝑎, 𝑖) ∈ ,

0 otherwise.

Using this correspondence, we can define the atoms 𝐬𝐮𝐜𝐜(𝑏, 𝑎) and 𝐥𝐭(𝑏, 𝑎) in terms of the binary counter atoms of 𝑎 and 𝑏. Note that 
in order to obtain a faithful translation, we additionally need to ensure that the level of atoms is minimal, as otherwise it is not 
unique. For details, we refer to the original paper [56].

This brings us to the question of treewidth guarantees that we can give for JN(Π). In contrast to MJ(Π), we do not need 
information about the number of simple cycles for this.

Theorem 21. Let Π be a normal answer set program of treewidth 𝑘 such that the largest strongly connected component of DEP(Π) has size 
𝑠. Then, the treewidth of JN(Π) is in (𝑘2 + 𝑘 log2(𝑠)).

As with Theorem 16 the idea here is to take an existing tree decomposition of optimal width 𝑘 and add to each bag all auxiliary 
atoms that are related to the atoms in the bag.

We point out that the quadratic dependency on the treewidth 𝑘 can actually be avoided by modifying Janhunen and Niemelä’s 
definition of cycle breaking. For this, observe that the quadratic dependency stems from the inclusion of 𝐥𝐭(𝑏, 𝑎) and 𝐬𝐮𝐜𝐜(𝑏, 𝑎) for 
every 𝑎, 𝑏 ∈ 𝜒(𝑡) in the new bag 𝜒 ′(𝑡). If we instead define one atom 𝐥𝐭(𝑏, 𝑎, 𝑟) and 𝐬𝐮𝐜𝐜(𝑏, 𝑎, 𝑟) per rule 𝑟 such that ℎ𝑒𝑎𝑑(𝑟) = 𝑎 and 
𝑏 ∈ 𝑏𝑜𝑑𝑦(𝑟), we do not need to include all such atoms in the same bag but can handle them in different bags. It follows that there is 
a cycle breaking with a treewidth upper bound in (𝑘 log2(𝑠)). In fact, we observed that the implementation of JN(.) in LP2LP2 does 
exactly this, meaning that it comes with a treewidth upper bound of (𝑘 log2(𝑠)).

We see that JN(.) gives better guarantees than MJ(.), since 𝑘 log2(𝑠) grows slower asymptotically than 𝑘 ⋅ 𝑠 ⋅ 𝑐 even when 𝑐 = 1. 
However, it uses a binary counter for the encoding of the level ranking. While this provides very good asymptotic size guarantees, 
both in terms of the resulting program and its treewidth, binary encodings can sometimes have negative effects on the practical 
performance of SAT solvers [96] and can result in much slower performance than encodings of a larger asymptotic size.

7.4. T -unfolding

We have seen that the current cycle breakings either come with weak upper bounds on the treewidth or have good upper bounds 
but use an encoding that can lead to impairments of the practical performance of SAT solvers and therefore also of knowledge 
compilers.

We want to avoid both drawbacks as far as possible. For this, we take a closer look at dependency graphs of programs and 
introduce cbs(𝐺) a novel parameter, the component-boosted backdoor size of a digraph. Intuitively, cbs(.) (defined later in Definition 27) 
provides a more fine grained measure of directed cyclicity. More importantly, we can exploit it in T -Unfolding, our new cycle 
breaking, which leads to the following guarantees:

Theorem 22. For any factorized measure 𝜇 = ⟨Π, 𝛼, ⟩, we can construct in polynomial time in the size of Π given access to an NP-oracle 
a factorized measure 𝜇′ = ⟨Π′, 𝛼, ⟩ with an acyclic program Π′ such that

(i) for all 𝑎 ∈(Π) it holds that 𝜇(𝑎) = 𝜇′(𝑎),
(ii) the treewidth of Π′ is at most 𝑘 ⋅ cbs(DEP(Π)), where 𝑘 is the treewidth of Π, and

(iii) the size of Π′ is at most cbs(DEP(Π)) ⋅ |Π|.
Here, the increase of the treewidth and the program is bounded by cbs(DEP(Π)). Thus, this factor only depends on the dependency 

graph of Π and its cyclicity, rather than the number of atoms in the program or the size of the largest SCC of cbs(DEP(Π)).
As the name says, T -Unfolding is related to another approach for AASC called T -compilation [39]. Intuitively, the idea of 

T -compilation is to capture the derivations of atoms by iteratively compiling SDDs that are increasingly precise approximations 
thereof. For this, we take at each step all rules 𝑟1, … , 𝑟𝑚 in Π such that ℎ𝑒𝑎𝑑(𝑟𝑖) = 𝑎 for some atom 𝑎 ∈(Π). Then, we first conjoin 
the SDDs that represent the derivations of the body atoms of each rule 𝑟𝑖. By disjoining the resulting SDDs for each rule 𝑟𝑖, we get a 
better approximation of the derivations of 𝑎.

We use a similar idea to iteratively capture increasingly more derivations of atoms, but in a different way. Namely, we introduce 
22

at each step a new atom 𝑎(𝑖) that represents the set of derivations of 𝑎 that are currently captured. Intuitively, these new atoms 𝑎(𝑖) are 



Artificial Intelligence 330 (2024) 104109T. Eiter, M. Hecher and R. Kiesel

Algorithm 1 T -UNFOLD(Π, 𝑠).
Input A program Π and an unfolding sequence 𝑠 ∈(Π)∗ .
Output An acyclic program Π′ .

1: last = {𝑎 ↦ ⊥ ∣ 𝑎 ∈(Π)}
2: cnt = {𝑎 ↦ 0 ∣ 𝑎 ∈(Π)}
3: Π′ = {𝑟 ∈Π, 𝐻(𝑟) = ⊥}
4: for 𝑖 = 1, … , len(𝑠) do

5: if ISLASTOCCURRENCE(𝑠𝑖, 𝑖, 𝑠) then

6: head = 𝑠𝑖
7: else

8: head = 𝑠cnt(𝑠𝑖 )+1
𝑖

9: for 𝑟 ∈Π, 𝑠𝑖 =𝐻(𝑟) do

10: 𝐵+
𝑛𝑒𝑤

= {last(𝑏) ∣ 𝑏 ∈ 𝐵+(𝑟)}
11: Π′ = Π′ ∪ {head ←𝐵+

𝑛𝑒𝑤
, 𝐵−(𝑟)}

12: last(𝑠𝑖) = head
13: cnt(𝑠𝑖) = cnt(𝑠𝑖) + 1
14: return Π′

similar to the atoms 𝑎𝐹 introduced by Mantadelis and Janssens’s cycle breaking, since both capture a subset of the derivations of 𝑎. 
However, the captured subsets of derivations are different, which allows us to obtain better theoretical guarantees for T -Unfolding.

T -Unfolding, which takes as input a program Π and an unfolding sequence 𝑠 ∈ (Π)∗, which is a list of atoms 𝑠1… 𝑠𝑛, with 
𝑠𝑖 ∈(Π), is described in Algorithm 1. Intuitively, where the immediate consequence operator T [97] checks if an atom 𝑎 follows 
from previously derived atoms, T -Unfolding introduces copies of all rules that derive 𝑎 from previously considered atoms. For this, 
we iterate over the unfolding sequence 𝑠 = 𝑠1… 𝑠𝑛, considering 𝑠𝑖 at the 𝑖th step (line 4). As the head atom of the rule-copies we 
introduce a new copy 𝑠𝑐𝑛𝑡(𝑠𝑖)+1

𝑖
or take the original atom 𝑠𝑖 depending on whether 𝑠𝑖 occurs again in 𝑠𝑖+1… 𝑠𝑛 (see lines 5-8). The 

positive body atoms are replaced by the last copy made of them (line 10) and the negative atoms in 𝐵−(𝑟) are left as they are. After 
copying all rules with 𝑠𝑖 in the head, we update the last copy of 𝑠𝑖 and increase the counter storing the number of copies (lines 12, 
13).

We consider the effect of T -Unfolding on the program from our running example.

Example 15 (cont’d). First, recall that choice constraints {𝑎} ← are a shorthand for 𝑎 ← not 𝑛𝑎 and 𝑛𝑎 ← not 𝑎. We compute T -
UNFOLD(Π𝑠𝑚, 𝑠) using the unfolding sequence

𝑠 = 𝑠𝑔𝑢𝑒𝑠𝑠𝑠𝑠𝑚𝑜𝑘𝑒𝑠

𝑠𝑔𝑢𝑒𝑠𝑠 = st(1)nst(1)…st(3)nst(3)inf(3,1)ninf(3,1)…inf(2,3)ninf(2,3)

𝑠𝑠𝑚𝑜𝑘𝑒𝑠 = sm(1)sm(2)sm(3)sm(1)sm(2)

and obtain:

{st(1)}← {st(2)}← {st(3)}←

{inf(3,1)}← {inf(1,2)}← {inf(2,3)}←

sm(1)1 ← st(1) sm(1)1 ← inf(3,1),⊥

sm(2)1 ← st(2) sm(2)1 ← inf(1,2), sm(1)1

sm(3) ← st(3) sm(3) ← inf(2,3), sm(2)1

sm(1) ← st(1) sm(1) ← inf(3,1), sm(3)

sm(2) ← st(2) sm(2) ← inf(1,2), sm(1)

We observe that T -UNFOLD(., 𝑠) is faithful for Π𝑠𝑚.

The output of T -UNFOLD(Π, 𝑠) is always an acyclic program, however, the faithfulness for Π depends on 𝑠. To ensure that T -
UNFOLD(., 𝑠) is faithful, it is enough to iterate over all variables 𝑛 = |(Π)| +1 times, since every derivation in Π can only take 𝑛 steps. 
However, as we have seen in the previous example, it can be sufficient to use much fewer steps. This is because the number of times 
a variable needs to be considered in an unfolding sequence depends on the positive dependencies involving it: e.g. st(𝑖), 𝑖 = 1, … , 3
does not positively depend on any variable and can thus be considered once before all other variables and never again afterwards.

We give a sufficient condition for faithfulness. Notably, our condition abstracts away the actual program Π and is based on a 
structural property of the digraph unfolding of DEP(Π).

Definition 23 (Digraph Unfolding). Let 𝐺 be a digraph and let 𝑠 ∈ 𝑉 (𝐺)∗ be an unfolding sequence. Let cnt(𝑎, 𝑠) = |{𝑗 ∣ 𝑠𝑗 = 𝑎}| be 
the number of occurrences of 𝑎 in the unfolding sequence 𝑠, then the unfolding UF(𝐺, 𝑠) of 𝐺 with respect to 𝑠 is the digraph 𝑈 such 
23

that
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sm(1)1 sm(2)1 sm(3)

sm(1) sm(2)

st(1) st(2) st(3)

inf(3,1) inf(1,2) inf(2,3)

Fig. 5. Dependency Graph of T -UNFOLD(Π𝑠𝑚, 𝑠).

(i) 𝑉 (𝑈 ) = {𝑎𝑖 ∣ 1 ≤ 𝑖 ≤ cnt(𝑎, 𝑠) }, and
(ii) (𝑏𝑖, 𝑎𝑗 ) ∈𝐸(𝑈 ) if (𝑏, 𝑎) ∈𝐸(𝐺), cnt(𝑎, 𝑠1… 𝑠𝑘) = 𝑗 for some 𝑘 and cnt(𝑏, 𝑠1… 𝑠𝑘) = 𝑖 > 0.

The idea is that the digraph unfolding of DEP(Π) with respect to 𝑠 ∈(Π)∗ is the dependency graph of the unfolded program
T -UNFOLD(Π, 𝑠). Therefore, the vertices are the copies of the atoms (see lines 6,8) and there is an edge (𝑏𝑖, 𝑎𝑗 ) if 𝑏𝑖 is the last copy 
of an atom that is used to derive 𝑎𝑗 , i.e. the 𝑗-th occurrence of 𝑎 in 𝑠 (see lines 10,11). Formally:

Lemma 24. Let Π be an answer set program and 𝑠 ∈(Π)∗ be an unfolding sequence. Then, UF(DEP(Π), 𝑠) = DEP(T -UNFOLD(Π, 𝑠))
(when identifying 𝑎 with 𝑎cnt(𝑎,𝑠)).

Example 16 (cont’d). The dependency graph of T -UNFOLD(Π𝑠𝑚, 𝑠) is given in Fig. 5. It is acyclic and corresponds to UF(DEP(Π𝑠𝑚), 𝑠)
as expected.

Using Lemma 24, we can provide a sufficient condition for faithfulness.

Theorem 25. Let Π be an answer set program and 𝑠 ∈(Π)∗ be an unfolding sequence. If for every simple directed path 𝜋 = (𝑎1, … , 𝑎𝑛) in 
DEP(Π) some directed path 𝜋𝑐 = (𝑎𝑐11 , … , 𝑎𝑐𝑛𝑛 ) in UF(DEP(Π), 𝑠) exists, then T -UNFOLD(., 𝑠) is faithful for Π.

Proof (sketch). Let Π be some answer set program and let 𝑠 be an unfolding sequence that satisfies the precondition of the 
theorem. Consider  ⊆ (Π). For any interpretation 𝑒𝑥𝑡 of T -UNFOLD(Π, 𝑠) such that 𝑒𝑥𝑡 ∩(Π) = , it holds that the reduct 
T -UNFOLD(Π, 𝑠)𝑒𝑥𝑡 is equal to T -UNFOLD(Π, 𝑠) because the rules that are added in line 12 use the original negative body 𝐵−(𝑟), 
which only uses atoms from (Π). Therefore, we can consider T -UNFOLD(Π, 𝑠) , which has a unique minimal model. We see that 
if there is an answer set 𝑒𝑥𝑡 of T -UNFOLD(Π, 𝑠) that is equal to  on (Π), then it is the only such answer set.

By the same argument, we see that taking the reduct w.r.t.  and T -Unfolding commute: T -UNFOLD(Π, 𝑠) = T -UNFOLD(Π , 𝑠). 
Since  is an answer set iff it is a minimal model of the reduct Π , it remains to show that 𝑎 ∈(Π) is derivable from Π iff it is 
derivable from T -UNFOLD(Π , 𝑠). Since both programs are positive, 𝑎 is derivable iff it has an SLD tree. However, we know that 𝑠
preserves all simple paths and since the paths in every SLD tree correspond to paths in DEP(Π), we know there exists a corresponding 
SLD-tree in T -UNFOLD(Π , 𝑠). □

Note that we can prove a similar result for T -compilation, which reaches a fixed point iff T -UNFOLD(., 𝑠) is faithful for Π.
This theorem gives us a sufficient condition for an unfolding sequence 𝑠 to lead to faithfulness of T -UNFOLD(., 𝑠) with respect to 

a program Π. Notably, the condition does not depend on the actual program itself but only on its dependency graph and its unfolding 
with respect to 𝑠.

We are not only interested in faithfulness but we also care about the treewidth increase caused by unfolding. We can bound this 
increase as follows:

Lemma 26. Let Π be an answer set program with treewidth 𝑘 and 𝑠 ∈(Π)∗ be an unfolding sequence. If every variable 𝑎 ∈(Π) occurs 
at most 𝑚 times in 𝑠, then the treewidth of T -UNFOLD(Π, 𝑠) is less or equal to 𝑘 ⋅𝑚.

Proof (sketch). We know that during unfolding we introduce at most 𝑚 − 1 copies 𝑎1, … , 𝑎𝑚−1 of a variable 𝑎 ∈(Π). Now, let 
(𝑇 , 𝜒) be a tree decomposition for PRIM(Π) of width 𝑘. Then, (𝑇 , 𝜒 ′), where

𝜒 ′(𝑡) = 𝜒(𝑡) ∪ {𝑎𝑗 ∣ 1 ≤ 𝑗 ≤𝑚− 1, 𝑎 ∈ 𝜒(𝑡)}
24

is a tree decomposition of T -UNFOLD(Π, 𝑠), and |𝜒 ′(𝑡)| ≤ |𝜒(𝑡)| ⋅𝑚 ≤ 𝑘 ⋅𝑚. □
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We remark that the converse of this Lemma does not hold.
There is another relevant observation that we need to keep in mind when it comes to knowledge compilation later on. While the 

guarantee generally only gives us an exponential upper bound in terms of treewidth, we actually know that this upper bound is too 
pessimistic. Consider the following scenario: if we introduce 𝑚 copies 𝑎, 𝑎1, … , 𝑎𝑚−1 of a variable 𝑎 using T -Unfolding, then we 
have a monotonic relation between the truth values of the copies. That is, if 𝑎𝑖 is true in a stable model  of the program and 𝑗 > 𝑖, 
then also 𝑎𝑗 must be true in . Thus, restricted to the variables 𝑎, 𝑎1, … , 𝑎𝑚−1, there are actually at most 𝑚 different assignments that 
can be extended to a stable model. It follows that for the variables in a bag 𝜒 ′(𝑡) of the tree decomposition that we constructed in 
the proof of Lemma 26 only 𝑚𝑘 = 2𝑘⋅log2(𝑚) different assignments can be extended to a stable model. We thus believe that knowledge 
compilation has better performance than Theorem 36 guarantees.

Motivated by Lemma 26 and Theorem 25, we say that an unfolding sequence 𝑠 is a path-preserving 𝑚-unfolding sequence (for 
digraph 𝐺), if for every simple (directed) path 𝜋 = (𝑎1, … , 𝑎𝑛) in 𝐺 there is a (directed) path 𝜋𝑐 = (𝑎𝑐11 , … , 𝑎𝑐𝑛𝑛 ) in UF(𝐺, 𝑠) and every 
variable 𝑎 ∈ 𝑉 (𝐺) occurs at most 𝑚 times in 𝑠. Naturally, we are interested in path-preserving 𝑚-unfolding sequences for small 𝑚.

Since also Lemma 26 does not access the actual program itself but only its dependency graph and the unfolding sequence, we can 
abstract away the program and search for path-preserving 𝑚 unfolding sequences on digraphs directly. As we do not want to do a 
blind search, we instead consider backdoors [60] and generalize them to component-boosted backdoors into acyclicity because we can 
give guarantees for the maximum necessary 𝑚 based on them. Backdoors have already been considered in the context of ASP [60]. 
Usually, the notion of a backdoor for a digraph 𝐺 is a vertex set 𝑆 , such that 𝐺 ⧵ 𝑆 satisfies some desirable property. For us this 
property is (directed or undirected) acyclicity of 𝐺 ⧵𝑆 , since we can find a suitable unfolding sequence when given 𝑆 in either case.

Both the backdoor size of a digraph and its generalization to component-boosted backdoor size intuitively measure the cyclicity 
of the given digraph by asking how many vertices need to be “cut out” in order for the remaining digraph to be (almost) acyclic. 
When a parameter value is low, an unfolding sequence 𝑠 exists such that T -UNFOLD(., 𝑠) is faithful and every variable occurs only 
a few times in 𝑠.

Definition 27 (Backdoor, Component-boosted Backdoor). Let 𝐺 be a digraph. Then, bs(𝐺), the backdoor size of 𝐺 is

min{|𝑆| ∣ 𝑆 ⊆ 𝑉 (𝐺),𝐺 ⧵ 𝑆 is a polyforest or acyclic},

where a polyforest is graph that has no undirected cycles.
Furthermore, cbs(𝐺), the component-boosted backdoor size of 𝐺, is

(i) 1, if 𝐺 is acyclic (which includes 𝑉 (𝐺) = ∅),
(ii) 2, if 𝐺 is a polytree, i.e. a connected polyforest,

(iii) max{cbs(𝐶) ∣ 𝐶 ∈ SCC(𝐺)}, if 𝐺 is cyclic but not strongly connected,
(iv) min{cbs(𝐺 ⧵𝑆) ⋅ (|𝑆| + 1) ∣ 𝑆 ⊆ 𝑉 (𝐺), 𝑆 ≠ ∅} otherwise.

As the name suggests, 𝑐𝑏𝑠 adds component-boosting to a specific variant of backdoors. A related parameter is elimination dis-
tance [98]. However, for elimination distance the removal set 𝑆 in (iv) may only contain 1 element and results in cost cbs(𝐺 ⧵𝑆) +1. 
Thus, the elimination distance to acyclic digraphs and polytrees is bounded iff cbs(.) is bounded, but naïvely, we can only assert that 
if the elimination distance is 𝑘 then cbs(.) is less or equal to 2𝑘.

The main difference compared to the backdoor size is that component-boosted backdoor size additionally takes into account that 
𝐺 ⧵ 𝑆 may consist of separate SCCs that can be handled recursively. We can therefore bound cbs(.) in terms of bs(.) as follows:

Lemma 28. Let 𝐺 be a digraph. Then, cbs(𝐺) ≤ 2 ⋅ (bs(𝐺) + 1).

Proof. If 𝐺 is acyclic, then

cbs(𝐺) = 1 ≤ 2 = 2 ⋅ (0 + 1).

If 𝐺 is a polytree, then

cbs(𝐺) = 2 ≤ 2 = 2 ⋅ (0 + 1).

If 𝐺 is cyclic and strongly connected, let 𝑆∗ be a set of vertices such that |𝑆∗| = bs(𝐺) and 𝐺 ⧵𝑆∗ is a polyforest or acyclic. Then

cbs(𝐺) = min{cbs(𝐺 ⧵ 𝑆) ⋅ (|𝑆|+ 1) ∣ 𝑆 ⊆ 𝑉 (𝐺), 𝑆 ≠ ∅}

≤ cbs(𝐺 ⧵𝑆∗) ⋅ (|𝑆∗|+ 1)

≤ 2 ⋅ (bs(𝐺) + 1).

If 𝐺 is cyclic but not strongly connected, then
25

cbs(𝐺) = max{cbs(𝐶) ∣ 𝐶 ∈ SCC(𝐺)}.
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Fig. 6. A polytree 𝐺 with root 𝑣1 (left) and the unfolding UF(𝐺,𝑠𝑝𝑜𝑠𝑡𝑠𝑝𝑟𝑒), where 𝑠𝑝𝑜𝑠𝑡 = 𝑣4𝑣5𝑣2𝑣3𝑣1, 𝑠𝑝𝑟𝑒 = 𝑣1𝑣3𝑣2𝑣5𝑣4 (right).

Let 𝑆∗ be a set of vertices such that |𝑆∗| = bs(𝐺) and 𝐺 ⧵ 𝑆∗ is a polyforest or acyclic. For each 𝐶 ∈ SCC(𝐺) it holds that 𝐶 ⧵ 𝑆∗ is 
a polyforest of acyclic, thus bs(𝐶) ≤ 𝑏𝑠𝐺. From the fact that each 𝐶 is either acyclic, a polytree, or cyclic and strongly connected, it 
follows by the previous three cases that cbs(𝐶) ≤ 2 ⋅ (bs(𝐶) + 1) ≤ 2 ⋅ (bs(𝐺) + 1). □

Example 17 (cont’d). Consider the dependency graph DEP(Π𝑠𝑚) in Fig. 11a. It is strongly connected and not a polytree, therefore 
cbs(DEP(Π𝑠𝑚)) is given by case (iv)

min{cbs(DEP(Π𝑠𝑚) ⧵𝑆)(|𝑆|+ 1) ∣ 𝑆 ⊆ 𝑉 (DEP(Π𝑠𝑚)), 𝑆 ≠ ∅}.

We see that if we take away any 𝑆𝑖 = {sm(𝑖)}, 𝑖 = 1, … , 3, then DEP(Π𝑠𝑚) ⧵ 𝑆𝑖 is acyclic. It follows that cbs(DEP(Π𝑠𝑚)) ≤
cbs(DEP(Π𝑠𝑚) ⧵ 𝑆𝑖) ⋅ (|𝑆𝑖| + 1) = 2. Since we need to remove at least one element, this is also a lower bound and hence 
cbs(DEP(Π𝑠𝑚)) = 2.

In this example the upper bound given by the backdoor size and component-boosted backdoor size align. However, for larger, 
more complex graphs 𝑐𝑏𝑠(.) can be much smaller than the upper bound guaranteed by backdoor size.

With the definition of the component-boosted backdoor size in mind, we state the main result of this section.

Theorem 22. For any factorized measure 𝜇 = ⟨Π, 𝛼, ⟩, we can construct in polynomial time in the size of Π given access to an NP-oracle 
a factorized measure 𝜇′ = ⟨Π′, 𝛼, ⟩ with an acyclic program Π′ such that

(i) for all 𝑎 ∈(Π) it holds that 𝜇(𝑎) = 𝜇′(𝑎),
(ii) the treewidth of Π′ is at most 𝑘 ⋅ cbs(DEP(Π)), where 𝑘 is the treewidth of Π, and

(iii) the size of Π′ is at most cbs(DEP(Π)) ⋅ |Π|.
Of course it is somewhat undesirable that we need access to an NP-oracle for the construction. However, this is unavoidable, 

since computing cbs(.) is NP-hard.

Theorem 29. The problem of checking whether cbs(𝐺) ≤ 𝑘 given a digraph 𝐺 and 𝑘 ∈ ℕ in the input is NP-complete.

Proof (Sketch). NP-membership is easy to see by a guess and check algorithm.
For NP-hardness, we use a reduction from SAT by constructing a digraph 𝐺 such that its backdoor size is 𝑘 iff the SAT instance 

is solvable. Then, we modify the digraph in such a manner that backdoor size and component-boosted backdoor size are equal to 
obtain the desired result. □

We will see later on that luckily the NP-hardness does not cause any problems in practice.
To prove Theorem 22, we show that every digraph 𝐺 has some path-preserving cbs(𝐺)-unfolding sequence, using structural 

induction on the definition of cbs(.).

Lemma 30. Let 𝐺 be an acyclic digraph. Then, there exists a path-preserving 1-unfolding sequence. For case (i), we obtain:

Proof. Let 𝑠 be an unfolding sequence where every 𝑎 ∈ 𝑉 (𝐺) occurs exactly once and which obeys a topological ordering of 𝐺. 
Then, UF(𝐺, 𝑠) is equal to 𝐺 (modulo variable renaming) and therefore path-preserving. □

Next, we consider case (ii), where 𝐺 is a polytree.
26

Lemma 31. For every polytree 𝐺 there exists a path-preserving 2-unfolding sequence 𝑠.
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UF(𝐺 ⧵ 𝑆, 𝑠𝑟)

𝜋1

𝑆

𝑎1

…

…

…

𝜋|𝑆|
UF(𝐺 ⧵ 𝑆, 𝑠𝑟)

𝑎|𝑆|
𝑆

𝜋|𝑆|+1
UF(𝐺 ⧵ 𝑆, 𝑠𝑟)

Fig. 7. Sketch of UF(𝐺,𝑠) and a path 𝜋 through it, for the second recursive case, as in the proof of Lemma 33.

Proof. As 𝐺 is a polytree, the corresponding undirected graph 𝐺𝑡𝑟𝑒𝑒 is a tree with some arbitrarily chosen root. Let 𝑠𝑝𝑜𝑠𝑡, 𝑠𝑝𝑟𝑒 ∈ 𝑉 (𝐺)∗
be sequences such that every vertex occurs in 𝑠𝑝𝑜𝑠𝑡 and 𝑠𝑝𝑟𝑒 after all its descendants and ancestors in 𝐺𝑡𝑟𝑒𝑒, respectively. Then, the 
concatenation 𝑠𝑝𝑜𝑠𝑡𝑠𝑝𝑟𝑒 of 𝑠𝑝𝑜𝑠𝑡 and 𝑠𝑝𝑟𝑒, is a path-preserving 2-unfolding sequence of 𝐺, as depicted in Fig. 6. □

In case (iii), which is the first recursive one, we assume that 𝐺 is cyclic but not strongly connected. Here, we divide the problem 
into one subproblem for each SCC of 𝐺 and obtain a global solution by combining the solutions for the subproblems.

Lemma 32. Let 𝐺 be a cyclic but not strongly connected digraph, and for each 𝐶 ∈ SCC(𝐺) let 𝑠𝐶 ∈ 𝑉 (𝐶)∗ be a path-preserving cbs(𝐶)-
unfolding sequence for 𝐶 . Then, some path-preserving cbs(𝐺) =max𝐶∈SCC(𝐺) cbs(𝐶)-unfolding sequence for 𝐺 exists.

Proof. Let 𝐺𝑐𝑜𝑛 be the condensation of 𝐺, i.e. 𝑉 (𝐺𝑐𝑜𝑛) = SCC(𝐺) and (𝐶, 𝐶 ′) ∈𝐸(𝐺𝑐𝑜𝑛) if there exist 𝑣 ∈ 𝑉 (𝐶), 𝑣′ ∈ 𝑉 (𝐶 ′) such that 
(𝑣, 𝑣′) ∈ 𝐸(𝐺). Since 𝐺𝑐𝑜𝑛 is acyclic we can assume a topological order (𝐶1, … , 𝐶𝑛) of 𝐺𝑐𝑜𝑛 to be given. Consider, 𝑠 = 𝑠𝐶1

… 𝑠𝐶𝑛 , the 
concatenation of the unfolding sequences for the SCCs in the chosen topological order. It is a path-preserving unfolding sequence 
for 𝐺 since for every directed simple path in 𝐺 that contains 𝑎, 𝑏 ∈ 𝑉 (𝐺) it holds that if 𝑎 ∈ 𝐶𝑖 and 𝑏 ∈ 𝐶𝑗 such that 𝑖 < 𝑗, then 𝑎
must occur after 𝑏. Therefore, as the sequences 𝑠𝐶𝑖 per component are path-preserving, we know that the whole sequence is path-
preserving. Furthermore, since 𝑉 (𝐶𝑖) ∩ 𝑉 (𝐶𝑗 ) = ∅ for 𝑖 ≠ 𝑗 and 𝑠𝐶𝑖 ∈ 𝑉 (𝐶𝑖)∗, it is clear that the maximum number of times a vertex 
𝑎 ∈ 𝑉 (𝐺) occurs in 𝑠 is bounded by max𝐶∈SCC(𝐺) cbs(𝐶) = cbs(𝐺). □

Last but not least, we consider case (iv), the second recursive case. Here, 𝐺 is strongly connected but not a polytree. We remove 
a set 𝑆 ⊆ 𝑉 (𝐺) of “problematic” vertices such that the component-boosted backdoor size of the rest, i.e. cbs(𝐺 ⧵ 𝑆), is small and 
handle 𝑆 and 𝐺 ⧵𝑆 separately.

Lemma 33. Let 𝐺 be a strongly connected digraph, 𝑆 ⊆ 𝑉 (𝐺) and 𝑠𝑟 ∈ 𝑉 (𝐺 ⧵ 𝑆)∗ a path-preserving 𝑚𝑟-unfolding sequence. Then, there 
exists a path-preserving 𝑚𝑟(|𝑆| + 1)-unfolding sequence for 𝐺.

Proof. Let 𝑆 = {𝑎1, … , 𝑎|𝑆|}. We define 𝑠𝑆 = 𝑎1… 𝑎|𝑆| and 𝑠 = (𝑠𝑟𝑠𝑆 )|𝑆|𝑠𝑟, i.e. 𝑠 ∈ 𝑉 (𝐺)∗ is the sequence obtained by iterating |𝑆|
times over the sequence 𝑠𝑟𝑠𝑆 and finally concatenating 𝑠𝑟. Then, 𝑠 is an 𝑚𝑟(|𝑆| +1)-unfolding sequence, as every 𝑎 ∈ 𝑆 occurs exactly |𝑆| ≤𝑚𝑟(|𝑆| + 1) times, and every 𝑎 ∈ 𝑉 (𝐺 ⧵ 𝑆) occurs at most 𝑚𝑟 times in 𝑠𝑟 and at most 𝑚𝑟(|𝑆| + 1) times in general.

Furthermore, 𝑠 is path-preserving: every simple directed path 𝜋 in 𝐺 uses 𝑘 ≤ |𝑆| vertices from 𝑆 and thus 𝜋 = 𝜋1, 𝑎𝑖1 , 𝜋2, 𝑎𝑖2 , … ,
𝑎𝑖𝑘 , 𝜋𝑘, where 𝜋𝑖 is a simple directed path in 𝐺 ⧵𝑆 . Consider Fig. 7, which sketches UF(𝐺, 𝑠) and the path 𝜋. As 𝑠𝑟 is path-preserving 
for 𝐺 ⧵𝑆 , we know that we can walk 𝜋1 in UF(𝐺 ⧵ 𝑆, 𝑠𝑟), then go to 𝑎1 ∈ 𝑆 , walk the path 𝜋2 in UF(𝐺 ⧵𝑆, 𝑠𝑟) and so on. □

8. Implementation

In the previous sections, we discussed the general pipeline for solving AASC problems, and we considered for different aspects 
such as the knowledge compilation, the cycle breaking and the Clark Completion which options are available and which theoretical 
guarantees we can give for them. In the following, these theoretical considerations will serve as a basis for the choices we make 
when implementing our approach to solving AASC problems in our open-source solver aspmc.4

As other available solvers, aspmc follows the general pipeline given in Fig. 3. In contrast to some of them, aspmc does not skip 
any of its steps. In the following, we discuss the implementation aspects of each of the steps both technically and in relation to the 
theoretical results discussed above.

8.1. Input specification

For the inputs we do not allow general algebraic measures but restrict ourselves to the fragment of programs that can be specified 
similarly to ProbLog syntax. From an implementation perspective, it would also be easily possible to accept algebraic measures 
in their general form, however we did not deem this necessary, since Theorem 7 shows that this is not a restriction in terms of 

4 aspmc can be installed as a python package from https://pypi .org /project /aspmc/ for easy use and its source code can be downloaded from https://github .com /
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raki123 /aspmc/ for development purposes.

https://pypi.org/project/aspmc/
https://github.com/raki123/aspmc/
https://github.com/raki123/aspmc/
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expressivity. We chose this syntax, since it already well-known from ProbLog and allows ProbLog, aspmc, and PITA to be used 
interchangeably.

More formally, we allow programs consisting of rules that are either standard normal ASP rules, or rules of the form

𝑟1 ∶∶ 𝑎1;…; 𝑟𝑘 ∶∶ 𝑎𝑘 ∶ ∓ 𝑏1,… , 𝑏𝑛,not 𝑐1,… ,not 𝑐𝑚. (21)

Here, 𝑟1, … , 𝑟𝑘 are semiring values over the specified semiring and all 𝑎𝑖, 𝑏𝑗 , and 𝑐𝑙 are atoms. By default, the probabilistic semiring 
 is assumed, other semirings can be given as an input argument, specifying either one of the standard semirings that is included in
aspmc or a non-standard semiring that is specified as a python module, which is dynamically loaded based in its name.

A rule of the form (21) specifies that if the body is satisfied, then we can derive up to one of the atoms 𝑎1, … , 𝑎𝑘. If we use the 
rule to derive 𝑎𝑖, then the rule contributes a factor of 𝑟𝑖 to the weight of the model. If the body of the rule is satisfied but none of the 
atoms 𝑎1, … , 𝑎𝑘 are derived by it, then the rule contributes a factor of negate(𝑟1⊕… ⊕𝑟𝑘) to the weight of the model. Here, negate
is a function defined by the semiring module. E.g., for the probabilistic semiring it makes sense to define negate(𝑝) as 1 − 𝑝 in order 
to ensure that the overall probability mass defined by a program is 1. Another generally applicable option is to specify negate(𝑟) as 
𝑒⊕ to ensure that exactly one of the 𝑎𝑖 is derived if the body of the rule is satisfied, since otherwise the weight of the corresponding 
model is zero.

Furthermore, atom queries are specified immediately within the program via statements of the form

𝑞𝑢𝑒𝑟𝑦(𝑎),

for an atom 𝑎. A program can contain multiple such statements, which then are each evaluated as the weight of all answer sets such 
that 𝑎 holds.

We want to stress that the rule only contributes a factor 𝑟𝑖, if it was used to derive 𝑎𝑖, rather than if its body is satisfied and 𝑎𝑖 is 
true. This has important implications, such as the following:

Example 18 (Two Possible Derivations). Consider the following program over the probability semiring  :

0.5 ∶∶ 𝑎. 0.5 ∶∶ 𝑎. 𝑞𝑢𝑒𝑟𝑦(𝑎).

This program specifies that there are two independent ways to derive 𝑎 and we are interested in the weight of the answer sets such 
that 𝑎 holds. We can derive 𝑎 either only via the first rule, only via the second rule, via both rules or not at all. Each of these 
possibilities leads to an answer set with probability 0.25. Thus, the result of the query for 𝑎 is 0.75. Clearly, the program

0.5 ∶∶ 𝑎. 𝑞𝑢𝑒𝑟𝑦(𝑎),

would instead only lead to a result of 0.5.

This behavior may seem unintuitive at first glance, however, it makes much more sense when we interpret rules of the form (21)
as a possible reason that can cause 𝑎𝑖. If the rule always contributed a weight 𝑟𝑖, when 𝑎𝑖 and its body hold, then the program

𝑎. 0.5 ∶∶ 𝑎. 𝑞𝑢𝑒𝑟𝑦(𝑎),

would lead to a query result of 0.5 although clearly 𝑎 has a 100% probability of being true in a randomly selected answer set. We 
stress that in aspmc the above program returns a 100% probability of 𝑎 being true, as expected.

We allow non-ground programs, which may even have variables in the place of semiring values but do not go into the details 
here for simplicity.

In order to parse programs that are specified using the above syntax, we wrote our own parser in python using the parser 
generator lark [99], which is able to generate an LL parser on the fly given its specification as a grammar. The generation on the fly 
is important, as we need to incorporate parsing of semiring values dynamically based on the semiring we use.

8.2. Grounding & simplification

After parsing the possibly non-ground input specification, we need to ground the program in a first step. There exists a variety of 
grounding engines for programs already, for example, in ProbLog or clingo. Neither of them accept exactly the same kind of programs 
as we do, nevertheless, we were still able to exploit the grounding capabilities of clingo, instead of reinventing the wheel. For this, 
we restructure the parsed input as follows.

Standard ASP rules are kept as they are. A rule of the form

𝑟 = 𝑟1 ∶∶ 𝑎1;…; 𝑟𝑘 ∶∶ 𝑎𝑘 ∶ ∓ 𝑏1,… , 𝑏𝑛,not 𝑐1,… ,not 𝑐𝑚,

is transformed into the set of rules

𝑔𝑢𝑒𝑠𝑠(𝑟) ∶ ∓ 𝑏1,… , 𝑏𝑛,not 𝑐1,… ,not 𝑐𝑚.
28

𝑎1 ∶ ∓ 𝑏1,… , 𝑏𝑛,not 𝑐1,… ,not 𝑐𝑚, alg(𝑖𝑑,1,var(𝑟), 𝑎1, 𝑟1).
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…

𝑎𝑘 ∶ ∓ 𝑏1,… , 𝑏𝑛,not 𝑐1,… ,not 𝑐𝑚, alg(𝑖𝑑, 𝑘,var(𝑟), 𝑎𝑘, 𝑟𝑘),

where 𝑔𝑢𝑒𝑠𝑠(𝑟) is

alg(𝑖𝑑,1,var(𝑟), 𝑎1, 𝑟1);…; alg(𝑖𝑑, 𝑘,var(𝑟), 𝑎𝑘, 𝑟𝑘); alg(𝑖𝑑, 𝑘+ 1,var(𝑟), 𝑛, 𝑛).

Here, an atom of the form alg(𝑖𝑑, 𝑖, var(𝑟), 𝑎𝑖, 𝑟𝑖) for 𝑖 = 1, … , 𝑘 is true, when the rule with id 𝑖𝑑 is used to derive the atom 𝑎𝑖 with 
weight 𝑟𝑖, instantiated with the variables in var(𝑟). Thus, the first rule states for each of the instantiations of the variables var(𝑟)
of 𝑟 that if the body holds, then we may derive one of the atoms 𝑎𝑖. If alg(𝑖𝑑, 𝑘 + 1, var(𝑟), 𝑛, 𝑛) is true, then none of the atoms are 
supposed to be derived.

The remaining rules then implement that if the body holds and the atom alg(𝑖𝑑, 𝑖, var(𝑟), 𝑎𝑖, 𝑟𝑖) is set to true, then 𝑎𝑖 is derived.
This rewriting is similar to the one that the ProbLog applies to rules of the form (21). If the semiring is the probabilistic semiring, 

we apply some further optimizations of the ProbLog solver in addition. Since they are described in detail in Appendix B of [100], 
we do not discuss them here and only note that they seem to be beneficial for performance but do not trivially generalize to other 
semirings.

Notably, clingo not only grounds programs but performs basic simplifications, such as removing atoms that are stated as facts 
from the bodies of rules. Apart from this, the only additional simplification that we perform after grounding is that we omit rules 
whose head atom occurs positively in the body. There are other simplifications that one could apply, such as the restriction of the 
program to its relevant ground part or the replacement of algebraic atoms 𝑎 with weight 𝑒⊕ by the constraints ∶ ∓ 𝑎.. The former 
has so far only been considered for probabilistic reasoning and is implemented in ProbLog. We did not implement the restriction to 
the relevant ground part yet, however if this capability is desired, ProbLog can be used as a preprocessor. We leave generalized and 
possibly extended preprocessing for future work.

8.3. Cycle breaking

Recall that the three approaches to eliminate cycles that we considered in Section 7 have the following properties:

• MJ(.) is implemented in ProbLog, has a treewidth upper bound of (𝑘 ⋅ 𝑠 ⋅ 𝑐), where 𝑘 is the original treewidth 𝑠 is the size of the 
largest SCC of the dependency graph and 𝑐 is the maximum number of simple cycles in an SCC of the dependency graph.

• JN(.), which has been considered for ProbLog [36] (an implementation is available online [101]) comes instead with a treewidth 
upper bound of (𝑘 log(𝑠)).

• Our T -Unfolding algorithm has a treewidth upper bound of (𝑘 ⋅ cbs(DEP(Π))), where cbs(.) is a structural parameter that 
intuitively measures the cyclicity of the dependency graph DEP(Π) of the program Π.

Judging by the treewidth guarantee alone, it suggests itself to use JN(.), since its treewidth increase scales logarithmically with the 
size of the largest SCC. Thus, unless the program dependency graph DEP(Π) is rather sparse, we expect that cbs(DEP(Π)) supersedes 
log2(𝑠). However, as we mentioned above, JN(.) uses binary counters in the encoding, which as well-known may impact negatively 
the performance during solving.

Furthermore, Fierens et al.’s [36] comparison of MJ(.) and JN(.) provides additional interesting aspects to take into consideration. 
They found that on small programs MJ(.) produces significantly smaller CNFs than JN(.), while JN(.) leads to much smaller CNFs 
on larger programs. This suggests that MJ(.) allows for faster inference on small programs. Furthermore, they found that only very 
few programs seem to be large enough to make JN(.) profitable, meaning that knowledge compilation is feasible and JN(.) yields 
better results. While the state of the art in knowledge compilation has seen significant improvements since 2011, we expect that both 
binary counters and significant size differences still will play a role in addition to treewidth.

This brings us to the T -Unfolding approach. It is an improvement upon MJ(.) both in terms of the size of the encoding, which is 
at most quadratic with a small constant factor, and in terms of the treewidth, which is at most linear in the size of the largest SCC 𝑆
even if 𝑆 is fully connected. We thus expect that T -Unfolding significantly outperforms both MJ(.) and JN(.), even when using the 
current state of the art knowledge compilers.

In order to perform T -Unfolding by Algorithm 1, we need a path preserving unfolding sequence 𝑠 though. We have shown that 
based on a small component-boosted backdoor, which is guaranteed to exist if cbs(.) is small, we can compute a good such sequence 
𝑠. However, computing this parameter exactly is NP-hard (see Theorem 29). While the backdoor size is also NP-hard to compute, 
there exist efficient solvers for it. Thus, we restrict ourselves to computing a (small) backdoor into polytrees for every SCC 𝑆 of 
DEP(Π), i.e. a subset 𝐵 ⊂ 𝑆 such that no undirected cycle in DEP(Π) lies in 𝑆 ⧵𝐵.

Note that a backdoor into polytrees is a Feedback Vertex Set (FVS). Computing a FVS is a well studied problem and there are many 
open source solvers available due to the 2016 edition of PACE [102]. We use the implementation [63] of Kiljan and Pilipczuk [103], 
who re-implemented many of the participating algorithms under a permissive license. We run the exact version of the solver using 
a fixed timeout of 30 seconds to try to obtain an optimal backdoor 𝐵. If the answer is not produced within the timeout, we run the 
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heuristic version of the solver to obtain an approximation quickly.
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8.4. Clark’s completion

After performing T -Unfolding, the resulting program is tight, i.e. its dependency graph is acyclic. Therefore, we can apply Clark’s 
Completion on it to receive a CNF that we can then compile in the next step. Here, we again have three possible options:

• Clark(.), which does not admit any treewidth guarantees;
• PClark(.), i.e. Hecher’s primal tree decomposition guidance, which admits a treewidth guarantee of 3(𝑘 + 1) if 𝑘 is the treewidth 

of the tree decomposition of PRIM(Π) in use;
• IClark(.), i.e. our novel incidence tree decomposition guidance, which admits a treewidth guarantee of 3(𝑘 + 1) if 𝑘 is the 

treewidth of the used tree decomposition of INC(Π) in use.

Based on the treewidth guarantees alone, it is suggestive to always use IClark(.). However, while it has the best worst case guarantees, 
it is not guaranteed that the obtained CNF always has the lowest treewidth out of the three. While the resulting treewidth cannot 
become much higher than that of a CNF obtained by Clark(.) or PClark(.), it may be as high or slightly higher and lead to a slightly 
larger CNF.

We therefore implemented all three versions of Clark’s Completion and allow for a selection via input parameters, which we will 
use to compare the different strategies below.

In order to apply the tree decomposition guided versions PClark(.) and IClark(.) of Clark’s Completion, we need access to tree 
decompositions of PRIM(Π) and INC(Π). Generating optimal tree decompositions is expensive but there exist several good heuristic 
solvers such as flow-cutter [104], tamaki-2017 [105], and htd [106]. We use flow-cutter since it performed very well in the PACE 
competition of 2017 regarding the heuristic computation of treewidth, achieving the best average approximation ratio and the best 
maximum approximation ratio of all solvers [107]. Furthermore, it has a permissive open source license that allows for combining 
it with closed source code such as c2d (version 2.20). Whenever we generate tree decompositions, we use a given timeout from the 
input. We wait until a tree decomposition has been found and the timeout has passed, whichever happens later. Then, we use the 
best tree decomposition found. This means that on large graphs we may supersede the given timeout.

After Clark’s Completion, we extend the resulting CNF with annotations denoting the semiring in use, and the weights of literals 
over the semiring.

8.5. Knowledge compilation

For the knowledge compilation step, which we perform in an online manner, there is a wide range of tools available that compile 
to different tractable circuit representations, such as

• to BDDs, e.g., [108,44]
• to SDDs, e.g., [43], and
• to d-DNNFs, e.g., [46,53,109,45].

We focus on the compilers for d-DNNFs, as they tend to have the best worst-case guarantees in terms of treewidth. Furthermore, 
they also usually perform well on the related tasks of model counting and weighted model counting as seen in the Model Counting 
Competition 2020 [110].

More specifically, we implemented the knowledge compilation step for solvers that are recent or ranked high in the 2021 edition 
of the weighted model counting track of the Model Counting Competition 2021 [111]. We focus on this track, as we are interested 
in the performance of the actual compilation. The unweighted track could possibly have skewed results as preprocessing that is 
not applicable to weighted can lead to significant performance improvements. The solvers SHARPSAT-TD [47], d4 [53], and c2d 
[46] finished top three in the weighted model counting track, miniC2D [45] is a recent knowledge compiler, which is why we also 
included it.

Notably, whereas c2d, miniC2D, and d4 allow for knowledge compilation by default, this is not the case for SHARPSAT-TD, 
which was originally a solver conceived only for (weighted) model counting. Thus, we modified SHARPSAT-TD to enable its usage 
for knowledge compilation. This turned out to be rather easy: since SHARPSAT-TD was designed to be extensible to general semirings, 
we could exploit the idea of the arithmetic circuit semiring from Section 4.1. Specifically, in our implementation we used d-DNNF 
nodes as semiring elements and combined them in a conjunctive/disjunctive manner whenever SHARPSAT-TD multiplied/added two 
values. Not only does this lead to an algebraic circuit but to a d-DNNF, which is moreover smooth.5

Apart from SHARPSAT-TD, we also performed a minor modification in d4. Namely, by default d4 does not produce smooth d-
DNNFs, which leads to an increase in the evaluation time. For this reason, we made minor modifications to the part of the source code 
of d4 that writes d-DNNFs, to ensure their smoothness d-DNNFs. Notably, the necessary information was already present meaning 
that we could keep our modifications to a minimum.6 The source code of c2d and miniC2D were left unmodified.

5 Source code of the modified version: https://github .com /raki123 /sharpsat -td; For the original: https://github .com /Laakeri /sharpsat -td.
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6 Source code of the modified version: https://github .com /raki123 /d4; For the original: https://github .com /crillab /d4.

https://github.com/raki123/sharpsat-td
https://github.com/Laakeri/sharpsat-td
https://github.com/raki123/d4
https://github.com/crillab/d4
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The exact input arguments that we use for the different knowledge compilers can be found in Appendix C. Most settings are rather 
standard, however, we should mention that for c2d and miniC2D we supply custom dtrees and vtrees, respectively, which determine 
the order in which variables are decided during compilation.

We chose to generate custom dtrees and vtrees, since Korhonen and Järvisalo, [47] showed that the performance of c2d and 
miniC2D benefits from it. Namely, they used the fact that, for a given tree decomposition, we can generate dtrees and vtrees that 
give us a performance guarantee7 of (2𝑘 ⋅ 𝑘 ⋅ |𝐶|𝑐), where 𝑘 is the width of the tree decomposition, |𝐶| is the size of the CNF, and 𝑐
is some constant. This guarantee can be achieved by first deciding all variables in the root of the tree decomposition and proceeding 
recursively for the children [47]. Both c2d and miniC2D were shown to solve significantly more instances using this strategy than 
when using the standard settings [47]. We provide details regarding how we generate dtrees and vtrees in Appendix D, which only 
insignificantly differs from Korhonen and Järvisalo’s method. The tree decompositions used in this step are again generated using 
flow-cutter [104] using a timeout given in the input.

8.6. Evaluation

Given a (smooth) d-DNNF, the evaluation procedure is rather standard. We initialize the weights of the literals using the weight 
labels of our extended CNF format. Then, we parse the d-DNNF line by line and interpret it as an arithmetic circuit by combining the 
inputs to AND gates via multiplication and the inputs to OR gates via addition. The result we obtain at the root node of the d-DNNF 
then corresponds to the final result of our query. This step is well-known and well-understood, which is why we do not go into details 
here but refer the interested reader to [30].

The only additional comment in order regards the evaluation of non-smooth d-DNNFs as produced by miniC2D, since not all 
variables are guaranteed to occur in every branch of the d-DNNF, which can lead to wrong results during naive evaluation as 
described above. The only case in which a literal may not occur in a branch is if both values are accepted in the branch. E.g. for the 
program {𝑎} ← the empty NNF is a valid d-DNNF. If the variable 𝑎 does not occur in a branch, we need to multiply the value of the 
branch by the sum of the weights of 𝑎 and ¬𝑎. Naively, this is easily possible by tracking the assigned and unassigned variables that 
occur below each node but costly. However, given that we know the vtree that the CNF was compiled with, we can do this more 
efficiently by keeping track of which vtree node a d-DNNF node belongs to and multiplying its weight by the corresponding factor 
when we notice that variables are missing.

9. Experiments

In order to evaluate the impact of our theoretical results in practice, we performed an extensive experimental evaluation. Fur-
thermore, we compared the performance of our solver aspmc to state of the art solvers on probabilistic inference instances. All results 
and benchmarks can be found online.8

9.1. Questions & hypotheses

The first question we consider addresses the properties of the encodings that different cycle breakings result in.

Q1. CNF encodings How do the cycle breakings MJ(.), JN(.) and T -Unfolding(.) differ in terms of size and treewidth (upper bound)

of the final CNF encoding?
We expect that T -Unfolding is almost always better than MJ(.) with respect to both size and treewidth (see Section 7.4). 

Furthermore, we expect that for small-sized and medium-sized programs, T -Unfolding results in lower CNF sizes than JN(.), but 
yields larger sizes for bigger programs due to the asymptotic guarantee. In terms of treewidth, we expect that JN(.) leads to lower 
treewidth unless the given program has only very minor cyclic positive dependencies, which means a very small component-boosted 
backdoor size.

Second, we are interested in finding the best configuration of options to use for aspmc. While we always use T -Unfolding for 
cycle breaking, we still have to decide which version of Clark’s Completion to apply and which knowledge compiler to use.

Q2.1. Variants of Clark’s completion Does tree decomposition-guidance of Clark’s Completion provide a benefit compared to unguided 
Clark’s Completion?

Q2.2. Effect of knowledge compiler Which knowledge compiler leads to the best AASC performance?
For Q2.1, we anticipate that tree decomposition-guidance can only decrease the performance, if the treewidth of the CNF obtained 

with guidance is the same or slightly higher than the one obtained without guidance. Even then, the decrease should be marginal. 
However, when the guidance has a positive impact on the treewidth of the resulting CNF, we naturally expect a performance increase.

7 Strictly speaking, it is not clear whether this is only a guarantee for miniC2D but also for c2d at least in the way that we as well as Korhonen and Järvisalo
generate dtrees and run c2d. This is because c2d has an optimization built in that skips deciding variables whose “turn” it would usually be, if these variables are not 
necessary to decompose the current CNF into separate components. This optimization can be turned off using the input option “force” of c2d. However, this seems to 
only degrade the overall performance.
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8 github .com /raki123 /aspmc _benchmarks /tree /aspmc _results.

http://github.com/raki123/aspmc_benchmarks/tree/aspmc_results
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Regarding Q2.2, it seems reasonable to assume that SHARPSAT-TD performs best, followed by d4, and c2d since they were the 
top three solvers on the weighted model counting track of the Model Counting Competition 2021. miniC2D did not participate. With 
Q2.2 we want to find out, whether this translates to the same performance when we perform knowledge compilation first and then 
evaluate rather than performing weighted model counting immediately within the solver.

Last but not least, given the overall best configuration for AASC with aspmc from the results of the previous questions, we want to 
compare our solver with the state of the art software in probabilistic logic programming.

Q3. Overall performance Does aspmc provide a significant performance increase compared to the state of the art solvers for proba-
bilistic logic programming?

We expect this to be the case, since the pipeline that uses knowledge compilation of CNFs comes with the best performance 
guarantees. Furthermore, we anticipate our cycle breaking and Clark’s Completion to exhibit better solving capacity than other 
approaches that compile CNF to sd-DNNF. On top of that, we use the state of the art knowledge compilers for CNF to sd-DNNF, 
which have seen significant performance improvements in recent years.

9.2. Setup

Benchmark instances We use probabilistic logic programming instances for all questions, divided into four sets of instances:

• Smokers [35] For programs with varying levels of positive cyclic dependencies, we use the well-known smokers example (see 
Example 1) with varying extensions of the input predicates person and friend. We generated the benchmarks ourselves using the 
Barbàsi-Albert graph model [112], which is known to generate so called scale-free graphs that resemble typical networks in real 
life. For each vertex in the graph, we add one person and for each edge (𝑣, 𝑣′) we add friend(𝑣, 𝑣′) to the input. We used varying 
graph sizes (𝑛 = 3, … , 49) and vertex degrees (𝑚 = 2, … , min(𝑛 − 1, 10)) leading to graphs of varying density (namely, (𝑛 − 1) ⋅𝑚
edges).

• Near Tree Additionally, we introduce what we call near tree instances: a new cyclic benchmark set concerning reachability on 
almost trees. To generate the programs, we used as ingredients a directed graph 𝐺 and the base program

𝑟(𝑠).

0.1 ∶∶ 𝑡𝑟𝑎𝑝(𝑌 ) ∶ ∓ 𝑝(𝑋,𝑌 ).

𝑟(𝑌 ) ∶ ∓ 𝑝(𝑋,𝑌 ).

1∕𝑑(𝑋) ∶∶ 𝑝(𝑋,𝑠1(𝑋));…; 1∕𝑑(𝑋) ∶∶ 𝑝(𝑋,𝑠𝑑 (𝑋)) ∶ ∓ 𝑟(𝑋),not 𝑡𝑟𝑎𝑝(𝑋).

Here, 𝑑(𝑋) is the number of outgoing arcs of 𝑋 in 𝐺, and the vertices 𝑠1(𝑋), … , 𝑠𝑑 (𝑋) are the immediate descendants. We 
obtain the final program by replacing the variables 𝑋, 𝑌 with constants corresponding to the vertices of 𝐺.

This program models that we reach (denoted by 𝑟(.)) the starting vertex 𝑠 and, at each vertex 𝑣 that we reach, decide uniformly 
at random which outgoing arc we include in our path (denoted by 𝑝(., .)). If we include the arc (𝑣, 𝑤), then we reach the vertex 
𝑤. However, we only include an arc, if we do not get trapped (denoted by 𝑡𝑟𝑎𝑝(.)) at 𝑣.

As for the digraph 𝐺, we used two parameters 𝑛, 𝑘 ∈ ℕ to generate it as follows. We first generated a random tree of size 𝑛
using the python library networkx, where each arc in the tree is bidirectional. Then, we added 𝑘 vertices and connected them 
to each of the 𝑛 original vertices in the tree bidirectionally. Finally, we added one vertex as the goal vertex, with incoming arcs 
from each of the 𝑘 additional vertices. As the start 𝑠 we use the root of the tree.

These graphs are almost trees in the sense that (i) their treewidth is approximately min(𝑘, 𝑛)9 and (ii) its component-boosted 
backdoor size is 2 ⋅ 𝑘, since we obtain a (poly)tree after removing the 𝑘 added vertices.

We use one instance for each combination of 𝑛 = 10, 20, … , 100 and 𝑘 = 1, 2, … , 5.
• Growing Heads & Growing Negated Bodies [85] The synthetic benchmark sets of growing heads (gh) and growing negated 

bodies (gnb) compare the difficulty of reasoning in the presence of long heads such as

𝑝1 ∶∶ 𝑎1;…;𝑝𝑖 ∶∶ 𝑎𝑖 ∶ ∓ 𝑎𝑖+1,

and long negated bodies

0.5 ∶∶ 𝑎𝑖 ∶ ∓ not 𝑎𝑖+1,… ,not 𝑎𝑛−1, 𝑎𝑛.

Here the length of the heads and negated bodies varies from 1 to 25 and 1 to 200 (after 50 only in steps of 10), respectively.
Both gh and gnb only feature acyclic programs.

• Blood [85] The blood benchmark set consists of 100 instances, which compute probabilities of blood types given the blood types 
of ancestors. Also the blood benchmarks are all acyclic; they have vastly varying sizes but treewidth at most 10.
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9 Observe that every vertex in the graph has at least degree min(𝑛, 𝑘), which is known to imply treewidth ≥min(𝑛, 𝑘).
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Benchmark platform We ran all solvers on a cluster of 12 nodes, each equipped with two Intel Xeon E5-2650 CPUs with 2.2 GHz 
and access to 256 GB shared RAM under Ubuntu 16.04.1 LTS powered on kernel 4.4.0-139 with no hyperthreading operating Python 
3.7.6. Per instance, we set a memory limit of 32 GB and a time limit of 1800 secs on a single core.

Solvers compared We compare a variety of solvers from probabilistic logic programming, as well as different configurations of our 
own solver. Namely, we include

• LPMLN [10] version 1.1: LPMLN performs probabilistic reasoning by enumeration of all stable models. plingo [38] is an alternative 
solver with the same strategy that however only exhibits slightly better performance [38].

• ProbLog [35] version 2.1.0.42: ProbLog uses the MJ(.) cycle breaking followed by knowledge compilation. It supports different 
circuit classes for compilation. We include compilation of CNF to sd-DNNF using either DSHARP [109] (denoted “+ Dsharp”) or 
c2d (denoted “+ c2d”) as knowledge compilers, and of the acyclic programs to SDD using PySDD [113,114] (denoted “-k sdd).

• PITA [13] version 4.5.0 using the Prolog engine swipl version 8.5.1: PITA compiles cyclic programs to BDD using the CuDD 
package version 3.0.0 [44].

• LP2LP2 [56] version 1.23: LP2LP2 performs the JN(.) cycle breaking. The input options “-g” and “-l” ensure a bijective corre-
spondence between stable models. Here, we do not perform probabilistic inference, as the weights get lost during cycle breaking. 
Instead we use SHARPSAT-TD afterwards to compile the resulting CNF into an sd-DNNF to count its models.

• aspmc (our solver) version 1.0.7. We always use the input option “-dt 10” to specify that tree decompositions should be computed 
with a timeout of ten seconds.

To vary the version of Clark’s Completion that we use, we specify “-g none”, “-g ors”, or “-g both” to use unguided, primal 
tree decomposition guided or incidence tree decomposition guided Clark’s Completion.

To specify the knowledge compiler we use “-k c2d”, “-k miniC2D”, “-k d4”, or “-k sharpsat-td” to use c2d version 2.20, 
miniC2D version 1.0.0, d4 from https://github .com /raki123 /d4, or our modified version of SHARPSAT-TD from https://github .
com /raki123 /sharpsat -td.

Comparisons

Q1. CNF encodings We produce a CNF using the different cycle breaking algorithms of aspmc, ProbLog, and LP2LP2 and extract the 
size of the encoding (i.e. number of clauses) as well as decent treewidth upper bounds from the first tree decomposition found by 
flow-cutter.

Notably, since the CNF encodings all use Clark’s Completion, the differences in the size of the encoding and treewidth are due 
to the cycle breaking implemented by the solver. Therefore, we restrict our comparison here to the smokers and the near tree 
benchmark sets, which contains the instances where cycle breaking is necessary. Furthermore, we only consider instances whose 
number of clauses was less than 25000 and whose treewidth upper-bound was less than 200, which includes all solved instances 
apart from very few outliers.

Recall that the asymptotic size guarantees tell us that large enough instances JN(.) is better than T -Unfolding, which in turn 
is better than MJ(.). We assume that the instances, where this kicks in, are so large that knowledge compilation is bound to fail, 
regardless of the encoding. Consequently, we also take into account the runtime of the instances such that we can establish the 
properties of the encoding on the instances relevant to us, i.e. those that are in principle solvable using the given cycle breaking.

Q2.1. Variants of Clark’s completion Here, we want to ensure that effects on performance for different versions of Clark’s Completion 
results from the exploitation of a lower treewidth in the decision heuristic of the knowledge compiler. Since d4’s decision heuristic 
is not based on tree decompositions and SHARPSAT-TD uses a secondary heuristic in combination with the tree decomposition, there 
is no guarantee that variables are only decided based on the order entailed by the tree decomposition. On the other hand, for c2d 
and miniC2D, we always specify an input dtree/vtree such that the variables are decided in the order corresponding to the tree 
decomposition. Therefore, we ran aspmc with varying versions of Clark’s Completion and c2d respectively miniC2D as knowledge 
compiler for this question.

Q2.2. Effect of knowledge compiler To test the performance of the different knowledge compilers, we ran aspmc with the best per-
forming version of Clark’s Completion from Q2.1.

Q3. Overall performance For the general comparison, we include all solvers and configurations listed above, while for aspmc we use 
only the best performing Clark Completion.

9.3. Results & discussion

Q1. CNF encodings The results for this experiment are shown in Fig. 8, which contains one XY-plot for T -Unfolding, JN(.), and
MJ(.) in Figs. 8a, 8b, and 8c, where the runtime is color-coded. We note that in almost all cases a light green data point not only 
indicates a high running time, close to 1800 seconds, but even that the instances represented by that data point all timed out.

As expected, we see that for MJ(.) very few CNF encodings are in the range of 0 to 25000 clauses and 0 to 200 treewidth 
33

upper-bound compared to T -Unfolding and JN(.), and even fewer are solvable within the time limit shown by the colors of the 

https://github.com/raki123/d4
https://github.com/raki123/sharpsat-td
https://github.com/raki123/sharpsat-td


Artificial Intelligence 330 (2024) 104109T. Eiter, M. Hecher and R. Kiesel

Fig. 8. The number of clauses, treewidth upper-bounds, and average runtimes of CNF encodings produced by different cycle breaking algorithms on the smokers and 
tree benchmark set. Restricted to instances, where the CNF encoding has less than 25000 clauses and a treewidth upper-bound less than 200. For each instance we 
round the number of clauses down to the next multiple of 1000 and round the treewidth upper-bound down to the next multiple of 10. We group the instances with 
the same (rounded) values and add one data point to the plot. Here, the size corresponds to the number of instances in the group and the color corresponds to the 
34

average runtime of the instances in the group. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
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Fig. 9. Cactus plot of the results for selected aspmc configurations over all benchmark instances, ordered (top is better) by the number of solved instances.

data points. Both T -Unfolding and JN(.) have significantly more CNF encodings within the plotted range including also many more 
solved instances. Interestingly however, the distribution varies significantly between T -Unfolding and JN(.):

• The resulting CNFs from JN(.) often have many more clauses than those from T -Unfolding. This matches the experimental 
results of Fierens et al. (2011), who made similar observations for MJ(.) and JN(.) on small instances. However, while for
MJ(.) this effect only occurs for small instances, we observe this effect to be more consistent for T -Unfolding. Here, the better 
asymptotic guarantees of JN(.) do not take effect on the instances that can be solved after T -Unfolding or JN(.).

• The treewidth upper-bound is often lower for JN(.) than for T -Unfolding. We thus suspect that while the constant factors in the 
size and treewidth guarantee that comes with T -Unfolding are both small, only the constant factor for the treewidth guarantee 
that comes with JN(.) is small.

• For low treewidth upper-bounds and low numbers of clauses the instance density is higher for T -Unfolding than for JN(.). This 
is again explained by small constant factors in the size and treewidth guarantees.

• T -Unfolding leads to a solution for significantly more instances, namely 119 vs. 66 for JN(.). We especially highlight here 
that T -Unfolding produces some CNF encodings with treewidth upper-bound above 100, which however are solved quickly 
(indicated by the blue color of the data points). This is not entirely surprising, since for T -Unfolding we expected10 the actual 
performance to supersede the guarantees entailed by treewidth. And, as we already mentioned, the binary counters that JN(.) 
uses may also have a negative impact on performance.

The results match the expectations that we had for the different cycle breakings. When MJ(.) results in a solution, then the CNF 
encoding is usually small. However, even in this case we may reach relatively high treewidth upper bounds and as a consequence, 
solve very few instances. JN(.) results in (relatively) large CNF encodings on which knowledge compilation is still feasible, presum-
ably because it has considerably lower treewidth upper bounds than MJ(.) as guaranteed by Theorem 21. T -Unfolding is somewhere 
in between: successfully evaluated instances can reach remarkable CNF sizes and still be solved. At the same time, they can have 
higher treewidth upper bounds than the ones coming from JN(.); combined with medium CNF sizes, this seems to be less of an issue 
than for the other encodings. We attribute this to the arguably lower hardness of the encoding obtained by T -Unfolding compared 
to JN(.). While this results in a worse asymptotic scaling, it apparently leads to a smaller CNF size on instances that can still be 
solved by knowledge compilation in principle. We suspect that this in combination with the lower “semantic complexity” (i.e. lack 
of binary counters) is the cause for the performance improvement of T -Unfolding compared to the other cycle breakings.

Q2.1. Variants of Clark’s completion Recall that we compare the differences in performance caused by Clark(.), PClark(.), and 
IClark(.), the different versions of Clark’s Completion, when using c2d and miniC2D with a tree decomposition-guided variable 
order for knowledge compilation. The results are shown in Fig. 9, where Clark(.), PClark(.), and IClark(.) are denoted by “-n”, “-o”, 
and “-b”, respectively. We see that both for c2d and miniC2D Clark(.) is outperformed by PClark(.) and IClark(.). Especially, IClark(.)
exhibits a significant performance increase compared to Clark(.).

We noticed that while tree decomposition guidance is beneficial for the overall performance, this is not so clear cut for the 
runtime of individual instances that Fig. 10 shows. We see that IClark(.) mostly leads to better performance, especially for c2d but 
to a lesser extent also for miniC2D. However, in both cases, there are also some instances that are solved slower using IClark(.) than 
using Clark(.). We assume this is because IClark(.) yields more general worst case guarantees but may lead to an increase in CNF size 
and treewidth by a constant factor compared to Clark(.) when the high treewidth is inherent rather than due to translation issues 
that are addressed by tree decomposition guidance (i.e. rules with long bodies or many rules with the same head). In this case, the 
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10 Recall the observation after Lemma 26.
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Fig. 10. Scatter plots comparing the runtimes of individual files computed by configuration “-b” (incidence guiding), compared to “-n” (no guiding) for miniC2D (on 
top) and c2d (on bottom).

Fig. 11. Cactus plot of the results for selected solver configurations over all benchmark instances, ordered (top is better) by the number of solved instances.

performance naturally suffers a bit. This matches the intuition that we get from the scatter plots in Fig. 10. While sometimes no 
guidance leads to better performance, the gain is somewhat limited.

Nevertheless, we chose to add an additional configuration to aspmc in order to test whether we can counter this phenomenon. The 
idea is that we only use guidance if it is expected to provide a benefit. To estimate the latter, we compute an approximate prediction 
for the treewidths of the CNFs obtained by all three versions of Clark’s Completion and use the version with the lowest value. 
We included the runtime of this configuration of aspmc in Fig. 9 together with the knowledge compiler SHARPSAT-TD as “aspmc

-c sharpsattd”. While it has higher runtime than “aspmc -b sharpsattd” on many instances, it indeed solves a few more instances. 
Therefore, we chose to include it for SHARPSAT-TD.

Q2.2. Effect of knowledge compiler Apart from Clark’s Completion, also the knowledge compiler used to obtain a tractable circuit 
representation has an effect on the performance. The results of the comparison of such compilers are also given in Fig. 9. Here, we 
see that SHARPSAT-TD leads to the best performance as expected; c2d and d4 have worse performance but both outperform miniC2D 
significantly. Interestingly, c2d solves more instances than d4 although d4 performed better in the weighted track of the 2021 model 
counting competition. We suspect the comparatively poor performance of miniC2D results as it produces SDDs with a fixed vtree, 
while all other solvers produce sd-DNNFs. This means that variables always need to occur in the same order in every branch of the 
produced circuit, which lowers the benefit of unit propagation in the solver.

Given the findings of Q2.1 and Q2.2, we conclude that configuration “aspmc -c sharpsattd”, i.e. dynamically choosing which version 
of Clark’s Completion to apply based on approximations of the treewidth of the resulting CNF in combination with SHARPSAT-TD as 
knowledge compiler, is the most promising configuration for aspmc.

Q3. Overall performance Having established the best configuration for aspmc, we investigated the overall performance of aspmc

compared to other solvers for probabilistic inference. Here, we exclude the configurations of aspmc that use no guidance (‘-n‘) or 
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primal guidance (‘-o‘), since they performed worse during the internal evaluation. The results are summarized in Fig. 11.
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We observe that aspmc’s best configuration (“aspmc -c sharpsattd”) has by far the best overall performance of all solvers with 
259 solved instances. But also the other configurations, except the one that uses miniC2D performed very well, with 251 (“aspmc -b 
sharpsattd”), 241 (“aspmc -b c2d”), and 206 (“aspmc -b d4”) solved instances. ProbLog solved 224 instances when using c2d as the 
knowledge compiler (“ProbLog + c2d”), however interestingly it only solved 120 and 119 instances when DSHARP (“ProbLog + 
Dsharp”) and PySDD (“ProbLog-k sdd”) are used, respectively.

The next best performing approach was LP2LP2,11 which solved 213 instances - only 7 more than “aspmc -b d4”. LP2LP2 and 
“aspmc -b d4” are followed by PITA, which solved 154 instances, thus beating “aspmc -b minic2d”, which only solved 148 instances. 
Last but not least, LPMLN solved 24 instances.

It is unsurprising that LPMLN solved the least instances, since it explicitly enumerates all the models. For probabilistic inference 
on ProbLog programs this quickly becomes infeasible, since the number of answer sets it needs to consider is exactly 2𝐹 , where 𝐹 is 
the number of probabilistic facts of the program.

Similarly, it was expected that aspmc solved the most instances, due to our advancements of cycle breaking and Clark’s Completion 
combined with the high efficiency of modern knowledge compilers.

The results of ProbLog in comparison to the other solvers are surprising. In Q1, we found that JN(.) outperforms MJ(.) on 
many instances but has worse performance than T -Unfolding on the relevant instances. Thus, one may expect that the different 
cycle breakings determine the performance on cyclic instances and that on acyclic instances the performance mostly depends on the 
knowledge compiler. Here, we however see that this is not the case. While aspmc solves more instances than LP2LP2 and ProbLog,
LP2LP2 solves less instances overall, even though it uses the likely best knowledge compiler (i.e. SHARPSAT-TD) and solves more 
cyclic instances.

Additionally, using c2d instead of DSHARP for compilation in ProbLog seems to have a huge positive impact on the performance; 
while a positive effect was not completely unexpected, the extent was surprising.

The relation of the performance of ProbLog’s compilation to SDDs (“ProbLog -k sdd”) and PITA, however, may come as a surprise. 
The latter uses bottom up compilation to BDDs, whereas the former performs bottom up compilation to SDDs, which have strictly 
better theoretical guarantees than BDDs. However, BDDs may already be good enough; in this case a more complex representation 
using SDDs may come with unnecessary overhead. Additionally, existing BDD libraries may use additional performance optimizations 
not implemented in the SDD library that ProbLog uses. Furthermore, neither implementation uses the theoretical guarantees explicitly 
by computing a vtree/variable order e.g. from a tree decomposition. Instead, PITA’s BDD library CUDD [44] uses dynamic variable 
reordering to speed up compilation. While PySDD also has a similar feature, its usage has been disabled in ProbLog for probabilistic 
inference.12 The fact that ProbLog does not solve any of the blood instances, which have a simple structure that could be exploited, 
using option “-k sdd” but solves some (resp. all of them) when compiling to sd-DNNF with DSHARP (resp. c2d), as can be observed in 
Table 2. Apart from that, PITA does not use the same idea for handling cyclic dependencies as ProbLog, which may also contribute 
to the improved performance on cyclic instances.

This covers the overall performance comparison of the different solvers. We consider in more detail the performance on the 
different benchmark sets, shown in Table 2. Mostly, the results per benchmark set are reflected by the general performance already. 
However, we want to highlight some interesting findings separately.

Especially an explanation of the high overall performance of “ProbLog + c2d” is of interest here, given the relatively poor 
performance on cyclic instances. We see immediately that the high performance comes from the blood and gnb sets. Not only does 
“ProbLog + c2d” solve the most instances here, it is also noticeably faster than other configurations. While it also solves the most 
instances on the gh set, we see that there is a tie with aspmc here.

One may think that merely the use of c2d as a compiler causes the performance. However, on the cyclic benchmark sets “ProbLog 
+ Dsharp” actually solves slightly more instances than “ProbLog + c2d”. Additionally, we see that also “aspmc-b c2d” did not solve 
as many instances on the blood and gnb data sets as “ProbLog + c2d”. Hence, there is likely an additional different reason for the 
performance.

We investigated ProbLog more closely and found that while its Clark Completion is standard (i.e. corresponding to Clark(.)), it 
makes use of a manifold of preprocessing techniques on the program level, in order to reduce the size of the program representation 
before Clark’s Completion is applied [88,35]. We therefore compared the CNF sizes produced by ProbLog, LP2LP2, and aspmc to see 
if there were significant differences on the gnb and blood sets. (See Fig. 12.)

The results are given in Section 9.3. We indeed see a significant difference in the sizes of the CNFs produced by the different tools. 
While aspmc and LP2LP2 behave similarly, ProbLog’s encodings are much smaller due to its program level preprocessing capabilities. 
The smaller size and the usage of c2d as a knowledge compiler indeed reasonably explain why ProbLog is so much faster on these 
instances. Especially the blood instances have low treewidth and thus the performance bottle neck is not the complicated structure 
(as it is e.g. for the smokers instances) but the size of the encoding.

Apart from that, let us closely look at using aspmc with d4. We note that even though the performance is not extremely high 
in general, it performs best on the benchmark sets gnb and tree. We attribute this to the fact that d4 uses a different heuristic for 
the selection of variables during compilation than those of the other compilers, which are all primarily tree decomposition guided. 
However, while this seems to help for gnb and tree, on the blood benchmark set a tree decomposition guided heuristic seems much 

11 The results for LP2LP2 must be taken with a grain of salt, since model counting over an sd-DNNF is slightly easier than evaluating multiple probabilistic queries 
over an sd-DNNF.
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12 At least this is what we found when inspecting the source code of ProbLog.
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Table 2

Results of the overall comparison of the different solvers and configurations. The columns show 
the solver, the sum of solved instances on the benchmark set, the maximum treewidth (upper 
bound) of a solved instance, followed by the number of solved instances in different ranges of 
treewidth upper bounds. The last two columns show the number of instances solved by this solver 
only and the total time spent on the benchmark set. Boldface highlights best values.

tw range group
solver

∑
max(tw) 0-10 10-20 >20 unique time[h]

growing negated body
problog + c2d 64 191.0 9 10 45 5 2.15

aspmc -b d4 59 141.0 9 10 40 0 4.33
aspmc -c sharpsattd 59 141.0 9 10 40 0 4.88
aspmc -b sharpsattd 58 131.0 9 10 39 0 4.92
lp2lp2 56 121.0 9 10 37 0 5.66
problog + Dsharp 53 81.0 9 10 34 0 7.09
problog -k sdd 52 71.0 9 10 33 0 6.68
aspmc -b c2d 51 61.0 9 10 32 0 8.54
pita 50 61.0 9 10 31 0 10.42
aspmc -b minic2d 24 25.0 9 10 5 0 21.18
lpmln 6 7.0 6 0 0 0 29.51

blood
problog + c2d 100 10.0 100 0 0 13 4.27

lp2lp2 75 10.0 75 0 0 0 22.11
aspmc -c sharpsattd 73 10.0 73 0 0 0 23.48
aspmc -b c2d 68 10.0 68 0 0 0 22.34
aspmc -b sharpsattd 67 10.0 67 0 0 0 21.18
aspmc -b d4 29 10.0 29 0 0 0 39.56
pita 14 10.0 14 0 0 0 43.85
aspmc -b minic2d 11 10.0 11 0 0 0 46.87
problog + Dsharp 9 10.0 9 0 0 0 46.06
problog -k sdd 0 0 0 0 0 0 50.5
lpmln 0 0 0 0 0 0 50.5

near tree
aspmc -b d4 22 53.0 1 6 15 3 15.68

aspmc -c sharpsattd 19 50.0 1 6 12 0 16.37
aspmc -b c2d 18 50.0 1 5 12 0 16.49
aspmc -b sharpsattd 16 50.0 1 4 11 0 17.17
aspmc -b minic2d 16 50.0 1 5 10 0 17.48
problog + Dsharp 13 50.0 1 4 8 0 18.67
problog + c2d 13 50.0 1 4 8 0 18.96
pita 10 36.0 1 5 4 0 20.62
lp2lp2 9 29.0 1 5 3 0 21.63
problog -k sdd 3 13.0 1 2 0 0 23.52
lpmln 0 0 0 0 0 0 25.0

smoker
aspmc -b sharpsattd 92 7.0 92 0 0 3 131.76
aspmc -c sharpsattd 90 7.0 90 0 0 2 131.3

aspmc -b c2d 88 7.0 88 0 0 1 132.84
aspmc -b minic2d 82 7.0 82 0 0 0 136.44
aspmc -b d4 81 7.0 81 0 0 0 135.97
pita 64 6.0 64 0 0 0 144.34
lp2lp2 57 6.0 57 0 0 0 147.89
problog -k sdd 52 6.0 52 0 0 0 149.38
problog + Dsharp 29 4.0 29 0 0 0 160.45
problog + c2d 28 4.0 28 0 0 0 160.59
lpmln 12 3.0 12 0 0 0 168.75

growing head
problog + c2d 19 21.0 8 10 1 1 3.54

aspmc -c sharpsattd 18 21.0 9 8 1 0 4.18
aspmc -b sharpsattd 18 19.0 9 9 0 0 4.47
pita 16 18.0 8 8 0 0 4.56
lp2lp2 16 17.0 9 7 0 0 4.72
problog + Dsharp 16 18.0 8 8 0 0 4.75
aspmc -b c2d 16 17.0 9 7 0 0 4.97
aspmc -b minic2d 15 16.0 9 6 0 0 5.15
aspmc -b d4 15 16.0 9 6 0 0 5.16
problog -k sdd 12 14.0 8 4 0 0 6.53
lpmln 6 8.0 6 0 0 0 9.98
38
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Table 2 (continued)

tw range group
solver

∑
max(tw) 0-10 10-20 >20 unique time[h]

Σ
aspmc -c sharpsattd 259 141.0 182 24 53 2 180.22
aspmc -b sharpsattd 251 131.0 178 23 50 3 179.51

aspmc -b c2d 241 61.0 175 22 44 1 185.18
problog + c2d 224 191.0 146 24 54 19 189.51
lp2lp2 213 121.0 151 22 40 0 202.01
aspmc -b d4 206 141.0 129 22 55 3 200.71
pita 154 61.0 96 23 35 0 223.8
aspmc -b minic2d 148 50.0 112 21 15 0 227.13
problog + Dsharp 120 81.0 56 22 42 0 237.03
problog -k sdd 119 71.0 70 16 33 0 236.6
lpmln 24 8.0 24 0 0 0 283.75

Fig. 12. Numbers of clauses of the CNF produced by aspmc, LP2LP2 and ProbLog on (a) the blood benchmarks and (b) the gnb benchmarks.

better. Here, d4 only solves 29 instances, whereas aspmc with SHARPSAT-TD solves more than 70. This makes sense, since the 
maximum treewidth upper-bound for blood was only 10, which is rather low for an acyclic instance.

Next, we take a closer look at the cyclic instances, i.e. the smokers and tree benchmark sets. Here, PITA turns out to be the best 
non-aspmc based approach, solving 74 instances overall. While “aspmc -c sharpsattd” solves significantly more instances, namely 119, 
this is still better than LP2LP2, which solved 66 instances even though compilation is performed with SHARPSAT-TD. Also ProbLog 
only solved 55, 31, and 32 instances, in its configurations “-k sdd”, “+ Dsharp”, and “+ c2d”, respectively.

Summing up, we observe that on all benchmark sets except for blood a configuration of aspmc performed best or second best. 
Second, we saw that ProbLog performs very well in the acyclic case. However, this is not due to a better strategy for knowledge 
compilation or Clark’s Completion but due to its advanced preprocessing capabilities. Considering the preprocessing techniques of 
ProbLog for aspmc is thus interesting and desirable, which however is non-trivial and goes beyond the scope of this work.

Nevertheless, this supports the claim that combining our significant improvements for cycle breaking, Clark’s Completion, and the 
knowledge compilation step in one solver together with ProbLog’s preprocessing techniques will result in even better performance 
on both cyclic and acyclic instances. Thus, this work brings us significantly closer to a scalable approach for probabilistic inference.

10. Conclusion

We first provide an overall summary and then we turn to issues for future work.

10.1. Summary & findings

We considered the knowledge compilation step that is usually used in order to solve Algebraic Answer Set Counting (AASC) prob-
lems, revealing interesting new insights. Its incorporation into the AASC solver aspmc led to significant performance improvements, 
especially on instances with positive cyclic dependencies.

First, we considered a variety of different approaches to the knowledge compilation step. For the target representation MODS 
exploited in enumeration-based approaches, we consider each answer set exactly once, resulting in high efficiency for “few” answer 
sets but insurmountable intractability otherwise. Interestingly, most of the currently available worst case guarantees for the other, 
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more succinct tractable circuit representations are based on the same kind of structural parameters. For compilation to sd-DNNFs 
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and SDDs, we can derive from Theorems 16, 36 and 38 upper bounds in terms of the treewidth of a Boolean circuit representing the 
program. This applies regardless of whether compilation proceeds in a bottom up (using the apply operator for SDDs) or top down 
manner (using a knowledge compiler for CNFs). Similarly to SDDs, BDDs have performance guarantees in terms of the pathwidth of 
a Boolean circuit representing the program, for both bottom up and top down compilation.

There exist, however, vast differences in the quality of the guarantees. These different guarantees favor top down compilation to 
sd-DNNF unless the given program is much larger than the number of inputs to a Boolean circuit representing the program. Apart 
from that, the theoretical guarantees for SDDs seem to be better than those for BDDs, especially since every BDD can be represented 
as an SDD. Arguably, SDDs also come at an overhead incurred by their potentially smaller sizes. Nevertheless, one would expect 
SDDs to perform better than BDDs for bottom up compilation.

Second, given our preference for top down compilation to sd-DNNFs, we investigated how programs can be favorably translated 
to CNFs for compilation afterwards. For the customary steps in such a translation, i.e. cycle breaking and Clark Completion, we 
provided advancements.

For Clark’s Completion, Hecher’s [55] idea of guiding it with a tree decomposition in PClark(.) limits the increase of the treewidth 
to a factor of three compared to the primal treewidth of the program. We instead provided the same result for the incidence treewidth 
of the program using IClark(.), which may result in even better guarantees.

For cycle breaking, we analyzed the approaches MJ(.) [58] and JN(.) [56], providing novel results showing upper bounds on the 
treewidth increase incurred by both translations. Here, we found guarantees for MJ(.) that are rather weak: Theorem 19 only gives 
a guarantee that grows linearly in the number of simple positive cycles in the program and the number of atoms that are in positive 
cyclic dependencies. While this upper bound may not be tight, the lower bounds of Theorem 20 show that there is a family (Π𝑛)𝑛∈ℕ
of programs with constant treewidth and exactly one simple positive cycle such that the treewidth of (MJ(Π𝑛))𝑛∈ℕ grows at least 
linearly in the size of the program. The guarantees of Theorem 21 for JN(.) on the other hand are rather strong, leading only to an 
increase by at most a logarithmic factor in the size of the largest SCC of the positive dependency graph DEP(Π) of the program Π. 
Nevertheless, previous experimental results revealed that large constant factors in the size bound for JN(.) limit the effectiveness of
JN(.) for probabilistic reasoning on instances that are not large enough for the asymptotic guarantees to kick in [36]. We therefore 
introduced a new cycle breaking called T -Unfolding. While the latter may lead to a linear increase of the treewidth in the size 
of the largest SCC of DEP(Π) this may be avoided in many cases, unless DEP(Π) is highly dense. To achieve this, we introduced 
the component-boosted backdoor size cbs(.), which intuitively measures the distance to directed or undirected acyclicity, similar to 
parameters such as elimination distance [98]. We used cbs(.) in Theorem 22 to bound both the size increase of the program and 
treewidth, notably with low constant factors.

The implementation of the theoretical advancements in the AASC solver aspmc proved to be successful. The in-depth experimental 
evaluation confirmed our hypotheses on the effectiveness of the different approaches to cycle breakings, showing that while T -
Unfolding can lead to higher treewidth upper bounds than JN(.), the latter together with the lower CNF size and presumably lower 
“semantic complexity” are still sufficient to allow for improved efficiency in the compilation step. Overall we see that in the cyclic 
setting, MJ(.), JN(.), and T -Unfolding solved 44, 66, and 119 instances, respectively, when cycle breaking is followed by CNF 
conversion and compilation to sd-DNNF.

Also investigating Clark’s Completion paid off: both c2d and miniC2D solve the largest number of instances, if we use the incidence 
guided version of Clark’s Completion.

Last but not least, we see most of our assumptions on the relationship between the various knowledge compilation techniques 
confirmed. That is, the compilation of CNFs to sd-DNNFs provides very good performance, as long as the MJ(.) cycle breaking is 
avoided. Unsurprisingly, the enumeration-based approach of LPMLN struggles on the probabilistic inference benchmark sets that we 
considered: they always have exponentially many answer sets in the number of probabilistic facts. Previous work however showed 
that for programs that have a complicated structure but not many answer sets, enumeration can be beneficial [61]. While different 
explanations seem possible, the exact cause of the low performance of bottom up compilation to SDD compared to bottom up 
compilation to BDDs remains somewhat mysterious.

Summing up, our work not only improves the performance of probabilistic inference, and as such AASC evaluation beyond that, 
but also sheds light on why some approaches work better than others based on a solid theoretical analysis.

10.2. Outlook

While our theoretical considerations of the different knowledge compilation approaches give some intuition on when and why 
they should be successful, the non-aligning empirical results make a further investigation desirable. In particular, the fact that PITA’s 
bottom up compilation to BDDs outperforms ProbLog’s bottom up compilation to SDDs. Possible differences in the way positive 
cyclic dependencies are handled may explain some of the differences but not the poor performance of this variant of ProbLog on the 
blood benchmark set. That ProbLog’s implementation uses a randomly generated vtree and no dynamic variable ordering, whereas 
the BDD implementation of PITA employs dynamic variable reordering may be a possible factor of the performance difference. It 
seems plausible that dynamic variable reordering for SDDs is more expensive than for BDDs and thus disabled. However, it would be 
interesting to explore possibilities to generate a vtree using the structure of a Boolean circuit representing the program. This seems 
possible based on a tree decomposition of the Boolean circuit, given results such as Theorem 38. However, for bottom up compilation 
we are unaware of work in this direction.

Apart from this, preprocessing on the program level before cycle breaking is an interesting yet unexplored topic in the context 
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of general AASC. The only simplifications aspmc currently uses are those that occur while clingo grounds the instance. In contrast, 
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ProbLog and PITA employ a wide range of simplifications: identifying relevant ground parts of the program [35], program level size 
optimizations [88], and using zero/one probabilities [13]. As we have seen, they can have a significant impact on evaluation.

While aspmc still solved the most instances overall, we can expect another significant performance boost by combining such 
preprocessing techniques and the advancements of aspmc. However, these simplifications are geared towards ProbLog programs and 
not all of them trivially generalize to AASC setting, where a more general class of programs (e.g., non-stratified ones) is allowed. 
It would be interesting to adopt them to the AASC setting, and possible find new techniques, especially since preprocessing in the 
context of model counting can have significant benefits [115].

An open question is also whether the double exponential upper bound of answer set counting in terms of treewidth 𝑘, proven in 
[22], is tight when using treewidth as the only parameter. For checking whether some answer set exists, we know a 2(𝑘 log(𝑘)) ⋅ |Π|
upper bound that cannot be substantially improved under the Strong Exponential Time Hypothesis [55], but for answer set counting 
the gap remains.

Besides the aforementioned points that focus on AASC specifically, there are two open problems relevant in a bigger picture. First, 
many preprocessing techniques on CNFs that contribute to the success of propositional model counters do not trivially generalize 
to the weighted/algebraic setting. It would be interesting to see whether and how we can achieve an efficient such generalization. 
Second, it would be interesting to see whether compilation of acyclic programs can deliver faster knowledge compilation given 
low incidence treewidth. Our technique using the incidence-guided version of Clark’s Completion guarantee an upper bound of 
(23𝑘 ⋅ |Π|) on the time needed for model counting; however, recent work showed that model counting on a CNF 𝐶 parameterized 
by incidence treewidth is feasible in (2𝑘 ⋅ 𝑝𝑜𝑙𝑦(|𝐶|)) worst case time [116].

Beyond further efficiency improvements for AASC, another big open question is how aggregates [117] should be treated. While 
it is in principle possible to translate programs with aggregates into ones without them that are accepted by aspmc [118,119,56], 
aggregates are not available natively in aspmc. However, this approach seems to severely impede the efficiency of inference [81] likely 
due to increases in the treewidth and the size of the encoding. To circumvent this problem, we see multiple approaches. On the one 
hand, it may be possible to adapt the current translations to become treewidth-aware. Beyond that a specialized knowledge compiler 
that supports aggregates as first hand language constructs seems highly promising although likely a deeply intricate endeavor [120].
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Appendix A. Full proofs and auxiliary lemmas

Theorem 16. Given a normal answer set program Π and a tree decomposition  = (𝑇 , 𝜒) of INC(Π) with width 𝑘 and root 𝑡r , the CNF 
IClark(Π,  , 𝑡r) can be constructed in time linear in |Π| + |𝑇 | and satisfies that

(i) every model of ClarkProp(Π) can be uniquely extended to a model of IClark(Π,  , 𝑡r),
(ii) the size of IClark(Π,  ) is in (𝑘|Π|), and

(iii) the treewidth of PRIM(IClark(Π,  , 𝑡r)) is at most 3(𝑘 + 1).

Proof. We can assume w.l.o.g. that every node 𝑡 ∈ 𝑇 has at most 2 children and that 𝑇 has at most |Π| nodes. Otherwise, we 
transform the tree decomposition into an equivalent one, where this is the case. This is possible in linear time in |𝑇 | [121].

In order to obtain a CNF we express every equivalence 𝑎𝑢𝑥 ↔
⋁

𝑥∈𝑋 in Definition 15 by the clauses ¬𝑎𝑢𝑥 ∨
⋁

𝑥∈𝑋 𝑥 and 𝑎𝑢𝑥 ∨¬𝑥
41

for 𝑥 ∈𝑋. Similarly, for 𝑎𝑢𝑥 ↔
⋀

𝑥∈𝑋 we use the clauses 𝑎𝑢𝑥 ∨
⋁

𝑥∈𝑋 ¬𝑥 and ¬𝑎𝑢𝑥 ∨ 𝑥 for 𝑥 ∈𝑋.
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For 1. first recall that the Tseitin transformation has the desired property. Then, observe that the given translation partially 
applies the Tseitin transformation on the formula

𝑎↔
⋁

𝑟∈Π,ℎ𝑒𝑎𝑑(𝑟)=𝑎

⋀
𝑙∈𝑏𝑜𝑑𝑦(𝑟)

𝑙

for every 𝑎 ∈(Π). Since Clark’s Completion is the conjunction of the above formula for every 𝑎 ∈(Π), this proves the desired 
claim.

2. follows immediately from Definition 15. We introduce one auxiliary atom 𝑓𝑜𝑟𝑐𝑒𝑑𝑟 for every rule in Π and one auxiliary atom 
𝑢𝑝𝑡𝑜𝑥𝑡 for every combination 𝑥, 𝑡 such that 𝑥 ∈ 𝜒(𝑡). Last but not least, observe that we have at most six equivalences for each pair 
𝑥, 𝑡 such that 𝑥 ∈ 𝜒(𝑡). Furthermore, each of these equivalences involves at most 𝑘 + 2 variables, since every node has at most two 
children. Thus, the clauses corresponding to the equivalences have at most 𝑘 + 2 atoms and there are at most 6 ∗ (𝑘 + 2)2 many of 
them for each node 𝑡 ∈ 𝑇 . Since |𝑇 | ≤ |Π|, we are done.

In order to prove 3. we construct a tree decomposition  ′ = (𝑇 ′, 𝜒 ′) of PRIM(𝐶) from the given tree decomposition of INC(Π). 
Namely, we assume that 𝜒(𝑡) = {𝑥𝑡1, … , 𝑥𝑡|𝜒(𝑡)|} and use 𝑇 ′ = (𝑉 ′, 𝐸′), where

𝑉 ′ = {(𝑡, 𝑖) ∣ 𝑡 ∈ 𝑇 , 𝑖 = 1,… , |𝜒(𝑡)|}
𝐸′ = {((𝑡, 𝑖+ 1), (𝑡, 𝑖)) ∣ 𝑡 ∈ 𝑉 , 𝑖 = 1,… , |𝜒(𝑡)|− 1}

∪ {((𝑡,1), (𝑡′, |𝜒(𝑡′)|)) ∣ (𝑡, 𝑡′) ∈𝐸}

and

𝜒 ′(𝑡, 𝑖) =𝜒(𝑡) ∩(Π) ∪ {𝑓𝑜𝑟𝑐𝑒𝑑𝑟 ∣ 𝑟 ∈ 𝜒(𝑡)}

∪ {𝑢𝑝𝑡𝑜
𝑥𝑡
𝑗

𝑡′
∣ 𝑡′ ∈ 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑡), 𝑥𝑡𝑗 ∈ 𝜒(𝑡′), 𝑗 ≥ 𝑖} ∪ {𝑢𝑝𝑡𝑜

𝑥𝑡
𝑗

𝑡 ∣ 𝑗 ≤ 𝑖}.

Then, it holds that

|𝜒 ′(𝑡, 𝑖)| = |𝜒(𝑡) ∩(Π)|+ |{𝑓𝑜𝑟𝑐𝑒𝑑𝑟 ∣ 𝑟 ∈ 𝜒(𝑡)}|
+ |{𝑢𝑝𝑡𝑜𝑥𝑡𝑗

𝑡′
∣ 𝑡′ ∈ 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑡), 𝑥𝑡𝑗 ∈ 𝜒(𝑡′), 𝑗 ≥ 𝑖}|+ |{𝑢𝑝𝑡𝑜𝑥𝑡𝑗𝑡 ∣ 𝑗 ≤ 𝑖}|

≤ |𝜒(𝑡)|+ 2(𝑘+ 1 − 𝑖+ 1) + 𝑖

≤ 3(𝑘+ 1) + 1.

Therefore, the width of  ′ is less or equal to 3(𝑘 +1). Furthermore,  ′ is a tree decomposition of PRIM(𝐶), since for each equivalence 
in Definition 15 there is a bag that contains all the variables that occur in it. □

Lemma 18 (Faithfulness Implies Query Invariance). Let 𝜇 = ⟨Π, 𝛼, ⟩ be a measure and let (.) be a faithful cycle breaking for Π. Then, 
for 𝜇′ = ⟨(Π), 𝛼, ⟩ it holds that 𝜇(𝑎) = 𝜇′(𝑎) for every 𝑎 ∈(Π).

Proof. In the proof of Theorem 25 we see that for each interpretation  ⊆ (Π) there can exist at most one answer set 𝑒𝑥𝑡 of 
T -UNFOLD(Π, 𝑠) such that  =(Π) ∩ 𝑒𝑥𝑡. Therefore, if T -unfolding is faithful for Π and 𝑠 we see that either  is an answer set 
of Π and there exists exactly one answer set 𝑒𝑥𝑡 of T -UNFOLD(Π, 𝑠) such that  =(Π) ∩ 𝑒𝑥𝑡 or  is not an answer set of Π and 
there does not exist an answer set 𝑒𝑥𝑡 of T -UNFOLD(Π, 𝑠) such that  =(Π) ∩ 𝑒𝑥𝑡. Further, this implies that if 𝑒𝑥𝑡 is an answer 
set of T -UNFOLD(Π, 𝑠), then  =(Π) ∩ 𝑒𝑥𝑡 is an answer set of Π.

Now let 𝑎 ∈(Π). We know that 𝜇′(𝑎) is the sum of �𝛼�(𝑒𝑥𝑡) over all answer sets 𝑒𝑥𝑡 of T -UNFOLD(Π, 𝑠). Since 𝛼 contains 
only variables in (Π) it holds that �𝛼�(𝑒𝑥𝑡) = �𝛼�(𝑒𝑥𝑡 ∩(Π)). However,  = 𝑒𝑥𝑡 ∩(Π) is guaranteed to be an answer set of 
Π. Together with our previous observations it follows 𝜇′(𝑎) = 𝜇(𝑎). □

Theorem 20. There is a family of programs (Π𝑛)𝑛∈ℕ such that

1. DEP(Π𝑛) has exactly one simple cycle,

2. the treewidth of Π𝑛 is bounded by a constant (independent of 𝑛),

3. the number of atoms and rules of Π𝑛 is linear in 𝑛, and

4. the treewidth of MJ(Π𝑛) grows linearly with 𝑛.

Proof. For this, we define

Π𝑛 ={{𝑣(𝑖)}←∣ 𝑖 = 1,… , 𝑛}
42

∪ {{𝑒(𝑖, 𝑗)}←∣ 𝑖, 𝑗 = 1,… , 𝑛, 𝑖+ 1 ≡ 𝑗 mod 𝑛}
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∪ {𝑖𝑛(𝑖)← 𝑣(𝑖) ∣ 𝑖 = 1,… , 𝑛}

∪ {𝑖𝑛(𝑖)← 𝑒(𝑖, 𝑗), 𝑖𝑛(𝑗) ∣ 𝑖, 𝑗 = 1,… , 𝑛, 𝑖+ 1 ≡ 𝑗 mod 𝑛}.

Intuitively, Π𝑛 takes the directed graph over 𝑛 vertices with arcs

(1,2), (2,3),… , (𝑛− 1, 𝑛), (𝑛,1),

thus inducing exactly one cycle 1, 2, … , 𝑛, 1. Then, it guesses a random subset of it. All vertices are kept such that 𝑣(𝑖) holds or the 
edge of the predecessor is present 𝑒(𝑖, 𝑗) and the vertex 𝑗 was kept.

For all 𝑛 it holds that DEP(Π𝑛) has exactly one simple cycle, namely

𝑖𝑛(1), 𝑖𝑛(2),… , 𝑖𝑛(𝑛), 𝑖𝑛(1).

In order to prove that the treewidth of PRIM(Π𝑛) is bounded by a constant, we define a tree decomposition (𝑇𝑛, 𝜒𝑛) as follows:

𝑇𝑛 = (𝑉𝑛,𝐸𝑛),

𝑉𝑛 = {𝑡𝑖 ∣ 𝑖 = 1,… , 𝑛},

𝐸𝑛 = {(𝑡𝑖, 𝑡𝑖+1) ∣ 𝑖 = 1,… , 𝑛− 1},

𝜒𝑛(𝑡𝑖) =
{

{𝑣(𝑖), 𝑛𝑣(𝑖), 𝑖𝑛(𝑖), 𝑖𝑛(𝑖 + 1), 𝑒(𝑖, 𝑖+ 1), 𝑛𝑒(𝑖, 𝑖+ 1), 𝑖𝑛(1)} if 𝑖 = 1,… , 𝑛− 1,
{𝑣(𝑛), 𝑛𝑣(𝑛), 𝑖𝑛(𝑛), 𝑖𝑛(1), 𝑒(𝑛,1), 𝑛𝑒(𝑛,1)} if 𝑖 = 𝑛.

First note that (𝑇𝑛, 𝜒𝑛) is a tree decomposition of PRIM(Π), since every rule is contained in a bag completely and every subgraph of 
𝑇𝑛 induced by taking only those vertices 𝑡𝑖 whose bag contains an atom 𝑎 is connected. Furthermore, the width of (𝑇𝑛, 𝐸𝑛) is 6 and 
therefore bounded by a constant independent of 𝑛.

It remains to show that the treewidth of PRIM(MJ(Π𝑛)) grows linearly with 𝑛. For this, we first construct the program MJ(Π𝑛):

{{{𝑣(𝑖)}←∣ 𝑖 = 1,… , 𝑛}

∪ {{𝑒(𝑖, 𝑗)} ∣ 𝑖, 𝑗 = 1,… , 𝑛, 𝑖+ 1 ≡ 𝑗 mod 𝑛}

∪ {𝑖𝑛(𝑖)𝐹 ← 𝑣(𝑖) ∣ 𝑖 = 1,… , 𝑛,𝐹 ∈ ch𝑖}

∪ {𝑖𝑛(𝑖)𝐹 ← 𝑒(𝑖, 𝑗), 𝑖𝑛(𝑗)𝐹∪{𝑖𝑛(𝑖)} ∣ 𝑖, 𝑗 = 1,… , 𝑛, 𝑖+ 1 ≡ 𝑗 mod 𝑛,𝐹 ∈ ch𝑖},

where ch𝑖 denotes the set of chains of atoms that can be used to derive in(𝑖), given by

{∅,{𝑖𝑛(𝑖− 1)},{𝑖𝑛(𝑖− 1), 𝑖𝑛(𝑖− 2)},… ,

{𝑖𝑛(𝑖− 1),… , 𝑖𝑛(1), 𝑖𝑛(𝑛),… , 𝑖𝑛(𝑖 + 1)}}.

Then, the primal graph of MJ(Π𝑛) contains at least the following edges:

1. {𝑖𝑛(𝑖)𝐹 , 𝑖𝑛(𝑗)𝐹∪{𝑖𝑛(𝑖)}} for 𝑖, 𝑗 = 1, … , 𝑛 and 𝐹 ∈ ch𝑖 such that 𝑖 + 1 ≡ 𝑗 mod 𝑛 and 𝑖𝑛(𝑗) ∉ 𝐹 , and
2. {𝑖𝑛(𝑖)𝐹 , 𝑒(𝑖, 𝑗)} for 𝑖, 𝑗 = 1, … , 𝑛 and 𝐹 ∈ ch𝑖 such that 𝑖 + 1 ≡ 𝑗 mod 𝑛 and 𝑖𝑛(𝑗) ∉ 𝐹 .

In order to show lower bounds on the width of every tree decomposition of the primal graph, we need the following two facts:

Min degree lower bound [94] The treewidth of a graph 𝐺 is at least its smallest node degree, i.e.

min
𝑣∈𝑉 (𝐺)

|{𝑣′ ∣ {𝑣, 𝑣′} ∈𝐸(𝐺)}|.
Minor monotonicity [73] Given a graph 𝐺, the treewidth of any graph minor 𝐺′ of 𝐺, i.e. a graph obtained from 𝐺 by deleting 
vertices or edges or by contracting edges, is at most as high as the treewidth of 𝐺.

This means that it is sufficient to show that there is a graph minor of the primal graph of Π𝑛 such that the minimum degree of a 
vertex in it is in Ω(𝑛).

We proceed as follows. First, we contract all the edges of the first form. Since, we have for each 𝑖 = 1, … , 𝑛 an edge sequence

{𝑖𝑛(𝑖)∅, 𝑖𝑛(𝑖+ 1){𝑖𝑛(𝑖)}},

{𝑖𝑛(𝑖+ 1){𝑖𝑛(𝑖)}, 𝑖𝑛(𝑖+ 2){𝑖𝑛(𝑖),𝑖𝑛(𝑖+1)}},… ,{𝑖𝑛(𝑖− 2)𝐹 , 𝑖𝑛(𝑖− 1)𝐹∪{𝑖𝑛(𝑖−2)}}

that we contract, the vertex 𝑟𝑒𝑠(𝑖) resulting from contracting it has neighbors

{𝑒(𝑖′, 𝑗′) ∣ 𝑖′, 𝑗′ = 1,… , 𝑛, 𝑖′ ≠ 𝑖, 𝑖′ + 1 ≡ 𝑗′ mod 𝑛}
43

due to the second kind of edges.
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Similarly, 𝑒(𝑖, 𝑖 + 1) for 𝑖 = 1, … , 𝑛 − 1 has neighbors {𝑟𝑒𝑠(𝑖′) ∣ 𝑖′ ≠ 𝑖 + 1}. Thus, if we remove every other vertex that is not of the 
form 𝑟𝑒𝑠(𝑖) or 𝑒(𝑖, 𝑗), then every vertex in the remaining graph minor has at least 𝑛 − 1 neighbors. From the min-degree lower bound 
it follows that the primal graph of MJ(Π𝑛) has treewidth at least 𝑛 − 1. □

Theorem 21. Let Π be a normal answer set program of treewidth 𝑘 such that the largest strongly connected component of DEP(Π) has size 
𝑠. Then, the treewidth of JN(Π) is in (𝑘2 + 𝑘 log2(𝑠)).

Proof. Let (𝑇 , 𝜒) be an optimal tree decomposition of PRIM(Π). We can modify it to be a tree decomposition of PRIM(JN(Π)), 
resulting in (𝑇 ′, 𝜒 ′), where

𝑇 ′ =𝑇 ,

𝜒 ′(𝑡) =𝜒(𝑡) ∪ {𝐧𝐞𝐱𝐭(𝑎), 𝐣𝐮𝐬𝐭(𝑎) ∣ 𝑎 ∈ 𝜒(𝑡)} ∪
⋃
𝑎∈𝜒(𝑡)

bin(𝑎)

∪{𝐥𝐭(𝑏, 𝑎), 𝐬𝐮𝐜𝐜(𝑏, 𝑎) ∣ 𝑎, 𝑏 ∈ 𝜒(𝑡), 𝐥𝐭(𝑏, 𝑎) ∈(JN(Π))}.

Here, bin(𝑎) refers to the set of variables that are used to encode the binary counter for 𝑎 ∈(Π). For each 𝑎 ∈(Π) there are at 
most ⌈log2(𝑠)⌉ such variables.

Observe that the width upper bound holds, since

|𝜒 ′(𝑡)| = |𝜒(𝑡)|+ |{𝐧𝐞𝐱𝐭(𝑎), 𝐣𝐮𝐬𝐭(𝑎) ∣ 𝑎 ∈ 𝜒(𝑡)}|+ ∑
𝑎∈𝜒(𝑡)

|bin(𝑎)|
+ |{𝐥𝐭(𝑏, 𝑎), 𝐬𝐮𝐜𝐜(𝑏, 𝑎) ∣ 𝑎, 𝑏 ∈ 𝜒(𝑡), 𝐥𝐭(𝑏, 𝑎) ∈(JN(Π))}|

≤ 𝑘+ 𝑘+ 𝑘⌈log2(𝑠)⌉+ 𝑘2

The last expression is in (𝑘2 + 𝑘 log2(𝑠)), as claimed.
It remains to show that (𝑇 ′, 𝜒 ′) is a tree decomposition of PRIM(JN(Π)). This follows form the fact that (𝑇 , 𝜒) is a tree decompo-

sition of PRIM(Π). Therefore, for every rule 𝑟 ∈ Π there exists a bag 𝑡 ∈ 𝑇 such that ℎ𝑒𝑎𝑑(𝑟) ∪ 𝑏𝑜𝑑𝑦(𝑟) ⊆ 𝜒(𝑡). In JN(Π) we only add 
rules that are based on an original rule 𝑟 ∈ Π, meaning that they only use atoms from 𝑟 or auxiliary atoms that are related to atoms 
in 𝑟. i.e. when an additional rule uses any of 𝐧𝐞𝐱𝐭(𝑎), 𝐣𝐮𝐬𝐭(𝑎), 𝐥𝐭(𝑏, 𝑎) or 𝐬𝐮𝐜𝐜(𝑏, 𝑎) then both 𝑎 and 𝑏 must occur in 𝑟. Since we defined 
𝜒 ′(𝑡) in such a way that it includes all auxiliary atoms that are related to the atoms in 𝜒(𝑡) this means all additional rules derived 
from a rule 𝑟 are completely contained in 𝜒 ′(𝑡), when 𝑟 is completely contained in 𝜒(𝑡). □

Lemma 24. Let Π be an answer set program and 𝑠 ∈(Π)∗ be an unfolding sequence. Then, UF(DEP(Π), 𝑠) = DEP(T -UNFOLD(Π, 𝑠))
(when identifying 𝑎 with 𝑎cnt(𝑎,𝑠)).

Proof. We proof this lemma by induction on the length of 𝑠. If |𝑠| = 0, then the program T -UNFOLD(Π, 𝑠) contains only constraints 
and thus DEP(T -UNFOLD(Π, 𝑠)) is the empty digraph. On the other hand, UF(DEP(Π), 𝑠) is also equal to the empty digraph.

Next, we prove the induction step. Assume the lemma holds for all 𝑠 of length up to 𝑛. Now let 𝑠 = 𝑠′𝑠𝑛+1 an unfolding sequence 
of length 𝑛 + 1. Then, T -UNFOLD(Π, 𝑠) is equal to the union of T -UNFOLD(Π, 𝑠′) and the rules that were added in the 𝑛 + 1-th 
iteration (modulo renaming of 𝑠𝑐𝑛𝑡(𝑠𝑛+1)

𝑛+1 to 𝑠𝑛+1). Thus we can apply the induction hypothesis and obtain that

DEP(T -UNFOLD(Π, 𝑠′)) = UF(DEP(Π), 𝑠′).

We now consider the additional rules that were added in the 𝑛+1-th iteration. Then

𝑉 (DEP(T -UNFOLD(Π, 𝑠))) = 𝑉 (DEP(T -UNFOLD(Π, 𝑠′))) ∪ {𝑠𝑐𝑛𝑡(𝑠𝑛+1)
𝑛+1 }

= 𝑉 (UF(DEP(Π), 𝑠′)) ∪ {𝑠𝑐𝑛𝑡(𝑠𝑛+1)
𝑛+1 }

= 𝑉 (UF(DEP(Π), 𝑠)).

Furthermore, the edges that are added to the dependency graph after the 𝑛 + 1-th iteration are of the form (𝑏, 𝑠𝑛+1) for (𝑏, 𝑠𝑛+1) ∈
𝐸(DEP(Π)), since we only add rules that derive 𝑠𝑛+1 and because we only add rule copies (see line 10). On the other hand, if (1) 
(𝑏, 𝑠𝑛+1) ∈ 𝐸(DEP(Π)) and (2) 𝑏 occurred in 𝑠′, then we add an edge (𝑏, 𝑠𝑛+1) as (1) implies that there is a rule that uses 𝑏 to derive 
𝑠𝑛+1 and (2) implies that a copy of the rule is added that has 𝑏 in the body (as 𝑙𝑎𝑠𝑡(𝑏) = 𝑏). This exactly correspond to the edges that 
we define to be in 𝐸(UF(DEP(Π), 𝑠)) for 𝑘 = 𝑛 + 1. □

Theorem 25. Let Π be an answer set program and 𝑠 ∈(Π)∗ be an unfolding sequence. If for every simple directed path 𝜋 = (𝑎1, … , 𝑎𝑛) in 
DEP(Π) some directed path 𝜋𝑐 = (𝑎𝑐11 , … , 𝑎𝑐𝑛𝑛 ) in UF(DEP(Π), 𝑠) exists, then T -UNFOLD(., 𝑠) is faithful for Π.

Proof. Let Π be an answer set program, 𝑠 an unfolding sequence that satisfies the precondition of the theorem and  ⊆(Π). We 
44

know that for all 𝑠 the reduct T -UNFOLD(Π, 𝑠)𝑒𝑥𝑡 for 𝑒𝑥𝑡 ∩(Π) =  is T -UNFOLD(Π, 𝑠) as the rules added in line 12 use the 
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original negative body 𝐵−(𝑟), which only uses atoms from (Π). Hence we can consider T -UNFOLD(Π, 𝑠) , which has a unique 
minimal model. We see that if T -UNFOLD(Π, 𝑠) has an answer set 𝑒𝑥𝑡 equal to  on (Π), then it is the only such answer set.

By the same argument we see, that taking the reduct w.r.t.  and T -Unfolding commute: T -UNFOLD(Π, 𝑠) = T -UNFOLD(Π , 𝑠). 
Since  is an answer set iff it is a minimal model of the reduct Π , it remains to show that 𝑎 ∈(Π) is derivable from Π iff it is 
derivable from T -UNFOLD(Π , 𝑠). Since both programs are positive, 𝑎 is derivable iff it has an SLD tree. W.l.o.g. we can assume an 
SLD tree such that every path from the root to a leaf if simple. However, we know that 𝑠 preserves all simple paths and since the 
paths in every SLD tree correspond to paths in DEP(Π), we know there exists a corresponding SLD-tree in T -UNFOLD(Π , 𝑠). □

Theorem 22. For any factorized measure 𝜇 = ⟨Π, 𝛼, ⟩, we can construct in polynomial time in the size of Π given access to an NP-oracle 
a factorized measure 𝜇′ = ⟨Π′, 𝛼, ⟩ with an acyclic program Π′ such that

(i) for all 𝑎 ∈(Π) it holds that 𝜇(𝑎) = 𝜇′(𝑎),
(ii) the treewidth of Π′ is at most 𝑘 ⋅ cbs(DEP(Π)), where 𝑘 is the treewidth of Π, and

(iii) the size of Π′ is at most cbs(DEP(Π)) ⋅ |Π|.
For the proof we use the following auxiliary lemma.

Lemma 26. Let Π be an answer set program with treewidth 𝑘 and 𝑠 ∈(Π)∗ be an unfolding sequence. If every variable 𝑎 ∈(Π) occurs 
at most 𝑚 times in 𝑠, then the treewidth of T -UNFOLD(Π, 𝑠) is less or equal to 𝑘 ⋅𝑚.

Proof. We know that for each variable 𝑎 ∈(Π) we introduce at most 𝑚 − 1 copies 𝑎1, … , 𝑎𝑚−1 during unfolding. Now, let (𝑇 , 𝜒)
be an optimal tree decomposition for Π. We take (𝑇 , 𝜒 ′), where

𝜒 ′(𝑡) = 𝜒(𝑡) ∪ {𝑎𝑗 ∣ 1 ≤ 𝑗 ≤𝑚− 1, 𝑎 ∈ 𝜒(𝑡)}.

Recall line 11 of Algorithm 1, which is the only line where rules are added to the output program Π′. We see that for each such 
rule head ← 𝐵+

𝑛𝑒𝑤, 𝐵
−(𝑟) added at the iteration where we consider 𝑠𝑖, it holds that ℎ𝑒𝑎𝑑 is either a copy of 𝑠𝑖 or 𝑠𝑖 itself. The same 

holds for the atoms in 𝐵+
𝑛𝑒𝑤. For 𝐵−(𝑟) we even only have the original atoms.

The first condition for (𝑇 , 𝜒 ′) to be a tree decomposition is easily seen to be true. We know that (𝑇 , 𝜒) is a tree decomposition for 
PRIM(Π), therefore, every atom 𝑎 ∈(Π) is in 𝜒(𝑡𝑎). Accordingly, since (T -UNFOLD(Π, 𝑠)) only contains the original atoms 𝑎 or 
copies 𝑎𝑖 we know that 𝑎, 𝑎𝑖 ∈ 𝜒(𝑡𝑎).

Next we must check that for every edge {𝑥, 𝑦} in the primal graph of T -UNFOLD(Π, 𝑠) there is a node 𝑡 such that 𝑥, 𝑦 ∈ 𝜒 ′(𝑡). 
Again, we know that for every edge {𝑥, 𝑦} ∈ 𝐸(Π) there is a node 𝑡𝑥,𝑦 such that 𝑥, 𝑦 ∈ 𝜒(𝑡𝑥,𝑦). Furthermore, we know that there is 
an edge between 𝑥 and 𝑦 if they both occur in the same rule. Since the rules in T -UNFOLD(Π, 𝑠) are all copies of rules with copies 
of atoms, we know that if {𝑥, 𝑦} ∈ 𝐸(PRIM(T -UNFOLD(Π, 𝑠))), where the original atom of 𝑥 and 𝑦 are 𝑎 and 𝑏 respectively, then 
{𝑎, 𝑏} ∈𝐸(PRIM(Π)). It follows that 𝑥, 𝑦 ∈ 𝜒 ′(𝑡𝑎,𝑏).

Last but not least, since the subgraphs induced by removing all bags that do not contain a variable 𝑎 are trees in the original tree 
decomposition, this also holds for the new tree decomposition. Thus, (𝑇 , 𝜒 ′) is a tree decomposition of T -UNFOLD(Π, 𝑠).

Further, it is easy to see that |𝜒 ′(𝑡)| ≤ |𝜒(𝑡)| ⋅𝑚 ≤ 𝑘 ⋅𝑚. □

Theorem 29. The problem of checking whether cbs(𝐺) ≤ 𝑘 given a digraph 𝐺 and 𝑘 ∈ ℕ in the input is NP-complete.

Proof. NP-membership is easy to see by a guess and check algorithm.
For NP-hardness, we use a reduction from SAT, i.e. checking whether a CNF  has a satisfying assignment. We assume w.l.o.g. 

that  does not have any empty clauses. We construct a digraph 𝐺 with two vertices 𝑣𝑥 and 𝑣¬𝑥 for each variable 𝑥 ∈ 𝑉 𝑎𝑟𝑠() and 
its negation ¬𝑥 and one vertex 𝑣𝐶 for each clause 𝐶 . Then we add arcs to include a cycle between 𝑣𝑥 and 𝑣¬𝑥 for every variable 𝑥, 
in addition to one cycle 𝑣𝑙1 … 𝑣𝑙𝑛𝑣𝐶 for each clause 𝐶 = 𝑙1 ∨… 𝑣𝑛 ∈ .

Claim I: Let 𝑁 = |𝑉 𝑎𝑟𝑠()|. There exists a subset 𝑆 ⊆ 𝑉 (𝐺) such that 𝐺⧵𝑆 is acyclic of size 𝑁 iff the original CNF was satisfiable.
This can be seen as follows: Every subset 𝑆 ⊆ 𝑉 (𝐺) such that 𝐺 ⧵ 𝑆 is acyclic must have a size of at least 𝑁 , since for each 

variable we need to at least include 𝑥 or ∕𝑥 in 𝑆 . Since we additionally have a cycle 𝑣𝑙1 … 𝑣𝑙𝑛𝑣𝐶 for each clause 𝐶 = 𝑙1 ∨… 𝑣𝑛 ∈ 

every satisfying assignment  to  corresponds to a set

𝑆 = {𝑣𝑙 ∣  ⊧ 𝑙, 𝑙 = 𝑥,¬𝑥,𝑥 ∈ 𝑉 𝑎𝑟𝑠()}

that satisfies 𝐺 ⧵ 𝑆 is acyclic. And additionally for every 𝑆 of size 𝑁 (implying that 𝑆 only contains vertices of the form 𝑣𝑥, 𝑣¬𝑥) 
such that 𝐺 ⧵𝑆 is acyclic, it holds that

𝑆 = {𝑥 ∈ 𝑉 𝑎𝑟𝑠() ∣ 𝑣𝑥 ∈ 𝑆}

is a satisfying assignment to . This proves the claim.
However, cbs(𝐺) does not ask for the minimum size of a backdoor 𝑆 such that 𝐺 ⧵ 𝑆 is acyclic. We can however force ev-
45

ery minimum solution for cbs(𝐺) to be of that form by performing an additional modification on 𝐺. Namely, we add vertices 
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𝑥1

¬𝑥1

𝑥2

¬𝑥2

𝑥3

¬𝑥3

𝑒𝑥𝑡𝑟𝑎1 𝑒𝑥𝑡𝑟𝑎2 𝑒𝑥𝑡𝑟𝑎3

𝐶1

𝐶2

𝐶3

Fig. A.13. The digraph 𝐺 constructed in the proof of Theorem 29 for the CNF  = {𝐶1 , 𝐶2, 𝐶3} with 𝐶1 = 𝑥1 ∨ 𝑥2 , 𝐶2 = ¬𝑥2 ∨ ¬𝑥3 , and 𝐶3 = 𝑥1 ∨ ¬𝑥3 . Note that the 
edges between 𝑥𝑖 (resp. ¬𝑥𝑖) and 𝑒𝑥𝑡𝑟𝑎𝑗 are by intent drawn in an overlapping manner to improve readability.

𝑒𝑥𝑡𝑟𝑎1, … , 𝑒𝑥𝑡𝑟𝑎𝑁 and arcs (𝑣𝑥, 𝑒𝑥𝑡𝑟𝑎𝑖), (𝑒𝑥𝑡𝑟𝑎𝑖, 𝑣¬𝑥) for every 𝑖 ∈ {1, … , 𝑁} and 𝑥 ∈ 𝑉 𝑎𝑟𝑠(). An example is shown in Fig. A.13. 
Observe that Claim I still holds for the modified graph, since every added cycle uses both 𝑣𝑥 and 𝑣¬𝑥, thus, removing either of them 
suffices.

Claim II: Let 𝐺 denote constructed graph. cbs(𝐺 ) ≤𝑁 + 1 iff  is satisfiable.
By proving this claim the reduction is completed. We already know that if  is satisfiable, then some set 𝑆 exists such that 

𝐺 ⧵ 𝑆 is acyclic and thus by case (i) and (iv) of the definition of cbs(.) we have cbs(𝐺 ) =𝑁 + 1, as desired. Assume now that 
cbs(𝐺 ) ≤𝑁 + 1. As  contains no empty clauses, 𝐺 is cyclic, strongly connected, and not a polytree (due to the extra vertices and 
arcs). Thus, we are in case (iv) of the definition of cbs(.) meaning we compute it by choosing 𝑆 ⊆ 𝑉 (𝐺 ) and multiplying cbs(𝐺 ⧵𝑆)
by (|𝑆| + 1); hence |𝑆| ≤𝑁 . Consider now the following three observations:

1. for {𝑣𝑥, 𝑣¬𝑥} and {𝑣𝑦, 𝑣¬𝑦} to lie in different SCCs of 𝐺 ⧵𝑆 without using vertices of the from {𝑣𝑥, 𝑣¬𝑥, 𝑣𝑦, 𝑣¬𝑦} for 𝑥, 𝑦 ∈ 𝑉 𝑎𝑟𝑠(), 
𝑆 needs to be at least of size 𝑁 since it needs to include all vertices 𝑒𝑥𝑡𝑟𝑎𝑖 for 𝑖 = 1, … , 𝑁 ;

2. for 𝐺 ⧵𝑆 to be a polytree and |𝑆| ≤𝑁 , the set 𝑆 needs to include at least 𝑁 ; and
3. for 𝐺 ⧵𝑆 to be acyclic and |𝑆| ≤𝑁 , the set 𝑆 needs to include 𝑣𝑥 or 𝑣¬𝑥 for each 𝑥 ∈ 𝑉 𝑎𝑟𝑠().

This means that we either need to remove a set 𝑆 such that 𝐺 ⧵𝑆 is cyclic but not strongly connected or a set 𝑆 of size 𝑁 such that 
𝐺 ⧵𝑆 is acyclic. The latter would imply that  is satisfiable and the former is impossible, since due to (1.) we would need 𝑆 of size 
at least 𝑁 to obtain 𝑁 different SCCs and using a set of size 𝑘 to obtain less than 𝑘 + 1 different SCCs is not helpful, since analogous 
observations hold for the obtained SCCs. □

Appendix B. Knowledge compilation for AASC

Here, we discuss in detail the different possible strategies that are currently employed to compile programs into tractable cir-
cuit representations. For this, we first recall the different circuit classes that are commonly used in the area of probabilistic logic 
programming and their associated theoretical guarantees.

B.1. Theoretical guarantees

A very simple circuit class is the MODS representation.

Definition 34 (MODS). A logical theory  over propositional variables  is a MODS theory, if it is of the form⋁
⊆ ,⊧

⋀
𝑣∈

𝑣 ∧
⋀

𝑣∈⧵
¬𝑣,

i.e. if it is a disjunction of its models, where each model is represented by the conjunction of its true literals.

Clearly, given a theory  in MODS representation tasks like probabilistic inference are possible in polynomial time in the size of 
the input  . However, the example of MODS also has obvious downsides: converting a program Π into an equivalent propositional 
46

theory  in MODS representation can result in a theory whose size is exponential in the one of Π, since we need one disjunct in 
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𝑑 ∧

∨

𝑎 ¬𝑎

∨

¬𝑏𝑏

∧
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∨
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∧

𝑎 ∨

𝑏 ¬𝑏

∧

𝑏∨

𝑎 ¬𝑎

Fig. B.14. An sd-DNNFs for 𝐶 = 𝑎 ∨ 𝑏 ∨ 𝑐 ∧ ¬𝑐 ∨ 𝑑.

for every answer set of Π. Thus, the size guarantee for the MODS representation of a program is rather weak, if it has many answer 
sets.

Corollary 35 (Size of MODS). Let Π be an answer set program. The smallest MODS representation of Π has size Θ(|(Π)| ⋅ |(Π)|).
Example 19. Consider the CNF

𝐶 = 𝑎 ∨ 𝑏 ∨ 𝑐 ∧ ¬𝑐 ∨ 𝑑.

It can be represented in MODS as follows:

𝐶 ≡

𝑎 ∧ 𝑏 ∧ 𝑐 ∧ 𝑑

∨ 𝑎 ∧ 𝑏 ∧¬𝑐 ∧ 𝑑

∨ 𝑎 ∧ 𝑏 ∧¬𝑐 ∧¬𝑑
∨ 𝑎 ∧¬𝑏∧ 𝑐 ∧ 𝑑

∨ 𝑎 ∧¬𝑏∧¬𝑐 ∧ 𝑑

∨ 𝑎 ∧¬𝑏∧¬𝑐 ∧¬𝑑
∨ ¬𝑎∧ 𝑏 ∧ 𝑐 ∧ 𝑑

∨ ¬𝑎∧ 𝑏 ∧¬𝑐 ∧ 𝑑

∨ ¬𝑎∧ 𝑏 ∧¬𝑐 ∧¬𝑑
∨ ¬𝑎∧¬𝑏∧ 𝑐 ∧ 𝑑

There are also other more intricate tractable circuit representations, which may be exponentially smaller and more importantly 
allow for size guarantees with respect to structural parameters such as treewidth.

One of the most prominent tractable circuit representations is sd-DNNF. It is a special case of negation normal form (NNF) [46]. 
The latter is a rooted directed acyclic graph in which each leaf node is labeled with either a literal, “true”, or “false”, and each 
internal node is labeled with a conjunction ∧ or a disjunction ∨. For any node 𝑛 in an NNF graph, Vars(𝑛) denotes all variables in 
the subgraph rooted at 𝑛. In abuse of notation, we refer by 𝑛 also to the formula represented by the graph 𝑛. sd-DNNF in NNF that 
satisfies the following additional properties (D), (d), and (s):

Decomposability (D): Vars(𝑛𝑖) ∩Vars(𝑛𝑗 ) = ∅ for any two children 𝑛𝑖 and 𝑛𝑗 of an and-node.
Determinism (d): 𝑛𝑖 ∧ 𝑛𝑗 is logically inconsistent for any distinct children 𝑛𝑖 and 𝑛𝑗 of an or-node.
Smoothness (s): Vars(𝑛𝑖) =Vars(𝑛𝑗 ) for any two children 𝑛𝑖 and 𝑛𝑗 of an or-node.

Example 20 (cont.). The NNF in Fig. B.14 is an sd-DNNF and equivalent to 𝐶 . We observe that for each and-node, labeled ∧ in the 
figure, the sets of variables that occur for the different children are disjoint. The NNFs of the form 𝑎 ∨¬𝑎 are necessary for the circuit 
to be smooth. Notably, in this sd-DNNF the NNF 𝑎 ∨¬𝑎 occurs twice. This is not necessary as NNFs can be DAGs. Thus, we could also 
point two arrows to the same NNF 𝑎 ∨ ¬𝑎.

A big selling point of sd-DNNFs is the fixed-parameter-tractability (FPT) result that gives a guarantee on the size and time needed 
to construct it.

Theorem 36 (Size of sd-DNNF [48]). Let 𝐶 be a CNF and (𝑇 , 𝜒) a tree decomposition of PRIM(𝐶), the primal graph of 𝐶 , with width 𝑘. 
Then, there is an equivalent sd-DNNF of size (2𝑘|𝐶|), which can be constructed in time (2𝑘poly(|𝐶|)) from 𝐶 and (𝑇 , 𝜒).
47

This theorem even holds for a more restricted class of sd-DNNFs, namely Sentential Decision Diagrams (SDD).
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Fig. B.15. A (right-linear) vtree for the SDD in Fig. B.14.

Definition 37 (Vtree, SDD [43]). Let  be a finite set of propositional variables. A vtree for  is a rooted binary tree 𝑇 = (𝑉 , 𝐸, 𝑡𝑟𝑜𝑜𝑡), 
whose leaves are labeled by variables from  in a one-to-one manner. Given 𝑡 ∈ 𝑉 , we denote by Vars(𝑡) the set of labels of leafs 
that occur in 𝑇 below 𝑡.

An SDD is a d-DNNF 𝐶 such that every and-node of 𝐶 has exactly two children, and there exists a vtree 𝑇 such that for each 
and-node 𝑛 = 𝑛1 ∧ 𝑛2 there exists a vertex 𝑡 in 𝑇 with children 𝑡1 and 𝑡2 such that Vars(𝑛𝑖) ⊆Vars(𝑡𝑖), 𝑖 = 1, 2.

Example 21 (cont.). The sd-DNNF is in fact also an SDD for the CNF 𝐶 . This is witnessed by the vtree displayed in Fig. B.15.

To the best of our knowledge, it is unknown whether for each sd-DNNF 𝐶 an equivalent SDD 𝐶 ′ of size polynomial in |𝐶| exists, 
meaning that it may be possible that sd-DNNFs can be much smaller than SDDs for some propositional theories. However, their 
structuredness gives us other additional possibilities. Given two SDDs 𝐶1, 𝐶2 that are structured by the same vtree 𝑇 , there is an 
operator APPLY, which computes an SDD 𝐶3 that is equivalent to 𝐶1 ∧ 𝐶2 (or 𝐶1 ∨ 𝐶2) and structured by 𝑇 in polynomial time 
in the size of 𝐶1 and 𝐶2 [43]. This allows us to compile an SDD for a Boolean circuit without introducing auxiliary variables for 
the and-nodes and or-nodes (as it usually happens, when we apply the Tseitin Transformation to the circuit to obtain a CNF). This 
strategy allows for a different size guarantee.

Theorem 38 (Size of SDD [49]). Let 𝐶 be a Boolean circuit and (𝑇 , 𝜒) be a tree decomposition of 𝐶 with width 𝑘. Then, there is an SDD 
that is equivalent to 𝐶 , whose size is in  

(
22(𝑘+2)2

𝑘+1+1+1 ⋅ |Vars(𝐶)|).

Importantly, the size of the circuit here is linear in the number of input variables of the Boolean circuit 𝐶 , rather than the size of 
the CNF of Theorem 36. On the other hand, the dependency on the treewidth 𝑘 is triple exponential, rather than single exponential.

It is not clear whether this is necessary. In fact, Amarilli et al. [52] were able to obtain a size upper bound of  
(
24(𝑘+1) ⋅ |Vars(𝐶)|)

that is constructive, with time bound  
(
25𝑘 ⋅ |Vars(𝐶)|), by dropping the requirements that vtrees are binary and that and-nodes 

should only have two children.
Another similar class that also features an APPLY operator is that of Binary Decision Diagrams (BDD). They can be defined as a 

special case of SDDs.13

Definition 39 (BDD [122]). A BDD is an SDD that is structured by a right-linear vtree 𝑇 , meaning that for every non-leaf node of 𝑇
it holds that its left child is a variable.

Example 22 (cont.). Since the vtree in Fig. B.15 is right-linear, the SDD in Fig. B.14 is also a BDD.

Intuitively, the restriction on the vtree to be right-linear takes away our possibility to decompose problems of the form 𝐶 =
𝐶1 ∧ 𝐶2, where 𝐶1 and 𝐶2 are CNFs that do not share variables, into the two subproblems 𝐶1 and 𝐶2. For SDDs and sd-DNNFs we 
can solve them independently and obtain a solution for the whole CNF 𝐶 . Accordingly, BDDs come with a weaker FPT result than 
SDDs and sd-DNNFs.

Theorem 40 (Size of BDDs I [50]). Let 𝐶 be a CNF and (𝑇 , 𝜒) be a path decomposition of PRIM(𝐶), the primal graph of 𝐶 , with width 𝑘. 
Then, there is an equivalent BDD of size (2𝑘|𝐶|), which can be constructed in time (2𝑘poly(|𝐶|)) from 𝐶 and (𝑇 , 𝜒).

Note that here the guarantee is only given in terms of pathwidth instead of treewidth, which is a weaker parameter.
As with SDDs, we have a separate result for the compilation of Boolean circuits of bounded pathwidth.

Theorem 41 (Size of BDDs II [51,52]). Let 𝐶 be a Boolean circuit and (𝑇 , 𝜒) be a path decomposition of 𝐶 with width 𝑘. Then, there is an 
equivalent BDD of size (2(𝑘+2)⋅2𝑘+2 ⋅ |Vars(𝐶)|), which can be constructed in time (2(𝑘+2)⋅2𝑘+2 ⋅ poly(|𝐶|)) from 𝐶 and (𝑇 , 𝜒).
48

13 Strictly speaking these BDDs are known as Ordered BDDs (OBDDs).
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Here in contrast to the same result for SDDs the dependency on the parameter 𝑘 is double exponential rather than triple expo-
nential. Arguably, pathwidth is a weaker parameter than treewidth, however only by at most a logarithmic factor in the number of 
vertices of the given graph [123]. In addition, since every BDD can be interpreted as an SDD, we also have the same guarantee for 
SDDs. Again, to the best of our knowledge it is not known whether the double exponential bound is tight [52].

This short summary of different circuit classes and known results that guarantee efficient compilation can serve us as a basis for 
judging different knowledge compilation based approaches to AASC. Of course, we still need to keep in mind that these theoretical 
guarantees may not be optimal, especially not on every instance, and that the Big-O notation hides constant factors. Furthermore, 
the practical efficiency also depends on how well engineered the used knowledge compilers are. Apart from this, these theoretical 
results are only used by some knowledge compilers practically, meaning that we may even end up with worse performance. Thus, 
these results should not be taken as the sole basis for choosing a knowledge compilation strategy but can at least serve as an indicator 
from the theoretical perspective.

B.2. Different approaches to the knowledge compilation step

In this section, we compare the different approaches to the knowledge compilation step in the overall pipeline of AASC based 
on the theoretical guarantees from above. Note that this is not a complete discussion in the sense that every possible approach is 
discussed. Instead, we only discuss approaches for which an implementation exists. Nevertheless, we still include approaches even 
when their current implementation does not make use of the FPT-guarantees explicitly.

Program to MODS This approach is used by LPMLN [10] and plingo [38]. By Corollary 35, we know that this means we need to 
consider each model once. Of course, finding models of a program is NP-hard but in practice this does not seem to lead to problems. 
When enumerating the answer sets as it is the case in LPMLN and plingo, the size guarantee is used explicitly. In fact, it is not even 
necessary to keep all the answer sets but it is sufficient to extract a value from each answer set and then discard it. Thus, this strategy 
is promising, when there are “few” answer sets14 but becomes infeasible quickly, since the linear dependency on the number of 
answer sets cannot be avoided.

Dynamic programming This approach is used by dynasp [21], which is currently specialized on counting the number of answer sets 
rather than probabilistic reasoning or even general AASC. The following result is the basis for the implementation.

Theorem 42 ([21]). Let Π be a ground program and let (𝑇 , 𝜒) be a tree decomposition of the primal dependency graph of Π with width 𝑘. 
Then, it is possible, assuming constant time semiring additions and multiplications, to perform AASC over Π in time (22𝑘+1 |𝑇 |).

Since dynasp is based on dynamic programming over the tree decomposition, the guarantee is used explicitly.

CNF to sd-DNNF This approach has been widely considered and is for example available in ProbLog [58,36]. Here, we can use the 
guarantees of Theorem 36, which are both in terms of size as well as time, and have the lowest (i.e. single exponential) dependency 
on the treewidth of the primal graph of the input formula. In fact, in the context of CNFs the result is not only of theoretical interest, 
quite on the contrary, recent results showed that using them as a primary means of guiding the variable selection during model 
counting is also highly beneficial in practice [47].

However, this assumes that we are given a CNF of low treewidth. A priori it is unclear whether a program of low treewidth also 
leads to a CNF suitable for compilation of low treewidth. We will discuss this in depth in Sections 6 and 7.

Ground acyclic program to SDD This is the current standard approach in the implementation of ProbLog [35]. Here, we do not first 
translate the program into a CNF via Clark’s Completion but interpret the program as a Boolean circuit and obtain an SDD that 
represents the truth of the extensional atoms in terms of only the input variables. In the case of probabilistic inference, these are 
the probabilistic facts. Here, we obtain a triple exponential upper bound in terms of treewidth on the size of the smallest SDD via 
Theorem 38 or a double exponential upper bound in terms of the pathwidth via Theorem 41. These upper bounds are not explicitly 
used in the implementation of ProbLog, which employs the APPLY operator on SDDs to build the SDDs in a bottom up manner, along 
the Boolean circuit. In order to keep the SDDs small, dynamic reordering of the vtree can be applied heuristically.

Recall that Theorem 36 also holds for compiling CNFs to SDDs [43]. Thus, we could also make use of its guarantees, given that 
we can obtain a CNF of small treewidth from a Boolean circuit of small treewidth. On the one hand, this would lead to a single 
exponential instead of a triple exponential dependency on the treewidth for the worst case guarantee. On the other hand, it would 
also come with a higher remaining factor that uses the size of the CNF instead of the number of input variables.

Ground program to SDD This approach is called T -compilation [39] and is also available in the implementation of ProbLog. Since 
the program is not necessarily acyclic we cannot see it as a Boolean circuit. Thus, we cannot use Theorem 38 directly to obtain 
guarantees. However, the theorem in fact also holds when there exists a circuit that defines the same Boolean function as the 
program [49]. Thus, we have the same theoretical guarantees here as for the acyclic case. Practically, these guarantees are not used 
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either since the APPLY operator is employed for compilation in a similar manner as before. Here, we need to make multiple passes 
over the program structure, which intuitively can be seen as a cyclic version of a Boolean circuit, until convergence of the SDDs.

Program to BDD This approach is used by the PITA system [13]. A theoretical guarantee can again be derived by Theorem 41. 
While the program is again not guaranteed to be acyclic, the theorem holds for any Boolean circuit that defines the Boolean function 
specified by the program [50]. Thus, the worst case guarantee here is equal or worse to the one in the previous case, since we only 
compile to BDD and not to SDD, which encompasses BDD as a special case. As with ProbLog, the guarantees are not used explicitly, 
since BDDs are built in a bottom-up manner by empolying the APPLY operator for BDDs. The BDDs can be dynamically minimized 
during compilation by heuristically adapting the variable ordering on the fly.

Ground program to sd-DNNF Last but not least it is important to mention the strategy of Aziz et al. [89]. They modified the knowledge 
compiler DSHARP to work on inputs that correspond to normal answer set programs. In their approach, they did not take care of 
acyclicity before but during compilation by adding so called loop formulas [90], which are clauses that prohibit cyclic derivations. 
This approach seems promising, since it does not need to blow up the size of the encoding with all potentially necessary acyclicity 
constraints but adds them only when needed. There is a downside to it however. Loop formulas as introduced by Lin and Zhao [90]
may span a whole SCC of the dependency graph of the program.15 Thus, the primal graph of the CNF for Clark’s Completion and 
all loop formulas of a program Π contains a clique for each SCC of DEP(Π). Since an SCC can potentially span large parts of the 
program, this may increase the treewidth drastically compared to the treewidth of the original program. Apart from that, not only 
the treewidth may suffer: we may end up with exponentially many additional clauses in the size of the largest SCC [91]. This version 
of DSHARP was removed from the ProbLog implementation, presumably for the above reasons. While there are strategies to reduce 
the number of necessary loop formulas [92,93], their adaptation would not circumvent the exponential worst case lower bound on 
the number of added clauses.

Appendix C. Knowledge compilation settings

We use the different solvers for knowledge compilation as follows:

d4 For d4, we simply used standard settings adding only the input arguments “-dDNNF”, to ensure that we obtain a d-DNNF as 
output, “-out=file_name.nnf”, to ensure that the d-DNNF is saved in the desired output file, and “-smooth”, to activate our minor 
modification that ensures the resulting d-DNNF is smooth.

SHARPSAT-TD For SHARPSAT-TD, we set the argument “-decot”, i.e. the time used by SHARPSAT-TD to compute a tree decompo-
sition based on the corresponding input argument to aspmc. The other arguments are set as follows:

• “-decow”, specifies the importance of tree decomposition guidance. We use 100.
• “-dDNNF”, is a new option that we added, and specifies that we want to use SHARPSAT-TD as a knowledge compiler.
• “-tmpdir”, simply specifies the temporary directory that SHARPSAT-TD should use. We use “/tmp/”.
• “-cs”, denotes the maximum size of the cache in megabyte. We fix it to “3500”.
• “-dDNNF_out”, specifies the filename that the d-DNNF should be written to. We set it to the name of a new temporary file.

Without the argument “-dDNNF_out” our modified version of SHARPSAT-TD prints the d-DNNF it compiles to stdout. This allows us 
to perform knowledge compilation and evaluation simultaneously. While we implemented this feature in aspmc it should only lead to 
a speed up by a factor of up to two and is not included in the empirical evaluation.

c2d For c2d, we set the following input arguments:

• “-smooth_all”, specifies that the final output d-DNNF should be smooth.
• “-reduce”, specifies that c2d should perform possible reduction steps before outputting the final d-DNNF.
• “-dt_in”, specifies the input dtree that should be used to guide the variable selection of c2d. While this is an optional argument, 

we chose to provide a dtree that we generated ourselves.
• “-cache_size”, specifies the maximum size of the cache, which we set to “3500”.

The other input arguments (apart from the CNF to compile) are not used.

miniC2D For miniC2D, we set the following input arguments:

• “-v”, specifies the input vtree that defines the order in which variables are decided by miniC2D. Similarly to the dtree argument 
of c2d, this argument is optional but we chose to provide a vtree that we generated ourselves.
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• “-s”, specifies the maximum size of the cache. We set it to “3500”.

The other input arguments (apart from CNF to compile) are not used.

Appendix D. Dtree and vtree generation

Algorithm 2 TD_TO_DTREE(𝐶, 𝑡𝑑).
Input A CNF 𝐶 and a tree decomposition 𝑡𝑑 of PRIM(𝐶).
Output A dtree for 𝐶 that corresponds to 𝑡𝑑.

1: td_node_to_clauses = {} # at which td node the clause should be handles
2: last_td_node = {} # at which td node each variable occurs last
3: idx = 0
4: bag_idx = list(td)
5: for bag in td.bag_iter() do

6: clauses[bag] = []
7: bag.idx = idx
8: for a in bag.vertices do

9: last_td_node = idx

10: idx += 1
11: # set where each clause should be handled
12: for i,c in enumerate(cnf.clauses) do

13: idx = min([ last_td_node[abs(b)] for b in c ])
14: td_node_to_clauses[bag_idx[idx]].append(i)

15: dtree_idx = [ None for _ in range(td.bags) ]
16: for bag in td.bag_iter() do

17: cur_dtree = None
18: for child in bag.children do

19: child_dtree = dtree_idx[child.idx]
20: if cur_dtree == None then

21: cur_dtree = child_dtree
22: else

23: if child_dtree != None then

24: cur_dtree = Dtree(right = cur_dtree, left = child_tree)

25: for i in td_node_to_clauses[bag] do

26: if cur_dtree == None then

27: cur_dtree = Dtree(val = i)
28: else

29: cur_dtree = Dtree(right = cur_dtree, left = Dtree(val = i))
30: # remember the final dtree for this bag
31: dtree_idx[bag.idx] = cur_dtree

32: return dtree_idx[td.get_root().idx]

We describe shortly how we generate dtrees and vtrees from a tree decomposition in such a way that the variables are decided 
in order of minimum distance from the root of the tree decomposition. Our strategy only slightly differs from that of Korhonen and
Järvisalo, [47]. Dtrees describe not the order in which variables are processed but the order in which clauses are processed, which 
implicitly specifies multiple orders in which the variables can be processed.

The algorithm to generate a dtree from a tree decomposition 𝑡𝑑 for a CNF 𝐶 is given in Algorithm 2. The general idea is that 
each clause of 𝐶 has to occur exactly once in the dtree. Then, for a dtree to correspond to a tree decomposition 𝑡𝑑, we want to first 
handle all the clauses whose variables occur in the root of 𝑡𝑑, remove them from the CNF and recurse for each of the children of the 
root on the remaining clauses, adding one subdtree for each child. Practically, it is expensive to check for each clause whether it is 
contained in the current bag of the tree decomposition. Instead, Algorithm 2 first checks (in lines 1-12) for each variable in 𝐶 , which 
bag of the tree decomposition is the last in post-order traversal to contain it. This tells us that the index of the last bag in post-order 
to contain all the variables of a clause 𝑐 is the minimum index over all variables (line 15). Then, we want to handle clause 𝑐 at this 
bag (line 16). Finally, we build the dtree from bottom up by traversing the tree decomposition again in post-order. Here, we first 
combine the dtrees of the children of the current bag (lines 22-27) before we add the clauses that need to be added at the current 
bag (lines 29-33). After processing the current bag, we store the corresponding dtree in a map from bags to dtrees. Then, the final 
dtree is the one that the root of the tree decomposition maps to.

The algorithm to generate a vtree from a tree decomposition works similarly; the only difference is that we directly work on 
variables instead of clauses.
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