
Statistical Profiling of Micro-Architectural Traces
and Machine Learning for Spectre Detection:

A Systematic Evaluation
1st Mai AL-Zu’bi

Institute of Logic and Computation
TU Wien, Vienna, Austria
mai.al-zubi@tuwien.ac.at

2nd Georg Weissenbacher
Institute of Logic and Computation

TU Wien, Vienna, Austria
georg.weissenbacher@tuwien.ac.at

Abstract—Spectre attacks exploit features of modern processors
to leak sensitive data through speculative execution and shared
resources (such as caches). A popular approach to detect such
attacks deploys Machine Learning (ML) to identify suspicious
micro-architectural patterns. These techniques, however, are often
rather ad-hoc in terms of the selection of micro-architectural fea-
tures as well as ML techniques and frequently lack a description
of the underlying training- and test-data.

To address these shortcomings, we systematically evaluate a
large range of (combinations of) micro-architectural features
recorded in up to 40 Hardware Performance Counters (HPCs),
as well as multiple ML algorithms on a comprehensive set of
scenarios and datasets. Using statistical methods, we rank the
HPCs used to generate our dataset, which helps us determine
the minimum number of features required for detecting Spectre
attacks with high accuracy and minimal overhead. Furthermore,
we identify the best-performing ML classifiers, and provide a com-
prehensive description of our data collection, running scenarios,
selected HPCs, and chosen classification models.

I. INTRODUCTION

The Spectre vulnerability [1] has resulted in some fundamen-
tal problems with modern hardware architectures: optimizations
such as branch prediction and speculative execution allow an
attacker to perform operations that would not occur during
regular execution, and subsequently leak confidential informa-
tion via side-channels (e.g., the cache). Short of deactivating
these features entirely (at the cost of a substantial performance
penalty), preemptive mitigation techniques in hardware and
software remain elusive [2]. A popular alternative approach is
to use ML to detect attacks at runtime by identifying suspi-
cious micro-architectural behavior. Micro-architectural events
such as cache eviction or branch misprediction are reflected
in Hardware Performance Counters (HPCs), special-purpose
registers found in all modern processors. Originally, HPCs were
designed to monitor hardware-related events and provide real-
time data on processor operations. Notably, this data can also
be used to identify behavioral patterns indicative of a Spectre
attack. This application of HPCs, however, is hampered by the
fact that other applications may affect the same counters as an
ongoing Spectre attack, thus increasing the false-positive rate.

Consequently, reliability and accuracy of the detection are
determined by (the configuration of) the ML model and the se-
lection of micro-architectural features that are being monitored.

Method HPCs Polling Rate ML Accuracy Size
Abraham et al. [3] 1 100 ms 2 95% N/A
Philipp et al. [4] 3 100 ms 1 99.23% 1564
Tong et al. [5] 4 100 ms 4 99.88% 186994
Congmiao et al. [6] 4 100 5 99.98 % 2400
Congmiao et al. [7], [8] 4 100 ms 3 99.23% 2400
Ahmad et al. [9] 5 100 ms 5 99.98% 100K
Oshana et al. [10] 6 N/A 6 N/A 16,000
Mushtaq et al. [11] 12 100 ms 12 99.99% 1M
Sayad et al. [13], [14] 16 N/A 5 100% N/A
Wang et al. [12] 16 N/A 6 99.8% N/A

TABLE I: Literature on HPC and ML-based Spectre detection

Existing work (see subsection I-A) often approaches this prob-
lem in a somewhat ad-hoc and haphazard way. Our contribution
is to systematically evaluate and identify the best-performing
combinations of HPCs and ML algorithms for detecting Spectre
attacks with respect to effectiveness, computational efficiency,
and implementation complexity. We comprehensively evaluate
the effectiveness of up to 40 HPCs for Spectre detection
by systematically assessing these HPCs under a variety of
benign and malicious scenarios. We evaluate 10 ML algorithms
(using standard metrics such as accuracy, precision, and score
time) over these HPCs and their combinations and identify
the most suitable HPCs and best-performing ML algorithms.
Furthermore, we identify a small number of HPCs that strike
a good balance between accuracy and complexity, resulting in
a highly accurate detection model with minimal overhead.

A. State-of-the-Art

The detection of Spectre attacks using HPCs and ML algo-
rithms has been the topic of numerous publications [3]–[14]

Abraham et al. [3], for instance, achieved up to 95% accuracy
using a single HPC. Philipp et al. [4] utilized 3 HPCs to
develop a detection model that detects two types of Spectre
attacks with 99.23% accuracy. Ahmad et al. [9] and Congmiao
et al. [6] demonstrated an accuracy of 99.98% using 5 and 4
HPCs, respectively, and Mushtaq et al. [11] achieved 99.99%
by employing 12 HPCs. Sayad et al. [13], [14] achieved an
astounding accuracy of up to 100% using 16 HPCs.

Table I summarizes these efforts. Notably, there is a large
variation regarding the chosen HPCs (ranging from a single
one to 16), the employment of ML models (varying from

a single to a comprehensive set of 12 ML algorithms), as
well as workload scenarios and their sizes. Notably, some
studies (such Congmiao et al. [6] and Philipp et al. [4]) rely
on extremely small datasets. These variations complicate a
meaningful comparison of these prior studies, calling for a
comprehensive evaluation of these parameters in a single study.

B. Research Gap

Based on subsection I-A, we identified the following research
gap which is addressed by our work:

1) Limited Investigation of HPCs: The studies in Table I
focus on a limited set of HPCs. To our knowledge,
no single paper has systematically compared HPCs; i.e.,
we lack an exhaustive evaluation of the suitability of
(combinations of) HPCs for effective Spectre detection.

2) Lack of Dataset Description: Prior work often fails to
explain why a specific combination HPC was chosen for
the experiments or fails to provide a description of the
evaluated scenarios and their generation. This prevents
reproducibility and comparability of results across prior
studies, necessitating a clear and detailed description of
the underlying training and test datasets.

3) Best-Performing Models: Despite ML playing a signif-
icant role in this context, whether one [4] or multiple
algorithms are deployed and evaluated [3], [6], [8]–[16],
there is still a need to systematically select the best-
performing algorithms across different datasets.

C. Research Contributions

To address this gap, our research offers a comprehensive
investigation of a large variety of workload scenarios, micro-
architectural features, and ML algorithms. Thus, it can serve
as a foundation for future research in this field and provide a
holistic understanding of the challenges in dataset generation,
validation, and ML integration:

• We investigate the impact of micro-architectural traces
from different HPCs on Spectre detection accuracy

• We increase the confidence in ML-based Spectre detection
through a systematic experimental evaluation

• We evaluate a variety of ML algorithms to assess their
suitability for Spectre detection

• We provide a reconfigurable dataset generator for micro-
architectural traces, allowing efficient recording of differ-
ent combinations of features (HPCs)

• We generate diverse datasets for a variety of benign and
malicious scenarios, facilitating the training and evaluation
of the proposed detection models

• We contribute towards reducing the overhead of Spectre
detection methods

• We discuss significant factors influencing detection, allow-
ing researchers to choose the optimal configurations for
their detection models

II. BACKGROUND

A. Speculative Execution

Modern processors deploy speculative execution techniques
for optimization, performing computations tentatively in ad-

vance based on the probability that they lie on a program
path that will eventually be executed. Speculative execution
can be exploited to leak information and access sensitive data,
triggering ongoing efforts to enhance mitigation techniques
against vulnerabilities such as Spectre [1] and Meltdown [17].

B. Cache Memory

Caches are small, fast, and local memory cells that speed
up access to frequently used data. Contemporary processors
have multiple levels of cache memory, including per-core
L1 instruction and data caches, per-core unified L2 caches,
and a large L3 cache (also known as Last Level Cache).
While caches speed up performance, they have also long been
known to facilitate side-channel attacks (SCAs) that exploit the
performance difference between cache hits and misses [18].

C. Side-Channel Attacks and Spectre

SCAs are complex cyberthreats that take advantage of un-
expected data leaks in computer systems, where both attacker
and victim may share resources. A prominent class of SCAs
are cache-based attacks, which typically comprise three phases:
initialization, encoding, and measurement. During initialization,
the attacker resets the cache to a predictable state; in the
encoding phase, the victim code performs cache accesses that
depend on the secret the attacker wants to obtain; and finally,
during the measurement phase, the attacker accesses specific
cache blocks to measure the access time and determine which
cache lines the victim code used. SCAs have commonly utilized
some tactics to extrapolate the secret, including Flush+Reload
[19], Evict+Time [20], and Prime+Probe [21]. Several attacks,
such as Spectre [1], Meltdown [17], and Foreshadow [22]
exploit these techniques, The major difference between them is
how the secret is imported from the main memory to the cache.
In the case of Spectre [1], these leaks are facilitated by cleverly
combining speculative execution, branch prediction, and cache-
based side channels. In order to trick victims into exposing their
secrets, Spectre follows the following steps:

1) The attacker forces the victim to execute misleading
program paths to trick the CPU into making incorrect
branch predictions.

2) The attacker performs flush instructions to clear the cache,
in order to force the program to retrieve any data from the
main memory rather than the cache.

3) The attacker tricks the victim into performing speculative
operations on sensitive (secret) data.

4) Since the cache is initially empty, this secret data is
retrieved from the main memory.

5) The processor then realizes its misprediction and discards
the results of the speculative computation; however, its
side effects on the cache remain visible to the attacker.

6) The attacker decodes the secret using a high-precision
timer to determine which values were read from main
memory, exploiting that a cache miss takes longer than
reading data from the cache (a cache hit).

7) Thus, the attacker retrieves a secret value from the cache.

Fig. 1: Characteristics of benign processes vs. Spectre attacks

D. Performance Counters

Modern processors include special-purpose registers called
HPCs that are used to track various processor events like clock
cycles, branch misses, and cache hits. (The HPCs most relevant
for our work are listed in Table IV.) Although initially designed
for performance monitoring, these counters can also be used for
security purposes [3], [6]–[8], [23], offering advantages such as
a minimal effect on speed and resilience to modification by an
attacker. In our setting, we systematically identify HPCs related
to the phases of the Spectre attack (subsection II-C).

Lightweight profiling tools (Perf Linux https://perf.wiki.
kernel.org/, PAPI [24]) allow measuring, recording, and mon-
itoring of hardware and software events at the process and
system levels. In prior studies, Perf Linux [3], [6]–[11] and
PAPI [4], [9], [11] were used to collect events from HPCs. We
deploy PAPI to track micro-architectural traces (cf. section III).

E. Machine Learning for Security

In security, ML is widely used for intrusion detection,
malware analysis, and traffic anomalies (see, e.g., [25]). Its
ability to identify complex patterns facilitates the accurate
detection of Spectre attacks even when other (benign) processes
affect the same HPCs and might even behave similarly to an
attack. Indeed, Figure 1 (showing total instructions completed
vs. level 3 cache misses) indicates that there is an overlap
between the characteristics of a Spectre attack (in yellow)
and benign processes (purple), making an analytical detection
approach challenging. To minimize false positives and improve
overall accuracy, an ML model needs to be carefully selected
and trained. We evaluated 10 ML algorithms used in the
publications in Table I (see subsection IV-B for details).

F. Evaluation Criteria

To systematically evaluate our Spectre detection models,
we utilized common performance metrics. While prior work
mostly focuses on accuracy due to its importance in avoiding
wrong predictions, we also considered other metrics like recall
to reduce false negative alarms, precision to avoid mistaking
benign activities as attacks, and the F1-score, which reflects
model performance regardless of class imbalance in our data
(more benign labels than attacks). Finally, we evaluated the
scoring time to ensure reliable and timely predictions. Table II
provides an overview of our evaluation metrics.

III. METHODOLOGY

We systematically identified the best-suited (and minimal) set
of HPCs as well as the best-performing classifiers for detection

Accuracy Ratio of correct predictions to total predictions
Precision Ratio of correct positive to the total positive predictions

(high precision indicates a low false positive rate)
Recall (Sensitivity) Ratio of correct positive predictions to all

observations in the actual class
F1-Score Weighted average of Precision and Recall
Score Time Time required time to make predictions (shorter is better)

TABLE II: Performance metrics for evaluation of ML models

(including the combinations of HPCs and classifiers considered
in Table I) using the following approach:

1) Validation of HPCs: We initially identified and assessed
40 HPCs that reflect system-wide or cache-related events
and that are potentially affected by Spectre based on
expert knowledge, and we excluded HPCs not relevant to
Spectre. Each HPC was assessed individually by generat-
ing datasets under various workloads (benign as well as
attacks) to ensure their relevance for Spectre attacks. In
this process, we noticed that some HPCs failed to reliably
record data. These HPCs were removed from further
experiments to guarantee the integrity and reliability of
the generated datasets.

2) Generating Datasets: We used the validated HPCs and
their combinations (from 1 to 8 HPCs, as the number of
HPCs that can be monitored simultaneously is limited) to
generate datasets. As some HPCs inhibit each other, we
removed conflicting combinations that failed to record data
from further experiments.

3) HPCs Selection: We ranked the remaining HPCs accord-
ing to their feature importance (predictive power) and
identified redundant HPCs. We employed the mRMR [26]
technique to identify features that are least related to each
other and most strongly correlated with the class; this
algorithm operates in two steps:
a) Maximize Relevance by measuring the Mutual Infor-

mation (MI) from information theory, which shows how
much information an HPC contributes when observing
another (thus confirming that the selected HPCs are
relevant to the class):

MI(X;Y) =
∑
x,y

p(x, y) log

(
p(x, y)

p(x) · p(y)

)
,

where p(x, y) is the joint probability distribution func-
tion and p(x) and p(y) are the marginal probability
distribution functions of x and y, respectively.

b) Minimize Redundancy. We deploy the MI to ensure
that the selected HPCs are not strongly correlated, as
two HPCs that share significant MI are redundant and
can be predicted from each other.

Redundancy =
1

|S|2
∑
si∈S

MI(si; f) ,

where S is the current selected set of features, si is
an individual feature within that set, and f is the new

https://perf.wiki.kernel.org/
https://perf.wiki.kernel.org/

Combinations #H
PC

Se
le

ct

Individual events 1 KB
L3_TCM,BR_MSP 2 RW
BR_TKN, BR_PRC 2 mRMR
TOT_INS, L3_TCM,L3_TCA 3 RW
BR_TKN, BR_PRC, BR_CN 3 mRMR
TOT_INS,L3_TCM,L1_ICM,BR_MSP 4 RW
BR_TKN, BR_PRC, BR_CN, TOT_CYC 4 mRMR
L2_DCM,L1_ICM,L1_STM,L2_ICA,L2_ICM 5 RW
BR_TKN, BR_PRC, BR_CN, TOT_INS, BR_MSP 5 mRMR
L2_DCM,L1_ICM,L1_STM,L2_ICA,L2_ICM,L3_TCA 6 RW
L2_DCM,L1_ICM,L1_STM,L2_ICA,L2_ICM,L3_TCA,L2_TCM 7 RW
as above plus L3_ICA 8 RW

TABLE III: Examples of validated combinations, selected based
on expert knowledge (KB), related work (RW), or mRMR.

feature. The mRMR criterion is defined as:

mRMR = max
f∈F\S

[
MI(f ;C)− 1

|S|
∑
si∈S

MI(si; f)

]
,

where F stands for the total set of features and C is the
class label. In other words, mRMR identifies the most
relevant but at the same time least redundant HPCs.

4) HPCs Reduction: To determine the minimal number of
HPCs required to achieve high accuracy, we conducted
two experiments. Firstly, we evaluated all datasets from
step 2. We observed that accuracy did not increase for
sets with more than 5 HPCs. Therefore, we decided to
focus on combinations of up to 5 HPCs. Secondly, we
generated new combinations by selecting the top-ranked
HPCs from step 3 to generate datasets with 2 to 5 HPCs.
To ensure a fair comparison, we generated new datasets
under the same conditions and scenarios.

5) Model Selection: Finally, we generated datasets using the
combinations of HPCs in Table III to assess 10 common
ML algorithms with respect to the metrics in Table II.

IV. EXPERIMENTS AND RESULTS

Our toolchain for data collection, analysis, and model-
ing was developed in Python and uses the libraries PyPAPI
(https://flozz.github.io/pypapi/), TensorFlow and Keras (https://
www.tensorflow.org/guide/keras), Numpy, and Sklearn, among
others.

A. Data Collection and Analysis

The collection of reproducible and comparable datasets for a
variety of workloads and scenarios with differing sets of HPCs
poses a significant challenge. We implemented a reconfigurable
dataset generator that enables us to monitor selected combi-
nations of HPCs for a range of scenarios including various
attack types (Spectre V1 and 2 [1]) and benign applications
(e.g. SPEChpc 2021 [27], MiniSAT (http://minisat.se), Mari-
aDB (https://mariadb.com/), OBS-Studio, Apache, and more),
spanning light to intensive workloads and producing datasets
in various sizes and dimensions. To improve generalization and
avoid overfitting, we deployed the following tactics:

1) Generating two separate datasets—one for training and
another for testing—instead of splitting a single dataset.

Fig. 2: Accuracy and Score-Time over Initial Datasets

2) Collecting learning and testing datasets under varying
workloads. For example, our training dataset may include
Firefox, Pycharm, and Mega, while our test dataset in-
cludes Chrome, Spyder, and Dropbox, respectively.

3) Excluding intensive workloads (such as MiniSAT) from
the training dataset to assess the model’s performance
when MiniSAT was included.

4) Additionally, we collected 50 datasets of varying sizes
ranging from 15,000 to 50,000 samples to analyze the
influence of dataset sizes on model performance.

B. ML Algorithms and Models

We used cross-validation to compare various ML models
based on the metrics in Table II across different datasets. We
assessed a range of ML algorithms that were selected based on
an in-depth literature review, including linear, non-linear, and
non-parametric algorithms (Logistic Regression (LR), Support
Vector Classifier (SVC), Perceptron, Decision Tree, Linear
Discriminant Analysis (LDA), K-Nearest Neighbors (KNN) [6],
[9], [11], [13], [28]), probabilistic models (Gaussian Naive
Bayes (GaussianNB) [11], [12]), ensemble learning methods
(Random Forest Classifier (RF) and Gradient Boosting Classi-
fier (GBC) [11]), as well as artificial neural networks (Multi-
layer Perceptron Classifier (MLP) [6], [9], [12]–[14]). In our
experiments, ML models that have consistently proven to be
the optimal choices for similar detection tasks in prior studies
(such as Decision Trees and ensemble learning methods [11],
[13]) emerged as the best-performing models.

C. Experiments

All figures in this section use the following color coding to
indicate the number of HPCs in the respective dataset:
■: 1, ■: 2, ■: 3, ■: 4, ■: 5, ■:6, ■: 7, and ■: 8.

1) Different Classifiers, Same Dataset: We compared the
performance of 10 different classifiers (see subsection IV-B)
on the same dataset using the classifier as the independent
variable and performance metrics as the dependent variable.
To ensure consistency, we always used the same k-fold cross-
validation and controlled the random seed. We determined
that the GBC, Decision Tree, and RF classifiers emerged as
the best-performing models across all datasets in terms of
Accuracy, Precision, Recall, and F1-score. On the other hand,
GaussianNB, LDA, and MLP show the worst results across all
metrics. The Decision Tree had the fastest score time among
the best-performing algorithms, as shown in Figure 2.

https://flozz.github.io/pypapi/
https://www.tensorflow.org/guide/keras
https://www.tensorflow.org/guide/keras
http://minisat.se
https://mariadb.com/

Fig. 3: Accuracy vs. Dimensions over Initial Datasets

Fig. 4: Correlation Matrix

2) Individual Algorithm over All Datasets: We compared
how the same algorithm performed across all datasets. Here,
our independent variable is the dataset, and the dependent
variable is performance metrics. Again, we kept the same k-fold
cross-validation and controlled the random seeds. We generated
datasets using different configurations ranging from a single
HPC to combinations of up to 8. Notably, deploying more than
5 HPCs does not significantly improve accuracy, but increases
model complexity as shown in Figure 3.

3) Ranking and Reduction of HPCs: A subsequent sta-
tistical analysis of the features (using Principal Component
Analysis, Correlation Matrix as shown in Figure 4, and feature-
importance, cf. section III) showed a strong correlation among
certain HPCs (e.g. Total Cache Access and Total Cache Instruc-
tions in [4]), indicating potential for reducing the dimension of
the datasets while maintaining a balance between effectiveness
and efficiency of the model.

Table IV shows the HPCs ranked highest by our feature-
importance and mRMR algorithms; these HPCs relate to overall
execution branch behavior. (Table V provides a comprehensive
overview of our ranking.) For systematic comparison, we used
these HPCs and their combinations to generate new datasets
and apply the same classifiers to these datasets as shown in
Figure 6. Notably, GBC, Decision Tree, and RF emerged again
as the best-performing classifiers, and Decision Tree was the
fastest, as shown in Figure 6. The feature reduction technique
was essential for identifying the minimum number of HPCs
needed for detection with the best accuracy. Figure 5 shows that

Counter ID Performance Counter
BR_CN Conditional Branch Instructions Executed
BR_PRC Conditional Branch Instructions Corr. Pred
BR_INS Total Branch Instructions Executed
TOT_CYC Total Cycles Executed
TOT_INS Total instructions executed
BR_TKN Conditional Branch Instructions Taken

TABLE IV: Top-Ranked HPCs by mRMR Algorithm

Fig. 5: Accuracy vs. Dimensions over Top-Ranked HPCs

3 top-ranked HPCs were already sufficient for Spectre detection
with high accuracy.

D. Significant Findings and Discussion

The most significant results of our systematic evaluation are:
• Employing top-ranked HPCs reflecting execution

(TOT-CYC, TOT-INS) and branch behavior (BR-CN,
BR-PRC, BR-INS, and BR-TKN) significantly improves
accuracy. Notably, no cache-related HPCs are included
in this set (see also Table V). We conjecture that the
ratio of TOT-CYC and TOT-INS already enables the
identification of high-latency cache flush instructions.

• Identifying highly correlated HPCs in combinations used
in related work (Table I) enables feature reduction.

• Ensemble learning (GBC, RF) and Decision Trees outper-
formed other ML methods.

• Training and hardening the model with challenging
datasets (cf. subsection IV-A) lowers false alarm rates.

• While workload scenarios had higher impact on detection
performance than dataset size, both were of low impact.

• Fine-tuning the hyper-parameters of the algorithms im-
proves the detection model’s generalization and accuracy.

V. CONCLUSION

Our systematic evaluation yielded that Gradient Boosting,
Decision Tree, and Random Forest classifiers outperform other
classifiers under various conditions and scenarios. Decision
Tree has the fastest processing time among the best-performing
models. We also systematically identified instruction and cycle
counters as well as counters reflecting branching behavior as the
most appropriate features for detection. Employing challenging
datasets enhances resilience against previously unseen attacks
and lowers the number of false positive and false negative cases.
Overall, our findings offer valuable insights for selecting ML
algorithms, HPCs, and generating datasets for detecting attacks.

(a) Precision (b) F1-Score

(c) Recall (d) Score-Time

Fig. 6: Measurements over Ranked Features

Feature Importance Rank

PAPI BR CN 1.0000 7.5000
PAPI L1 TCM 1.0000 7.5000
PAPI TOT CYC 1.0000 7.5000
PAPI L3 DCA 1.0000 7.5000
PAPI L2 TCA 1.0000 7.5000
PAPI L2 STM 1.0000 7.5000
PAPI L2 ICH 1.0000 7.5000
PAPI BR INS 1.0000 7.5000
PAPI L2 DCA 1.0000 7.5000
PAPI L2 DCR 1.0000 7.5000
PAPI L1 DCM 1.0000 7.5000
PAPI BR TKN 1.0000 7.5000
PAPI BR PRC 1.0000 7.5000
PAPI BR NTK 1.0000 7.5000
PAPI TOT INS 0.8279 15.0000
PAPI L2 TCM 0.5797 16.0000
PAPI L2 DCM 0.5085 17.0000
PAPI L3 ICA 0.5004 18.0000
PAPI L3 TCA 0.4649 19.0000
PAPI L3 TCM 0.3434 20.0000
PAPI L2 ICA 0.3122 21.0000
PAPI L2 ICM 0.2464 22.0000
PAPI L1 STM 0.2052 23.0000
PAPI L1 ICM 0.2004 24.0000
PAPI BR MSP 0.0645 25.0000

Feature mRMR Score Rank

PAPI BR CN 0.1011 1.0000
PAPI BR PRC 0.0898 2.0000
PAPI BR INS 0.0828 3.0000
PAPI TOT CYC 0.0685 4.0000
PAPI TOT INS 0.0358 5.0000
PAPI BR TKN 0.0341 6.0000
PAPI L2 TCA 0.0256 7.0000
PAPI L2 DCA 0.0231 8.0000
PAPI L3 TCA 0.0193 9.0000
PAPI L2 ICH 0.0175 10.0000
PAPI L3 TCM 0.0166 11.0000
PAPI BR NTK 0.0154 12.0000
PAPI L1 DCM 0.0138 13.0000
PAPI BR MSP 0.0099 14.0000
PAPI L3 DCA 0.0095 15.0000
PAPI L2 DCM 0.0066 16.0000
PAPI L2 ICM 0.0066 17.0000
PAPI L1 STM 0.0065 18.0000
PAPI L1 TCM 0.0062 19.0000
PAPI L2 TCM 0.0056 20.0000
PAPI L2 DCR 0.0056 21.0000
PAPI L3 ICA 0.0047 22.0000
PAPI L1 ICM 0.0044 23.0000
PAPI L2 ICA 0.0044 24.0000
PAPI L2 STM 0.0036 25.0000

(a) Ranked Features (based on feature importance) (b) Ranked Features (based on mRMR)

TABLE V: Ranking of features based on different metrics

ACKNOWLEDGMENT

Supported by the Vienna Science and Technology Fund
(WWTF) [10.47379/VRG11005] and the FWF (W1255-N23).

REFERENCES

[1] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre
attacks: exploiting speculative execution,” Commun. ACM, 2020.

[2] R. McIlroy, J. Sevcı́k, T. Tebbi, B. L. Titzer, and T. Verwaest, “Spectre
is here to stay: An analysis of side-channels and speculative execution,”
CoRR, 2019.

[3] A. P. Kuruvila, S. Karmakar, and K. Basu, “Time series-based malware
detection using hardware performance counters,” in HOST. IEEE, 2021.

[4] J. Depoix and P. Altmeyer, “Detecting Spectre attacks by identifying
cache side-channel attacks using machine learning,” Advanced Microker-
nel Operating Systems, 2018.

[5] Z. Tong, Z. Zhu, Y. Zhang, Y. Liu, and D. Meng, “Attack detection based
on machine learning algorithms for different variants of spectre attacks
and different meltdown attack implementations,” CoRR, 2022.

[6] C. Li and J. Gaudiot, “Online detection of spectre attacks using microar-
chitectural traces from performance counters,” in SBAC-PAD. IEEE,
2018.

[7] ——, “Detecting malicious attacks exploiting hardware vulnerabilities us-
ing performance counters,” in COMPSAC, V. Getov, J. Gaudiot, N. Yamai,
S. Cimato, J. M. Chang, Y. Teranishi, J. Yang, H. V. Leong, H. Shahriar,
M. Takemoto, D. Towey, H. Takakura, A. Elçi, S. Takeuchi, and S. Puri,
Eds. IEEE, 2019.

[8] ——, “Detecting spectre attacks using hardware performance counters,”
IEEE Trans. Computers, 2022.

[9] B. A. Ahmad, “Real time detection of spectre and meltdown attacks using
machine learning,” CoRR, 2020.

[10] R. Oshana, M. A. Thornton, E. C. Larson, and X. Roumegue, “Real-time
edge processing detection of malicious attacks using machine learning
and processor core events,” in SysCon 2021. IEEE, 2021.

[11] M. Mushtaq, J. Bricq, M. K. Bhatti, A. Akram, V. Lapotre, G. Gogniat,
and P. Benoit, “WHISPER: A tool for run-time detection of side-channel
attacks,” IEEE Access, 2020.

[12] H. Wang, H. Sayadi, A. Sasan, S. Rafatirad, T. Mohsenin, and H. Homay-
oun, “Comprehensive evaluation of machine learning countermeasures for
detecting microarchitectural side-channel attacks,” in GLSVLSI, T. Mohs-
enin, W. Zhao, Y. Chen, and O. Mutlu, Eds. ACM, 2020.

[13] H. Wang, H. Sayadi, S. Rafatirad, A. Sasan, and H. Homayoun, “SCARF:
detecting side-channel attacks at real-time using low-level hardware
features,” in IOLTS. IEEE, 2020.

[14] H. Sayadi, N. Patel, S. M. P. D., A. Sasan, S. Rafatirad, and H. Homay-
oun, “Ensemble learning for effective run-time hardware-based malware
detection: a comprehensive analysis and classification,” in DAC. ACM,
2018.

[15] J. Cho, T. Kim, S. Kim, M. Im, T. Kim, and Y. Shin, “Real-time detec-
tion for cache side channel attack using performance counter monitor,”
Applied Sciences, 2020.

[16] M. Mushtaq, A. Akram, M. K. Bhatti, M. Chaudhry, M. M. Yousaf,
U. Farooq, V. Lapotre, and G. Gogniat, “Machine learning for security:
The case of side-channel attack detection at run-time,” in ICECS. IEEE,
2018.

[17] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, J. Horn, S. Man-
gard, P. Kocher, D. Genkin, Y. Yarom, M. Hamburg, and R. Strackx,
“Meltdown: reading kernel memory from user space,” Commun. ACM,
2020.

[18] P. C. Kocher, “Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems,” in CRYPTO, N. Koblitz, Ed. Springer, 1996.

[19] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+flush: A fast
and stealthy cache attack,” in DIMVA 2016, J. Caballero, U. Zurutuza,
and R. J. Rodrı́guez, Eds. Springer, 2016.

[20] D. Gruss, R. Spreitzer, and S. Mangard, “Cache template attacks: Au-
tomating attacks on inclusive last-level caches,” in USENIX Security 15,
J. Jung and T. Holz, Eds. USENIX Association, 2015.

[21] M. Mushtaq, A. Akram, M. K. Bhatti, R. N. B. Rais, V. Lapotre, and
G. Gogniat, “Run-time detection of prime + probe side-channel attack on
AES encryption algorithm,” in GIIS 2018. IEEE, 2018.

[22] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the keys to the intel SGX kingdom with transient out-of-order
execution,” in USENIX Security, W. Enck and A. P. Felt, Eds. USENIX
Association, 2018.

[23] M. Chiappetta, E. Savas, and C. Yilmaz, “Real time detection of cache-
based side-channel attacks using hardware performance counters,” Appl.
Soft Comput., 2016.

[24] S. Browne, J. J. Dongarra, N. Garner, G. Ho, and P. Mucci, “A portable
programming interface for performance evaluation on modern proces-
sors,” Int. J. High Perform. Comput. Appl., 2000.

[25] G. Pang, C. Shen, L. Cao, and A. van den Hengel, “Deep learning for
anomaly detection: A review,” ACM Comput. Surv., 2022.

[26] H. Fang, P. Tang, and H. Si, “Feature selections using minimal redun-
dancy maximal relevance algorithm for human activity recognition in
smart home environments,” Journal of Healthcare Engineering, 2020.

[27] J. Li, A. Bobyr, S. Boehm, W. C. Brantley, H. Brunst, A. Cavelan,
S. Chandrasekaran, J. Cheng, F. M. Ciorba, M. E. Colgrove, T. Curtis,
C. S. Daley, M. H. Ferrato, M. G. de Souza, N. Hagerty, R. Henschel,
G. Juckeland, J. Kelling, K. Li, R. Lieberman, K. McMahon, E. Mel-
nichenko, M. A. Neggaz, H. Ono, C. Ponder, D. Raddatz, S. Schueller,
R. Searles, F. Vasilev, V. G. M. Vergara, B. Wang, B. Wesarg, S. Wienke,
and M. Zavala, “Spechpc 2021 benchmark suites for modern HPC
systems,” in ICPE. ACM, 2022.

[28] Y. Zhang and Y. Makris, “Hardware-based detection of spectre attacks:
A machine learning approach,” in AsianHOST. IEEE, 2020.

	Introduction
	State-of-the-Art
	Research Gap
	Research Contributions

	Background
	Speculative Execution
	Cache Memory
	Side-Channel Attacks and Spectre
	Performance Counters
	Machine Learning for Security
	Evaluation Criteria

	Methodology
	Experiments and Results
	Data Collection and Analysis
	ML Algorithms and Models
	Experiments
	Different Classifiers, Same Dataset
	 Individual Algorithm over All Datasets
	Ranking and Reduction of HPCs

	Significant Findings and Discussion

	Conclusion
	Acknowledgment
	References

