
SMT-driven techniques for
verifying distributed systems

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der Technischen Wissenschaften

eingereicht von

Jure Kukovec , mag. mat.
Matrikelnummer 01652339

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Privatdoz. Igor Konnov, PhD.
Zweitbetreuung: Privatdoz. Dipl.-Ing. Dr.techn. Josef Widder

Diese Dissertation haben begutachtet:

Constantin Enea Viktor Kunčak

Wien, 21. März 2024
Jure Kukovec

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

SMT-driven techniques for
verifying distributed systems

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

Jure Kukovec , mag. mat.
Registration Number 01652339

to the Faculty of Informatics

at the TU Wien

Advisor: Privatdoz. Igor Konnov, PhD.
Second advisor: Privatdoz. Dipl.-Ing. Dr.techn. Josef Widder

The dissertation has been reviewed by:

Constantin Enea Viktor Kunčak

Vienna, 21st March, 2024
Jure Kukovec

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Jure Kukovec , mag. mat.

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 21. März 2024
Jure Kukovec

v

Abstract

Distributed systems, that is, networks of real or virtual components that collaborate in
solving an algorithmic task underpin many of our modern technologies. The correctness
of these systems is often critical; unpredictable system behavior can, in the worst cases,
result in major financial loss, confidential data breaches, or even physical harm. Because
of this, formal verification of these systems has been an active area of research for many
decades. With the advent of cloud services and cryptocurrencies, there has also been an
increase in demand, for newer, better, and more robust verification techniques.

The primary contribution of this thesis is a set of techniques for designing a symbolic
model checker for TLA+, with which one can verify properties of distributed algorithms.
We focus particularly on specifications of distributed algorithms, as the use of TLA+ has
recently been seeing rapid growth in the development of distributed systems. Specifically,
we:

1. Formalize the notion of a symbolic transition, an equivalence class of transitions
in the state-space defined by an algorithm specification. This is both a necessary
prerequisite for symbolic verification, as well as a finite abstraction, reducing a
potentially infinite number of real transitions, to a finite family of symbolic ones.

2. Define an encoding of constructs in the kernel of TLA+ to first-order logic, suitable
for SMT solvers. This allows us to symbolically encode a bounded execution of the
algorithm specification, and the properties we wish to verify, as an SMT formula,
which can be passed to an off-the-shelf SMT solver.

3. Design a type system for TLA+, as well as a technique for automatic type inference.
Types are both necessary, to bridge the gap between conventionally untyped TLA+

and typed SMT, and helpful, because algorithm designers are typically familiar
with types and their uses in programming languages, and many errors, especially
in the incremental design of an algorithm, can already be caught by type analysis.

vii

Contents

Abstract vii

Contents ix

1 Introduction 1
1.1 Distributed systems . 1
1.2 Challenges . 4
1.3 Contributions . 5
1.4 Applications . 6
1.5 Publications . 6

2 Thesis roadmap 9

3 A primer on TLA+ 13
3.1 The fundamentals of TLA+ . 13
3.2 Peculiarities of TLA+ . 17

4 Fundamentals of model checking 23
4.1 A brief introduction to explicit-state model-checking 23
4.2 A brief introduction to symbolic model-checking and SMT 26

5 State of the art in verification 29
5.1 TLC . 29
5.2 TLAPS . 30
5.3 Alloy . 30
5.4 The B-method ecosystem . 31
5.5 Z notation . 32
5.6 Type retrofitting . 32
5.7 ByMC . 33
5.8 Ivy . 34

6 Symbolic transitions in TLA+ 37
6.1 Introduction . 37
6.2 Abstract syntax α-TLA+ . 39

ix

6.3 Preliminary definitions . 41
6.4 Formalizing symbolic assignments . 43
6.5 Finding assignment strategies with SMT 50
6.6 Soundness of our approach . 59
6.7 Experiments and potential applications 69
6.8 Conclusions . 72

7 TLA+ model checking made symbolic 73
7.1 Introduction . 73
7.2 Example: the two-phase commit protocol in TLA+ 75
7.3 Preprocessing: flattening, assignments, and types 78
7.4 KerA+: the kernel language of TLA+ expressions 79
7.5 Rewriting framework . 81
7.6 Sets . 85
7.7 Picking set elements . 89
7.8 Tuples and records . 90
7.9 Functions and sequences . 91
7.10 Control operators and quantifiers . 93
7.11 Soundness of the reduction to SMT . 95
7.12 Implementation . 99
7.13 Experiments . 100
7.14 Related work . 104
7.15 Conclusions . 106

8 Type inference for TLA+: typing the untyped 109
8.1 Introduction . 109
8.2 A refresher on TLA+: Notable features 111
8.3 Normalized TLA+ . 115
8.4 Defining the type system τtla . 116
8.5 Assigning meaningful types to TLA+ expressions 121
8.6 A logical encoding of types . 124
8.7 Logical encoding of type schemas . 132
8.8 Logic constraints for type inference . 135
8.9 Implementation and experiments . 140
8.10 Related work . 144
8.11 Discussions . 145
8.12 Conclusions . 146
8.13 Schemas of all built-in operators . 146

9 Conclusions 151
9.1 Future Work . 152

Bibliography 155

CHAPTER 1
Introduction

1.1 Distributed systems
The term distributed systems refers to a broad category of systems, where tasks are
performed not by a single unit or device, but collectively by multiple (real or virtual)
components. While the original meaning was restricted to physically separated computa-
tional units, the modern interpretation, brought about by new technologies, for example
multiprocessor hardware, has been extended to include such systems as well. Distributed
systems are incredibly common. Modern telecommunications (phone, emails, etc.) might
be the most obvious, but there are many examples of technologies enabled by less visible
distributed systems.

Example: Cryptocurrencies. In 2008, the now famous cryptocurrency Bitcoin [Nak]
was invented, and eventually became a hosehold name, followed by others, such as
Ethereum’s ether, or Cosmos’ atoms. Perhaps more interesting than the currency itself
was the technology behind it: blockchain [NGHS17]. To understand the significance of
this technology, we must first understand real currency, and the holding and transfer of
money. Suppose Alice and Bob both own accounts at the same bank (for simplicity).
In order for Alice to transfer Bob some money, she must request a transfer from the
bank. The bank then reviews the transaction, approves or denies it and updates the
balances of both parties accordingly. Importantly, the bank is the final arbiter for all
information disputes; Alice and Bob, and an arbitrary number of external witnesses,
may all agree that a transaction was possible (i.e. did not exceed the balance of Alice’s
account), that it happened, and that the new balances have changed, but as long as
that the bank disagrees, the transaction effectively never happened. Worse still, in the
hypothetical case that the bank’s database is compromised (or just faulty), neither party
has the technological means to dispute fictitious transactions. Cryptocurrencies, on the
other hand, operate without such central authorities. Underpinning blockchain is the

1

1. Introduction

problem of distributed consensus [PSL80] [Lyn96, Chapter 7, 12], in other words: actors
in the blockchain system collectively decide truth and history. When an actor proposes a
transaction, other actors are rewarded for validating it (e.g. proof-of-work [Nak, Section
4]). Theoretically, unless a single actor owns the majority of the processing power of
all actors combined, the collectively computed state and history are reliable, which
makes blockchain highly resilient to both faults and malicious agents (see Byzantine fault
tolerance [Lyn96, Chapter 2.2]).

◁

Example: SETI. Other famous examples include a program by the Search for Ex-
traterrestrial Life Institute (SETI), called SETI@home [ACK+02]. Their task, analyzing
vast amounts of radio telescope data, was very computationally expensive. Researchers
appealed to the public for help: individuals could download a program to run on their
home computers, presumably overnight or when idling, which would perform some of
the computational work and send it back to the researchers. According to their website
[set], the initiative ran for over 20 years, logging millions of years of computing time.
They claim the cumulative network of computers could at its peak be considered as
one of the most powerful supercomputers on the planet. The success of this initiative
spurred several other public-assistance driven programs, like Folding@ home [P+10] or
climateprediction.net [SAF+04]. ◁

Example: Torrents. Its connection to piracy notwithstanding, torrenting, as a tech-
nology, is an interesting method of disseminating data among a network of participants.
Assume we know how to send a file from one process (computer) to another via a direct
(peer-to-peer) connection. Torrenting works in the following way: An initial process
A (seed) lists a file it owns as available for dissemination. Another process B (leech)
establishes a peer-to-peer (P2P) connection to process A. However, when process B
finishes copying the file from process A, process B becomes a seed as well. Next time,
when a process C intends to copy that same file, instead of copying the entire file from
A, it establishes two connections, to both A and B, and copies parts of the file from each.
As more processes act as seeds, the transfer speed and robustness improve, as a single
faulty or slow P2P connection becomes less of a bottleneck, due to redundancy. While
this is a simplification, as there are more components in a real torrenting ecosystem
(indexers, trackers), as well as dynamism in the network topology, as processes may
arbitrarily abandon their roles as seeders or leechers, at its core, torrenting is one of the
more elegant protocols, implementing data dissemination in a distributed network from
P2P connections. ◁

Note that we list the above examples merely as illustration of the fact that distributed
systems are widespread in everyday life, not necessarily as systems this work intends to
reason about.

What makes the distributed setting different from the single-component setting is com-
munication; while the execution and correctness of a task/algorithm is important in both

2

1.1. Distributed systems

scenarios, the distributed setting must additionally account for information exchange: at
certain points in time, a component must share the results of its computation with other
components.

Nancy Lynch categorizes distributed systems in her textbook The Distributed Algorithms
[Lyn96] based on three facets: the communication model, the synchrony model, and
the fault model. While not part of that characterization (though certainly considered
in the book), we consider another facet: network topology. Network topology dictates
which components are connected. Typically, this is represented by a directed graph,
in which vertices are components and edges represent the ability of one component to
send information to another. For example, one of the simplest families of distributed
system are rings: systems where the network is represented by a connected graph, in
which every vertex has exactly one outgoing and one incoming edge. Properties of
distributed algorithms over rings have been extensively studied, see [Lyn96, Chapter
3] or [BJK+15] for more details. Communication models, on the other hand, specify
how processes exchange information. Examples of different models include peer-to-peer
messaging, in which a message is sent individually to each recipient (if multiple), broadcast
messaging, in which a message is sent once, and received by all of its intended recipients,
and shared-memory based communication (e.g. in a multiprocessor setting), where
actors read from, and write to, overlapping regions of memory. Other characterizations
include instant- versus queue-based messaging and more. Synchrony models specify the
granularity of actions: in synchronous systems, time is abstractly discretized into steps
and each component performs one sub-task and sends messages (which are also received)
in each step, while in asynchronous systems, time is abstractly continuous and individual
components perform their tasks not in pre-specified intervals, but whenever they have
the ability to do so, for example whenever a message, with delivery time, is received
(however, there is no upper bound on delivery time). Partially-synchronous systems
lie somewhere between these two extremes, for example when upper bounds on delivery
time exist, but are not known, or when the system starts out behaving asynchronously,
but becomes synchronous after some unknown period of time.

Lastly, distributed systems can sometimes have an advantage over single-component
systems, in the sense that they may be able to tolerate faults. In a single-component
setting, if said component fails, e.g. for hardware reasons, this is typically unrecoverable.
However, there exists a family of distributed systems, called fault-tolerant systems
[Avi76, KK20], for which a limited number of faults, either at the component- or at the
communication-level is manageable, in the sense that the correct parts of the system
may collectively compute the correct result, in spite of the faults present. Fault models
range from more simple, where a component completely ceases to function (crash faults)
or becomes unable to send messages to a particular set of other components (unreliable
communication), to more complex, in which a component may act maliciously and send
arbitrary messages to other components (byzantine faults). Fault-tolerant distributed
systems play an important role in ensuring stability, often at the cost of some minor
redundancy, for example in modern cloud-based data storage [ZXHW10].

3

1. Introduction

Famous examples, and the likes of which we analyse in later parts of this work, in-
clude Paxos [L+01] (and many of its derivatives) and Raft [Ong14], crash-fault-tolerant
distributed consensus algorithms, or Tendermint [BKM18], a byzantine-fault-tolerant
distributed consensus algorithm for blockchains.

Example: Paxos. Paxos, first introduced by Leslie Lamport in [Lam98] as a story
about a fictional island and its legislators and later summarized in a more traditional
paper-format in [L+01], is an algorithm, that tackles the problem of distributed consensus.
Specifically, given a set of processes with the ability to propose values, it describes
the steps the processes must take to agree on a single value, such that a) that value
was proposed by at least one of the processes, b) the agreed-upon value is the same
for all processes, and c) no process mistakenly assumes consensus, where none exists.
The requirements on the processes are quite lax: processes are asynchronous, meaning
that time intervals between two actions of a process are arbitrary, and may exhibit
crash faults (and recovery). The presence of crashes and restarts means that, barring
additional constraints, the algorithm does not guarantee termination. The inter-process
communication is similarly permissive: message delivery times are arbitrary, and any
message sent may arrive more than once, or never at all (but remains unaltered, if it
does arrive). A high-level outline of the algorithm is as follows: Participating processes
are marked as proposers or acceptors (or both), the first deciding which values are
taken into consideration for acceptance, and the latter deciding which proposed value
to actually accept. One proposer broadcasts its intent to select a value (but not the
value itself) to a majority of acceptors, i.e., sends a prepare request. Acceptors return a
message acknowledging the receipt of a prepare request, and include any accepted value
proposals (since the message may have arrived late, due to communication delay). If a
proposer receives acknowledgments from a majority of acceptors, it either selects the most
appropriate value (details on how this is selected are omitted here), from value proposals
included in the acknowledgment, if there are any, or an arbitrary value otherwise. This
step allows proposers to catch up with information about value proposals made by other
processes. The selected value is then sent to acceptors as a part of an accept request. Any
acceptor that receives an accept requests accepts the proposal, except in the case that it
has already responded to a prepare request with greater precedence (details omitted). In
addition to the above, Paxos describes a third category of processes, learners, responsible
for detecting that a majority of acceptors have agreed to accept the same proposal. For
more details, see [L+01, Lam98]. ◁

1.2 Challenges
In this section, we present the central challenges addressed by this work. Before we can
formulate them, however, we must first introduce the notion of specifications.

Specifications. A specification of a (distributed) system or algorithm, is the formaliza-
tion of said system or algorithm and its logical properties in some specification language

4

1.3. Contributions

(for example, TLA+ [Lam94]). Specification languages, unlike natural languages, have
explicit and unambiguous semantics, and typically borrow notation from mathematics
or programming languages. Formal semantics and lack of ambiguity then allows for the
existence of tools, with which these specifications can be automatically verified. For
example, the natural-language expression "... receives a message from at least one correct
process", which one is likely to find when reading about fault-tolerant algorithms, could
be represented as "Cardinality(messages) ≥ f + 1" (where f is an upper bound on the
number of faulty processes). The work presented in this thesis focuses primarily on the
specification language TLA+.

General verification challenge. Given a specification of a distributed system, or
parts thereof, and its behavior in a suitable formalism, for example TLA+, and a property
of the system described in the same formalism, we wish to verify whether the property
holds true of the system and/or its behavior.

Unfortunately, the general verification challenge is far too broad. Specifically, many
system properties encode within, or reduce to, other known undecidable problems. For
example, [KKW18] shows that deciding a form of reachability in the system’s state space
in some cases reduces to solving the halting problem for two-counter machines, which is
known to be undecidable [Min67, BJK+15].

Knowing this, we cannot hope to tackle the general verification challenge. However,
we can always restrict the general setting in some reasonable way, and attempt the
sub-challenges arising from such restrictions. In this thesis, we address a sub-challenge of
the general verification challenge, which is more realistic in scope:

Bounded model checking of TLA+. In this restriction of the general verification
problem, we restrict both the formalism and the class of properties. Specifically, we are
interested in systems and properties which are described in the specification language
TLA+. Moreover, we are only interested in properties that hold true of a bounded
execution of the system. Given these inputs, our goal is to encode the bounded system
execution, i.e. the set of states reachable in a bounded number of steps, and the property
to be verified in a fragment of first-order logic, supported by satisfiability-modulo-theory
(SMT) solvers. Then, we can use 3rd party off-the-shelf solvers to obtain models, or
unsatisifiability proofs, of our encoding and recover either a proof that the input property
holds true of the system, or a counterexample trace.

1.3 Contributions
In this work, we address Bounded SMT-based model checking of TLA+ in the following
way:

We design a symbolic-transition decomposition of TLA+ transition-predicates in Chap-
ter 6 . In Chapter 7, we characterize the language-kernel of TLA+, KerA+, and present

5

1. Introduction

KerA+ operational semantics as sound reduction rules, which turn KerA+ formulas
into equisatisfiable SMT constraints. Lastly, we design a type-system for TLA+ and
implement type-inference for TLA+ specifications in Chapter 8. We implement all of
the above techniques in a symbolic model checker, Apalache.

1.4 Applications
The TLA+ model-checker Apalache [KKT19a], which I am a main co-author of, is
the culmination of all of the techniques described in the thesis, as well as significant
engineering and UX effort. This thesis mentions, but omits details of, various forms of
preprocessing or model reconstruction, for the purpose of simplifying presentation or
drawing attention to the more theoretically interesting parts of the work; in practice,
the additional work is equally pivotal in guaranteeing both base functionality, as well
as performance. It is worth emphasizing that Apalache performs several analyses and
preprocessing phases, including desugaring, normalization, renaming, transformation to
KerA+, inlining, and more.

Having started as an academic prototype, it was officially adopted by Informal Systems in
2020, and has since seen use both internally, as a formal verification tool for blockchain-
related systems and protocols, as well as externally, as a support tool in security audits.
In particular, it has been used to verify parts of the Tendermint [Buc16], and LightClient
protocols [ten] at Informal Systems, and to generate test suites derived from specification
counterexamples, as part of Informal’s auditing and consultancy work for its business
partners. This speaks to the usefulness of the techniques presented in this work, as
well as the usefulness of symbolic model checking for TLA+ as a whole. Apalache is
free, open-source software, and will remain as such in the future. A list of Apalache
applications can be found on the Apalache web page [Sys20]

1.5 Publications
Some parts of this work are based on existing publications. Some publications are not
extended in this work, but describe work done in the domain of distributed algorithms
or formal verification :

• Conference paper at ABZ’18 [KTK18], which was later extend to a journal version
in the journal Science of Computer Programming 187 [KTK20]: Extended in
Chapter 6.

• Journal paper at OOPSLA’19 [KKT19b]: Extended in Chapter 7.

• Conference paper at CAV’19 [BBC+19]: This work has been done during the au-
thor’s internship at Amazon AWS. It demonstrates the use of SMT-based techniques
in industrial-scale applications, developed for use by Amazon Web Services, to

6

1.5. Publications

reason about network reachability, as a means to track down and remove virtual-
network access vulnerabilities.

• Conference paper at CONCUR’18 [KKW18]: Presents a comprehensive characteri-
zation of reachability for families of threshold automata, a formalism used in the
verification of threshold-based distributed algorithms, based on the shape of their
guards, the presence of decrements and constraints on loop-behavior.

7

CHAPTER 2
Thesis roadmap

In this thesis, we present a comprehensive approach to symbolic TLA+ model checking,
and the various components required to facilitate it. Despite TLA+ already being
used by major players in the industry (AWS, Microsoft, Oracle), as well as startups
(Informal Systems) , and steadily gaining popularity, tooling availability remains one
of the largest pain-points of the field, as explicit-state modeling approaches, despite
continuous engineering efforts, face an unsurmountable wall, in the form of the state-space
explosion problem, by their very nature. Chapter 3 gives a brief overview of TLA+,
intended for readers unfamiliar with the language, and includes a discussion of the
features of TLA+, which make designing tools for formal reasoning about it difficult.

We believe it is vital for the wider adoption of the language, going forward, to design
and implement different approaches to model checking. To this end, the thesis lays
the groundwork for a symbolic model checking approach, and addresses the challenge
outlined in Section 1.2. Chapter 4 provides an introduction to explicit-state and symbolic
approaches to model checking.

In Chapter 5, we give an overview of the techniques, tools, and specification languages
used in the study of distributed systems, showcase efforts to introduce type systems for
other untyped languages, and briefly introduce the ByMC model checker, used in the
study of threshold-based distributed algorithms.

Symbolic transition decomposition. The first step towards symbolic model checking
is transition decomposition. In Chapter 6, we formalize the notion of an assignment
strategy, the existence of which encodes the ability of a model checker to constructively
generate a symbolic encoding of a successor state, from a symbolic encoding of the current
state. This is important, because it often keeps the reachable state space finite, or at
least finitely representable. It also allows for an assessment of type-compliance. Using
assignment strategies, we then give a formalization of slices and symbolic transitions,

9

2. Thesis roadmap

to be used as a starting point for model-checking. We solve the assignment problem by
means of an SMT solver, and the decomposition by means of syntactic processing, and
our approach is provably sound.

This process serves two purposes: firstly, the search for assignment strategies is a form
of static analysis, able to discover parts of the specification where behavior is under-
specified, from the perspective of a model checker. For example, this helps us eliminate
scenarios where the state-space is theoretically well-defined, e.g. when the transition
relation specifies only cyclic constrains, but the input would result in either obvious
non-termination (explicit-state exploration), or the inability to encode all successor states
(symbolic approach). Secondly, slicing is a form of optimization, reducing the burden on
SMT solvers, by reducing a monolithic formula into multiple smaller ones, that can be
independently analyzed.

Encoding TLA+ in SMT. To perform bounded model checking, we must be able to
take a (symbolic decomposition of a) specification, and translate one execution step of
the system described by it as a first-order logic formula. In Chapter 7, we introduce the
kernel of TLA+, called KerA+. Then we introduce sound rewriting rules, one for every
kernel operator, that iteratively simplify a TLA+ formula, producing SMT constraints
and an auxiliary structure, called an arena, in the process. If all assumptions outlined in
Chapter 7 are met, the final result of transforming a specification is an SMT formula
that is equisatisfiable to the specification (i.e. the SMT formula is equivalent to true in
FOL iff the specification is equivalent to true in TLA+).

This forms the basis of a symbolic bounded model checker: to encode whether a k -step
execution satisfies an invariant, we perform the above translation once, but parameterize
it by the SMT representation of the current/next state variables. Then, we instantiate it
with k pairs of SMT variables, for (x0, x1), (x1, x2), (x2, x3), and so on. The SMT solver
is asked to then solve the formula encoding invariant violation, so an UNSAT result is
equivalent to saying that every k -step execution satisfies the invariant, whereas a SAT
result, and the model it comes with, represents an execution which violates the invariant.

Note that in practice, instead of encoding a k -step execution directly, we iteratively check
one step at a time, up to k times, attempting to find an invariant violation after every
step.

Type inference for TLA+. The translation to SMT, outlined in Chapter 7, assumes
that every expression in the specification can be assigned a type in our type system. To
keep the chapter focused on just the encoding, we glossed over the fact that, in practice,
introducing manual annotation is often cumbersome to users. Therefore we describe
a fully automatic type inference process in Chapter 8. To do this, we need to slightly
expand the type system, but it remains fully backwards-compatible with the type system
referenced in the rewriting rules.

10

In our experience, it is often the case that type errors hide correctness bugs. It is therefore
valuable, especially in the specification-writing stage, to have some type analysis utility,
either in the form of a type-checker or type-inferer, which can both easily be spun out of
the model checker into standalone tools.

11

CHAPTER 3
A primer on TLA+

The Temporal Logic of Actions (TLA) is a specification language originally introduced
by Lamport [EGL92, Lam94]. It was intended to be used to reason about software,
or more broadly, about systems of interconnected components, that change over time,
building upon Pnueli’s temporal logic [Pnu77] and its associated temporal operators. It
was later extended to TLA+ [Lam99, Mer08a], with support for first-order logic (FOL)
[Bar77], Zermelo-Fränkel set theory [Cie97] and modularity, at the language level. TLA+

does not fix a model of computation, and thus it found applications in the design of
diverse concurrent and distributed systems, e.g., see [GL03a, NRZ+15, Ong14, MAK13,
AMW16].

3.1 The fundamentals of TLA+

In this section, we give a brief introduction to TLA+, that focuses on the language itself,
rather than describing how to use it to write "good" specifications. A more complete
description of the language can be found in [Lam02], [Way18] or [KKKF20].

Programs generally describe every minutia of a system; the primary emphasis is on
establishing how a computer performas a change. For example, in a list-sorting algorithm,
there are many ways of transforming an unsorted list into a sorted one. To name a few,
bubble sort, quicksort and merge sort [KK73] are all distinct ways of sorting a list, with
distinct runtime complexities and space requirements. However, on a more abstract level,
applying any of the above algorithms to an arbitrary list results in the same outcome
– a sorted list. This is where specifications, such as those written in TLA+ differ from
programs; instead of describing the process of sorting a list itself, which is a generally
well studied problem, it is instead often sufficient to abstract the process, by describing a
transition from an initial state, one where the list is arbitrarily ordered, to a successor
state, in which the list is sorted. TLA+ allows users to do precisely that. By design,

13

3. A primer on TLA+

the language uses standard mathematical notation and terminology. Figure 3.1 depicts
several ways of specifying a list-sorting algorithm.

The exact state-space model underpinning TLA+ is as follows: assume a universe of
values U . For now, the exact contents of U are unimportant. Then, a k -variable state
space is simply the cross product Uk , and a state is a k -tuple. A specification, for the
purposes of this section, defines a pair (I , T), where I ⊆ Uk is the set of initial states,
and T ⊆ Uk × Uk is a transition relation. Note that, in theory, I is not required to be
finite, nor is T required to constrain finitely many successors for every state reachable
from I . In practice, however, tools often reject infinite-state specifications as, for example
in the model checker TLC [YML99], state enumeration becomes impossible if the number
of states is not finite. We later show that our symbolic approach can also work in cases
where the state space is potentially infinite (see Section 4.2).

There are several well-studied formalisms available for reasoning about system models,
for instance Kripke structures or, more broadly, (labeled) transition systems [CHVB18].
Unfortunately, they don’t always capture the state space a TLA+ specification defines.
For instance [CHVB18, Chapter 3.5.1] defines Kripke structures to be finite, but the state
space defined by a specification does not have to be. Similarly, transition systems, as
defined in [Kel76], are uninitialized, that is, they define a transition relation over pairs of
states, but don’t constrain the initial states of the system, unlike a specification. In the
case where the state space is finite, one can, however, view the state space as a Kripke
structure, where the set of atomic propositions (AP) contains all the invariants defined
in the specification. In general, TLA+ specifies infinite-state transition systems, in the
above sense.

We will use list-sorting, a specification of which can be seen in Figure 3.1, as a running
example to illustrate the use of TLA+. The first thing of note, in relation to the
previously mentioned modularity of TLA+, is that specifications may build upon one
another. Much like a header inclusion in C, or an import statement in Java, line 1 in our
example specification indicates that this specification borrows operators from well-known
integer arithmetic; the integer operator symbols, such as +, hold their standard meanings,
when used with integer arguments. The latter part of the above sentence is important,
because both 1 + 1 and 1 + ”abc” are legal TLA+ expressions and, more specifically, both
elements of U . We know 1 + 1 = 2, but the value of 1 + ”abc” is not specified. Specifically,
it is not necessarily the case that 1 + ”abc” ̸= 2.

The following line 2, uses the keyword constant to declare constants in the specification.
Unlike in programming languages, constants are abstract at the specification level.
Typically, they are used as a way to parameterize the specification. In our example, the
specification admits two constants, listElements and listSize, representing the possible
contents of the lists being sorted and the size of the lists respectively. These constants
are used, because the process of sorting a list, and the property of a list being sorted,
are conceptually the same for lists over any linearly ordered domain and of any length.
While, in TLA+, the "≤" operator is only defined for integers, it is often used to model

14

3.1. The fundamentals of TLA+

Figure 3.1: A Specification of a List-Sorting Algorithm in TLA+

1 EXTENDS Integers
2 CONSTANT listElements, listSize
3 VARIABLE list
4
5 Domain Δ= 1..listSize
6 Lists Δ= [Domain → listElements]
7
8 Init Δ= list ∈ Lists
9

10 IsSorted(a) Δ= ∀ i ∈ 1..(listSize−1): a[i] ≤ a[i+1]
11
12 Next1 Δ= IsSorted(list’)
13
14 IsInjective(f) Δ= ∀ x,y ∈ DOMAIN f: x ̸= y ⇒ f[x] ̸= f[y]
15 Permutations Δ= { pi ∈ [Domain → Domain]: IsInjective(pi) }
16 IsPermutationOf(a, b) Δ= ∃ pi ∈ Permutations: ∀ i ∈ Domain: a[i] = b[pi[i]]
17 Next2 Δ= ∃ sortedList ∈ Lists:
18 ∧ IsSorted(sortedList)
19 ∧ IsPermutationOf(list, sortedList)
20 ∧ list’ = sortedList
21
22 Next3 Δ=
23 IF Sorted(list)
24 THEN UNCHANGED list
25 ELSE list’ ∈ { a ∈ Lists: IsSorted(a) ∧ IsPermutationOf(a, list) }

systems where a linear order exists over other domains, such as the lexicographic order
on the set of strings, often used in programming.

This allows us to describe the property defining a sorted list, via the comparisons of
sequential elements, without explicitly incorporating details that might be pertinent in
programming languages, such as the sort of element being compared or the exact length
of iteration.

Next, and truly at the heart of TLA+, is the declaration of state variables, by the use of
the variable keyword in line 3. State variables define the states of a state-machine that
a specification describes; one state is defined by a combination of values held by each
state variable. In our particular example, each state is uniquely defined by the value
of list . An important consideration, when talking about the state-space defined by a
specification, is that TLA+ is an untyped language. This means that there exists a state
where list has the value 7 or "abc", despite the fact that 7 and "abc" are not lists in any
intuitive sense. Other parts of the specification (Init) will ensure that exploration starts

15

3. A primer on TLA+

in a reasonable state, i.e. a state where list holds a value that abstractly describes a
list, and that it transitions (Next) into a state where that remains true (in addition to
being sorted). However, at the level of the state-space, these unintuitive states still exist.
Each variable declared in a specification may appear in one of two forms: unprimed,
for example list , and primed, for example list ′. In the context of the state-space being
described, unprimed variables reference values in the current state, whereas primed
variables reference values in successor states, relative to the current state. Formulas
which reference primed variables can then be thought of as describing transitions in the
state space.

Lastly, the specification consists of a series of operators, defined with " Δ= ", abstractly
describing various constructs or properties. For example, we understand Lists to represent
the set of all lists of size listSize, the elements of which belong to listElements . Whether
this set is finite or not depends on the latter. If we assumed that listElements = {0, 1},
for example, the set Lists would have a size of 2listSize (equivalent to the set of all binary
words of length listSize). On the other hand, if we assumed listElements = 3, this
construct would be undefined and, conceptually, nonsensical, but it is nevertheless the
case that [Domain → 3] ∈ U .

Similarly, we understand IsSorted() to be a unary predicate describing sortedness –
true, if the argument is a sorted list and false if it is an unsorted list. Note again,
however, that since TLA+ is untyped, there is no requirement that a is a list of any
kind; Sorted(7) is a syntactically valid TLA+ expression and equals some unspecified
value in U .

Certain operators are of special significance to the specification. Each specification
will designate an initial-state predicate, commonly named Init , or some variant thereof.
This operator defines the starting point in state-space exploration. We’ve mentioned
before, in the list-sorting example, that our intuitive understanding of the variable list
was that of a list-abstraction, and not, say, an integer. The operator Init makes this
explicit – in the initial state list belongs to Lists , the set of all functions, the domain of
which is {1, 2, . . . , listSize}, and the codomain of which is listElements. Such functions
serve as our abstraction of lists (of a given length, with given contents). For example,
in Figure 3.1, one possible execution, given the constants listElements = {1, 2, 3} and
listSize = 3, would begin with the initial value of list , for which list [1] = 3, list [2] = 2,
list [3] = 1 (and domain list = 1 . . 3), satisfying Init .

Similarly, specifications also designate a top-level transition operator, commonly named
Next , or some variant thereof. This operator, together with the initial-state predicate
defines state-space exploration, by providing constraints, which must hold in 1-step
reachable states from any given state. In our example, we provide three alternative ways
of expressing transitions into states which represent sorted lists.

The first operator, Next1, succinctly mandates that the value of list in any 1-step
reachable state satisfies the IsSorted() predicate. While we might intuitively believe that
this sufficiently describes states representing sorted lists, recall the following particularity

16

3.2. Peculiarities of TLA+

of TLA+: because it is untyped, IsSorted(7) is a syntactically correct, but undefined,
formula. Therefore, we cannot say that it is categorically untrue that a state, in which
list = 7 satisfies the IsSorted() predicate. But even on a more fundamental level, even
if we assumed that list ′ is a list-abstraction (i.e. an element of Lists), Next1 does not
establish the relation between list ′ and list ; in this sense, list ′ may be sorted, but it is
not necessarily a rearrangement of the elements of list . In fact, any list with listSize
identical elements would do as list ′, which is clearly not the correct outcome of list-
sorting, as sorting is expected to preserve list elements. Continuing our example, where
listElements = {1, 2, 3}, listSize = 3, and list [1] = 3, list [2] = 2, list [3] = 1 holds in the
initial state, Next1 can be satisfied by list ′[1] = 4, list ′[2] = 4, list ′[3] = 4, list ′[42] = 9
(and, e.g. domain list ′ = 1 . . 100), even though list ′ is neither a permutation of list , nor
even an element of Lists.

The operator Next2, while more verbose, is also more precise: since Lists represents the
set of all lists (of a given length, with given contents), it stands to reason that one of
its elements (sortedList) is a sorted list. The predicate then asserts, that the value of
list ′ equals a list that is a) sorted and b) a permutation of the original list. It must now
also be the case that list ′ is a member of Lists . For listElements = {1, 2, 3}, listSize = 3,
and list [1] = 3, list [2] = 2, list [3] = 1, this time the only choice of list ′ that satisfies
Next2 is one where domain list ′ = 1 . . 3, list ′[1] = 1, list ′[2] = 2, list ′[3] = 3, which is
the expected outcome of sorting list .

Finally, the operator Next3 has a similar issue to Next1; for non-list values of a, it is
not known whether IsSorted(a) holds or not. However, in combination with Init , which
asserts that we start state-space exploration in a state where list is a list, the operator
Next3 correctly constrains successor states where list is both sorted and a member of Lists .
Our running example, for the initial state where listElements = {1, 2, 3}, listSize = 3,
and list [1] = 3, list [2] = 2, list [3] = 1, mandates the exact same choice of list ′ as for
Next2.

While list-sorting is a good starting example, it does not showcase the power of TLA+.
In [erc], we showcase a specification of ERC20, an Ethereum technical standard for smart
contracts.

3.2 Peculiarities of TLA+

This section disusses some features of TLA+ that are of special interest to us, not because
of their expressibility, but because they present a significant hurdle from a tooling or
verification perspective. These language features highlight the fact that TLA+ was never
designed with machine automation in mind, and this section offers insight on how and
why TLA+ is restricted to the fragment we use in practice.

Actions and implicit assignments. One way in which TLA+ differs significantly from
many other languages, is its approach to state transitions. For example, in programming
languages, variable updates, which define transitions between program states, are typically

17

3. A primer on TLA+

indicated via the use of special assignment operators, such as "=" (as opposed to "=="),
or "←". Importantly, even in the case of updating to, for example, a random value from
a (finite) collection, this relation is explicit, in the sense that a) the assignment operator
is not symmetric, and the single variable being updated is clearly distinguished (typically
by being on the left-hand side of the operator), as well as b) the new value (or possible
range of values) is constructively given. That is not the case in TLA+. Consider the
following TLA+ formulas:

1. a ′ = b

2. b = a ′

3. a = b′

4. a ′ = b′

5. (a ′) ∗ (a ′) = (b′) ∗ (b′)

6. let F (x) Δ= x = b in F (a ′) (∗ define operator F and apply it to a ′ ∗)

7. G(a, b, a ′, b′) (∗ apply operator G to a, b, a ′, b′ ∗)

All of the formulas are actions, that is, predicates evaluated over a pair of states: a
current state, determining values for a, b and a successor state, determining the values
of a ′, b′. A (directed) transition exists between the two states, if the action equals to
true, under the evaluations of a, b, a ′, b′ defined by the two states. In contrast to the
programming-language setting, however, the relation between the two states is generally
implicit. This means that a ′ and b′ are not necessarily computable from the values of
a and b. Moreover, the "=" operator used in the above formulas is not an assignment
operator, and example (1), for instance, does not constitute an assignment (of b to a). In
fact, the notion of an assignment does not exist in TLA+ at all, all of the above formulas
are merely restrictions on the transitions that may exist in the state space. Moreover,
one can write trivial specifications, which have no possible implementations, because they
describe a state space without transitions, for example, by constraining (x ′) ∗ (x ′) = −1.

Even beyond implicit assignments, one can write, for example, a ′ = 1 ∧ a ′ = 2. While
an imperative language might treat a ′ = 1; a ′ = 2 as two sequential assignments, first
writing 1 to a, then overwriting it with 2, ending in a state where a holds the value 2,
in TLA+ this conjunction represents a transition to a state, where a has some value v ,
such that v = 1 and v = 2 simultaneously. By the transitivity of equality, and the fact
that 1 ≠ 2, such a state does not exist.

If the purpose of a specification is merely to describe an algorithm/protocol, this is not
usually a problem. However, when it comes to tools, such as model checkers, which need
to explore the state space, it is important to be able to determine, exactly or symbolically,
successor states from their predecessors. Therefore, in practice, tools require explicit

18

3.2. Peculiarities of TLA+

relations, such as in (1), to guide their state-space exploration (implicitly treating "=" as
asymmetric), as well as a way of treating a ′ = 1 ∧ a ′ = 2 (e.g. by treating exactly one
of the conjuncts as an assignment, and the other as a constraint). The detection and
treatment of assignments is the main subject of Chapter 6.

Lack of types. By design, TLA+ is an untyped language. Consequently, it is per-
fectly valid to construct expressions such as {1, ”abc”} and apply reasoning, such as
∃x ∈ {1, ”abc”} : x > 0, which should evaluate to true, since 1 ∈ {1, ”abc”} and 1 > 0.
However, this poses a significant challenge to automation. The reason for this is that,
if tools were to allow constructs such as, for example, non-homogeneous sets like the
one above, they have to forgo any kind of internal typed encoding of TLA+, or invent
complex data-types to represent such collections. Moreover, the objects might become
significantly more complex. Consider the following: {{⟨1, ”abc”⟩}, [x ∈ S '→ x +1]}. This
is a set, which contains both another set, as well as a function. Attempting to encode
the contents of this set would require a data-type akin to Java’s Object: very general,
but not very useful without manipulation via casting. Even TLC, despite not having a
formalized type system, rejects such constructs, as does Apalache. We address types for
TLA+ in Chapter 8.

Operators as second-class citizens. While TLA+ does have operators, they are
not first-class members of the language. What this means is that TLA+ expressions
may reference operators, use them in applications or pass them as arguments to other,
higher-order operators, but operators themselves do not constitute TLA+ expressions.
Concretely, a TLA+ operator cannot "return" an operator. This makes operators in TLA+

behave more like macros in C with delayed evaluation. From a tool perspective, this is
inconvenient, because it essentially creates a hierarchy of objects within a specification,
where expressions build operators, which, in turn, build modules. This is further
complicated by the fact that LET-IN expressions actually define local operators, and
the existence of lambda expressions. Internally, Apalache attempts to reduce operator
call-graph complexity by preprocessing optimizations an inlining.

Deterministic choice. Of all the operators in TLA+, perhaps the most idiosyncratic
is the choose operator. Similar to the existential quantifier, which asserts that a property
holds true for at least one witness (without specifying the witness directly), the choose
operator produces a witness to the property. However, unlike the existential, if no witness
exists, the result is unspecified. For example,

choose x ∈ {1, 2, 3, 4, 5} : x > 3

equals either 4 or 5 (but always the same value, it is not random), while

choose x ∈ {1, 2, 3, 4, 5} : x < 0

may equal any value, even one of 1, ..., 5, but also ones such as "abc" or [x ∈ {0} '→ true].
This operator is commonly referred to as Hilbert’s epsilon operator [AZ02]. There are

19

3. A primer on TLA+

two problems with this operator: the fact that the operator is meant to be deterministic,
i.e. if

{x ∈ S : P} = {x ∈ T : Q}
then

(choose x ∈ S : P) = (choose x ∈ T : Q) ,

and the aforementioned unspecified behavior in the case where no witness exists. Consider,
for example, the following expression: e Δ= choose x ∈ Int : x > 1 ∧ x < 0. Since
there is no notion of a runtime exception in TLA+, the above expression is valid,
however, its value is unspecified. Consider the implications of this on model checking:
suppose the specification contains P(x) Δ= x > 0 ∧ x < 0. What is the value of
LET e Δ= choose x ∈ Int : P(x) IN P(e)? Since P(x) evaluates to false for all
integer values of x , if it is the case that the arbitrary value to which e evaluates is an
integer, the above expression is false. If however, e holds some arbitrary non-integer
value, e.g. "abc", then P(”abc”) is equally undefined (and possibly even true). This
sort of unpredictability makes it easy for specifications to contain very subtle bugs,
that arise from unexpected values produced by choose expressions. Apalache, which
uses an underlying SMT encoding requiring types, choose x ∈ Int : . . . would take the
type-hint from the set Int , and encode the type of this expression as an integer type, so
the arbitrary value produced is always at least type-correct.

The other issue with choose, determinism, also warrants discussion. Suppose the
specification contains let F (t) Δ= choose x ∈ Int : x > t ∧ x < t in F (0) = F (1). At
the TLA+ level, this LET-IN expression should evaluate to true, because choose is
deterministic and

{x ∈ Int : x > t1 ∧ x < t1} = {x ∈ Int : x > t2 ∧ x < t2}

for any pair t1, t2. We know e = e is tautologically equal to true, regardless of the value
of e, as "=" is reflexive. However, any tool will have to construct a representation of the
values of both F (0) and F (1) (which skirt static analysis, as they aren’t syntactically
equal), to be able to perform equality testing.

It is very difficult, especially when dealing with a quantifier-free encoding, to implement
this operator in a deterministic way. In Apalache, we choose not to attempt to guarantee
a deterministic implementation of the operator. Interestingly, specifications where
deterministic choose matters are rare, and theoretical in nature, for the vast majority
of real-life cases, determinism is not relevant.

Rich data structures. From its very inception, TLA+ was designed for expressivity,
not efficiency. It has language primitives for defining powersets (subset S), and sets of
functions ([S → T]), which can even be combined in arbitrary ways, e.g as

[S → [(subset T ∪ subset U) → V]]

20

3.2. Peculiarities of TLA+

Effectively none of the common programming languages natively support these data
structures (though they obviously allow them to be defined). Having such data structures
is a problem (from an efficiency perspective), for a quantifier-free symbolic-analysis
approach that deals primarily with properties. Consider:

[A → [B → C]] = [[D → E] → F]

If we wanted to symbolically encode these constraints, we would need to reduce them to
axiomatic equality; for sets, as well as for the functions which populate them.

21

CHAPTER 4
Fundamentals of model checking

4.1 A brief introduction to explicit-state model-checking
Concrete systems, unlike their theoretical abstractions, generally have finitely many
system states. Moreover, data structures in real systems are often bounded too. For
instance, software often deals not with integers, but with bounded integers, the values of
which typically belong to [−2k , 2k − 1] ∩Z, for some k . Modern CPUs have k = 64, while
blockchains typically use k = 256. Consequently, specifications of this kind of software
then have the property that the set I of initial states they describe in the state-space is
finite (though possibly enormous), and, for every state s reachable from I by a transition
relation T it is the case that s has only finitely many successors. One can then define
T ∗, the transitive closure of T , for which T ∗(s, s ′) ⇐⇒ s = s ′ ∨ ∃s ′′ . (T ∗(s, s ′′) ∧
T (s ′′, s ′)) and the set of I -reachable states, T ∗

I = {s | ∃si ∈ I . T ∗(si , s)}. It is then not
unreasonable to expect that the set T ∗

I , that is, the set of all states an execution may
potentially visit, is finite too.

The goal of explicit-state model checking is to directly encode the states s ∈ I , and
perform an algorithmic traversal, which computes all states in T ∗

I . For more details,
see [CHVB18, Chapter 5]. Importantly, because state-spaces are often enormous (e.g.
adding a single integer counter to a specification of a blockchain component can multiply
the size of the state space that needs to be explored by 2256), naive techniques quickly
show to be impractical.

We are mostly interested in bounded model-checking [BCCZ99, BCC+03], as it relates
to TLA+.

To attempt to model-check a TLA+ specification in practice, several steps are necessary.
First, a fragment Ueof U is chosen, such that all of the values contained within are
machine-representable. Typical examples of such values are bounded integers, as well
as finite sets and functions. Explicit-state model checking will only succeed, if every

23

4. Fundamentals of model checking

Figure 4.1: A Specification Encoding the Collatz Conjecture

1 EXTENDS Integers
2 VARIABLE x
3
4 Successor(n) Δ= IF n % 2 = 0 THEN n ÷ 2 ELSE 3∗n + 1
5
6 RECURSIVE kIter(_,_) \∗ Recursive operators need to be explicitly annotated
7 kIter(a,k) Δ= IF k ≤ 0 THEN a ELSE Successor(kIter(a, k−1))
8
9 ReachesOne(a) Δ= ∃ n ∈ Nat: kIter(a,n) = 1

10
11 Init Δ= x ∈ { n ∈ Nat: ¬ ReachesOne(n) }
12
13 Next Δ= UNCHANGED x

component of every reachable state belongs to Ue . Second, all specification constants
must be initialized with valid TLA+ expressions.

Computing initial states. The first task is to extract initial states from an initial-
state predicate. While it is obviously true, at the logic level, that there is an equivalence
between a set of states S and a state predicate P(), such that P is true of s iff s ∈ S , in
practice, it is not always trivial to determine the shape of such states. For instance, one
can encode the Collatz conjecture [Gar81], a notorious open problem in mathematics,
about whether a defined iteration of a positive integer function eventually terminates with
1, for any initial value, in TLA+: take a specification with one state variable x and define
the initial state predicate Init Δ= x ∈ {k ∈ Nat : k disproves the Collatz conjecture}.
This specification is given in full detail in Figure 4.1. However, such an initial state
predicate is unusable for any tool attempting explicit state-space exploration, since
finding even a single initial state is equivalent to solving the above open problem in
mathematics. Therefore, tools like TLC or Apalache generally require that states be
explicitly computable from predicates, i.e. that state variables appear as part of an
equality or set membership, e.g. x ′ = A, x ′ ∈ B .

Computing next states. Once initial states are computed, the process of enumerating
all reachable states is conceptually very simple. Performing either breadth-first search
or depth-first search, one unexplored state is selected. Then, the transition predicate
can be dynamically evaluated: unprimed occurrences of state variables use values from
the selected state, whereas primed state variables are used to define successor states.
In this sense, once current-state variable values are fixed, the process is identical to
the computation of initial states. The exact details, including syntactic restrictions on
the order of terms, or the shapes of expressions from which successor-state variable

24

4.1. A brief introduction to explicit-state model-checking

Algorithm 4.1: Breadth-first-search pseudocode
1 queue ← [state if Init(state)];

2 while queue not empty do
3 state ← queue.pop();

4 explore state (e.g. check invariants);

5 successors ← [state’ if Next(state,state’)];

6 queue ← queue + successors

7 end

values are computed are tool-specific. Pseudocode of breadth-first search can be found
in Algorithm 4.1. For example, in TLC [Lam02, Chapter 14.2.6] using the breadth-first
search approach, a transition predicate is traversed in left-to-right syntax order and the
first appearance of a primed variable in this order determines a new state (or family of
states) to be added to the exploration queue at the end of the traversal. If the transition
predicate is discovered to be false partway through exploration, a state is deemed to
have no successors and exploration continues from the next state in the queue. On the
other hand, in the absence of errors, if the transition predicate is traversed until the end,
one or more successor states is added to the queue. This process continues until no more
successor states are found (i.e. the full set of reachable states has been computed).

In theory, if every state-variable can take one of finitely many values, this process is
guaranteed to terminate eventually, in the worst case exploring all of the finitely many
states. In practice, however, the biggest drawback of this approach is that the number of
states that need to be explored, even for relatively simple specifications, can often be quite
large. This is known as that state-space explosion problem [Val96] and is unavoidable
with explicit state representation. For instance, in the prominent paper by AWS, [New14],
TLC was used to explore 31 billion states, which took them "approximately 5 weeks on a
single EC2 instance with 16 virtual CPUs, 60 GB RAM and 2 TB of local SSD storage."

That said, there are a number of techniques developed to help lessen the effect of the state-
space explosion problem. Some are more theoretical, like symmetry reduction [CEJS98].
With that technique, based on establishing a symmetry-derived equivalence relation over
states, one can reason about all states, by visiting only one state per equivalence class,
instead of all of them. Others are more practical, like multi-core exploration [HB07],
where the computer architecture is leveraged to explore a number of different states in
parallel. A more exhaustive list of such methods can be found in [CHVB18, Chapter
1.3.1] or in [Kup17, KLR19a], for TLC-specific methods.

To illustrate how relatively simple specifications may end up describing a large state-
space, consider a trivial specification with two state variables x , y , the initial-state
predicate Init Δ= x = 1 ∧ y = 1 and the transition predicate that specifies x and

25

4. Fundamentals of model checking

Figure 4.2: A TLA+ specification with N 2 states

1 EXTENDS Integers
2 VARIABLE x, y
3 CONSTANT N
4
5 Init Δ= x = 1 ∧ y = 1
6
7 Next Δ= x’ ∈ 1 . . . N ∧ y’ ∈ 1 . . . N
8
9 Inv Δ= x ∗ y <= N ∗ N

Table 4.1: TLC runtimes for the specification in Figure 4.2 with a 6h timeout.

N runtime (s)
10 6
100 13
1000 TO

y taking independent values in 1 . . N : Next Δ= x ′ ∈ 1 . . N ∧ y ′ ∈ 1 . . N . Despite
its simplicity, this specification has N 2 distinct states. Figure 4.2 contains the full
specification. Table 4.1 shows the time needed for TLC to explore all states (and verify
the given invariant), for a selected few values of N .

The slowdown in TLC’s run-times can be explained by observing the shape of the state-
space defined in this specification. We have already established that there are N 2 distinct
states, corresponding to the N values each of x and y may independently take. However,
it is also noteworthy that the transition relation is unrestricted, that is, any state may
lead into any other state. In other words, the state space forms a complete graph over N 2

edges (with self-loops), which has N 4 edges. An exhaustive exploration must enumerate
not only the states, but the transitions between them, which, in the case of N = 1000 is
1012 edges. Unsurprisingly, this is incredibly slow.

4.2 A brief introduction to symbolic model-checking and
SMT

In practice, the goal of using (explicit-state) model checking is to find counterexamples to
the specification or to prove that none exist (provided exhaustive exploration terminates
in time); the fact that all states are being explicitly explored is an implementation detail
and the exact states are generally of little interest. To this end, we often want to reason
not about the state-space per se, but about some quotient space of the state space,
commonly defined by some property of interesting states. For example, if the only thing
we care about, for each variable, is whether or not it is greater or equal to 3, the above

26

4.2. A brief introduction to symbolic model-checking and SMT

N 2 explicit states collapse to only 4 equivalence classes of states, regardless of the value
of N . This is precisely where the value of a symbolic approach lies: if we are able to
find a suitable equivalence relation, derived from a constraint in some logic (e.g. linear
integer arithmetic - LIA), we can reason about a small set of symbolic states, instead of
the much larger set of explicit states. This approach has an added benefit of sometimes
being able to capture an infinite state space with finitely many properties, such as slicing
Z2 into 4 quadrants, with the linear inequalities x ≥ 3 and y ≥ 3.

The origins of symbolic model checking date back to the invention of binary decision dia-
grams (BDDs) [CHVB18, Chapter 7], a graph-based representation of Boolean functions.
While interesting in their own right, we are more interested in the modern approach that
has since evolved from these foundations: satisfiability modulo theories (SMT) [CHVB18,
Chapter 11].

To use SMT, we need to be able to a) encode a unifying property of part of the state-space
as a formula in some logic (e.g. LIA) and b) compose the formulas (in potentially different
logics) with constructs such as Boolean operators, or possibly quantification. Under the
hood, SMT solvers split work between specialized theory solvers, for example a LIA
solver, and structural satisfiability solvers. The reason is that, no matter what kind of
theory the formula p belongs to, it is always impossible to satisfy p ∧ ¬p, on a structural
basis alone. In an internal loop, the SMT solver first abstracts atoms in the formula with
propositional variables and solves the generated Boolean satisfiability problem with a
SAT solver. This creates obligations for one or more theory solvers: if atoms a and b in
theory T were abstracted as variables v and w , and v ∧ ¬w holds in the model produced
by the SAT solver, the theory solver for T must solve a ∧ ¬b. If this is satisfiable in T ,
the loop terminates, otherwise a lemma, a restriction on the assignments found by the
SAT solver, is added to the original formula, and the SAT solver is run anew. Eventually,
either a satisfying assignment is found and the formula is satisfiable, or all possible
propositional solutions are explored unsuccessfully, and the formula is concluded to be
unsatisfiable.

The study of SMT solving, and the various techniques and optimizations is of course
much deeper than that, an interested reader can find more in [CHVB18, Chapter 11],
[DB08, BPF15, MRTB17, TRBB18].

Bounded model-checking. A particular variant of model-checking, to which SMT
naturally lends itself is bounded-model checking. The general approach is as follows:
First, the length of the execution to be considered, denoted k , is fixed. Then, for each
component of the system state v , k SMT variables are introduced, v1, . . . , vk , where vi
represents the value of v at the i-th step of the execution. If a transition predicate
defines some relation R, between v and v ′, the values of a component in the current
and successor state respectively, the relations R(v1, v2), . . . , R(vk−1, vk) are introduced as
SMT constraints. If one is interested in verifying an invariant I , then ¬I (v1)∨· · ·∨¬I (vk)
is introduced as well (for all system components v). The full collection of such constraints
describes a k -step bounded execution of the system, which violates the invariant. One can

27

4. Fundamentals of model checking

Table 4.2: TLC and Apalache runtimes for the specification in Figure 4.2 with a 6h
timeout.

N TLC runtime (s) Apalache runtime (s)
10 6 1
100 13 1
1000 TO 1

easily recover the counterexample to the invariant from a model of the above constraints.
Conversely, unsatisfiability implies that the invariant cannot be violated by any execution
of length at most k . Notably, there may exist executions of length more than k , that do
violate the invariant, so the technique cannot be used to offer guarantees about arbitrary
executions in general, though in some cases, it can be shown that if a counterexample
exists, there must exist a counterexample of bounded length, which makes this technique
complete, in terms of verifying the desired invariant, see [KVW17]. While this is a general
description of bounded model-checking, the difficult part, for particular applications,
is designing the correct SMT encodings of the system states, invariants and transition
relations, which are often presented in various logics supported by different specification
languages.

To glimpse at the power of symbolic model checking, let us return to Figure 4.2. Recall
that TLC’s performance rapidly decreased, as N increased, due to the fact that it had
to compute N 2 distinct, independent explicit states, each reachable from any other. In
Table 4.2 we show how Apalache, which uses a symbolic approach, explores this same
specification. We already know that any reachable state of the specification is reachable
in a single step, so we need only execute a single symbolic transition with Apalache.

Notice that the Apalache runtime is constant, and in particular independent of N . This
is possible, because membership in an integer interval, x ∈ a..b, can be represented as
two constraints: x ≥ a ∧ x ≤ b. If we were to instead select from a non-uniform set
(instead of 1..N) as the transition step, the number of Apalache constraints would scale
approximately linearly with the size of the set. The number of constraints describing
the transitions is constant, the only bottleneck is the number of constraints required to
encode the set from which elements are selected. See 7 for a detailed explanation of set
encodings in Apalache.

28

CHAPTER 5
State of the art in verification

In this chapter, we give an overview of the current landscape of tools used in the formal
verification of specifications in various languages.

5.1 TLC

The TLC model checker, introduced in [YML99] was one of the first tools designed
specifically for TLA+. The idea behind its design was simple: instead of tackling the
analysis of a system implementation, which may be very large, and the nuances of which
may be very complicated, many bugs can be found more quickly be analyzing a system
specification. As mentioned before, system specifications, unlike implementations, are
written at a much higher level. In particular, specifications written in TLA+, rely heavily
on expressions in, for example, first-order logic an Zermelo-Fränkel set theory. This
proved to pose quite a challenge to the tool designers, which had to strike a balance
between maintaining the expressiveness of the TLA+ language fragment TLC would
support, and the tool’s ability to successfully compute models in reasonable time, or in
fact at all.

TLC today, with over two decades of engineering effort, is part of a larger package of
TLA+-related software called the TLA+ Toolbox [KLR19b], maintained by Microsoft
Research. The underlying technique used in TLC, explicit state model checking is
described in Section 4.1. Despite the relative simplicity of the approach, there have
been numerous case studies over the years, describing the use of TLA+, and TLC, in
bug-finding efforts in some of the worlds leading technology companies. TLC has played
a role in finding a bug in Compaq’s multiprocessor [YML99], verifying cache-coherence
protocols [JLM+03], and is used by Amazon Web Services to check properties of their
cloud-storage architecture [NRZ+15].

29

5. State of the art in verification

5.2 TLAPS
Part of the same TLA+ Toolbox, the TLA+ proof system (TLAPS) [TLAb], introduced
in [CDLM10] offers an alternative avenue for the verification of TLA+ specifications.
Unlike TLC, TLAPS facilitates the writing of proofs and formal reasoning within TLA+,
about the various formulas in a specification. Writing proofs, as opposed to model-
checking has both benefits and drawbacks: On the one hand, for the purposes of a proof,
it is often irrelevant whether an object (set, sequence, function, etc.) is finite or infinite,
as long as it satisfies a certain property. This means that proofs can reason about,
for example, the actual (infinite) set of integers, as opposed to a finite set of bounded
integers. Moreover, proofs tend to suffer less from nondeterminism in specifications, as
the state-space explosion often caused by nondeterminism in explicit-state model checking
does not happen with proofs. On the other hand, proof-writing is much more labor
intensive; while model checking an already written specification requires next to no input
from the specification author, as tools such as TLC are non-interactive in their state-space
exploration, writing a proof requires significant additional effort. Consequently, this
creates a barrier to entry, as specification authors often have engineering backgrounds,
but lack experience with formal-proof writing. An example of a TLAPS proof can be
found in [CDL+12], where it is used to prove that mutual exclusion is guaranteed in
Peterson’s algorithm. Notably, TLAPS also uses SMT internally, but in a different
fashion, compared to model checkers, with an assortment of engines: Z3 [DB08], CVC4
[DRK+14], as well as the non-SMT based Zenon [BDD07] and Isabelle [NPW02].

Ultimately, both techniques are best used in tandem; model-checking allows for relatively
quick assurances and error detection, better facilitating the writing of a specification from
the ground up, while proof-writing provides air-tight guarantees of system correctness,
for more matured specifications of systems possibly too complex to have their states
enumerated in reasonable time. To better understand how Apalache, TLAPS, and TLC
work together, see [KKM22].

5.3 Alloy
TLA+ is not the only formalism used in system specification. One of its counterparts
is the specification language Alloy [Jac02]. Unlike TLA+, the strength of which lies in
expressing temporal behavior, i.e. the evolution of a system over time, Alloy’s core design
lends itself better to describing structural properties; the fundamental building blocks of
Alloy specifications are relations, not temporal formulas.

A comparison between the two can be found in [MC16], but in short, TLA+ is better
suited for describing the behavior of a system, while Alloy is better suited for describing
the static structure of a system, though Alloy has recently been extended with support
for temporal properties.

In a parallel to TLA+’s TLC, Alloy has its own associated model checker, the Alloy
Analyzer [JSS00]. Interestingly, the analyzer internally uses SAT encodings of Alloy

30

5.4. The B-method ecosystem

Figure 5.1: Alloy specification of a filesystem

1 sig Name {}
2 abstract sig Obj {
3 name : one Name
4 }
5 fact {
6 all n : Name | lone name · n
7 }
8 sig Dir, File extends Obj{}
9 sig FS {

10 objects : set Obj,
11 root : one (Dir & objects),
12 parent : objects → lone (Dir & objects)
13 }
14 assert {
15 all fs : FS | some fs · objects
16 }
17 pred cd [f, f’ : FS, d : Dir]{...}
18 pred mv [f, f’ : FS, o : Object, d:Dir]{...}

formulas, which it offloads to third party SAT solvers. In this sense, the Alloy analyzer
shares design similarities with the scope of this work, since our goal is to translate TLA+

into SMT and offload the work to established SMT solvers (which also rely on SAT
internally).

Figure 5.1 demonstrates an example Alloy specification of a filesystem, taken from [CP09].

The Alloy website [all21] provides a comprehensive list of case studies, referencing a
plethora of industrial use-cases.

5.4 The B-method ecosystem
The B-method, introduced in [ALN+91], is a formalism for the development of computer
systems, centered around the notions of abstract machines and refinement. It uses
predicate logic to specify machine invariants. Proofs in the formalism mostly include
consistency checking, i.e. verifying that the provided invariant holds in all machine-
reachable states, and refinement checking, i.e. verifying that one machine is refined
by another, in which the state is represented by more concrete data structures, or the
operations of which are more deterministic.

It has a variety of associated tools: Atelier-B [Lec14], B-toolikit [HL96, Rob97] and ProB
[LB03], which generate predicate-logic proof obligations, towards proving consistency or

31

5. State of the art in verification

refinement. Both automatic- and interactive-proving is possible, as well as automatic
translation of low-level B specifications into executable code.

Industrial use of B includes cases in the automotive industry [LB03], tourism [LB03],
transportation [CDP+17], and aeronautics research [SA17].

In relation to TLA+, there exists a translator, TLA2B [HBL14], which allows the
translation of a subset of TLA+ into B. Notably, as B is typed, the translation fails on
TLA+ specifications which include nonhomogeneous collections (e.g. sets) or contain
variables, the types of which are not fixed. It also lacks support for temporal operators
and recursive definitions, which makes its use limited in practice.

5.5 Z notation
Z-notation is a specification language, based on set theory, lambda calculus and first
order predicate logic. Unlike most of the other languages mentioned in this section,
Z-notation is a typed language, meaning that every Z-expression has an associated
type. Fundamental building-blocks of Z specifications are called schemas; each schema
defines either a description of permissible states or changes thereof, invariants, possible
operations, or input-output relations. This focus makes Z well-suited for reasoning about
implementations, since, for example, the operations in Z are a natural way of reasoning
about function calls in executable languages, in terms of pre- and post-conditions.

A comparison between Z and B can be found in [KGS12]. Like B, Z-notation has been
used in the railway industry [Zaf09], as well as in cloud-security [BSM16].

5.6 Type retrofitting
Similar to how we introduce a type system for TLA+, we have recently seen several
initiatives to retrofit existing untyped (programming) languages with type systems. The
first one of note is TypeScript [BAT14, RSF+15], which, among other things, extends
JavaScript with a static type system, as well as type inference. An example can be found
in Figure 5.2.

Interestingly, their type system is unsound, meaning that some type errors may elude
static analysis and result in run-time exceptions. The authors argue, in our opinion
correctly, that type-soundness is not a prerequisite to usefulness, as many type-errors are
still caught by this unsound analysis. Similar initiatives exist for other languages as well,
for example Python [OPSR15, VKSB14].

Their approaches are undoubtedly useful to analyze, but unfortunately cannot be directly
replicated for TLA+. The reason for this is relatively simple: the languages they are
extending are programming languages, designed to be executable without any kind of
type annotations, and the type systems only ever serve to provide safety guarantees, or
preempt run-time exceptions. This means that it is perfectly valid to type-annotate or

32

5.7. ByMC

Figure 5.2: A TypeScript snippet, with an embedded error it would produce

interface Student {
name: string;
id: number;

}

const student: Student = {
surname: "Smith",

/* Type ’{ surname: string; id: number; }’ is not
assignable to type ’Student’.
Object literal may only specify known properties,
and ’surname’ does not exist in type ’Student’. */

id: 0,
};

analyze only parts of the input, e.g. an especially critical function. In our case, TLA+

is not an executable language by design. Because Apalache relies on an SMT encoding
internally, there can be no partial typing — every single expression in the specification
must be type-annotated (or typeable by means of automatic type inference). So while a
type system is a quality-of-life improvement in the JavaScript case, it is a necessity in
the TLA+ case. Note that this is even implicitly true for TLC, which does not have a
formal type system. For example, non-homogeneous collections, such as {1, ”abc”} are
rejected by TLC (as well as Apalache).

5.7 ByMC
The Byzantine Model Checker (ByMC) [KW18, KLSW20] implements techniques for
verifying threshold-guarded distributed algorithms, by means of threshold automata,
presented in [KLVW17b, KVW15]. It was the first tool to automatically verify several
fault-tolerant algorithms in the parametric setting [BGMR01, DS06, Gue02, MMPR03,
Ray97, SvR08]. The tool works in the following way: As input, it requires a threshold
automaton with bounded diameter [KVW14], or a specification in Parametric Promela,
an extension of the Promela language used by the Spin model checker [Hol03], adapted
to allow specifications of infinite-state (parametrized) systems. A discussion on the
benefits and drawbacks of both input formats can be found in [KW18]. From either
input the relevant safety/liveness properties are extracted in a temporal logic fragment
ELTLFT, described in [KW18]. Each possible counterexample, i.e. violation of one of
the specification properties, can have one of finitely many shapes, and all such shapes
are enumerated by the tool. For each shape, the tool constructs an SMT query, encoding

33

5. State of the art in verification

the existence of a counterexample of that shape, which is offloaded to an external SMT
solver. If no counterexample is found, the property holds, otherwise a counterexample is
reported (finite trace, in cases of safety violation, or lasso for liveness). An example of
a threshold-automaton input can be found in Figure 5.3. The full automaton and its
Parameterized Promela equivalent can be found in [ben].

5.8 Ivy
Ivy [PMP+16] refers to a language and a toolkit for protocol specification and modeling.
Using Ivy, one can construct a discrete transition system, from data, functions and
actions. On top of those, one can specify various invariants, from simple state properties,
to safety and liveness. It also has built-in language features, called monitors, which are
designed to facilitate refinement, by modifying actions with e.g. pre- and post-effects.
It is a typed language, meaning that every data variable and parameter must have a
declared type, though there is support for uninterpreted types.

A recent summary [MP20] outlines the success of the language in also generating perfor-
mant executable code, directly from a specification.

While Ivy is similar to TLA+ in many aspects, there are also notable differences, the first
being the presence of types. In addition, the Ivy prover can reason about infinite-state
systems (which TLC cannot, and Apalache can, in certain cases). As far as syntax is
concerned, like many other languages in this section, it does not have complex data
structures built into the language itself, though, unlike TLA+, it allows for the definition
of abstract datatypes, much like modern programming languages. Most notably, it
lacks built-in support for sets, which sometimes makes it difficult to directly compare or
translate between Ivy and TLA+.

More information about Ivy, as well as a tutorial with examples, can be found on their
Github page [ivy].

34

5.8. Ivy

Figure 5.3: A threshold automaton for reliable broadcast [ST87] (excerpt)

skel Proc {
local pc;
shared nsnt;
parameters N, T, F;

define THRESH1 == T + 1;
define THRESH2 == N - T;

assumptions (0) {
N > 3 * T;
T >= F;
T >= 1;

}

locations (0) {
loc0: [0];
loc1: [1];
...

}

inits (0) {
(loc0 + loc1) == N - F;
locSE == 0;
locAC == 0;
nsnt == 0;

}

rules (8) {
0: loc1 -> locSE

when (true)
do { nsnt’ == nsnt + 1; };

1: loc0 -> locAC
when (nsnt >= THRESH2 - F)
do { nsnt’ == nsnt + 1; };

...
}

specifications (0) {
...
corr: <>[]((nsnt < THRESH1 || loc0 == 0)

&& (nsnt < THRESH2 || loc0 == 0)
&& ((nsnt < THRESH2) || locSE == 0)
&& (loc1 == 0))

-> ((loc0 == 0) -> <>(locAC != 0));
...

}
}

35

CHAPTER 6
Symbolic transitions in TLA+

This chapter is an extension of the work presented in [KTK18]. The techniques described
in it were implemented by the author in the Apalache model checker.

6.1 Introduction
A simple example in Figure 6.1 illustrates the problems that one faces when developing a
symbolic model checker for TLA+. In this example, we model two processes: Producer
that inserts a subset of {“A”, “B”, “C ”, “D”, “E”} into the set S , and Consumer that
removes from S its arbitrary subset. The system is initialized with the operator Init. A
system transition is specified with the operator Next that is defined via a disjunction
of operators Produce and Consume. Both Producer and Consumer maintain the state
invariant empty ⇔ (S = ∅). We notice the following challenges for a symbolic approach:

1. The specification does not have types. This is not a problem for TLC, since it
constructs states on the fly and hence dynamically computes types. In the symbolic
case, one can use type synthesis [MV12a] or the untyped SMT encoding [MV12b].

2. Direct translation of Next to SMT would produce a monolithic formula, e.g., it
would not analyze Produce and Consume as independent actions. This is in sharp
contrast to translation of imperative programs, in which variable assignments allow
a model checker to focus only on the local state updates.

In this chapter, we focus on the second problem, and return to the first in Chapter 8.
Our motivation comes from the observation on how TLC computes the successors of a
given state [Lam02, Ch. 14]. Instead of precomputing all potential successors — which
would be anyway impossible without types — and evaluating Next on them, TLC
explores subformulas of Next. The essential exploration rules are: (1) Disjunctions and

37

6. Symbolic transitions in TLA+

module prodcons
variable S , empty
Init Δ= S = {} ∧ empty = true
Produce Δ= ∧ empty ′ = false

∧ ∃ X ∈ subset {“A”, “B”, “C”, “D”, “E”} : S ′ = S ∪ {X }
Consume Δ= ¬empty ∧ S ′ ∈ subset S ∧ empty ′ = (S ′ = {})
Next Δ= Produce ∨ Consume

Figure 6.1: A simple producer-consumer

conjunctions are evaluated from left to right, (2) an equality x ′ = e assigns the value
of e to x ′ if x ′ is yet unbound, (3) if an unbound variable appears on the right-hand side
of an assignment or in a non-assignment expression, TLC terminates with an error, and
(4) operands of a disjunction assign values to the variables independently. In more detail,
rule (4) means that whenever a disjunction A ∨ B is evaluated and x ′ is assigned a value
in A, this value does not propagate to B ; moreover, x ′ must be assigned a value in B .

In our example, TLC evaluates the actions Produce and Consume independently and
assigns variables as prescribed by these formulas. As TLC is explicit, for each state, it
produces at most 225 successors in Produce as well as in Consume.

We introduce a technique to statically label expressions in a TLA+ formula φ as assign-
ments to the variables from a set V ′, while fulfilling the following:

1. For purely Boolean formulas, if φ is transformed into an equivalent formula in
disjunctive normal form (DNF): �

1≤i≤k Di , then every disjunct Di has exactly one
assignment per variable from V ′.

2. The assignments adhere the following partial order: if x ′ ∈ V ′ is assigned a value
in expression e, that uses a variable y ′ ∈ V ′, then the assignment to y ′ precedes
the assignment to x ′.

3. In general, we formalize the above idea with the notion of a branch.

As expected, the following sequence of expressions is given as assignments in our example:
(1) empty′ = true, (2) S ′ = S ∪ {X }, (3) S ′ ∈ subset S , and (4) empty′ = (S ′ = ∅).
Using this sequence, our technique constructs two symbolic transitions that are equivalent
to the actions Produce and Consume.

In general, finding assignments and slicing a formula into symbolic transitions is not as
easy as in our example, because of quantifiers and if-then-else complicating matters.
In this chapter, we present our solution, demonstrate its soundness and report on
experiments.

Our contributions are as follows:

38

6.2. Abstract syntax α-TLA+

• We formalize the notion of assignments and assignment strategies, which can be
used in model checking, and present an SMT encoding from which assignment
strategies are easily extracted.

• We define a sound decomposition of a TLA+ formula into symbolic transitions using
assignment strategies, which enables a modular analysis of the original formula.

• We implement the above as part of the APALACHE model checker [pro], and
present experimental results using several state-of-the-art TLA+ specifications,
including complex algorithms such as Paxos or RAFT.

We have also conducted experiments on over 30 TLA+ benchmarks, which we report on
in Section 6.7.

The chapter is organized as follows: Section 6.2 introduces an abstraction of TLA+

syntax, called α-TLA+, which preserves only those language constructs, that are useful
for determining assignments. In Section 6.3, we introduce auxiliary notions, such as
label sets, assignment candidates and the dependency relation. Section 6.4 introduces
branches – Boolean formulas abstracting the structure of α-TLA+ – and the definition
of an assignment strategy, in terms of its branch properties. Section 6.5 presents the
encoding of assignment strategies into SMT. In Section 6.6, we use the results of the
previous section to recover information about the original TLA+ formula; we introduce
the notion of slices and a specific subset thereof, symbolic transitions. Finally, Section
6.7 details experimental results and Section 6.8 contains concluding remarks.

6.2 Abstract syntax α-TLA+

TLA+ has rich syntax [Lam02], which cannot be defined here. To focus only on the
expressions that are essential for finding assignments in a formula, we define abstract
syntax for TLA+ formulas below. In our syntax, the essential operators such as conjunc-
tions and disjunctions are included explicitly, while the other non-essential operators are
hidden under the star expression ⋆.

We assume predefined three infinite sets:

• A set L of labels. We use notation ℓi to refer to its elements, for i ∈ N.

• A set Vars′ of primed variables that are decorated with prime, e.g., x ′ and a ′.

• A set Bound of bound variables, which are used by quantifiers.

39

6. Symbolic transitions in TLA+

Next Δ= ℓ1 ::
�
ℓ2 ::

�
ℓ3 :: empty ′ ∈ ℓ4 :: ⋆ ∧ ℓ5 :: ∃ X ∈ ℓ6 :: ⋆ : ℓ7 :: S ′ ∈ ℓ8 :: ⋆)

∨ ℓ9 :: (ℓ10 :: ⋆ ∧ ℓ11 :: S ′ ∈ ℓ12 :: ⋆ ∧ ℓ13 :: empty ′ ∈ ℓ14 :: ⋆(S ′)
�

Figure 6.2: The Next operator of producer-consumer in α-TLA+

The abstract syntax α-TLA+ is defined in terms of the following grammar:

expr ::= exα | ℓ :: false
| ℓ :: v ′ ∈ exα | ℓ :: expr ∧ · · · ∧ expr | ℓ :: expr ∨ · · · ∨ expr
| ℓ :: ∃x ∈ exα : expr | ℓ :: if exα then expr else expr

exα ::= ℓ :: ⋆ (v ′, . . . , v ′)
ℓ ::= a unique label from the set L

v ′ ::= a variable name from the set Vars′

x ::= a variable name from the set Bound

A few comments on the syntax and its relation to TLA+ expressions are in order. We
require every expression to carry a unique label ℓi ∈ L. Although this is not a requirement
in TLA+, it is easy to decorate every expression with a unique label. The expressions of
the form ℓ :: v ′ ∈ expr are of ultimate interest to us, as they are treated as assignment
candidates. Under certain conditions, they can be used to assign to v ′ a value from the
set represented by the expression expr . Perhaps somewhat unexpectedly, expressions
such as v ′ = e and unchanged ⟨v1, . . . , vk ⟩ are not included in our syntax. To keep the
syntax minimal, we represent them with ℓ :: v ′ ∈ expr . Indeed, these expressions can
be rewritten in an equivalent form: v ′ = e as v ′ ∈ {e}, and unchanged ⟨v1, . . . , vk ⟩ as
v ′

1 ∈ {v1} ∧ · · · ∧ v ′
k ∈ {vk}. Every non-essential TLA+ expression e is presented in the

abstract form ℓ :: ⋆(v ′
1, . . . , v ′

k), where v ′
1, . . . , v ′

k are the names of the primed variables
that appear in e. When no primed variable appears in an expression, we omit parenthesis
and write ℓ :: ⋆. TLA+ expressions often refer to user-defined operators, which are not
present in our abstract syntax. We simply assume that all non-recursive user-defined
operators have been expanded, that is, recursively replaced with their bodies. All uses of
recursive operators are hidden under ⋆; hence, recursive operator definitions are ignored
when searching for assignment candidates.

It should be now straightforward to see how one could translate a TLA+ expression to
our abstract syntax. We write α(e) to denote the expression in α-TLA+, that represents
an expression e in the complete TLA+ syntax. With γ we denote the reverse translation
from α-TLA+ to TLA+ that has the property that γ(α(e)) = e. Figure 6.2 shows the
abstract expression α(Next) of the operator Next defined in Figure 6.1.

Discussions Notice that α-TLA+ is missing several fundamental constructs permitted
in TLA+, such as case expressions, universal quantifiers, and negations. They are all
abstracted to ⋆. The primary purpose of α-TLA+ is to allow us to determine whether a

40

6.3. Preliminary definitions

Table 6.1: The definition of Sub(φ)

α-TLA+ expression φ Sub(φ)
ℓ :: false or ℓ :: ⋆(v ′

1, . . . , v ′
k) {φ}

ℓ :: v ′ ∈ φ1 {φ, φ1}
ℓ :: �s

i=1 φi or ℓ :: �s
i=1 φi {φ} ∪ s

i=1 Sub(φi)
ℓ :: ∃x ∈ φ1 : φ2 {φ} ∪ Sub(φ1) ∪ Sub(φ2)

ℓ :: if φ1 then φ2 else φ3 {φ} ∪ Sub(φ1) ∪ Sub(φ2) ∪ Sub(φ3)

given expression containing set inclusion — or equality — can be used as an assignment.
If such an expression occurs under a universal quantifier, it is not clear which value should
be used for an assignment. Hence, we abstract the expressions under universal quantifiers.
For similar reason, we abstract the expressions under negation. The latter is consistent
with TLC, which produces an error when given, for example, Next == ¬(x ′ = 1).
Finally, we abstract case, due to its semantics, which is defined in terms of the choose
operator [Lam02, Ch. 6]. In practice, there are no potential assignments under case in
the standard TLA+ examples.

6.3 Preliminary definitions
Every TLA+ specification declares a certain finite set of variables, which may appear in
the formulas contained therein. Let φ be an α-TLA+ expression. We assume, for the
purposes of our analysis, that φ is associated with some finite set Vars′(φ), which is a
subset of Vars′, containing all of the variables that appear in φ (and possibly additional
ones). This is the set of variables declared by the specification in which γ(φ) appears.

Since the labels are unique, we write lab(ℓ :: ψ) to refer to the expression label ℓ and
expr(ℓ) to refer to the expression that is labeled with ℓ. We refer to the set of all
subexpressions of φ by Sub(φ). See Table 6.1 for a formal definition.

The set Sub(φ) allows us to reason about terms that appear inside an expression φ, at
some unknown/irrelevant depth. We will often refer to the set of all labels appearing in
φ, that is, Labs(φ) = {lab(ψ) | ψ ∈ Sub(φ)}.

Of special interest to us are assignment candidates, i.e., expressions of the form ℓ ::
v ′ ∈ φ1. Given an arbitrary variable v ′ ∈ Vars′(φ) and an α-TLA+ expression φ, we
write cand(v ′, φ) to mean the set of labels that belong to assignment candidates for v ′

in subexpressions of φ. More formally, cand(v ′, φ) is {ℓ | (ℓ :: v ′ ∈ ψ) ∈ Sub(φ)}. An
exhaustive definition can be found in Table 6.2. We use the notation cand(φ) to mean

v ′ ∈ Vars′(φ) cand(v ′, φ).

Finally, we assign to each label ℓ in Labs(φ) a set frozenφ(ℓ) ⊆ Vars′(φ). Intuitively, if
a variable v ′ is in frozenφ(ℓ), then no expression of the form ℓ̂ :: v ′ ∈ ψ can be treated
as an assignment inside expr(ℓ). Formally, for every ℓ ∈ Labs(φ) the set frozenφ(ℓ) is
defined as the minimal set satisfying all the constraints in Table 6.3.

41

6. Symbolic transitions in TLA+

Table 6.2: The definition of cand(v ′, φ)

α-TLA+ expression φ cand(v ′, φ)
ℓ :: false or ℓ :: ⋆(v ′

1, . . . , v ′
k) ∅

ℓ :: w ′ ∈ φ1

�
{ℓ} ; w ′ = v ′

∅ ; otherwise
ℓ :: �s

i=1 φi or ℓ :: �s
i=1 φi

 s
i=1 cand(v ′, φi)

ℓ :: ∃x ∈ φ1 : φ2 cand(v ′, φ2)
ℓ :: if φ1 then φ2 else φ3 cand(v ′, φ2) ∪ cand(v ′, φ3)

Table 6.3: The constraints on frozenφ

α-TLA+ φ Constraints on frozenφ

ℓ :: ⋆(v ′
1, . . . , v ′

k) {v ′
1, . . . , v ′

k} ⊆ frozenφ(ℓ)
ℓ :: v ′ ∈ φ1 frozenφ(ℓ) = frozenφ(lab(φ1))
ℓ :: �s

i=1 φi
ℓ :: �s

i=1 φi
frozenφ(ℓ) ⊆ frozenφ(lab(φi)) for i ∈ {1, . . . , s}

ℓ :: ∃x ∈ φ1 : φ2 frozenφ(ℓ) ⊆ frozenφ(lab(φ1)) ⊆ frozenφ(lab(φ2))
ℓ :: if φ1 then φ2 frozenφ(ℓ) ⊆ frozenφ(lab(φ1))

else φ3 frozenφ(lab(φ1)) ⊆ frozenφ(lab(φi)) for i = 2, 3

The sets frozenφ naturally lead to the dependency relations ◁v ′ on Labs(φ), where
v ′ ∈ Vars′(φ). We will use ℓ1 ◁v ′ ℓ2 to mean that ℓ1 is an assignment candidate for v ′,
which also belongs to the frozen set of ℓ2. Formally:

ℓ1 ◁v ′ ℓ2 ⇐⇒ ℓ1 ∈ cand(v ′, φ) ∧ v ′ ∈ frozenφ(ℓ2)

Intuitively, if ℓ1 ◁v ′ ℓ2 we want to make sure that expr(ℓ1) is evaluated before expr(ℓ2), if
possible.

Example 1. Let us look at the following α-TLA+ expression:

ℓ1 :: [∃i ∈ [ℓ2 :: ⋆(y ′)] : ℓ3 :: x ′ ∈ [ℓ4 :: ⋆]]

Take the subexpression ℓ3 :: x ′ ∈ [ℓ4 :: ⋆], which we name ψ . By solving the constraints
for frozenψ(ℓ3) we conclude that frozenψ(ℓ3) = ∅. However, if we take the additional
constraints for frozenφ(ℓ3) into consideration, the empty set no longer satisfies all of
them, specifically, it does not satisfy the condition imposed by the existential quantifier
in ℓ1. The additional requirement {y ′} ⊆ frozenφ(ℓ3) implies that frozenφ(ℓ3) = {y ′}.
This corresponds to the intuition that expressions under a quantifier, like ψ, implicitly
depend on the bound variable and the expressions used to define it, which is expr(ℓ2) in
our example.

42

6.4. Formalizing symbolic assignments

Table 6.4: The definition of boolForm(φ)

α-TLA+ expression φ boolForm(φ)
ℓ :: false or ℓ :: ⋆(v ′

1, . . . , v ′
k)

or ℓ :: v ′ ∈ φ1
bℓ

ℓ :: �s
i=1 φi

�s
i=1 boolForm(φi)

ℓ :: �s
i=1 φi

�s
i=1 boolForm(φi)

ℓ :: ∃x ∈ φ1 : φ2 boolForm(φ2)
ℓ :: if φ1 then φ2 else φ3 boolForm(φ2) ∨ boolForm(φ3)

6.4 Formalizing symbolic assignments
As TLC evaluates formulas in a left-to-right order, there is a very clear notion of an
assignment; the first occurrence of an expression v ′ ∈ S is interpreted as an assignment
to v ′. In our work, we want to statically find expressions that can safely be used as
assignments. If we were only dealing with Boolean formulas, we could transform the
original TLA+ formula to DNF, �s

i=1 Di , and treat each Di independently. However,
we also need to find assignments, which may be nested under existential quantifiers. To
transfer our intuition about DNF to the general case we first introduce a transformation
boolForm, that captures the Boolean structure of the formula – boolForm (φ) is a Boolean
abstraction of an α-TLA+ formula φ. Then, we introduce branches and assignment
strategies to formalize the notion of assignments in the symbolic case.

Boolean structure of a formula and branches The transformation boolForm maps
an α-TLA+ expression to a Boolean formula over variables from {bℓ | ℓ ∈ L}. The
definition of boolForm can be found in Table 6.4.

As boolForm(φ) is a formula in Boolean logic, a model of boolForm(φ) is a mapping
from {bℓ | ℓ ∈ L} to B = {true, false}. Take S ⊆ L. The set S naturally defines a model
induced by S , denoted M[S], by the requirement that M[S] ⊨ bℓ if and only if ℓ ∈ S .

The boolForm transformation allows us to formulate the central notion of a branch: A
set Br ⊆ L is called a branch of φ if the following constraints hold:

(a) The set Br induces a model of boolForm(φ), i.e., M[Br] ⊨ boolForm(φ), and

(b) The model M[Br] is minimal, that is, M[S] ⊭ boolForm(φ) for every S ⊂ Br .

Then, Branches(φ) is the set of all branches of φ.

Example 2. Let us look the α-TLA+ expression φ given by

ℓ1 :: [[ℓ2 :: x ′ ∈ ⋆] ∧ [ℓ3 :: [[ℓ4 :: x ′ ∈ ⋆] ∨ [ℓ5 :: x ′ ∈ ⋆]]]]

43

6. Symbolic transitions in TLA+

We know that boolForm(φ) = bℓ2 ∧ (bℓ4 ∨ bℓ5). The set S = {ℓ2, ℓ4, ℓ5} induces a model
of boolForm(φ), but it is not a branch of φ because M[S] is not a minimal model. It is
easy to see that φ has two branches Br1 = {ℓ2, ℓ4}, and Br2 = {ℓ2, ℓ5}. Therefore, we see
that Branches(φ) = {Br1, Br2}.

6.4.1 Properties of induced models
To better understand boolForm, we need to look at how, for a fixed formula φ, the choice
of S influences whether M[S] ⊨ boolForm(φ) or not.
The first property, that might appear obvious, but is in fact quite useful, is that la-
bels outside of Labs(φ) have no bearing on whether or not an induced model satisfies
boolForm(φ). Formally, the following holds true:

Lemma 1. Let φ be an α-TLA+ expression. For any set A ⊆ L, it holds that

M[A] ⊨ boolForm(φ) ⇐⇒ M[A ∩ Labs(φ)] ⊨ boolForm(φ)

Proof. We prove this by induction on the structure of φ:

• φ = ℓ :: false: By definition, boolForm(φ) = bℓ and Labs(φ) = {ℓ}. It is clear
that ℓ ∈ A ⇐⇒ ℓ ∈ A ∩ {ℓ}. If we look at the definition of the induced model, we
can conclude the following:

M[A] ⊨ bℓ ⇐⇒ ℓ ∈ A ⇐⇒ ℓ ∈ A ∩ {ℓ} ⇐⇒ M[A ∩ {ℓ}] ⊨ bℓ

• φ = ℓ :: ⋆ (v ′
1, . . . , v ′

k): Same as for φ = ℓ :: false.

• φ = ℓ :: v ′ ∈ ℓ̂ :: ⋆ (v ′
1, . . . , v ′

k): By definition, Labs(φ) = {ℓ, ℓ̂}. Again, ℓ ∈ A ⇐⇒
ℓ ∈ A ∩ Labs(φ), the rest is the same as for φ = ℓ :: false.

• φ = ℓ :: �s
i=1 φi : Assume as the induction hypothesis, that the lemma holds for

every φi , i ∈ {1, . . . , s}. As boolForm(φ) = �s
i=1 boolForm(φi) by definition, we

know that

M[A] ⊨ boolForm(φ) ⇐⇒ M[A] ⊨ boolForm(φi), for all i ∈ {1, . . . , s}
Take an arbitrary i ∈ {1, . . . , s}. By the induction hypothesis

M[A] ⊨ boolForm(φi) ⇐⇒ M[A ∩ Labs(φi)] ⊨ boolForm(φi)

By applying the hypothesis again, it is also the case that

M[A ∩ Labs(φ)] ⊨ boolForm(φi)
⇐⇒ M[(A ∩ Labs(φ)) ∩ Labs(φi)] ⊨ boolForm(φi)

Since Labs(φ) ∩ Labs(φi) = Labs(φi) we can conclude that

M[A] ⊨ boolForm(φi) ⇐⇒ M[A ∩ Labs(φ)] ⊨ boolForm(φi)

Since i is arbitrary, this holds for every φi , so the lemma holds for such φ.

44

6.4. Formalizing symbolic assignments

• φ = ℓ :: �s
i=1 φi : Analogous to the case where φ = ℓ :: �s

i=1 φi .

• φ = ℓ :: ∃x ∈ ψ : φ0: Assume as the induction hypothesis, that the lemma holds for
φ0. Since Labs(φ0) ⊆ Labs(φ) it follows that Labs(φ0) = Labs(φ) ∩ Labs(φ). As
boolForm(φ) = boolForm(φ0) by definition, we know

M[A] ⊨ boolForm(φ) ⇐⇒ M[A] ⊨ boolForm(φ0)
⇐⇒ M[A ∩ Labs(φ0)] ⊨ boolForm(φ0)
⇐⇒ M[A ∩ Labs(φ) ∩ Labs(φ0)] ⊨ boolForm(φ0)
⇐⇒ M[A ∩ Labs(φ)] ⊨ boolForm(φ0)
⇐⇒ M[A ∩ Labs(φ)] ⊨ boolForm(φ)

• φ = ℓ :: if φ1 then φ2 else φ3 : Analogous to the case where φ = ℓ :: φ2 ∨ φ3 as
boolForm(φ) = boolForm(φ2) ∨ boolForm(φ3).

Thus the lemma holds for any α-TLA+ expression φ.

The next lemma highlights what could be considered the monotonicity of induced models.
For a fixed formula φ, its structural formula boolForm (φ) is a purely propositional
formula, so we can always consider it to be in negation-normal form (NNF). It turns out,
that boolForm has only positive atoms and no negation, and is thus trivially in NNF
already. Consequently, the NNF form of ¬ boolForm(φ) has all atoms negated. Therefore,
if a set of labels S induces a model that satisfies ¬ boolForm(φ), so must any subset of S ,
because removing a label ℓ from S means that the new set induces a model of a greater
number of negative atoms (particularly, ¬bℓ). Formally:

Lemma 2. For a propositional formula ψ in NNF, which contains only negated atoms
¬bℓ1 , . . . , ¬bℓk , and S ⊆ L such that M[S] ⊨ ψ it holds that M[J] ⊨ ψ, for every J ⊆ S .

Proof. We can prove this by induction on the structure of ψ:

• ψ = ¬bℓ: By definition,
M[S] ⊨ ¬bℓ ⇐⇒ ℓ /∈ S

Since J ⊆ S , we know ℓ /∈ S implies ℓ /∈ J . Thus, M[J] ⊨ ¬bℓ.

• ψ = �s
i=1 ψi : Assume as the induction hypothesis, that the lemma holds for all ψi .

We know
M[S] ⊨ ψ ⇐⇒ M[S] ⊨ ψi , for all i ∈ {1, . . . , s}

If M[S] ⊨ ψ and J ⊆ S it follows from the induction hypothesis, that M[J] ⊨ ψi
for all i . So clearly, M[J] ⊨ ψ.

• ψ = �s
i=1 ψi : Analogous to the previous case.

We conclude that the lemma holds for any propositional formula ψ in NNF.

45

6. Symbolic transitions in TLA+

6.4.2 Computing branches recursively
Previously, we gave the formal definition of a branch (and set of branches), in terms
of the minimal models they induce for boolForm(φ). While this definition captures the
properties we want from branches, it is not immediately obvious how these branches are
found. To elaborate on the branch computation process, we introduce a series of lemmas,
that demonstrate how to compute branches of an expression from the branches of its
subexpressions.

In the case of conjunction, we obtain a branch of φ ∧ ψ by taking the union of any two
branches Brφ ∪ Brψ where Brφ is a branch of φ and Brψ is a branch of ψ. More generally:

Lemma 3. Let φ be an α-TLA+ expression. If φ has the shape φ = ℓ :: �s
i=1 φi it

follows that every branch of φ is a union of branches for each φi and vice-versa. Formally:

Branches(φ) =
� s�

i=1
Bri | ∀i ∈ {1, . . . , s} . Bri ∈ Branches(φi)

Proof. Take an arbitrary Br ∈ Branches(φ). By the definition of a branch, M[Br] ⊨
boolForm(φ). We define Bri := Br ∩Labs(φi) for each i = 1, . . . , s . Then, Br = s

i=1 Bri
by construction, since Labs(φ) = s

i=1 Labs(φi). Because each subexpression of φ has a
unique label, the sets Labs(φi) are pairwise disjoint.

It remains to be shown that each such Bri is a branch, i.e. (a) each Bri induces a
model of boolForm (φi) and (b) no proper subset of Bri induces such a model. Take an
arbitrary i ∈ {1, . . . , s}. Since boolForm(φ) implies boolForm(φi), we know M[Br] ⊨
boolForm(φi). By Lemma 1, it must be the case that M[Bri] ⊨ boolForm(φi) as well, so
point (a) holds.

To show (b) holds, take an arbitrary nonempty T ⊆ Bri . Because Br induces a minimal
model, we know M[Br \ T] ⊭ boolForm(φ). If we look at any index j ̸= i , since Labs(φi)
and Labs(φj) are disjoint, the set (Br \ T) ∩ Labs(φj) is just Br ∩ Labs(φj) = Brj .
Consequently, M[Br \T] ⊨ boolForm(φj), by Lemma 1, for all j ̸= i . However, M[Br \T]
does not model boolForm(φ). This must be because M[Br \ T] ⊭ boolForm(φi). We can
apply Lemma 1 again, to deduce that (Br \ T) ∩ Labs(φi) also doesn’t induce a model of
boolForm(φi). Since (Br \ T) ∩ Labs(φi) is Bri \ T and T is arbitrary, we see that for
any S ⊂ Bri it must be the case that M[S] ⊭ boolForm(φi), which proves that Bri is
indeed a branch of φi , for every i ∈ {1, . . . , s}.

Alternatively, take arbitrary branches Br1, . . . , Brs of subexpressions, for which the
following holds: Br1 ∈ Branches(φ1), . . . , Brs ∈ Branches(φs). Define Br := s

i=1 Bri .
We must show that this Br is a branch of φ. Take an arbitrary i ∈ {1, . . . , s}. By
definition, M[Bri] ⊨ boolForm(φi). Lemma 1 tells us that M[Br] ⊨ boolForm(φi)
exactly when M[Br ∩ Labs(φi)] ⊨ boolForm(φi). Because Bri is minimal, it must be the
case that Bri ∩ Labs(φi) equals Bri . If it were some proper subset, S ⊂ Bri , applying

46

6.4. Formalizing symbolic assignments

Lemma 1 to Bri would give us

M[Bri] ⊨ boolForm(φi) ⇐⇒ M[S] ⊨ boolForm(φi)

which contradicts the property that we know M[T] ⊭ boolForm(φi) for every T ⊂ Bri .
It remains to be seen that Br ∩ Labs(φi) = Bri . Expanding Br tells us

Br ∩ Labs(φi) =
s�

j=1
Brj ∩ Labs(φi)

If i ̸= j then, as Brj ⊆ Labs(φj) and the label sets Labs(φi) and Labs(φj) are disjoint,
we conclude Labs(φi) ∩ Brj = ∅. So M[Br] ⊨ boolForm(φi). As i was arbitrary, this
means M[Br] ⊨ �s

i=1 boolForm(φi). To see that Br induces a minimal model, take an
arbitrary nonempty T ⊆ Br . Then, S := Br \ T is a proper subset of Br . There must
exist an i , for which T ∩ Bri ̸= ∅. By Lemma 1, we know that

M[S] ⊨ boolForm(φi) ⇐⇒ M[S ∩ Labs(φi)] ⊨ boolForm(φi)
⇐⇒ M[(Br \ T) ∩ Labs(φi)] ⊨ boolForm(φi)
⇐⇒ M[Bri \ T] ⊨ boolForm(φi)

But Bri is a branch and Bri \ T is its proper subset, so M[Bri \ T] ⊭ boolForm(φi) and
consequently, M[S] ⊭ boolForm(φ), for any proper subset S ⊂ Br . Therefore, Br is a
branch of φ.

In the case of disjunction, branch construction is even simpler. Suppose we take a branch
Br of φ. Then, this same Br is also a branch of φ ∨ ψ, for any ψ. More generally:

Lemma 4. Let φ be an α-TLA+ expression. If φ has the shape φ = ℓ :: �s
i=1 φi it

follows that every branch of φ is a branch of some φi and vice-versa. Formally:

Branches(φ) =
s�

i=1
Branches(φi)

Proof. Take an arbitrary i ∈ {1, . . . , s} and Br ∈ Branches(φi). Since it is the case that
M[Br] ⊨ boolForm(φi), it follows that M[Br] ⊨ �s

j=1 boolForm(φj). To see that Br is
minimal, take an arbitrary S ⊂ Br . By definition, M[S] ⊭ boolForm(φi). To see that it
cannot induce a model for boolForm(φj), where i ≠ j , we note that Labs(φi)∩Labs(φj) =
∅ and, by Lemma 1,

M[S] ⊨ boolForm(φj) ⇐⇒ M[S ∩ Labs(φj)] ⊨ boolForm(φj)

Since S ⊂ Labs(φi) we know that S ∩ Labs(φj) = ∅. As no boolForm formula is a
tautology, by construction, it follows that M[∅] cannot model boolForm(φj) for j ̸= i .
So S cannot induce a model for �s

j=1 boolForm(φj) and thus Br is a branch of φ.

47

6. Symbolic transitions in TLA+

Alternatively, take a Br ∈ Branches(φ). There must exist some i ∈ {1, . . . , s} for which
M[Br] ⊨ boolForm(φi). We show that Br ∩ Labs(φj) = ∅ for all i ̸= j by contradiction:
Assume that for some j ≠ i there exists a x ∈ Labs(φj) ∩ Br . It is always the case that
Labs(φi) and Labs(φj) are disjoint. If we invoke Lemma 1, we see that

M[Br] ⊨ boolForm(φi) ⇐⇒ M[Br ∩ Labs(φi)] ⊨ boolForm(φi)

It must be the case that Br ∩ Labs(φi) also induces a model for boolForm(φi) and
therefore M[Br ∩ Labs(φi)] ⊨ boolForm(φ). But this is a contradiction, since Br is a
branch and Br ∩ Labs(φi) is a proper subset, since it doesn’t contain x , which belongs to
Labs(φj). Consequently, the assumption is false and Br ∩ Labs(φj) = ∅ for all i ̸= j . It
remains to see that no S ⊂ Br can induce a model for boolForm(φi). Take an arbitrary
S ⊂ Br . Since, for i ̸= j , Br ∩ Labs(φj) = ∅ then M[Br] ⊭ boolForm(φj). Because
M[S] ⊭ boolForm(φ), as Br is a branch, we must conclude that M[S] ⊭ boolForm(φi).
But that means Br is a branch of φi .

As boolForm is defined in a way that it ignores quantification, it is not at all surprising
that branches of quantified expressions are exactly branches of their respective bodies:

Lemma 5. Let φ be an α-TLA+ expression. If φ has the shape φ = ℓ :: ∃x ∈ ψ. φ0 it
follows that branches of φ are exactly branches of φ0. Formally:

Branches(φ) = Branches(φ0)

Proof. Clearly, as boolForm(φ) = boolForm(φ0) by definition, we know

M[T] ⊨ boolForm(φ) ⇐⇒ M[T] ⊨ boolForm(φ0)

for any T ⊆ L, in particular also for branches.

The last case is if-then-else splitting. Just as boolForm is translated as a disjunction of
the boolForms for the then- and else- cases, so too is branch computation analogous to
the disjunctive case.

Lemma 6. Let φ be an α-TLA+ expression. If φ = ℓ :: if φ1 then φ2 else φ3 it
follows that every branch of φ is a branch of either φ2 or φ3 and vice-versa. Formally:

Branches(φ) = Branches(φ2) ∪ Branches(φ3)

Proof. See the proof of Lemma 4, as boolForm(φ) = boolForm(φ2) ∨ boolForm(φ3).

48

6.4. Formalizing symbolic assignments

6.4.3 Assignment strategies
As our goal is to reason about the side-effects of variable assignments, the remainder of
this section looks at how we can achieve this with the help of branches.

We want to statically mark some expressions as assignments, that is, pick a set A ⊆
Labs(φ). Below, we formulate the critical properties we require from such a set, which
we will later call an assignment strategy.

Most obviously, we want to consider only assignment candidates:

Definition 1. A set H ⊆ Labs(φ) is homogeneous if all the labels in H are assignment
candidates. Formally, H ⊆ cand(φ).

If we choose an arbitrary homogeneous set H , it might lack assignments on some branches
or have multiple assignments to the same variable on others. Formally, we say that H has
a covering index d ∈ N0, if some branch contains in H exactly d assignment candidates for
the same variable. Formally, d is a covering index of H ⊆ Labs(φ), if we can find a branch
Br ∈ Branches(φ) and a variable v ′ ∈ Vars′(φ) for which d = |Br ∩ H ∩ cand(v ′, φ)|. A
covering index of 0 means that some branch lacks assignments for at least one variable,
and a covering index greater than 1 means that some branch contains more than one
assignment to some variable. Now we define sets, that cover all branches with assignments:

Definition 2. A homogeneous set C is a covering of φ, if it does not have 0 as a covering
index. It is a minimal covering of φ, if it only has 1 as a covering index.

Consider the TLA+ formula x ′ = y ′ ∧ y ′ = 2x ′. Its corresponding α-TLA+ expression
ℓ0 :: (ℓ1 :: x ′ ∈ ℓ2 :: ⋆ (y ′) ∧ ℓ3 :: y ′ ∈ ℓ4 :: ⋆ (x ′)) has a minimal covering {ℓ1, ℓ3}.
However, there is no way to order the assignments to x ′ and y ′. To detect such cases, we
define acyclic sets:

Definition 3. A homogeneous set A is acyclic w.r.t. φ, if there exists a strict total
order ≺A on A, with the following property: For every variable v ′ ∈ V , every branch
Br ∈ Branches(φ) and every pair of labels ℓi and ℓj in A∩Br the relation ℓi ◁v ′ ℓj implies
ℓi ≺A ℓj .

In the previous example, {ℓ1, ℓ3} is a minimal covering, but it is not acyclic; ℓ1 ◁x ′ ℓ3 and
ℓ3 ◁y ′ ℓ1 produce the requirements ℓ1 ≺A ℓ3 and ℓ3 ≺A ℓ1, which are mutually exclusive
for a strict total order.

Having defined homogeneous, minimal covering, and acyclic sets, we can formulate the
notion of an assignment strategy.

Definition 4. Let φ be an α-TLA+ expression. A set A ⊆ L is an assignment strategy
for φ, if it is an acyclic minimal covering.

Now we are in a position to formulate the first problem we solve in this chapter:

49

6. Symbolic transitions in TLA+

Static assignment problem Given an α-TLA+ expression φ, our goal is to find an
assignment strategy, or prove that none exists.

6.5 Finding assignment strategies with SMT
For a given α-TLA+ expression φ, we construct an SMT formula θ(φ), that encodes the
properties of assignment strategies. Technically, θ(φ) is defined as θH (φ) ∧ θC (φ) ∧ θA(φ),
and consists of:

1. A Boolean formula θH (φ), that encodes homogeneity.

2. A Boolean formula θC (φ), that encodes the minimal covering property.

3. A formula θA(φ), that encodes acyclicity. This formula requires the theories of
linear integer arithmetic and uninterpreted functions (QF UFLIA).

Reasons to use SMT It turns out that computing syntactic properties, like whether or
not an expression is an assignment candidate (for determining homogeneity and coverings)
can be done easily in many different ways. The true value of SMT comes from being
able to find acyclic sets, by solving LIA constraints. In this sense, SMT is a framework
that allows us to easily encode all three conditions in the same language and extract
assignment strategies directly from the produced solutions.

In the following, Propositions 1, 3, and 5 formally establish the relation between φ and
its three SMT counterparts. Together, the propositions allow us to prove the following
theorem:

Theorem 1. For every α-TLA+ formula φ and A ⊆ Labs(φ), it holds that M[A] ⊨ θ(φ)
if and only if A is an assignment strategy for φ.

6.5.1 Homogeneous sets
We introduce a Boolean formula, whose models are exactly those induced by homogeneous
sets. To this end, take the set of labels corresponding to expressions that are not
assignment candidates, N (φ), given by N (φ) := Labs(φ) \ cand(φ). Then, we define the
following:

θH (φ) :=
�

ℓ ∈ N (φ)
¬bℓ

Proposition 1. For every α-TLA+ expression φ and A ⊆ Labs(φ), it holds that
M[A] ⊨ θH (φ) if and only if A is homogeneous.

Proof. Firstly, assume M[A] ⊨ θH (φ). Take an arbitrary ℓ ∈ N (φ). Then

M[A] ⊨ θH (φ) ⇒ M[A] ⊨ ¬bℓ ⇐⇒ ℓ /∈ A

50

6.5. Finding assignment strategies with SMT

So every element of A is in Labs(φ) \ N (φ) = cand(φ), which means A ⊆ cand(φ), i.e. A
is homogeneous.

Secondly, assume some A ⊆ Labs(φ) is homogeneous. Let ℓ be an arbitrary label in
Labs(φ). The following must then be true:

ℓ ∈ N (φ) ⇒ ℓ /∈ A ⇐⇒ M[A] ⊭ bℓ ⇐⇒ M[A] ⊨ ¬bℓ

So we can conclude that M[A] ⊨ �
ℓ ∈ N (φ) ¬bℓ, that is, M[A] ⊨ θH (φ).

6.5.2 Minimal covering sets
Next we construct a Boolean formula θ∗

C (φ), whose models are exactly those induced by
covering sets. To this end, we define, for each v ′ ∈ Vars′(φ), the transformation δv ′ as
shown in Table 6.5. Intuitively, δv ′(φ) is satisfiable exactly when there is an assignment

Table 6.5: The definition of δv ′(φ)

α-TLA+ expression φ δv ′(φ)
ℓ :: false or ℓ :: ⋆(v ′

1, . . . , v ′
k) false

ℓ :: w ′ ∈ φ1

�
bℓ ; w ′ = v ′

false ; otherwise
ℓ :: �s

i=1 φi
�s

i=1 δv ′(φi)
ℓ :: �s

i=1 φi
�s

i=1 δv ′(φi)
ℓ :: ∃x ∈ φ1 : φ2 δv ′(φ2)

ℓ :: if φ1 then φ2 else φ3 δv ′(φ2) ∧ δv ′(φ3)

to v ′ on every branch of φ. We then define

θ∗
C (φ) :=

�
v ′ ∈ Vars′(φ)

δv ′(φ)

We can observe a similar property to the one described in Lemma 1; the only labels that
affect whether or not an induced model satisfies a δv ′ formula are the labels of assignment
candidates for v ′.

Lemma 7. Let φ be an α-TLA+ expression. For any set A ⊆ L and any variable
v ′ ∈ Vars′(φ), it holds that

M[A] ⊨ δv ′(φ) ⇐⇒ M[A ∩ cand(v ′, φ)] ⊨ δv ′(φ)

Proof. Analogous to the proof of Lemma 1.

Our δ transformation is strongly related to boolForm. It turns out, labels necessary to
model δ are also necessary to model boolForm. We formalize this in the following way:

51

6. Symbolic transitions in TLA+

Lemma 8. Let φ be and α-TLA+ expression. For any v ′ ∈ Vars′(φ) and S ⊆ L, it
holds that if M[S] ⊨ δv ′(φ) then M[L \ S] ⊨ ¬ boolForm(φ).

Proof. We will use induction on the structure of φ:

• φ = ℓ :: false : Since δv ′(φ) = false the implication is vacuously true as no model
exists.

• φ = ℓ :: ⋆ (v ′
1, . . . , v ′

k) : Same as for φ = ℓ :: false.

• φ = ℓ :: w ′ ∈ ψ : If δv ′(φ) = false the implication is vacuously true, since no model
exists. If δv ′(φ) = bℓ then ¬ boolForm(φ) = ¬bℓ and

M[S] ⊨ bℓ ⇐⇒ ℓ ∈ S ⇐⇒ ℓ /∈ L \ S ⇐⇒ M[L \ S] ⊨ ¬bℓ

Thus, the implication holds.

• φ = ℓ :: �s
i=1 φi : Assume as the induction hypothesis, that the lemma holds

for each φi . Let M[S] ⊨ δv ′(φ). By definition, δv ′(φ) = �s
i=1 δv ′(φi), so we know

that there exists a j ∈ {1, . . . , s}, for which M[S] ⊨ δv ′(φj). By the induction
hypothesis, we then know M[L \ S] ⊨ ¬ boolForm(φj). Since ¬ boolForm(φ) =�s

i=1 ¬ boolForm(φi) it also follows that M[L \ S] ⊨ ¬ boolForm(φ), as required.

• φ = ℓ :: �s
i=1 φi : Analogous to the previous case.

• φ = ℓ :: ∃x ∈ ψ : φ0: Assume the lemma holds for φ0. It is obvious that, since
δv ′(φ) = δv ′(φ0) and boolForm(φ) = boolForm(φ0), the lemma holds for φ as well.

• φ = ℓ :: if φ1 then φ2 else φ3 : Analogous to the disjunction case, since
boolForm(φ) = boolForm(φ2 ∨ φ3) and δv ′(φ) = δv ′(φ2 ∨ φ3).

Thus the lemma holds for any α-TLA+ expression φ.

To prove that θ∗
C describes covering sets, we require an additional technical lemma.

Lemma 9. Let φ = ℓ :: �s
i=1 φi be an α-TLA+ expression and J a set that intersects

every branch of φ. Then, J intersects every branch of some φi non-trivially as well.
Formally, take a set J ⊆ L with the property that

∀Br ∈ Branches(φ) . J ∩ Br ̸= ∅

Then, the following holds:

∃k ∈ {1, . . . , s} . ∀Br ∈ Branches(φk) . J ∩ Br ̸= ∅

52

6.5. Finding assignment strategies with SMT

Proof. We prove this by contradiction. Assume that for every k ∈ {1, . . . , s} we can find
a Brk ∈ Branches(φk) for which J ∩ Brk = ∅. If we take Br := s

k=1 Brk , we generate a
branch of φ, by Lemma 3. Then, by assumption, J ∩ Br ̸= ∅. However, from the way we
have defined Br , we see that

J ∩ Br = J ∩
s�

k=1
Brk =

s�
k=1

(J ∩ Brk) =
s�

k=1
∅ = ∅

From this contradiction, we deduce that the lemma must hold.

Using the above lemmas, we can show that the following proposition holds:

Proposition 2. For every α-TLA+ expression φ and A ⊆ Labs(φ), it holds that
M[A] ⊨ θH (φ) ∧ θ∗

C (φ) if and only if A is a covering set for φ.

Proof. Firstly, assume M[A] ⊨ θH (φ)∧θ∗
C (φ). This obviously implies that M[A] ⊨ θH (φ).

By Proposition 1, we know A is homogeneous. We will prove that A is a covering set by
contradiction:

Take an arbitrary branch Br ∈ Branches(φ) and v ′ ∈ Vars′(φ) and assume that A∩Br ∩
cand(v ′, φ) is empty. Because M[A] ⊨ θ∗

C (φ) and θ∗
C (φ) ⇒ δv ′(φ), by definition, it must

hold that M[A] ⊨ δv ′(φ). By Lemma 7, we know it suffices to consider only the labels
from A ∩ cand(v ′, φ), which we denote by A|v ′ , for which M[A|v ′] ⊨ δv ′(φ). By Lemma
8, we can deduce that M[L \ A|v ′] ⊨ ¬ boolForm(φ). Since we assumed Br ∩ A|v ′ = ∅, it
follows that Br ⊆ L \ A|v ′ . Because of this we can apply Lemma 2, as ¬ boolForm(φ) in
NNF contains only negated atoms, to conclude M[Br] ⊨ ¬ boolForm(φ). However, as
Br is a branch it must hold that M[Br] ⊨ boolForm(φ) too, which is a contradiction.

Therefore, Br ∩ A|v ′ must be nonempty. As both Br and v ′ were arbitrary this implies
that A is a covering set.

Secondly, consider the opposite direction, where A ⊆ L is a covering set. We must show
that M[A] ⊨ θ∗

C (φ), since covering sets are homogeneous, which implies M[A] ⊨ θH (φ) by
Proposition 1. It suffices to see that for every v ′ ∈ Vars′(φ) it holds that M[A] ⊨ δv ′(φ).
We prove the following statement by induction on the structure of φ:

∀v ′ ∈ Vars′(φ) . [(∀Br ∈ Branches(φ) . A|v ′ ∩ Br ̸= ∅) ⇒ M[A] ⊨ δv ′(φ)] (6.1)

• φ = ℓ :: false : Since Branches(φ) = {{ℓ}} and ℓ /∈ cand(φ), no set can satisfy
the precondition, so the implication vacuously holds.

• φ = ℓ :: ⋆ (v ′
1, . . . , v ′

k) : Same as above.

• φ = ℓ :: w ′ ∈ φ1 : We know Branches(φ) = {{ℓ}}. Take an arbitrary v ′ ∈ Vars′(φ)
and assume the precondition ∀Br ∈ Branches(φ) . A ∩ Br ∩ cand(v ′, φ) ̸= ∅. If
v ′ ≠ w ′ then the precondition generates a contradiction, so (6.1) holds vacuously.
Alternatively, if v ′ = w ′, we deduce that A must contain {ℓ}. Since δw ′(φ) = bℓ,
clearly, M[A] ⊨ bℓ.

53

6. Symbolic transitions in TLA+

• φ = ℓ :: �s
i=1 φi : Assume as the induction hypothesis, that (6.1) holds for every

φk , k ∈ {1, . . . , s}. Take an arbitrary v ′ ∈ Vars′(φ) and assume the precondition
that

∀Br ∈ Branches(φ) . Br ∩ [A ∩ cand(v ′, φ)] ̸= ∅
By applying Lemma 9, with J = A ∩ cand(v ′, φ), we can deduce that there is some
k ∈ {1, . . . , s}, for which it holds that

∀Br ∈ Branches(φk) . Br ∩ [A ∩ cand(v ′, φ)] ̸= ∅
Since any label that is both in Br , which is a branch of φk , and cand(v ′, φ)
is in cand(v ′, φk), we see that B ∩ A ∩ cand(v ′, φk) is also nonempty. By the
induction hypothesis for φk , this tells us that M[A] ⊨ δv ′(φk). Since, by definition,
δv ′(φ) = �s

i=1 δv ′(φi), it must hold that M[A] ⊨ δv ′(φ).

• φ = ℓ :: �s
i=1 φi : Assume as the induction hypothesis, that (6.1) holds for every

φk , k ∈ {1, . . . , s}. Take an arbitrary v ′ ∈ Vars′(φ) and assume the precondition
that

∀Br ∈ Branches(φ) . Br ∩ [A ∩ cand(v ′, φ)] ̸= ∅
By applying Lemma 4, we see that Branches(φ) = s

i=1 Branches(φi). We can
deduce

∀k ∈ {1, . . . , s} . ∀Br ∈ Branches(φk) . Br ∩ [A ∩ cand(v ′, φ)] ̸= ∅
By the same argument as in the conjunctive case, any label in Br∩cand(v ′, φ), where
Br ∈ Branches(φk), is also in cand(v ′, φk), so by using the induction hypothesis,
we conclude M [A] ⊨ δv ′(φk) for all k ∈ {1, . . . , s}.
This means M[A] ⊨ �s

i=1 δv ′(φk) so as δv ′(φ) = �s
i=1 δv ′(φk) we see that M[A] ⊨

δv ′(φ).

• φ = ℓ :: ∃x ∈ φ1 : φ2 : Assume as the induction hypothesis, that (6.1) holds for φ2.
Take an arbitrary v ′ ∈ Vars′(φ) and assume the precondition that

∀Br ∈ Branches(φ) . Br ∩ [A ∩ cand(v ′, φ)] ̸= ∅
By applying Lemma 5, we see that Branches(φ) = Branches(φ2), so it is clear that
M[A] ⊨ δv ′(φ2) by the induction hypothesis. Since δv ′(φ) = δv ′(φ2) we know that
M[A] ⊨ δv ′(φ).

• φ = ℓ :: if φ1 then φ2 else φ3 : Assume as the induction hypothesis, that
the statement holds for φ2, φ3. Take an arbitrary v ′ ∈ Vars′(φ) and assume the
precondition that

∀Br ∈ Branches(φ) . Br ∩ [A ∩ cand(v ′, φ)] ̸= ∅
By applying Lemma 6, we have Branches(φ) = Branches(φ2) ∪ Branches(φ3). The
rest of this proof is the same as for the disjunctive case, since δv ′(φ) = δv ′(φ2) ∧
δv ′(φ3) and boolForm(φ) = boolForm(φ2) ∨ boolForm(φ3).

54

6.5. Finding assignment strategies with SMT

So we can conclude, that (6.1) always holds. Take an arbitrary v ′ ∈ Vars′(φ). Since
A is a covering set, if also satisfies the precondition of (6.1). Therefore, we know that
M[A] ⊨ δv ′(φ). As v ′ was arbitrary, it must be the case that M[A] ⊨ θ∗

C (φ).

With the above lemma we have an encoding of covering sets. However, assignment
strategies need to be minimal covering sets, so we need to extend our SMT formula to
capture this. It is easy to restrict coverings to the minimal coverings. To do this, we
define the set of collocated labels, denoted Colloc(φ), as

Colloc(φ) := {(ℓ1, ℓ2) ∈ L2 | ∃Br ∈ Branches(φ) . {ℓ1, ℓ2} ⊆ Br}

We can use this set to reason about minimal coverings: A minimal covering may contain,
per variable, no more than one label from each pair of collocated assignment candidate
labels for that variable. We describe these labels by using the sets Collocv ′(φ) :=
Colloc(φ) ∩ cand(v ′, φ)2 and

CollocVars′(φ) :=
�

v ′ ∈ Vars′(φ)
Collocv ′(φ)

Then, the following SMT formula, in addition to θ∗
C (φ), helps us find minimal covering

sets:
θ∃!(φ) :=

�
(i ,j) ∈ CollocVars′ (φ)

i<j

¬(bi ∧ bj)

We denote by θC (φ) the formula θ∗
C (φ) ∧ θ∃!(φ).

Proposition 3. For every α-TLA+ expression φ and A ⊆ Labs(φ), it holds that
M[A] ⊨ θH (φ) ∧ θC (φ) if and only if A is a minimal covering set for φ.

Proof. Firstly, assume M[A] ⊨ θH (φ) ∧ θC (φ). We already know, from Proposition 2,
that such an A is a covering set, since M[A] ⊨ θ∗

C (φ) is implied.

Take an arbitrary Br ∈ Branches(φ) and v ′ ∈ Vars′(φ). We must show that |A ∩
Br ∩ cand(v ′, φ)| = 1. We know the set is nonempty, so consider an arbitrary pair
i , j ∈ A ∩ Br ∩ cand(v ′, φ). Clearly, {i , j} ⊆ Br and {i , j} ⊆ cand(v ′, φ) so we know
(i , j), (j , i) ∈ Collocv ′(φ). We demonstrate that i = j by contradiction.

Assume that i ̸= j and w.l.o.g. i < j . Since M[A] ⊨ θ∃!(φ) and, by assumption, i < j , we
must have a term ¬(bi ∧ bj), and can conclude M[A] ⊨ ¬bi ∨ ¬bj . However, this is only
true if i /∈ A ∨ j /∈ A. As we have selected i , j such that i , j ∈ A we have a contradiction.
It then follows that i = j and the intersection is a singleton, as required.

Secondly, assume that a set A is a minimal covering set. In particular, it is also a covering
set and thus M[A] ⊨ θH (φ) ∧ θ∗

C (φ), by Proposition 2. To show that M[A] ⊨ θ∃!(φ), take
an arbitrary v ′ ∈ Vars′(φ) and i < j for which (i , j) ∈ Collocv ′(φ). We need to see that
M[A] ⊨ ¬(bi ∧bj). By definition, there exists a Br ∈ Branches(φ), for which {i , j} ⊆ Br ,

55

6. Symbolic transitions in TLA+

as Collocv ′(φ) ⊆ Colloc(φ). Since A is a minimal covering set, we know A∩Br∩cand(v ′, φ)
is a singleton. Both i and j belong to Br ∩ cand(v ′, φ) and i < j implies that they are
distinct, so one of them must not belong to A. This means M[A] ⊨ ¬bi ∨ ¬bj . As this
holds for an arbitrary selection of v ′ and (i , j), clearly M[A] ⊨ θ∃!(φ), which we needed
to show.

6.5.3 Acyclic assignments
The last step is reasoning about acyclicity. Recall that, for ℓ1, ℓ2 ∈ L, the relation ℓ1 ◁v ′ ℓ2
holds if and only if ℓ1 ∈ cand(v ′, φ) ∧ v ′ ∈ frozenφ(ℓ2). It is prudent to see that ◁v ′ is
not, in general, a strict total order (possibly not even irreflexive). However, the acyclicity
property states that we can find a strict total order, which agrees with all relations ◁v ′ ,
on all branches.

Take Colloc◁(φ) to be the filtering of Colloc(φ) by the relations ◁v ′ , that is, the set
{(i , j) ∈ Colloc(φ) ∩ cand(φ)2 | ∃v ′ ∈ Vars′(φ) . i ◁v ′ j}. The SMT formula describing
acyclicity is as follows:

θ∗
A(φ) :=

�
(i ,j) ∈ Colloc◁(φ)

bi ∧ bj ⇒ R(i) < R(j)

where R is an uninterpreted L → N function, capturing assignment order. In practice, we
take L = N. Unlike the previous formulas, θ∗

A(φ) extends beyond Boolean logic, requiring
both linear integer arithmetic and uninterpreted functions. Thus, a model for θ∗

A(φ) is a
pair (M , r), where M models the Boolean part of the formula, i.e. assigns truth values
to each bi , and r : N → N is the interpretation of R.

A note on injectivity To simplify the analysis, we force R to be injective, when
it is restricted to Labs(φ). In the strictest sense, this is not necessary. Consider a
function R, that satisfies the constraints imposed by θ∗

A(φ), but which maps two distinct
labels (integers) i , j to the same value, i.e. R(i) = R(j). Note that while i and j
are distinct, the pair (i , j) cannot belong to Colloc◁(φ). If we define R′(x) = 2R(x)
for all x ̸= j and R′(j) = 2R(j) + 1 we maintain the constraints of θ∗

A(φ), but map i
and j to different values. To show this, we take an arbitrary label k . If R(k) < R(j),
then R′(k) = 2R(k) < 2R(j) < R′(j) and if R(j) < R(k) then R(j) ≤ R(k) − 1 and
R′(j) = 2R(j) + 1 ≤ 2(R(k) − 1) + 1 = 2R(k) − 1 < R′(k). By iterating this process for
all values where R is not injective, we can obtain (in finitely many steps) an injective
function that maintains θ∗

A(φ) through every step. However, we opt instead to encode
the injectivity of R as an SMT formula, because we can then read the function directly
from the solution, without needing to implement this iterative process.

The formula we therefore consider is as follows:

θA(φ) := θ∗
A(φ) ∧

�
ℓ1,ℓj ∈ Labs(φ)

ℓi<ℓj

R(ℓi) ̸= R(ℓj)

56

6.5. Finding assignment strategies with SMT

To prove that θA describes acyclic sets, we make use of the following proposition:

Proposition 4. If < is a strict total order on Y and f : X → Y is injective, then the
relation ≺ defined by x1 ≺ x2 ⇐⇒ f (x1) < f (x2) is a strict total order on X .

Proof. We need to show transitivity, asymmetry, irreflexivity and totality of the relation
≺.

transitivity:

x1 ≺ x2 ∧ x2 ≺ x3 ⇐⇒ f (x1) < f (x2) ∧ f (x2) < f (x3)
=⇒ f (x1) < f (x3)
⇐⇒ x1 ≺ x3

asymmetry:

x1 ≺ x2 ⇐⇒ f (x1) < f (x2)
=⇒ ¬(f (x2) < f (x1))

⇐⇒ ¬(x2 ≺ x1)

irreflexivity:

∀y ∈ Y . ¬(y < y) =⇒ ∀x ∈ X . ¬(f (x) < f (x))
⇐⇒ ∀x ∈ X . ¬(x ≺ x)

totality:
∀y1, y2 ∈ Y . y1 < y2 ∨ y2 < y1 ∨ y1 = y2

implies
∀x1, x2 ∈ X . f (x1) < f (x2) ∨ f (x2) < f (x1) ∨ f (x1) = f (x2)

which is equivalent to

∀x1, x2 ∈ X . x1 ≺ x2 ∨ x2 ≺ x1 ∨ x1 = x2

for injective f .

Thus ≺ is a strict total order on X

With Proposition 4, we can show that the following porposition holds.

Proposition 5. For every α-TLA+ expression φ and A ⊆ Labs(φ), there is a function
r : N → N, for which (M[A], r) ⊨ θH (φ) ∧ θA(φ) if and only if A is acyclic.

57

6. Symbolic transitions in TLA+

Proof. Firstly, assume that there exists an r : N → N, for which (M[A], r) ⊨ θH (φ)∧θA(φ).
This obviously implies that M[A] ⊨ θH (φ). By Proposition 1, we know A is homogeneous.
We define ≺A using r :

ℓ1 ≺A ℓ2 ⇐⇒ r(ℓ1) < r(ℓ2)

Clearly, < is a strict total order on N. We have ensured that�
ℓ1,ℓj ∈ Labs(φ)

ℓi<ℓj

r(ℓi) ̸= r(ℓj)

so r restricted to Labs(φ) is injective. As A ⊆ Labs(φ) we know that r restricted to A
is injective as well. We can then use Proposition 4, for the function f = r |A : A → N,
to conclude that such a ≺A is a strict total order on A. Now take an arbitrary branch
Br ∈ Branches(φ), two labels ℓ1, ℓ2 ∈ A∩Br and a variable v ′ ∈ Vars′(φ). If the relation
ℓ1 ◁v ′ ℓ2 does not hold, the implication ℓ1 ◁v ′ ℓ2 ⇒ ℓ1 ≺A ℓ2 is vacuously correct. If it does,
since ℓ1, ℓ2 belong to A ∩ Br , we know that (ℓ1, ℓ2) ∈ Colloc◁(φ). As (M[A], r) ⊨ θA(φ)
it is also the case that (M[A], r) ⊨ θ∗

A(φ). We know that M[A] ⊨ bℓ1 ∧ bℓ2 so it must be
the case that r(ℓ1) < r(ℓ2). But then, by definition, ℓ1 ≺A ℓ2. Because Br , ℓ1, ℓ2 and v ′

were arbitrary, we can conclude that A is acyclic.

Secondly, assume A is acyclic. We must show that M[A] ⊨ θ∗
A(φ), since acyclic sets are

homogeneous, which implies M[A] ⊨ θH (φ) by Proposition 1. We can take the strict
total order ≺A and arbitrarily extend it to a strict total order ≺ on Labs(φ). Because
of this, there exists an ordering function ord: Labs(φ) → {1, . . . , | Labs(φ)|} with the
property

ℓ1 ≺ ℓ2 ⇐⇒ ord(ℓ1) < ord(ℓ2)

we can define r : N → N as

r(n) =
�

ord(n) ; n ∈ Labs(φ)
1 ; otherwise

Let us first see that (M[A], r) ⊨ θ∗
A(φ). Take an arbitrary pair (i , j) ∈ Colloc◁(φ).

We need to show that (M[A], r) ⊨ bi ∧ bj ⇒ R(i) < R(j). If i /∈ A or j /∈ A then
bi ∧ bj evaluates to false and the implication in satisfied. If both i and j belong to A,
then we take an arbitrary Br ∈ Branches(φ) containing both of them (it exists, since
(i , j) ∈ Colloc(φ) as Colloc◁(φ) ⊆ Colloc(φ)) and the variable v ′ ∈ V for which i ◁v ′ j .
As A is acyclic, we can instantiate the acyclicity criterion for our choice of Br , i , j and
v ′ and conclude i ≺A j . Because ≺ extends ≺A it must be the case that ord(i) < ord(j)
and, because r |Labs(φ) = ord, also r(i) < r(j). So (M[A], r) models θ∗

A(φ). We conclude
the proof by showing that this r also models the formula�

ℓ1,ℓj ∈ Labs(φ)
ℓi<ℓj

R(ℓi) ̸= R(ℓj)

58

6.6. Soundness of our approach

If ℓ1, ℓ2 ∈ Labs(φ) then r(ℓ1) = ord(ℓ1) and r(ℓ2) = ord(ℓ2). It then follows, as ord is
bijective, that either r(ℓ1) < r(ℓ2) or vice-versa. In any case, r(ℓ1) ̸= r(ℓ2). Altogether,
this implies (M[A], r) ⊨ θA(φ).

Thus, we can prove the previously foreshadowed theorem.

Theorem 1. For every α-TLA+ formula φ and A ⊆ Labs(φ), it holds that M[A] ⊨ θ(φ)
if and only if A is an assignment strategy for φ.

Proof. Let φ be an α-TLA+ formula and A ⊆ Labs(φ). By definition, θ(φ) = θH (φ) ∧
θC (φ) ∧ θA(φ).
Firstly, assume M[A] ⊨ θ(φ). As θ(φ) implies both θH (φ) ∧ θC (φ) and θH (φ) ∧ θA(φ),
we know A is a minimal covering and acyclic, by propositions 3 and 5 respectively. By
definition, this means A is an assignment strategy.
Secondly, assume A is an assignment strategy. In particular, A a minimal covering, so
M[A] ⊨ θH (φ) ∧ θC (φ). Similarly, as A is acyclic, we know that M[A] ⊨ θH (φ) ∧ θA(φ).
It therefore follows that M[A] ⊨ θH (φ) ∧ θC (φ) ∧ θA(φ), that is, M[A] ⊨ θ(φ).

6.6 Soundness of our approach
In this section, we show the relation between assignment strategies and the original
TLA+ formulas. To this end, we introduce the notion of a slice. Together, branches
allow us to rewrite a TLA+ formula into an equivalent disjunction of slices. We will later
define symbolic transitions as special kinds of slices.
In TLA+, there are two kinds of variables: rigid variables that correspond to the variables
declared with constant, and flexible variables whose values change during the course of
an execution. Primed versions of the variables exist only for flexible variables and are used
in transition formulas. Transition formulas in TLA+ are first-order terms and formulas
with flexible variables (unprimed and primed ones). We give the necessary definitions
of TLA+ semantics, whereas details can be found in [Mer08a]. An interpretation I
defines a universe of |I| values and interprets each function symbol by a function and
each predicate symbol by a relation. A state s is a mapping from unprimed flexible
variables to values, and a state s ′ is a similar mapping for primed variables. A valuation
ξ is a mapping from rigid variables to values. Given an interpretation I, a pair of states
(s, s ′), and a valuation ξ, the semantics of a TLA+ transition formula E is the standard
predicate logic semantics of E with respect to the extended valuation of s, s ′, ξ. With
these definitions, M = (I, ξ, s, s ′) is a model for E , if E is equivalent to true under M .

6.6.1 Slices
Let φ be a formula and S ⊆ L. We define φ sliced by S , denoted slice(φ, S) in Table
6.6. Intuitively, slices contain only those terminal expressions (stars and assignemnt
candidates) whose labels appear in S .

59

6. Symbolic transitions in TLA+

Table 6.6: The definition of slice(φ, S)

α-TLA+ formula φ slice(φ, S)
ℓ :: false ℓ :: false

ℓ :: ⋆ (v ′
1, . . . , v ′

1) or ℓ :: v ′ ∈ φ1

�
φ ; ℓ ∈ S
ℓ :: false ; otherwise

ℓ :: �s
i=1 φi ℓ :: �s

i=1 slice(φi , S)
ℓ :: �s

i=1 φi ℓ :: �s
i=1 slice(φi , S)

ℓ :: ∃x ∈ φ1 : φ2 ℓ :: ∃x ∈ φ1 : slice(φ2, S)
ℓ :: if φ1 then φ2 else φ3 ℓ :: if φ1 then slice(φ2, S)

else slice(φ3, S)

We can see how slice(φ, A), like boolForm, depends only on labels of φ.

Lemma 10. Let φ be an α-TLA+ expression. For any set A ⊆ L, it holds that

slice(φ, A) = slice(φ, A ∩ Labs(φ))

Proof. Analogous to the proof of Lemma 1.

Below, we show that the branches and their induced slices naturally decompose a TLA+

formula. Let φ be an α-TLA+ expression and γ (φ) its corresponding TLA+formula.
Then, the following propositions hold:

Proposition 6. Let φ be an α-TLA+ expression and M = (I, ξ, s, s ′) a model of the
TLA+ formula γ (φ). There exists a branch Br of φ such that M is also a model of
γ (slice(φ, Br)).

Proof. Assume that M = (I, ξ, s, s ′) is a model of γ(φ). We prove the proposition by
induction on the structure of φ:

φ = ℓ :: false:
Since γ(φ) is false it cannot have a model. Because of the contradiction, the
proposition vacuously holds.

φ = ℓ :: ⋆ (v ′
1, . . . , v ′

k):
The only branch is exactly Br = {ℓ}. Then slice(φ, Br) = φ so γ(slice(φ, Br)) =
γ(φ), therefore M is clearly a model of γ(slice(φ, Br)).

φ = ℓ :: v ′ ∈ ℓ̂ :: ⋆ (v ′
1, . . . , v ′

k):
Analogous to the previous case.

60

6.6. Soundness of our approach

φ = ℓ :: �s
i=1 φi :

Assume as the induction hypothesis, that the proposition holds for every φi , where
i ∈ {1, . . . , s}.
Since γ(φ) = �s

i=1 γ(φi) and M is a model of γ(φ), it must also be a model for
each γ(φi). By the induction hypothesis we can deduce that there are branches
Br1 ∈ Branches(φ1), . . . , Brs ∈ Branches(φs), for each subformula, such that M is
a model for γ(slice(φi , Bri)), for each i ∈ {1, . . . , s}.
By Lemma 3, we know that Br := s

i=1 Bri is a branch of φ. We need to show that
M is a model for γ(slice(φ, Br)). It suffices to show that M is a model for each
γ(slice(φi , Br)), since slice(φ, Br) = �s

i=1 slice(φi , Br), by definition.
Let us pick an arbitrary i ∈ {1, . . . , s}. Applying Lemma 10, we know that
slice(φi , Br) = slice(φi , Br ∩ Labs(φi)). As often before, we conclude that Br ∩
Labs(φi) = Bri . We know M is a model for γ(slice(φi , Bri)), so it follows that it is
also a model for γ(slice(φi , Br)).

φ = ℓ :: �s
i=1 φi :

Assume as the induction hypothesis, that the proposition holds for every φi , where
i ∈ {1, . . . , s}.
Since γ(φ) = �s

i=1 γ(φi) and M is a model of γ(φ), there must exist an index
i ∈ {1, . . . , s}, such that M is a model for γ(φi). By the induction hypothesis we
can deduce that there is a branch Br ∈ Branches(φi), such that M is a model for
γ(slice(φi , Bri)).
By Lemma 4, we know that Br is also a branch of φ. We need to show that M is a
model for γ(slice(φ, Br)). We already know M is a model for γ(slice(φi , Br)), and
since slice(φ, Br) = �s

i=1 slice(φi , Br), by definition, M must also be a model for
γ(slice(φ, Br)).

φ = ℓ :: ∃x ∈ ψ : φ0:
Assume as the induction hypothesis, that the proposition holds for φ0.
Since, by assumption, M is a model of γ(φ), we know there exists an x0 ∈ γ(ψ)
for which M is a model for γ(φ0)[x0/x], or alternatively, M ′ = (I, ξ[x '→ x0], s, s ′)
is a model for γ(φ0). Using the induction hypothesis, there is a branch Br of φ0,
for which M ′ is a model for γ(slice(φ0, Br)). By Lemma 5, we know Br is also a
branch for φ, and by definition, we know slice(φ, Br) = ∃x ∈ ψ : slice(φ0, Br).
As M ′ is a model for γ(slice(φ0, Br)), we can equivalently say that M is a model
for γ(slice(φ0, Br))[x0/x]. This must mean that M is also a model for
∃x ∈ γ(ψ) : γ(slice(φ0, Br)), which is exactly γ(φ).

φ = ℓ :: if φ1 then φ2 else φ3 :
Assume as the induction hypothesis, that the proposition holds for φ2, φ3.

61

6. Symbolic transitions in TLA+

As M is a model for γ(φ), we know that either γ(φ1) is true under M , and M is a
model of γ(φ2), or γ(φ1) is false under M , and M is a model of γ(φ3). In either case,
if M is a model of γ(φi), we can use the induction hypothesis, to deduce that there
exists a branch Br ∈ Branches(φi), for which M is a model of γ(slice(φi , Br)). By
Lemma 6, this branch is also a branch of φ.
By definition, slice(φ, Br) = if φ1 then slice(φ2, Br) else slice(φ3, Br) and
therefore γ(slice(φ, Br)) = if γ(φ1) then γ(slice(φ2, Br)) else γ(slice(φ3, Br)).
We know that if γ(φ1) is true, M is a model of γ(slice(φ2, Br)), otherwise M is a
model of γ(slice(φ3, Br)), so M is a model of γ(slice(φ, Br)).

Proposition 7. Let φ be an α-TLA+ expression, Br a branch of φ, and M = (I, ξ, s, s ′)
a model of the TLA+ formula γ (slice(φ, Br)). Then, M is also a model of γ (φ).

Proof. Assume that Br is a branch of φ, and M = (I, ξ, s, s ′) models γ (slice(φ, Br)).
We prove the proposition by induction on the structure of φ:

φ = ℓ :: false:
Since γ(slice(φ, S)) is false for any S , it cannot have a model. Because of the
contradiction, the proposition vacuously holds.

φ = ℓ :: ⋆ (v ′
1, . . . , v ′

k):
The only branch is exactly Br = {ℓ}. Then slice(φ, Br) = φ so γ(slice(φ, Br)) =
γ(φ), therefore M is clearly a model of γ(φ).

φ = ℓ :: v ′ ∈ ℓ̂ :: ⋆ (v ′
1, . . . , v ′

k):
Analogous to the previous case.

φ = ℓ :: �s
i=1 φi :

Assume as the induction hypothesis, that the proposition holds for every φi , where
i ∈ {1, . . . , s}.
By definition, slice(φ, Br) = �s

i=1 slice(φi , Br). Applying Lemma 10 to each subex-
pression, and Lemma 3, we see that slice(φ, Br) = �s

i=1 slice(φi , Bri), where each
Bri is a branch of φi .
The above implies that M is a model for each γ(slice(φi , Bri)). By the induction
hypothesis, M is then also a model for γ(φi), from which it must follow that M is
a model for γ(φ).

φ = ℓ :: �s
i=1 φi :

Assume as the induction hypothesis, that the proposition holds for every φi , where
i ∈ {1, . . . , s}.

62

6.6. Soundness of our approach

By definition, slice(φ, Br) = �s
i=1 slice(φi , Br), so there is an i ∈ {1, . . . , s}, for

which M is a model of γ(slice(φi , Br)). It must be the case that Br is also a
branch for φi . We show this by means of contradiction: Each branch of φ is a
branch or one φj by Lemma 4. Assume Br ∈ Branches(φj) and i ≠ j . Because
the label sets are pairwise disjoint, Lemma 10 helps us see that slice(φi , Br) =
slice(φi , Br ∩ Labs(φi)) = slice(φi , ∅). But then γ(slice(φi , ∅)) cannot have a model,
which contradicts our assumptions (slicing by the empty set always returns a
formula equivalent to false). We conclude that Br is indeed a branch of φi .
This allows us to use the induction hypothesis, to show that M is a model of γ(φi).
It trivially follows that M is also a model of �s

j=1 γ(φj) = γ(φ).

φ = ℓ :: ∃x ∈ ψ : φ0:
Assume as the induction hypothesis, that the proposition holds for φ0.
By Lemma 5, we know that Br is a branch of φ0. As we know that slice(φ, Br) =
∃x ∈ ψ : slice(φ0, Br), and γ(slice(φ, Br)) = ∃x ∈ γ(ψ) : γ(slice(φ0, Br)), we can
use the fact that M is a model for γ(slice(φ, Br)) to determine that there exists an
x0 ∈ γ(ψ), for which M is a model for γ(slice(φ0, Br))[x0/x]. This is equivalent to
saying that M ′ = (I, ξ[x '→ x0], s, s ′) is a model for γ(slice(φ0, Br)).
We then apply the induction hypothesis and deduce that M ′ is a model for γ(φ0),
or equivalently, that M is a model for γ(φ0)[x0/x]. It follows that M is a model for
∃x ∈ γ(ψ) : γ(φ0) = γ(φ).

φ = ℓ :: if φ1 then φ2 else φ3 :
Assume as the induction hypothesis, that the proposition holds for φ2, φ3.
By definition, slice(φ, Br) = if φ1 then slice(φ2, Br) else slice(φ3, Br) and
γ(slice(φ, Br)) = if γ(φ1) then γ(slice(φ2, Br)) else γ(slice(φ3, Br)). Suppose
γ(φ1) is true under M . Then M must satisfy γ(slice(φ2, Br)), otherwise it must
satisfy γ(slice(φ3, Br)). We need to show that Br must be a branch of φ2, resp. φ3.
This proof is analogous to the disjunctive case; we leverage Lemma 6 and Lemma
10. Using the induction hypothesis, we see that M must therefore be a model for
if γ(φ1) then γ(φ2) else γ(φ3) = γ(φ).

With these two propositions, we have shown that a TLA+ formula has a model if and
only if one of its slices has a model. However, the number of branches to check may still
be quite large. In the remainder of this section we demonstrate that there is a coarser
decomposition of labels, the slices of which also decompose the original TLA+ formula.

Firstly, we show that enlarging a slicing set preserves models. Formally:

Proposition 8. Let φ be an α-TLA+ expression. For every S , T ⊆ Labs(φ), every
model M of TLA+ formula γ (slice(φ, S)) is also a model of γ (slice(φ, S ∪ T)).

63

6. Symbolic transitions in TLA+

Proof. Assume that M is a model for γ (slice(φ, S)) and T ⊆ Labs(φ). If S = ∅, we have
a contradiction, since γ(slice(φ, ∅)) is equivalent to false, which has no model, so any
conclusion follows. If T = ∅, the result is trivial. Assume henceforth that S , T ̸= ∅.

We prove the proposition by induction on the structure of φ:

φ = ℓ :: false:
Since Labs(φ) = {ℓ}, it must be the case that S = T = {ℓ}, so the conclusion
trivially follows.

φ = ℓ :: ⋆ (v ′
1, . . . , v ′

k):
Analogous to the previous case.

φ = ℓ :: v ′ ∈ ℓ̂ :: ⋆ (v ′
1, . . . , v ′

k):
As Labs(φ) = {ℓ, ℓ̂}, S must contain ℓ, as otherwise γ(slice(φ, S)) has no model.
The only new case is when S ∪ T = {ℓ, ℓ̂}. Even then, slice(φ, S ∪ T) = slice(φ, S)
and M is a model of γ(slice(φ, S ∪ T)).

φ = ℓ :: �s
i=1 φi :

Assume as the induction hypothesis, that the proposition holds for every φi , where
i ∈ {1, . . . , s}.
Since M is a model for γ(slice(φ, S)), it must be a model for each γ(slice(φi , S)).
Using the induction hypothesis, we can conclude that M is a model for each
γ(slice(φi , S ∪T)), so it is also a model for �s

i=1 γ(slice(φi , S ∪T)) = γ(slice(φ, S ∪
T)).

φ = ℓ :: �s
i=1 φi :

Analogous to the previous case.

φ = ℓ :: ∃x ∈ ψ : φ0:
Assume as the induction hypothesis, that the proposition holds for φ0.
Since M is a model for γ(slice(φ, S)), it must be a model for γ(slice(φ0, S)) and
therefore, by the induction hypothesis, also a model for γ(slice(φ0, S ∪ T)) =
γ(slice(φ, S ∪ T)).

φ = ℓ :: if φ1 then φ2 else φ3 :
Analogous to the disjunctive case.

It is easy to see that converse of Proposition 8 does not hold. For instance, take the
empty set as S and Labs(φ) as T . This implies the following:

64

6.6. Soundness of our approach

γ(slice(φ, S)) = false and slice(φ, S ∪ T) = φ.

Obviously, false cannot have a model, regardless of whether γ(φ) has one or not.

Due to Propositions 6 and 7, it would suffice to consider the set Branches(φ), together
with an assignment strategy A, to generate transitions. However, it is often the case that,
for two distinct branches Br1 and Br2, the same assignments in A are chosen, that is,
the intersections Br1 ∩ A and Br2 ∩ A are the same. We show that one can reduce the
number of considered transitions, by analyzing how various branches intersect A. Instead
of separately analyzing slice(φ, Br1) and slice(φ, Br2) for such branches, we will be able
to consider just slice(φ, Br1 ∪ Br2).

6.6.2 Symbolic transitions
An assignment strategy A naturally defines an equivalence relation ∼A on Branches(φ),
given by Br1 ∼A Br2 if and only if Br1 ∩A = Br2 ∩A. We use the notation [Br]A to refer
to the equivalence class of Br by ∼A, that is, the set {X ∈ Branches(φ) | Br ∼A X }.

Definition 5. Let φ be an α-TLA+ expression, A an assignment strategy for φ and Br
a branch of φ. Using X = [Br]A and Y =

Z ∈ X Z , we define the symbolic transition
generated by Br and A to be slice(φ, Y).

Example 3. Let us look the example on page 43 again. The formula φ has two assignment
strategies A1 = {ℓ2}, and A2 = {ℓ4, ℓ5}. If the first assignment strategy A1 is chosen, we
have that Br1 ∩ A1 = Br2 ∩ A1 = {ℓ2}. This implies that Br1 and Br2 are in the same
equivalence class, or Br1 ∼A1 Br2. Therefore, we have only one symbolic transition which
is exactly φ. However, if A2 is selected, branches Br1 and Br2 are not equivalent because
Br1 ∩ A2 = {ℓ4} and Br2 ∩ A2 = {ℓ5}. Therefore, we have two symbolic transitions:

T1 = ℓ1 ::
��

ℓ2 :: x ′ ∈ ⋆
� ∧ �

ℓ3 ::
��

ℓ4 :: x ′ ∈ ⋆
� ∨ ℓ5 :: false

���
T2 = ℓ1 ::

��
ℓ2 :: x ′ ∈ ⋆

� ∧ �
ℓ3 ::

�
ℓ4 :: false ∨ �

ℓ5 :: x ′ ∈ ⋆
����

The first assignment strategy A1 seems to be better than A2 because A1 generates fewer
symbolic transitions than A2. However, in this chapter, we do not introduce any metric,
by which we could compare assignment strategies. In the implementation, we use any
strategy found by the SMT solver.

The equivalence relation ∼A allows us to use Proposition 8 in the following interesting
way:

Proposition 9. Let φ be an α-TLA+ expression. For any selection Br1, . . . , Brk from
the branches of φ, the following holds: If there exists a model M = (I, ξ, s, s ′) of the
formula γ(slice(φ, Br1 ∪ · · · ∪ Brk)), then M must be a model of γ(slice(φ, Br)), for some
branch Br ∈ Branches(φ). Additionally, if there is an assignment strategy A for φ, such
that Br1, . . . , Brk all belong to the same equivalence class [B]A, then M must be a model
of γ(slice(φ, Br)), for some branch Br ∈ [B]A.

65

6. Symbolic transitions in TLA+

Proof. Denote by S the union Br1 ∪ · · · ∪ Brk . We prove the proposition by induction on
the structure of φ:

• φ = ℓ :: false:
Since, for any T ⊆ Labs(φ) the formula γ(slice(φ, T)) is equivalent to false, it
does not have a model, so the implication vacuously holds.

• φ = ℓ :: ⋆ (v ′
1, . . . , v ′

k):
Assume there exists a model M of γ(slice(φ, S)). This means that ℓ must belong
to S , otherwise slice(φ, S) is ℓ :: false and γ applied to ℓ :: false is false, which
does not have a model. As φ has exactly one branch, the rest of the proposition
follows trivially, since S ⊇ Br1. Consequently, slice(φ, Br1), φ and slice(φ, S) are
all the same expression, by Lemma 10. As M is a model of γ(slice(φ, S)) it is also
a model of slice(φ, Br1). It is clear that if all chosen branches belong to [B]A, then,
in particular, Br1 ∈ [B]A.

• φ = ℓ :: w ′ ∈ φ1 :
Analogous to the previous case.

• φ = ℓ :: �s
i=1 φi :

Assume, as the induction hypothesis, that the proposition holds for all φi .
By definition, slice(φ, S) = �s

i=1 slice(φi , S). Assume, that M is a model of
γ(slice(φ, S)). Then, γ(slice(φ, S)) = �s

i=1 γ(slice(φi , S)) and M is a model of
γ(slice(φi , S)) for every i . By Lemma 3, we know that for each i = 1, . . . , k there
exist branches Br1

i , . . . , Br s
i of φ1, . . . , φs , such that

Bri =
s�

j=1
Br j

i

Take an arbitrary i ∈ {1, . . . , s}. By Lemma 10, we know that

slice(φi , S) = slice(φi , S ∩ Labs(φi))

We can see the following:

S ∩ Labs(φi) =
� k�

t=1
Brt

�
∩ Labs(φi)

=

 k�
t=1

s�
j=1

Br j
t

 ∩ Labs(φi)

=
k�

t=1

s�
j=1

�
Br j

t ∩ Labs(φi)


66

6.6. Soundness of our approach

As each Br j
t is a branch of φj , all of the intersections are either Br j

t , if i = j , or
empty. Consequently:

S ∩ Labs(φi) =
k�

t=1
Br i

t

By design, Br i
t is a branch of φi , for each t . It means we can use our induction

hypothesis for φi to deduce that there must exist a Br i ∈ Branches(φi), for which
M is a model of γ(slice(φi , Br i)). As i was arbitrary, this holds for every selection
of i . We thus obtain a collection of branches, Br1, . . . , Br s , for which it holds that
M is a model of γ(slice(φi , Br i)) for every i ∈ {1, . . . , s}. Using Br0 = s

i=1 Br i

and Proposition 8, we deduce that M is a model of γ(slice(φi , Br0)), for each
i ∈ {1, . . . , s}. By Lemma 3, Br0 is a branch of φ. So it follows that M is a model
of γ(slice(φ, Br0)).
Assume additionally that Br1, . . . , Brk ∈ [B]A for some assignment strategy A and
some equivalence class [B]A of ∼A.
By definition, Bri ∩ A = Br1 ∩ A for all i ∈ {1, . . . , k}. It follows, that (Bri ∩
Labs(φj)) ∩ A = (Br1 ∩ Labs(φj)) ∩ A for all i ∈ {1, . . . , k} and all j ∈ {1, . . . s}.
This means that the sets Br i

1, . . . , Br i
k are equivalent for all i ∈ {1, . . . , s}, since

Bri ∩ Labs(φj) = Br j
i . By the induction hypothesis, this implies that Br i is

equivalent to Br i
1, for all i ∈ {1, . . . , s}. Altogether:

Br0 ∩ A =
s�

i=1
(Br i ∩ A)

=
� s�

i=1
Br i

1 ∩ A

�

=
� s�

i=1
Br i

1

�
∩ A

=Br1 ∩ A

Thus we see that Br0 is equivalent to Br1 and, by transitivity, to all of the branches
Br1, . . . , Brk .

• φ = ℓ :: �s
i=1 φi :

Assume, as the induction hypothesis, that the proposition holds for all φi .
By definition, slice(φ, S) = �s

i=1 slice(φi , S). It follows that γ(slice(φ, S)) =�s
i=1 γ(slice(φi , S)). If we assume that M is a model of γ(slice(φ, S)), there must

exist an i ∈ {1, . . . , k}, for which M is a model of γ(slice(φi , S)) By Lemma 10, we
know that

slice(φi , S) = slice(φi , S ∩ Labs(φi))

67

6. Symbolic transitions in TLA+

Additionally, Lemma 4 guarantees that for each j = 1, . . . , k the set Brj ∩ Labs(φi)
is either Brj or empty. Because γ(slice(φi , S ∩ Labs(φi))) has a model, the set
S ∩Labs(φi) is not empty. It is therefore a union of 0 < l ≤ k branches Br ′

1, . . . , Br ′
l

from Branches(φi).
By the induction hypothesis for φi , there exists a Br i ∈ Branches(φi), for which
M is a model of γ(slice(φi , Br i)). By Lemma 4, i is also a branch for φ.
Assume additionally that Br1, . . . , Brk ∈ [B]A for some assignment strategy A and
some equivalence class [B]A of ∼A. Trivially, all branches Br ′

1, . . . , Br ′
l are equivalent

as well, since each of them corresponds to some Brj . Therefore, Br i ∼A Br ′
1. As Br ′

1
is equal to one of the branches Br1, . . . , Brk , which are all equivalent, we see that
Br i is equivalent to Br1 and, by transitivity, to all of the branches Br1, . . . , Brk .

• φ = ℓ :: ∃x ∈ φ1 : φ2 :
Assume, as the induction hypothesis, that the proposition holds for φ2. By definition,
slice(φ, S) = ∃x ∈ φ1 : slice(φ2, S). Assume, that M is a model of γ(slice(φ, S)).
Then,

γ(slice(φ, S)) = ℓ :: ∃x ∈ γ(φ1) : γ(slice(φ2, S))
It follows that γ(φ1) is contains some x0, for which M is a model of the for-
mula γ(slice(φ2, S))[x0/x], or equivalently, M ′ = (I, ξ[x '→ x0], s, s ′) is a model for
γ(slice(φ2, S)).
By the induction hypothesis there exists a Br ∈ Branches(φ2), for which M ′ is
a model of γ(slice(φ2, Br)). Equivalently, M is a model of γ(slice(φ2, Br))[x0/x].
This, in turn, implies that M is also a model of ∃x ∈ γ(φ1) : γ(slice(φ2, Br)), since
x0 was chosen from γ(φ1). Therefore it follows that M is a model for γ(slice(φ, Br)).
Note that Br is a branch of φ by Lemma 5.
Assume additionally that Br1, . . . , Brk ∈ [B]A for some assignment strategy A and
some equivalence class [B]A of ∼A. As all branches Br1, . . . , Brk are branches
of φ2, the induction hypothesis guarantees that Br is equivalent to Br1 and, by
transitivity, to all of the branches Br1, . . . , Brk .

• φ = ℓ :: if φ1 then φ2 else φ3 :
Assume, as the induction hypothesis, that the proposition holds for φ2 and φ3. By
definition,

slice(φ, S) = if φ1 then slice(φ2, S) else slice(φ3, S)

Assume, that M is a model of γ(slice(φ, S)). Then,

γ(slice(φ, S)) = if γ(φ1) then γ(slice(φ2, S)) else γ(slice(φ3, S))

By Lemma 10, we know that

γ(slice(φ, S)) = if γ(φ1) then γ(slice(φ2, S ∩ Labs(φ2)))
else γ(slice(φ3, S ∩ Labs(φ3)))

68

6.7. Experiments and potential applications

By Lemma 6, branches of φ are either branches of φ2 or of φ3. We have two
options, either γ(φ1) is true under M , or it isn’t. If γ(φ1) is true under M ,
then, as M is a model of γ(slice(φ, S)), we can conclude that M is a model of
γ(slice(φ2, S ∩ Labs(φ2))) and S ∩ Labs(φ2) is not empty. It is therefore a union of
0 < l ≤ k branches Br ′

1, . . . , Br ′
l from Branches(φ2). By the induction hypothesis

for φ2, we know that there exists a Br2 ∈ Branches(φ2), for which M is a model
of γ(slice(φ2, Br2)). By Lemma 6, Br2 is also a branch for φ.
Assume additionally that Br1, . . . , Brk ∈ [B]A for some assignment strategy A and
some equivalence class [B]A of ∼A. Trivially, all branches Br ′

1, . . . , Br ′
l are equivalent

as well, as they each equal some branch Brj . Therefore, Br2 ∼A Br ′
1. As Br ′

1 is
equal to one of the branches Br1, . . . , Brk , which are all equivalent, we see that Br2

is equivalent to Br1 and, by transitivity, to all of the branches Br1, . . . , Brk .
The case where γ(φ1) is false under M is proven analogously.

We conclude, that the proposition holds for all φ.

Corollary 1. Let φ be an α-TLA+ expression and A an assignment strategy for φ. For
every equivalence class [B]A of ∼A, the following holds: Using the set X =

Y ∈ [B]A Y ,
if there exists a model M of γ(slice(φ, X)), then M must be a model of γ(slice(φ, Br)),
for some branch Br ∈ [B]A.

Theorem 2 allows us to use symbolic transitions, not individual branches:

Theorem 2. Let φ be an α-TLA+ expression and A an assignment strategy for φ. There
is a model M of the TLA+ formula γ(φ) if and only if there exists a Br ∈ Branches(φ),
such that M is a model of γ(ψ), where ψ is the symbolic transition generated by Br
and A.

Proof. First, assume that there exists a model M of γ(φ). By Proposition 6, we know
that there exists a branch Br , for which M is a model of γ(slice(φ, Br)). Then, denote
by Y the set

Z ∈ [Br]A Z . Obviously, Br ∈ [Br]A, so Br ∪ Y = Y . It follows, by
Proposition 8, that M is a model of γ(slice(φ, Y)). However, slice(φ, Y) is the symbolic
transition generated by Br and A, by definition, so the implication holds.

Next, assume that there exists a model M of γ(ψ), for a symbolic transition ψ. There
exists an equivalence class [B]A, such that ψ has the shape slice(φ, Y) where Y is taken
to be

Br ∈ [B]A Br . By Corollary 1 of Proposition 9, we know that there exists a branch
Br ∈ [B]A, for which M is a model of γ(slice(φ, Br)).

6.7 Experiments and potential applications
Implementation and evaluation Based on the theory presented in this chapter, we
have implemented a procedure to find assignment strategies and their corresponding

69

6. Symbolic transitions in TLA+

module max
extends Naturals
variable tok , max , id
Init Δ= tok = 1 ∧ id ∈ [1..3 → Nat] ∧ max = 0
P(i) Δ= tok = i ∧ tok ′ = 1 + i % 3 ∧ max ′ = if id [i] > max then id [i] else max
Next Δ= (P(1) ∨ P(2) ∨ P(3)) ∧ id ′ = id

Figure 6.3: A distributed maximum computation in a ring of three processes in TLA+

symbolic transitions from TLA+ specifications, or report that none exist. It uses Z3 as
the background SMT solver.

We have chosen specifications both from publicly available sources, for example EWD840
and Paxos, and from a collection of algorithms we have encoded in TLA+ ourselves. All
of these specifications are available in [tlaa]. For each specification, we focus on the Next
formula. We report the number of subexpressions in α(Next), that is, | Sub(α(Next))|, the
number of assignments in the strategy found by our procedure, the number of symbolic
transitions computed and the total runtime. The results are presented in Table 6.7.
Note that though we omit the specification in Figure 6.1 from the experiments, due
to its simplicity, the outcome for it is as expected; all assignment candidates must be
part of the strategy and we find two symbolic transitions corresponding to Produce and
Consume. We also see that the number of symbolic transitions is generally much smaller
than the number of transitions an explicit-state model checker would find, as even simple
specifications, like in Figure 6.1, would generate numerous transitions in explicit state
model checking, but only two symbolic transitions.

Applications We illustrate an application of our technique for bounded model check-
ing [BCCZ99] by the means of the example in Figure 6.3. In this example, three processes
pass a unique token in one direction, with the goal of computing the largest process
identifier.

Our technique extracts three symbolic transitions T1, T2, and T3, each Ti being equivalent
to P(i) ∧ id ′ = id for 1 ≤ i ≤ 3. As common in bounded model checking, with �F �i ,i+1
we denote the SMT encoding of a transition by action F from an ith to an (i + 1)-th
state. For instance, �Next�0,1 and �T3�0,1 encode the transitions from the state 0 to the
state 1 by Next and T3. Likewise, �Init�0 encodes SMT constraints by Init on the initial
states. One can use the SMT encodings introduced in [MV12a, MV12b].

Figure 6.4 shows the SMT formulas that are constructed by a bounded model checker
when exploring executions up to length 4. (For the sake of space, we omit the formulas
that check property violation.) On one hand, the monolithic encoding that uses only Next
has to keep all the formulas in the SMT context. On the other hand, by incrementally
checking satisfiability of the SMT context, the model checker can discover that some
formulas — for example, �T2�0,1 and �T3�1,2 — lead to unsatisfiability and prune them
from the SMT context. A similar approach improves the efficiency of bounded model

70

6.7. Experiments and potential applications

Table 6.7: Experimental results. The meaning of columns is as follows: “SE” is the
number of subexpressions, “ST” is the size of the assignment strategy, “TR” is the number
of symbolic transitions, and “time” is the time in milliseconds.

Specification SE ST TR time
Aba asyn byz 184 48 8 91
AlternatingBit 183 49 7 169
Bakery 303 71 16 260
BcastByz 96 22 5 53
BcastFolklore 75 17 4 14
Bosco 114 18 9 29
Boulanger 353 85 18 277
C1cs 171 37 8 76
Cbc max 265 72 9 142
Cf1s folklore 258 69 14 139
ChangRoberts 88 18 7 56
Channel 14 2 2 142
DieHard 43 12 6 28
DijkstraMutex 305 75 18 271
EWD840 79 16 4 47
HourClock 3 1 1 19
LamportMutex 130 30 6 75
MissionariesAndCannibals 20 2 1 44
Nbacc ray97 77 15 14 48
Nbacg guer01 296 82 13 220
Paxos 92 16 4 49
PaxosCommit 153 28 10 179
Prisoners 60 14 4 34
Queens 19 4 2 34
Raft 841 222 23 932
SchedulingAllocator 73 12 4 19
SimpleAllocator 40 6 3 35
Spanning 74 12 4 27
TCommit 24 3 3 22
TwoPhase 122 28 7 65
Voting 39 4 2 25

�Init�0 �Next�0,1�Next�1,2�Next�2,3 �Init�0

�T1�0,1 �T1�1,2 �T1�2,3�T2�0,1 �T2�1,2 �T2�2,3�T3�0,1 �T3�1,2 �T3�2,3

Figure 6.4: SMT formulas that are constructed when checking the executions up to
length 4: using the action Next (left), and using symbolic transitions (right). The gray
formulas are excluded from the SMT context during the exploration.

71

6. Symbolic transitions in TLA+

checking for C programs [BHvM09][Ch. 16], hence, we expect it to be effective for the
verification of TLA+ specifications too.

We implement the techniques presented in this chapter as a preprocessing step in our
APLACHE [pro] model checker.

6.8 Conclusions
We have introduced a technique to compute symbolic transitions of a TLA+ specification
by finding expressions that can be interpreted as assignments. Importantly, we designed
the technique with soundness in mind. Our results can be used as a first preprocessing
step for a symbolic model checker or a type checker for TLA+.

As in the case of TLC, one can find TLA+ specifications, for which no assignment
strategy exists. However, TLA+ users are systematically checking their specifications
with TLC, in order to find simple errors. Hence, most of the benchmarks already come
in a form compatible with TLC. Thus, we expect our approach to also work in practice.

Interestingly, our solution can be applied in the more specific context of Boolean circuits
and Binary Decision Diagrams (BDDs). The model checker NuSMV [CCG+02] supports
non-deterministic assignments with similar requirements on the assignment orders. On
one hand, NuSMV provides the user with explicit assignment syntax, and therefore
requires only a check to see, whether the assignments satisfy the correct properties,
instead of finding the assignments altogether. On the other hand, the user may specify
the transition relation as a formula over new and old variables. Our technique may help
in finding assignments in such a formula, if it is possible. Finally, Cabodi et. al [CCLQ97]
use disjunctive partitioning to reduce BDD size and allow for the verification of large
circuits. Our symbolic transitions can be seen as a disjunctive partitioning of a TLA+

formula.

72

CHAPTER 7
TLA+ model checking made

symbolic

This chapter is an extension of the work presented in [KKT19b]. The techniques described
in it were implemented by the author and advisor in the Apalache model checker.

7.1 Introduction
As TLA was initially designed for writing mathematical proofs about algorithms, it
did not offer a concrete syntax for their specification. Rather, the algorithm designers
were expected to present their algorithms in first-order logic and choose a convenient
interpretation.

While there has been progress made towards proof automation in TLAPS in the last
years [MV12a], writing interactive proofs is still a demanding task. Hence, the users
prefer to run TLC for days, rather than writing proofs [NRZ+15, Ong14].

In the industry, [NRZ+15] and [Gus19] reported on finding real bugs by checking TLA+

specifications by running the TLC model checker.

Our Approach. We are developing a more efficient symbolic model checker that is
powered by a satisfiability-modulo-theory (SMT) solver such as Microsoft Z3 [DB08]. To
make the tool usable for the TLA+ community, we aim at introducing as few restrictions
to the language as TLC does. Hence, whenever we have a choice between an efficient
SMT encoding that restricts the input and a less efficient but general SMT encoding,
we choose the general one. (Indeed, we plan optimizations for the special fragments
of TLA+ in the future.) Similar to TLC, we make several pragmatic assumptions about
the input specifications:

73

7. TLA+ model checking made symbolic

1. All input parameters are fixed. Although TLA+ specifications are typically param-
eterized, the users restrict parameters to run TLC.

2. Reachable states and the values of the parameters are finite structures, e.g., finite
sets and functions of finite domains. This is also a requirement of TLC.

3. Following our previous work [KTK18], we assume that for each variable x , there
is a set of expressions x ′ = e and x ′ ∈ S that can be be treated as assignments
to x ′. As a consequence, the specification can be decomposed into a set of symbolic
transitions.

4. The specification is well-typeable in our type system.

The main challenge of this work comes from the expressiveness of TLA+. Among basic
types, it supports Booleans, integers, and uninterpreted constants. Among structured
types, it supports sets, functions, tuples, records, and sequences; all of them can be
arbitrarily nested in each other. Moreover, it is common to use powersets, sets of functions,
and set cardinalities in TLA+ specifications. Multiple techniques were developed for
sets and cardinalities in SMT [KNR05, YPK10, DHV+14, vGBR16, TRBB18, BLL+19,
CR16]. Although these techniques can be used to reason about some TLA+ expressions,
they pose various constraints on the set theory that would not easily accommodate
typical TLA+ specifications. [MV18] introduced an unsorted SMT encoding of TLA+

for discharging proof obligations in TLAPS. This encoding did not scale to model
checking in our preliminary experiments. Hence, we introduce a multi-sorted encoding.

Contributions. Our main contributions in this chapter are as follows:

1. We introduce the kernel fragment KerA+ to capture all but few TLA+ operators
over finite structures.

2. We define operational semantics of KerA+ in terms of reduction rules. Given
a KerA+ formula φ, the reduction system produces SMT constraints that are
equisatisfiable to φ.

3. We prove soundness of the rewriting rules.

4. We show how to use the reduction system for: (a) checking inductive invariants,
and (b) checking safety of TLA+ specifications by bounded model checking.

5. We implement the rewriting system and run experiments on a number of benchmarks
from the public TLA+ repository. The experiments demonstrate that our tool
APALACHE is often more efficient than TLC on the benchmarks with large state
spaces.

74

7.2. Example: the two-phase commit protocol in TLA+

TLA+

specification
Flat TLA+

specification
Assignments
& symbolic
transitions

Types Reduction
rules

SMT
(UF
NIA)

Figure 7.1: The basic workflow of APALACHE. The dashed area shows the preprocessing
phases.

Figure 7.1 shows the main phases of APALACHE [KKT19a]. First, the call sites of
user-defined operators are replaced with their bodies, which produces a flat specification.
Second, the technique by [KTK18] finds symbolic transitions in the specification. Third,
basic type inference labels expressions with types. Finally, the reduction system produces
SMT constraints. A query to the SMT solver gives us an answer to the model checking
question.

Structure of the chapter. We begin with a motivating example in Section 7.2. We
discuss the preprocessing steps in Section 7.3. In Section 7.4, we introduce the kernel
language KerA+. We introduce the reduction framework in Section 7.5 and the reduction
rules in Sections 7.6–7.10. The soundness of the framework is discussed in Section 7.11.
In Sections 7.12 and 7.13, we discuss the implementation and the experiments. We finish
with the discussion of related and future work in Sections 7.14 and 7.15.

7.2 Example: the two-phase commit protocol in TLA+
A comprehensive manual on TLA+ can be found in the book by [Lam02]. We introduce
typical TLA+ constructs by discussing the famous two-phase commit protocol by [LS79].
In this protocol, several resource managers (e.g., databases) have to agree on whether to
commit or abort a distributed transaction. The resource managers are coordinated by
the transaction manager. If one of them aborts a transaction, all managers have to abort
it too.

Figure 7.2 shows the TLA+ specification of two-phase commit by [GL06]. The specifica-
tion is parameterized with the set of resource managers RM , which, once defined, never
changes in a system execution. Four variables describe the system state:

• The variable tmState stores the state of the transaction manager, which gets
assigned one of the three constants “init”, “committed”, or “aborted”.

• The variable rmState is a function from a resource manager in RM to one of the
four constants “working”, “prepared”, “committed”, or “aborted”.

• The variable tmPrepared ⊆ RM stores the set of resource managers that have sent
a message of type “Prepared” to the transaction manager.

75

7. TLA+ model checking made symbolic

module TwoPhaseReformatted
constant RM The set of resource managers (a parameter)

variables
rmState, rmState[rm] is the state of resource manager RM

tmState, The state of the transaction manager

tmPrepared , The set of RMs from which the TM has received “Prepared” messages

msgs The set of all messages sent in the distributed system

Init
Δ
= ∧ rmState = [rm ∈ RM
→ “working”] constraints on the initial states

∧ tmState = “init” ∧ tmPrepared = {} ∧msgs = {}
The transitions by the transaction manager and the resource managers:

TMRcvPrepared(rm)
Δ
= The TM receives a “Prepared” message from RM rm

∧ tmState = “init” ∧ [type
→ “Prepared”, rm
→ rm] ∈ msgs
∧ tmPrepared � = tmPrepared ∪ {rm} ∧ unchanged �rmState, tmState, msgs�

The transaction manager commits the transaction:

TMCommit
Δ
= tmState = “init” ∧ tmPrepared = RM ∧ tmState � = “committed”

∧msgs � = msgs ∪ {[type
→ “Commit”]} ∧ unchanged �rmState, tmPrepared�
The transaction manager spontaneously aborts the transaction:

TMAbort
Δ
= tmState = “init” ∧ tmState � = “aborted”

∧msgs � = msgs ∪ {[type
→ “Abort”]} ∧ unchanged �rmState, tmPrepared�
Resource manager rm prepares:

RMPrepare(rm)
Δ
= rmState[rm] = “working”

∧ rmState � = [rmState except ! [rm] = “prepared”]
∧msgs � = msgs ∪ {[type
→ “Prepared”, rm
→ rm]}
∧ unchanged �tmState, tmPrepared�

Resource manager rm spontaneously decides to abort:

RMChooseToAbort(rm)
Δ
= rmState[rm] = “working”

∧ rmState � = [rmState except ! [rm] = “aborted”]
∧ unchanged �tmState, tmPrepared , msgs�

Resource manager rm is told by the TM to commit:

RMRcvCommitMsg(rm)
Δ
= [type
→ “Commit”] ∈ msgs

∧ rmState � = [rmState except ! [rm] = “committed”]
∧ unchanged �tmState, tmPrepared , msgs�

Resource manager rm is told by the TM to abort:

RMRcvAbortMsg(rm)
Δ
= [type
→ “Abort”] ∈ msgs

∧ rmState � = [rmState except ! [rm] = “aborted”]
∧ unchanged �tmState, tmPrepared , msgs�

A transition of the distributed system

Next
Δ
= ∨ TMCommit ∨ TMAbort a transition by the transaction manager

∨ ∃ rm ∈ RM : a transition by the resource manager

TMRcvPrepared(rm) ∨ RMPrepare(rm) ∨ RMRcvCommitMsg(rm)
∨ RMChooseToAbort(rm) ∨ RMRcvAbortMsg(rm)

Figure 7.2: The two-phase commit protocol in TLA+ as specified in [GL06] (We have
only changed the indentation and comments to save some space).

76

7.2. Example: the two-phase commit protocol in TLA+

• The variable msgs stores the set of messages sent by the managers. It con-
tains records of three kinds: [type '→ “Commit”], [type '→ “Abort”], and [type '→
“Prepared”, rm '→ S]. The records of the third kind have an extra field rm containing
a set S ⊆ RM of resource managers.

The initial system states are defined by the operator Init. This operator requires tmState
to be equal to “init”, the sets tmPrepared and msgs to be empty, and rmState to be a
function that constrains every resource manager rm ∈ RM to be in the “working” state.

System transitions are defined with the operator Next, which is idiomatically written as
a disjunction of simpler operators, called actions. In our example, there are two actions
by the transaction manager and five actions by a resource manager. A resource manager
is chosen with the existential quantifier ∃rm ∈ RM . The actions are TLA+ formulas
over two sets of variables: the variables without primes and the variables with primes.
The former capture the state before a transition, while the latter capture the state after
the transition.

For example, the action RMPrepare(rm) is enabled when the state of rm equals to
“working”. This action updates the function rmState, so that rmState[rm] becomes
“prepared”, whereas the values for the other elements of RM \ {rm} are not changed. Fur-
ther, the action adds the record [type '→ “Prepared”, rm '→ rm] to the set of messages msgs.
Finally, the action requires that tmState′ = tmState and tmPrepared ′ = tmPrepared, as
indicated by unchanged ⟨tmState, tmPrepared⟩.
The algorithm is designed to satisfy the following invariant:

∀r1, r2 ∈ RM : rmState[r1] ̸= “committed” ∨ rmState[r2] ̸= “aborted” (TCConsistent)

TLA+ uses syntax f [x] for function application, e.g., see rmState[rm]. Although it looks
like an array access, it is not. In contrast to arrays in programming languages, the
function domains are not ordered. Hence, f [x] cannot be interpreted as efficiently as an
array access.

Although this example is simple in comparison to fault-tolerant protocols such as, for
example, Raft [Ong14], it demonstrates several idiosyncrasies of TLA+. First, there is
no fixed order of evaluating the expressions. An operator such as Next is just a logical
formula. As soon as a vector of values for primed and non-primed variables satisfies the
formula, it gives us a system transition. Second, there is no notion of an assignment.
Hence, constraints on the primed variables may have different forms. Third, the language
is untyped. As a result, the same variable may contain values of different types during
an execution, and sets may contain type-incompatible elements.

In Section 7.3, we discuss how to deal with these issues before doing the translation to
SMT.

77

7. TLA+ model checking made symbolic

7.3 Preprocessing: flattening, assignments, and types
7.3.1 Flattening
As exemplified by Section 7.2, TLA+ specifications are normally written as a collection
of operator definitions. They can be also organized in modules. As the operator Next
describes one step of a system execution, the operators in TLA+ are usually non-recursive.
They are similar to macros in programming languages. As a first step, our technique
replaces calls to the user-defined operators with the operator bodies; as expected, the
formal arguments are substituted with the arguments at the call sites. The same applies
to the local operators that are defined with the let-in expression. We also instantiate
modules, in order to obtain a single-module specification, in which the operators Init
and Next contain only the calls to the built-in TLA+ operators. The flattening phase is
purely syntactic, so we obviously obtain an equivalent TLA+ specification.

Note on Recursive Operators. [Lam18] recently added recursive operators to ver-
sion 2 of TLA+. Hence, the users can conveniently write expressions in terms of recursion
instead of logical formulas. As is common in bounded model checking, we could unroll a
call to a recursive operator up to a bound predefined by the user, which would produce a
large TLA+ formula. To implement an incremental unrolling, we would need an advanced
type checker, which we postpone for the future.

7.3.2 Assignments and symbolic transitions
As noted earlier, there is no notion of variable assignment in TLA+. However, the model
checker TLC interprets expressions x ′ = e and x ′ ∈ S as assignments, if x ′ has not been
assigned a value before. TLC evaluates formulas in a fixed order: from top to bottom
and from left to right. Moreover, it treats some disjunctions as non-deterministic choice.
Recently, we introduced a symbolic technique for finding such assignments without
evaluating the TLA+ formula [KTK18]. Additionally, we proposed a technique for
decomposing a TLA+ formula into a disjunction of formulas T1, . . . , Tk in the following
way:

1. Assignment completeness: For every variable v , each Ti has at least one assignment
to v , and

2. Single assignment: For every variable, each Ti contains exactly one assignment to
it.

We apply this technique to find assignments and symbolic transitions.

Example 4. Consider the example in Figure 7.2. There are 7 symbolic transitions,
corresponding to the possible actions TMCommit, TMAbort, TMRcvPrepared(rm), and
so on. The body of TMAbort contains assignments to all five variables; two of them are
unchanged.

78

7.4. KerA+: the kernel language of TLA+ expressions

7.3.3 Types
Whereas TLA+ is untyped by design, TLC dynamically computes types and rejects some
combinations of legal TLA+ expressions, e.g., {1, “a”}. However, TLC’s type system
is not defined. We use the following type system, which is similar to the type system
by [MV12a]:

τ ::= Name | Bool | Int | τ → τ | Set(τ) | Seq(τ) | τ ∗ · · · ∗ τ | [nm1 : τ, . . . , nmk : τ]

The type system rejects some TLA+ expressions that are legal in the untyped language.
Importantly, elements of sets must have the same type. For example, {1, {2, 3}} is
ill-typed. Similarly, TLA+ functions can be defined on values of different types and
return values of different types, but such functions are rejected by the type system.
Finally, our type system clearly distinguishes between functions, sequences, tuples, and
records.

Developing a fully automatic type inference engine for TLA+ is a challenge on its own.
In this chapter, we follow a simple approach: In most cases, the types are computed
automatically by propagation; when the tool fails to find a type, it asks the user to write
a type annotation. Given the syntax tree of a TLA+ expression, our basic type inference
algorithm works as follows:

1. A leaf expression is assigned an appropriate type, based on its shape. For instance,
the literals 0, 1, −1, . . . have type Int, and the literals false and true have type
Bool. If the type is ambiguous, as in {}, then type inference fails, and the user has
to annotate the expression with a type.

2. A non-leaf expression is an application of a built-in operator. The type signatures
of these operators are predefined, e.g., + : Int ∗ Int → Int. Some operators introduce
bound variables, e.g., ∃x ∈ S : e or {e : x ∈ S}. As expected, the type of the
binding set is computed first, and then the type of e is computed.

In practice, the user has only to give the types of empty sets, empty sequences, and records.
It is common to mix records of different types. In Section 7.2, records [type '→ “Abort”]
and [type '→ “Prepared”, rm '→ rm] are both added to the set msgs. The user has to
annotate the records and their sets with a super type, e.g., [type : Name, rm : Set(Name)].

7.4 KerA+: the kernel language of TLA+ expressions
Our main goal is to check TLA+ specifications using an SMT solver as a back-end. A
direct translation of the rich TLA+ syntax would be tedious and error-prone. Hence,
we introduce KerA+: A small set of operators that can express all but a few TLA+

expressions. For example, it includes the operator union {S1, . . . , Sn}, which constructs

79

7. TLA+ model checking made symbolic

Table 7.1: The language KerA+. We highlight the expressions that do not have
counterparts in pure TLA+.

Literals: false, true 0,1,-1,2,-2,. . . c1, . . . , cn (constants)
Integers: i1 • i2 where • is one of: +, −, ∗, ÷, %, <, ≤, >, ≥, =, ̸=
Sets: {e1, . . . , en} {x ∈ S : p} {e : x ∈ S}

union S i1 .. i2 Cardinality(S)
x ∈ [S1 → S2] x ∈ subset S

Control: ite(p, e1, e2) e1 ⊕ . . . ⊕ en x ′ �S
x ′ � [S1 → S2] x ′ � subset S

Quantifiers: ∃x ∈ S : p choose x ∈ S : p from e1, . . . , en by θ

Functions: [x ∈ S '→ e] f [e] domain f
[f except ![e1] = e2]

Records: [nm1 '→ e1, . . . , nmn '→ en] domain r
e.nm

Tuples: ⟨e1, . . . , en⟩ t [i] domain t
Sequences: ⟨e1, . . . , en⟩ s[i] domain s

[s except ![i] = e] Len(s) s ◦ t
Head(s), Tail(s) SubSeq(s, i , j)

the union S1 ∪ · · · ∪ Sn . The binary operator S1 ∪ S2 is equivalent to union {S1, S2}.
We add a few auxiliary operators that simplify the translation.

A list of KerA+ expressions is given in Table 7.1. It might seem surprising that very
basic operators such as Boolean operators are missing. In fact, they can be expressed
with if-then-else:

¬p ≡ ite(p, false, true) p ∧ q ≡ ite(p, q , false) p ∨ q ≡ ite(p, true, q)

Several KerA+ operators do not originate from TLA+:

• Assignment x ′ �S : Following TLC, under the conditions given by [KTK18], we
treat an expression x ′ ∈ S as an assignment of a value from the set S to the variable
x ′. Note that an expression x ′ = e is a special case of this rule, which can be
written as x ′ ∈ {e}. We label such assignments with x ′ �S , to distinguish them
from membership tests x ′ ∈ S .

• Non-deterministic disjunction φ1⊕. . .⊕φn : This operator formalizes the special form
of TLC disjunction. It evaluates to true if and only if the disjunction φ1 ∨ · · · ∨ φn
evaluates to true. However, non-deterministic disjunction adds constraints on
the variable assignments: For every i , j ∈ 1..n and i ̸= j , formula φi contains an
assignment to a variable x ′ if and only if formula φj contains an assignment to x ′.
Note that this property is implied by the single-assignment property of symbolic
transitions (see Section 7.3.2). Hence, we use it to compose the symbolic transitions.

80

7.5. Rewriting framework

• Choice with an oracle from e1, . . . , en by θ: This operator returns expression ei
when θ = i and 1 ≤ i ≤ n; otherwise, it returns an arbitrary value of the same
type as e1, . . . , en .

KerA+ is a subset of TLA+ — except for the three operators discussed above — and
the meaning of the operators coincides with the description in the book by [Lam02].
Denotational semantics of TLA+ in first-order logic is given by [Mer08b]. In Sections 7.6–
7.10, we give a brief description of each KerA+ operator along with the semantics for
finite structures in terms of rewriting rules.

7.5 Rewriting framework

Our goal is to translate a KerA+ expression into an equisatisfiable quantifier-free SMT
formula. To this end, we introduce an abstract reduction system that allows us to
iteratively transform a KerA+ expression by applying reduction rules. The central idea
of our approach to rewriting is to construct an overapproximation of the data structures
with a graph whose edges connect values such as sets and their elements. We call this
graph an arena, as it resembles the in-memory data structures that are created by the
explicit-state model checker TLC. While some rules for KerA+ operators extend the
arena with new nodes and edges, other rules use this graph to produce SMT constraints
on the actual values. The reduction rules collapse a complex KerA+ expression into
a so-called cell that captures the result of symbolically evaluating the expression. The
rewriting process terminates, when the input KerA+ formula φ has been collapsed to a
single cell. In this case, the reduction rules have produced a set of SMT constraints that
are equisatisfiable to the formula φ.

7.5.1 Cells

In our framework, a cell is simply a first-order constant that is annotated with a
type τ : The cells of types Int and Bool are interpreted in SMT as integers and Booleans
respectively, whereas the cells of the other types remain uninterpreted. In the following,
we use notation ci or cname to refer to a cell. We assume fixed a finite set of cells C,
which contains sufficiently many elements for rewriting a KerA+ expression.

New cells are introduced when rewriting a KerA+ expression. For example, the expres-
sion {1, 2} is rewritten by a series of rewriting steps: {1, 2} ⇝ {c1, 2} ⇝ {c1, c2} ⇝ c3.
We give the precise definition of ⇝ in Section 7.5.4. While the original expression does
not contain cells, the rewritten expressions do. In fact, cells are well-formed KerA+

expressions, as they can be seen as KerA+ constants. Hence, the introduced cells can be
seen as: (1) first-order constants in SMT, and (2) KerA+ constants in KerA+, which
would be introduced in TLA+ using the string notation, e.g., “abc”.

81

7. TLA+ model checking made symbolic

7.5.2 Arenas
An arena is a directed acyclic labelled graph A = (V, E), where V ⊆ C is a finite set,
called arena cells, and E ⊆ V × (1..|V|) × V is a relation between the cells, called arena
edges, that have the following properties:

1. There are no duplicate labels. Formally, for every pair (v1, i1, w1), (v2, i2, w2) ∈ E ,
if v1 = v2 and w1 ≠ w2, then i1 ̸= i2.

2. There are no gaps in the labels. Formally, for every (v , i , w) ∈ E , and every index
j ∈ 1..(i − 1), there is a cell w ∈ V with the property (v , j , w) ∈ E .

We write V(A) and E(A) to refer to the cells and edges of arena A respectively. With
c1

i−→A c2, we denote that (c1, i , c2) ∈ E . Similarly, we write c →A c1, . . . , cn to say that
c points to c1, . . . , cn in this order, that is, c i−→A ci for 1 ≤ i ≤ n and for every c′ ∈ V(A)
and j > n, it holds that (c, j , c′) /∈ E(A). We use the following notation to extend an
arena A:

• Notation A, c : τ to introduce the arena (V ′, E ′) such that V ′ = V(A) ∪ {c} and
E ′ = E(A), provided that c is a fresh cell of type τ , i.e., c /∈ V(A).

• Notation A, c → c1, . . . , cn to introduce the arena A′ such that V(A′) = V(A) and
E(A′) = E(A) ∪ {(c, i , ci) | 1 ≤ i ≤ n}.

Example 5. Figure 7.3 shows examples of memory arenas for several KerA+ expressions.
In example (a), the arena contains six cells: three cells of type Int that represent integers
1, 2, 3; two cells of type Set(Int) that represent the sets {1, 2} and {2, 3}; and one cell of
type Set(Set(Int)) that represents the set of sets {{1, 2}, {2, 3}}. Importantly, the arena
only gives us a static overapproximation of the set. The actual contents of the set encoded
by cell c6 may be {∅} or {{1}, {2}}. The further constraints on the cell contents are
encoded in SMT, see Section 7.5.3.

In example (b), the arena contains five cells: three cells to encode the integers and
string, the cell c14 to encode the record [b '→ 0, c '→ 3], and the cell c15 to encode the
tuple ⟨“a”, 3, [b '→ 0, c '→ 3]⟩. In case of tuples, the cell type gives us unambiguous relation
between the tuple fields and the cells pointed by the cell. For instance, from the edge
c15

1−→ c11 and the tuple type Name ∗ Int ∗ [b : Int, c : Int], we immediately obtain that
cell c11 is the first field of the tuple c15. The same applies to records.

Finally, example (c) shows the arena constructed for the function f = [x ∈ {1, 2} '→
1 + x]. In our encoding, a function f is represented with its relation, that is, the
set {(x , f [x]) : x ∈ domain f }. Hence, the cells c21, c22, and c23 encode the integers 1, 2,
and 3 respectively. The cells c24 and c25 encode the pairs ⟨1, 2⟩ and ⟨2, 3⟩ of the relation
respectively. The cell c26 encodes the function relation, which is pointed by the function

82

7.5. Rewriting framework

c6 : Set(Set(Int))

c4 : Set(Int) c5 : Set(Int)

c1 : Int c2 : Int c3 : Int

1 2

1 21 2

(a) set of sets
{{1, 2}, {2, 3}}

c15 : Name ∗ Int ∗ [b : Int, c : Int]

c14 : [b : Int, c : Int]

c11 : Namec12 : Intc13 : Int

1 2

3

2 1

(b) tuple and record
⟨“a”, 3, [b '→ 0, c '→ 3]⟩

c27 : Int → Int

c26 : Set(Int ∗ Int)

c24 : Int ∗ Intc25 : Int ∗ Int

c21 : Intc22 : Intc23 : Int

1

1 2

1 2 1 2

(c) function
[x ∈ {1, 2} '→ 1 + x]

Figure 7.3: Examples of arenas for data structures in KerA+. The leaf cells are equal to
the following constants: c1 = c21 = 1, c2 = c22 = 2, c3 = c23 = 3, c11 = a, c12 = 3, and
c13 = 0

cell c27. While the function cell c27 may look redundant in the presence of the cell c26,
we keep the both, as they have different types.

Although the values of leaf cells are fixed in our examples, they do not have to be.
In example (c) we could leave the values of the cells c21, c22, and c23 unconstrained.
Then, the SMT solver would find values that satisfy the symbolic constraints such as
c22 = 1 + c21, as prescribed by the function f .

7.5.3 SMT constraints
We recapitulate the necessary notions related to many-sorted first-order logic. We assume
fixed a set of sorts S, which includes exactly one sort sτ per type τ that is defined in
Section 7.3. Further, let F be a set of functional symbols, each functional symbol is
assigned a non-negative arity. For convenience, we say that the set of cells C coincides with
the set of functional symbols of arity 0 from the set F . Each symbol f ∈ F is assigned
a sort sort(f) ∈ S. The ground terms are defined as follows: (1) every constant c ∈ C
is a ground term, and (2) if t1, . . . , tn are ground terms and f ∈ F has arity n, then
f (t1, . . . , tn) is a ground term, if the sorts of f , t1, . . . , tn are compatible.

We distinguish the set of predicates P ⊆ F , which contains the symbols that are assigned
a sort sτ1×···×τn→Bool for n ≥ 0 and some types τ1, . . . , τn . A ground first-order quantifier-
free formula (FO-formula) is a Boolean combination of predicates. We assume that
set F contains the standard symbols of integer arithmetic along with uninterpreted
functions, and their interpretation is standard. In particular, the sorts sBool and sInt
are the sorts of Booleans and integers, respectively. The sorts for the other types are
uninterpreted. Hence, we deal with the formulas of logic QF UFNIA [BFT17]. (Integer
arithmetic in TLA+ does not have to be linear.)

Encoding Arenas in SMT When rewriting a KerA+ expression e, our reduction
system introduces new cells that encode symbolic values of e’s subexpressions. In SMT,

83

7. TLA+ model checking made symbolic

these cells are introduced as constants of the respective sorts. To keep track of the
arena edges, we introduce instrumental Boolean constants in SMT. Formally, given an
arena A = (V, E), for each edge e ∈ E , we introduce a Boolean constant en⟨e⟩, whose
value indicates, whether the edge e is enabled or not.

Example 6. Consider the edge e41 = (c4, 1, c1) in Figure 7.3 (a). If en⟨e41⟩ evaluates
to true, then the cell c1 belongs to the set encoded by the set c4; otherwise, c1 does not
belong to the set.

7.5.4 Abstract reduction system (ARS)
We assume fixed a finite set of variables Vars that are used in KerA+ expressions as
free or bound variables. We define an abstract reduction system (S,⇝), where S are
the states of the reduction system and ⇝ ⊆ S × S is a transition relation. A state of
the abstract reduction system is defined as a tuple (e, A, ν, Φ), whose elements have the
following meaning:

• e is a KerA+ expression, possibly containing cells,

• A is an arena,

• ν is a partial function from Vars to V(A), which is called binding, and

• Φ is a set of first-order formulas, which represents SMT constraints.

We define ⇝ via a set of reduction rules. For instance, the rules (Bool) and (Int) below
define transitions that reduce Boolean and integer literals to cells. In the reduction rules,
we write the premises above the bar and the new state of the reduction system below the
bar. By convention, the state is always written as the first premise, using the notation�
e | A | ν | Φ

�
. �

b | A | ν | Φ
�

b is false or true�
c | A, c : Bool | ν | Φ, c = b

� (Bool)

�
n | A | ν | Φ

�
n is 0, 1, −1, . . .�

c | A, c : Int | ν | Φ, c = n
� (Int)

�
cℓ ▷◁ cr | A | ν | Φ

�
▷◁ is one of <, ≤, >, ≥, =, ̸=�

cres | A, cres : Bool | ν | Φ, cres ↔ cℓ ▷◁ cr
� (IntCmp)

Once we have introduced integer cells for the literals, we can reduce integer comparisons
using the rule (IntCmp) and reduce integer arithmetics using the rule (IntArith). The
reduction rules add new SMT constraints to the set Φ.

84

7.6. Sets

�
cℓ ◦ cr | A | ν | Φ

� ◦ is one of +, −, ∗, ÷, %�
cres | A, cres : Int | ν | Φ, cres = cℓ ◦ cr

� (IntArith)

In general, expressions contain multiple operators and thus cannot be reduced with a
single rule. The rule (RedArg) rewrites operator arguments from left to right. Unless
stated otherwise, we assume that this rule can be freely applied to an expression before
the other rules are applied. A few KerA+ operators require special treatment, e.g.,
∃x ∈ S : p and {x ∈ S : p}.

�
Op(e1, . . . , en) | A0 | ν0 | Φ0

��
ei | Ai−1 | νi−1 | Φi−1

��
ci | Ai | νi | Φi

�
for 1 ≤ i ≤ n�

Op(c1, . . . , cn) | An | νn | Φn
� (RedArg)

To apply the reduction system to a KerA+ expression e, e.g., to Init and Next, we
introduce an initial state

�
e0 | A0 | ν0 | Φ0

�
, whose arena, binding, and SMT constraints

are empty. Formally, A0 = (∅, ∅), Φ0 = ∅, and ν(x) = ⊥ for x ∈ Vars. Usually, the
expression e0 is a formula, that is, it has type Bool. For simplicity, we also assume that
all constants that appear in e0 have basic types, that is, Int, Bool, and Name, while the
expressions of more complex types are constructed with built-in TLA+ operators. This
restriction is not crucial, as one can initialize TLA+ parameters (called “CONSTANTS”
in TLA+) by evaluating an additional formula, similar to Init. Then, we apply the
reduction rules until one of the following states is reached: (1) an error state, in which
no rule applies, or (2) a terminal state, in which the expression is a single cell. If an
error state has been reached, then the expression e is not well-formed.

When a terminal state cterm is reached, and the terminal cell cterm has type Bool, we add
the assertion cterm to the SMT constraints and check their satisfiability. In Sections 7.6–
7.10, we introduce rewriting rules for sets, functions, tuples, records, sequences, and
control operators. Section 7.11 contains soundness proofs.

7.6 Sets

Sets lie in the theoretical foundation of TLA+, as it builds upon Zermelo-Fränkel set
theory with choice (ZFC). Hence, in theory, every TLA+ value is a set. However, in
practice, we distinguish sets from the other objects, that is, Booleans, integers, functions,
tuples, records, and sequences. One implication of using ZFC is that every set is
constructed out of sets of smaller rank, the terminal sets being the objects of non-set
types (or empty sets). Importantly, we only consider finite sets.

85

7. TLA+ model checking made symbolic

Set Enumeration. The simplest way to construct a set is by enumerating its elements,
e.g., by writing {1, 2, 3}. The rule (Enum) reduces a set of cells to a fresh cell cset . The
rule links the elements c1, . . . , cn to cset in the arena and adds the constraint en⟨cset , i , ci⟩
for each 1 ≤ i ≤ n. Several important observations should be made. First, we only add
constraints on the edges from cset to the cells c1, . . . , cn , as the reduction rules for sets
refer only to the cells pointed by cset in the arena. Second, the set elements may be
not unique, as uniqueness test cannot be done at the time of rewriting, and most set
operations do not require uniqueness. In other words, we encode multisets.�{c1, . . . , cn} : Set(τ) | A | ν | Φ

��
cset : Set(τ) | A, cset , cset → c1, . . . , cn | ν | Φ,

�
1≤i≤n

en⟨cset , i , ci⟩
� (Enum)

Set Membership. An expression cx ∈ cS such that cS →A c1, . . . , cn is reduced
to �

1≤i≤n cx = ci .

Set Filter. An expression {x ∈ S : p} constructs the set T that has only the elements
of S that satisfy the predicate p.�{x ∈ cS : p} : Set(τ) | A | ν | Φ

��
p[c1/x], . . . , p[cn/x] | A | Φ | ν

��
cp

1 , . . . , cp
n | A′ | Φ′ | ν ′� cS →A c1, . . . , cn�

cT : Set(τ) | A′, cT → c1, . . . , cn | ν ′ | Φ′, InFilter
� (Filter)

The rule (Filter) implements this semantics in two steps. First, it reduces the appli-
cations of predicate p to all potential set elements c1, . . . , cn , that is, it rewrites the
expressions p[ci/x] for 1 ≤ i ≤ n. (As usual, the notation p[e/x] means that x is replaced
by e in p.) Second, it adds the constraint (InFilter) that requires every cell ci to be in
the new set cT if and only if it is in cS and it satisfies the predicate p instantiated to ci ,
that is, cp

i is true:

en⟨cT , i , ci⟩ ↔ �
cp
i ∧ en⟨cS , i , ci⟩

�
for 1 ≤ i ≤ n (InFilter)

Union of Sets. By definition, union S produces the set that comprises of the elements
of the sets in S . For example, union {{1, 2}, {2, 3}} produces the set {1, 2, 3}. The
rule (Union) captures this. It introduces a fresh cell cU for the union and points to the
cells pointed by the descendants of cS .�

union cS : Set(Set(τ)) | A | ν | Φ
�

cS →A c1
S , . . . , cn

S ci
S →A ci

1, . . . ci
mi

for 1 ≤ i ≤ n�
cU : Set(τ) | A, cU , cU → c1

1, . . . , c1
m1 , c2

1, . . . , c2
m2 , . . . , cn

mn | ν | Φ, InU
� (Union)

The SMT constraint (InU) simply requires a cell ci
j to be in cU if and only of it is in the

set containing it, that is, in ci
S , and the set ci

S belongs to cU :

86

7.6. Sets

cS : Set(Int)

c2 : Int c3 : Int c4 : Int
1 2 3

cT : Set(Int)

c0 : Int c1 : Int
1 2 3

Figure 7.4: An arena constructed for the set comprehension {x ÷ 3 : x ∈ {2, 3, 4}}. Every
cell ci has value i for 0 ≤ i ≤ 4. Cell cS encodes the set {2, 3, 4}, and cell cT encodes
the result of the set comprehension.

en⟨cU , idx i ,j , ci
j ⟩ ↔

�
en⟨ci

S , j , ci
j ⟩ ∧ en⟨cS , i , ci

S ⟩


for 1 ≤ i ≤ n, 1 ≤ j ≤ mi , (InU)

where the edge index idx i ,j is defined as m1 + · · · + mi−1 + j .

The constraint (InU) may seem to be unsound. Indeed, consider the arena in Figure 7.3 (a)
and assume that we compute union c6. Further, assume that the SMT solver sets
en⟨c5, 1, c2⟩ to true and en⟨c4, 2, c2⟩ to false, that is, 2 is a member of the set encoded
by c5 and 2 is not a member of the set encoded by c4. Equation (InU) produces the
following constraints (among others): en⟨cU , 2, c2⟩ ↔ en⟨c4, 2, c2⟩ ∧ en⟨c6, 1, c4⟩ and
en⟨cU , 3, c2⟩ ↔ en⟨c5, 1, c2⟩ ∧ en⟨c6, 2, c5⟩. As a result, en⟨cU , 2, c2⟩ is false, whereas
en⟨cU , 3, c2⟩ is true. There is no contradiction here, as for the set membership of c2 in cU ,
it is sufficient to find one enabled edge, that is, (cU , 3, c2).

Set Map. By definition, {e : x ∈ S} constructs the set T with the following property:
For every z , it holds that z ∈ T if and only if there is y ∈ S such that z = e[y/x]. For
example, the expression {x ÷ 3 : x ∈ {2, 3, 4}} constructs the set {0, 1}. The operator ÷
denotes integer division in TLA+. Rule (Map) implements this. Figure 7.4 shows the
arena that is constructed in the process of reduction.

�{e : x ∈ cS} | A | ν | Φ
�

and
cS →A c1, . . . , cn

�
e[c1/x], . . . , e[cn/x] | A | Φ | ν

��
ce

1 : τ, . . . , ce
n : τ | A′ | Φ′ | ν ′��

cT | A′, cT : Set(τ), cT → ce
1, . . . , ce

n | ν ′ | Φ′, InMap
� (Map)

The rule works in two steps. First, it reduces the applications of expression e to all
potential set elements c1, . . . , cn , that is, it rewrites the expressions e[ci/x] to ce

i for
1 ≤ i ≤ n. Second, the constraint (InMap) enforces that a cell ce

i belongs to the set
encoded by the cell cT if and only if its preimage ci belongs to the set encoded by the
cell cS :

en⟨cT , i , ce
i ⟩ ↔ en⟨cS , i , ci⟩ for 1 ≤ i ≤ n (InMap)

Example 7. Consider Figure 7.4. The cell c1 is mapped to the cell c0, whereas the
cells c3 and c4 are mapped to the cell c1. Assume that the SMT solver sets en⟨cS , 3, c4⟩

87

7. TLA+ model checking made symbolic

to true and en⟨cS , 2, c3⟩ to false. Hence, en⟨cT , 3, c1⟩ holds true and en⟨cT , 2, c1⟩ does
not. Still, c1 belongs to the set encoded by cT , as the edge (cT , 3, c1) is enabled.

Integer Interval a..b. This operator is quite often used in TLA+ to define the set
{i ∈ Z : a ≤ i ≤ b}. The latter set cannot be defined in KerA+, as our language supports
only finite sets. When the bounds a and b are integer constants, we reduce a..b to the
set enumeration {a, a + 1, . . . , b}. Otherwise, the user has to find a static set S ⊇ a..b
that can be filtered by the KerA+ expression {i ∈ S : a ≤ i ∧ i ≤ b}. It is often easy to
find such a set S , as the specification parameters are fixed.

Set Equality. As sets are encoded as constants of uninterpreted sorts in SMT, it is not
sound to use the SMT equality. One way of imposing equality constraints is by writing
down the set equality axioms as done by [MV18]. However, such axioms immediately
introduce quantified formulas in SMT. Instead of axioms, we implement lazy equality
in the rule (SetEq). Whenever two cells cS and cT are compared for the first time,
(SetEq) rewrites the definition of set equality into a Boolean cell ceq . Additionally, it
adds the SMT constraint cS = cT ↔ ceq , which allows us to use SMT equality in the
later occurrences of cS = cT .�

cS = cT | A | ν | Φ
��

(∀x ∈ cS : x ∈ cT) ∧ (∀x ∈ cT : x ∈ cS) | A | ν | Φ
��

ceq : Bool | A′ | ν ′ | Φ′��
ceq | A′ | ν ′ | Φ′, cS = cT ↔ ceq

� (SetEq)

Set Cardinality. In TLA+, an expression Cardinality(S) produces a natural num-
ber that equals to the number of elements in a finite set S . Cardinalities are used
in TLA+ specifications in various ways. For instance, to compare cardinalities, that is,
Cardinality(S) ≥ Cardinality(T)/2+1, or to construct a set of integers 1..Cardinality(S),
or as a function argument. Hence, we use a generic approach to computing the set
cardinality by the recurrence relation in Equation (7.1), assuming that a set cell cS is
pointing to the element cells c1, . . . , cn :

k0 = 0 and ki+1 = ite(en⟨cS , i , ci⟩ ∧ notSeeni , 1 + ki , ki) for 0 < i ≤ n (7.1)

Equation (7.2) requires that the ith element contributes to the cardinality, if the previously
considered elements are either outside of the set, or are different from the ith element:

notSeeni =
�

1≤j<i
(en⟨cS , j , cj ⟩ → cj ̸= ci) for 0 < i ≤ n (7.2)

Hence, Cardinality(cS) = kn . A more efficient approach can be applied to a more
restricted fragment, e.g., BAPA by [KNR05]. We plan to use specialized approaches in
the future.

88

7.7. Picking set elements

c1
1 c2

1 c3
1

c1
2 c2

2 c3
2

from ci
1, ci

2 by θ

c1

c2

c1
pick c2

pick c3
pickcres

Figure 7.5: Picking a set among two set cells c1 and c2, pointing to c1
1, c2

1, c3
1 and c1

2, c2
2,

c3
2 respectively. The result cpick points to c1

pick , c2
pick , c3

pick , which are picked from three
sequences of two cells (in red boxes).

7.7 Picking set elements
While developing rewriting rules for TLA+ operators, we found that many rules can be
reduced to the auxiliary operator from e1, . . . , en by θ, where θ is an integer constant
and e1, . . . , en are TLA+ expressions of the same type τ . The meaning of this operator
is as follows: If θ ∈ 1..n, then from e1, . . . , en by θ returns eθ; Otherwise, it returns
an arbitrary value of type τ . The constant θ defines the value to be picked from the
sequence e1, . . . , en . Hence, we call it an oracle.

The operator from e1, . . . , en by θ is not part of standard TLA+. The syntax for TLA+

proofs [Lam18] has a similar operator pick x ∈ S , which returns an arbitrary element of
the set S . However, pick does not provide us with fine control of which element could
be picked. We define several reduction rules for from e1, . . . , en by θ, which vary by the
types of the expressions e1, . . . , en .

Picking Basic Values The rule (FromBasic) applies to Booleans, integers, and
constants. It introduces a new cell cpick and requires that cpick equals to the θth value as
prescribed by the oracle. When the oracle has a value outside of 1..n, the picked value is
unconstrained.�

from c1, . . . , cn by θ | A | ν | Φ
�

c1 : τ, . . . , cn : τ τ is basic�
cpick | A, cpick : τ | ν | Φ,

�
1≤i≤n

�
θ = i → cpick = ci

�� (FromBasic)

Picking Sets The second rule (FromSet) picks a set element which is itself a set.
This is the most intricate rule, as it requires us to construct a set that mimics the
structure of every set that is captured by the cells c1, . . . , cn . The rule assumes that
every cell ci has the same type Set(τ) for some type τ and 1 ≤ i ≤ n. Without loss of
generality, we assume that every cell points to exactly the same number of cells, that is, if
ci →A c1

i , . . . , ck
i and cj →A c1

j , . . . , cm
j , then k = m. If it is not the case we can introduce

additional edges by replicating the last element of the sequence, e.g., if k < m, then

89

7. TLA+ model checking made symbolic

we would extend the arena as ci →A c1
i , . . . , ck

i , . . . , ck
i , where ck

i is repeated m − k + 1
times. (When k = 0, we copy the elements from the longest sequence and disable the
new edges.)

The rule (FromSet) works in two steps. First, for every index j ∈ 1..m, it picks an
element cj

pick among the j th elements of the sets c1, . . . , cn . Importantly, the opera-
tors from cj

1, . . . , cj
n by θ are using the same oracle θ for every j ∈ 1..m. As a result,

they pick the respective elements from the same set cθ. Second, the resulting set cres
points to the picked elements c1

pick , . . . , cm
pick .

�
from c1, . . . , cn by θ | A0 | ν0 | Φ0

�
ci : Set(τ) for 1 ≤ i ≤ n and θ : Int ci →A0 c1

i , . . . , cm
i for 1 ≤ i ≤ n�

from cj
1, . . . , cj

n by θ | Aj−1 | νj−1 | Φj−1
��

cj
pick : τ | Aj | Φj | νj

�
for 1 ≤ j ≤ m�

cres | A, cres : Set(τ), cres → c1
pick , . . . , cm

pick | νm | Φm , InPicked
� (FromSet)

The constraint (InPicked) requires the new set cell cres to contain a cell cj
pick if and only

if the respective set chosen by the oracle θ contains the j th cell.

en⟨cres , j , cj
pick ⟩ ↔

�
1≤i≤n

θ = i ∧ en⟨ci , j , cj
i ⟩ for 1 ≤ j ≤ m (InPicked)

Example 8. Figure 7.5 shows an example of the rule applied to from c1, c2 by θ. The
cells c1 and c2 have type Set(τ), each of them pointing to three element cells c1

i , c2
i , and

c3
i for i ∈ {1, 2}. The rule first applies from cj

1, cj
2 by θ three times for j ∈ {1, 2, 3} to

pick one element cj
pick from each pair. Note that use of θ guarantees us that the elements

are drawn from the same set. The resulting cell cres is pointing to the three picked cells
c1
pick , c2

pick , and c3
pick .

Picking Other Values We have also defined the rules for picking a value from: a
set of functions, a set of tuples, a set of records, a set of sequences, and a powerset
(constructed with subset S). They are similar to (FromBasic) and (FromSet) and
are omitted for brevity.

7.8 Tuples and records
Tuples and records are easy to express in our framework, since the types give us precise
information about the number of fields and their types. Importantly, we assume that the
tuple elements and record fields are accessed with constant expressions, e.g., tuple[3] or
record .name, but not tuple[x] and record [x], where x is a variable. This is usually the
case for TLA+ specifications.

90

7.9. Functions and sequences

ct : Int ∗ Bool ∗ Name

c1 : Int c2 : Bool c3 : Name
Case (a)

1 2 3
cr : [a '→ Int, b '→ Bool, c '→ Name]

Case (b)
c4 : Int c5 : Boolc6 : Name

1 2 3

Figure 7.6: (a) The arena constructed for the tuple ⟨1, true, ”abc”⟩, assuming that the
expressions 1, true, and ”abc” were rewritten into cells c1, c2, and c3. (b) The arena
constructed for the record [a '→ 1, b '→ true, c '→ ”abc”], assuming that the expressions 1,
true, and ”abc” were rewritten into cells c4, c5, and c6.

Tuple Constructor. A tuple constructor adds a new cell pointing to the element cells
in their index order. Figure 7.6 (a) shows an example of applying the rule (TupCtor).�⟨c1, . . . , cn⟩ : τ1 ∗ · · · ∗ τn | A | ν | Φ

��
cnew | A, cnew : τ1 ∗ · · · ∗ τn , cnew → c1, . . . , cn | ν | Φ

� (TupCtor)

Tuple Application. The tuple application rule returns the ith cell pointed by the
tuple cell:�

ct [i] | A | ν | Φ
�

ct →A c1, . . . , cn i ∈ {1, . . . , n}�
ci | A | ν | Φ

� (TupApp)

Tuple Domain. For a tuple t of type τ1 ∗ · · · ∗ τn , the expression domain t is reduced
to 1..n.

Records. The rules for records are similar to the rules for tuples. We assume that the
field names in each record type [nm1 '→ e1, . . . , nmn '→ en] are lexicographically sorted.
Obviously, there is bijection between {nm1, . . . , nmn} and 1..n. Hence, we use the rules
for tuples to rewrite most of the record operators. The only exception is domain r ,
which returns the set {nm1, . . . , nmn}. Figure 7.6 (b) shows an example of rewriting a
record constructor.

7.9 Functions and sequences
Functions are the second most used data structure after sets in TLA+. [Lam02] introduces
tuples, sequences, and records as functions, so in pure TLA+ any data structure different
from a set is a function. As KerA+ is well-typed, we treat general functions differently
from tuples, records, and sequences. A function in KerA+ has a type τ1 → τ2, which
implies that it always returns elements of the same type. Below, we define the reduction
rules for function operators. In arenas, we encode a function f with its associated relation,
that is, as the set of pairs {⟨x , f [x]⟩ : x ∈ domain f }. As a result, we reuse the rules
for sets (Section 7.6) and tuples (Section 7.8). For instance, equality of two functions is
simply the set equality of their associated relations.

91

7. TLA+ model checking made symbolic

At the arena level, a function cell cf is always pointing to a single cell that stores the
associated relation. See Figure 7.3 (c) for example. We use the notation funrel(cf) to
refer to this relation cell.

Function Definition (FunCtor). In TLA+, an expression [x ∈ S '→ e] defines a
function with the domain S that maps every value v ∈ S to e[v/x], where x is substituted
with v in the expression e (see [Lam02, p. 302]). This expression is similar to the set
map {e : x ∈ S}. Hence, for the function constructor [x ∈ S '→ e], we apply the rewriting
rule (SetMap) to the expression {⟨x , e⟩ : x ∈ S}. This rule produces a cell crel that
encodes the associated relation crel of type Set(τ1 ∗ τ2), where τ1 is the type of elements
of S , and τ2 is the type of e. We add a cell cf of type τ1 → τ2 and make it point to crel ,
that is, cf →A crel . The rule (FunCtor) produces cf as a result.

Function Domain (FunDom). Assuming that f is reduced to a cell cf , we rewrite
domain cf as {t [1] : t ∈ funrel(cf)}, that is, we map every pair in the relation funrel(cf)
to its first element.

Function Update (FunExc). In TLA+, an expression [f except ![a] = r] produces a
new function g that has three properties: (1) It has the same domain as f , (2) g [x] = f [x]
for x ∈ domain f \ {a}, and (3) g [a] = r if a ∈ domain f . (See [Lam02, p. 302].)
Assuming that expression f has been rewritten to a cell cf , we update the associated
relation funrel(cg) as follows:

{ite(p[1] = a, ⟨a, r⟩, p) : p ∈ funrel(cf)} (Except)

In (Except), all pairs that contain a as the first component are replaced with the pair ⟨a, r⟩,
while the other pairs stay unchanged. It is easy to see that the above properties (1)-(3)
are satisfied. We give the rewriting rule for ite in Section 7.10.

Function Application (FunApp). In TLA+, an expression f [e] returns the result of
applying the function f to e, provided that e ∈ domain f . When e /∈ domain f , the
result is unspecified. The rule (FunApp) implements this semantics.

�
cfun [carg] | A | ν | Φ

�
cfun

1−→A crel →A c1, . . . , cn�
from c1, . . . , cn by cora | A, cora : Int | ν | Φ, 0 ≤ cora ≤ n

��
cpair | A2 | Φ2 | ν2

��
cpair [2] | A2 | ν2 | Φ2, WhenInDomain ∧ WhenOutsideDomain

� (FunApp)

First, the rule (FunApp) introduces an integer oracle cora, which points either to a cell
from c1, . . . , cn (when 1 ≤ cora ≤ n), or an arbitrary cell of proper type (when cora = 0).
Second, a cell cpair is picked using the operator from c1, . . . , cn by cora. This is the tuple
that comprises a function argument and the respective result, so the rule (FunApp)

92

7.10. Control operators and quantifiers

returns the function result cpair [2]. Third, the SMT formula (WhenInDomain) requires
the oracle to pick the right pair, that is, the one that actually belongs to the relation and
whose first component is equal to the argument. Finally, the SMT formula (WhenOut-
sideDomain) allows the oracle value to be zero, only if there is no pair that matches the
passed argument carg. Importantly, as the rule uses equality, we require that the lazy
equality constraints carg = ci [1] are generated for 1 ≤ i ≤ n.

cora = i → �
ci [1] = carg ∧ en⟨cfun , i , ci⟩

�
for 1 ≤ i ≤ n (WhenInDomain)

cora = 0 → �
ci [1] ̸= carg ∨ ¬en⟨cfun , i , ci⟩

�
for 1 ≤ i ≤ n (WhenOutsideDomain)

Sequences. We briefly discuss sequences. In principle, sequence operators can be
expressed with function operators, we omit them here for brevity. However, these
equivalent expressions are unnecessarily complex. Instead, we encode a sequence q of
type Seq(τ) as a tuple ⟨start, end, fun⟩. The components start and end are integers that
store the first index of the sequence and the index right after the end of the sequence
respectively. The component fun is a function of type Int → τ that maps integers 1..n
to values of type τ for some n ≥ 0. The sequence operators maintain the invariant:
start ≥ 1 ∧ end ≤ n + 1. Hence, the elements of sequence q are in the window of
indices [start, end).

7.10 Control operators and quantifiers
Branching. The operator ite(cp , c1, c2) returns the value of one of its branches, de-
pending on the Boolean condition cp . We use the from c1, c2 by θ for θ ∈ {1, 2}.

�
ite(cp , c1, c2) : τ | A | ν | Φ

� �
from c1, c2 by θ | A, θ : Int | ν | Φ, 1 ≤ θ ≤ 2

��
cres | A2 | ν2 | Φ2

��
cres | A2 | ν2 | Φ2, θ = 1 ↔ cp

� (ite)

Interestingly, we do not compare cres to c1 and c2, as one would expect from the standard
if-then-else semantics. Instead, we delegate the job to the oracle θ.

Assignments. An assignment x ′ � cS in KerA+ specifies that a variable x ′ takes
a value from the set S . Since any element of the set may be chosen, we use picking
from c1, . . . , cn by θ for the cells pointed by the cell cS . We reserve the value θ = 0 for
the case when the set is empty, which results in assigning an arbitrary value of proper
type to the variable x ′.�

x ′ � cS | A | ν | Φ
�

cS →A c1, . . . , cn�
from c1, . . . , cn by θ | A, θ : Int | ν | Φ, 0 ≤ θ ≤ n

��
c | A2 | ν2 | Φ2

��
true | A2 | ν2[x '→ c] | Φ2, EmptyAsgn ∧ NonEmptyAsgn

� (Asgn)

93

7. TLA+ model checking made symbolic

Where

θ = 0 ↔
�

1≤i≤n
¬en⟨cS , i , ci⟩ (EmptyAsgn)

�
1≤i≤n

(θ ̸= i ∨ en⟨cS , i , ci⟩) (NonEmptyAsgn)

We omit the rules for the assignments f ′ � subset S and f ′ � [S → T] for brevity.

Substitution. A variable x can be replaced with the cell given by a valuation ν:�
x | A | ν | Φ

�
x ∈ Vars�

ν(x) | A | ν | Φ
� (Sub)

Existential Quantifiers. Quantified expressions are a fundamental building block of
TLA+, as well as KerA+. Since we consider only finite sets, an existential quantifer can
be replaced with disjunction. If the body of the quantified expression contains variable
assignments, we translate ∃x ∈ cS : p as the non-deterministic disjunction p[c1/x] ⊕ . . . ⊕
p[cn/x], where cS is pointing to c1, . . . , cn .�∃x ∈ cS : p | A | ν | Φ

�
cS →A c1, . . . , cn�

p[c1/x] ⊕ . . . ⊕ p[cn/x] | A | ν | Φ
� (Exists)

Replacing an existential quantifier with a disjunction may seem to be suboptimal. How-
ever, we cannot avoid it, as existential quantification may be used to express universal
quantification, e.g., ¬∃x ∈ cS . In this case, we have to explore all possible valuations
for x . In the implementation, we introduce the following optimization for existential
quantifiers. We transform the formula such as Next into its negated normal form and
check whether ∃x ∈ cS : p is located under a universal quantifier. If this is not the case,
we introduce a Skolem constant c ∈ cS and produce the expression p[c/x] instead of the
disjunction. As expected, this optimization significantly reduces the number of SMT
constraints.

Operator choose. By definition, choose x ∈ S : p returns an element of S that
satisfies the expression p (see [Lam02, p. 294]). If there is no such an element, the result
is undefined. Importantly, choose is deterministic: Two expressions choose x ∈ S : p
and choose y ∈ T : q have equal values, if the filtered sets are equal, that is, {x ∈ S :
p} = {y ∈ T : q}.

The rule Choose implements this semantics as follows. First, it rewrites the set {x ∈ S :
p} into a cell cF of some type τ . Suppose that cF points to the element cells c1, . . . , cn .
Second, the rule applies from c1, . . . , cn by θ to pick a cell cres using an oracle θ. The
cell cres is the result of rewriting the expression choose x ∈ S : p. To guarantee
determinism of choose, for each type τ , we introduce an uninterpreted function chooseτ

94

7.11. Soundness of the reduction to SMT

of sort Set(τ) → τ , and require chooseτ (cF) = cres . Finally, the rewriting system
instantiates lazy equality between the pairs cells c1

F and c2
F , as well as the pairs chooseτ (c1

F)
and chooseτ (c2

F), which are produced by rewriting of {x ∈ S : p} and {y ∈ T : q} in the
rule Choose. Congruence of uninterpreted functions gives us the required determinism.�

choose x ∈ S : p | A | ν | Φ
��{x ∈ S : p} | A | ν | Φ

��
cF : τ | A2 | ν2 | Φ2

� cF →A2 c1, . . . , cn�
from c1, . . . , cn by θ | A2, θ : Int | ν2 | Φ2, 0 ≤ θ ≤ n

��
cres | A3 | ν3 | Φ3

��
cres | A3 | ν3 | Φ3, chooseτ (cF) = cres

� (Choose)

Non-deterministic Disjunction. This operator combines several symbolic transitions
T1, . . . , Tk . In contrast to the disjunction ∨, the operands of ⊕ produce independent
variable valuations. For the sake of presentation, we introduce the rule for the binary
case A ⊕ B and one variable x ′. It is easy, though tedious, to extend this rule to multiple
variables and n-ary disjunctions.

�
e1 ⊕ e2 | A0 | ν0 | Φ0

� �
ei | Ai−1 | ν0 | Φi−1

��
ci | Ai | νi | Φi

� i = 1, 2�
from ν1(x ′), ν2(x ′) by θ | A2, θ : Int | ν0 | Φ2, θ ∈ {1, 2}��

cx | A3 | ν0 | Φ3
��

cr | A3, cr : Bool | ν0 ◦ [x ′ '→ cx] | Φ, cr ↔ c1 ∨ c2, θ = 1 → c1, θ = 2 → c2
� (Ndc)

7.11 Soundness of the reduction to SMT
In this section, we define KerA+ models and restrict them to finite structures. The
restriction to finite structures implies that every set expression in KerA+ is mapped
to a finite set. Further, we present two important properties of the reduction system:
termination and soundness. We introduce the invariants that are used to show soundness
of the reduction. The final result guarantees that the constraints produced by the
reduction system belong to the SMT theories.

Models Every satisfiable KerA+ formula has a model. A model is a pair M = ⟨D, I⟩:

1. D is a domain. It is a disjoint union of sets D1, . . . , Dn , each Di contains values of
type τi .

2. I is an interpretation. It assigns values from the domain to constants and KerA+

operators.

95

7. TLA+ model checking made symbolic

We assume that the interpretation I is standard, that is, it follows the standard semantics
of TLA+, e.g., as given by [Mer12]. As usual, we use the notation �e�M to denote the
value of a KerA+ expression in a model M.

In our work, the specification parameters are fixed. Thus, every KerA+ expression
“intuitively” defines only finite values. We formalize this intuition by introducing finite
structures and showing that every KerA+ expression e defines a finite structure, as soon
as the constants in e are interpreted as finite structures (see Proposition 10).

For a model M = ⟨D, I⟩, a value v ∈ D is called a finite structure, if one of the following
holds:

• Value v has type Int, Bool, or Name,

• Value v is a finite set, whose elements are finite structures,

• Value v is a function f : S → T such that S and T are finite structures, or

• Value v is a record, a tuple, or a finite sequence, and v ’s elements are finite
structures.

Proposition 10. Let e be a KerA+ expression, and M = ⟨D, I⟩ be a model. If I
interprets all constants and free variables in e as finite structures, then the interpretation
of e is a finite structure.

As expected, we call a model M = ⟨D, I⟩ finite, if if every value v ∈ D is a finite structure.
Finally, given a state

�
e | A | ν | Φ

�
of the reduction system, a model M = ⟨D, I⟩ is

suitable for the state, if the expression e and the constraint Φ can be interpreted with M.

Soundness and Termination First, we show that our reduction system always
terminates:

Theorem 3. Every sequence of ARS reductions s0⇝s1⇝ . . . is finite. In other words,
the reduction process terminates.

To prove Theorem 3, we define a partial order on KerA+ expressions and show that
every reduction rule produces smaller expressions.

Theorem 4 formally states the soundness of our reduction system:

Theorem 4. Let s0⇝ . . .⇝sm be a sequence of states produced by an abstract reduction
system, and si =

�
ei | Ai | νi | Φi

�
for 1 ≤ i ≤ m. Assume that e0 is a formula, that is,

it has type Bool. The formula e0 is satisfiable if and only if the constraint em ∧ Φm is
satisfiable.

96

7.11. Soundness of the reduction to SMT

Note that if the reduction system terminates without an error, then the terminal expres-
sion em in Theorem 4 is a constant. Moreover, the reductions produce constraints that
are compatible with SMT solvers [BFT17]:

Proposition 11. Let s0⇝ . . .⇝sm be a sequence of states produced by an abstract
reduction system, and si =

�
ei | Ai | νi | Φi

�
for 1 ≤ i ≤ m. Then, every formula

Φi is a quantifier-free first-order logic formula over uninterpreted functions and integer
arithmetic.

In the following, we give the idea of our proof of Theorem 4. Detailed proofs are omitted.
We prove the theorem by showing that the abstract reduction system satisfies six invariants
on the reachable states and transitions of the system. As usual, a state sm of the reduction
system is reachable, if there is a finite sequence of rewriting transitions s0⇝ . . .⇝sm from
an initial state s0 leading to sm . Similarly, a transition is reachable, if it originates from
a reachable state.

We observe that every reduction rule transforms a KerA+ expression ebefore in an
expression eafter in a special way. In particular, a model Mafter of eafter differs from a
model Mbefore of ebefore in that Mafter has additional constants. Hence, we call Mafter
an extended model of Mbefore.

Invariants of the Reduction System. In order to prove soundness of the translation
to SMT, we formulate six invariants on the reachable states and transitions of the abstract
reduction system. Proposition 12 ensures that all invariants 1-6 are preserved by every
sequence of transitions.

Invariant 1 states that our reduction system produces only well-typed expressions:

Invariant 1. In every reachable state
�
e | A | ν | Φ

�
of the ARS, the expression e is

well-typed.

Invariant 2 gives us a relation between the arenas and the Boolean constants that are
introduced for the arena edges in the constraint Φ:

Invariant 2. In every reachable state
�
e | A | ν | Φ

�
of the ARS, the following holds:

1. Every cell c appears in either the expression e or the formula Φ if and only if it
appears in A.

2. Arena A has an edge (cset , i , celem) if and only if the formula Φ contains the
constant en⟨cset , i , celem⟩.

Invariant 3 ensures that the reduction rules produce suitable models:

97

7. TLA+ model checking made symbolic

Invariant 3. Let sbefore⇝safter be a reachable transition in the ARS, and Mbefore a
suitable model for sbefore. An extended structure Mafter from Mbefore is also suitable for
safter .

Invariant 4 states the arena is preserving an overapproximation of every set cell:

Invariant 4. Let
�
e | A | ν | Φ

�
be a reachable state of the ARS, and M be its extended

model. Assume that cset is a set cell in the arena A. Then, the following holds:

1. Assume that cset −→A c1, . . . , cn , for some n ≥ 0, and cset is introduced by a rule
different from (FromSet). Then, the following holds:

�cset�M ⊆ ��c1�M , . . . , �cn�M�
2. Assume that cset is a reduction of the expression from c1, . . . , cn by θ with 1 ≤�θ�M ≤ n and cset −→A c1

pick , . . . , cm
pick . Then, the following holds

�cset�M ⊆ ��c1
pick �M , . . . , �cn

pick �M�

Invariant 5 states that a function cell is always pointing to the associated relation cell:

Invariant 5. Let
�
e | A | ν | Φ

�
be a reachable state of the ARS. Assume that cf is a

function cell of type τ1 → τ2 in the arena A. Then, there is a cell crel of type Set(τ1 ∗ τ2)
such that the function cell is pointing to it: cf →A crel .

Finally, Invariant 6 is about the equality between a function cell cf in the arena and its
set representation constructed based on the corresponding cell cf

rel .

Invariant 6. Let
�
e | A | ν | Φ

�
be a reachable state of the ARS, and M be its extended

model. Assume that cf is a function cell, and cf →A crel . Then, it follows that the set�crel�Mafter is equal to the set �{⟨x , f (x)⟩ : x ∈ domain f }�Mafter .

The following proposition states that the above introduced invariants hold true:

Proposition 12. Let s0⇝ . . .⇝sm be a sequence of states produced by an abstract
reduction system. Then, Invariant 3 is preserved by every transition si⇝si+1 for every
0 ≤ s < m. Moreover, Invariants 1–2, and 4–6 are preserved by every state sj for every
0 ≤ j ≤ m.

98

7.12. Implementation

7.12 Implementation
We have implemented the symbolic model checker for TLA+ in Scala. It implements the
stages shown in Figure 7.1, including the reduction rules introduced in Sections 7.5–7.10.
The model checker uses the abstract syntax tree that is built by TLA+ Tools — the
library that contains the TLA+ parser Sany and the model checker TLC. Our tool
integrates with the SMT solver Z3 by [DB08] via the Java API. We have implemented
two techniques: (1) verifying inductive invariants and (2) verifying safety with bounded
model checking.

Checking Inductive Invariants In TLA+, an inductive invariant is a state for-
mula Inv that satisfies two conditions: (1) Init ⇒ Inv, and (2) Inv ∧ Next ⇒ Inv′.
Formula Inv′ is a copy of Inv, where every variable x is replaced with its primed ver-
sion x ′. The invariant formula Inv usually contains a constraint on the possible values of
the variables such as x ∈ 1..10.

Recall that the formula Next is decomposed into a non-deterministic disjunction of
symbolic transitions T1 ⊕ . . . ⊕ Tm in the preprocessing phase (see Section 7.3). Our
model checker tests Condition (2) for each transition Ti , that is, it applies the reduction
system to the initial state

�
Inv ∧ Ti ∧ ¬Inv′ | A0 | ν0 | Φ0

�
and obtains the final

state
�
ci

final | Ak | νk | Φk
�
. The tool asks the solver, whether Φk ∧ cfinali is satisfiable. If

this is the case, the tool reports a counterexample to induction, which is obtained from
the SMT model. If this is not the case for all 1 ≤ i ≤ m, the inductive invariant holds
true.

Finding inductive invariants for TLA+ specifications is hard. Usually, protocol speci-
fications come with safety properties, which are much simpler to write than inductive
invariants. Hence, we have implemented a technique for bounded model checking of such
safety properties.

Bounded Model Checking Given a safety property P and a number k ≥ 0, this
technique verifies, whether there is a computation of length up to k that violates the
property P in one of the computation states. Equations (7.3)–(7.4) show a series of
reductions that are used to encode an computation of length k . The values of the
variables x⃗ ′ computed at step i are used as the values of the variables x⃗ at step i + 1.
This is done by changing the variable substitution νi to νi [x⃗ '→ x⃗ ′, x⃗ ′ '→ ⊥].

�
Init ′ | A0 | ν0 | Φ0

�
⇝∗�

c1 | A1 | ν1 | Φ1
�

(7.3)�
Next | Ai | νi [x⃗ '→ x⃗ ′, x⃗ ′ '→ ⊥] | Φi

�
⇝∗�

ci+1 | Ai+1 | νi+1 | Φi+1
�

for 1 ≤ i ≤ k (7.4)

To check, whether the property P can be violated after the transition i − 1, the tool
rewrites ¬P as in Equation (7.5). Then, the SMT formula Φ¬P

i ∧ c¬P
i ∧ �

1≤j≤i cj states
that the property P is violated after the transition i − 1. Satisfiability of this formula

99

7. TLA+ model checking made symbolic

Table 7.2: The list of TLA+ benchmarks

Name LOC Description
Bakery-n 113 Bakery algorithm for mutual exclusion of n processes by

Lamport
bcastByz-n 99 Reliable broadcast of n processes, f Byzantine faults by

Srikanth & Toueg
bcastFolk-n 85 Folklore broadcast of n processes with f crash faults by

Chandra et al.
EWD840-n 71 Termination detection in a ring of n processes by Dijkstra
Paxos-n 126 Paxos consensus (Synod) for n acceptors with crash faults

by Lamport
Prisoners-n 75 Puzzle of n prisoners
Raft-n 363 Raft consensus for n processes and crash faults by Ongaro
SimpAlloc-c-r 68 Simple resource allocator with c clients and r resources by

Merz
Traffic 32 Traffic example by [Way18]
TwoPhase-n 129 Two-phase commit with n resource managers by Gray &

Lamport

gives us a counterexample.�¬P | Ai | νi | Φi
�
⇝∗�

c¬P
i | A¬P

i | ν¬P
i | Φ¬P

i
�

for 1 ≤ i ≤ k (7.5)

7.13 Experiments
In the following, we introduce our experiments with APALACHE and TLC that were
run in Grid5000 — a testbed for distributed computing. The experiments were run in
parallel using one cluster node of the cluster grvingt (2 CPUs Intel Xeon Gold 6130,
16 cores/CPU, 192GB); each experiment was assigned one core. For simplicity of the
setup, we measured wall times. Since many benchmarks run for minutes or hours, we do
not consider this imprecision in time measurement to be an issue.

7.13.1 Benchmarks
For most of our examples, we used the benchmarks from the TLA+ repository of
examples [TLA20]. The traffic example is given by [Way18]. Table 7.2 shows the
benchmarks that we use in the experiments. They range from logical puzzles to concurrent
algorithms and fault-tolerant distributed algorithms. The table also lists the values of
the parameters, called constants in TLA+, which are used in the experiments. For each
benchmark, we give the smallest reasonable value and a larger value.

These benchmarks were previously tried with TLC, some of them contain proofs of
safety in TLAPS. Importantly, our modifications to the specifications are minimal. They
contain type annotations and, in rare cases, equivalent expressions instead of original

100

7.13. Experiments

Table 7.3: The experiments on checking inductive invariants with TLC and APALACHE.

APALACHE TLC
Name time memory #tr #cells #clauses time memory #states
1 Bakery-5 1m33s 1.10G 16 25K 131K - - -
2 EWD840-10 5s 687M 4 5.2K 36K 2s 171M 2.0K
3 bcastByz-4 3s 407M 5 1.7K 10K 2s 401M 8
4 TwoPhase-7 4s 608M 7 4.8K 23K 2h44m 2.28G 1.14M

Table 7.4: Checking candidates for inductive invariants with TLC and APALACHE
that are violated.

APALACHE TLC
Name time memory #tr #cells #clauses time memory #states
1 Bakery-5 51s 873M 16 15K 85K - - -
2 EWD840-9 5s 453M 4 2.4K 19K 39s 3.35G 4.47M
3 EWD840-11 5s 482M 4 2.4K 19K 11m32s 4.41G 92M
4 EWD840-13 5s 449M 4 2.4K 19K 16h52m 5.55G 1.17B
5 bcastByz-4 4s 271M 5 463 1.1K 1s 134M 65
6 bcastByz-10 3s 298M 5 1.2K 5.4K 18m21s 3.40G 16M
7 TwoPhase-7 6s 483M 7 3.3K 16K 2h47m 2.28G 2.28M
8 TwoPhase-9 6s 642M 7 4.6K 28K TO 2.28G -
9 TwoPhase-11 7s 737M 7 6.0K 43K TO 2.27G -

complex expressions that would not be handled by our tool otherwise. We neither
introduced simplifications nor abstractions in the TLA+ code, in order to run the model
checker.

Although the repository contains 64 examples, their complexity varies. Some benchmarks
are combinatorial puzzles (e.g. N-Queens, tower-of-hanoi) which are tuned to TLC, while
our tool is struggling e.g. with sets of sequences, power sets, and cardinalities. We did not
include about 10 trivial teaching examples (e.g. DieHard), because they are no challenge
for virtually any model checker. There is a number of Paxos-like algorithms. These are
rather complex TLA+ specifications of real distributed algorithms. Both TLC and our
tool get stuck after 10-15 steps. We only included the famous Paxos and Raft. Some
benchmarks contain recursive operators and rarely-used modules, e.g. Bags. Finally,
several benchmarks are only available in the pdf format; we did not try them.

7.13.2 Experiments with inductive invariants
As explained in Section 7.12, APALACHE checks inductive invariants by reduction
to SMT. TLC can also check inductive invariants by state enumeration. We have run
both model checkers on a few benchmarks that contained inductive invariants. For
each invariant, we have also introduced an invalid invariant candidate: By removing
constraints, by introducing arithmetic errors, or by changing constants. This was done

101

7. TLA+ model checking made symbolic

Table 7.5: The experiments on breadth-first search with TLC and bounded model
checking with APALACHE. In this case, the checked safety properties are satisfied.

APALACHE TLC
Name time memory #tr #cells #clauses depth time memory #states depth
1 Traffic 6s 221M 4 525 1.0K 4 2s 112M 4 4
2 Prisoners-4 3m19s 355M 4 2.5K 6.6K 15 1s 133M 214 14
3 Bakery-5 18ms 774M 16 14K 48K 8 - - - -
4 EWD840-4 56s 1.13G 4 36K 257K 12 1s 170M 1.5K 12
5 EWD840-10 13m 1.17G 4 89K 635K 30 21m 3.40G 15M 30
6 SimpAlloc-2-2 34s 371M 3 2.9K 9.7K 7 1s 136M 64 5
7 SimpAlloc-5-3 2h56m 722M 3 5.5K 30K 7 1m49s 2.30G 1.14M 9
8 bcastFolk-4 20s 712M 4 11K 33K 10 41s 2.28G 501K 9
9 bcastFolk-20 1m09s 1.11G 4 37K 141K 10 TO 3.34G 1.14M 2

10 bcastByz-4 9m14s 1.13G 5 54K 216K 10 2s 346M 1.8K 7
11 bcastByz-6 3h00m 1.18G 5 106K 543K 11 3h42m 4.47G 15M 11
12 TwoPhase-3 1m13s 475M 7 3.0K 10K 11 1s 144M 288 11
13 TwoPhase-7 44m 516M 7 4.0K 15K 10 13s 1.13G 296K 23
14 Paxos-3 1h37m 825M 4 22K 50K 13 1m21s 2.29G 185K 25
15 Paxos-5 7h09m 1015M 4 34K 79K 14 TO 4.49G 86M 22
16 Raft-5 2h47m 1.18G 23 116K 445K 8 - - - -

to check how quickly the solvers would be able to detect invariant violation as opposed
to verifying the absence thereof.

Table 7.3 summarizes the results of the experiments with the original invariants, whereas
Table 7.4 summarizes the results obtained when using the invalid invariant candidates.
The columns “time” and “memory” show resource usage statistics, while the column
“#states” shows the number of distinct states explored by TLC. Finally, the columns
“#tr”, “#cells”, and “#clauses” display the number of symbolic transitions, the number
of cells in the final arena, and the number of SMT clauses introduced by APALACHE.
The abbreviation ‘TO‘ means timeout of 23 hours.

As one sees from the few examples, our model checker is fast at proving inductive
invariants, while the performance of TLC degrades with larger state spaces. Our model
checker is also fast at detecting invariant violation, in the examples with invalid invariant
candidates.

It was easy to check the benchmark “bcastByz” for TLC, as the inductive invariant
was written for the case when no broadcast occurs in the algorithm, so the number of
reachable states is just eight. Notably, TLC cannot check “Bakery” in principle, as
it requires one to reason about unbounded integers. Although APALACHE does not
support infinite sets, it supports integer constants, so we added a few additional rewriting
rules to handle the benchmarks like “Bakery”.

102

7.13. Experiments

Table 7.6: The experiments on breadth-first search with TLC and bounded model
checking with APALACHE. In this case, the checked safety properties are violated.

APALACHE TLC
Name time memory #tr #cells #clauses depth time memory #states depth
1 SimpAlloc-5-3 5s 323M 3 1.7K 6.8K 4 2s 236M 6.7K 5
2 SimpAlloc-3-5 3s 315M 3 1.5K 6.2K 4 3s 679M 72K 5
3 bcastByz-4 2s 254M 5 461 989 1 1s 134M 5 2
4 bcastByz-12 49s 949M 5 20K 120K 5 3m00s 3.37G 8.89M 6
5 bcastFolklore-20 2s 301M 4 1.5K 4.9K 1 12s 2.22G 2 2
6 Paxos-3 4s 437M 4 4.7K 10K 6 2s 293M 1.0K 7
7 Prisoners-8 4s 416M 4 2.8K 9.2K 13 1s 187M 7.2K 14
8 Prisoners-10 7s 525M 4 4.2K 14K 17 3s 617M 66K 18
9 TwoPhase-5 6s 402M 7 2.2K 7.3K 9 1s 148M 436 10

10 EWD840-10 18s 753M 4 14K 55K 9 15m44s 4.41G 12M 10
11 EWD840-12 30s 824M 4 17K 68K 11 9h11m 5.53G 241M 12

7.13.3 Experiments with bounded model checking

Table 7.5 summarizes the results of the experiments with bounded model checking of
safety properties. Table 7.6 summarizes the results of the experiments with the modified
specifications that contain buggy behavior. The column “depth” shows the maximum
execution length used by our tool as well as the maximum depth reached by TLC
while running breadth-first search. The meaning of the other columns is the same as in
Table 7.3, see Section 7.13.2. For the small benchmarks we used the diameter bound
that was reported by TLC, which does exhaustive state exploration. For the complex
benchmarks we used a large enough bound on the length that allowed each experiment
to finish within 24 hours. When the depth of APALACHE is smaller than the depth
reported by TLC, APALACHE explores a smaller portion of the state space than TLC.
For the Raft benchmark, we only report on the experiments with our tool, as TLC has
produced an enormous file to store the state exploration queue and exceeded the disk
quota of 100 GB in the cluster environment.

In these experiments we check safety properties, e.g., mutual exclusion in case of Bakery
and consistency in case of two-phase commit. Specifications of these properties are
much smaller than the inductive invariants that would be required for a complete proof
with TLAPS.

TLC quickly finishes on the benchmarks with small state spaces, while our tool produces
a large set of SMT constraints, independently of the actual number of reachable states.
When we supply larger parameter values, the slowdown of our tool is less dramatic
than that of TLC. However, as expected, our tool slows down when unrolling longer
computations. Usually, it quickly unrolls the computations of length up to 10-15, and
then the SMT solver Z3 dramatically slows down when proving unsatisfiability of invariant
violation. This is especially noticeable on the specifications of fault-tolerant distributed
algorithms such as Paxos and Raft. In these algorithms, after several steps all but few

103

7. TLA+ model checking made symbolic

symbolic transitions become enabled. As a result, proving safety is much harder for Z3,
as it has to show unsatisfiability of a formula for all possible schedules of the symbolic
transitions. In almost deterministic distributed algorithms such as EWD840, one or two
transitions are enabled at the same time, and thus the solver propagates constraints
much faster. If we change the safety property to TRUE, that is, APALACHE has to
find only whether a symbolic transition is enabled at ith step, Z3 answers the queries in
seconds or minutes. We will investigate why such non-determinism and safety properties
pose hard problems for Z3 in the future.

7.13.4 Discussion on performance
Our experiments show a clear advantage of APALACHE over TLC when checking
inductive invariants, both in the satisfiable and unsatisfiable case. However, the advan-
tages of our model checker are less pronounced when analyzing safety by bounded model
checking. Over 20 years TLC has collected clever heuristics for TLA+. We hope that
with the growing number of users, specifications will get tuned to our model checker,
as it is now happening with TLC. So far we have found two sources of slowdown in
APALACHE:

1. Our benchmarks have non-deterministic control that is hard for SAT/SMT, and

2. The SMT encoding needs solver-specific tuning.

Concerning (1), we considered common patterns in TLA+ specifications. The following
code presents a simple benchmark that has non-determinism that is common for TLA+

specifications:

Init Δ= x = 0
Next Δ= x ′ = 1 − x ∨ x ′ = x

Bounded executions of length k of this specification pose a challenge for SMT solvers,
as they often enumerate 2k possible paths without learning. We plan to combine the
presented framework with Lipton’s reduction which efficiently eliminates control non-
determinism, similar to the work by [KLVW17a].
Concerning (2), there is room for improvement. Unfortunately, SMT solvers are quite
sensitive to their input. We believe that the presented framework is solid, though it
requires careful tuning of reduction rules for specific SMT solvers. Ideally, we would use
a portfolio of SMT solvers and SMT encodings – quantified as well as quantifier-free.

7.14 Related work
7.14.1 Interactive theorem provers and SMT
[MV18] introduced two encodings to translate TLA+ to SMT formulas: an untyped
one and a multi-sorted one. Their work is designed towards proving unsatisfiablity of

104

7.14. Related work

obligations inside the TLA Proof System [CDLM10]. These obligations are typically
small in comparison to a complete TLA+ specification, and their techniques utilize
quantified formulas which are supported by SMT fairly well for the unsatisfiable case. If
SMT solvers cannot decide on satisfiability, the user has to prove the obligation manually.
In contrast, our tool supports automatic verification. We first tried to use the untyped
encoding for bounded model checking, but the search space of Z3 was significantly larger
even for small examples than in the case of a multi-sorted encoding. While our type
system is similar to one in [MV18], our abstract reduction system applies a quantifier-free
encoding, and unrolls a complete TLA+ specification up to k steps. This allows us
to check satisfiability (when finding enabled transitions or counterexamples) as well as
unsatisfiability (when proving that a transition is disabled and an invariant holds true).

Sledgehammer is a tool to combine the interactive theorem prover Isabelle [NPW02] with
a variety of automatic theorem provers (ATPs) and SMT solvers [PS07, BBP13]. Since
Isabelle is designed for polymorphic high-order logic, the translation meets challenges in
high-order features and type information. Moreover, Sledgehammer’s success rate depends
on lemmas extracted from Isabelle’s libraries by a relevance filter, and on heuristics to
instantiate quantifiers, e.g. weights and triggers.

SMTCoq [EMT+17] is a plug-in for integrating SMT and SAT solvers into the interactive
theorem prover Coq [BC13]. The primary use case for SMTCoq aims at increasing the
level of automation in Coq. SMTCoq provides tactics to translate a Coq goal into SMT
expressions that use uninterpreted functions, linear integer arithmetic, bit vectors, and
functional arrays. When the SMT solver produces a proof certificate, SMTCoq validates
the certificate and generates a Coq proof for the original goal.

Several projects on proving correctness of distributed algorithms with interactive theorem
provers were conducted by [HHK+17], [WWP+15], [RGBC17], [SWT18], [AMW18],
and [vGKB+19]. Although, guarantees provided by such proofs are much stronger, they
demand a different level of verification efforts.

7.14.2 Semi-automated provers using decision procedures
[PLSS17] checked safety of several variants of Paxos in the effectively-propositional
fragment of uninterpreted first-order logic (EPR). In their approach, the user specifies the
transition system in first-order logic by means of uninterpreted relations and constants.
The tool aids the user in interactive discovery of inductive invariants. Further, in order
to fit the verification problem in EPR, the user has to come up with so-called derived
relations. This is a powerful method that can be used for parameterized verification.
However, the user has to invest more efforts in expressing the algorithms in uninterpreted
first-order logic and interacting with the tool.

[BCD+05, Lei08] developed the intermediate verification language Boogie, which serves
as a layer on which to build program verifiers for other languages, e.g. VCC [CDH+09],
Dafny [Lei10], and Spec# [BLS04]. Boogie expressions are translated to the input
languages of automatic theorem provers, primarily to the SMT solver Z3, by applying

105

7. TLA+ model checking made symbolic

Hoare logic [Hoa69]. This approach brings a higher degree of automation, but does not
eliminate the human proof effort required since Boogie uses undecidable theories of SMT.
The main application of Dafny is verification of sequential programs, whereas TLA+ is
built around non-determinism.

[SHK+16] designed the general-purpose functional programming language F* with effects
aimed at program verification. Like Boogie, this language utilizes SMT solvers as back-
end provers, and supports interactive proofs. This language targets to fill in the gap
between implementation and verification.

7.14.3 Model checkers for specialized languages

Promela is the input language of the model checker Spin [Hol03]. It supports Boolean
and integer variables, arrays, processes, message channels, arithmetic, and temporal
operators. Spin is an explicit-state model checker that was applied to several industrial
problems. Moreover, [DTT14] checked a version of Paxos and [Zav15] checked Chord.
While we could encode the benchmarks in Promela, this work requires serious efforts,
as specifications in Promela are low-level in comparison to TLA+. NuSMV [CCG+02]
and nuXMV [CCD+14] stem from the symbolic model checker SMV [McM93]. They are
designed for modeling finite-state hardware protocols. The SMV language is much more
restrictive than TLA+.

Several techniques and tools for parameterized verification of fault-tolerant distributed
algorithms were introduced by [DHV+14, DHZ16], [FKP16], [vGBR16], [KLVW17b],
and [MSB17]. The efficiency of these techniques comes from the restriction to special
domains, whereas our approach applies to virtually any TLA+ specification over finite
structures.

Finally, symbolic model checking has been applied in many different application domains.
For example, TAMARIN [MSCB13] focuses on security protocols, and Kind 2 [CMST16]
is designed for the dataflow language Lustre.

7.15 Conclusions
We have presented the symbolic model checker for TLA+ that, similar to the explicit
model checker TLC, accepts a range of specifications, which stem from various application
domains. As expected, this permissiveness makes our tool much less efficient in contrast
to the model checkers whose input languages and techniques are tailored to specific
computational models. Hence, we expect our model checker to be used as the first tool
that allows the user to debug their algorithm design before switching to specialized
and more efficient tools, or developing a proof with an interactive theorem prover. The
example of TLC shows that this happens often in practice. However, TLC does not
scale beyond very small parameter values. Hence, we need a symbolic approach to deal
with larger parameter spaces.

106

7.15. Conclusions

Our work is the first step on the path towards developing an efficient symbolic model
checker for TLA+. Indeed, many reduction rules can be optimized for specific frag-
ments of TLA+. For instance, we could write more efficient rules for functions with
linearly ordered domains such as integers, or rules for comparing set cardinalities to
integers [KNR05, BLL+19]. More importantly, our framework opens the door for ap-
plying more advanced techniques such as abstraction [CGJ+03, BMMR01] and reduc-
tion [Lip75, CL98]. Reductions were shown to be efficient for special classes of fault-
tolerant distributed algorithms by [KLVW17b, DDMW19, vGKB+19]. We are going
to explore similar techniques, in order to check complex TLA+ specifications of Raft
by [Ong14], Disk Paxos [GL03b], and Egalitarian Paxos by [MAK13].

107

CHAPTER 8
Type inference for TLA+: typing

the untyped

The techniques described in this chapter were implemented by the author as a prototype
in the Apalache model checker.

8.1 Introduction

When developing an automatic analysis tool for TLA+ — be it a model checker, a static
analyzer, or a theorem prover — one immediately realizes that the language poses a
problem to a tool developer: TLA+ is untyped by design. The effects of this design
decision are discussed by [LP99]. In a nutshell, TLA+ builds on untyped set theory by
Zermelo and Fränkel and provides the user with the syntax for expressing transition
systems in terms of Booleans, integers, sets, functions, records, tuples, and sequences. In
the most extreme semantics of TLA+, every value is simply a set. Hence, every operation
is applicable to any value, though some operations produce “silly” values such as the
result of 1 + {2}. Another use of untyped semantics is to construct a function of integers,
e.g., [i ∈ 1..10 '→ i + 1], and later use sequence operations over it.

Since it is hard to develop an automatic analysis tool for a completely untyped language,
the existing tools introduce a type system and run some form of type inference or
type checking. TLC checks type compatibility when computing system states, e.g.,
it rejects a set of integers and Booleans {2020, TRUE}. TLAPS infers types of the
verification conditions that are sent to an SMT solver [MV12a, MV14, MV18]. ([MV18]
also introduced a purely untyped encoding.) TLA2B implements type inference similar
to the one in TLAPS, whereas Apalache performs a simple top-down type propagation
and falls back to user annotations, when type inference fails.

109

8. Type inference for TLA+: typing the untyped

While the type systems of the tools for TLA+ differ in subtle details, they have a lot
in common. These type systems resemble the type system of many-sorted first-order
logic — the input language of SMT solvers. This is not surprising, as at least TLAPS
and Apalache use SMT solvers in the background. ProB implements constraint solving.
However, in all these tools, type inference applies only to the code that went through
a preprocessing phase, specific to each tool. For instance, Apalache inlines all operator
definitions before running type inference.

Contributions. In this chapter, we present three major contributions:

1. We introduce a type system τtla that encompasses the type systems of TLAPS,
TLA2B, and Apalache. Moreover, our type system supports TLA+ operators and
thus requires no additional preprocessing.

2. We introduce a type inference technique for τtla that translates the type inference
problem to SMT constraints (in the theory of quantifier-free uninterpreted first-order
formulas).

3. We implement this technique and experimentally show that only a few standard
benchmarks are not well-typed in τtla (see below).

As TLA+ — by design — is a declarative specification language, rather than an imperative
or functional programming language, it has the following features, which complicate type
inference:

1. Instead of a clear control flow, the code imposes constraints on values.

2. The language is centered around the application of built-in operators.

3. Several built-in operators are overloaded, e.g., function application or record access.

4. Users define their own operators and functions, both allowing for recursion.

The combination of these features makes it hard to apply the classical unification
algorithms, e.g., by [DM82]. From that perspective, a constraint-based approach, e.g.,
[Pie04][Ch. 10], seems to be a better fit. However, overloading requires us to add
disjunctive constraints. Our approach to type inference is inspired by the work by [SS08],
who encode the type inference problem as a problem in constraint logic programming. We
are using the SMT solver Z3 [DB08]. To make our SMT encoding simple and decidable,
we sacrifice the ability to compute principal types for the user-defined operators. This,
however, does not seem to be an issue, if we like to use types for model checking.

We have implemented a type inference tool for TLA+ in Scala and conducted experi-
ments on 35 specifications from the repository of TLA+ examples [TLA20]. Out of 35

110

8.2. A refresher on TLA+: Notable features

benchmarks, only 7 specifications were not well-typed in τtla. Four of them contained
actual errors that were flagged by the type checker. The three remaining specifications
used the untyped semantics. However, we easily made all three specifications well-typed
by changing 2-3 lines of code. Importantly, TLA+ specifications rarely have more than
2,000 lines of code. Hence, the use of SMT does not usually impact the tool performance.

Our results demonstrate that although TLA+ was designed as an untyped language, the
users rarely exploit the truly untyped features of the logic. We offer two explanations of
this. First, the system engineers are using typed languages in their jobs, so they tend
to write well-typed specifications in TLA+ too. Second, as part of the design process,
the users run the TLC model checker that rejects the obviously type incorrect code.
(However, if TLC does not explore a state that demonstrates a type problem, it will
never flag an error.)

Applications. The TLA+ community will benefit from having a baseline type inference
tool:

1. It will help the users to write specifications that are well-typed across different
tools.

2. It opens a way to translating TLA+ specifications in programming languages such
as Scala, OCaml, and Rust. Executable specifications can aid in prototyping and
testing of distributed systems. Without types, one has to restrict the language,
e.g., as in PGo [Zha16].

3. It will boost development of the automatic analysis tools for TLA+, as the absence
of types hinders further research in this direction.

Structure. This chapter is organized as follows. Sections 8.2–8.3 give a brief intro-
duction in TLA+ and its normalized form. Section 8.4 introduces the type system τtla.
Section 8.5 discusses the type inference problem as a series of type inference rules.
Section 8.6 presents our encoding of types in first-order logic, whereas Section 8.7 in-
troduces instances of type schemas for built-in operators. We discuss type inference
arbitrary TLA+ expressions using first-order logic in Section 8.8 and demonstrate the
soundness of our approach. Finally, Section 8.9 presents the experimental results. Sec-
tion 8.10 discusses related work. The chapter finishes with discussions in Section 8.11
and conclusions in Section 8.12.

8.2 A refresher on TLA+: Notable features
Many of our decisions regarding the type system and type inference for TLA+are
based on the language constructs that are not common in programming languages. We
highlight such features in this section. For a comprehensive introduction to TLA+,
see [Mer12, Lam02].

111

8. Type inference for TLA+: typing the untyped

module Paxos
extends Integers
constants Value, Acceptor , Quorum
variables msgs, maxBal , maxVBal , maxVal
. . .
Send (m) Δ= msgs ′ = msgs ∪ {m}
Phase1a (b) Δ= ∧ Send([type '→ ”1a”, bal '→ b])

∧ unchanged ⟨⟨maxBal , maxVBal , maxVal⟩⟩
. . .
Phase2a (b) Δ= ∧ ¬(∃m ∈ msgs : m.type = ”2a” ∧ m.bal = b)

∧ ∃Q ∈ Quorum :
let Q1b Δ= {m ∈ msgs : m.type = ”1b” ∧ m.acc ∈ Q ∧ m.bal = b}

Q1bv Δ= {m ∈ Q1b : m.mbal ≥ 0}
in ∧ ∀a ∈ Q : ∃m ∈ Q1b : m.acc = a

∧ ∨Q1bv = {}
∨ ∃m ∈ Q1bv : ∧ m.mval = v

∧ ∀mm ∈ Q1bv : m.mbal ≥ mm.mbal
∧ Send([type '→ ”2a”, bal '→ b, val '→ v])
∧ unchanged ⟨⟨maxBal , maxVBal , maxVal⟩⟩

. . .

Figure 8.1: An excerpt from the TLA+ specification of Paxos [L+01]

Figure 8.1 shows an excerpt from the TLA+specification of the Paxos algorithm, authored
by Leslie Lamport. This specification demonstrates both the richness of TLA+, as well
some of the issues when it comes to designing a type system, discussed in more detail in
later sections.

A TLA+ specification describes a set of computations, each of them being a sequence of
states. Every state assigns values to the variable names (declared with variables). The
specification can be also parameterized with some values (declared with constants). In
Paxos, the parameters are: a set of values called Value, a set of processes called Acceptors,
and a set of sets of processes called Quorum. These types are not specified, but come
from our understanding of the specification.

In Paxos, the processes from the set Acceptor have to unanimously decide on a value
from the set Value. As some processes may crash, the processes have to coordinate in
several phases, in order to reach distributed consensus. To this end, a process starts
voting by sending a unique ballot number in a message that contains the tag “1a”. This is
captured by the operator Phase1a(b), in which the set msgs is extended with the record
[type '→ ”1a”, bal '→ b], for a natural number b ∈ Nat. The variable msgs is updated by
the operator Send(m). The expression msgs′ refers to the value of the variable msgs in
the next state, and thus the constraint msgs′ = msgs ∪ {m} extends the set with m. The
other state variables must preserve their values in the next state, as indicated by the

112

8.2. A refresher on TLA+: Notable features

expression unchanged ⟨maxBal , . . . ⟩. The expressions starting with “∧” are part of a
multi-line conjunction.

The operator Phase2a contains a few complex constraints. For instance, it filters the
set msgs with a set comprehension {m ∈ msgs : m.type = ”1b” ∧ . . . }, and binds the
expression to the nullary operator Q1b. Note that several expressions quantify over the
sets Q , Q1b, Q1bv, and Quorum. If all constraints of Phase2a hold true, the set msgs′

becomes an extension of msgs with the record [type '→ ”2a”, bal '→ b, val '→ v].

Although in the text above we referred to the values as naturals, records, “sets of records”,
or “sets of sets”, the types of variables or expressions are not apparent in TLA+. Often,
the parameter Proc is defined as a set of integers or strings, but it could be as well a set
of functions or tuples, etc.

Operators. TLA+ comes with plenty of built-in operators. For instance, we have seen
the set operators ∪ and {} as well as logic operators ∃, ∀, ∧, ∨, and ¬ in Figure 8.1.
It also has operators on functions (in the mathematical sense), records, tuples, control
flow, and temporal behavior. A specification may also import the standard operators on
naturals, integers, reals, finite sets, sequences, and bags, e.g., Paxos imports operators on
integers in the first line: extends Integers. Almost all of TLA+ syntax translates into
operator definitions and operator applications. We refer to these standard operators as
“built-in”, as opposite to the user-defined operators such as Phase1a, Phase2a, Q1b, and
Q1bv in Paxos. Interestingly, TLA+ operators do not support currying, that is, operator
arguments are always treated as a tuple.

The operators may be of two kinds: simple and higher-order. Simple operators have
parameters that are not themselves operators, whereas higher-order operators admit
simple operators as parameters. (The built-in operators contain only a few higher-order
operators.) Higher order operators may not, however, take other higher-order operators
as arguments. Moreover, the return type of an operator cannot be an operator. Hence,
the user-defined operators in TLA+ are usually understood as macros.

Example 9. Consider the following four user-defined TLA+ operators:

variable x
F (p) Δ= x ∪ p G Δ= ”a” + 1 H (Q(), r) Δ= Q(r) I Δ= H (F , G)

In our example, F , G and I are simple operators, whereas H is higher-order. The body
of G contains a legal expression, but it evaluates to a “silly” value [Lam02][Ch. 16]. In F ,
we see that operators may use their parameters (i.e., p), as well as state variables (i.e.,
x). The operators H and I demonstrate the definition and invocation of a higher-order
operator.

The language also supports nested operators in the form of LET-IN definitions:

F (p) ≜ let G(q) ≜ {i ∈ q : i % 2 = 0} in {i + 1: i ∈ G(p)}

113

8. Type inference for TLA+: typing the untyped

Operators may be recursive, as shown in the example below:

recursive Fact()
Fact(n) Δ= if n ≤ 1 then 1 else n ∗ Fact(n − 1)

An expression Fact(10) is computed immediately, without advancing a TLA+ computa-
tion.

Functions. TLA+ also has functions, that can be understood data structures, similar to
arrays or dictionaries. The example below shows several expressions related to functions:

[x ∈ Int '→ x + 1] [y , z ∈ Nat '→ y ∗ z] f [{1, 2, 3}] [f except ![{1, 2}] = [{3}]]

The first expression defines the function that increments its only integer argument. The
second expression defines the function that multiplies its two natural arguments. The
third expression applies a function f to its argument {1, 2, 3}. The fourth expression
produces the function that is identical to the function f everywhere on f ’s domain except
that the new function returns value {3} when called with the argument {1, 2}. Further,
one can define the set of all functions from a set S to a set T by writing [S → T].

There is a way to define a recursive function by using a special form. For instance, the
set cardinality function can be defined as follows:

card [S ∈ subset T] Δ= if S = {} then 0 else 1 + card [S \ {choose x ∈ S : true}]

In the above example, expression subset T defines the powerset of T , and thus the
function card is defined on all subsets of T . Further, the choose operator picks an
element of S that satisfies a predicate, in our case, just true.

To sum up, the main differences between TLA+ operators and TLA+ functions are as
follows:

1. functions are first-class values, they can be passed everywhere, whereas operators
can be either applied to their arguments, or passed in higher-order operators.

2. the operators do not have domains, whereas the functions do.

3. the operators can be polymorphic.

Further, TLA+ has special syntax for records and tuples. For instance, the expressions
[id '→ 2020, next '→ {2021, 2022}] and ⟨1, {{2}}⟩ define a record and a tuple, respectively.
Moreover, the language contains operators on sequences. In the standard (untyped)
semantics, records, tuples, and sequences are simply defined as functions over the domains
of strings and integers.

114

8.3. Normalized TLA+

Untyped features. In theory, the language does not pose any constraints on the set
contents. For instance, the set {1, “abc”, {2, 3}} contains three elements of different types.
Same applies to function domains:

[p ∈ {“xyz”, 21} '→ if p ∈ Int then “xyz” else 21] (8.1)

The function defined in Equation (8.1) returns an integer or a string, depending on
whether its argument is a string or an integer, respectively. In TLA+ semantics, a
function can be also applied to an arbitrary value. However, the function outcome is
predictable only for the values in its domain.

There is no distinction between functions, tuples, sequences, or records. For instance,
one can define a function and apply the sequence operator Tail to it:

let f ≜ [p ∈ 1..3 '→ p ∗ p] in Tail(f) (8.2)

The sequence computed in Equation (8.2) is the sequence ⟨4, 9⟩, which is also a tuple, or
a function.

8.3 Normalized TLA+

TLA+ has rich syntax that allows the users to write specifications according to their taste.
To simplify presentation, we assume that TLA+ specifications are in the normalized
form:

1. All names in the specification are unique, including the operator names, parameter
names, and the names of the bound and state variables.

2. The specification has a singular operator definition, which may contain nested
LET-IN definitions, including recursive operators and functions. That, is the
specification has the form:

Spec ≜ let F1(p1
1 , . . . , p1

n1) ≜ . . . in
. . .

let Fm(pm
1 , . . . , pm

nm) ≜ . . . in
true

Every TLA+ specification can be rewritten in the normalized form by applying α-
conversion and rewriting operator definitions as a chain of let-in definitions inside the
operator Spec.

115

8. Type inference for TLA+: typing the untyped

Table 8.1: Examples of TLA+ expressions and their possible types

Expression Type Expression Type
42, 2 + 2 Int “abc” String
true, 2 + 2 = 4 Bool 3 > 2 ∧ 100 < 2 Bool
{{1, 2}, {3}} Set(Set(Int)) [{1, 3} → {3, 5}] Set(Int → Int)
subset {1, 2, 3} Set(Set(Int)) union {{1}, {2}} Set(Int)
[x ∈ 1..3 '→ x + 1] Int → Int ⟨1, “abc”⟩ ⟨Int, String⟩
[x ∈ 1..3 '→ x + 1][2] Int ⟨1, “abc”⟩ [1] Int
domain [x ∈ {1} '→ x] Set(Int) {1, 2} × {false} Set(⟨Int, Bool⟩)
[a '→ 1, b '→ “abc”] [a '→ Int, b '→ String] ∅ Set(α)
[a : {1, 2}] Set([a '→ Int]) ⟨1⟩ ⟨Int⟩ , Seq(Int)
[a '→ 1, b '→ “abc”].a Int

Remark. Technically, mutually-recursive operators in TLA+ do not fit in our normal
form. We slightly deviate from the standard syntax to simplify the presentation. Our
approach works for mutually-recursive operators.

Notation. In the following, we use the notation for TLA+ constructs: F , G , H , . . . for
operator names (either built-in or defined with let-in); p, q , r , . . . for simple operator
parameters (which are not operators themselves); P , Q , R, . . . for higher-order operator
parameters; x , y , z for state variables; C1, . . . , Cn for constants; and e, e1, e2, e3, . . .
for TLA+ expressions.

8.4 Defining the type system τ tla

We extend the type system introduced by [MV12a] as follows:

τ ::= α | Bool | Int | String | τ → τ | Set(τ) | Seq(τ) |
⟨τ, . . . , τ⟩ | ⟨i1 '→ τ, . . . , ik '→ τ⟩ | [h1 '→ τ, . . . , hk '→ τ] | ⟨τ, . . . , τ⟩ ⇒ τ

s ::= ∀α⃗ . τ | s ⊔ s

Let T α be the set of all types that are derived by the rule τ in the above grammar. By
FV(τ) we denote the set of all type variables appearing in τ ∈ T α. Then, T is the set of
all monotypes, that is, {τ ∈ T α | FV(τ) = ∅}.

Types like Int, Set(·), and τ1 → τ2 represent integers, sets, and TLA+ functions, respec-
tively. Further, we have tuples ⟨τ1, . . . , τk ⟩, sparse tuples ⟨i1 '→ τ1, . . . , ik '→ τk ⟩, records
[h1 '→ τ, . . . , hk '→ τ], and operators ⟨τ, . . . , τ⟩ ⇒ τ . There is no special syntax for sparse
tuples in TLA+, but we need them to talk about operator signatures. The role of schema
types derived from s will be discussed in Section 8.4.2. Note that the operators receive
a single tuple as its argument. This is due to absence of currying in TLA+. The type

116

8.4. Defining the type system τtla

Table 8.2: Legal TLA+ expressions that are not type correct in our system

Expression Why it is ill-typed
{1, “abc”}, {1, {2}} We allow only elements of the same type
[a '→ 1, b '→ “abc”][x] If x is not a constant, it is impossible to statically

find the field name that is stored in x
⟨1, “abc”⟩ [x] Since the types of the two fields differ, the expression

⟨1, “abc”⟩ must be a tuple, not sequence. If x is a
variable, it is impossible to statically find the index
that is stored in x .

if P then 1 else true Impossible to find a unifying type for Int and Bool

Table 8.3: Examples of TLA+ operators and their types

Operator Type
F ≜ 1 ⟨⟩ ⇒ Int
G(p) ≜ p + 1 ⟨Int⟩ ⇒ Int
H (q) ≜ {q} ∀α. ⟨α⟩ ⇒ Set(α)
I (J (), r) ≜ J (r) ∀α, β. ⟨⟨α⟩ ⇒ β, α⟩ ⇒ β

system allows for some trivial extensions, e.g. by adding a Real type, to reason about
real arithmetic. This is omitted in this chapter for brevity.

Following semantics of TLA+, our approach is centered around operators and their
application. Consider, for example, the set intersection, S ∩ T , which is just the
infix notation for the set operator \intersect(S , T). Intuitively, {1, 2} ∩ {1} should
have the type Set(Int), whereas {{1}, {2}} ∩ {{1}} the type Set(Set(Int)). However,
what would be the type of ∩? We consider ∩ to be a polymorphic operator with
the type ∀α. ⟨Set(α), Set(α)⟩ ⇒ Set(α), where α is a type variable. In general, a type
∀α1, . . . , αk . ⟨τ, . . . , τ⟩ ⇒ τ represents the type of a polymorphic operator. The case
where k = 0 corresponds to non-polymorphic operators, in which case we simply write
⟨τ, . . . , τ⟩ ⇒ τ .

Importantly, not all TLA+ expressions can be assigned types in our system. The
following examples show cases of typable expressions and their possible types as well as
untypable expressions. Table 8.1 demonstrates types that one would intuitively prescribe
to typical TLA+ expressions. Table 8.2 shows examples of legal TLA+ expressions that
we consider untypable. As one can see, similar expressions would be rejected by statically
typed languages, e.g., OCaml, Java, and Scala. Table 8.3 demonstrates typical operator
definitions and types they intuitively hold.

Remark 1. To avoid reasoning about syntactic restrictions on operators at the type level,
our type system allows some operator types that are never assigned to the operators that
are accepted by the TLA+ parser. This is not an issue in practice, because such types
do not arise as solutions to constraint problems derived from valid TLA+ specifications,

117

8. Type inference for TLA+: typing the untyped

where it is syntactically impossible to construct such an operator. For example, the type
⟨Int⟩ ⇒ (⟨Int⟩ ⇒ Int) is definable in our type system, but the TLA+ syntax does not
admit an operator that would have such a type.

8.4.1 Need for subtyping: Records and sparse tuples
We intend to keep the type system simple. For example, following Lamport, in math-
ematics a sequence Seq(Int) is a function: Int → Int. In contrast, we maintain a strict
distinction between such types. While sequences could be seen as functions, not every
function with an integer domain is a sequence.

However, record types and sparse tuples complicate the matters. Classically, one would
define a subtype relation for record types, which would consider [h1 '→ τ1, h2 '→ τ2] as a
subtype of [h1 '→ τ1], under the assumption that every instance of the supertype can be
safely replaced by an instance of the subtype, but not the other way around. In TLA+,
we must consider the opposite direction.

Our decision comes from practical examples. It also follows the subtype relation introduced
by [MV12a]. Often, specification authors represent messages with records and collect
messages of different kinds in a common set of messages. For example, in Paxos in
Figure 8.1, the records r1 = [type '→ ”1a”, bal '→ 2] and r2 = [type '→ ”2a”, bal '→
3, val '→ 1] are stored in the set msgs. Selecting an element of such set requires an
additional test, for instance:

if m.type = ”1a” then m.bal else m.val

Set comprehension can be used similarly: {m ∈ msgs : m.type = ”1b” ∧ m.acc ∈ Q . . . }.

Hence, TLA+ records are similar to unions in C, rather than structs in C. Moreover,
there are no fixed patterns for matching and unpacking records of different types. If m
would be assigned the classic supertype of r1, r2 and r3, namely [type '→ String, bal '→ Int],
performing access to either m.acc or m.val fields should trigger an error, as the record
supertype has no acc or val field. In our system, the supertype of r1 and r2 is therefore
defined to be [type '→ String, bal '→ Int, val '→ Int]. In general, we consider the supertype
of two records [a1 '→ τ1, . . . , ak '→ τk , c1 '→ τ ′′

1 , . . . , cn '→ τ ′′
n] and [b1 '→ τ ′

1, . . . , bl '→
τ ′
l , c1 '→ τ ′′

1 , . . . , cn '→ τ ′′
n] to be [a1 '→ τ1, . . . , ak '→ τk , b1 '→ τ ′

1, . . . , bl '→ τ ′
l , c1 '→

τ ′′
1 , . . . , cn '→ τ ′′

n]. In other words, two records have a common supertype only if they
match on the types of all overlapping fields.

This approach comes with a trade-off. We sacrifice strict safety of record access. If, for
example, the author had forgotten to perform a run-time check in the previous example
and simply wrote:

∃m ∈ S . x ′ = m.a

our type inference would consider the field access as type-safe, even though S could contain
a record with no a field. We see this as a necessary sacrifice, if we want our type system

118

8.4. Defining the type system τtla

Table 8.4: Examples of TLA+ operators and their subtypes

τ1 τ2 Is τ1 ◁ τ2?
Bool Int ✗

⟨2 '→ Int⟩ ⟨Bool, Int⟩ ✓

⟨2 '→ Bool⟩ ⟨Bool, Int⟩ ✗

[h1 '→ Int, h2 '→ Bool] [h1 '→ Int, h3 '→ Set(Int)] ✗

Set([h1 '→ ⟨2 '→ Int⟩]) Set([h1 '→ ⟨Int, Int⟩ , h2 '→ Set(Int)]) ✓

to be compatible with existing TLA+ specifications. The issues mostly boil down to the
absence of any kind of casting operator (since TLA+ is untyped by design). A potential
alternative solution to this kind of problem would be to introduce a standard module
with a casting operator, but this would shift a lot of the work to specification authors, as
the pattern described above is incredibly common in specifications of message-passing
systems.

We formally define a reflexive and transitive relation τ1 ◁ τ2 for τ1, τ2 ∈ T (i.e., τ1 is a
subtype of τ2) that holds, when one of the following conditions is met:

• If τ1 is a set type Set(τ ′
1), and τ2 is a set type Set(τ ′

2), as well as τ ′
1 ◁ τ ′

2.

• Similar for sequences, functions, operators and fixed-size tuples.

• If τ1 is a record type [h1 '→ τ1
1 , . . . , hk '→ τ k

1] and τ2 is a record type [h1 '→
τ1

2 , . . . , hk '→ τ k
2 , . . . , hk+m '→ τ k+m

2], as well as τ1
1 ◁ τ1

2 , . . . , τ k
1 ◁ τ k

2 , for some m ≥ 0

• Similar for sparse tuples.

• If τ1 is a sparse tuple type
�
i1 '→ τ1

1 , . . . , ik '→ τ k
1

�
and τ2 a tuple type

�
τ1

2 , . . . , τm
2

�
,

as well as m ≥ max(i1, . . . , ik) and τ1
1 ◁ τ i1

2 , . . . , τ k
1 ◁ τ ik

2 .

The only types with nontrivial supertypes are sparse tuples and records, where their
supertypes are permitted to have more indices/fields, but they must agree on all shared
indices/fields. In particular, every sparse tuple is a subtype of infinitely many tuples of
fixed size. It is easy to see that this relation is both reflexive and transitive.

Example 10. Table 8.4 shows instances of the subtyping relation ◁.

8.4.2 Annotating the built-in operators
The cornerstone of our approach is reusing the knowledge about built-in operators. By
knowing their semantics in TLA+, we annotate the built-in operators with (principal)
type schemas. For instance, the operator for unary minus −(x) in the Integers module
has the type Int ⇒ Int. Likewise, logical implication ⇒ has the type ⟨Bool, Bool⟩ ⇒ Bool.
To annotate all operators, we have to address several issues:

119

8. Type inference for TLA+: typing the untyped

1. A few built-in operators are variadic, they accept variable number of arguments.
For instance, the set constructor {. . . } accepts zero or more arguments.

2. Most of built-in operators are polymorphic, they are parameterized by one or more
types. For instance, the set operators ∪, ∩, \ accept two sets of some type α and
return a set of type α.

3. A few operators are overloaded: application [] and domain that apply to
functions, records, tuples, and sequences; constructor ⟨. . . ⟩ that produces a tuple
or a sequence.

The properties (1)-(3) are not mutually exclusive: the set constructor is both variadic
and polymorphic, whereas the tuple/sequence constructor is variadic, polymorphic, and
overloaded. Luckily, overloading is limited to several built-in operators, so there is a
small range of operators to choose from. Hence, we think of overloaded operators as finite
collections of polymorphic operators. For every variadic operator F , we introduce a family
of fixed-arity operators F0, F1(), F2(,), Since TLA+ does not have currying, the
operator arity is clear from the syntax in every concrete application. For instance, in the
expression {1, 2, 3}, the set constructor has arity of three.

Hence, we assign to every polymorphic operator of fixed arity a parameterized type
schema:

∀α1, . . . , αk . ⟨ω1, . . . , ωn⟩ ⇒ ω̂ (8.3)

In (8.3), the types ω1, . . . , ωn , ω̂ may refer to the type parameters α1, . . . , αk . For example:

+: ⟨Int, Int⟩ ⇒ Int ∪ : ∀α. ⟨Set(α), Set(α)⟩ ⇒ Set(α)

The variadic operators have one schema per arity. For instance, the set constructor:

{ , . . . ,	 ��

n times

}n : ∀α. ⟨α, . . . , α⟩	 ��

n times

⇒ Set(α)

Finally, the overloaded operators get assigned a finite number of schemas that are joined
with ⊔. For instance, the ternary tuple/sequence constructor is assigned the type schema:

⟨ , , ⟩3 :
�∀α1, α2, α3. ⟨α1, α2, α3⟩ ⇒ ⟨α1, α2, α3⟩ � ⊔ �∀α4. ⟨α4, α4, α4⟩ ⇒ Seq(α4)

�
When n = 1, we call the schema primitive. Otherwise, the schema is complex. Appendix
8.13 lists all operator schemas we consider.

120

8.5. Assigning meaningful types to TLA+ expressions

Notation. In rest of the chapter, we use the following type-related notation: τ , ρ, ω for
the types derived from τ in the grammar of τtla; notation s, s1, s2, . . . for the schemas
derived from s; notation α, β, . . . for type variables.

8.5 Assigning meaningful types to TLA+ expressions
Before we can talk about automatic type inference, we have to understand which types
may be in principle assigned to TLA+ expressions. As discussed in Section 8.4.2, the
built-in operators are assigned type schemas, which we define manually once and for ever.

In this section, we define a system of rules that define which types can be assigned to
a TLA+ expression. Some of our rules are non-deterministic, as dictated by overloaded
operators, e.g., function application. Our type inference problem consists of finding at
least one type assignment that follows the inference rules.

Let us fix a TLA+ specification and define the set Names that includes:

• the names of constants and state variables,

• the names of bound variables, e.g., defined with ∃x ∈ S : P ,

• the names of user-defined operators and their parameters, and

• the names of the built-in operators that appear in the specification.

We define a type environment Γ as a partial function from Names to T . Recall that
the types in T do not contain type variables. When Γ is undefined on x ∈ Names, we
write Γ(x) = ⊥. Given a type τ ∈ T and an identifier y , we write Γ, y : τ to refer to
the environment Γ′ that extends Γ with y assigned the type τ . Formally, Γ′(y) = τ and
Γ′(z) = Γ(z), if z ∈ Names \ {y}.

Given an environment Γ and a TLA+ expression e over the set Names, we write Γ ⊢ e : τ
to denote that e can be assigned the type τ by following the inference rules in the
environment Γ. We define the relation ⊢ with a set of rules that are summarized in
Table 8.2. We omit the rules for: universal quantifiers, bounded/unbounded Choose, set
filtering, and function constructors. They all introduce fresh variable bindings, similar to
(Exists) and (Map). However, these operators bring no additional insight about types.

The rules (Int), (Bool), and (Str) simply infer types of constant expressions. The
rule (Env) retrieves the type of a name from the environment, whereas the rule (Sub)
uses the subtyping relation. The most complex rules are related to operator definition
and application. The rule (Let) assigns a monotype to an operator F , so that F ’s
parameters have the types compatible with the operator body e1. The rule (App) uses
the type of F to infer its result, provided that the parameters of F agree with the actual
arguments of F . The rule (LetRec) is a recursive version of the rule (Let), which

121

8. Type inference for TLA+: typing the untyped

additionally assumes that the type of the result in the operator body is stable under
operator application. (The TLA+ syntax for recursive let-definitions is quite verbose.)

Finally, the rule (BuiltInOp) instantiates the schema of a built-in operator F with
some monotype. If a schema has the complex type that includes a primitive schema
∀α1, . . . , αk . ⟨ω1, . . . , ωn⟩ ⇒ ω̂, then F may be used with the type (⟨ω1, . . . , ωn⟩ ⇒
ω̂)[τ1/α1, . . . , τk/αk]. This type is obtained from the primitive schema by replacing the
type parameters α1, . . . , αn with monotypes τ1, . . . , τk .

Because of operator overloading (e.g., tuple constructor), it is possible to assign different
types to the same expression within the same environment. Consider the tuple ⟨1, 2⟩.
Because the operator ⟨ , ⟩2 is annotated with a complex schema, we can follow different
branches of ⊔ in the rule (BuiltInOp), and thus assign either the type ⟨Int, Int⟩, or the
type Seq(Int) to the tuple ⟨1, 2⟩. This non-determinism is built-in into the type system.
Instead of having a unique type assignment, we may have multiple reasonable type
assignments. This is a consequence of distinguishing tuples and records from functions.

Note that the relation ⊢ is merely a theoretical tool for us. Our techniques do not attempt
to explicitly compute types using these rules, but rather construct type values in a way
that guarantees their compliance with the relation ⊢.

Example 11. Consider the expression x = 1 and the environment Γ = [x '→ Int]. Then
Γ ⊢ 1: Int by (Int), and Γ ⊢ x : Int by (Env). The operator “=” is annotated with the
primitive schema ∀α1 . ⟨α1, α1⟩ ⇒ Bool, so we can derive Γ ⊢ “ = ”: ⟨Int, Int⟩ ⇒ Bool
by choosing τ1 = Int for α1 and following the rule (BuiltInOp). Combined with the
rule (App), this gives us the expected result that Γ ⊢ x = 1: Bool. Alternatively, if
Γ = [x '→ String], then there is no type derivation for x = 1 in the context Γ.

Having defined the derivation rules for ⊢, we are now at the position to formulate what
it means to assign a type to a TLA+ expression.

Definition 6. We say that a TLA+ expression e is typable in a environment Γ, if there
is exists a type τ ∈ T , for which we can derive Γ ⊢ e : τ .

In practice, given a TLA+ specification e, our goal is to find a type context Γ with the
properties:

• e is typable in Γ, and

• Γ is defined on the state variables (declared with variables) and their primed
versions as well as specification parameters (declared with constants).

This ensures that every expression in the specification can be assigned at least one type.

We tackle our goal in three stages. First, in Section 8.6, we show how to encode a single
type in FOL, as well as how to recover types from FOL models. Second, in Section 8.7,

122

8.5. Assigning meaningful types to TLA+ expressions

i is an integer literal
Γ ⊢ i : Int

(Int)
b is false or true

Γ ⊢ b : Bool
(Bool)

s is a string
Γ ⊢ s : String

(Str)

x ∈ Names Γ(x) ̸= ⊥
Γ ⊢ x : Γ(x)

(Env)
Γ ⊢ e : τ1 τ1 ◁ τ2

Γ ⊢ e : τ2
(Sub)

Γ, p1 : ρ1, . . . , pn : ρn ⊢ e1 : τ1 Γ, F : ⟨ρ1, . . . , ρn⟩ ⇒ τ1 ⊢ e2 : τ2

Γ ⊢ let F (p1, . . . , pn) ≜ e1 in e2 : τ2
(Let)

Γ, p1 : ρ1, . . . , pn : ρn , F : ⟨ρ1, . . . , ρn⟩ ⇒ τ1 ⊢ e1 : τ1
Γ, F : ⟨ρ1, . . . , ρn⟩ ⇒ τ1 ⊢ e2 : τ2

Γ ⊢ let recursive F (, . . . ,) F (p1, . . . , pn) ≜ e1 in e2 : τ2
(LetRec)

τ1, . . . , τk ∈ T F has schema
�∀α1, . . . , αk . ⟨ω1, . . . , ωn⟩ ⇒ ω̂

� ⊔ . . .

Γ ⊢ F :
� ⟨ω1, . . . , ωn⟩ ⇒ ω̂

�
[τ1/α1, . . . , τk/αk]

(BuiltInOp)

Γ ⊢ F : ⟨ρ1, . . . , ρn⟩ ⇒ τ Γ ⊢ e1 : ρ1 . . . Γ ⊢ en : ρn

Γ ⊢ F (e1, . . . , en) : τ
(App)

Γ ⊢ S : Set(τ) Γ, x : τ ⊢ P : Bool
Γ ⊢ �∃x ∈ S : P

�
: Bool

(Exists)

Γ ⊢ S : Set(τ1) Γ, x : τ1 ⊢ e : τ2

Γ ⊢ {e : x ∈ S} : Set(τ2)
(Map)

Figure 8.2: Assigning types to an expression e from an environment Γ, that is, Γ ⊢ x : S

123

8. Type inference for TLA+: typing the untyped

1 \∗ Example 1:
2 VARIABLE S
3 Init ≜ S = { { } }
4 Next ≜ ∨ ∃y ∈ S: S’ = S \ {y}
5 ∨ ∃T ∈ S: ∃z ∈ 1..100:
6 S’ = (S \ {T}) ∧ z ∈ T
7
8

1 \∗ Example 2:
2 VARIABLE S
3 Init ≜ S = { }
4 Next ≜
5 ∨ ∧ S ′ = S
6 ∧ ∀f, g ∈ S:
7 DOMAIN f = DOMAIN g
8 ∨ ∃n ∈ 1..10: S’ = S ∪ {⟨n⟩}

Figure 8.3: Examples motivating the choice of a logical encoding

we show how to encode schema instances in FOL. Third, in Section 8.8, we demonstrate
how to encode the type of a given TLA+ expression in FOL. We can then use the third
step to create constraints for the entire specification, or for an arbitrary subset, and solve
them using a variety of approaches. Concretely, we opt to use an SMT solver, as the
constraints lie in a decidable theory of SMT.

8.6 A logical encoding of types

In this section, we give an overview of the logic we are using for type inference with SMT.
To avoid SMT specifics, we present a logic-based framework.

Example 1 in Figure 8.3 exemplifies the difficulties when applying the classical approaches
such as by [DM82]. By analyzing the operator Init, we see that the (global) state variable S
is a set of sets. However, S contains the empty set {}, so we can only conclude that S
has the type Set(Set(α)) for some type variable α. When analyzing the operator Next,
we see that the first disjunct in line 4 is consistent with the type S : Set(Set(α)), but
it does not reveal anything new about the type of S . The second disjunct in lines 5–6
lets us clarify that the type of S is Set(Set(Int)). Importantly, the type information
should propagate in the both directions: (1) with the code flow, e.g., the type z : Int
propagates in the expression under the quantifier in line 6, and (2) against the code flow,
e.g., the expression z ∈ T gives us the type T : Set(Int) and then we learn that S has
the type Set(Set(Int)). To deal with this example, we would have to collect a set of type
constraints and elaborate them, as unification finds more precise types.

Example 2 in Figure 8.3 exemplifies the difficulties when applying the constraint-based
approaches such as by [Rém92, GS01]. From line 7, we conclude that S is a set of
function-like objects that have the Domain operator: TLA+ functions, records, tuples,
and sequences. From line 8, we conclude that S is a set of either tuples or sequences, due
to the constructor ⟨ ⟩1. As a result, operator overloading produces disjunctive constraints,
which are usually avoided in constraint-based approaches. Possibly, a more elaborate
subtyping relation would help, but we prefer keeping the type system simple.

124

8.6. A logical encoding of types

Table 8.5: Examples of types encoded in first-order (FO) logic

Value Type FO term Value Type FO term
1 Int int ⟨1, TRUE⟩ ⟨Int, Bool⟩ tup(2, int, bool, t3, . . . , tNI)

{1, 2} Set(Int) set(int) ⟨1, 2⟩ Seq(Int) seq(Int)

Motivated by the above examples, we find that an encoding in first-order logic (FOL)
better suited for our goal. It also frees us from the burden of untested constraint solver,
as there are many mature off-the-shelf SMT solvers designed to tackle constraint solving
in various fragments of FOL.

8.6.1 Terms for τ tla in first-order logic
In the following, we fix a TLA+ specification in normalized form. From this specifi-
cation, we extract the finite set of tuple indices TupInd and the finite set of record
fields RecFld. Denote by NI the maximal index in TupInd and by NF the cardinality
of RecFld. These numbers define the signatures of the tuple and record constructors
(for a fixed specification). We fix a global enumeration of record fields, i.e., a bijection
fld : {1, . . . , NF} → RecFld.

First-order signatures. We use a sorted encoding, where the sort of types is denoted
by ST . Terms are constructed from the following function symbols, representing type
constructors, with arities as indicated:

int : ST set : ST → ST rec : SNF
T → ST

bool : ST seq : ST → ST fun : ST × ST → ST
str : ST tup: Z × SNI

T → ST oper0 : ST → ST
oper1 : ST × ST → ST . . . operNI : SNI

T × ST → ST

Records and tuples need discussion. In TLA+, a record constructor may introduce an
arbitrary number of fields. By having the upper bound NF on the number of fields in
the specification, we simply encode each record with the single function symbol rec as
a record with NF fields. We let the solver pick arbitrary values for the unrestricted
fields. In case of tuples, the first argument of tup specifies the tuple size, whereas the
other NI arguments specify the tuple fields. Like in records, some of the fields may be
unconstrained, which naturally allows us to encode sparse tuples.

Example 12. Table 8.5 shows a few types and their encodings.

Remark 2. In the implementation, we do a more precise analysis by omitting those fields
for which post-processing produces no constraint. This reduces the number of spurious
fields. In the interest of presentation, we omit these optimizations.

125

8. Type inference for TLA+: typing the untyped

Term-Algebraic Interpretations. Not every FOL interpretation of the above is
useful to us. Specifically, we say a interpretation is term-algebraic, if the universe of ST
is the term algebra defined by the function symbols int, str, bool, set, seq, tup, rec, fun,
and oper, that is, the smallest set for which:

• The constants int, str and bool belong to the universe of ST .

• If a, b belong to the universe of ST , then so do set(a), seq(b), and fun(a, b).

• If a1, . . . , aNI, b belong to the universe of ST and k is an integer from {0, . . . , NI},
then tup(k , a1, . . . , aNI) and operk (a1, . . . , ak , b) belong to the universe of ST .

• If a1, . . . , aNF belong to the universe of ST and k is an integer from {1, . . . , NF},
then rec(a1, . . . , aNF) belongs to the universe of ST .

• Two terms t1 and t2 are equal, t1 = t2, if and only if t1 and t2 are syntactically
equal.

In the remainder of the chapter we consider only term-algebraic interpretations.

Remark 3. For simplicity, we are using integers as arguments to tup. These integers are
bounded by NI. Instead of having integers, we can introduce a fixed number of constants
and a linear ordering on them. This will make our encoding fit into quantifier-free theory
with uninterpreted functions, which is decidable and treated more efficiently by the SMT
solvers.

Notation. In the following, we are using the notation: a, b, c, v for first-order free
variables and t for first-order terms.

8.6.2 From first-order terms to types and back
Consider an arbitrary (term-algebraic) interpretation M. It naturally defines a mapping
τM of terms into monotypes (see Table 8.6).

The other direction is not as simple. If we did not have records and tuples, our translation
to FOL would be just as straightforward: take a type and translate it into the correspond-
ing first-order term. If we wanted to have a one-to-one correspondence between types
and terms, we would have to introduce multiple record and tuple constructors as well as
the subtype relation ◁ in logic. A direct definition of the subtype relation in logic requires
a (quantified) axiom, which would immediately drive us outside of the quantifier-free logic.
We avoid this direct approach and combine the translation of individual types into logic
with the subtype relation. Instead of keeping the record and tuple structure precise at
the logic level, we essentially encode their supertypes. In the implementation, we reduce
the number of fields in the post-processing step.

We seek to define type-term compatibility : a logic formula �τ�◀t , which establishes a
relation between a term t and a type τ and has the following property:

126

8.6. A logical encoding of types

Table 8.6: Constructing Types from Terms via τM

Term Type
int Int
bool Bool
str String
set(t) Set(τM(t))
tup (k , t1, . . . , tNI) ⟨τM(t1), . . . , τM(tk)⟩
seq(t) Seq(τM(t))
operk (t1, . . . , tk , t̂) ⟨τM(t1), . . . , τM(tk)⟩ ⇒ τM(t̂)
fun(t1, t2) τM(t1) → τM(t2)
rec (t1, . . . , tNF) [fld(1) '→ τM(t1), . . . , fld(NF) '→ τM(tNF)]
x (variable) τM(M(x))

Remark 1. For every monotype τ , term t and model M of �τ�◀t , that is, M |= �τ�◀t ,
the following holds: τ ◁ τM(t)

8.6.3 Defining type-term compatibility

Before giving a precise definition of �τ�◀t we have to establish a relation between type
variables and first-order variables. We assume that every type variable α is associated
with a unique logic variable ⌈α⌉.

We define the type-term compatibility �τ�◀t for an arbitrary term t and a type τ ∈ T α

recursively on the structure of τ in Table 8.7. The constraints for integers, Booleans,
strings are just term equalities. The constraints for sets, sequences, functions, and
operators introduce fresh logic variables (denoted with fresh(c)). Hence, the question
of type-term compatibility is propagated into the element types (respectively, argument
types).

Tuples, sparse tuples, and records are the least trivial. For each record, we introduce NF
fresh variables, to capture all potential fields. However, we only constrain those variables
that originate from the fields h1, . . . , hn of the provided record types. (The sequence
i(1), . . . , i(n) enumerates the indices of the fields h1, . . . , hn as defined by the mapping fld).
Likewise for tuples, the variables that originate from the fields 1, . . . , n, are constrained
using the types τ1, . . . , τn . As the tuple size is known, the constant n is used directly in
the functional symbol tup. Finally, for the sparse tuples, the terms for the fields i1, . . . , in
are restricted with the constraints that originate from the types τ1, . . . , τn . However,
unlike regular tuples, the size of a sparse is not fixed, but it is bound from below with
the largest index appearing in the type, that is, max(i1, . . . , in). Recall that a tuple of k
elements is never a subtype of a tuple of m > k elements, but a sparse tuple is a subtype
of an infinite number of fixed-size tuples (see Section 8.4.1).

Example 13. Consider the (parameterized) type Set(β). By applying the rule for set

127

8. Type inference for TLA+: typing the untyped

Table 8.7: The Definition of �τ�◀t .

Type τ Term-type constraint �τ�◀t Comments
Int t = int
Bool t = bool
String t = str
α t = ⌈α⌉
Set(τelem) t = set(c) ∧ �τelem�◀c fresh(c)
Seq(τelem) t = seq(c) ∧ �τelem�◀c fresh(c)
τ1 → τ2 t = fun(c1, c2) ∧ �τ1�◀c1 ∧ �τ2�◀c2 fresh(c1, c2)
⟨τ1, . . . , τn⟩ ⇒ τ̂ t = opern(c1, . . . , cn , ĉ) ∧ �τ1�◀c1 ∧

· · · ∧ �τn�◀cn ∧ �τ̂�◀ĉ

fresh(c1, . . . , cn , ĉ)

[h1 '→ τ1, . . . , hn '→ τn] t = rec(c1, . . . , cNF) ∧ �n
j=1�τj �◀ci(j) fresh(c1, . . . , cNF), and

fld(i(j)) = hj for 1 ≤
j ≤ n

⟨τ1, . . . , τn⟩ t = tup(n, c1, . . . , cNI)∧
�n

j=1�τj �◀cj fresh(c1, . . . , cNI)
⟨i1 '→ τ1, . . . , in '→ τn⟩ m ≤ k ≤ NI∧ t = tup(k , c1, . . . , cNI)

∧ �n
j=1�τj �◀cij

fresh(k , c1, . . . , cNI),
and
m = max(i1, . . . , in)

types in Table 8.7, we see that �Set(β)�◀t is as follows:

t = set (c) ∧ �β�◀c for some fresh(c)

By applying the rule for type variables �β�◀c, we get ⌈β⌉, which corresponds to some logic
constant b. Hence, the logic constraints for �Set(β)�◀t are as follows:

t = set (c) ∧ c = b (8.4)

Equation (8.4) is the ultimate logic constraint for �Set(β)�◀t .

Example 14. Consider the tuple type τ = ⟨α1, Int, [h '→ α2]⟩ and assume that there are at
most 4 tuple indices (NI = 4) and two record fields (NF = 2), while fld(2) = h. For a term
t , the type-term compatibility constraint �τ�◀t is as follows (for fresh variables c1, . . . , c6):

t = tup(3, c1, c2, c3, c4) ∧ �α1�◀c1 ∧ �Int�◀c2 ∧ �[h '→ α2]�◀c3

The constraint �α1�◀c1 is c1 = ⌈α1⌉, while �Int�◀c2 is c2 = int. Finally, the constraint�τ3�◀c3 is:
c3 = rec(c5, c6) ∧ c6 = ⌈α2⌉

Note that we know that the tuple term has size 3, so the variable c4 is not constrained.
Similarly, c6 is constrained, but c5 is not (the record type contains only the field with
index 2).

128

8.6. A logical encoding of types

The following proposition shows that our encoding does not introduce inconsistencies:

Proposition 13. For every type τ ∈ T α and every fresh variable c, there is a model M
such that M |= �τ�◀c.

Proof. This follows trivially; every sub-construction of the shape �τ̂�◀ĉ introduces fresh
variables, which means that all generated conjuncts are either a) completely independent,
b) they assign a ground term to the fresh variable or c) they assign ⌈α⌉ to the variable,
for some α. Since the variables ⌈α⌉ are completely unconstrained, we can easily see that
all conjuncts are themselves satisfiable and, since they are either independent or they
establish a set of equalities between variables (and, importantly, no ground terms), their
conjunction is also satisfiable.

The following lemma demonstrates, that our definition of type-term compatibility satisfies
Property 1, as desired:

Lemma 11. For every monotype τ ∈ T and every term t , the following holds:
For a model M of �τ�◀t , that is M |= �τ�◀t , it is the case that τ is a subtype of τM(t),
that is, τ ◁ τM(t).

Proof. We perform induction on the structure of τ :

τ is Int, String, or Bool: W.l.o.g., τ = Int. Since �τ�◀t is t = int, τM(int) = Int, and ◁ is
reflexive, the lemma holds.

τ = Set(τ̂): Assume, as the induction hypothesis, that the lemma holds for τ̂ . By
definition, there is a variable c, for which �τ�◀t is t = set(c) ∧ �τ̂�◀c and τM(t) =
Set(τM(c)). In particular, M |= �τ̂�◀c . We can use the induction hypothesis to see
that

τ = Set(τ̂) ◁ Set(τM(c)) = τM(t)

The cases for sequences, functions, and operators are similar.

τ = [h1 '→ τ1, . . . , hn '→ τn]: Assume, as the induction hypothesis, that the lemma holds
for τ1, . . . , τn . Recall that we have a field enumeration fld. Denote by i(j) the
fld-preimage of hj , that is, fld(i(j)) = hj . By definition, there exist variables
c1, . . . , cNF, for which �τ�◀t is

t = rec(c1, . . . , cNF) ∧
n�

j=1
�τj �◀ci(j)

and τM(t) is
[fld(1) '→ τM(c1), . . . , fld(NF) '→ τM(cNF)]

To show that τ ◁ τM(t), the following must hold:

129

8. Type inference for TLA+: typing the untyped

1. τM(t) must have the fields h1, . . . , hn , and
2. for every j ∈ {1, . . . , n}, it must be the case that τj ◁ τM(ci(j))

(1) trivially holds by construction, since hj = fld(i(j)). To show (2) holds, pick an
arbitrary j ∈ {1, . . . , n}. Since M |= �τ�◀t , that implies M |= �τj �◀ci(j) . We can
then use the induction hypothesis for τj , to conclude τj ◁ τM(ci(j)).

The cases for tuples is similar.

τ = ⟨i1 '→ τ1, . . . , in '→ τn⟩: Assume, as the induction hypothesis, that the lemma holds
for τ1, . . . , τn . By definition, there exist variables k , c1, . . . , cNI, for which �τ�◀t is

t = tup(k , c1, . . . , cNI) ∧ m ≤ k ≤ NI ∧
n�

j=1
�τj �◀cij

where m = max{i1, . . . , in}. To prove that τ ◁ τM(t), it suffices to show the
following:

1. τM(t) is a tuple of size at least m.
2. for every j ∈ {1, . . . , n}, it must be the case that τj ◁ τM(cij)

(1) follows from the fact that, in particular, M |= t = tup(k , c1, . . . , cNI) ∧ m ≤ k ≤
NI. Let k̂ be the M-evaluation of k . We know that m ≤ k̂ ≤ NI and τM(t) is�

τM(c1), . . . , τM(ck̂)
�

that is, a tuple of size no less than m. To demonstrate (2), we pick an arbitrary
j ∈ {i , . . . , n}. In particular, M |= �τj �◀cij , so we can use the induction hypothesis
for τj , to conclude τj ◁ τM(cij).

Observe, however, that type-term compatibility is defined not only for monotypes, but
for all types τ ∈ T α. The following theorem is a generalization of Lemma 11:

Theorem 5. For every type τ ∈ T α and every term t , the following holds:
For a model M of �τ�◀t , that is M |= �τ�◀t , consider the substitution σ that assigns
to every type variable α the type τM(⌈α⌉). Then, τ · σ is a subtype of τM(t), that is,
τ · σ ◁ τM(t).

The intuition behind the above theorem is that, for a type variable α, using the logic
variable ⌈α⌉ results in constraints with many possible models. Picking one such model
is equivalent to selecting a concretization of α, i.e. a substitution σ, for which α · σ is
a monotype. The proof goes along the same lines as the proof of Lemma 11, but we
additionally need to pay attention to type substitutions.

130

8.6. A logical encoding of types

Proof. The proof is similar to that of Lemma 11, we perform induction on the structure
of τ :

τ is Int, String, or Bool: W.l.o.g., τ = Int. By definition, �τ�◀t is t = int and τM(int) =
Int. Regardless of σ, τ · σ = τ and since ◁ is reflexive, the lemma holds.

τ is a type variable, α: By construction, τ · σ = τM(⌈α⌉). We know that �τ�◀t is
t = ⌈α⌉. Consequently, τM(t) = τM(⌈α⌉). As ◁ is reflexive, the lemma holds.

τ = Set(τ̂): Assume, as the induction hypothesis, that the lemma holds for τ̂ . By
definition, there is a variable c, for which �τ�◀t is t = set(c) ∧ �τ̂�◀c and τM(t) =
Set(τM(c)). Let τc = τM(c). Since M |= �τ̂�◀c , we can use the induction hypothesis
to deduce that τ̂ · σ ◁ τc . By the definition of the subtype relation, τ̂ · σ ◁ τc implies

τ · σ = Set(τ̂ · σ) ◁ Set(τc) = τM(t)

The cases for sequences, functions, and operators are similar.

τ = [h1 '→ τ1, . . . , hn '→ τn]: Assume, as the induction hypothesis, that the lemma holds
for τ1, . . . , τn . Recall that we have a field enumeration fld. Denote by i(j) the
fld-preimage of hj , that is, fld(i(j)) = hj . By definition, there exist variables
c1, . . . , cNF, for which �τ�◀t is

t = rec(c1, . . . , cNF) ∧
n�

j=1
�τj �◀ci(j)

and τM(t) is
[fld(1) '→ τM(c1), . . . , fld(NF) '→ τM(cNF)]

Additionally, the type τ · σ is equal to

[h1 '→ τ1 · σ, . . . , hn '→ τn · σ]

To show that τ · σ ◁ τM(t), the following must hold:

1. τM(t) must have the fields h1, . . . , hn , and
2. for every j ∈ {1, . . . , n}, it must be the case that τj · σ ◁ τM(ci(j))

(1) trivially holds by construction, since hj = fld(i(j)). To show (2) holds, pick any
j ∈ {1, . . . , n}. Since M |= �τ�◀t , that implies M |= �τj �◀ci(j) . We can then use
the induction hypothesis for τj , to conclude τj · σ ◁ τM(ci(j)).

The cases for tuples and sparse tuples are similar.

131

8. Type inference for TLA+: typing the untyped

8.7 Logical encoding of type schemas
In this section, we show how to encode schema instances, i.e. create constraints specifying
that the arguments and result of an operator application (or rather, the FOL variables
that represent them) hold the types that make up a schema (up to subtyping).

8.7.1 Instances of primitive type schemas
In this section, we focus on primitive schemas of built-in operators. A primitive schema
s for an operator F of arity n has the shape:

∀α1, . . . , αk . ⟨ω1, · · · ωn⟩ ⇒ ω̂,

where types ω1, . . . , ωn , ω̂ may contain type variables α1, . . . , αk in any combination.

An application of operator F gives us n + 1 constraints: n constraints for the operator
arguments and one constraint for the result. Assume that terms t1, . . . , tn encode the
types of the arguments and a term t̂ encodes the type of the result. Then, we define a
schema instance �s�⟨t1,...,tn |t̂⟩. It is a logic constraint that instantiates schema s with the
terms t1, . . . , tn , t̂ as follows:

1. Introduce fresh type variables β1, . . . , βk , which represent the (local) instantiations
of the type parameters α1, . . . , αk .

2. Construct the type substitution σ that maps α1, . . . , αk to β1, . . . , βk , respectively.

3. Construct types χ1, . . . , χn , χ̂ by applying the substitution σ to the types
ω1, . . . , ωn , ω̂, respectively.

4. Finally, define the instance �s�⟨t1,...,tn |t̂⟩ as �χ1�◀t1 ∧ · · · ∧ �χn�◀tn ∧ �χ̂�◀t̂ .

Example 15. Consider the set union ∪, which has the schema

s∪ : ∀α . ⟨Set(α), Set(α)⟩ ⇒ Set(α)

In Example 13, we showed that �Set(β)�◀t equals (for a fresh c and b = ⌈β⌉):

t = set (c) ∧ c = b

To define a schema instance �s∪�⟨t1,t2|t̂⟩, we apply the above expression 3 times (for
t1, t2, t̂): �Set(β)�◀t1 ∧ �Set(β)�◀t2 ∧ �Set(β)�◀t̂

As a result, we obtain the constraint for the schema instance:

t1 = set(c1) ∧ c1 = b ∧ t2 = set(c2) ∧ c2 = b ∧ t̂ = set (ĉ) ∧ ĉ = b

132

8.7. Logical encoding of type schemas

This matches our intuition that both the arguments and the result of a set union are sets
that contain elements of the same type.

The only TLA+ operator that needs special treatment is the except operator that
partially updates a function, e.g., e4 = [e1 except ![e2] = e3]. We have to add an
additional constraint that the result type is equal to the type of the first argument (the
function under modification). A bit more formally, we would add the constraint: t̂ = t1.

In the following lemma, we show the connection between schema instances and the
rule (BuiltIn) for the built-in operators in Section 8.5:

Lemma 12. Let F be an operator that is annotated with a primitive schema s, that is, s
has the form ∀α1, . . . αk . ⟨ω1, . . . , ωn⟩ ⇒ ω̂ and let Γ be an arbitrary type environment. If
for a model M and terms t1, . . . , tn , t̂ , it holds that M |= �s�⟨t1,...,tn |t̂⟩, then the following
holds:

Γ ⊢ F : ⟨τM(t1), . . . , τM(tn)⟩ ⇒ τM(t̂)

Proof. By definition, there exist type variables β1, . . . , βk and a substitution σ, replacing
all occurrences of α1, . . . , αk with β1, . . . , βk . Denote with χ1, . . . , χn , χ̂ the types ω1 ·
σ, . . . , ωn · σ, ω̂ · σ. Then, �s�⟨t1,...,tn |t̂⟩ is

�χ̂�◀t̂ ∧
n�

i=1
�χi�◀ti

We can use Theorem 5 on χ1, . . . , χn , χ̂, to assert that χ̂ · σβ ◁ τM(t̂) and χi · σβ ◁ τM(ti)
for all i ∈ {1, . . . , n}, where σβ is the substitution replacing each βj with τM(⌈βj ⌉) for
j ∈ {1, . . . , k}.

To use the derivation rule (BuiltInOp), we first make the following observation: because
of the nature of the construction of χi from ωi (resp. χ̂ from ω̂), the types� ⟨ω1, . . . , ωn⟩ ⇒ ω̂

�
[τ1/α1, . . . , τk/αk]

and � ⟨χ1, . . . , χn⟩ ⇒ χ̂
�
[τ1/β1, . . . , τk/βk]

are equal for all selections of τ1, . . . , τk , since

[τ1/α1, . . . , τk/αk] = [τ1/β1, . . . , τk/βk] ◦ σ

Let us pick τ1 = τM(⌈β1⌉), . . . , τk = τM(⌈βk⌉) and denote by σα the substitution
[τ1/α1, . . . , τk/αk], i.e., the substitution [τM(⌈β1⌉)/α1, . . . , τM(⌈βk⌉)/αk]

By (BuiltInOp), we can derive the following:

Γ ⊢ F :
� ⟨ω1, . . . , ωn⟩ ⇒ ω̂

� · σα

133

8. Type inference for TLA+: typing the untyped

or equivalently
Γ ⊢ F : ⟨ω1 · σα, . . . , ωn · σα⟩ ⇒ ω̂ · σα

If we can demonstrate that ω̂ · σα ◁ τM(t̂) and ωi · σα ◁ τM(ti) for all i ∈ {1, . . . , n}, we
can use the (Sub) rule to assert that

Γ ⊢ F : ⟨τM(t1), . . . , τM(tn)⟩ ⇒ τM(t̂)

To that end, take an arbitrary j ∈ {1, . . . , n}. We know that χi · σβ ◁ τM(ti). It remains
to be seen that χi · σβ = ωi · σα. By definition, χi = ωi · σ, so the problem is reduced to
showing that σα = σβ ◦ σ. But this follows from the above observation that

[τ1/α1, . . . , τk/αk] = [τ1/β1, . . . , τk/βk] ◦ σ

for all selections of τ1, . . . , τk , as σβ is exactly [τ1/β1, . . . , τk/βk] for the particular selection
of τ1 = τM(⌈β1⌉), . . . , τk = τM(⌈βk⌉). The proof of ω̂ · σα ◁ τM(t̂) is identical. Therefore,
we know the subtype relations hold as desired and the lemma holds.

8.7.2 Instances of complex type schemas (Overloaded Operators)
As we have mentioned, operators may be overloaded and consequently may be associated
with complex schemas. Consider a complex schema s of the shape s1 ⊔ . . .⊔ sm . We define
an instance of s for terms t1, . . . , tn , t̂ as the disjunction of the instances constructed for
the primitive schemas s1, . . . , sm . Formally, �s1 ⊔ . . . ⊔ sm�⟨t1,...,tn |t̂⟩ is defined as:

�s1�⟨t1,...,tn |t̂⟩ ∨ · · · ∨ �sm�⟨t1,...,tn |t̂⟩
Example 16. Consider the TLA+ expression f [2], in which f can be either a function,
a tuple, or a sequence. This instance of [] has the following complex schema s1 ⊔ s2 ⊔ s3:

∀α1, α2 . ⟨α1 → α2, α1⟩ ⇒ α2 ⊔ ∀α3 . ⟨⟨2 '→ α3⟩ , Int⟩ ⇒ α3 ⊔ ∀α4 . ⟨Seq(α4), Int⟩ ⇒ α4

Schema s1 corresponds to function application, schema s2 corresponds to tuple access, and
schema s3 corresponds to sequence access. Importantly, schema s2 captures specifically
access to the second tuple element. (If the index expression was non-constant, we would
not consider tuple access among the available schema options.) Moreover, schema s2 uses
the sparse tuple type ⟨2 '→ α3⟩, as otherwise we would have to introduce one schema per
tuple size, which is unknown at this point.

Assume that the number of tuple indices is bounded by 3, that is, NI = 3. Then, the
instance �s1 ⊔ s2 ⊔ s3�⟨t1,t2|t̂⟩ of the schema s1 ⊔ s2 ⊔ s3 applied to terms t1, t2, t̂ is given
below (the type variables α1, . . . , α4 are instantiated with β1, . . . , β4, and c1, . . . , c7 are
fresh constants):�

t̂ = ⌈β2⌉ ∧ t1 = fun (c1, c2) ∧ c1 = ⌈β1⌉ ∧ c2 = ⌈β2⌉ ∧ t2 = ⌈β1⌉


∨
�
t̂ = ⌈β3⌉ ∧ t1 = tup(c3, c4, c5, c6) ∧ c5 = ⌈β3⌉ ∧ t2 = int ∧ 2 ≤ c3 ≤ 3


∨

�
t̂ = ⌈β4⌉ ∧ t1 = seq (c7) ∧ c7 = ⌈β4⌉) ∧ t2 = int


134

8.8. Logic constraints for type inference

As one can see from this example, complex type schemas give rise to disjunctive constraints,
whereas all other logic constructions are conjunctive.

Similar to Lemma 12, we prove the connection between schema instances and the
rule (BuiltIn) for the complex schemas:

Lemma 13. Let F be an operator that is annotated with a complex schema s of the form
s1 ⊔ . . . ⊔ sm and let Γ be an arbitrary type environment. If for a model M and terms
t1, . . . , tn , t̂ , it holds that M |= �s�⟨t1,...,tn |t̂⟩, then the following holds:

Γ ⊢ F : ⟨τM(t1), . . . , τM(tn)⟩ ⇒ τM(t̂)

Proof. Follows from the fact that the schema instance for a complex schema s1 ⊔ . . . ⊔ sm
is the disjunction of schema instances corresponding to the primitive schemas s1, . . . , sm
and the fact that the (BuiltInOp) rule allows us to choose which schema component to
use in the derivation.

8.8 Logic constraints for type inference
Having defined a logic encoding for types in Section 8.6 and schema instances in Section 8.7,
we are now in a position to translate the type inference problem in first-order logic
for arbitrary expressions. In our approach, determining type constraints for a TLA+

expression amounts to producing constraints by instantiating schemas of the built-in
operators. However, we have one more language feature to address, namely, user-defined
operators. Instead of seeking the most-general types of user-defined operators (principal
types), we simply infer the types for all occurrences of user-defined operators either at
their application sites or their use as arguments to higher-order operators. By doing so,
we avoid quantification at the logic level (and subsequently in SMT).

8.8.1 Definition cloning at call-sites
Before we delve into generating constraints in the general case, we further preprocess the
specification. Since we do not compute anything similar to principal types for user-defined
operators, we can clone the definitions of these operators at the call sites. This is similar
to instantiation of schemas. In contrast to [DM82], we are not generalizing the types
from these different instances, and thus we are computing a finite number of monotypes
for every user-defined operator.

Consider a user-defined operator F with the definition F (p1, . . . , pn) ≜ eF . The oper-
ator F can be applied to different arguments that would require us to assign multiple
monotypes to F . Instead of collecting monotypes for F , we simply clone F at every
application site. Whenever F is applied to the arguments e1, . . . , en , we introduce fresh
identifiers for the operator name and its parameters F̂ , p̂1, . . . , p̂n and define eF̂ as the

135

8. Type inference for TLA+: typing the untyped

1 \∗ Before cloning:
2 LET mem(e, f) ≜
3 ∃ i ∈ DOMAIN f: e = f[i]
4 IN mem(1, ⟨2, 3⟩)
5 ∧ mem("a", [g ∈ {1, 2} '→ "b"])

1 \∗ After cloning:
2 LET mem1(e1, f1) ≜
3 ∃ i1 ∈ DOMAIN f1: e1 = f1[i1]
4 IN mem1(1, ⟨2, 3⟩)
5 ∧
6 LET mem2(e2, f2) ≜
7 ∃ i2 ∈ DOMAIN f2: e2 = f2[i2]
8 IN mem2("a", [g ∈ {1, 2} '→ "b"])

Figure 8.4: An example of cloning the definitions at operator application sites

TLA+ expression obtained by replacing every occurrence of pi in e with p̂i , and every
occurrence of F with F̂ . Then we replace F (e1, . . . , en) with the LET-IN definition:

let F̂ (p̂1, . . . , p̂n) ≜ eF̂ in F̂ (e1, . . . , ek)

Remark 4. If the user-defined operators are recursion-free, then the above transformation
is simple. In case of recursion, or mutual recursion, we have to first find the cycles in
the call graph and simultaneously clone the involved recursive operators. We do not give
a formal definition here, as it does not bring new insights. Moreover, mutually-recursive
operators are quite rare in TLA+.

Another case, where the operator F may be assigned multiple monotypes, is when F is
passed as an argument to a higher-order operator. (However, recall that a higher-order
operator cannot be passed to another higher-order operator in TLA+.) Assume that F
is passed to a higher-order operator G as G(. . . , F , . . .). We produce a fresh copy F̂
of F as in the above case and replace G(. . . , F , . . .) with the LET-IN definition:

let F̂ (p̂1, . . . , p̂n) ≜ ê in G(. . . , F̂ , . . .)

Example 17. Figure 8.4 shows a simple example of definition cloning.

Remark 5. In the implementation, we do not clone operator definitions, but produce the
constraints dynamically at every application site. By collecting the call stack, we also
correctly deal with the recursive operators. However, we find that this technical detail
obfuscates the core idea. Hence, we chose to explain the technique by performing the
above transformation.

8.8.2 Producing first-order type constraints for TLA+ expressions
In a similar fashion to how we handled type variables in type-term compatibility con-
straints, we introduce a global mapping Δ, that assigns to a name x ∈ Names a fixed
first-order term. Similar to a type environment Γ, this mapping assigns terms to the

136

8.8. Logic constraints for type inference

names, which can be used to reconstruct types from a first-order interpretation. Therefore,
we call Δ a term environment. In contrast to Γ, we make Δ static by pre-populating it
with the terms for all names:

• When x is the name of either a user-defined operator, or operator parameter of arity
n, we pick fresh logic variables ĉ, c1, . . . , cn and define Δ(x) = opern(c1, . . . , cn , ĉ)

• When x is a specification variable, we pick a fresh logic variable c and define
Δ(x) = c and Δ(x ′) = c (to ensure the types of specification variables do not
change during the execution).

• When x is a specification constant, simple operator parameter, or bound variable,
we pick a fresh logic variable c and define Δ(x) = c.

To produce constraints for TLA+ expressions in general, we define a translation �e�TLA
◀t

that receives two arguments: a term t , and a TLA+ expression e. Informally, �e�TLA
◀t

defines the constraints, which capture that e may be assigned the type represented by
the term t . We define �e�TLA

◀t recursively on the structure of e:

• We define �i�TLA
◀t as t = int for an integer literal i . Similar for strings and Booleans.

• We define �x�TLA
◀t as t = Δ(x) for x ∈ Names.

• If e is an application F (e1, . . . , en) of a built-in operator F , then F is annotated
with a schema s . We introduce fresh variables c1, . . . , cn and use a schema instance
to define �e�TLA

◀t :

�s�⟨c1,...,cn |t⟩ ∧ �e1�TLA
◀c1 ∧ · · · ∧ �en�TLA

◀cn

• If e is an application F (e1, . . . , en) of a user-defined operator F , then Δ(F) has
the shape opern(c1, . . . , cn , ĉ). We use this to define �e�TLA

◀t :

t = ĉ ∧ �e1�TLA
◀c1 ∧ · · · ∧ �en�TLA

◀cn

• If e is a let-in expression let F (p1, . . . , pn) ≜ e1 in e2, then Δ(F) has the operator
shape opern(c1, . . . , cn , ĉ). We define �e�TLA

◀t as:

�p1�TLA
◀c1 ∧ · · · ∧ �pn�TLA

◀cn ∧ �e1�TLA
◀ĉ ∧ �e2�TLA

◀t

The case of recursive let-in expressions is identical.

Remark 6. One can notice that the above translation does not explicitly include rules
similar to (Exists) and (Map) that are present in Figure 8.2 of Section 8.5. The reasons
for that are two-fold:

137

8. Type inference for TLA+: typing the untyped

1. The rules (Exists) and (Map) in Section 8.5 introduce new names in the type
environment, whereas we pre-populate the term context before doing the transla-
tion �e�TLA

◀t .

2. The constructs such as ∃x ∈ S : P and {e : x ∈ S} are considered as operator
applications in TLA+. Hence, we have introduced schemas for them, and these
operators are handled as the other built-in operators.

These observations allow us to minimize the number of cases to consider in the translation.

8.8.3 Main theorem
Suppose we are given an interpretation M. The term environment Δ naturally defines a
type environment ΓΔ

M in the following way: for every x in the domain of Δ, we define
ΓΔ

M(x) to be τM(Δ(x)).

We can then ask the following question: If we take a TLA+ expression e and a model
M of �e�TLA

◀t , what is the relation between τM(t) and ΓΔ
M(e)?

We state the main result of this chapter:

Theorem 6 (Soundness). Fix a TLA+ specification. For every TLA+ expression e in
the specification and every term t of the sort ST , the following holds:
If M is a model of �e�TLA

◀t , that is, M |= �e�TLA
◀t , and ΓΔ

M is the type environment defined
by Δ and M, the type constructed from the term t can be inferred for the expression e in
the type environment ΓΔ

M, that is, ΓΔ
M ⊢ e : τM(t).

Note that Theorem 6 holds for all expressions e, not just identifiers in the domain of Δ,
which tells us that we can trust the types constructed by τM, as they are permissible
within the type derivation framework.

Proof. We perform induction on the structure of e.

e is a literal l : Assume, w.l.o.g., that l is an integer literal. By definition, �l�TLA
◀t is

t = int. Since M |= t = int, clearly τM(t) = Int. As l is an integer literal, we can
use the (Int) rule to derive

ΓΔ
M ⊢ l : Int

e is an identifier x ∈ Names: By definition, �x�TLA
◀t is t = Δ(x). We can use the

(Env) rule to derive
ΓΔ

M ⊢ x : ΓΔ
M(x)

By definition, ΓΔ
M(x) = τM(Δ(x)), so the theorem holds.

138

8.8. Logic constraints for type inference

e is an application F (e1, . . . , en) of a built-in operator F : Assume, as the induc-
tion hypothesis, that the theorem holds for e1, . . . , en .
We know that F is associated with a schema s and there exist variables c1, . . . , cn ,
for which �e�TLA

◀t is defied as

�s�⟨c1,...,cn |t⟩ ∧ �e1�TLA
◀c1 ∧ · · · ∧ �en�TLA

◀cn

We can use the (App) rule to derive ΓΔ
M ⊢ e : τM(t), if we can demonstrate the

following:

1. ΓΔ
M ⊢ F : ⟨τM(c1), . . . , τM(cn)⟩ ⇒ τM(t), and

2. ΓΔ
M ⊢ ei : τM(ci) for i ∈ {1, . . . , n}

To see that (1) holds, consider the following: in particular, M |= �s�⟨c1,...,cn |t⟩, so
we can use Lemma 11 or Lemma 13 to conclude

ΓΔ
M ⊢ F : ⟨τM(c1), . . . , τM(cn)⟩ ⇒ τM(t)

To see that (2) holds, pick an arbitrary i ∈ {1, . . . , n}. In particular, M |= �ei�TLA
◀ci ,

so by the induction hypothesis

ΓΔ
M ⊢ ei : τM(ci)

Since both conditions hold we can use the (App) rule and the theorem holds.

e is an application F (e1, . . . , en) of a user-defined operator F : Assume, as the
induction hypothesis, that the theorem holds for e1, . . . , en .
By construction, Δ(F) has the shape opern(c1, . . . , cn , ĉ) and �e�TLA

◀t is defined as:

t = ĉ ∧ �e1�TLA
◀c1 ∧ · · · ∧ �en�TLA

◀cn

Using the (Env) rule, we can assert that

ΓΔ
M ⊢ F : ΓΔ

M(F)

Since ΓΔ
M(F) = τM(Δ(F)) and τM(opern(c1, . . . , cn , ĉ)) is

⟨τM(c1), . . . , τM(cn)⟩ ⇒ τM(ĉ)

we can conclude

ΓΔ
M ⊢ F : ⟨τM(c1), . . . , τM(cn)⟩ ⇒ τM(ĉ)

For the same reason as in the case of built in operators, we can see that ΓΔ
M ⊢

ei : τM(ci) for i ∈ {1, . . . , n}, so applying the (App) rule allows us to conclude

ΓΔ
M ⊢ e : τM(ĉ)

Finally, we use the fact that M |= t = ĉ, which naturally implies τM(t) = τM(ĉ),
to show that ΓΔ

M ⊢ e : τM(t) and the theorem holds.

139

8. Type inference for TLA+: typing the untyped

e is a let-in expression let F (p1, . . . , pn) ≜ e1 in e2: Assume, as the induction hy-
pothesis, that the theorem holds for e1, e2.
By construction, Δ(F) has the shape opern(c1, . . . , cn , ĉ) and �e�TLA

◀t is defined as:

�p1�TLA
◀c1 ∧ · · · ∧ �pn�TLA

◀cn ∧ �e1�TLA
◀ĉ ∧ �e2�TLA

◀t

We will demonstrate that we can use the (Let) rule, for which the following must
hold: There exist types ρ1, . . . , ρn , τ1, such that

1. We can derive
ΓΔ

M, p1 : ρ1, . . . , pn : ρn ⊢ e1 : τ1

2. We can derive
ΓΔ

M, F : ⟨ρ1, . . . , ρn⟩ ⇒ τ1 ⊢ e2 : τM(t)

Fix ρ1 = τM(c1), . . . , ρn = τM(cn) and τ1 = τM(ĉ). For these selections, it is
actually the case that both ΓΔ

M, p1 : ρ1, . . . , pn : ρn and ΓΔ
M, F : ⟨ρ1, . . . , ρn⟩ ⇒ τ1

are the same as ΓΔ
M. The reason for this is as follows: since M |= �pi�TLA

◀ci for all
i ∈ {1, . . . , n} and �pi�TLA

◀ci equals ci = Δ(pi) it must be the case that ΓΔ
M(pi) =

τM(Δ(pi)) = τM(ci). Similarly, ΓΔ
M(F) = τM(Δ(F)) = ⟨τM(c1), . . . , τM(cn)⟩ ⇒

τM(ĉ).
Because, in particular, M |= �e1�TLA

◀ĉ , we can use the induction hypothesis to
conclude that

ΓΔ
M ⊢ e1 : τM(ĉ)

which means (1) holds. Similarly, M |= �e2�TLA
◀t implies

ΓΔ
M ⊢ e2 : τM(t)

which means (2) holds as well. We can then derive

ΓΔ
M ⊢ e : τM(t)

using the (Let) rule and the theorem holds.
The case of recursive let-in expressions is identical.

8.9 Implementation and experiments
We have implemented our approach to type inference on top of the infrastructure provided
by TLA Toolbox [KLR19b] and Apalache [KKT19b]. Our tool is implemented in Scala.
Our implementation encodes the type inference query as an SMT assertion in Microsoft
Z3 [DB08], in the theory of quantifier-free uninterpreted functions. (For convenience,
our implementation also uses bounded integers to reason about tuple sizes, which is not
required by the theoretical framework in this chapter.)

140

8.9. Implementation and experiments

Figure 8.5: Benchmark sizes

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

#
LO

C

Specification ID

Figure 8.6: Type inference times

0.01

0.1

1

10

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

Ti
m
e
[s
]

Specification ID

8.9.1 Benchmarks

Our specifications were sampled from the public repository of TLA+ benchmarks main-
tained by the developers of TLA+ Toolbox [TLA20]. They range from logical puzzles to
concurrent algorithms and fault-tolerant distributed algorithms and include examples
like Lamport’s Paxos (Paxos.tla), Dijkstra’s Termination Detection (EWD840.tla),
and the Chang-Roberts leader election algorithm (ChangRoberts.tla). Figure 8.5
shows the full list of benchmarks considered, sorted by their size (in terms of LOC).
We did not do any preprocessing of the benchmarks to run our implementation. As we
wrote our type-inference tool on top of the Apalache infrastructure, we had to exclude
some benchmarks that were not completely parsed by the Apalache parser. We have
highlighted in red those specifications that contained type errors and have introduced
minimal corrections to make them typable - the specifications suffixed "-Fix" are the
results of these corrections. The mapping from specification IDs to specifications can be
found in Table 8.8.

For each benchmark, Figure 8.6 shows the runtime (in seconds). We were also interested
to see what kinds of types the specifications were using, so Figure 8.7 shows the percentage
breakdown of type usage in the type-correct specifications.

141

8. Type inference for TLA+: typing the untyped

Figure 8.7: Type usage breakdown

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2 3 4 5 6 7 9 10 11 12 13 14 16 17 18 19 20 21 22 23 25 26 27 29 30 31 32 33 34 35 36 37 38 39 42

Ty
pe

us
ag

e

Typable specification ID

Operators

Sequences

Records

Tuples

Functions

Sets

Int/Str/Bool

8.9.2 Evaluation
Due to the low computational intensity, all experiments were performed on a Lenovo
Thinkpad T470s laptop (Intel Core i7-7500U CPU 2.70GHz x4, 16 GB RAM) and measure
wall-time. We have found three kinds of type-incorrect specifications.

The first kind of type errors, and simplest, are those that contain typos, the most
common example being mistaking the syntax for a single function and a set of functions
in initializers:

pc′ ∈ [i ∈ Proc '→ “V0”] (8.5)

In the example in Equation 8.5, the specification designer probably wanted to assign a
function to the variable pc by picking it from a set of functions. However, the right-hand
side of the expression defines a single function. The issue can be fixed by either replacing
the first set membership with equality, or by introducing the set of functions, which has
similar syntax:

pc′ ∈ [Proc → {“V0”}] (8.6)

The second kind was specifications where the authors make no distinction between acces-
sible objects of different types. To clarify, according to the design philosophy of TLA+,
the objects ⟨1, 2⟩ and [i ∈ {1, 2} '→ i] are indistinguishable; both are (mathematical)
functions, with the same domain and evaluating either (by using the [·] operator) yields
the same results for all elements of their shared domain {1, 2}. Thus, for example in the
specification Queens.tla, a snippet of which can be found in Figure 8.8, the sequence
operator Len was being called on a function, which we consider type-incorrect.

The third kind, of which the only example in this set of benchmarks was the specification
of Dijkstra’s mutex (DijkstraMutex.tla), a snippet of which can be found in Figure

142

8.9. Implementation and experiments

Figure 8.8: A snippet from Queens.tla: queens is treated as both a function and a
sequence.

module Queens
. . .
IsSolution (queens) Δ= ∀i ∈ 1 . . (Len(queens) − 1) : . . .
Solutions Δ= {queens ∈ [1 . . N → 1 . . N] : IsSolution(queens)}
. . .

Figure 8.9: A snippet from DijkstraMutex.tla: temp[self] is treated as both an integer
and a set of integers.

module DijkstraMutex
. . .
Init Δ= k ∈ Proc ∧ . . .
Li3a (self) Δ= temp′ = [temp except ![self] = k] ∧ . . .
Li4a (self) Δ= temp′ = [temp except ![self] = Proc \ {self }] ∧ . . .
. . .

8.9, are specifications that would be dynamically typable, but not statically typable.
Concretely, the aforementioned specification uses a variable named temp to store values
between logical phases of the algorithm. Its range sometimes contains a single process
ID (that is, String) and sometimes a set of process IDs (that is, Set(String)). The
specification relies on the fact that the control flow is strictly enforced by the operator
preconditions for correctness which includes what could be considered dynamic type-
correctness. Indeed, if the specification-induced control flow is respected, the variable
temp is handled correctly, with respect to the type its currently expected to have (i.e. Int
or Set(Int)). This example perfectly illustrates the challenges of designing a type-checker
for TLA+; because specifications are nothing more than a collection of operators —
equivalently, a collection of logical formulas — notions such as control flow cannot be
used in type-checking because, unlike programming languages, syntax rarely dictates
execution order.

Our implementation is, to our knowledge, the first type inference tool for the whole
of TLA+, not just the operator-free fragment or proof obligations. Thus, there is no
baseline tool to compare the performance. Although our implementation is a prototype
and has not been heavily optimized, the type inference runtime rarely exceed 1 second on
our benchmarks. The benchmarks are not significantly smaller than the practical TLA+

specifications, which, unlike source code of real implementations, rarely exceeds a few
thousand lines of code. Therefore, we are confident that this approach is usable in
practice and could be integrated in tools such as the TLA+ Toolbox and the Apalache
model checker. Additionally, all type-checks performed on our benchmarks, and thus all
the SMT encodings, were monolithic. In practice, specifications are written incrementally

143

8. Type inference for TLA+: typing the untyped

and the user would often need only check local type-correctness of a single operator to
find bugs in their implementation, which would be considerably faster.

8.10 Related work
To our knowledge, the first type system for TLA+ was designed by Merz and Vanzetto
[MV12a]. They introduce a basic type system and type inference rules for a large number
of operators in a special fragment of TLA+. In contrast, our framework is conceptually
simpler, due to offloading the work to the annotations of the built-in operators. The main
goal of their work is to translate proof obligations into SMT. As this work extends the
interactive proof system TLAPS, completeness is not an issue: Whenever type inference
fails, the user has to prove the obligation by hand. [MV14] also introduced refinement
types for TLA+, which fit well the task of mechanized theorem proving. We rather focus
on decidable type inference, but for a less expressive type system.

[KKT19b] settle on a simple bottom-up type inference for operator-free expressions,
which falls back to user annotations. Our work their type system in several ways: (1) we
significantly expand the typable fragment of TLA+ by including user-defined operators,
and (2) we account for operator overloading and thus do not need user annotations.

Type inference for programming languages is, of course, a rich and mature field, so we
cannot compare our work with the plethora of results in this field. We mention only the
techniques that, in our understanding, are most related to our results. [DM82] present
a syntax-based algorithm for computing principal type schemas, i.e., the most general
types that can be assigned to functions, of which all monotypes types are instances. This
approach unfortunately does directly apply to our setting. First, TLA+ has limited
operator overloading, which ruins the one-to-one correspondence between syntax and
types. Second, TLA+ expressions may update (global) state variables by constraining
prime variable, e.g., x ′ = 3. This would probably require us to do an analysis of types
that are similar to ref-types in OCaml.

The above seems to indicate that, rather than a bottom-up principal type inference system,
it makes more sense to consider constraint-based approaches such as [Rém92, GS01].
However, we could not find a simple way of encoding operator overloading in these
frameworks without introducing disjunctive constraints.

Our ideas of logic encoding are inspired by the work of [SS08], who introduce HM(X) type
inference in the lenses of constraint-logic programming. However, instead of computing
principal type schemas, we use them as a predefined knowledge about the built-in
operators. We believe that this gives us a simpler set of constraints for type inference,
which can be efficiently handled by SMT solvers. In our context, computing principal
types would require an additional concretization step to extract a parameter-free type
instance that could then be used.

Some of the problems that we experienced with TLA+ also arise in the dynamically-typed
languages. So one can think of applying gradual types [CS16]. Our setting is however

144

8.11. Discussions

different in several aspects. First, although it might be productive to think of TLA+

values as dynamically typed rather than untyped, it is not really the case. As we have
shown in Section 8.2 some values can be used as different types at the same time (e.g., a
function of a special shape is also a sequence). Second, TLA+ specifications are not large
(ranging from 100 to 2k lines of code). If the users are willing to annotate a specification
with types, there is no strong motivation for the gradual introduction of types.

8.11 Discussions
Impact of imprecise record types. Owing to the mix of records in sets, our analysis
approximates the set of fields that can be contained in a record. As we mentioned
before, this analysis can be made more precise by post-processing, e.g., to split the
fields of two record types that do not interact in any way. One of the goals of our type
inference is to distinguish records from other function-like values. Once this is done,
it is much easier to write better type analysis. We see the main applications of our
result in either translating TLA+ into SMT constraints for symbolic model checking,
or translating TLA+ in an executable specification in a programming language. In
both scenarios, it is easy to add a dynamic test of whether a field belongs to a record.
(However, without our result, it is quite hard to implement all combinations of operators
applied to all combinations of values.)

Initially, we considered sum types as an alternative to our current approach of approx-
imating the set of record fields. As there are too many ways of testing for the actual
record shape in TLA+, we did not consider the approach with the sum types feasible.
For the future work, we are considering to introduce a TLA+ module that would allow
the users to use records as algebraic data types. If the users would use this module, we
would make our analysis more precise.

Type errors. If a specification e is ill-typed, the produced logic constraint �e�TLA
◀t will

be unsatisfiable. For instance, there is no type assignment in the expression 1 + ”a”. In
this case, the user would expect an error message that explains the possible source of
type errors. Our approach to this is as follows. Whenever the tool generates a constraint
of the form �e�TLA

◀t , it associates t with the position of e in the specification source file
(line number and offset). If the SMT solver determines that the produced constraints are
unsatisfiable, it gives us an unsatisfiability core, that is, a small number of assertions
that alone lead to contradiction. By computing the SMT variables appearing in the
unsatisfiability core and mapping them to the source locations, we give the user the
regions in the source file that produce type-conflicting constraints.

Principal types. Our approach only computes a collection of monotypes for user-
defined operators. We believe that there are two orthogonal ways to partially lifting our
results to computing principal types. The first approach is using MaxSMT: Instead of
pure SMT, we can use a MaxSMT optimization mode as in, e.g., [HUEM18]. MaxSMT

145

8. Type inference for TLA+: typing the untyped

is implemented in Z3 as well [BPF15]. In this case, we add one soft constraint per
variable that is introduced for each expression in a specification. These soft constraints
maximize the reward for the solver when a type is treated as a type variable. We have
implemented this approach and did preliminary experiments. In the few experiments we
manually inspected, the computed types were the expected principal types. However,
we felt that these results are too preliminary to report about. The second approach is
in using post-generalization. Assume that a user-defined operator F has two computed
monotypes ⟨τ1, . . . , τn⟩ ⇒ τ̂ and ⟨ρ1, . . . , ρn⟩ ⇒ ρ̂. If, for example, it is neither the case
that τ1 is a subtype of ρ1, nor ρ1 is a subtype of τ1, then we can apply unification to
introduce a type variable in the first argument. Again, we inspected the generalized type
for our benchmarks and the results look promising, but we have not investigated the
theoretical limits of this approach yet.

8.12 Conclusions
Our experiments demonstrate the feasibility of our type-inference approach over a large
set of benchmarks. Though there are some bottlenecks in the largest of specifications,
many improvements could still be made to the implementation to bring down runtime to
a reasonable level in those cases. Overall, we believe our type inference, in addition to
existing tools, such as model checkers, provides users with a variety of options for getting
automatic feedback about their specifications.

We had to address many idiosyncrasies of TLA+. Interestingly, some of them allowed us
to come with a conceptually simple approach. By treating almost all of the language
constructs as operators, we minimize the number of translation rules. Somewhat unex-
pectedly, the following language restrictions allow us to transform specifications into a
conceptually simple format: absence of currying, inability to return operators as value,
inability to pass higher-order operators as arguments to other higher-order operators.
For instance, it makes it possible to clone operator definitions at application sites (see
Section 8.8.1).

8.13 Schemas of all built-in operators
For completness, we list the schemas of all built-in operators in this section.

8.13.1 Operators with primitive schemas
Tables 8.9 to 8.18 list the TLA+ operators with primitive schemas, grouped by category.

8.13.2 Overloaded operators
Compared to operators with primitive schemas, operators with complex schemas are
much fewer in number.

146

8.13. Schemas of all built-in operators

Access with []: We distinguish four different primitive schemas for the applica-
tion operator; one for functions, one of records, one for tuples, and one for sequences.
Based on static analysis of the argument, up to three of them are simultaneously
possible. Denote by s1 the schema ∀α1, α2 . ⟨α1 → α2, α1⟩ ⇒ α2, by s2 the schema
∀α3 . ⟨Seq(α3), Int⟩ ⇒ α3, by s3(k) the schema ∀α4 . ⟨⟨k '→ α4⟩ , Int⟩ ⇒ α4 and by s4(h)
the schema ∀α5 . ⟨[h '→ α5], String⟩ ⇒ α5. We distinguish the following cases, for an
application e1[e2]:

• If e2 is an integer literal k , then [] has the schema s1 ⊔ s2 ⊔ s3(k)

• If e2 is a string literal h, then [] has the schema s1 ⊔ s4(h)

• Otherwise, [] has the schema s1 ⊔ s2

This is because tuples (resp. records) may only be accessed at statically known indices
(resp. fields), since different fields of a tuple (resp. record) may hold different types.

Modification with except: The except operator may be used to modify functions,
sequences or records. Denote by s1 the schema ∀α1, α2 . ⟨α1 → α2, α1, α2⟩ ⇒ α1 →
α2, by s2 the schema ∀α3 . ⟨Seq(α3), Int, α3⟩ ⇒ Seq(α3) and by s3(h) the schema
∀α4 . ⟨[h '→ α4], String, α4⟩ ⇒ [h '→ α4]. We distinguish the following cases, for an
application [e1 except ![e2] = e3]:

• If e2 is a string literal h, then except has the schema s1 ⊔ s3(h)

• Otherwise, except has the schema s1 ⊔ s2

Constructor ⟨ , . . . , ⟩n : This constructor may be used to define both tuples and
sequences. Denote by s1 the schema ∀α1, . . . , αn . ⟨α1, . . . , αn⟩ ⇒ ⟨α1, . . . , αn⟩ and by
s2 the schema ∀α̂ . ⟨α̂, . . . , α̂⟩	 ��

n−times

⇒ Seq(α̂). Then, ⟨ , . . . , ⟩n has the schema s1 ⊔ s2.

Domain operator domain: We distinguish four different primitive schemas for the
domain operator; one for functions, one of records, one for tuples, and one for sequences.
We refer to the empty record type [] as τr and to the empty sparse-tuple type ⟨⟩ as
τst . Denote by s1 the schema ∀α1, α2 . ⟨α1 → α2⟩ ⇒ Set(α1), by s2 the schema ⟨τr ⟩ ⇒
Set(String), by s3 the schema ⟨τst⟩ ⇒ Set(Int) and by s4 the schema ∀α3 . ⟨Seq(α3)⟩ ⇒
Set(Int). Then, domain has the schema s1 ⊔ s2 ⊔ s3 ⊔ s4. The role of the empty record
type and empty sparse-tuple type is to act as a catch-all, since τr is a subtype of all
record types and τst is a subtype of all sparse-tuple types an all fixed-size types (for all
sizes).

147

8. Type inference for TLA+: typing the untyped

Table 8.8: A list of all specification IDs used in our experiments

ID Specification
1 Stones
2 StonesFix
3 TransactionCommit
4 DieHard
5 CarTalkPuzzle
6 MissionariesAndCannibals
7 byihive-VoucherLifeCycle
8 Queens
9 QueensFix

10 SpanningTree
11 MisraReachability
12 SimpleAllocator
13 Spanning
14 nbaccRay97Fix
15 nbaccRay97
16 Paxos
17 EWD840
18 ChangRoberts
19 bcastByz
20 FPaxos
21 SumsEven
22 bcastFolklore
23 LamportMutex
24 AbaAsynByz
25 AbaAsynByzFix
26 2PCwithBTM
27 cf1sFolklore
28 DijkstraMutex
29 DijkstraMutexFix
30 Bosco
31 CbcMax
32 nbacgGuer01
33 byihive-VoucherIssue
34 byihive-VoucherTransfer
35 byihive-VoucherCancel
36 byihive-VoucherRedeem
37 c1cs
38 Bakery
49 RaftFix
40 Raft
41 802.16-AuthorizationPKMv35
42 802.16-AuthorizationPKMv35Fix

148

8.13. Schemas of all built-in operators

Table 8.9: Logic operators

Operator(s) Schema
=, ̸= ∀α . ⟨α, α⟩ ⇒ Bool
∧, ∨, ⇒, ≡ ⟨Bool, Bool⟩ ⇒ Bool
¬ ⟨Bool⟩ ⇒ Bool
∃bounded, ∀bounded ∀α . ⟨α, Set(α), Bool⟩ ⇒ Bool
∃unbounded, ∀unbounded ∀α . ⟨α, Bool⟩ ⇒ Bool
choosebounded ∀α . ⟨α, Set(α), Bool⟩ ⇒ α
chooseunbounded ∀α . ⟨α, Bool⟩ ⇒ α

Table 8.10: Arithmetic operators

Operator(s) Schema
+, −, ×, /, % ⟨Int, Int⟩ ⇒ Int
−unary ⟨Int⟩ ⇒ Int
. . ⟨Int, Int⟩ ⇒ Set(Int)
<, >, ≤, ≥ ⟨Int, Int⟩ ⇒ Bool

Table 8.11: Set operators

Operator(s) Schema
∈ , /∈ ∀α . ⟨α, Set(α)⟩ ⇒ Bool

⊂, ⊃, ⊆, ⊇ ∀α . ⟨Set(α), Set(α)⟩ ⇒ Bool
∪, ∩, \ ∀α . ⟨Set(α), Set(α)⟩ ⇒ Set(α)
{ }n , n ∈ N0 ∀α . ⟨α, . . . , α⟩	 ��

n−times

⇒ Set(α)

{ ∈ : } ∀α . ⟨α, Set(α), Bool⟩ ⇒ Set(α)
{ : ∈ } ∀α1, α2 . ⟨α2, α1, Set(α1)⟩ ⇒ Set(α2)
subset ∀α . ⟨Set(α)⟩ ⇒ Set(Set(α))
union ∀α . ⟨Set(Set(α))⟩ ⇒ Set(α)
Cardinality ∀α . ⟨Set(α)⟩ ⇒ Int
IsFiniteSet ∀α . ⟨Set(α)⟩ ⇒ Bool

Table 8.12: Action operators

Operator(s) Schema
enabled ⟨Bool⟩ ⇒ Bool
[] , ⟨ ⟩ ∀α . ⟨Bool, α⟩ ⇒ Bool

· ⟨Bool, Bool⟩ ⇒ Bool

Table 8.13: Temporal operators

Operator(s) Schema
□,♦ ⟨Bool⟩ ⇒ Bool
wf (), sf (), ∃∃∃∃∃∃ , ∀∀∀∀∀∀ ∀α . ⟨α, Bool⟩ ⇒ Bool
❀,

+� ⟨Bool, Bool⟩ ⇒ Bool

149

8. Type inference for TLA+: typing the untyped

Table 8.14: Function operators

Operator(s) Schema
[→] ∀α1, α2 . ⟨Set(α1), Set(α2)⟩ ⇒ Set(α1 → α2)
[∈ '→] ∀α1, α2 . ⟨α, Set(α), α2⟩ ⇒ α1 → α2

Table 8.15: Record operators, n ∈ N

Operator(s) Schema
[h1 '→ , . . . , hn '→] ∀α1, . . . , αn . ⟨α1, . . . , αn⟩ ⇒ [h1 '→ α1, . . . , hn '→ αn]
[h1 : , . . . , hn :] ∀α1, . . . , αn .

⟨Set(α1), . . . , Set(αn)⟩ ⇒ Set([h1 : α1, . . . , hn '→ αn])

Table 8.16: Tuple operators, n ≥ 2

Operator(s) Schema
×n ∀α1, . . . , αn . ⟨Set(α1), . . . , Set(αn)⟩ ⇒ Set(⟨α1, . . . , αn⟩)

Table 8.17: Sequence operators

Operator(s) Schema
◦ ∀α . ⟨Seq(α), Seq(α)⟩ ⇒ Seq(α)
Head ∀α . ⟨Seq(α)⟩ ⇒ α
Tail ∀α . ⟨Seq(α)⟩ ⇒ Seq(α)
Len ∀α . ⟨Seq(α)⟩ ⇒ Int
Seq ∀α . ⟨Set(α)⟩ ⇒ Set(Seq(α))
Append ∀α . ⟨Seq(α), α⟩ ⇒ Seq(α)
SubSeq ∀α . ⟨Seq(α), Int, Int⟩ ⇒ Seq(α)
SelectSeq ∀α . ⟨Seq(α), ⟨α⟩ ⇒ Bool⟩ ⇒ Seq(α)

Table 8.18: Control operators, n ∈ N

Operator(s) Schema
if then else ∀α . ⟨Bool, α, α⟩ ⇒ α
case → □ . . .□ →	 ��

n−times
∀α . ⟨Bool, α, . . . , Bool, α⟩	 ��

n−times

⇒ α

case → □ . . .□ →	 ��

n−times

□ other → ∀α .

�
Bool, α, . . . , Bool, α	 ��

n−times

, α

�
⇒ α

150

CHAPTER 9
Conclusions

In this thesis, we have presented the various steps required to translate a TLA+ speci-
fication into SMT constraints, solve them using an SMT solver, and use the resulting
proof or counterexample to to reason about the original specification and its (inductive)
invariants. We’ve demonstrated that these methods may be implemented in a robust
tool, Apalache, which can be used to analyze specifications of state-of-the-art distributed
systems and protocols. These benchmarks make use of the full expressiveness of the
TLA+ language, including features like nested sets, records, functions, and more. Our
symbolic approach using SMT is novel, and offers many benefits compared to the previous
standard tool TLC, which utilized explicit-state model checking, which is known to have
issues in scalability with an inherent state-space explosion for select language feature
combinations.

We have defined rewriting rules for individual TLA+ operators in Chapter 7, which allow
us to represent applications of those operators in SMT either in a vacuum or as part of a
larger specification. We have utilized auxiliary structures called arenas, which facilitate
this translation, by keeping track of data structure overapproximations. In combination
with an SMT model, the arena overapproximations concretize to describe exact TLA+

values in e.g. a counterexample trace.

Additionally, Chapter 8 outlines a type system for TLA+, as well as a means of type
inference. While types are not originally present in the language itself, they are a common
feature in many programming- and specification languages, as well as a pragmatically
useful tool for specification authors. While Apalache requires types for its encoding
construction, the type system and typechecking are independently useful, according to
testimonies of specification authors, who use tools besides Apalache (e.g. TLC).

151

9. Conclusions

9.1 Future Work
Alternate SMT Theories
The SMT translation presented in this thesis is general-purpose, and aims to capture
as broad of a fragment of TLA+ as possible. As such, it is very likely, that there
exist, possibly conditional, translations of certain language features which exhibit better
performance. For instance, the SMT theory of arrays appears to be better suited for
some constructs, as we have investigated in [OKK+23], but there are numerous other
theories and constructs that could use specialized translations.

Restricted fragments of TLA+

If we are allowed to reject certain commonly-used features of the language, we can also
seek to create a more straightforward SMT encoding. Consider, for instance, sets in
TLA+. In many specifications, sets are only used as generic containers; one merely needs
to be able to add and remove elements, and query membership. For those specifications,
we can observe a semantic duality between sets and functions: for every set S : Set(T),
we can define a function FS : T → boolean , where T is the set of all values of type
T (e.g. Int), such that FS (t) = true ⇐⇒ t ∈ S . We get nice properties, such as
FS∪R(t) = FS (t) ∨ FR(t), FS∩R(t) = FS (t) ∧ FR(t), F{x ∈ S :P}(t) = FS (t) ∧ P(t). Due
to this, it is possible to rewrite many (though not all) specifications, such that they are
semantically equivalent, but do not use sets (or e.g. tuples/sequences).

Since sets are the main reason why our translation introduces arenas, we can actually
define a fragment of TLA+, which would translate directly to the QF UF fragment
(possibly with the addition of arithmetic), without the need for arenas. Alternatively,
such a fragment could also be transpiled to Ivy, giving us access to the full breadth of
Ivy tooling. This would, for example, allow us to use Ivy’s executable code generator, to
compile TLA+ specifications to code.

It remains to be seen whether an automatic syntactic translation from a fragment of
TLA+, in with sets can be equivalently replaced with functions as described above, to
this set-free fragment is practical, but this step could potentially be automated as well.

152

153

Bibliography

[ACK+02] David P Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan
Werthimer. Seti@ home: an experiment in public-resource computing.
Communications of the ACM, 45(11):56–61, 2002.

[all21] Alloy case studies. https://alloytools.org/citations/
case-studies.html, 2021.

[ALN+91] J. R. Abrial, M. K. O. Lee, D. S. Neilson, P. N. Scharbach, and I. H. Sørensen.
The b-method. In Søren Prehn and Hans Toetenel, editors, VDM ’91 Formal
Software Development Methods, pages 398–405, Berlin, Heidelberg, 1991.
Springer Berlin Heidelberg.

[AMW16] Noran Azmy, Stephan Merz, and Christoph Weidenbach. A rigorous correct-
ness proof for pastry. In Abstract State Machines, Alloy, B, TLA, VDM,
and Z, pages 86–101. Springer, 2016.

[AMW18] Noran Azmy, Stephan Merz, and Christoph Weidenbach. A machine-checked
correctness proof for pastry. Sci. Comput. Program., 158:64–80, 2018.

[Avi76] A Aviziens. Fault-tolerant systems. IEEE Transactions on Computers,
100(12):1304–1312, 1976.

[AZ02] Jeremy Avigad and Richard Zach. The epsilon calculus. 2002.

[Bar77] Jon Barwise. An introduction to first-order logic. In Studies in Logic and
the Foundations of Mathematics, volume 90, pages 5–46. Elsevier, 1977.

[BAT14] Gavin Bierman, Martín Abadi, and Mads Torgersen. Understanding type-
script. In European Conference on Object-Oriented Programming, pages
257–281. Springer, 2014.

[BBC+19] John Backes, Sam Bayless, Byron Cook, Catherine Dodge, Andrew Gacek,
Alan J Hu, Temesghen Kahsai, Bill Kocik, Evgenii Kotelnikov, Jure Kukovec,
et al. Reachability analysis for AWS-based networks. In International
Conference on Computer Aided Verification, pages 231–241. Springer, 2019.

155

https://alloytools.org/citations/case-studies.html
https://alloytools.org/citations/case-studies.html

[BBP13] Jasmin Christian Blanchette, Sascha Böhme, and Lawrence C Paulson.
Extending Sledgehammer with SMT solvers. Journal of automated reasoning,
51(1):109–128, 2013.

[BC13] Yves Bertot and Pierre Castéran. Interactive theorem proving and program
development: Coq’Art: the calculus of inductive constructions. Springer
Science & Business Media, 2013.

[BCC+03] Armin Biere, Alessandro Cimatti, Edmund M Clarke, Ofer Strichman, and
Yunshan Zhu. Bounded model checking. 2003.

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu.
Symbolic model checking without BDDs. In TACAS, volume 1579 of LNCS,
pages 193–207, 1999.

[BCD+05] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and
K Rustan M Leino. Boogie: A modular reusable verifier for object-oriented
programs. In International Symposium on Formal Methods for Components
and Objects, pages 364–387. Springer, 2005.

[BDD07] Richard Bonichon, David Delahaye, and Damien Doligez. Zenon: An
extensible automated theorem prover producing checkable proofs. In LPAR,
volume 4790, pages 151–165. Springer, 2007.

[ben] Benchmark repository. https://github.com/konnov/
fault-tolerant-benchmarks/tree/master/2015.

[BFT17] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Standard:
Version 2.6. Technical report, Department of Computer Science, The
University of Iowa, 2017. Available at www.SMT-LIB.org.

[BGMR01] Francisco Vilar Brasileiro, Fabíola Greve, Achour Mostéfaoui, and Michel
Raynal. Consensus in one communication step. In PaCT, volume 2127 of
LNCS, pages 42–50, 2001.

[BHvM09] Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of satisfiability,
volume 185. IOS press, 2009.

[BJK+15] Roderick Bloem, Swen Jacobs, Ayrat Khalimov, Igor Konnov, Sasha Rubin,
Helmut Veith, and Josef Widder. Decidability of Parameterized Verification.
Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool
Publishers, 2015.

[BKM18] Ethan Buchman, Jae Kwon, and Zarko Milosevic. The latest gossip on bft
consensus. arXiv preprint arXiv:1807.04938, 2018.

156

https://github.com/konnov/fault-tolerant-benchmarks/tree/master/2015
https://github.com/konnov/fault-tolerant-benchmarks/tree/master/2015
www.SMT-LIB.org

[BLL+19] Idan Berkovits, Marijana Lazic, Giuliano Losa, Oded Padon, and Sharon
Shoham. Verification of threshold-based distributed algorithms by decom-
position to decidable logics. In CAV, pages 245–266, 2019.

[BLS04] Mike Barnett, K Rustan M Leino, and Wolfram Schulte. The spec# pro-
gramming system: An overview. In International Workshop on Construction
and Analysis of Safe, Secure, and Interoperable Smart Devices, pages 49–69.
Springer, 2004.

[BMMR01] Thomas Ball, Rupak Majumdar, Todd D. Millstein, and Sriram K. Rajamani.
Automatic predicate abstraction of c programs. In PLDI, pages 203–213,
2001.

[BPF15] Nikolaj Bjørner, Anh-Dung Phan, and Lars Fleckenstein. νZ - an optimizing
SMT solver. In TACAS, pages 194–199, 2015.

[BSM16] Srijita Basu, Anirban Sengupta, and Chandan Mazumdar. Modelling op-
erations and security of cloud systems using z-notation and chinese wall
security policy. Enterprise Information Systems, 10(9):1024–1046, 2016.

[Buc16] Ethan Buchman. Tendermint: Byzantine fault tolerance in the age of
Blockchains. Master’s thesis, University of Guelph, 2016. http://hdl.
handle.net/10214/9769.

[CCD+14] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio,
Alessandro Mariotti, Andrea Micheli, Sergio Mover, Marco Roveri, and
Stefano Tonetta. The nuxmv symbolic model checker. In International
Conference on Computer Aided Verification, pages 334–342. Springer, 2014.

[CCG+02] Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto Giunchiglia,
Marco Pistore, Marco Roveri, Roberto Sebastiani, and Armando Tacchella.
Nusmv 2: An opensource tool for symbolic model checking. In International
Conference on Computer Aided Verification, pages 359–364. Springer, 2002.

[CCLQ97] Gianpiero Cabodi, Paolo Camurati, Luciano Lavagno, and Stefano Quer.
Disjunctive partitioning and partial iterative squaring: an effective approach
for symbolic traversal of large circuits. In Proceedings of the 34th annual
Design Automation Conference, pages 728–733. ACM, 1997.

[CDH+09] Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk Leinenbach, Michał
Moskal, Thomas Santen, Wolfram Schulte, and Stephan Tobies. Vcc: A
practical system for verifying concurrent c. In International Conference on
Theorem Proving in Higher Order Logics, pages 23–42. Springer, 2009.

[CDL+12] Denis Cousineau, Damien Doligez, Leslie Lamport, Stephan Merz, Daniel
Ricketts, and Hernán Vanzetto. Tla+ proofs. In International Symposium
on Formal Methods, pages 147–154. Springer, 2012.

157

http://hdl.handle.net/10214/9769
http://hdl.handle.net/10214/9769

[CDLM10] Kaustuv Chaudhuri, Damien Doligez, Leslie Lamport, and Stephan Merz.
The TLA+ proof system: Building a heterogeneous verification platform.
In Theoretical aspects of computing, pages 44–44. Springer-Verlag, 2010.

[CDP+17] Mathieu Comptier, David Deharbe, Julien Molinero Perez, Louis Mussat,
Thibaut Pierre, and Denis Sabatier. Safety analysis of a cbtc system: A
rigorous approach with event-b. In Alessandro Fantechi, Thierry Lecomte,
and Alexander Romanovsky, editors, Reliability, Safety, and Security of
Railway Systems. Modelling, Analysis, Verification, and Certification, pages
148–159, Cham, 2017. Springer International Publishing.

[CEJS98] Edmund M Clarke, E Allen Emerson, Somesh Jha, and A Prasad Sistla.
Symmetry reductions in model checking. In International Conference on
Computer Aided Verification, pages 147–158. Springer, 1998.

[CGJ+03] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement for symbolic model checking.
J. ACM, 50(5):752–794, 2003.

[CHVB18] Edmund M Clarke, Thomas A Henzinger, Helmut Veith, and Roderick
Bloem. Handbook of model checking, volume 10. Springer, 2018.

[Cie97] Krzysztof Ciesielski. Set theory for the working mathematician. Number 39.
Cambridge University Press, 1997.

[CL98] Ernie Cohen and Leslie Lamport. Reduction in TLA. In CONCUR, LNCS,
pages 317–331, 1998.

[CMST16] Adrien Champion, Alain Mebsout, Christoph Sticksel, and Cesare Tinelli.
The kind 2 model checker. In International Conference on Computer Aided
Verification, pages 510–517. Springer, 2016.

[CP09] Alcino Cunha and Hugo Pacheco. Mapping between alloy specifications and
database implementations. In 2009 Seventh IEEE International Conference
on Software Engineering and Formal Methods, pages 285–294. IEEE, 2009.

[CR16] Maximiliano Cristiá and Gianfranco Rossi. A decision procedure for sets,
binary relations and partial functions. In CAV, pages 179–198, 2016.

[CS16] Matteo Cimini and Jeremy G. Siek. The gradualizer: a methodology and
algorithm for generating gradual type systems. In POPL, pages 443–455,
2016.

[DB08] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In
TACAS, volume 1579 of LNCS, pages 337–340. 2008.

158

[DDMW19] Andrei Damian, Cezara Dragoi, Alexandru Militaru, and Josef Widder.
Communication-closed asynchronous protocols. In CAV, pages 344–363,
2019.

[DHV+14] Cezara Drăgoi, Thomas A. Henzinger, Helmut Veith, Josef Widder, and
Damien Zufferey. A logic-based framework for verifying consensus algorithms.
In VMCAI, volume 8318 of LNCS, pages 161–181, 2014.

[DHZ16] Cezara Drăgoi, Thomas A. Henzinger, and Damien Zufferey. PSync: a
partially synchronous language for fault-tolerant distributed algorithms. In
POPL, pages 400–415, 2016.

[DM82] Luís Damas and Robin Milner. Principal type-schemes for functional pro-
grams. In POPL, pages 207–212, 1982.

[DRK+14] Morgan Deters, Andrew Reynolds, Tim King, Clark Barrett, and Cesare
Tinelli. A tour of cvc4: How it works, and how to use it. In 2014 Formal
Methods in Computer-Aided Design (FMCAD), pages 7–7, 2014.

[DS06] Dan Dobre and Neeraj Suri. One-step consensus with zero-degradation. In
DSN, pages 137–146, 2006.

[DTT14] Giorgio Delzanno, Michele Tatarek, and Riccardo Traverso. Model checking
paxos in spin. In Proceedings Fifth International Symposium on Games,
Automata, Logics and Formal Verification, GandALF 2014, Verona, Italy,
September 10-12, 2014., pages 131–146, 2014.

[EGL92] Urban Engberg, Peter Grønning, and Leslie Lamport. Mechanical veri-
fication of concurrent systems with tla. In International Conference on
Computer Aided Verification, pages 44–55. Springer, 1992.

[EMT+17] Burak Ekici, Alain Mebsout, Cesare Tinelli, Chantal Keller, Guy Katz,
Andrew Reynolds, and Clark Barrett. SMTCoq: A plug-in for integrating
SMT solvers into Coq. In International Conference on Computer Aided
Verification, pages 126–133. Springer, 2017.

[erc] A TLA+ specification of erc20. https://github.com/
informalsystems/tla-apalache-workshop/blob/main/
examples/erc20-approve-attack/ERC20.tla. [Online; accessed
03-March-2022].

[FKP16] Azadeh Farzan, Zachary Kincaid, and Andreas Podelski. Proving liveness
of parameterized programs. In LICS, pages 185–196, 2016.

[Gar81] Lynn E Garner. On the collatz 3n+ 1 algorithm. Proceedings of the American
Mathematical Society, 82(1):19–22, 1981.

159

https://github.com/informalsystems/tla-apalache-workshop/blob/main/examples/erc20-approve-attack/ERC20.tla
https://github.com/informalsystems/tla-apalache-workshop/blob/main/examples/erc20-approve-attack/ERC20.tla
https://github.com/informalsystems/tla-apalache-workshop/blob/main/examples/erc20-approve-attack/ERC20.tla

[GL03a] Eli Gafni and Leslie Lamport. Disk paxos. Distributed Computing, 16(1):1–
20, 2003.

[GL03b] Eli Gafni and Leslie Lamport. Disk paxos. Distributed Computing, 16(1):1–
20, 2003.

[GL06] Jim Gray and Leslie Lamport. Consensus on transaction commit. ACM
Trans. Database Syst., 31(1):133–160, 2006.

[GS01] Jörgen Gustavsson and Josef Svenningsson. Constraint abstractions. In
Programs as Data Objects (PADO), pages 63–83, 2001.

[Gue02] Rachid Guerraoui. Non-blocking atomic commit in asynchronous distributed
systems with failure detectors. Distributed Computing, 15(1):17–25, 2002.

[Gus19] Jason Gustafson. Kafka improvement proposal 320, 2019.

[HB07] Gerard J Holzmann and Dragan Bosnacki. Multi-core model checking
with spin. In 2007 IEEE International Parallel and Distributed Processing
Symposium, pages 1–8. IEEE, 2007.

[HBL14] Dominik Hansen, Jens Bendisposto, and Michael Leuschel. Integrating prob
into the tla toolbox. 2014.

[HHK+17] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan
Parno, Michael L. Roberts, Srinath Setty, and Brian Zill. Ironfleet: Proving
safety and liveness of practical distributed systems. Commun. ACM, 60(7):83–
92, June 2017.

[HL96] Howard Haughton and Kevin Lano. Specification in B: An introduction
using the B toolkit. World Scientific, 1996.

[Hoa69] Charles Antony Richard Hoare. An axiomatic basis for computer program-
ming. Communications of the ACM, 12(10):576–580, 1969.

[Hol03] Gerard Holzmann. The SPIN Model Checker. Addison-Wesley, 2003.

[HUEM18] Mostafa Hassan, Caterina Urban, Marco Eilers, and Peter Müller. MaxSMT-
based type inference for Python 3. In CAV, pages 12–19, 2018.

[ivy] Ivy github repository. http://microsoft.github.io/ivy/.

[Jac02] Daniel Jackson. Alloy: a lightweight object modelling notation. ACM
Transactions on Software Engineering and Methodology (TOSEM), 11(2):256–
290, 2002.

[JLM+03] Rajeev Joshi, Leslie Lamport, John Matthews, Serdar Tasiran, Mark Tuttle,
and Yuan Yu. Checking cache-coherence protocols with tla+. Formal
Methods in System Design, 22(2):125–131, 2003.

160

http://microsoft.github.io/ivy/

[JSS00] Daniel Jackson, Ian Schechter, and Hya Shlyahter. Alcoa: the alloy con-
straint analyzer. In Proceedings of the 22nd international conference on
Software engineering, pages 730–733. ACM, 2000.

[Kel76] Robert M Keller. Formal verification of parallel programs. Communications
of the ACM, 19(7):371–384, 1976.

[KGS12] Arvinder Kaur, Samridhi Gulati, and Sarita Singh. A comparative study of
two formal specification languages: Z-notation & b-method. In Proceedings
of the Second International Conference on Computational Science, Engi-
neering and Information Technology, CCSEIT ’12, page 524–531, New York,
NY, USA, 2012. Association for Computing Machinery.

[KK73] Ervin Knuth Knuth and Donald Ervin Knuth. The art of computer pro-
gramming: sorting and searching, volume 3. Addison-Wesley/Helix Books,
1973.

[KK20] Israel Koren and C Mani Krishna. Fault-tolerant systems. Morgan Kaufmann,
2020.

[KKKF20] Igor Konnov, Jure Kukovec, Andrey Kuprianov, and Shon Feder. Apalache
manual. https://apalache.informal.systems/docs/apalache/
index.html, 2020.

[KKM22] Igor Konnov, Markus Kuppe, and Stephan Merz. Specification and ver-
ification with the tla+ trifecta: Tlc, apalache, and tlaps. In Leveraging
Applications of Formal Methods, Verification and Validation. Verification
Principles: 11th International Symposium, ISoLA 2022, Rhodes, Greece,
October 22–30, 2022, Proceedings, Part I, pages 88–105. Springer, 2022.

[KKT19a] Igor Konnov, Jure Kukovec, and Thanh-Hai Tran. Apalache model checker.
https://github.com/konnov/apalache, 2019.

[KKT19b] Igor Konnov, Jure Kukovec, and Thanh-Hai Tran. TLA+ model checking
made symbolic. Proc. ACM Program. Lang., 3(OOPSLA):123:1–123:30,
2019.

[KKW18] Jure Kukovec, Igor Konnov, and Josef Widder. Reachability in parameter-
ized systems: all flavors of threshold automata. In CONCUR 2018-29th
International Conference on Concurrency Theory, 2018.

[KLR19a] Markus Alexander Kuppe, Leslie Lamport, and Daniel Ricketts. The tla+
toolbox. Electronic Proceedings in Theoretical Computer Science, 310:50–62,
Dec 2019.

[KLR19b] Markus Alexander Kuppe, Leslie Lamport, and Daniel Ricketts. The TLA+
toolbox. In Proceedings Fifth Workshop on Formal Integrated Development

161

https://apalache.informal.systems/docs/apalache/index.html
https://apalache.informal.systems/docs/apalache/index.html
https://github.com/konnov/apalache

Environment, F-IDE@FM 2019, Porto, Portugal, 7th October 2019, pages
50–62, 2019.

[KLSW20] Igor Konnov, Marijana Lazić, Ilina Stoilkovska, and Josef Widder. Tutorial:
Parameterized verification with byzantine model checker. In International
Conference on Formal Techniques for Distributed Objects, Components, and
Systems, pages 189–207. Springer, 2020.

[KLVW17a] Igor Konnov, Marijana Lazić, Helmut Veith, and Josef Widder. Para2:
Parameterized path reduction, acceleration, and SMT for reachability in
threshold-guarded distributed algorithms. Formal Methods in System Design,
2017.

[KLVW17b] Igor Konnov, Marijana Lazić, Helmut Veith, and Josef Widder. A short
counterexample property for safety and liveness verification of fault-tolerant
distributed algorithms. In POPL, pages 719–734, 2017.

[KNR05] Viktor Kuncak, Huu Hai Nguyen, and Martin C. Rinard. An algorithm
for deciding BAPA: boolean algebra with presburger arithmetic. In CADE,
pages 260–277, 2005.

[KTK18] Jure Kukovec, Thanh-Hai Tran, and Igor Konnov. Extracting symbolic tran-
sitions from TLA+ specifications. In International Conference on Abstract
State Machines, Alloy, B, TLA, VDM, and Z, pages 89–104. Springer, 2018.

[KTK20] Jure Kukovec, Thanh-Hai Tran, and Igor Konnov. Extracting symbolic
transitions from tla+ specifications. Sci. Comput. Program., 187:102361,
2020.

[Kup17] Markus A Kuppe. A Verified and Scalable Hash Table for the TLC Model
Checker: Towards an Order of Magnitude Speedup. PhD thesis, Master’s
thesis. University of Hamburg. http://www. lemmster. de/talks . . . , 2017.

[KVW14] Igor Konnov, Helmut Veith, and Josef Widder. On the completeness of
bounded model checking for threshold-based distributed algorithms: Reach-
ability. In CONCUR, volume 8704, pages 125–140. 2014.

[KVW15] Igor Konnov, Helmut Veith, and Josef Widder. SMT and POR beat counter
abstraction: Parameterized model checking of threshold-based distributed
algorithms. In CAV (Part I), volume 9206 of LNCS, pages 85–102, 2015.

[KVW17] Igor Konnov, Helmut Veith, and Josef Widder. On the completeness of
bounded model checking for threshold-based distributed algorithms: Reach-
ability. Information and Computation, 252:95–109, 2017.

[KW18] Igor Konnov and Josef Widder. ByMC: Byzantine model checker. In ISoLA
(3), volume 11246 of LNCS, pages 327–342. Springer, 2018.

162

[L+01] Leslie Lamport et al. Paxos made simple. ACM Sigact News, 32(4):18–25,
2001.

[Lam94] Leslie Lamport. The temporal logic of actions. ACM Transactions on
Programming Languages and Systems (TOPLAS), 16(3):872–923, 1994.

[Lam98] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst.,
16(2):133–169, 1998.

[Lam99] Leslie Lamport. Specifying concurrent systems with tlaˆ+. NATO ASI
SERIES F COMPUTER AND SYSTEMS SCIENCES, 173:183–250, 1999.

[Lam02] Leslie Lamport. Specifying systems: the TLA+ language and tools for
hardware and software engineers. Addison-Wesley Longman Publishing Co.,
Inc., 2002.

[Lam18] Leslie Lamport. TLA+2: A preliminary guide, 2018.

[LB03] Michael Leuschel and Michael Butler. Prob: A model checker for b. In
Keijiro Araki, Stefania Gnesi, and Dino Mandrioli, editors, FME 2003:
Formal Methods, pages 855–874, Berlin, Heidelberg, 2003. Springer Berlin
Heidelberg.

[Lec14] Thierry Lecomte. Atelier b. Formal Methods Applied to Complex Systems:
Implementation of the B Method, pages 35–46, 2014.

[Lei08] K Rustan M Leino. This is boogie 2. manuscript KRML, 178(131):9, 2008.

[Lei10] K Rustan M Leino. Dafny: An automatic program verifier for functional
correctness. In International Conference on Logic for Programming Artificial
Intelligence and Reasoning, pages 348–370. Springer, 2010.

[Lip75] Richard J. Lipton. Reduction: A method of proving properties of parallel
programs. Commun. ACM, 18(12):717–721, 1975.

[LP99] Leslie Lamport and Lawrence C. Paulson. Should your specification language
be typed. ACM Trans. Program. Lang. Syst., 21(3):502–526, 1999.

[LS79] Butler Lampson and Howard E Sturgis. Crash recovery in a distributed
data storage system. 1979.

[Lyn96] Nancy A Lynch. Distributed algorithms. Morgan Kaufmann, 1996.

[MAK13] Iulian Moraru, David G Andersen, and Michael Kaminsky. There is more
consensus in egalitarian parliaments. In SOSP, pages 358–372. ACM, 2013.

[MC16] Nuno Macedo and Alcino Cunha. Alloy meets TLA+: An exploratory study.
arXiv preprint arXiv:1603.03599, 2016.

163

[McM93] Kenneth L McMillan. The SMV system. In Symbolic Model Checking, pages
61–85. Springer, 1993.

[Mer08a] Stephan Merz. The specification language TLA+. In Logics of specification
languages, pages 401–451. Springer, 2008.

[Mer08b] Stephan Merz. The specification language TLA+. In Dines Bjørner and
Martin C. Henson, editors, Logics of Specification Languages, Monographs in
Theoretical Computer Science, pages 401–451. Springer, Berlin-Heidelberg,
2008.

[Mer12] Stephan Merz. On the logic of TLA+. Computing and Informatics, 22(3-
4):351–379, 2012.

[Min67] Marvin L Minsky. Computation: finite and infinite machines. Prentice-Hall,
Inc., 1967.

[MMPR03] Achour Mostéfaoui, Eric Mourgaya, Philippe Raipin Parvédy, and Michel
Raynal. Evaluating the condition-based approach to solve consensus. In
DSN, pages 541–550, 2003.

[MP20] Kenneth L McMillan and Oded Padon. Ivy: a multi-modal verification
tool for distributed algorithms. In Computer Aided Verification: 32nd
International Conference, CAV 2020, Los Angeles, CA, USA, July 21–24,
2020, Proceedings, Part II 32, pages 190–202. Springer, 2020.

[MRTB17] Baoluo Meng, Andrew Reynolds, Cesare Tinelli, and Clark Barrett. Rela-
tional constraint solving in SMT. In International Conference on Automated
Deduction, pages 148–165. Springer, 2017.

[MSB17] Ognjen Maric, Christoph Sprenger, and David A. Basin. Cutoff bounds for
consensus algorithms. In CAV, Part II, pages 217–237, 2017.

[MSCB13] Simon Meier, Benedikt Schmidt, Cas Cremers, and David Basin. The
tamarin prover for the symbolic analysis of security protocols. In Interna-
tional Conference on Computer Aided Verification, pages 696–701. Springer,
2013.

[MV12a] Stephan Merz and Hernán Vanzetto. Automatic verification of TLA+ proof
obligations with SMT solvers. In LPAR, volume 7180, pages 289–303.
Springer, 2012.

[MV12b] Stephan Merz and Hernán Vanzetto. Harnessing SMT solvers for TLA+

proofs. ECEASST, 53, 2012.

[MV14] Stephan Merz and Hernán Vanzetto. Refinement types for TLA+. In NASA
Formal Methods Symposium, pages 143–157. Springer, 2014.

164

[MV18] Stephan Merz and Hernán Vanzetto. Encoding TLA+ into unsorted and
many-sorted first-order logic. Science of Computer Programming, 158:3–20,
2018.

[Nak] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. URL:
https://bitcoin.org/bitcoin.pdf.

[New14] Chris Newcombe. Why Amazon chose TLA+. In Abstract State Machines,
Alloy, B, TLA, VDM, and Z, pages 25–39. Springer, 2014.

[NGHS17] Michael Nofer, Peter Gomber, Oliver Hinz, and Dirk Schiereck. Blockchain.
Business & Information Systems Engineering, 59(3):183–187, 2017.

[NPW02] Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. Isabelle/HOL:
a proof assistant for higher-order logic, volume 2283. Springer Science &
Business Media, 2002.

[NRZ+15] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker,
and Michael Deardeuff. How Amazon web services uses formal methods.
Comm. ACM, 58(4):66–73, 2015.

[OKK+23] Rodrigo Otoni, Igor Konnov, Jure Kukovec, Patrick Eugster, and Natasha
Sharygina. Symbolic model checking for tla+ made faster. In Sriram
Sankaranarayanan and Natasha Sharygina, editors, Tools and Algorithms
for the Construction and Analysis of Systems, pages 126–144, Cham, 2023.
Springer Nature Switzerland.

[Ong14] Diego Ongaro. Consensus: Bridging theory and practice. PhD thesis,
Stanford U., 2014.

[OPSR15] Francisco Ortin, Jose Baltasar Garcia Perez-Schofield, and Jose Manuel
Redondo. Towards a static type checker for python. In European Conference
on Object-Oriented Programming (ECOOP), Scripts to Programs Workshop,
STOP, volume 15, pages 1–2, 2015.

[P+10] Vijay Pande et al. Folding@ home. Distributed Computing, 2010.

[Pie04] Benjamin C. Pierce. Advanced Topics in Types and Programming Languages.
The MIT Press, 2004.

[PLSS17] Oded Padon, Giuliano Losa, Mooly Sagiv, and Sharon Shoham. Paxos
made EPR: decidable reasoning about distributed protocols. PACMPL,
1(OOPSLA):108:1–108:31, 2017.

[PMP+16] Oded Padon, Kenneth L McMillan, Aurojit Panda, Mooly Sagiv, and Sharon
Shoham. Ivy: safety verification by interactive generalization. In Proceedings
of the 37th ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 614–630, 2016.

165

https://bitcoin.org/bitcoin.pdf

[Pnu77] Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium
on Foundations of Computer Science (sfcs 1977), pages 46–57. IEEE, 1977.

[pro] WWTF project ICT15-103 APALACHE. https://forsyte.at/
research/apalache/. [Online; accessed 4-Feb-2018].

[PS07] Lawrence C Paulson and Kong Woei Susanto. Source-level proof recon-
struction for interactive theorem proving. In International Conference on
Theorem Proving in Higher Order Logics, pages 232–245. Springer, 2007.

[PSL80] Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement
in the presence of faults. J. ACM, 27(2):228–234, 1980.

[Ray97] Michel Raynal. A case study of agreement problems in distributed systems:
Non-blocking atomic commitment. In HASE, pages 209–214, 1997.

[Rém92] Didier Rémy. Extending ml type system with a sorted equational theory.
Technical report, Research Report 1766, Institut National de Recherche en
Informatique et Automatisme, 1992.

[RGBC17] Vincent Rahli, David Guaspari, Mark Bickford, and Robert L. Constable.
EventML: Specification, verification, and implementation of crash-tolerant
state machine replication systems. Sci. Comput. Program., 148:26–48, 2017.

[Rob97] Ken Robinson. The B method and the B toolkit. In International Conference
on Algebraic Methodology and Software Technology, pages 576–580. Springer,
1997.

[RSF+15] Aseem Rastogi, Nikhil Swamy, Cédric Fournet, Gavin Bierman, and Panagi-
otis Vekris. Safe & efficient gradual typing for TypeScript. In Proceedings
of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 167–180, 2015.

[SA17] Wen Su and Jean-Raymond Abrial. Aircraft landing gear system: approaches
with Event-B to the modeling of an industrial system. International Journal
on Software Tools for Technology Transfer, 19(2):141–166, 2017.

[SAF+04] David A Stainforth, Myles R Allen, David Frame, Jamie Kettleborough,
Carl Christensen, Tolu Aina, and Matthew Collins. Climateprediction. net:
a global community for research in climate physics. In Environmental online
communication, pages 101–112. Springer, 2004.

[set] Seti@home. URL: setiathome.berkeley.edu.

[SHK+16] Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine
Delignat-Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric Fournet,
Pierre-Yves Strub, Markulf Kohlweiss, et al. Dependent types and multi-
monadic effects in f. In ACM SIGPLAN Notices, volume 51, pages 256–270.
ACM, 2016.

166

https://forsyte.at/research/apalache/
https://forsyte.at/research/apalache/
setiathome.berkeley.edu

[SS08] Martin Sulzmann and Peter J. Stuckey. HM(X) type inference is CLP(X)
solving. J. Funct. Program., 18(2):251–283, 2008.

[ST87] T.K. Srikanth and Sam Toueg. Simulating authenticated broadcasts to
derive simple fault-tolerant algorithms. Dist. Comp., 2:80–94, 1987.

[SvR08] Yee Jiun Song and Robbert van Renesse. Bosco: One-step byzantine
asynchronous consensus. In Gadi Taubenfeld, editor, Distributed Computing,
pages 438–450, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[SWT18] Ilya Sergey, James R. Wilcox, and Zachary Tatlock. Programming and
proving with distributed protocols. PACMPL, 2(POPL):28:1–28:30, 2018.

[Sys20] Informal Systems. Apalache web page. https://apalache.informal.
systems, 2020.

[ten] Tendermint specifications. https://github.com/tendermint/
tendermint/tree/master/spec. [Online; accessed 03-March-2022].

[tlaa] A collection of TLA+ specifications. https://github.com/tlaplus/
Examples/. [Online; accessed 21-October-2017].

[TLAb] TLA+ proof system. https://tla.msr-inria.inria.fr/tlaps/
content/Home.html.

[TLA20] A collection of TLA+ specifications of varying complexities, 2020. Last
accessed on May 8, 2020.

[TRBB18] Cesare Tinelli, Andrew Reynolds, Clark Barrett, and Kshitij Bansal. Rea-
soning with finite sets and cardinality constraints in SMT. Logical Methods
in Computer Science, 14, 2018.

[Val96] Antti Valmari. The state explosion problem. In Advanced Course on Petri
Nets, pages 429–528. Springer, 1996.

[vGBR16] Klaus von Gleissenthall, Nikolaj Bjørner, and Andrey Rybalchenko. Cardi-
nalities and universal quantifiers for verifying parameterized systems. In
PLDI, pages 599–613, 2016.

[vGKB+19] Klaus von Gleissenthall, Rami Gökhan Kici, Alexander Bakst, Deian Ste-
fan, and Ranjit Jhala. Pretend synchrony: synchronous verification of
asynchronous distributed programs. PACMPL, 3(POPL):59:1–59:30, 2019.

[VKSB14] Michael M Vitousek, Andrew M Kent, Jeremy G Siek, and Jim Baker.
Design and evaluation of gradual typing for Python. In Proceedings of the
10th ACM Symposium on Dynamic languages, pages 45–56, 2014.

[Way18] Hillel Wayne. Practical TLA+: Planning Driven Development. Apress,
2018.

167

https://apalache.informal.systems
https://apalache.informal.systems
https://github.com/tendermint/tendermint/tree/master/spec
https://github.com/tendermint/tendermint/tree/master/spec
https://github.com/tlaplus/Examples/
https://github.com/tlaplus/Examples/
https://tla.msr-inria.inria.fr/tlaps/content/Home.html
https://tla.msr-inria.inria.fr/tlaps/content/Home.html

[WWP+15] James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang,
Michael D. Ernst, and Thomas E. Anderson. Verdi: a framework for
implementing and formally verifying distributed systems. In PLDI, pages
357–368, 2015.

[YML99] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model checking TLA+

specifications. In Correct Hardware Design and Verification Methods, pages
54–66. Springer, 1999.

[YPK10] Kuat Yessenov, Ruzica Piskac, and Viktor Kuncak. Collections, cardinalities,
and relations. In VMCAI, pages 380–395, 2010.

[Zaf09] Nazir Ahmad Zafar. Formal specification and validation of railway network
components using z notation. IET software, 3(4):312–320, 2009.

[Zav15] Pamela Zave. A practical comparison of alloy and spin. Formal Aspects of
Computing, 27(2):239–253, 2015.

[Zha16] Brandon Zhang. Pgo: Corresponding a high-level formal specification with
its implementation. SOSP SRC, page 3, 2016.

[ZXHW10] Weimin Zheng, Pengzhi Xu, Xiaomeng Huang, and Nuo Wu. Design a cloud
storage platform for pervasive computing environments. Cluster Computing,
13(2):141–151, 2010.

168

	Abstract
	Contents
	Introduction
	Distributed systems
	Challenges
	Contributions
	Applications
	Publications

	Thesis roadmap
	A primer on TLA+
	The fundamentals of TLA+
	Peculiarities of TLA+

	Fundamentals of model checking
	A brief introduction to explicit-state model-checking
	A brief introduction to symbolic model-checking and SMT

	State of the art in verification
	TLC
	TLAPS
	Alloy
	The B-method ecosystem
	Z notation
	Type retrofitting
	ByMC
	Ivy

	Symbolic transitions in TLA+
	Introduction
	Abstract syntax -TLA+
	Preliminary definitions
	Formalizing symbolic assignments
	Finding assignment strategies with SMT
	Soundness of our approach
	Experiments and potential applications
	Conclusions

	TLA+ model checking made symbolic
	Introduction
	Example: the two-phase commit protocol in TLA+
	Preprocessing: flattening, assignments, and types
	KerA+: the kernel language of TLA+ expressions
	Rewriting framework
	Sets
	Picking set elements
	Tuples and records
	Functions and sequences
	Control operators and quantifiers
	Soundness of the reduction to SMT
	Implementation
	Experiments
	Related work
	Conclusions

	Type inference for TLA+: typing the untyped
	Introduction
	A refresher on TLA+: Notable features
	Normalized TLA+
	Defining the type system tla
	Assigning meaningful types to TLA+ expressions
	A logical encoding of types
	Logical encoding of type schemas
	Logic constraints for type inference
	Implementation and experiments
	Related work
	Discussions
	Conclusions
	Schemas of all built-in operators

	Conclusions
	Future Work

	Bibliography

