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A B S T R A C T

Thresholded hybrid systems are restricted dynamical systems, where the current mode, and
hence the ODE system describing its behavior, is solely determined by externally supplied
digital input signals and where the only output signals are digital ones generated by comparing
an internal state variable to a threshold value. An attractive feature of such systems is easy
composition, which is facilitated by their purely digital interface. A particularly promising
application domain of thresholded hybrid systems is digital integrated circuits: Modern digital
circuit design considers them as a composition of Millions and even Billions of elementary logic
gates, like inverters, OR and AND. Since every such logic gate is eventually implemented as an
electronic circuit, however, which exhibits a behavior that is governed by some ODE system,
thresholded hybrid systems are ideally suited for making the transition from the analog to the
digital world rigorous.

In this paper, we prove that the mapping from digital input signals to digital output signals
is continuous for a large class of thresholded hybrid systems. Moreover, we show that, under
some mild conditions regarding causality, this continuity also continues to hold for arbitrary
compositions, which in turn guarantees that the composition faithfully captures the analog
reality. By applying our generic results to some recently developed thresholded hybrid gate
models, both for single-input single-output gates like inverters and for a two-input CMOS NOR
gate, we show that they are continuous. Moreover, we provide a novel thresholded hybrid
model for the two-input NOR gate, which is not only continuous but also, unlike the existing
one, faithfully models all multi-input switching effects.

. Introduction

The behavior of thresholded hybrid systems is governed by the dynamics of a continuous process, described by some system of
rdinary differential equations (ODEs), which is selected according to externally supplied digital mode switch signals from a set of
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Fig. 1. Thresholded mode-switched ODE with a single mode input 𝑖, the delayed input 𝑖𝑑 , two continuous states 𝑥, 𝑦, and two thresholded outputs 𝛩𝛼 (𝑥) and
𝛽 (𝑦).

candidates, and controls some digital outputs based on whether some internal signals are above or below a threshold, see Fig. 1 for
an illustration. Thresholded hybrid systems can be found in various application areas, including digitally controlled thermodynamic
processes, hydrodynamic systems, and, in particular, digital integrated circuits. Consider a simple digitally controlled heating system,
for example: The continuous dynamics of the room temperature would be governed by some ODE for the case when the heating is
switched on, and another ODE for the case where the heating is switched off. A binary mode switch input signal tells whether the
heating is switched on or off. Two binary output signal, low resp. high, report on whether the current room temperature is below
20 degrees resp. above 23 degrees. A simple digital bang–bang controller could be used to switch the heating on when low makes
a transition from 0 to 1, and to switch it off when high makes such a transition.

In this paper, we will study properties of such thresholded hybrid systems, and systems built from those via arbitrary composition,
.e., where the digital output signal of one component drives a mode switch signal of one or more other components, possibly

forming some feedback loops. First and foremost, we will give conditions that ensure the continuity of the outputs of such systems
with respect to their external inputs. This continuity property guarantees that small timing variations of the digital input signals lead
o small variations of the digital output signals only. Moreover, we will show that, under some mild constraints regarding causality,

any finite composition of continuous thresholded hybrid systems is continuous, and faithfully models the analog reality.
Whereas our continuity results are independent of the particular application area, we will tailor our presentation primary to

digital integrated circuits. Indeed, digital circuits are a particularly important class of systems composed of thresholded hybrid
systems, modeling elementary logic gates like inverters, OR, and AND, which will be called digitized hybrid gates in the sequel. The
application of our generic results will reveal that thresholded hybrid systems are indeed ideally suited for making the transition
from the analog implementation to the digital abstraction in modern digital circuit design rigorous.

Digital circuit modeling basics. Modern digital integrated circuits consist of Millions and sometimes Billions of transistors, which are
analog electronic devices and thus process and generate analog signals. Modern digital circuit design, on the other hand, considers
a circuit as a composition of elementary digital logic gates, and leaves it to (quite complex) tools to compile a design down to its
analog implementation.

In view of the very short design cycles nowadays, developers cannot afford to repeatedly downcompile a design to verify its
orrectness and performance. Fast digital functional verification and timing analysis techniques and tools are hence key elements of
odern circuit design. In particular, thanks to the elaborate static timing analysis techniques available today, like CCSM [1] and

ECSM [2], worst-case critical path delays can be determined very accurately and very quickly, even for very large circuits. Whereas
such corner-case delay estimates are sufficient for synchronous circuit designs, which are still the vast majority nowadays, analyzing
the behavior of specific asynchronous circuits, like the one described in [3], or inter-neuron links using time-based encoding in
ardware-implemented spiking neural networks [4], require more elaborate timing analysis techniques.

More specifically, consider the token-passing ring studied by Winstanley et al. in [3], which is composed of stages consisting
of a 2-input Muller C gate with its inputs connected to the preceding and succeeding stages. The authors demonstrated that this
ring implements an oscillator, which exhibits two distinct modes of operation: burst behavior and evenly spaced output transitions,
which can alternate over time in an unpredictable (chaotic) fashion. In order to predict the actual behavior of this circuit, it is
essential to track the timing relationships of individual transitions across the entire ring. Since static timing analysis techniques
cannot accomplish this, dynamic timing analysis techniques need to be resorted to.

The golden standard for dynamic timing analysis are analog simulations, e.g., using SPICE [5], applied to a (usually manufacturer-
supplied) ODE model of the entire circuit. Since such numerical analog simulations are prohibitively time-consuming even for small
ircuits and short signal traces, digital dynamic timing analysis techniques have been invented as a less accurate but much faster

alternative. They rest on fast and efficiently computable gate delay models like pure or inertial delays [6], which provide input-to-
output delay estimations for every gate. The resulting dynamic timing analysis techniques enable efficient correctness validation of
large circuits, as well as precise performance and power estimations, even during early design stages [7].

The simplest non-trivial1 digital delay models suitable for accurate dynamic timing analysis are single-history delay models. In
fact, since the delay for a given signal transition of a real gate is also dependent on the previous transition(s), in particular, when
they are close, single-history delay models like [8–10] assume that the input-to-output delay 𝛿(𝑇 ) of a gate also depends on the
previous-output-to-input delay 𝑇 .

1 In our context, the widely known pure and inertial delay models [6], which exhibit little to no history dependency, must be considered trivial.
2 
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Fig. 2. A digitized hybrid gate model (for a non-inverting buffer) satisfying the involution property and a sample execution.
Source: Adapted from [10].

It has been proved by Függer et al. [8,10] that continuity is mandatory for any single-history model of a gate to faithfully represent
he analog reality. Continuity ensures, for example, that a constant-low input signal and an arbitrarily short low-high-low pulse lead

to very similar gate output signals. Note that this continuity property also implies continuity of the output signal power w.r.t. the
input signal power, since the square of a signal is proportional to its power. Consequently, continuous delay models are the most
promising candidates for the timing and power-accurate simulation of digital circuits [7].

So far, the only delay model that is known to ensure continuity is the involution delay model (IDM) [10], which consists of
zero-time Boolean gates interconnected by single-input single-output involution delay channels. An IDM channel is characterized
by a delay function 𝛿 that is a negative involution, i.e., −𝛿(−𝛿(𝑇 )) = 𝑇 . In its generalized version, different delay functions 𝛿↑ resp.
𝛿↓ are assumed for rising resp. falling transitions, requiring −𝛿↑(−𝛿↓(𝑇 )) = 𝑇 .

It has been shown already in [10] that involution delay functions arise naturally in the 2-state thresholded hybrid model
illustrated in Fig. 2, which consists of a pure delay component, a slew-rate limiter with a rising and falling switching waveform,
and an ideal comparator: The binary-valued input 𝑖𝑎 is delayed by some 𝛿min > 0, which assures causality, i.e., 𝛿↑∕↓(0) > 0. At every
transition of 𝑖𝑑 , the slew-rate limiter switches to the corresponding waveform (𝑓↓∕𝑓↑ for a falling/rising transition), thereby ensuring
that the resulting analog output voltage 𝑜𝑎 is a continuous (but not necessarily smooth) function of time. Finally, the comparator
generates the output 𝑜𝑑 by digitizing 𝑜𝑎 w.r.t. the discretization threshold voltage 𝑉𝑡ℎ.

It is hence probably not too surprising that the involution property itself guarantees continuity also at the level of digital signals,
hich in turn is the key to proving that the IDM allows to solve the canonical short-pulse filtration problem (see Section 4.2) exactly
s it is possible with real circuits. Note that the IDM also allows to incorporate substantial delay noise, PVT variations, and aging
ithout compromising faithfulness [11,12].

The IDM also comes with a publicly available simulation framework, the Involution Tool [13], which allows to simulate circuits
omposed of gates for with an IDM model has been provided. It also facilitates the evaluation of the accuracy of IDM delay predictions

against SPICE-generated data and other delay models. Whereas the accuracy of IDM predictions for single-input, single-output
circuits like inverter chains or clock trees turned out to be very good [13], this is less so for circuits involving multi-input gates.
It has been revealed by Ferdowsi et al. [14] that this is primarily due to the IDM’s inherent inability to properly cover output
elay variations caused by multiple input switching (MIS) effects, also known as Charlie effects, where different inputs switch in close

temporal proximity [15]: compared to the single input switching (SIS) case, output transitions may be sped up/slowed down with
decreasing transition separation time on different inputs. Since circuit models based on single-input, single-output delay channels
like IDM inherently cannot model MIS effects, generalized delay models like the ones presented in Section 5 are needed for the
ccurate digital modeling of multi-input gates.

Detailed contributions.

(1) We show that any thresholded hybrid model, where mode 𝑚 is governed by a system of first-order ODEs 𝑑 𝑥
𝑑 𝑡 = 𝐹𝑚(𝑡, 𝑥), leads

to a continuous digital delay model, provided all the 𝐹𝑚 are continuous in 𝑡 and Lipschitz continuous in 𝑥, with a common
Lipschitz constant for every 𝑡 > 0 and 𝑚.

(2) We carry over our general continuity property to digitized hybrid gates.
(3) We prove that the parallel composition of finitely many digitized hybrid gates in a circuit result in a unique and Zeno-free

execution, under some mild conditions regarding causality. Moreover, we prove that the resulting model is faithful w.r.t.
solving the canonical short-pulse filtration problem, provided all involved digitized hybrid gates are continuous.

(4) We introduce the intricacies caused by MIS effects in multi-input gates, and show that the digitized hybrid model for CMOS
NOR gates proposed in [14] is continuous.

(5) We revisit the advanced digitized hybrid model for CMOS NOR gates presented in [16], which covers all MIS effects. We prove
that it is continuous, and derive an accurate approximation of its delay function based on explicit solutions of the underlying
ODEs.2

2 Note that the present paper actually combines and extends both the HSCC’23 paper [17] (where we presented our continuity proof) and the ICCAD’23
aper [16] (where we presented our advanced model for the NOR gate), with the important difference that we replace the complicated approximation of the

ODE solutions used in [16] by the recently found explicit solutions, which results in much simpler and more accurate delay formulas and an explicit model
arametrization procedure that avoids any fitting.
3 
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Paper organization. In Section 2, we instantiate our general continuity result (Theorem 6). Section 3 presents our main continuity
esults for digitized hybrid gates (Theorems 7 and 8), and Section 4 deals with circuit composition and faithfulness of composed

models. In Section 5, we introduce MIS effects in multi-input gates and apply our continuity and faithfulness results to existing
digitized hybrid models [10,14]. In Section 6, we provide our novel analysis of the advanced model introduced in [16]. Some
conclusions are provided in Section 7.

2. Thresholded mode-switched ODEs

In this section, we provide a generic proof that every hybrid model that adheres to some mild conditions on its ODEs leads to a
ontinuous digital delay model. We start with proving continuity in the analog domain and then establish continuity of the digitized

signal obtained by feeding a continuous real-valued signal into a threshold voltage comparator. Combining those results will allow
us to assert the continuity of digital delay channels like the one shown in Fig. 2.

2.1. Continuity of ODE mode switching

For a vector 𝑥 ∈ R𝑛, denote by ‖𝑥‖ its Euclidean norm. For a piecewise continuous function 𝑓 ∶ [𝑎, 𝑏] → R𝑛, we write
‖𝑓‖1 = ∫ 𝑏

𝑎 ‖𝑓 (𝑡)‖ 𝑑 𝑡 for its 1-norm and ‖𝑓‖∞ = sup𝑡∈[𝑎,𝑏] ‖𝑓 (𝑡)‖ for its supremum norm. The projection function of a vector in
𝑛 onto its 𝑘th component, for 1 ≤ 𝑘 ≤ 𝑛, is denoted by 𝜋𝑘 ∶ R𝑛 → R.

In this section, we will consider non-autonomous first-order ODEs of the form 𝑑
𝑑 𝑡 𝑥(𝑡) = 𝑓 (𝑡, 𝑥(𝑡)), where the non-negative 𝑡 ∈ R+

represents the time parameter, 𝑥(𝑡) ∈ 𝑈 for some arbitrary open set 𝑈 ⊆ R𝑛, 𝑥0 ∈ 𝑈 is some initial value, and 𝑓 ∶ R+ × 𝑈 → R𝑛 is
chosen from a set 𝐹 of bounded functions that are continuous for (𝑡, 𝑥) ∈ [0, 𝑇 ] × 𝑈 , where 0 < 𝑇 < ∞, and Lipschitz continuous in
𝑈 with a common Lipschitz constant for all 𝑡 ∈ [0, 𝑇 ] and all choices of 𝑓 ∈ 𝐹 . It is well-known that every such ODE has a unique
solution 𝑥(𝑡) with 𝑥(0) = 𝑥0 that satisfies 𝑥(𝑡) ∈ 𝑈 for 𝑡 ∈ [0, 𝑇 ], is continuous in [0, 𝑇 ], and differentiable in (0, 𝑇 ).

The following lemma shows the continuous dependence of the solutions of such ODEs on their initial values. To be more explicit,
the exponential dependence of the Lipschitz constant on the time parameter allows temporal composition of the bound. The proof
can be found in standard textbooks on ODEs [18, Theorem 2.8].

Lemma 1. Let 𝑈 ⊆ R𝑛 be an open set and let 𝑓 ∶ R × 𝑈 → R𝑛 be Lipschitz continuous with Lipschitz constant 𝐾 for 𝑡 ∈ [0, 𝑇 ] with
𝑇 > 0, and let 𝑥, 𝑦 ∶ [0, 𝑇 ] → 𝑈 be continuous functions that are differentiable on (0, 𝑇 ) such that 𝑑

𝑑 𝑡 𝑥(𝑡) = 𝑓 (𝑡, 𝑥(𝑡)) and 𝑑
𝑑 𝑡 𝑦(𝑡) = 𝑓 (𝑡, 𝑦(𝑡))

for all 𝑡 ∈ (0, 𝑇 ). Then, ‖𝑥(𝑡) − 𝑦(𝑡)‖ ≤ 𝑒𝑡𝐾‖𝑥(0) − 𝑦(0)‖ for all 𝑡 ∈ [0, 𝑇 ].
A step function 𝑠 ∶ R+ → {0, 1} is a right-continuous function with left limits, i.e., lim𝑡→𝑡+0

𝑠(𝑡) = 𝑠(𝑡0) and lim𝑡→𝑡−0
𝑠(𝑡) exists for all

0 ∈ R+. A binary signal 𝑠 is a step function 𝑠 ∶ [0, 𝑇 ] → {0, 1}, a mode-switch signal 𝑎 is a step function 𝑎 ∶ [0, 𝑇 ] → 𝐹 , 𝑡 ↦ 𝑎𝑡.
Given a mode-switch signal 𝑎, a matching output signal for 𝑎 is a function 𝑥𝑎 ∶ [0, 𝑇 ] → 𝑈 that satisfies

(i) 𝑥𝑎(0) = 𝑥0,
(ii) the function 𝑥𝑎 is continuous,

(iii) for all 𝑡 ∈ (0, 𝑇 ), if 𝑎 is continuous at 𝑡, then 𝑥𝑎 is differentiable at 𝑡 and 𝑑
𝑑 𝑡 𝑥𝑎(𝑡) = 𝑎𝑡(𝑡, 𝑥𝑎(𝑡)).

For (iii), recall that the codomain of 𝑎 is 𝐹 .
Using an inductive argument, the following lemma establishes that, for any given mode-switch signal, there is a unique matching

utput signal, given as a continuous and differentiable function.

Lemma 2 (Existence and Uniqueness of Matching Output Signal). Given a mode-switch signal 𝑎, the matching output signal 𝑥𝑎 for 𝑎 exists
and is unique.

Proof. 𝑥𝑎 can be constructed inductively, by pasting together the solutions 𝑥𝑡𝑗 of 𝑑
𝑑 𝑡 𝑥𝑡𝑗 (𝑡) = 𝑎𝑡𝑗 (𝑡, 𝑥𝑡𝑗 (𝑡)), where 𝑡0 = 0 and 𝑡1 < 𝑡2 < …

are 𝑎’s switching times in 𝑆𝑎: For the induction basis 𝑗 = 0, we define 𝑥𝑎(𝑡) ∶= 𝑥𝑡0 (𝑡) with initial value 𝑥𝑡0 = 𝑥𝑡0 (𝑡0) ∶= 𝑥0 for 𝑡 ∈ [0, 𝑡1].
bviously, (i) holds by construction, and the continuity and differentiability of 𝑥𝑡0 (𝑡) at other times ensures (ii) and (iii).

For the induction step 𝑗 → 𝑗 + 1, we assume that we have constructed 𝑥𝑎(𝑡) already for 0 ≤ 𝑡 ≤ 𝑡𝑗 . For 𝑡 ∈ [𝑡𝑗 , 𝑡𝑗+1], we define
𝑎(𝑡) ∶= 𝑥𝑡𝑗+1 (𝑡) with initial value 𝑥𝑡𝑗+1 = 𝑥𝑡𝑗+1 ∶= 𝑥𝑎(𝑡𝑗 ) = 𝑥𝑡𝑗 (𝑡𝑗 ). Continuity of 𝑥𝑎(𝑡) at 𝑡 = 𝑡𝑗 follows by construction, and the
ontinuity and differentiability of 𝑥𝑡𝑗+1 (𝑡) again ensures (ii) and (iii).

Finally, the uniqueness of 𝑥𝑎 follows directly from the uniqueness of the solution of the underlying first-order Lipschitz-continuous
DE system 𝑑 𝑥

𝑑 𝑡 = 𝑓 (𝑡, 𝑥) with the given initial condition. □

Given two mode-switch signals 𝑎, 𝑏, we define their distance as

𝑑𝑇 (𝑎, 𝑏) = 𝜆
(

{𝑡 ∈ [0, 𝑇 ] ∣ 𝑎𝑡 ≠ 𝑏𝑡}
)

(1)

where 𝜆 is the Lebesgue measure on R. Obviously, the distance function 𝑑𝑇 is a metric on the set of mode-switch signals.
The following Theorem 3 shows that the mapping 𝑎 ↦ 𝑥𝑎 is continuous. Note that it requires all the functions in 𝐹 to satisfy a

ommon Lipschitz constant. Albeit this clearly limits the applicability of our theorem, the examples in Sections 5 and 6 reveal that
it is not an overly conservative assumption.
4 
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Theorem 3. Let 𝐾 ≥ 1 be a common Lipschitz constant for all functions in 𝐹 and let 𝑀 be a real number such that ‖𝑓 (𝑡, 𝑥(𝑡))‖ ≤ 𝑀 for
all 𝑓 ∈ 𝐹 , all 𝑥 ∈ 𝑈 , and all 𝑡 ∈ [0, 𝑇 ]. Then, for all mode-switch signals 𝑎 and 𝑏, if 𝑥𝑎 is the output signal for 𝑎 and 𝑥𝑏 is the output signal
or 𝑏, then ‖𝑥𝑎 − 𝑥𝑏‖∞ ≤ 2𝑀 𝑒𝑇 𝐾𝑑𝑇 (𝑎, 𝑏). Consequently, the mapping 𝑎 ↦ 𝑥𝑎 is continuous.

Proof. Let 𝑆 = {𝑡 ∈ (0, 𝑇 ) ∣ 𝑎 or 𝑏 is discontinuous at 𝑡} ∪ {0, 𝑇 } be the set of switching times of 𝑎 and 𝑏. The set 𝑆 must be finite,
since both 𝑎 and 𝑏 are right-continuous on a compact interval. Let 0 = 𝑠0 < 𝑠1 < 𝑠2 < ⋯ < 𝑠𝑚 = 𝑇 be the increasing enumeration
f 𝑆.

We show by induction on 𝑘 that

∀𝑡 ∈ [0, 𝑠𝑘] ∶ ‖𝑥𝑎(𝑡) − 𝑥𝑏(𝑡)‖ ≤ 2𝑀 𝑒𝑡𝐾𝑑𝑡(𝑎, 𝑏) (2)

for all 𝑘 ∈ {0, 1, 2,… , 𝑚}. The base case 𝑘 = 0 is trivial. For the induction step 𝑘 ↦ 𝑘+ 1, we distinguish the two cases 𝑎𝑠𝑘 = 𝑏𝑠𝑘 and
𝑠𝑘 ≠ 𝑏𝑠𝑘 .

If 𝑎𝑠𝑘 = 𝑏𝑠𝑘 , then we have 𝑎𝑡 = 𝑏𝑡 for all 𝑡 ∈ [𝑠𝑘, 𝑠𝑘+1) and hence 𝑑𝑡(𝑎, 𝑏) = 𝑑𝑠𝑘 (𝑎, 𝑏) for all 𝑡 ∈ [𝑠𝑘, 𝑠𝑘+1]. Moreover, we can apply
Lemma 1 and obtain

∀𝑡 ∈ [𝑠𝑘, 𝑠𝑘+1] ∶ ‖𝑥𝑎(𝑡) − 𝑥𝑏(𝑡)‖ ≤ 𝑒(𝑡−𝑠𝑘)𝐾‖𝑥𝑎(𝑠𝑘) − 𝑥𝑏(𝑠𝑘)‖ . (3)

Plugging in (2) for 𝑡 = 𝑠𝑘 reveals that (2) holds for all 𝑡 ∈ [𝑠𝑘, 𝑠𝑘+1] as well.
If 𝑎𝑠𝑘 ≠ 𝑏𝑠𝑘 , then 𝑥𝑎 and 𝑥𝑏 follow different differential equations in the interval 𝑡 ∈ [𝑠𝑘, 𝑠𝑘+1]. We can, however, use the

mean-value theorem for vector-valued functions [19, Theorem 5.19] to obtain

∀𝑡 ∈ [𝑠𝑘, 𝑠𝑘+1] ∶ ‖𝑥𝑎(𝑡) − 𝑥𝑎(𝑠𝑘)‖ ≤ 𝑀(𝑡 − 𝑠𝑘) and (4)

∀𝑡 ∈ [𝑠𝑘, 𝑠𝑘+1] ∶ ‖𝑥𝑏(𝑡) − 𝑥𝑏(𝑠𝑘)‖ ≤ 𝑀(𝑡 − 𝑠𝑘). (5)

This, combined with the induction hypothesis, the equality 𝑑𝑡(𝑎, 𝑏) = 𝑑𝑠𝑘 (𝑎, 𝑏) + (𝑡 − 𝑠𝑘), and the inequalities 1 ≤ 𝑒𝑡𝐾 and 𝑒𝑠𝑘𝐾 ≤ 𝑒𝑡𝐾 ,
mplies

‖𝑥𝑎(𝑡) − 𝑥𝑏(𝑡)‖ ≤ ‖𝑥𝑎(𝑡) − 𝑥𝑎(𝑠𝑘) + ‖𝑥𝑎(𝑠𝑘) − 𝑥𝑏(𝑠𝑘)‖ + ‖𝑥𝑏(𝑠𝑘) − 𝑥𝑏(𝑡)‖

≤ 2𝑀(𝑡 − 𝑠𝑘) + 2𝑀 𝑒𝑠𝑘𝐾𝑑𝑠𝑘 (𝑎, 𝑏)
≤ 2𝑀 𝑒𝑡𝐾 (𝑡 − 𝑠𝑘) + 2𝑀 𝑒𝑡𝐾𝑑𝑠𝑘 (𝑎, 𝑏)
= 2𝑀 𝑒𝑡𝐾(𝑑𝑡(𝑎, 𝑏) − 𝑑𝑠𝑘 (𝑎, 𝑏)

)

+ 2𝑀 𝑒𝑡𝐾𝑑𝑠𝑘 (𝑎, 𝑏)
= 2𝑀 𝑒𝑡𝐾𝑑𝑡(𝑎, 𝑏)

for all 𝑡 ∈ [𝑠𝑘, 𝑠𝑘+1]. This concludes the proof. □

We remark that the (proof of the) continuity property of Theorem 3 is very different from the standard (proof of the) continuity
property of controlled variables in closed thresholded hybrid systems. Mode switches in such systems are caused by the time
evolution of the system itself, e.g., when some controlled variable exceeds some value. Consequently, such systems can be described
y means of a single ODE system with discontinuous righthand side [20].

By contrast, in our hybrid systems, the mode switches are solely caused by changes of digital inputs that are externally controlled:
For every possible pattern of the digital inputs, there is a dedicated ODE system that controls the analog output. Consequently, the
time evolution of the output now also depends on the time evolution of the inputs. Proving the continuity of the (discretized) output
w.r.t. different (but close, w.r.t. some metric) digital input signals require relating the output of different ODE systems. Therefore,
our setting cannot be modeled as a single ODE system with discontinuous righthand side.

2.2. Continuity of thresholding

For a real number 𝜉 ∈ R and a function 𝑥 ∶ [𝑎, 𝑏] → R, denote by 𝛩𝜉 (𝑥) the thresholded version of 𝑥 defined by

𝛩𝜉 (𝑥) ∶ [𝑎, 𝑏] → {0, 1}, 𝛩𝜉 (𝑥)(𝑡) =
{

0 if 𝑥(𝑡) ≤ 𝜉 ,
1 if 𝑥(𝑡) > 𝜉 . (6)

In what follows, we prove that, under some mild conditions, the mapping 𝑥 ↦ 𝛩𝜉 (𝑥) is continuous.

Lemma 4. Let 𝜉 ∈ R and let 𝑥 ∶ [𝑎, 𝑏] → R be a continuous strictly monotonic function with 𝑥(𝑏) = 𝜉. Then, for every 𝜀 > 0, there exists
a 𝛿 > 0 such that, for every continuous function 𝑦 ∶ [𝑎, 𝑏] → R, the condition ‖𝑥 − 𝑦‖∞ < 𝛿 implies ‖𝛩𝜉 (𝑥) − 𝛩𝜉 (𝑦)‖1 < 𝜀.

Proof. We show the lemma for the case that 𝑥 is strictly increasing. The proof for strictly decreasing 𝑥 is analogous.
Set 𝜒 = 𝑥(𝑎). Since 𝑥 is bijective onto the interval [𝜒 , 𝜉], it has an inverse function 𝑥−1 ∶ [𝜒 , 𝜉] → [𝑎, 𝑏]. The inverse function 𝑥−1

is continuous because the domain [𝑎, 𝑏] is compact [19, Theorem 4.17].
The relation 𝑡 ≤ 𝑥−1(𝜉 − 𝛿) implies 𝑥(𝑡) + 𝛿 ≤ 𝜉. Hence, if ‖𝑥 − 𝑦‖∞ < 𝛿, then 𝑦(𝑡) ≤ 𝑥(𝑡) + 𝛿 ≤ 𝜉 for all 𝑡 ≤ 𝑥−1(𝜉 − 𝛿). This means

that 𝛩 (𝑦)(𝑡) = 0 for all 𝑡 ≤ 𝑥−1(𝜉 − 𝛿), so 𝑡 > 𝑥−1(𝜉 − 𝛿) for every 𝑡 ∈ [𝑎, 𝑏] where 𝛩 (𝑦)(𝑡) = 1.
𝜉 𝜉
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By assumption, we have 𝛩𝜉 (𝑥)(𝑡) = 0 for all 𝑡 ∈ [𝑎, 𝑏]. Thus,

‖𝛩𝜉 (𝑥) − 𝛩𝜉 (𝑦)‖1 = 𝜆
(

{𝑡 ∈ [0, 𝑇 ] ∣ 𝛩𝜉 (𝑦) = 1}) = 𝜆
(

{𝑡 ∈ [0, 𝑇 ] ∣ 𝑦(𝑡) > 𝜉}) ≤ 𝑏 − 𝑥−1(𝜉 − 𝛿). (7)

Note that continuity of 𝑦 is sufficient to ensure that the set {𝑡 ∈ [0, 𝑇 ] ∣ 𝑦(𝑡) > 𝜉} in Eq. (7) is measurable. Since 𝑥−1 is continuous,
e have 𝑥−1(𝜉 − 𝛿) → 𝑥−1(𝜉) = 𝑏 as 𝛿 → 0. In particular, for every 𝜀 > 0, there exists a 𝛿 > 0 such that 𝑏 − 𝑥−1(𝜉 − 𝛿) < 𝜀. This

concludes the proof. □

The following Lemma 5 shows that we can drop the assumption 𝑥(𝑏) = 𝜉 in Lemma 4:

Lemma 5. Let 𝜉 ∈ R and let 𝑥, 𝑦 ∶ [𝑎, 𝑏] → R be two continuous functions where 𝑥 is strictly monotonic. Then, for every 𝜀 > 0, there
xists a 𝛿 > 0 such that ‖𝑥 − 𝑦‖∞ < 𝛿 implies ‖𝛩𝜉 (𝑥) − 𝛩𝜉 (𝑦)‖1 < 𝜀. Moreover, if max{𝑥(𝑎), 𝑥(𝑏)} ≤ 𝜉 or min{𝑥(𝑎), 𝑥(𝑏)} > 𝜉, then
𝛩𝜉 (𝑥) − 𝛩𝜉 (𝑦)‖1 = 0.

Proof. We again show the lemma for the case that 𝑥 is strictly increasing. The proof for strictly decreasing 𝑥 is analogous.
Let 𝜀 > 0. We distinguish three cases:
(i) If 𝑥(𝑏) < 𝜉, then we have 𝛩𝜉 (𝑥)(𝑡) = 0 for all 𝑡 ∈ [𝑎, 𝑏]. Choosing 𝛿 = 𝜉 − 𝑥(𝑏), we deduce 𝑦(𝑡) < 𝑥(𝑡) + 𝛿 ≤ 𝑥(𝑏) + 𝜉 − 𝑥(𝑏) = 𝜉 for

ll 𝑡 ∈ [𝑎, 𝑏] whenever ‖𝑥 − 𝑦‖∞ < 𝛿. Hence, we get 𝛩𝜉 (𝑦)(𝑡) = 0 for all 𝑡 ∈ [𝑎, 𝑏] and thus ‖𝛩𝜉 (𝑥) − 𝛩𝜉 (𝑦)‖1 = 0 < 𝜀.
(ii) If 𝑥(𝑎) > 𝜉, then we can choose 𝛿 = 𝑥(𝑎) − 𝜉 and get 𝛩𝜉 (𝑦)(𝑡) = 𝛩𝜉 (𝑥)(𝑡) = 1 for all 𝑡 ∈ [𝑎, 𝑏] whenever ‖𝑥 − 𝑦‖∞ < 𝛿. In

articular, ‖𝛩𝜉 (𝑥) − 𝛩𝜉 (𝑦)‖1 = 0 < 𝜀.
(iii) If 𝑥(𝑎) ≤ 𝜉 ≤ 𝑥(𝑏), then there exists a unique 𝑐 ∈ [𝑎, 𝑏] with 𝑥(𝑐) = 𝜉. Applying Lemma 4 on the restriction of 𝑥 on the

interval [𝑎, 𝑐], we get the existence of a 𝛿1 > 0 such that ‖𝑥 − 𝑦‖[𝑎,𝑐],∞ < 𝛿1 implies ‖𝛩𝜉 (𝑥) −𝛩𝜉 (𝑦)‖[𝑎,𝑐],1 < 𝜀∕2; herein, ‖ ⋅ ‖[𝑎,𝑐],∞ and
⋅ ‖[𝑎,𝑐],1 denote the supremum-norm and the 1-norm on the interval [𝑎, 𝑐], respectively. Applying Lemma 4 on the restriction of 𝑥

on the interval [𝑐 , 𝑏] after the coordinate transformation 𝑡 ↦ −𝑡 yields the existence of a 𝛿2 > 0 such that ‖𝑥 − 𝑦‖[𝑐 ,𝑏],∞ < 𝛿2 implies
𝛩𝜉 (𝑥) − 𝛩𝜉 (𝑦)‖[𝑐 ,𝑏],1 < 𝜀∕2. Setting 𝛿 = min{𝛿1, 𝛿2}, we thus get ‖𝛩𝜉 (𝑥) − 𝛩𝜉 (𝑦)‖[𝑎,𝑏],1 = ‖𝛩𝜉 (𝑥) − 𝛩𝜉 (𝑦)‖[𝑎,𝑐],1 + ‖𝛩𝜉 (𝑥) − 𝛩𝜉 (𝑦)‖[𝑐 ,𝑏],1 <
∕2 + 𝜀∕2 = 𝜀 whenever ‖𝑥 − 𝑦‖[𝑎,𝑏],∞ < 𝛿. □

The following Theorem 6 shows that the mapping 𝑥 ↦ 𝛩𝜉 (𝑥) is continuous for a given function 𝑥, provided that 𝑥 has only
finitely many alternating critical points, i.e., local optima that alternate between lying above and below 𝜉. Formally, these are times
𝑡0, 𝑡1,… , 𝑡𝑀 where 𝑥′(𝑡𝑗 ) = 0 for all 0 ≤ 𝑗 ≤ 𝑀 and sgn

(

𝑥(𝑡𝑖) − 𝜉
)

= − sgn(𝑥(𝑡𝑖+1) − 𝜉
)

, for all 0 ≤ 𝑖 ≤ 𝑀 − 1. Note carefully that we
require 𝑀 to be fixed and hence, in particular, independent of the choice of 𝑇 here.

Theorem 6. Let 𝜉 ∈ R and let 𝑥, 𝑦 ∶ [0, 𝑇 ] → R be two differentiable functions. Assume that 𝑥 has at most 𝑀 < ∞ alternating critical
points, where 𝑀 is independent of 𝑇 . Then, for every 𝜀 > 0, there exists a 𝛿 > 0 such that ‖𝑥 − 𝑦‖∞ < 𝛿 implies ‖𝛩𝜉 (𝑥) − 𝛩𝜉 (𝑦)‖1 < 𝜀.
Consequently, the mapping 𝑥 ↦ 𝛩𝜉 (𝑥) is continuous.

Proof. Let  = {𝑡 ∈ [0, 𝑇 ] ∣ 𝑥 has a critical point at 𝑡}∪ {0, 𝑇 }, which contains only 𝑚 ≤ 𝑀 alternating critical points by assumption,
and 𝑡0 < 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑚 be the increasing enumeration of  . By the mean-value theorem, the function 𝑥 is strictly monotonic in
every interval [𝑡𝑘, 𝑡𝑘+1] for every 𝑘 ∈ {0, 1, 2,… , 𝑚}.

Let 𝜀 > 0. Applying Lemma 5 to the restriction of 𝑥 on each of the intervals [𝑡𝑘, 𝑡𝑘+1], we distinguish two cases: (i) if 𝑡𝑘, 𝑡𝑘+1 are
on-alternating critical points, then ‖𝛩𝜉 (𝑥) −𝛩𝜉 (𝑦)‖[𝑡𝑘 ,𝑡𝑘+1],1 = 0. Otherwise, we are assured of the existence of some 𝛿𝑘 > 0 such that
𝑥 − 𝑦‖[𝑡𝑘 ,𝑡𝑘+1],∞ < 𝛿𝑘 implies ‖𝛩𝜉 (𝑥) − 𝛩𝜉 (𝑦)‖[𝑡𝑘 ,𝑡𝑘+1],1 < 𝜀∕𝑚. Setting 𝛿 = min{𝛿𝑘0 , 𝛿𝑘1 , 𝛿𝑘2 ,… , 𝛿𝑘𝑚−1}, we thus obtain

‖𝛩𝜉 (𝑥) − 𝛩𝜉 (𝑦)‖[0,𝑇 ],1 =
𝑚−1
∑

𝑘=0
‖𝛩𝜉 (𝑥) − 𝛩𝜉 (𝑦)‖[𝑡𝑘 ,𝑡𝑘+1],1 <

𝑚−1
∑

𝑘=0
𝜀∕𝑚 = 𝜀, (8)

whenever ‖𝑥 − 𝑦‖[0,𝑇 ],∞ < 𝛿. □

3. Continuity of digitized hybrid gates

To prepare for our general result about the continuity of hybrid gate models (Theorem 8), we will first (re)prove the continuity
of IDM channels as shown in Fig. 2, which has been established by a (somewhat tedious) direct proof in [10]. In our notation, an
IDM channel consists of:

• A nonnegative minimum delay 𝛿min ≥ 0 and a delay function 𝛥𝛿min
(𝑠) that maps the binary input signal 𝑖𝑎, augmented with the

left-sided limit 𝑖𝑎(0−) as the initial value3 that can be different from 𝑖𝑎(0), to the binary signal 𝑖𝑑 = 𝛥𝛿min
(𝑖𝑎), defined by

𝛥𝛿min
(𝑖𝑎)(𝑡) =

{

𝑖𝑎(0−) if 𝑡 < 𝛿min

𝑖𝑎(𝑡 − 𝛿min) if 𝑡 ≥ 𝛿min .
(9)

3 In [10], this initial value of a signal was encoded by extending the time domain to the whole R and using 𝑖 (−∞).
𝑎
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• An open set 𝑈 ⊆ R𝑛, where 𝜋1[𝑈 ] represents the analog output signal and 𝜋𝑘[𝑈 ], 𝑘 = {2, 3,… , 𝑛}, specifies the internal state
variables of the model. In this fashion,4 we presume that 𝜋1[𝑈 ] = (0, 1), i.e., the range of output signals is contained in the
interval (0, 1).

• Two bounded functions 𝐹↑, 𝐹↓ ∶ R × 𝑈 → R𝑛 with the following properties:

– 𝐹↑, 𝐹↓ are continuous for (𝑡, 𝑥) ∈ [0, 𝑇 ] × 𝑈 , for any 0 < 𝑇 < ∞, and Lipschitz continuous in 𝑈 , which entails that every
trajectory 𝑥 of the ODEs 𝑑

𝑑 𝑡 𝑥(𝑡) = 𝐹↑(𝑡, 𝑥(𝑡)) and 𝑑
𝑑 𝑡 𝑥(𝑡) = 𝐹↓(𝑡, 𝑥(𝑡)) with any initial value 𝑥(0) ∈ 𝑈 satisfies 𝑥(𝑡) ∈ 𝑈 for

all 𝑡 ∈ [0, 𝑇 ], recall Section 2.1.
– for no trajectory 𝑥 of the ODEs 𝑑

𝑑 𝑡 𝑥(𝑡) = 𝐹↑(𝑡, 𝑥(𝑡)) and 𝑑
𝑑 𝑡 𝑥(𝑡) = 𝐹↓(𝑡, 𝑥(𝑡)) with initial value 𝑥(0) ∈ 𝑈 does 𝜋1[𝑥] have

infinitely many alternating critical points 𝑡0, 𝑡1,… with 𝜋1[𝑥]′(𝑡) = 0 and sgn
(

𝜋1[𝑥](𝑡𝑖) − 𝜉
)

= − sgn(𝜋1[𝑥](𝑡𝑖+1) − 𝜉
)

, for all
𝑖 ≥ 0.

• An initial value 𝑥0 ∈ 𝑈 , with 𝑥0 = 𝐹↑ if 𝑖𝑎(0−) = 1 and 𝑥0 = 𝐹↓ if 𝑖𝑎(0−) = 0.
• A mode-switch signal 𝑏 ∶ [0, 𝑇 ] → {𝐹↑, 𝐹↓} defined by setting 𝑏(𝑡) = 𝐹↑ if 𝑖𝑑 (𝑡) = 1 and 𝑏(𝑡) = 𝐹↓ if 𝑖𝑑 (𝑡) = 0.
• The analog output signal 𝑜𝑎 = 𝜋1[𝑥𝑏], i.e., the output signal for 𝑏 and initial value 𝑥0.
• A threshold voltage 𝜉 = 𝑉𝑡ℎ ∈ (0, 1) for the comparator that finally produces the binary output signal 𝑜𝑑 = 𝛩𝜉 (𝑜𝑎).

By combining the results from Sections 2.1 and 2.2, we obtain the continuity of the channel function in a hybrid system mapping
nput signals to output signals stated in Theorem 7. It implies that small changes in the input signal lead to proportionally small
hanges in the output signal.

Theorem 7. The channel function of an IDM channel, which maps from the input signal 𝑖𝑎 to the output signal 𝑜𝑑 , is continuous with
respect to the 1-norm on the interval [0, 𝑇 ].

Proof. The mapping from 𝑖𝑎 to 𝑜𝑑 is continuous as the concatenation of continuous mappings:

• The mapping from 𝑖𝑎 ↦ 𝑖𝑑 is continuous since 𝛥𝛿min
is trivially continuous for input and output binary signals with the 1-norm.

• The mapping 𝑖𝑑 ↦ 𝑏 is a continuous mapping from the set of signals equipped with the 1-norm to the set of mode-switch
signals equipped with the metric 𝑑𝑇 , since the points of discontinuity of 𝑏 are the points where 𝑖𝑑 is discontinuous.

• By Theorem 3, the mapping 𝑏 ↦ 𝑥𝑏 is a continuous mapping from the set of mode-switch signals equipped with the metric 𝑑𝑇
to the set of piecewise differentiable functions [0, 𝑇 ] → 𝑈 equipped with the supremum-norm.

• The mapping 𝑥𝑏 ↦ 𝜋1◦𝑥𝑏 is a continuous mapping from the set of piecewise differentiable functions [0, 𝑇 ] → 𝑈 equipped with
the supremum-norm to the set of piecewise differentiable functions [0, 𝑇 ] → (0, 1) equipped with the supremum-norm. Since
‖(𝑥1,… , 𝑥𝑛)‖1 = ‖𝑥1‖1 +⋯ + ‖𝑥𝑛‖1 for every 𝑥 ∈ 𝑈 , this follows from ‖𝜋1[𝑥]‖1 ≤ ‖𝑥‖1.

• By Theorem 6, the mapping 𝜋1◦𝑥𝑏 ↦ 𝛩𝜉 (𝜋1◦𝑥𝑏) is a continuous mapping from the set of piecewise differentiable functions
[0, 𝑇 ] → (0, 1) equipped with the supremum-norm to the set of binary signals equipped with the 1-norm. □

Whereas the condition that no trajectory of any of the ODEs may have infinitely many alternating critical points is difficult to
heck in general, it is always guaranteed for every switching waveform 𝑓 (𝑡) typically found in elementary5 digitized hybrid gates.

More specifically, as any 𝑓 is meant to represent a digital signal here, it must satisfy either lim𝑡→∞ 𝑓 (𝑡) = 0 or lim𝑡→∞ 𝑓 (𝑡) = 1.
oreover, since real circuits cannot produce waveforms with arbitrary steep slopes, |𝑓 ′(𝑡)| must be bounded. From the former, it

ollows that, for every 𝜀 > 0, there is some 𝑡(𝜀) such that either 𝑓 (𝑡) < 𝜀 or else 𝑓 (𝑡) > 1 − 𝜀 for every 𝑡 ≥ 𝑡(𝜀). Consequently, choosing
= min{𝑉𝑡ℎ, 1 − 𝑉𝑡ℎ} reveals that no alternating critical point 𝑡 ≥ 𝑡(𝜀) can exist. Infinitely many alternating critical points for 𝑡 < 𝑡(𝜀)
re prohibited by |𝑓 ′(𝑡)| being bounded.

With these preparations, we can now deal with the general case: General digitized hybrid gates have 𝑐 ≥ 1 binary input signals
𝑎 = (𝑖1𝑎,… , 𝑖𝑐𝑎), augmented with initial values (𝑖1𝑎(0−),… , 𝑖𝑐𝑎(0−)), and a single binary output signal 𝑜𝑑 , and are specified as follows:

Definition 1 (Digitized Hybrid Gate). A digitized hybrid gate with 𝑐 inputs consists of:

• 𝑐 delay functions 𝛥𝛿𝑗 (𝑠) with 𝛿𝑗 ≥ 0, 1 ≤ 𝑗 ≤ 𝑐, that map the binary input signal 𝑖𝑗𝑎 with initial value 𝑖𝑗𝑎(0−) to the binary signal
𝑖𝑗𝑑 = 𝛥𝛿𝑗 (𝑖

𝑗
𝑎), defined by

𝛥𝛿𝑗 (𝑖
𝑗
𝑎)(𝑡) =

{

𝑖𝑗𝑎(0−) if 𝑡 < 𝛿𝑗
𝑖𝑗𝑎(𝑡 − 𝛿𝑗 ) if 𝑡 ≥ 𝛿𝑗 .

(10)

• An open set 𝑈 ⊆ R𝑛, where 𝜋1[𝑈 ] represents the analog output signal and 𝜋𝑘[𝑈 ], 𝑘 = {2, 3,… , 𝑛}, specifies the internal state
variables of the model.

4 In real circuits, the interval (0, 1) typically needs to be replaced by (0, 𝑉𝐷 𝐷).
5 This is true for all combinational gates like inverters, 𝙽𝙾𝚁, 𝙽𝙰𝙽𝙳 etc. Excluded are gates with an internal state, like a storage element, which may exhibit

etastable behavior [21,22].
7 
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• A set 𝐹 of bounded functions 𝐹 𝓁 ∶ R × 𝑈 → R𝑛, with the following properties:

– 𝐹 𝓁 is continuous for (𝑡, 𝑥) ∈ [0, 𝑇 ] × 𝑈 , for any 0 < 𝑇 < ∞, and Lipschitz continuous in 𝑈 , with a common Lipschitz
constant, which entails that every trajectory 𝑥 of the ODE 𝑑

𝑑 𝑡 𝑥(𝑡) = 𝐹 𝓁(𝑡, 𝑥(𝑡)) with any initial value 𝑥(0) ∈ 𝑈 satisfies
𝑥(𝑡) ∈ 𝑈 for all 𝑡 ∈ [0, 𝑇 ].

– for no trajectory 𝑥 of the ODEs 𝑑
𝑑 𝑡 𝑥(𝑡) = 𝐹 𝓁(𝑡, 𝑥(𝑡)) with initial value 𝑥(0) ∈ 𝑈 does 𝜋1[𝑥] have infinitely many alternating

critical points 𝑡0, 𝑡1,… with 𝜋1[𝑥]′(𝑡) = 0 and sgn
(

𝜋1[𝑥](𝑡𝑖) − 𝜉
)

= − sgn(𝜋1[𝑥](𝑡𝑖+1) − 𝜉
)

, for all 𝑖 ≥ 0.

• A mode-switch signal 𝑏 ∶ [0, 𝑇 ] → 𝐹 , which obtained by a continuous choice function 𝑏𝑐 acting on 𝑖1𝑑 (𝑡),… , 𝑖𝑐𝑑 (𝑡), i.e., 𝑏(𝑡) =
𝑏𝑐 (𝑖1𝑑 (𝑡),… , 𝑖𝑐𝑑 (𝑡)).

• An initial value 𝑥0 ∈ 𝑈 , which must correspond to the mode selected by 𝑏𝑐 (𝑖1𝑎(0−),… , 𝑖𝑐𝑎(0−)).
• The analog output signal 𝑜𝑎 = 𝜋1[𝑥𝑏], i.e., the output signal for 𝑏 and initial value 𝑥0.
• A threshold voltage 𝜉 = 𝑉𝑡ℎ ∈ (0, 1) for the comparator that finally produces the binary output signal 𝑜𝑑 = 𝛩𝜉 (𝑜𝑎).

By essentially the same proof as for Theorem 7, we obtain:

Theorem 8. The gate function of a digitized hybrid gate with 𝑐 inputs according to Definition 1, which maps from the vector of input
signals 𝑖𝑎 = (𝑖1𝑎,… , 𝑖𝑐𝑎) to the output signal 𝑜𝑑 , is continuous with respect to the 1-norm on the interval [0, 𝑇 ].

4. Composing gates in circuits

In this section, we will first compose digital circuits from digitized hybrid gates and reason about their executions. More
pecifically, it will turn out that, under certain conditions ensuring the causality of every composed gate, the resulting circuit will

exhibit a unique execution for any given execution of its inputs. This uniqueness is mandatory for building digital dynamic timing
simulation tools.

Moreover, we will adapt the proof that no circuit with IDM channels can solve the bounded SPF problem utilized in [10] to our
etting: Using the continuity result of Theorem 8, we prove that no circuit with digitized hybrid gates can solve bounded SPF. Since
nbounded SPF can be solved with IDM channels, which are simple instances of digitized hybrid gate models, faithfulness w.r.t.
olving the SPF problem follows.

4.1. Executions of circuits

Circuits. Circuits are obtained by interconnecting a set of input ports and a set of output ports, forming the external interface
of a circuit, and a finite set of digitized hybrid gates. We constrain the way components are interconnected in a natural way, by
requiring that any gate input, channel input and output port is attached to only one input port, gate output or channel output,
respectively. Formally, a circuit is described by a directed graph where:

(C1) A vertex 𝛤 can be either a circuit input port, a circuit output port, or a digitized hybrid gate.
(C2) The edge (𝛤 , 𝐼 , 𝛤 ′) represents a 0-delay connection from the output of 𝛤 to a fixed input 𝐼 of 𝛤 ′.
(C3) Circuit input ports have no incoming edges.
(C4) Circuit output ports have exactly one incoming edge and no outgoing one.
(C5) A 𝑐-ary gate 𝐺 has a single output and 𝑐 inputs 𝐼1,… , 𝐼𝑐 , in a fixed order, fed by incoming edges from exactly one gate output

or input port.

Executions. An execution of a circuit  is a collection of binary signals 𝑠𝛤 defined on [0,∞) for all vertices 𝛤 of  that respects all
the gate functions and input port signals. Formally, the following properties must hold:

(E1) If 𝑖 is a circuit input port, there are no restrictions on 𝑠𝑖.
(E2) If 𝑜 is a circuit output port, then 𝑠𝑜 = 𝑠𝐺, where 𝐺 is the unique gate output connected to 𝑜.
(E3) If vertex 𝐺 is a gate with 𝑐 inputs 𝐼1,… , 𝐼𝑐 , ordered according to the fixed order condition C5), and gate function 𝑓𝐺, then 𝑠𝐺 =

𝑓𝐺(𝑠𝛤1 ,… , 𝑠𝛤𝑐 ), where 𝛤1,… , 𝛤𝑐 are the vertices the inputs 𝐼1,… , 𝐼𝑐 of 𝐶 are connected to via edges (𝛤1, 𝐼1, 𝐺),⋯ , (𝛤𝑑 , 𝐼𝑐 , 𝐺).

The above definition of an execution of a circuit is ‘‘existential’’, in the sense that it only allows checking for a given collection
f signals whether it is an execution or not: For every hybrid gate in the circuit, it specifies the gate output signal, given a fixed

vector of input signals, all defined on the time domain 𝑡 ∈ [0,∞). A priori, this does not give an algorithm to construct executions
of circuits, in particular, when they contain feedback loops. Indeed, the parallel composition of general hybrid automata may lead
to non-unique executions and bizarre timing behaviors known as Zeno, where an infinite number of transitions may occur in finite
time [23].

To avoid such behaviors in our setting, we require all digitized hybrid gates in a circuit to be strictly causal:

Definition 2 (Strict Causality). A digitized hybrid gate 𝐺 with 𝑐 inputs is strictly causal, if the pure delays 𝛿𝑗 for every 1 ≤ 𝑗 ≤ 𝑐 are
positive. Let 𝛿𝐶min > 0 be the minimal pure delay of any input of any gate in circuit 𝐶.
8 
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We proceed with defining input–output causality for gates, which is based on signal transitions. Every binary signal can
quivalently be described by a sequence of transitions: A falling transition at time 𝑡 is the pair (𝑡, 0), a rising transition at time 𝑡
s the pair (𝑡, 1).

Definition 3 (Input–output Causality). The output transition (𝑡, .) ∈ 𝑠𝐺 of a gate G is caused by the transition (𝑡′, .) ∈ 𝑠𝑗𝐺 on input 𝐼𝑗
of 𝐺, if (𝑡, .) occurs in the mode 𝑎𝑐 (𝑖1𝑑 (𝑡

+),… , 𝑖𝑐𝑑 (𝑡+)), where 𝑖𝑗𝑑 (𝑡
+) is the pure-delay shifted input signal at input 𝐼𝑗 at the last mode

witching time 𝑡+ ≤ 𝑡 (see Eq. 1) and (𝑡′, .) is the last transition in 𝑠𝑗𝐺 before or at time 𝑡+ − 𝛿𝑗 , i.e., ∄(𝑡′′, .) ∈ 𝑠𝑗𝐺 for 𝑡′ < 𝑡′′ ≤ 𝑡+ − 𝛿𝑗 .
We also assume that the output transition (𝑡, .) ∈ 𝑠𝐺 causally depends on every transition in 𝑠𝑗𝐺 before or at time 𝑡+ − 𝛿𝑗 .

Strictly causal gates satisfy the following obvious property:

Lemma 9. If some output transition (𝑡, .) ∈ 𝑠𝐺 of a strictly causal digitized hybrid gate 𝐺 in a circuit 𝐶 causally depends on its input
transition (𝑡′, .) ∈ 𝑠𝑗𝐺, then 𝑡 − 𝑡′ ≥ 𝛿𝑗 .

The following Theorem 4.1 shows that every circuit made up of strictly causal gates has a unique execution, defined for 𝑡 ∈ [0,∞).

Theorem 4.1 (Unique Execution). Every circuit 𝐶 made up of finitely many strictly causal digitized hybrid gates has a unique execution,
which either consists of finitely many transitions only or else requires [0,∞) as its time domain.

Proof. We will inductively construct this unique execution by a sequence of iterations 𝓁 ≥ 1 of a simple deterministic simulation
algorithm, which determines the prefix of the sought execution up to time 𝑡𝓁 . Iteration 𝓁 deals with transitions occurring at time
𝑡𝓁 , starting with 𝑡1 = 0. To every transition 𝑒 generated throughout its iterations, we also assign a causal depth 𝑑(𝑒) that gives the

aximum causal distance to an input port: 𝑑(𝑒) = 0 if 𝑒 is a transition at some input port, and 𝑑(𝑒) is the maximum of 1 + 𝑑(𝑒𝑗 ),
≤ 𝑗 ≤ 𝑐, for every transition added at the output of a 𝑐-ary gate caused by transitions 𝑒𝑗 at its inputs.

Induction basis 𝓁 = 1: At the beginning of iteration 1, which deals with all transitions occurring at time 𝑡1 = 0, all gates are in
their initial mode, which is determined by the initial values of their inputs. They are either connected to input ports, in which case
𝑠𝑖(0−) is used, or to the output port of some gate 𝐺, in which case 𝑠𝐺(0) (determined by the initial mode of 𝐺) is used. Depending
on whether 𝑠𝑖(0−) = 𝑠𝑖(0) or not, there is also an input transition (0, 𝑠𝑖(0)) ∈ 𝑠𝑖 or not. All transitions in the so generated execution
prefix [0, 𝑡1] = [0, 0] have a causal depth of 0.

Still, the transitions that have happened by time 𝑡1 may cause additional potential future transitions. They are called future
ransitions, because they occur only after 𝑡1, and potential because they need not occur in the final execution. In particular, if

there is an input transition (0, 𝑠𝑖(0)) ∈ 𝑠𝑖, it may cause a mode switch of every gate 𝐺 that is connected to the input port 𝑖. Due to
Lemma 9, however, such a mode switch, and hence each of the output transitions 𝑒 that may occur during that new mode (which
ll are assigned a causal depth 𝑑(𝑒) = 1), of 𝐺 can only happen at or after time 𝑡1 + 𝛿𝐶min. In addition, the initial mode of any gate 𝐺
hat is not mode switched may also cause output transitions 𝑒 at arbitrary times 𝑡 > 0, which are assigned a causal depth 𝑑(𝑒) = 0.
ince at most finitely many critical points may exist for every mode’s trajectory, it follows that at most finitely many such future
otential transitions could be generated in each of the finitely many gates in the circuit. Let 𝑡2 > 𝑡1 denote the time of the closest
ransition among all input port transitions and all the potential future transitions just introduced.

Induction step 𝓁 → 𝓁 + 1: Assume that the execution prefix for [0, 𝑡𝓁] has already been constructed in iterations 1,… ,𝓁, with
at most finitely many potential future transitions occurring after 𝑡𝓁 . If the latter set is empty, then the execution of the circuit has
already been determined completely. Otherwise, let 𝑡𝓁+1 > 𝑡𝓁 be the closest future transition time.

During iteration 𝓁+ 1, all transitions occurring at time 𝑡𝓁+1 are dealt with, exactly as in the base case: Any transition 𝑒, with causal
depth 𝑑(𝑒), happening at 𝑡𝓁+1 at a gate output or at some input port may cause a mode switch of every gate 𝐺 that is connected to
it. Due to Lemma 9, such a mode switch, and hence each of the at most finitely many output transitions 𝑒′ occurring during that
ew mode (which all are assigned a causal depth 𝑑(𝑒′) = 𝑑(𝑒) + 1), of 𝐺 can only happen at or after time 𝑡𝓁+1 + 𝛿𝐶min. In addition,

the at most finitely many potential future transitions w.r.t. 𝑡𝓁 of all gates that have not been mode-switched and actually occur at
times greater than 𝑡𝓁+1 are retained, along with their assigned causal depth, as potential future transitions w.r.t. 𝑡𝓁+1. Overall, we
again end up with at most finitely many potential future transitions, which completes the induction step.

To complete our proof, we only need to argue that lim𝓁→∞ 𝑡𝓁 = ∞ for the case where the iterations do not stop at some finite
. This follows immediately from the fact that, for every 𝑘 ≥ 1, there must be some iteration 𝓁 ≥ 1 such that 𝑡𝓁 ≥ 𝑘𝛿𝐶min. If this was
ot the case, there must be some iteration after which no further mode switch of any gate takes place. This would cause the set
f potential future transitions to shrink in every subsequent iteration, however, and thus the simulation algorithm to stop, which
rovides the required contradiction. □

From the execution construction, we also immediately get:

Lemma 10. For all 𝓁 ≥ 1, (a) the simulation algorithm never assigns a causal depth larger than 𝓁 to a transition generated in iteration 𝓁,
and (b) at the end of iteration 𝓁 the sequence of causal depths of transitions in 𝑠𝛤 for 𝑡 ∈ [0, 𝑡𝓁] is nondecreasing for all components 𝛤 .
9 
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4.2. Impossibility of short-pulse filtration

The results of the previous subsection allow us to adapt the impossibility proof of [10] to our setting. We start with the definition
of the SPF problem:

Short-Pulse Filtration. A signal contains a pulse of length 𝛥 at time 𝑇0, if it contains a rising transition at time 𝑇0, a falling
transition at time 𝑇0 + 𝛥, and no transition in between. The zero signal has the initial value 0 and does not contain any transition.
A circuit solves Short-Pulse Filtration (SPF), if it fulfills all of:

(F1) The circuit has exactly one input port and exactly one output port. (Well-formedness)
(F2) If the input signal is the zero signal, then so is the output signal. (No generation)
(F3) There exists an input pulse such that the output signal is not the zero signal. (Nontriviality)
(F4) There exists an 𝜀 > 0 such that for every input pulse the output signal never contains a pulse of length less than or equal

to 𝜀. (No short pulses)

We allow the circuit to behave arbitrarily if the input signal is not a single pulse or the zero signal.
A circuit solves bounded SPF if additionally:

(F5) There exists a 𝐾 > 0 such that for every input pulse the last output transition is before time 𝑇0 + 𝛥+𝐾, where 𝑇0 is the time
of the first input transition. (Bounded stabilization time)

A circuit is called a forward circuit if its graph is acyclic. Forward circuits are exactly those circuits that do not contain feedback
loops. Equipped with the continuity of digitized hybrid gates and the fact that the composition of continuous functions is continuous,
it is not too difficult to prove that the inherently discontinuous SPF problem cannot be solved with forward circuits.

Theorem 4.2. No forward circuit solves bounded SPF.

Proof. Suppose that there exists a forward circuit that solves bounded SPF with stabilization time bound 𝐾. Denote by 𝑠𝛥 its output
ignal when feeding it a 𝛥-pulse at time 0 as the input. Because 𝑠𝛥 in forward circuits is a finite composition of continuous functions
y Theorem 8, ‖𝑠𝛥‖[0,𝑇 ],1 depends continuously on 𝛥, for any 𝑇 .

By the nontriviality condition (F3) of the SPF problem, there exists some 𝛥0 such that 𝑠𝛥0 is not the zero signal. Set 𝑇 = 2𝛥0 +𝐾.
Let 𝜀 > 0 be smaller than both 𝛥0 and ‖𝑠𝛥0‖[0,𝑇 ],1. We show a contradiction by finding some 𝛥 such that 𝑠𝛥 either contains a pulse

f length less than 𝜀 (contradiction to the no short pulses condition (F4)) or contains a transition after time 𝛥 + 𝐾 (contradicting
he bounded stabilization time condition (F5)).

Since ‖𝑠𝛥‖[0,𝑇 ],1 → 0 as 𝛥 → 0 by the no generation condition (F2) of SPF, there exists a 𝛥1 < 𝛥0 such that ‖𝑠𝛥1‖[0,𝑇 ],1 = 𝜀 by
he intermediate value property of continuity. By the bounded stabilization time condition (F5), there are no transitions in 𝑠𝛥1 after
ime 𝛥1 +𝐾. Hence, 𝑠𝛥1 is 0 after this time because otherwise it is 1 for the remaining duration 𝑇 − (𝛥1 +𝐾) > 𝛥0 > 𝜀, which would
ean that ‖𝑠𝛥1‖[0,𝑇 ],1 > 𝜀. Consequently, there exists a pulse in 𝑠𝛥1 before time 𝛥1 + 𝐾. But any such pulse is of length at most 𝜀

ecause ‖𝑠𝛥1‖[0,𝛥1+𝐾],1 ≤ ‖𝑠𝛥1‖[0,𝑇 ],1 = 𝜀. This is a contradiction to the no short pulses condition (F4). □

We next show how to simulate (part of) an execution of an arbitrary circuit  by a forward circuit ′ generated from  by the
nrolling of feedback loops. Intuitively, the deeper the unrolling, the longer the time ′ behaves as .

Definition 4. Let  be a circuit, 𝑉 a vertex of , and 𝑘 ≥ 0. We define the 𝑘-unrolling of  from 𝑉 , denoted by 𝑘(𝑉 ), to be a
directed acyclic graph with a single sink, constructed as follows:

The unrolling 𝑘(𝐼) from input port 𝐼 is just a copy of that input port. The unrolling 𝑘(𝑂) from output port 𝑂 with incoming
channel 𝐶 and predecessor 𝑉 comprises a copy of the output port 𝑂(𝑘) and the unrolled circuit 𝑘(𝑉 ) with its sink connected to 𝑂(𝑘)

by an edge.
The 0-unrolling 0(𝐵) from hybrid gate 𝐵 is a trivial Boolean gate 𝑋𝑣 without inputs and the constant output value 𝑣 equal to 𝐵’s

initial digitized output value. For 𝑘 > 0, the 𝑘-unrolling 𝑘(𝐵) from gate 𝐵 comprises an exact copy of that gate 𝐵(𝑘). Additionally,
for every incoming edge of 𝐵 from 𝑉 in , it contains the circuit 𝑘−1(𝑉 ) with its sink connected to 𝐵(𝑘). Note that all copies of the
same input port are considered to be the same.

To each component 𝛤 in 𝑘(𝑉 ), we assign a value 𝑧(𝛤 ) ∈ N0 ∪ {∞} as follows: 𝑧(𝛤 ) = ∞ if 𝛤 has no predecessor (in particular,
is an input port) and 𝛤 ∉ {𝑋0, 𝑋1}. Moreover, 𝑧(𝑋0) = 𝑧(𝑋1) = 0, 𝑧(𝑉 ) = 𝑧(𝑈 ) if 𝑉 is an output port connected by an edge to 𝑈 ,
and 𝑧(𝐵) = min𝑐∈𝐸𝐵 {1 + 𝑧(𝑐)} if 𝐵 is a gate with its inputs connected to the components in the set 𝐸𝐵 . Fig. 3 shows an example of
a circuit and an unrolled circuit with its 𝑧 values.

Noting that, for every component 𝛤 in 𝐶𝑘(𝑉 ), 𝑧(𝛤 ) is the number of gates on the shortest path from an 𝑋𝑣 node to 𝛤 , or 𝑧(𝛤 ) = ∞
if no such path exists, we immediately get:

Lemma 11. The 𝑧-value assigned to the sink vertex 𝑉 (𝑘) of a 𝑘-unrolling 𝑘(𝑉 ) of  from 𝑉 satisfies 𝑧(𝑉 (𝑘)) ≥ 𝑘.

Recalling the causal depths assigned to transitions during the execution construction in Theorem 4.1, we are now in the position
to prove the result for a circuit simulated by an unrolled circuit.
10 
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Fig. 3. Circuit  (left) and 3(𝑂) (right) under the assumption that the gate 𝐵 has initial value 0. It is 𝑧(𝑋0) = 0, 𝑧(𝐼) = 𝑧(𝐴(2)) = ∞, 𝑧(𝐵(1)) = 1, 𝑧(𝐵(2)) = 2,
(𝐶 (3)) = 3, and 𝑧(𝑂(3)) = 3.

Theorem 4.3. Let  be a circuit with input port 𝐼 and output port 𝑂 that solves bounded SPF. Let 𝑘(𝑂) be an unrolling of , 𝛤 a
component in , and 𝛤 ′ a copy of 𝛤 in 𝑘(𝑂). For all input signals 𝑠𝐼 on 𝐼 , if a transition 𝑒 is generated for 𝛤 by the execution construction
algorithm run on circuit  with input signal 𝑠𝐼 and 𝑑(𝑒) ≤ 𝑧(𝛤 ′), then 𝑒 is also generated for 𝛤 ′ by the algorithm run on circuit 𝑘(𝑂) with
input signal 𝑠𝐼 ; and vice versa.

Proof. Assume that 𝑒 is the first transition violating the theorem. The input signal is the same for both circuits, and the initial
digitized values of gates in  and both their copies in 𝑘(𝑂) and the 𝑋𝑣 gates resulting from their 0-unrolling are equal as well.

ence, 𝑒 cannot be any such transition (added in iteration 1 only).
If 𝑒 was added to the output of a gate 𝐵 in either circuit, the transition 𝑒′ resp. 𝑒′′ at one of its inputs that caused 𝑒 in  resp. 𝑘(𝑉 )

ust have been different. These transitions 𝑒′ resp. 𝑒′′ must come from the output of some other gate 𝐵1, and causally precede 𝑒.
ence, by Definition 3, 𝑑(𝑒) = 𝑑(𝑒′) + 1, and by Lemma 10, 𝑑(𝑒) ≥ 𝑑(𝑒′′). Also by definition, 𝑧(𝐵) = 𝑧(𝐵1) + 1 in 𝐶𝑘(𝑂). Since 𝑑(𝑒) ≤ 𝑧(𝐵)
y assumption, we find 𝑑(𝑒′) ≤ 𝑧(𝐵1) and 𝑑(𝑒′′) ≤ 𝑧(𝐵), so applying our theorem to 𝑒′ and 𝑒′′ yields a contradiction to 𝑒 being the
irst violating transition. □

We can finally prove that bounded SPF is not solvable, even with non-forward circuits.

Theorem 4.4. No circuit solves bounded SPF.

Proof. We first note that the impossibility of bounded SPF also implies the impossibility of bounded SPF when restricting pulse
lengths to be at most some 𝛥0 > 0.

Since all transitions generated in the execution construction Theorem 4.1 up to any bounded time 𝑡𝓁 have bounded causal depth,
let 𝜁 be an upper bound on the causal depth of transitions up to the SPF stabilization time bound 𝛥0 + 𝐾. Then, by Theorem 4.3
and Lemma 11, the 𝜁 -unrolled circuit 𝜁 (𝑂) has the same output transitions as the original circuit  up to time 𝛥0 +𝐾, and hence,
by definition of bounded SPF, the same transitions for all times. But since 𝜁 (𝑂) is a forward circuit, it cannot solve bounded SPF
by Theorem 4.2, i.e., neither can . □

5. Digitized hybrid models for multi-input gates

In this section, we will apply the results obtained in the previous section to circuits composed of digitized hybrid gates. For a
arm-up, we will effortlessly re-prove the already known fact that every digitized hybrid gate model obtained by appending resp.
repending an IDM exp-channel with pure delay 𝛿min > 0 at the output of resp. at every input of any zero-time Boolean gate is
ontinuous and strictly causal. Consequently, according to Section 4, the resulting IDM circuit model is faithful w.r.t. solving the
PF problem.

An exp-channel, as introduced in [10], is just the two-state digitized hybrid model illustrated in Fig. 2 instantiated with
xponential switching waveforms 𝑓↓(𝑡) = 1 − 𝑓↑(𝑡) = 𝑒−𝑡∕𝜏 for some time constant 𝜏 > 0. Obviously, these are the trajectories
f a simple first-order RC low-pass filter. The ODEs governing 𝑦 = 𝑓↓(𝑡) resp. 𝑦 = 𝑓↑ are 𝑦′ + 𝑦∕𝜏 = 0 resp. 𝑦′ + 𝑦∕𝜏 = 1∕𝜏, so
↓(𝑡, 𝑦) = −𝑦∕𝜏 resp. 𝐹↑(𝑡, 𝑦) = (1 −𝑦)∕𝜏 is of course Lipschitz-continuous. An exp-channel hence satisfies the conditions of Theorem 7

and is hence continuous and, due to the assumption 𝛿min > 0, also strictly causal according to Definition 2. Since zero-time Boolean
gates that alternate with IDM channels can neither affect continuity nor causality of the latter, this completes our proof.

5.1. Modeling multi-input switching effects

As already mentioned in Section 1, experiments in [13] showed that the prediction accuracy of the above IDM circuit model
or multi-input gates is below expectations. As revealed by Ferdowsi et al. [14], this is primarily due to the fact that a model of
 multi-input gate that combines single-input single-output IDM channels with zero-time Boolean gates cannot properly capture
utput delay variations caused by multiple input switching (MIS) effects: output transitions may be sped up/slowed down when
ifferent inputs switch in close temporal proximity [15].

Consider the CMOS implementation of a NOR gate shown in Fig. 6(a), for example, which consists of two serial pMOS (𝑇1 and
𝑇2) for charging the load capacitance 𝐶 (producing a rising output transition), and two parallel nMOS transistors (𝑇3 and 𝑇4) for
discharging it (producing a falling one). When an input experiences a rising transition, the corresponding nMOS transistor closes
while the corresponding pMOS transistor opens, so 𝐶 will be discharged. If both inputs 𝐴 and 𝐵 experience a rising transition at
11 
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Fig. 4. MIS effects in the measured delay of a 15 nm technology CMOS NOR gate.

the same time, 𝐶 is discharged twice as fast. Since the gate delay depends on the discharging speed, it follows that the delay 𝛿↓𝑆 (𝛥)
increases (by almost 30% in the example shown in Fig. 4(a)) when the input separation time 𝛥 = 𝑡𝐵 − 𝑡𝐴 increases from 0 to ∞ or
decreases from 0 to −∞. For falling input transitions, the behavior of the NOR gate is quite different: Fig. 4(b) shows that the MIS
effects lead to a moderate decrease of 𝛿↑𝑆 (𝛥) when |𝛥| goes from 0 to ∞, which is primarily caused by capacitive coupling.

MIS effects have of course been studied in the digital circuit modeling literature in the past, with approaches ranging from
inear [24] or quadratic [25] fitting over higher-dimensional macromodels [26] and model representations [27] to recent machine

learning methods [28]. However, the resulting models are either empirical or statistical and, hence, have not been analyzed w.r.t.
ontinuity. Whether they admit a faithful digital circuit model or not is hence unknown.

5.2. A simple digitized hybrid model for a CMOS NOR gate

To the best of our knowledge, the first attempt to develop a delay model that captures MIS effects and can be analyzed w.r.t.
continuity has been provided in [14]. It is a 4-state digitized hybrid model for a CMOS NOR gate, with one mode per possible digital
tate of the inputs (𝐴, 𝐵) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}, which has been obtained by replacing the four transistors in Fig. 6(a) by ideal
ero-time switches with non-zero resistance, and adding another capacitance 𝐶𝑁 to the node 𝑁 between the two pMOS transistors
1 and 𝑇2. In each mode, the voltage of the output signal 𝑂 and the internal node 𝑁 are governed by a system of constant-coefficient
irst-order ODEs as follows:

• System (1, 1): 𝑉𝐴 = 1, 𝑉𝐵 = 1: If inputs 𝐴 and 𝐵 are 1, both nMOS transistors are conducting and thus replaced by resistors,
causing the output 𝑂 to be discharged in parallel. By contrast, 𝑁 is completely isolated and keeps its value. This leads to the
following ODEs:

( d
d𝑡𝑉𝑖𝑛𝑡(𝑡)
d
d𝑡𝑉𝑜𝑢𝑡(𝑡)

)

=
(

𝐹1(𝑉𝑖𝑛𝑡(𝑡), 𝑉𝑜𝑢𝑡(𝑡))
𝐹2(𝑉𝑖𝑛𝑡(𝑡), 𝑉𝑜𝑢𝑡(𝑡))

)

=
(

0
−
( 1
𝐶 𝑅3

+ 1
𝐶 𝑅4

)

𝑉𝑜𝑢𝑡(𝑡)

)

• System (1, 0): 𝑉𝐴 = 1, 𝑉𝐵 = 0: Since 𝑇1 and 𝑇4 are open, node 𝑁 is connected to 𝑂, and 𝑂 to GND. Both capacitors have to be
discharged over resistor 𝑅3, resulting in less current that is available for discharging 𝐶. One obtains:

( d
d𝑡𝑉𝑖𝑛𝑡(𝑡)
d
d𝑡𝑉𝑜𝑢𝑡(𝑡)

)

=
(

𝐹3(𝑉𝑖𝑛𝑡(𝑡), 𝑉𝑜𝑢𝑡(𝑡))
𝐹4(𝑉𝑖𝑛𝑡(𝑡), 𝑉𝑜𝑢𝑡(𝑡))

)

=
( − 𝑉𝑖𝑛𝑡(𝑡)

𝐶𝑖𝑛𝑡𝑅2
+ 𝑉𝑜𝑢𝑡(𝑡)

𝐶𝑖𝑛𝑡𝑅2
𝑉𝑖𝑛𝑡(𝑡)
𝐶 𝑅2

−
( 1
𝐶 𝑅2

+ 1
𝐶 𝑅3

)

𝑉𝑜𝑢𝑡(𝑡)

)

• System (0, 1): 𝑉𝐴 = 0, 𝑉𝐵 = 1: Opening transistors 𝑇2 and 𝑇3 again decouples the nodes 𝑁 and 𝑂. We thus get
( d

d𝑡𝑉𝑖𝑛𝑡(𝑡)
d
d𝑡𝑉𝑜𝑢𝑡(𝑡)

)

=
(

𝐹5(𝑉𝑖𝑛𝑡(𝑡), 𝑉𝑜𝑢𝑡(𝑡))
𝐹6(𝑉𝑖𝑛𝑡(𝑡), 𝑉𝑜𝑢𝑡(𝑡))

)

=
(− 𝑉𝑖𝑛𝑡(𝑡)

𝐶𝑖𝑛𝑡𝑅1
+ 𝑉𝐷 𝐷

𝐶𝑖𝑛𝑡𝑅1

− 𝑉𝑜𝑢𝑡(𝑡)
𝐶 𝑅4

)

• System (0, 0): 𝑉𝐴 = 0, 𝑉𝐵 = 0: Closing both pMOS transistors causes both capacitors to be charged over the same resistor 𝑅1,
similarly to system (1, 0). Thus

( d
d𝑡𝑉𝑖𝑛𝑡(𝑡)
d
d𝑡𝑉𝑜𝑢𝑡(𝑡)

)

=
(

𝐹7(𝑉𝑖𝑛𝑡(𝑡), 𝑉𝑜𝑢𝑡(𝑡))
𝐹8(𝑉𝑖𝑛𝑡(𝑡), 𝑉𝑜𝑢𝑡(𝑡))

)

=
(−

( 1
𝐶𝑖𝑛𝑡(𝑡)𝑅1

+ 1
𝐶𝑖𝑛𝑡(𝑡)𝑅2

)

𝑉𝑖𝑛𝑡 +
𝑉𝑜𝑢𝑡(𝑡)
𝐶𝑖𝑛𝑡𝑅2

+ 𝑉𝐷 𝐷
𝐶𝑖𝑛𝑡𝑅1

𝑉𝑖𝑛𝑡(𝑡)
𝐶 𝑅2

− 𝑉𝑜𝑢𝑡(𝑡)
𝐶 𝑅2

)

Every 𝐹𝑖, 𝑖 ∈ {1,… , 8}, is a mapping from 𝑈 = (0, 1)2 ⊆ R2 to R, whereat 𝑈 is the vector of the voltages at the nodes 𝑁
nd 𝑂. Solving the above ODEs provides analytic expressions for these voltage trajectories, which can even be inverted to obtain
he relevant gate delays. As it turned out in [14], although the model perfectly covers the MIS effects in the case of rising input
12 
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Fig. 5. Comparison of the measured delay 𝛿↓∕↑𝑆 (𝛥) of a real 15 nm CMOS NOR gate (red dashed line) and the delay prediction of the simple digitized hybrid
odel (green line) from [14]. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

transitions (Fig. 5(a)) , it unfortunately fails to do so for falling input (= rising output) transitions (Fig. 5(b)).
Nevertheless, using Theorem 8, we can show that the model of [14] is continuous:

Theorem 5.1. For any 𝑖 ∈ {1,… , 8}, 𝐹𝑖 of the simple digitized hybrid model is Lipschitz continuous.

Proof. Since the proof is straightforward, we elaborate it only for 𝐹7; similar arguments apply to the other cases. Let 𝐾 =
𝑎𝑥

{

( 1
𝐶𝑖𝑛𝑡𝑅1

+ 1
𝐶𝑖𝑛𝑡𝑅2

), 1
𝐶𝑖𝑛𝑡𝑅2

}

. For any voltages 𝑉 1
𝑖𝑛𝑡, 𝑉

2
𝑖𝑛𝑡, 𝑉

1
𝑜𝑢𝑡, and 𝑉 2

𝑜𝑢𝑡 in (0, 1), we find
|

|

|

𝐹7(𝑉 1
𝑖𝑛𝑡, 𝑉 1

𝑜𝑢𝑡) − 𝐹7(𝑉 2
𝑖𝑛𝑡, 𝑉 2

𝑜𝑢𝑡)
|

|

|

= |

|

|

−
( 1
𝐶𝑖𝑛𝑡𝑅1

+ 1
𝐶𝑖𝑛𝑡𝑅2

)

(𝑉 1
𝑖𝑛𝑡 − 𝑉 2

𝑖𝑛𝑡) +
1

𝐶𝑖𝑛𝑡𝑅2

(

𝑉 1
𝑜𝑢𝑡 − 𝑉 2

𝑜𝑢𝑡
)

|

|

|

(11)

≤ 𝐾|

|

|

(𝑉 1
𝑖𝑛𝑡 − 𝑉 2

𝑖𝑛𝑡) + (𝑉 1
𝑜𝑢𝑡 − 𝑉 2

𝑜𝑢𝑡)
|

|

|

. □ (12)

Consequently, we can instantiate Definition 1 with

𝑏𝑐 (𝑖𝐴𝑑 , 𝑖𝐵𝑑 ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

(

𝐹1(𝑉𝑖𝑛𝑡(𝑡), 𝑉𝑜𝑢𝑡(𝑡))
𝐹2(𝑉𝑖𝑛𝑡(𝑡), 𝑉𝑜𝑢𝑡(𝑡))

)

(𝑖𝐴𝑑 , 𝑖𝐵𝑑 ) = (1, 1)
(

𝐹3(𝑉𝑖𝑛𝑡(𝑡), 𝑉𝑜𝑢𝑡(𝑡))
𝐹4(𝑉𝑖𝑛𝑡(𝑡), 𝑉𝑜𝑢𝑡(𝑡))

)

(𝑖𝐴𝑑 , 𝑖𝐵𝑑 ) = (1, 0)
(

𝐹5(𝑉𝑖𝑛𝑡(𝑡), 𝑉𝑜𝑢𝑡(𝑡))
𝐹6(𝑉𝑖𝑛𝑡(𝑡), 𝑉𝑜𝑢𝑡(𝑡))

)

(𝑖𝐴𝑑 , 𝑖𝐵𝑑 ) = (0, 1)
(

𝐹7(𝑉𝑖𝑛𝑡(𝑡), 𝑉𝑜𝑢𝑡(𝑡))
𝐹8(𝑉𝑖𝑛𝑡(𝑡), 𝑉𝑜𝑢𝑡(𝑡))

)

(𝑖𝐴𝑑 , 𝑖𝐵𝑑 ) = (0, 0)

such that the model is continuous by Theorem 8.

6. An advanced digitized hybrid model for a CMOS NOR gate

In an attempt to mitigate the inability of the simple digitized hybrid model for a CMOR NOR gate proposed in [14] to cover the
MIS effect for falling input (= rising output) transitions (recall Fig. 5(b)), Ferdowsi, Schmid, and Salzmann developed an advanced
model originally presented in [16]. Whereas this model indeed accomplishes its purpose, its analysis is based on a complicated
iecewise approximation (in terms of 𝛥) of both the ODE solutions and, in particular, the corresponding delay formulas. This not only

impairs the utility of the results for determining delays of compound circuits, both for simulation-based and analytical studies, but
lso caused the model parametrization, which is based on fitting, to partially compensate for the approximation error by obtaining

inexact parameters.
In this section, we will provide an entirely novel analysis of the digitized hybrid model proposed in [16], which has been enabled

y the recent discovery of an explicit expression for the ODE solution. It not only leads to more accurate delay formulas, but also
o an explicit model parametrization procedure that avoids any fitting.

The advanced digitized hybrid model for a 2-input CMOS NOR gate introduced in [16] is built upon replacing the transistors in
Fig. 6(a) by time-varying resistors: The values 𝑅𝑖(𝑡), 𝑖 ∈ {1,… , 4} in the resulting Fig. 6(b) vary between some fixed on-resistance
𝑖 and the off-resistance ∞ according to some laws, which we will introduce below. The law to be used is determined by the state
f the particular input signal that drives the gate of the corresponding transistor. This construction results in a hybrid model with
13 
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Fig. 6. Schematics and resistor model of a CMOS NOR gate.

Table 1
State transitions and modes. ↑ and ↑↑ (resp. ↓ and ↓↓) represent the first and the second rising (resp. falling) input transitions. + and − specify the sign of the
switching time difference 𝛥 = 𝑡𝐵 − 𝑡𝐴.

Mode Transition 𝑡𝐴 𝑡𝐵 𝑅1 𝑅2 𝑅3 𝑅4

𝑇 ↑
− (0, 0) → (1, 0) 0 −∞ 𝑜𝑛 → 𝑜𝑓 𝑓 𝑜𝑛 𝑜𝑓 𝑓 → 𝑜𝑛 𝑜𝑓 𝑓

𝑇 ↑↑
+ (1, 0) → (1, 1) −|𝛥| 0 𝑜𝑓 𝑓 𝑜𝑛 → 𝑜𝑓 𝑓 𝑜𝑛 𝑜𝑓 𝑓 → 𝑜𝑛

𝑇 ↑
+ (0, 0) → (0, 1) −∞ 0 𝑜𝑛 𝑜𝑛 → 𝑜𝑓 𝑓 𝑜𝑓 𝑓 𝑜𝑓 𝑓 → 𝑜𝑛

𝑇 ↑↑
− (0, 1) → (1, 1) 0 −|𝛥| 𝑜𝑛 → 𝑜𝑓 𝑓 𝑜𝑓 𝑓 𝑜𝑓 𝑓 → 𝑜𝑛 𝑜𝑛

𝑇 ↓
− (1, 1) → (0, 1) 0 −∞ 𝑜𝑓 𝑓 → 𝑜𝑛 𝑜𝑓 𝑓 𝑜𝑛 → 𝑜𝑓 𝑓 𝑜𝑛

𝑇 ↓↓
+ (0, 1) → (0, 0) −|𝛥| 0 𝑜𝑛 𝑜𝑓 𝑓 → 𝑜𝑛 𝑜𝑓 𝑓 𝑜𝑛 → 𝑜𝑓 𝑓

𝑇 ↓
+ (1, 1) → (1, 0) −∞ 0 𝑜𝑓 𝑓 𝑜𝑓 𝑓 → 𝑜𝑛 𝑜𝑛 𝑜𝑛 → 𝑜𝑓 𝑓

𝑇 ↓↓
− (1, 0) → (0, 0) 0 −|𝛥| 𝑜𝑓 𝑓 → 𝑜𝑛 𝑜𝑛 𝑜𝑛 → 𝑜𝑓 𝑓 𝑜𝑓 𝑓

4 different modes, which correspond to the 4 possible input states (𝐴, 𝐵) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}.
Table 1 shows all possible input state transitions and the corresponding resistor time evolution mode switches. Double arrows

in the mode switch names indicate MIS-relevant modes, whereas + and − indicate whether input 𝐴 switched before 𝐵 or the other
way round. For instance, assume the system is in state (0, 0) initially, i.e., that both 𝐴 and 𝐵 were set to 0 at time 𝑡𝐴 = 𝑡𝐵 = −∞.
This causes 𝑅1 and 𝑅2 to be in the on-mode, whereas 𝑅3 and 𝑅4 are in the off-mode. Now assume that at time 𝑡𝐴 = 0, 𝐴 is switched
to 1. This switches 𝑅1 resp. 𝑅3 to the off-mode resp. on-mode at time 𝑡off

1 = 𝑡on
3 = 𝑡𝐴 = 0. The corresponding mode switch is 𝑇 ↑

− and
reaches state (1, 0). Now assume that 𝐵 is also switched to 1, at some time 𝑡𝐵 = 𝛥 > 0. This causes 𝑅2 resp. 𝑅4 to switch to off-mode
resp. on-mode at time 𝑡off

2 = 𝑡on
4 = 𝑡𝐵 = 𝛥. The corresponding mode switch is 𝑇 ↑↑

+ and reaches state (1, 1); note carefully that the
delay is 𝛥-dependent and hence MIS-relevant.

Crucial for the model is choosing a suitable law for the time evolution of 𝑅𝑖(𝑡) in the on- and off-mode, which should facilitate
n analytic solution of the resulting ODE systems (15) while being reasonably close to the physical behavior of a transistor. The

simple Shichman–Hodges transistor model [29] is used here, which states a quadratic dependence of the output current on the input
oltage. Approximating the latter by 𝑑

√

𝑡 − 𝑡0 in the operation range close to the threshold voltage 𝑉𝑡ℎ, with 𝑑 and 𝑡0 some fitting
parameters, leads to the continuous resistance model

𝑅on
𝑗 (𝑡) = 𝛼𝑗

𝑡 − 𝑡on + 𝑅𝑗 ; 𝑡 ≥ 𝑡on, (13)

𝑅off
𝑗 (𝑡) = 𝛽𝑗 (𝑡 − 𝑡off ) + 𝑅𝑗 ; 𝑡 ≥ 𝑡off , (14)

for some constant slope parameters 𝛼𝑗 [Ω s], 𝛽𝑗 [Ω∕s], and on-resistance 𝑅𝑗 [Ω]. 𝑡on resp. 𝑡off represent the time when the respective
transistor is switched on resp. off.

Actually, it was found in [16] that continuously changing resistors, according to (13), are only required for switching-on the
pMOS transistors in Fig. 6(a). All other resistors can be immediately switched on/off (in zero-time), as already employed in [14].
Note that immediate switching is obtained by setting 𝛼𝑗 = 0 and 𝛽𝑗 = ∞ in (13) and (14). Subsequently, we will use the notation
𝑅1 = 𝑅𝑝𝐴 , 𝑅2 = 𝑅𝑝𝐵 with the abbreviation 2𝑅 = 𝑅𝑝𝐴 +𝑅𝑝𝐵 for the two pMOS transistors 𝑇1 and 𝑇2, and 𝑅3 = 𝑅𝑛𝐴 , 𝑅4 = 𝑅𝑛𝐵 for the
two nMOS transistors 𝑇3 and 𝑇4.

Another pivotal question is how to incorporate 𝑅1(𝑡),… , 𝑅4(𝑡) in the ODEs of the modes. The arguably most intuitive idea is to
incorporate those in the state of the ODE of every mode, and switch between them continuously upon a mode switch. This ‘‘full-state

odel’’ would lead to ODE systems with a 5-dimensional state (output voltage 𝑉𝑜𝑢𝑡 and the 4 resistors), however, which rules out
finding analytic solutions.

Therefore, in [16], these resistors were incorporated in the coefficients of a simple first-order ODE obtained by applying
Kirchhoff’s rules to Fig. 6(b). Doing this results in the non-autonomous, non-homogeneous ordinary differential equation (ODE)
14 
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Table 2
𝐹 (𝑡, 𝑉𝑜𝑢𝑡(𝑡)) for each state transition.
State transition 𝐹 (𝑡, 𝑉𝑜𝑢𝑡(𝑡))

(0, 0) → (1, 0) 𝐹1(𝑡, 𝑉𝑜𝑢𝑡(𝑡)) ≐
−𝑉𝑜𝑢𝑡 (𝑡)
𝐶 𝑅𝑛𝐴

(1, 1) → (1, 0) 𝐹1(𝑡, 𝑉𝑜𝑢𝑡(𝑡)) ≐
−𝑉𝑜𝑢𝑡 (𝑡)
𝐶 𝑅𝑛𝐴

(0, 1) → (1, 0) 𝐹1(𝑡, 𝑉𝑜𝑢𝑡(𝑡)) ≐
−𝑉𝑜𝑢𝑡 (𝑡)
𝐶 𝑅𝑛𝐴

(0, 0) → (0, 1) 𝐹2(𝑡, 𝑉𝑜𝑢𝑡(𝑡)) ≐
−𝑉𝑜𝑢𝑡 (𝑡)
𝐶 𝑅𝑛𝐵

(1, 1) → (0, 1) 𝐹2(𝑡, 𝑉𝑜𝑢𝑡(𝑡)) ≐
−𝑉𝑜𝑢𝑡 (𝑡)
𝐶 𝑅𝑛𝐵

(1, 0) → (0, 1) 𝐹2(𝑡, 𝑉𝑜𝑢𝑡(𝑡)) ≐
−𝑉𝑜𝑢𝑡 (𝑡)
𝐶 𝑅𝑛𝐵

(1, 0) → (0, 0) 𝐹3(𝑡, 𝑉𝑜𝑢𝑡(𝑡)) ≐
(

−𝑉𝑜𝑢𝑡 (𝑡)+𝑉𝐷 𝐷)
𝐶( 𝛼1

𝑡
+ 𝛼2

𝑡+𝛥
+2𝑅)

(0, 1) → (0, 0) 𝐹4(𝑡, 𝑉𝑜𝑢𝑡(𝑡)) ≐
(

−𝑉𝑜𝑢𝑡 (𝑡)+𝑉𝐷 𝐷)
𝐶( 𝛼1

𝑡+𝛥
+ 𝛼2

𝑡
+2𝑅)

(1, 1) → (0, 0) 𝐹5(𝑡, 𝑉𝑜𝑢𝑡(𝑡)) ≐
(

−𝑉𝑜𝑢𝑡 (𝑡)+𝑉𝐷 𝐷)𝑡
𝐶(2𝑅𝑡+𝛼1+𝛼2 )

(1, 0) → (1, 1) 𝐹6(𝑡, 𝑉𝑜𝑢𝑡(𝑡)) ≐
−𝑉𝑜𝑢𝑡 (𝑡)

𝐶
( 1
𝑅𝑛𝐴

+ 1
𝑅𝑛𝐵

)

(0, 1) → (1, 1) 𝐹6(𝑡, 𝑉𝑜𝑢𝑡(𝑡)) ≐
−𝑉𝑜𝑢𝑡 (𝑡)

𝐶
( 1
𝑅𝑛𝐴

+ 1
𝑅𝑛𝐵

)

(0, 0) → (1, 1) 𝐹6(𝑡, 𝑉𝑜𝑢𝑡(𝑡)) ≐
−𝑉𝑜𝑢𝑡 (𝑡)

𝐶
( 1
𝑅𝑛𝐴

+ 1
𝑅𝑛𝐵

)

with non-constant coefficients 𝐶 d𝑉𝑜𝑢𝑡
d𝑡 = 𝑉𝐷 𝐷−𝑉𝑜𝑢𝑡

𝑅1(𝑡)+𝑅2(𝑡)
− 𝑉𝑜𝑢𝑡

𝑅3(𝑡) ∥ 𝑅4(𝑡)
, which can be transformed into

d𝑉𝑜𝑢𝑡
d𝑡

= 𝐹 (𝑡, 𝑉𝑜𝑢𝑡(𝑡)) = − 𝑉𝑜𝑢𝑡
𝐶 𝑅𝑔(𝑡)

+ 𝑈 (𝑡), (15)

where 1
𝑅𝑔 (𝑡)

= 1
𝑅1(𝑡)+𝑅2(𝑡)

+ 1
𝑅3(𝑡)

+ 1
𝑅4(𝑡)

and 𝑈 (𝑡) = 𝑉𝐷 𝐷
𝐶(𝑅1(𝑡)+𝑅2(𝑡))

. Note that the entire voltage divider in Fig. 6(b) is equivalent to an

deal voltage source 𝑈0 = 𝑉𝐷 𝐷 𝑅3(𝑡)∥𝑅4(𝑡)
𝑅1(𝑡)+𝑅2(𝑡)+𝑅3(𝑡)∥𝑅4(𝑡)

and a serial resistor 𝑅𝑔(𝑡) sourcing 𝐶. Consequently, 𝐶 𝑈 (𝑡) = 𝑈0∕𝑅𝑔(𝑡) in (15) is
the short-circuit current, and 𝐶 𝑈 (𝑡) − 𝑉𝑜𝑢𝑡∕𝑅𝑔(𝑡) the current actually sourced into 𝐶.

6.1. Continuity of the model

In order to prove the continuity of the resulting digitized hybrid model, via Theorem 8, we need to verify some properties of the
functions 𝐹 (𝑡, 𝑉𝑜𝑢𝑡(𝑡)) arising in the ODE (15). Note carefully that, depending the current mode, different expressions for 𝑅𝑔(𝑡), 𝑈 (𝑡)
etermine the function 𝐹 governing this mode. In fact, 𝐹 may even depend on the actual mode switch, i.e., also the previous mode.

Table 2 summarizes the functions 𝐹1,… , 𝐹6 associated with each possible input transition; unlike in Table 1, we also consider state
ransitions where both inputs are changed simultaneously. Due to some symmetry, we end up with only six different functions.

For instance, to determine 𝐹5 corresponding to the transition (1, 1) → (0, 0), we assume that the system is in mode (1, 1) initially
(i.e., at time 𝑡 = −∞) and transitions to (0, 0) at time 𝑡 = 0. Consequently, 𝑅1 and 𝑅2, previously in the off-mode, switch to the on-
mode, while 𝑅3 and 𝑅4 switch from on-mode to off-mode. Formally, this transition results in 𝑅𝑝𝐴 (𝑡) =

𝛼1
𝑡 + 𝑅1, 𝑅𝑝𝐵 (𝑡) =

𝛼2
𝑡 + 𝑅2,

and 𝑅𝑛𝐴 (𝑡) = 𝑅𝑛𝐵 (𝑡) = ∞, collectively leading to 1∕𝑅𝑔(𝑡) = 𝑡∕(2𝑅𝑡 + 𝛼1 + 𝛼2) since 𝑅1 + 𝑅2 = 2𝑅. As a result, we obtain
𝐹5(𝑡, 𝑉𝑜𝑢𝑡(𝑡)) = − 𝑉𝑜𝑢𝑡

𝐶 𝑅𝑔 (𝑡)
+ 𝑈 (𝑡) = (−𝑉𝑜𝑢𝑡(𝑡)+𝑉𝐷 𝐷)𝑡

𝐶(2𝑅𝑡+𝛼1+𝛼2)
. The other cases can be obtained similarly.

The following theorem paves the way for verifying the continuity property of the model, by guaranteeing the properties required
in Definition 1:

Theorem 6.1. Let 𝐹 = {𝐹1,… , 𝐹6 ∶ R × (0, 1) → R} be the set of all functions described in Table 2. Every 𝐹𝑖 ∈ 𝐹 , where 𝑖 ∈ {1,… , 6},
s continuous for 𝑡 ∈ [0, 𝑇 ], 0 < 𝑇 < ∞, 𝑉𝑜𝑢𝑡 ∈ (0, 1), and Lipschitz continuous w.r.t. 𝑉𝑜𝑢𝑡.

Proof. The statement is immediate for functions 𝐹1, 𝐹2, and 𝐹6. For 𝐹5, let 𝑔(𝑡) = 𝑡
𝐶(2𝑅𝑡+𝛼1+𝛼2)

. Since 𝑡 ∈ [0, 𝑇 ], 𝑔(𝑡) takes its supremum
value in the interval, which we denote by 𝐾 (i.e., 𝑠𝑢𝑝𝑡∈[0,𝑇 ]𝑔(𝑡) = 𝐾). We observe

|

|

|

𝐹5(𝑡, 𝑉 1
𝑜𝑢𝑡) − 𝐹5(𝑡, 𝑉 2

𝑜𝑢𝑡)
|

|

|

= |

|

|

(

−𝑉 1
𝑜𝑢𝑡 + 𝑉𝐷 𝐷

)

𝑡
𝐶(2𝑅𝑡 + 𝛼1 + 𝛼2)

−

(

−𝑉 2
𝑜𝑢𝑡 + 𝑉𝐷 𝐷

)

𝑡
𝐶(2𝑅𝑡 + 𝛼1 + 𝛼2)

|

|

|

= |

|

|

−𝑡
𝐶(2𝑅𝑡 + 𝛼1 + 𝛼2)

⋅ (𝑉 1
𝑜𝑢𝑡 − 𝑉 2

𝑜𝑢𝑡)
|

|

|

≤ |𝐾|

|

|

|

𝑉 1
𝑜𝑢𝑡 − 𝑉 2

𝑜𝑢𝑡
|

|

|

,

which concludes the proof for 𝐹5. The proof for 𝐹3 and 𝐹4 follows the same route; we only sketch the proof for 𝐹3: We observe

|

|

|

𝐹3(𝑡, 𝑉 1
𝑜𝑢𝑡) − 𝐹3(𝑡, 𝑉 2

𝑜𝑢𝑡)
|

|

|

= |

|

|

−(𝑉 1
𝑜𝑢𝑡 − 𝑉 2

𝑜𝑢𝑡)
𝛼1
𝑡+𝛥 + 𝛼2

𝑡 + 2𝑅
|

|

|

.

Since we can safely assume that both 𝑡 and 𝑡+ 𝛥 belong to the closed interval [0, 𝑇 ], by choosing 𝑇 appropriately, we obviously get
some Lipschitz constant 𝐿 that is independent of 𝑡. Consequently,

|

|

|

𝐹3(𝑡, 𝑉 1
𝑜𝑢𝑡) − 𝐹3(𝑡, 𝑉 2

𝑜𝑢𝑡)
|

|

|

≤ 𝐿 ⋅ ||
|

(

𝑉 1
𝑜𝑢𝑡 − 𝑉 2

𝑜𝑢𝑡
)

|

|

|

,

which completes the proof. □
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Table 3
Integrals 𝐼1(𝑡), 𝐼2(𝑡), 𝐼3(𝑡) and the function 𝑈 (𝑡) for every possible mode switch; 𝛥 = 𝑡𝐵 − 𝑡𝐴, and 2𝑅 = 𝑅𝑝𝐴 + 𝑅𝑝𝐵 .

Mode 𝐼1(𝑡) = ∫ 𝑡
0

d𝑠
𝑅1 (𝑠)+𝑅2 (𝑠)

𝐼2(𝑡) = ∫ 𝑡
0

d𝑠
𝑅3 (𝑠)

𝐼3(𝑡) = ∫ 𝑡
0

d𝑠
𝑅4 (𝑠)

𝑈 (𝑡) = 𝑉𝐷 𝐷
𝐶(𝑅1 (𝑡)+𝑅2 (𝑡))

𝑇 ↑
− 0 ∫ 𝑡

0 (1∕𝑅𝑛𝐴 )d𝑠 0 0
𝑇 ↑↑
+ 0 ∫ 𝑡

0 (1∕𝑅𝑛𝐴 )d𝑠 ∫ 𝑡
0 (1∕𝑅𝑛𝐵 )d𝑠 0

𝑇 ↑
+ 0 0 ∫ 𝑡

0 (1∕(𝑅𝑛𝐵 )d𝑠 0
𝑇 ↑↑
− 0 ∫ 𝑡

0 (1∕𝑅𝑛𝐴 )d𝑠 ∫ 𝑡
0 (1∕𝑅𝑛𝐵 )d𝑠 0

𝑇 ↓
− 0 0 ∫ 𝑡

0 (1∕𝑅𝑛𝐵 )d𝑠 0
𝑇 ↓↓
+ ∫ 𝑡

0 (1∕(
𝛼1
𝑠+𝛥

+ 𝛼2
𝑠
+ 2𝑅))d𝑠 0 0 𝑉𝐷 𝐷 𝑡(𝑡+𝛥)

𝐶(2𝑅𝑡2+(𝛼1+𝛼2+2𝛥𝑅)𝑡+𝛼2𝛥)
𝑇 ↓
+ 0 ∫ 𝑡

0 (1∕(𝑅𝑛𝐴 )d𝑠 0 0
𝑇 ↓↓
− ∫ 𝑡

0 (1∕(
𝛼1
𝑠
+ 𝛼2

𝑠+|𝛥|
+ 2𝑅))d𝑠 0 0 𝑉𝐷 𝐷 𝑡(𝑡+|𝛥|)

𝐶(2𝑅𝑡2+(𝛼1+𝛼2+2|𝛥|𝑅)𝑡+𝛼1 |𝛥|)

According to Theorem 6.1, by defining 𝑠(𝑡) = (𝑖𝐴𝑑 (𝑡+), 𝑖𝐵𝑑 (𝑡+)) and 𝑠𝑝(𝑡) = (𝑖𝐴𝑑 (𝑡), 𝑖𝐵𝑑 (𝑡)), we can instantiate Definition 1 by the choice
function

𝑏𝑐 (𝑠(𝑡)) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝐹1(𝑡, 𝑉𝑜𝑢𝑡(𝑡)) 𝑠(𝑡) = (1, 0)
𝐹2(𝑡, 𝑉𝑜𝑢𝑡(𝑡)) 𝑠(𝑡) = (0, 1)
𝐹3(𝑡, 𝑉𝑜𝑢𝑡(𝑡)) 𝑠(𝑡) = (0, 0), 𝑠𝑝(𝑡) = (1, 0)
𝐹4(𝑡, 𝑉𝑜𝑢𝑡(𝑡)) 𝑠(𝑡) = (0, 0), 𝑠𝑝(𝑡) = (0, 1)
𝐹5(𝑡, 𝑉𝑜𝑢𝑡(𝑡)) 𝑠(𝑡) = (0, 0), 𝑠𝑝(𝑡) = (1, 1)
𝐹6(𝑡, 𝑉𝑜𝑢𝑡(𝑡)) 𝑠(𝑡) = (1, 1)

which, according to (15) and Table 2, results in

𝑑 𝑉𝑜𝑢𝑡(𝑡)
𝑑 𝑡 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−𝑉𝑜𝑢𝑡(𝑡)
𝐶 𝑅𝑛𝐴

𝑠(𝑡) = (1, 0)
−𝑉𝑜𝑢𝑡(𝑡)
𝐶 𝑅𝑛𝐵

𝑠(𝑡) = (0, 1)
(

−𝑉𝑜𝑢𝑡(𝑡)+𝑉𝐷 𝐷
)

𝑡(𝑡+𝛥)

𝐶
(

2𝑅𝑡2+(𝛼1+𝛼2+2𝛥𝑅)𝑡+𝛼1𝛥
) 𝑠(𝑡) = (0, 0), 𝑠𝑝(𝑡) = (1, 0)

(

−𝑉𝑜𝑢𝑡(𝑡)+𝑉𝐷 𝐷
)

𝑡(𝑡+𝛥)

𝐶
(

2𝑅𝑡2+(𝛼1+𝛼2+2𝛥𝑅)𝑡+𝛼2𝛥
) 𝑠(𝑡) = (0, 0), 𝑠𝑝(𝑡) = (0, 1)

(

−𝑉𝑜𝑢𝑡(𝑡)+𝑉𝐷 𝐷
)

𝑡
𝐶(2𝑅𝑡+𝛼1+𝛼2)

𝑠(𝑡) = (0, 0), 𝑠𝑝(𝑡) = (1, 1)
−𝑉𝑜𝑢𝑡(𝑡)

𝐶 ( 1
𝑅𝑛𝐴

+ 1
𝑅𝑛𝐵

) 𝑠(𝑡) = (1, 1).

Since all the conditions in Definition 1 are satisfied, Theorem 8 indeed guarantees continuity of the model.

6.2. Analytic solutions for the output voltage trajectories

We now turn our attention to the ability of our model to cover all MIS effects illustrated in Fig. 4. Since gate delays are just
the time it takes for the output voltage trajectory to reach the threshold voltage, this subsection is devoted to determining explicit
analytic expressions for 𝑉 𝑀 𝑆

𝑜𝑢𝑡 (𝑡) for each mode switch 𝑀 𝑆 listed in Table 1.
It is well-known that the general solution of (15) is

𝑉𝑜𝑢𝑡(𝑡) = 𝑉0 𝑒−𝐺(𝑡) + ∫

𝑡

0
𝑈 (𝑠) 𝑒𝐺(𝑠)−𝐺(𝑡)d𝑠, (16)

where 𝑉0 = 𝑉𝑜𝑢𝑡(0) denotes the initial condition and 𝐺(𝑡) = ∫ 𝑡
0 (𝐶 𝑅𝑔(𝑠))−1d𝑠.

As already mentioned, 𝑅𝑔(𝑡) and 𝑈 (𝑡) depend on the particular mode, recall Table 2. It turns out that computing 𝐺(𝑡) for each
mode requires the solution of three different integrals 𝐼1 = ∫ 𝑡

0
d𝑠

𝑅1(𝑠)+𝑅2(𝑠)
, 𝐼2 = ∫ 𝑡

0
d𝑠

𝑅3(𝑠)
, and 𝐼3(𝑡) = ∫ 𝑡

0
d𝑠

𝑅4(𝑠)
. Table 3 lists these

integrals as well as the value 𝑈 (𝑡) for each mode.
Fortunately, a closer look at Table 1 and Table 3 shows a certain symmetry between the pairs of modes (𝑇 ↑

− , 𝑇 ↑
+), (𝑇

↑↑
+ , 𝑇 ↑↑

− ),
(𝑇 ↓

− , 𝑇 ↓
+), and (𝑇 ↓↓

+ , 𝑇 ↓↓
− ). Therefore, it is sufficient to derive analytic expressions for the case 𝛥 ≥ 0 only. The corresponding formulas

for 𝛥 < 0 can be obtained from those by exchanging 𝛼1 and 𝛼2, as well as 𝑅𝑛𝐴 and 𝑅𝑛𝐵 .
To proceed, we split the discussions into two parts, one devoted to rising input transitions (= falling output transitions) and one

o falling input transitions (= rising output transitions). We start with the (simpler) former one.

6.2.1. Rising input transitions
In this part, we analyze the output voltage trajectories related to rising input transitions. The following theorem elaborates on

this.
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Theorem 6.2 (Output Trajectories for Rising Input Transitions). For any 0 ≤ |𝛥| ≤ ∞, the voltage output trajectory functions of our model
for rising input transitions are given by:

𝑉 𝑇 ↑
−

𝑜𝑢𝑡 (𝑡) = 𝑉 𝑇 ↑
−

𝑜𝑢𝑡 (0)𝑒
−𝑡

𝐶 𝑅𝑛𝐴 (17)

𝑉
𝑇 ↑
+

𝑜𝑢𝑡 (𝑡) = 𝑉
𝑇 ↑
+

𝑜𝑢𝑡 (0)𝑒
−𝑡

𝐶 𝑅𝑛𝐵 (18)

𝑉
𝑇 ↑↑
+

𝑜𝑢𝑡 (𝑡) = 𝑉 𝑇 ↑
−

𝑜𝑢𝑡 (𝛥)𝑒
−
(

1
𝐶 𝑅𝑛𝐴 + 1

𝐶 𝑅𝑛𝐵
)

𝑡
(19)

𝑉 𝑇 ↑↑
−

𝑜𝑢𝑡 (𝑡) = 𝑉
𝑇 ↑
+

𝑜𝑢𝑡 (𝛥)𝑒
−
(

1
𝐶 𝑅𝑛𝐴 + 1

𝐶 𝑅𝑛𝐵
)

𝑡
(20)

Proof. In order to compute 𝑉 𝑇 ↑
−

𝑜𝑢𝑡 (𝑡), consider the corresponding integrals 𝐼1(𝑡), 𝐼2(𝑡), and 𝐼3(𝑡), as well as 𝑈 (𝑡) in the first line of
Table 3. Since we assumed immediate resistor switching here, we have 𝛽1 = 𝛽2 = ∞ and 𝛼3 = 𝛼4 = 0, so that

𝐼1(𝑡) = 𝐼3(𝑡) = 𝑈 (𝑡) = 0, 𝐼2(𝑡) = 𝑡
𝑅𝑛𝐴

.

Since 𝐺(𝑡) = (𝐼1(𝑡) + 𝐼2(𝑡) + 𝐼3(𝑡))∕𝐶, we get 𝑒±𝐺(𝑡) = 𝑒
±𝑡

𝐶 𝑅𝑛𝐴 and ∫ 𝑡
0 𝑒𝐺(𝑠)𝑈 (𝑠)𝑑 𝑠 = 0. With 𝑉 ↑

0 = 𝑉 𝑇 ↑
−

𝑜𝑢𝑡 (0) as our initial value, (16) finally
provides

𝑉 𝑇 ↑
−

𝑜𝑢𝑡 (𝑡) = 𝑉 𝑇 ↑
−

𝑜𝑢𝑡 (0)𝑒
−𝑡

𝐶 𝑅𝑛𝐴 .

Similarly, for the mode 𝑇 ↑↑
+ , we obtain

𝐼1(𝑡) = 𝑈 (𝑡) = 0, 𝐼2(𝑡) = 𝑡
𝑅𝑛𝐴

, 𝐼3(𝑡) = 𝑡
𝑅𝑛𝐵

,

such that 𝑒±𝐺(𝑡) = 𝑒
±( 1

𝐶 𝑅𝑛𝐴 + 1
𝐶 𝑅𝑛𝐵 )𝑡

and ∫ 𝑡
0 𝑒𝐺(𝑠)𝑈 (𝑠)𝑑 𝑠 = 0. Consequently, we obtain

𝑉
𝑇 ↑↑
+

𝑜𝑢𝑡 (𝑡) = 𝑉 𝑇 ↑
−

𝑜𝑢𝑡 (𝛥)𝑒
−
(

1
𝐶 𝑅𝑛𝐴 + 1

𝐶 𝑅𝑛𝐵
)

𝑡
,

where the initial value 𝑉 𝑇 ↑
−

𝑜𝑢𝑡 (𝛥) can be computed via (17).
Due to our symmetry argument, exchanging 𝑅𝑛𝐴 and 𝑅𝑛𝐵 immediately provides the trajectories (20) and (18) for negative 𝛥. □

6.2.2. Falling input transitions
In this case, we first need to compute 𝑉 𝑇 ↓

−
𝑜𝑢𝑡 (𝑡). Again plugging the immediate switching parameters 𝛽1 = 𝛽2 = ∞ and 𝛼3 = 𝛼4 = 0 in

he corresponding expressions in Table 3 provides 𝐼1(𝑡) = 𝐼2(𝑡) = 𝑈 (𝑡) = 0 and 𝐼3(𝑡) = 𝑡
𝑅𝑛𝐵

. With 𝑉 ↓
0 = 𝑉 𝑇 ↓

−
𝑜𝑢𝑡 (0) as our initial condition,

(16) yields

𝑉 𝑇 ↓
−

𝑜𝑢𝑡 (𝑡) = 𝑉 𝑇 ↓
−

𝑜𝑢𝑡 (0)𝑒
−𝑡

𝐶 𝑅𝑛𝐵 . (21)

Turning our attention to 𝑉
𝑇 ↓↓
+

𝑜𝑢𝑡 (𝑡) in Table 3, we are confronted with a more intricate case: Whereas 𝐼2(𝑡) = 𝐼3(𝑡) = 0 again,
valuating 𝐼1(𝑡) requires us to study the function 𝑓 (𝑠) = 1

𝛼1
𝑠+𝛥+

𝛼2
𝑠 +2𝑅

, as

𝐼1(𝑡) = ∫

𝑡

0
𝑓 (𝑠)𝑑 𝑠, 𝐺(𝑡) = 𝐼1(𝑡)∕𝐶 , (22)

∫

𝑡

0
𝑒𝐺(𝑠)𝑈 (𝑠)𝑑 𝑠 = 𝑉𝐷 𝐷

𝐶 ∫

𝑡

0
𝑒
𝐼1(𝑠)
𝐶 𝑓 (𝑠)𝑑 𝑠. (23)

It is not difficult to check that 𝑉𝐷 𝐷
𝐶 ∫ 𝑡

0 𝑒
𝐼1(𝑠)
𝐶 𝑓 (𝑠)𝑑 𝑠 = 𝑉𝐷 𝐷(𝑒

𝐼1(𝑡)
𝐶 − 1), which according to (16) leads to

𝑉
𝑇 ↓↓
+

𝑜𝑢𝑡 (𝑡) = (𝑉 𝑇 ↓
−

𝑜𝑢𝑡 (𝛥) − 𝑉𝐷 𝐷)𝑒−𝐼1(𝑡)∕𝐶 + 𝑉𝐷 𝐷, (24)

where 𝑉 𝑇 ↓
−

𝑜𝑢𝑡 (𝛥) gives the initial value.
In order to compute an explicit formula for the voltage trajectory from (24), we need to evaluate 𝑒−𝐼1(𝑡)∕𝐶 . To simplify our

derivations, we write 𝑓 (𝑠) = 1−𝑔(𝑠)
2𝑅 , where 𝑔(𝑠) = 𝑎𝑠+𝑐′

𝑠2+𝑑 𝑠+𝑐′ and

𝑎 =
𝛼1 + 𝛼2
2𝑅

, (25)

𝑑 = 𝑎 + 𝛥, (26)

𝑐′ =
𝛼2𝛥
2𝑅

, (27)

𝜒 = 𝑑2 − 4𝑐′ = (𝑎 + 𝛥)2 −
2𝛼2𝛥 . (28)

𝑅

17 
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With this, 𝐼1(𝑡) = 1
2𝑅 (𝑡− ∫ 𝑡

0 𝑔(𝑠)𝑑 𝑠). The following lemma reveals that the denominator of 𝑔 possesses two rational zeros, which will
make it easy to compute ∫ 𝑡

0 𝑔(𝑠)𝑑 𝑠 after a simple partial fraction decomposition.

Lemma 12. 𝑠2+𝑑 𝑠+𝑐′ = 0 has two rational roots 𝑠1 =
−𝑑+

√

𝜒
2 and 𝑠2 =

−𝑑−
√

𝜒
2 , which satisfy 𝑠1𝑠2 = 𝑐′, 𝑠1+𝑠2 = −𝑑, and 𝑠2−𝑠1 = −√𝜒 .

Proof. It is apparent that 𝑠1,2 =
−𝑑±

√

𝜒
2 = 𝑎+𝛥

2 (−1 +
√

1 − 4𝑏𝛥
(𝑎+𝛥)2 ), where 𝑏 = 𝛼2∕(2𝑅), are the two zeros of 𝑠2 + 𝑑 𝑠 + 𝑐′ = 0. These

eros are rational if and only if 1 − 4𝑏𝛥
(𝑎+𝛥)2 ≥ 0, i.e., if and only if

𝛥2 + (2𝑎 − 4𝑏)𝛥 + 𝑎2 ≥ 0. (29)

Clearly, (29) has two complex zeros 𝛥1,2 = (𝛼2−𝛼1)±
√

−4𝛼1𝛼2
2𝑅 since 𝛼1, 𝛼2, and 𝑅 are all positive. Therefore, (29) cannot become

negative for any 𝛥, since it is positive for 𝛥 = 0. Consequently, 𝑠1 and 𝑠2 are rational, and satisfy 𝑠1𝑠2 = 𝑐′ and 𝑠1 + 𝑠2 = −𝑑 by
ieta’s theorem. □

The following theorem provides the sought explicit expression for 𝐼1(𝑡) = 1
2𝑅

(

𝑡 − ∫ 𝑡
0 𝑔(𝑠)𝑑 𝑠):

Lemma 13. Let 𝑠1 and 𝑠2 denote the two rational zeros of 𝑠2 + 𝑑 𝑠 + 𝑐′ = 0, and define

𝐴 =
−𝑎𝑠1 − 𝑐′

𝑠2 − 𝑠1
=

𝑎
𝑑−

√

𝜒
2 − 𝛼2𝛥

2𝑅

−
√

𝜒
. (30)

Then,

𝐼1(𝑡) = 1
2𝑅

[

𝑡 + (𝐴 − 𝑎) ⋅ log
(

1 + 2𝑡
𝑑 +

√

𝜒

)

− 𝐴 ⋅ log
(

1 + 2𝑡
𝑑 −

√

𝜒

)

]

. (31)

Proof. Utilizing partial fraction decomposition and recalling 𝑠1𝑠2 = 𝑐′ and 𝑠1 + 𝑠2 = −𝑑 from Lemma 12 gives us 𝑔(𝑠) = 𝑎𝑠+𝑐′
𝑠2+𝑑 𝑠+𝑐′ =

𝐴
(𝑠−𝑠1)

+ 𝑎−𝐴
(𝑠−𝑠2)

, for 𝐴 as defined in Eq. (30), which leads to

∫ 𝑔(𝑠)𝑑 𝑠 = 𝐴∫
𝑑 𝑠

𝑠 − 𝑠1
+ (𝑎 − 𝐴)∫

𝑑 𝑠
𝑠 − 𝑠2

= 𝐴 ⋅ log(𝑠 − 𝑠1) + (𝑎 − 𝐴) ⋅ log(𝑠 − 𝑠2) +𝐾

= 𝐴 ⋅ log
(

𝑠 −
−𝑑 +

√

𝜒
2

)

+ (𝑎 − 𝐴) ⋅ log
(

𝑠 −
−𝑑 −

√

𝜒
2

)

+𝐾

= (𝑎 − 𝐴) ⋅ log
(

𝑠 +
𝑑 +

√

𝜒
2

)

+ 𝐴 ⋅ log
(

𝑠 +
𝑑 −

√

𝜒
2

)

+𝐾 ,
where 𝐾 is some constant. Plugging in the boundaries, elementary calculations finally yield

𝐼1(𝑡) = ∫

𝑡

0
𝑓 (𝑠)𝑑 𝑠 = ∫

𝑡

0

1 − 𝑔(𝑠)
2𝑅

𝑑 𝑠 =

1
2𝑅

[

𝑡 + (𝐴 − 𝑎) ⋅ log
(

1 + 2𝑡
𝑑 +

√

𝜒

)

− 𝐴 ⋅ log
(

1 + 2𝑡
𝑑 −

√

𝜒

)

]

(32)

as asserted. □

With these preparations, we are now ready to state the major theorem of this subsection:

Theorem 6.3 (Output Trajectories for Falling Input Transitions). For any 0 ≤ |𝛥| ≤ ∞, the voltage output trajectory functions of our model
for input falling transitions are given by:

𝑉 𝑇 ↓
−

𝑜𝑢𝑡 (𝑡) = 𝑉 𝑇 ↓
−

𝑜𝑢𝑡 (0)𝑒
−𝑡

𝐶 𝑅𝑛𝐵 (33)

𝑉
𝑇 ↓
+

𝑜𝑢𝑡 (𝑡) = 𝑉
𝑇 ↓
+

𝑜𝑢𝑡 (0)𝑒
−𝑡

𝐶 𝑅𝑛𝐴 (34)

𝑉
𝑇 ↓↓
+

𝑜𝑢𝑡 (𝑡) = 𝑉𝐷 𝐷 (35)

+
(

𝑉 𝑇 ↓
−

𝑜𝑢𝑡 (𝛥) − 𝑉𝐷 𝐷
)

[

𝑒
−𝑡
2𝑅𝐶

(

1 + 2𝑡
𝑑 +

√

𝜒

)
−𝐴+𝑎
2𝑅𝐶

(

1 + 2𝑡
𝑑 −

√

𝜒

)
𝐴

2𝑅𝐶

]

𝑉 𝑇 ↓↓
−

𝑜𝑢𝑡 (𝑡) = 𝑉𝐷 𝐷 (36)

+
(

𝑉
𝑇 ↓
+

𝑜𝑢𝑡 (|𝛥|) − 𝑉𝐷 𝐷
)

[

𝑒
−𝑡
2𝑅𝐶

(

1 + 2𝑡
𝑑 +

√

𝜒

)
−𝐴+𝑎
2𝑅𝐶

(

1 + 2𝑡
𝑑 −

√

𝜒

)
𝐴

2𝑅𝐶

]
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Proof. The trajectory Eq. (33) has been established in Eq. (21) already, Eq. (34) follows from our symmetry argument by exchanging
𝑅𝑛𝐵 with 𝑅𝑛𝐴 .

Plugging in 𝐼1(𝑡) in (32) into (24), we immediately obtain the expression for the output trajectory 𝑉
𝑇 ↓↓
+

𝑜𝑢𝑡 (𝑡) starting from the initial
value 𝑉 𝑇 ↓

−
𝑜𝑢𝑡 (𝛥) given in Eq. (21). Due to our symmetry, the trajectory formula (36) for negative values of 𝛥 is obtained by exchanging

𝛼1 with 𝛼2 in 𝜒 and 𝐴, and 𝑉 𝑇 ↓
−

𝑜𝑢𝑡 (𝛥) with 𝑉
𝑇 ↓
+

𝑜𝑢𝑡 (|𝛥|) in (35). □

6.3. Delay formulas

With the explicit output trajectories available, we can now determine formulas for the MIS gate delays of our model, which are
unctions of the input separation time 𝛥 = 𝑡𝐵 − 𝑡𝐴. We use the following general procedure, which we exemplify for the case 𝛥 ≥ 0;
he case 𝛥 < 0 follows by invoking our symmetry argument again.

• For rising input transitions (= falling output transitions), we compute 𝑉 𝑇 ↑
−

𝑜𝑢𝑡 (𝛥), and use it as the initial value for 𝑉
𝑇 ↑↑
+

𝑜𝑢𝑡 (𝑡). The
sought MIS gate delay 𝛿↓𝑀 ,+(𝛥) is the time until the latter crosses the threshold voltage 𝑉𝐷 𝐷∕2.

• For falling input transitions (= rising output transitions), we compute 𝑉 𝑇 ↓
−

𝑜𝑢𝑡 (𝛥), and use it as the initial value for 𝑉
𝑇 ↓↓
+

𝑜𝑢𝑡 (𝑡). The
sought MIS gate delay 𝛿↑𝑀 ,+(𝛥) is the time until the latter crosses the threshold voltage 𝑉𝐷 𝐷∕2.

6.3.1. Rising input transitions
We again start with the simpler rising input transition scenario:

Theorem 6.4 (MIS Delay Functions for Rising Input Transitions). For any 0 ≤ |𝛥| ≤ ∞, the MIS gate delay functions of our model for
rising input transitions with pure delay 𝛿𝑚𝑖𝑛 ≥ 06 are given by:

𝛿↓𝑀 ,+(𝛥) =
⎧

⎪

⎨

⎪

⎩

log(2)𝐶 𝑅𝑛𝐴𝑅𝑛𝐵−𝛥𝑅𝑛𝐵
𝑅𝑛𝐴+𝑅𝑛𝐵

+ 𝛥 + 𝛿𝑚𝑖𝑛 0 ≤ 𝛥 < log(2)𝐶 𝑅𝑛𝐴

log(2)𝐶 𝑅𝑛𝐴 + 𝛿𝑚𝑖𝑛 𝛥 ≥ log(2)𝐶 𝑅𝑛𝐴

𝛿↓𝑀 ,−(𝛥) =
⎧

⎪

⎨

⎪

⎩

log(2)𝐶 𝑅𝑛𝐴𝑅𝑛𝐵+|𝛥|𝑅𝑛𝐴
𝑅𝑛𝐴+𝑅𝑛𝐵

+ |𝛥| + 𝛿𝑚𝑖𝑛 |𝛥| < log(2)𝐶 𝑅𝑛𝐵

log(2)𝐶 𝑅𝑛𝐵 + 𝛿𝑚𝑖𝑛 |𝛥| ≥ log(2)𝐶 𝑅𝑛𝐵

Proof. We sketch how 𝛿↓𝑀 ,+(𝛥) is computed; the expression for 𝛿↓𝑀 ,−(𝛥) is obtained analogously by our usual symmetry argument.

Consider the trajectory 𝑉
𝑇 ↑↑
+

𝑜𝑢𝑡 (𝑡) in (19) starting from the initial value 𝑉 𝑇 ↑
−

𝑜𝑢𝑡 (𝛥), where the latter in turn is started from the initial value
𝑉 𝑇 ↑

−
𝑜𝑢𝑡 (0) = 𝑉𝐷 𝐷. The objective is to compute the time 𝛿↓𝑀 ,+(𝛥) when 𝑉𝐷 𝐷∕2 is hit by either (i) already the preceding trajectory 𝑉 𝑇 ↑

−
𝑜𝑢𝑡 (𝑡),

or else (ii) 𝑉
𝑇 ↑↑
+

𝑜𝑢𝑡 (𝑡) itself (which is started at time 𝛥). Note that this reflects the fact that already the first rising input (happening at
time 0) alone causes the output to eventually go to 0. Since all these trajectories only involve a single exponential function, they are
easy to invert: It is apparent from (17) that case (i) occurs for values 𝛥 ≥ − log(0.5)𝐶 𝑅𝑛𝐴 , whereas (19) governs case (ii) for smaller
values of 𝛥. □

6.3.2. Falling input transitions
In order to compute the MIS gate delay 𝛿↑𝑀 ,+(𝛥), we need to study the time the voltage trajectory 𝑉

𝑇 ↓↓
+

𝑜𝑢𝑡 (𝑡) given in (35) needs to
hit the threshold voltage 𝑉𝐷 𝐷∕2 when starting from 𝑉 𝑇 ↓

−
𝑜𝑢𝑡 (𝛥) = 0. After all, a NOR gate, where both inputs were initialized to 𝑉𝐷 𝐷

t time −∞, and where only one input experiences a falling transition at time 0 keeps its output at 0. Consequently, at time 𝑡 = 𝛥,
when the second falling input transition occurs, the output voltage 𝑉 𝑇 ↓

−
𝑜𝑢𝑡 (𝛥) is still 0.

Therefore, 𝑡 = 𝛿↑𝑀 ,+(𝛥) must be a solution of the functional equation

𝐼(𝑡, 𝛥) = 𝑒
−𝑡
2𝑅𝐶

(

1 + 2𝑡
𝑑 +

√

𝜒

)
−𝐴+𝑎
2𝑅𝐶

(

1 + 2𝑡
𝑑 −

√

𝜒

)
𝐴

2𝑅𝐶 − 1
2
= 0. (37)

6 A pure delay term 𝛿𝑚𝑖𝑛 ≥ 0, already foreseen in the original IDM model [11], is essential for guaranteeing causality, and also for model parametrization
introduced in Section 6.4.
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In view of the complicated shape of (37), it is immediately apparent that there is not much hope to obtain an explicit solution
𝛿↑𝑀 ,+(𝛥) satisfying 𝐼

(

𝛿↑𝑀 ,+(𝛥), 𝛥
)

= 0, for every 𝛥. Even worse, since lim𝛥→0 𝐴 = 0 (recall Eq. (30)) and also lim𝛥→0(𝑑 −
√

𝜒) = 0
(recall Eq. (26) and Eq. (28)), it is apparent that we cannot even determine a local solution of (37) in a neighborhood of (0, 0)
via the implicit function theorem, as (0, 0) is a singular point (a cusp, as already suggested by Fig. 4(b)). Fortunately, however, the
ootstrapping method from asymptotic analysis [30] eventually allowed us to develop accurate asymptotic expansions, in particular,

for 𝛥 → 0.
In a nutshell, bootstrapping (sometimes) allows to improve the accuracy of an a priori known asymptotic expansion of the sought

olution of 𝐼(𝑡, 𝛥) = 0, by rewriting 𝐼(𝑡, 𝛥) = 0 into a suitable equivalent form 𝑡 = 𝐽 (𝑡, 𝛥), and plugging the known expansion into the
right-hand side only. In particular, relying on the fact that 𝛿↑𝑀 ,+(𝛥) = 𝛿0 = 𝑂(1) for 𝛥 → 0 as established in Lemma 15 below, one
can easily derive the more accurate expansion 𝛿↑𝑀 ,+(𝛥) = 𝛿0 + 𝑂(𝛥) for 𝛥 → 0, where 𝛿0 = 𝛿↑𝑀 ,+(0) is independent of 𝛥.

The following two technical lemmas provides asymptotic expansions of the basic ingredients in (37):

Lemma 14. For 𝛥 → 0, we have the following asymptotic expansions:
√

𝜒 =(𝑎 + 𝛥)

√

1 − 2𝛼2𝛥
𝑅(𝑎 + 𝛥)2

=
𝛼1 + 𝛼2
2𝑅

+
𝛼1 − 𝛼2
𝛼1 + 𝛼2

𝛥 + 𝑂(𝛥2), (38)

𝑑 +
√

𝜒 = 𝑎 + 𝛥 +
√

𝜒 =
𝛼1 + 𝛼2

𝑅
+

2𝛼1
𝛼1 + 𝛼2

𝛥 + 𝑂(𝛥2), (39)

𝑑 −
√

𝜒 = 𝑎 + 𝛥 −
√

𝜒 =
2𝛼2

𝛼1 + 𝛼2
𝛥 + 𝑂(𝛥2), (40)

𝐴
2𝑅𝐶

= 1
2𝑅𝐶

⋅
−𝑎𝑠1 − 𝑐′

𝑠2 − 𝑠1
= −1

2𝑅𝐶
⋅
𝑎
𝑑−

√

𝜒
2 − 𝛼2𝛥

2𝑅
√

𝜒
= 𝑂(𝛥2). (41)

Proof. For (38), recalling definition Eq. (28) of 𝜒 and using the well-known expansions
√

1 + 𝑥 = 1 + 𝑥∕2 +𝑂(𝑥2) and 1∕(1 + 𝑥)2 =
 − 2𝑥 + 𝑂(𝑥2) for 𝑥 → 0, we obtain

√

1 − 2𝛼2𝛥
𝑅(𝑎 + 𝛥)2

= 1 − 2𝛼2𝛥
2𝑎2𝑅(1 + 𝛥∕𝑎)2

+ 𝑂(𝛥2) = 1 − 𝛼2𝛥
𝑎2𝑅

+ 𝑂(𝛥2).

Plugging this into the first equality in (38) and recalling 𝑎 = 𝛼1+𝛼2
2𝑅 , the claimed asymptotic expansion follows by simple algebra.

(39), (40) and (41) follow easily from their definitions Eq. (26) and Eq. (30) by plugging in the asymptotic expansion of
√

𝜒 given
n (38). □

Lemma 15. For 𝛥 → ∞, we have the following asymptotic expansions:
√

𝜒 =(𝑎 + 𝛥)

√

1 − 2𝛼2𝛥
𝑅(𝑎 + 𝛥)2

= 𝛥 +
𝛼1 − 𝛼2
2𝑅

+ 𝑂(𝛥−1), (42)

𝑑 +
√

𝜒 = 𝑎 + 𝛥 +
√

𝜒 = 2𝛥 +
𝛼1
𝑅

+ 𝑂(𝛥−1), (43)

𝑑 −
√

𝜒 = 𝑎 + 𝛥 −
√

𝜒 =
𝛼2
𝑅

+ 𝑂(𝛥−1), (44)

𝐴
2𝑅𝐶

= 1
2𝑅𝐶

⋅
−𝑎𝑠1 − 𝑐′

𝑠2 − 𝑠1
= −1

2𝑅𝐶
⋅
𝑎
𝑑−

√

𝜒
2 − 𝛼2𝛥

2𝑅
√

𝜒
=

𝛼2
4𝑅2𝐶

+ 𝑂(𝛥−1). (45)

Proof. For (42), recalling definition Eq. (28) of 𝜒 and again using the well-known expansions
√

1 + 𝑥 = 1 + 𝑥∕2 + 𝑂(𝑥2) and
∕(1 + 𝑥)2 = 1 − 2𝑥 + 𝑂(𝑥2) for 𝑥 → 0, we obtain

√

1 − 2𝛼2𝛥
𝑅(𝑎 + 𝛥)2

=

√

1 − 2𝛼2
𝛥𝑅(1 + 𝑎∕𝛥)2

= 1 − 𝛼2
𝛥𝑅(1 + 𝑎∕𝛥)2

+ 𝑂(𝛥−2)

= 1 − 𝛼2
𝛥𝑅

+ 𝑂(𝛥−2).

Plugging this into the first equality in (42) and recalling 𝑎 = 𝛼1+𝛼2
2𝑅 , the claimed asymptotic expansion follows by simple algebra.

(43), (44) and (45) follow easily from their definitions Eq. (26) and Eq. (30) by plugging in the asymptotic expansion of
√

𝜒 given
n (42). □

As the basis for our first bootstrapping step, we will need the extremal delay values 𝛿↑𝑀 ,+(0), 𝛿↑𝑀 ,+(∞) and 𝛿↑𝑀 ,+(−∞). The following
Lemma 16 will provide solutions 𝛿 , 𝛿 and 𝛿 of (37) for 𝛥 = 0, 𝛥 = ∞ and 𝛥 = −∞, respectively, which can be expressed in
0 ∞ −∞

20 



A. Ferdowsi et al.

i

E

i

Nonlinear Analysis: Hybrid Systems 56 (2025) 101572 
terms of some branch of the multi-valued Lambert 𝑊 function [31]. We note that 𝑊 (𝑥) provides the inverse of the function 𝑦𝑒𝑦 = 𝑥,
and has only two real-valued branches: the principal branch 𝑦 = 𝑊0(𝑥) where 𝑦 ≥ −1, and the branch 𝑦 = 𝑊−1(𝑥) where 𝑦 ≤ −1.
Since we will also prove in Theorem 6.5 later on that (37) has a unique solution for 𝛥 = 0, 𝛥 = ∞ and 𝛥 = −∞, it follows that
ndeed 𝛿↑𝑀 ,+(0) = 𝛿0, 𝛿

↑
𝑀 ,+(∞) = 𝛿∞ and 𝛿↑𝑀 ,+(−∞) = 𝛿−∞.

Lemma 16 (Extremal MIS dElay Values). Given7 𝛼1, 𝛼2, 𝑅, and 𝐶, we find

𝛿0 = −𝛼1 + 𝛼2
2𝑅

[

1 +𝑊−1

( −1

𝑒 ⋅ 2
4𝑅2𝐶
𝛼1+𝛼2

)]

, (46)

𝛿∞ = − 𝛼2
2𝑅

[

1 +𝑊−1

( −1

𝑒 ⋅ 2
4𝑅2𝐶
𝛼2

)]

, (47)

𝛿−∞ = − 𝛼1
2𝑅

[

1 +𝑊−1

( −1

𝑒 ⋅ 2
4𝑅2𝐶
𝛼1

)]

. (48)

Proof. We start with the proof for 𝛿0. Plugging in 𝛥 = 0 in (37) leads to
𝑒−

𝛿0
2𝑅𝐶

(

1 + 𝛿0
𝑎

)
𝑎

2𝑅𝐶 = 1
2
, (49)

since 𝑑 +
√

𝜒 = 2𝑎, 𝑑 −
√

𝜒 = 0 by Eq. (26)–Eq. (28), and 𝐴 = 0 by Eq. (30); note that the third factor in (37) collapses to 1 since
(1 + ∞)0 = 1. Raising Eq. (49) to the power 2𝑅𝐶∕𝑎, one obtains

𝑒−
𝛿0
𝑎
(

1 + 𝛿0
𝑎

)

= 2− 2𝑅𝐶
𝑎 . (50)

Setting 𝑦 = −(1 + 𝛿0
𝑎 ) and 𝛾 = 2−

2𝑅𝐶
𝑎

𝑒 , this translates to 𝑒𝑦𝑦 = −𝛾. Note carefully that −𝛾 > − 1
𝑒 and 𝑦 < −1. It hence follows that

𝑦 = 𝑊−1

( −1

𝑒 ⋅ 2
2𝑅𝐶
𝑎

)

,

which is equivalent to Eq. (46) by recalling 𝑦 = −(1 + 𝛿0
𝑎 ) and 𝑎 = 𝛼1+𝛼2

2𝑅 .
We next turn our attention to 𝛿∞. Recalling the asymptotic expansions in Lemma 15, it is not difficult to verify that plugging in

𝛥 = ∞ in (37) leads to

𝑒−
𝛿∞
2𝑅𝐶

(

1 + 𝛿∞
𝛼2
2𝑅

)

𝛼2
4𝑅2𝐶 = 1

2
; (51)

note that it is the second factor in (37) that collapses to 1 here. Since Eq. (51) differs from Eq. (49) only in that 𝑎 = 𝛼1+𝛼2
2𝑅 has

been replaced by 𝛼2
2𝑅 , the above derivations can be literally used to also confirm Eq. (47), and, by our usual symmetry argument,

q. (48). □

We are now ready for proving the main Theorem 6.5 of this section:

Theorem 6.5 (MIS Delay Functions for Falling Input Transitions). For any 0 ≤ |𝛥| ≤ ∞, the MIS delay functions of our model for falling
nput transitions with pure delay 𝛿𝑚𝑖𝑛 ≥ 0 are given by

𝛿↑𝑀 ,+(𝛥) =
⎧

⎪

⎨

⎪

⎩

𝛿0 −
𝛼1

𝛼1+𝛼2
𝛥 + 𝛿𝑚𝑖𝑛 0 ≤ 𝛥 < (𝛼1+𝛼2)(𝛿0−𝛿∞)

𝛼1
𝛿∞ + 𝛿𝑚𝑖𝑛 𝛥 ≥ (𝛼1+𝛼2)(𝛿0−𝛿∞)

𝛼1

(52)

𝛿↑𝑀 ,−(𝛥) =
⎧

⎪

⎨

⎪

⎩

𝛿0 −
𝛼2

𝛼1+𝛼2
|𝛥| + 𝛿𝑚𝑖𝑛 0 ≤ |𝛥| < (𝛼1+𝛼2)(𝛿0−𝛿−∞)

𝛼2
𝛿−∞ + 𝛿𝑚𝑖𝑛 |𝛥| ≥ (𝛼1+𝛼2)(𝛿0−𝛿−∞)

𝛼2

(53)

Proof. Since inverting (37) globally is hopeless, we will determine the linear asymptotic expansion of 𝛿↑𝑀 ,+(𝛥) for 𝛥 → 0 and the
constant asymptotic expansions of 𝛿↑𝑀 ,+(𝛥) for 𝛥 → ±∞, and glue them together at their intersection point.

To simplify our derivations, we will employ the variable substitutions

𝑦 = 𝑡
2𝑅𝐶

and 𝑥 = 𝛥
2𝑅𝐶

,

in (37). This leads to
𝑒−𝑦

(

1 + 𝑦
𝑝 + 𝑝1𝑥 + 𝑂(𝑥2)

)𝑝+𝑂(𝑥2)(
1 + 𝑦

𝑚𝑥 + 𝑂(𝑥2)

)𝑂(𝑥2)
= 1

2
, (54)

7 In Section 6.4, we will explain how to determine these parameters from given delay values 𝛿 , 𝛿 and 𝛿 .
0 ∞ −∞
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where the constants

𝑝 =
𝛼1 + 𝛼2
4𝑅2𝐶

, 𝑝1 =
𝛼1

𝛼1 + 𝛼2
, 𝑚 =

𝛼2
𝛼1 + 𝛼2

follow from the expansions provided in Lemma 14.
Obviously, in accordance with Eq. (49), setting 𝑥 = 0 in the logarithm of (54) results in the following equation for the solution(s)

0:

𝑦0 = 𝑝 ⋅ log(1 + 𝑦0
𝑝
) + log(2). (55)

Using continuity and convexity arguments, we first show that Eq. (55) and hence (54) has a unique solution, which must hence be
equal to 𝑦0 = 𝛿0∕(2𝑅𝐶) > 0 according to Lemma 16. More specifically, given 𝑦1 and 𝑦2 with 0 < 𝑦1 < 𝑦0 < 𝑦2, we prove that (54) has
a unique solution 𝑦 = 𝑦(𝑥) ∈ [𝑦1, 𝑦2] for sufficiently small 𝑥 by using Banach’s fixed point theorem [19]: By taking the logarithm,
we can rewrite (54) as a fixed point equation

𝑦 =
(

𝑝 + 𝑂(𝑥2)
)

log
(

1 + 𝑦
𝑝 + 𝑝1𝑥 + 𝑂(𝑥2)

)

+ 𝑂(𝑥2) log
(

1 + 𝑦
𝑚𝑥 + 𝑂(𝑥2)

)

− log 1
2
. (56)

Since

𝜕
𝜕 𝑦

(

𝑝 + 𝑂(𝑥2)
)

log
(

1 + 𝑦
𝑝 + 𝑝1𝑥 + 𝑂(𝑥2)

)

=

𝑝+𝑂(𝑥2)
𝑝+𝑝1𝑥+𝑂(𝑥2)

1 + 𝑦
𝑝+𝑝1𝑥+𝑂(𝑥2)

≤
(

1 + 𝑦1
2𝑝

)−1
< 1

provided 𝑥 is chosen sufficiently small, and
𝜕
𝜕 𝑦

(

𝑂(𝑥2) log
(

1 + 𝑦
𝑚𝑥 + 𝑂(𝑥2)

)

)

= 𝑂
(

𝑥2

𝑚𝑥 + 𝑂(𝑥2) + 𝑦

)

= 𝑂(𝑥2),

it follows that (56) is a contraction. Banach’s fixed point theorem thus shows that the solution 𝑦(𝑥) (and hence also the corresponding
solution 𝑡(𝛥) of (37)) is unique. Note that an analogous reasoning can be used to prove that the solutions for 𝛥 → ∞ and 𝛥 → −∞
are unique, which also confirms the values 𝛿∞ and 𝛿−∞ given in Lemma 16.

For our bootstrapping step, we write

𝑦 = 𝑦0 + 𝑧 (57)

with 𝑧 = 𝑧(𝑥) ∈ [𝑦1 − 𝑦0, 𝑦2 − 𝑦0] for 𝑥 → 0, and show next that actually 𝑧 = 𝑂(𝑥). We again take the logarithm of (54) and split it
p into three parts 𝑇1, 𝑇2, 𝑇3. Furthermore, we set

𝑈 = 𝑧
𝑝 + 𝑝1𝑥 + 𝑂(𝑥2)

−
𝑦0𝑝1
𝑝2

𝑥 + 𝑂(𝑥2),

which can be made arbitrarily small by choosing 𝑦1, 𝑦2 appropriately, and obtain

𝑧 = 𝑈 (𝑝 + 𝑝1𝑥) +
𝑦0𝑝1
𝑝

𝑥 + 𝑂(𝑥2). (58)

Using the relations 1∕(1 + 𝑥) = 1 − 𝑥 + 𝑂(𝑥2) and log(1 + 𝑥) = 𝑥 + 𝑂(𝑥2) for 𝑥 → 0, we thus obtain

𝑇1 = log(𝑒−𝑦) = −𝑦0 − 𝑧 = −𝑦0 − 𝑈 (𝑝 + 𝑝1𝑥) −
𝑦0𝑝1
𝑝

𝑥 + 𝑂(𝑥2),

𝑇2 = log
(

1 + 𝑦
𝑝 + 𝑝1𝑥 + 𝑂(𝑥2)

)𝑝+𝑂(𝑥2)

=
(

𝑝 + 𝑂(𝑥2)
)

log
(

1 + 𝑦0
𝑝 + 𝑝1𝑥 + 𝑂(𝑥2)

+ 𝑧
𝑝 + 𝑝1𝑥 + 𝑂(𝑥2)

)

=
(

𝑝 + 𝑂(𝑥2)
)

log
(

1 + 𝑦0
𝑝

⋅
1

1 + 𝑝1𝑥
𝑝 + 𝑂(𝑥2)

+ 𝑈 +
𝑦0𝑝1𝑥
𝑝2

+ 𝑂(𝑥2)
)

=
(

𝑝 + 𝑂(𝑥2)
)

log
(

1 + 𝑦0
𝑝

+ 𝑂(𝑥2) + 𝑈
)

=
(

𝑝 + 𝑂(𝑥2)
)

log
(

(

1 + 𝑦0
𝑝
)(

1 + 𝑈
1 + 𝑦0

𝑝

)

)

=
(

𝑝 + 𝑂(𝑥2)
)

log
(

1 + 𝑦0
𝑝
)

+
(

𝑝 + 𝑂(𝑥2)
)𝑈 + 𝑂(𝑈2)

1 + 𝑦0
𝑝

𝑇3 = log
(

1 + 𝑦
𝑚𝑥 + 𝑂(𝑥2)

)𝑂(𝑥2)
= log

( 𝑦 + 𝑚𝑥 + 𝑂(𝑥2)
𝑚𝑥 + 𝑂(𝑥2)

)𝑂(𝑥2)

= 𝑂(𝑥2) ⋅ log
(

𝑦0 + 𝑧 + 𝑚𝑥 + 𝑂(𝑥2)
)

+ 𝑂
(

𝑥2 log(𝑥)
)

= 𝑂(𝑥2) ⋅ log
(

𝑦0
(

1 + 𝑧 + 𝑚𝑥 + 𝑂(𝑥2)
𝑦0

)

)

+ 𝑂
(

𝑥2 log(𝑥)
)

= 𝑂(𝑥2) ⋅
(

log(𝑦0) +
𝑧 + 𝑚𝑥 + 𝑂(𝑥2))

+ 𝑂
(

𝑥2 log(𝑥)
)

𝑦0
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= 𝑂
(

𝑥2 log(𝑥)
)

.

Thus, (54), which is equivalent to 𝑇1 + 𝑇2 + 𝑇3 = log(1∕2), is also equivalent to

− 𝑈
(

𝑝 + 𝑝1𝑥
)

−
𝑦0𝑝1
𝑝

𝑥 +
(

𝑝 + 𝑂(𝑥2)
)𝑈

(

1 + 𝑂(𝑈 )
)

1 + 𝑦0
𝑝

+ 𝑂(𝑥2 log 𝑥) = 0, (59)

where the terms involving 𝑦0 canceled out due to relation Eq. (55). Extracting 𝑈 and recalling that 𝑂(𝑈 ) can be made arbitrarily
small by choosing 𝑦1, 𝑦2 appropriately finally reveals 𝑈 = 𝑂(𝑥) and hence 𝑧 = 𝑧(𝑥) = 𝑂(𝑥) by Eq. (58) as claimed.

In an additional bootstrapping step, we can be slightly more precise w.r.t. 𝑇2 and obtain

𝑇2 =
(

𝑝 + 𝑂(𝑥2)
)

⋅ log
(

1 + 𝑦
𝑝 + 𝑝1𝑥 + 𝑂(𝑥2)

)

=
(

𝑝 + 𝑂(𝑥2)
)

⋅ log
(

1 + 𝑦0 + 𝑧
𝑝

(

1 − 𝑝1
𝑝
𝑥 + 𝑂(𝑥2)

)

)

=
(

𝑝 + 𝑂(𝑥2)
)

⋅ log
⎛

⎜

⎜

⎝

(

1 + 𝑦0
𝑝
)

(

1 +
𝑧
𝑝 − 𝑦0𝑝1

𝑝2
𝑥 + 𝑂(𝑥2)

1 + 𝑦0
𝑝

)
⎞

⎟

⎟

⎠

=
(

𝑝 + 𝑂(𝑥2)
)

⋅
(

log
(

1 + 𝑦0
𝑝
)

+ 𝑧
𝑦0 + 𝑝

−
𝑦0𝑝1

𝑝(𝑦0 + 𝑝)
𝑥 + 𝑂(𝑥2)

)

=
𝑝

𝑦0 + 𝑝
𝑧 + 𝑝 log

(

1 + 𝑦0
𝑝
)

−
𝑦0𝑝1
𝑦0 + 𝑝

𝑥 + 𝑂(𝑥2).

This leads to
−𝑦0 − 𝑧 + log(2) + 𝑝

𝑦0 + 𝑝
𝑧 + 𝑝 log(1 + 𝑦0

𝑝
) − 𝑦0𝑝1

𝑦0 + 𝑝
𝑥 + 𝑂

(

𝑥2 log(𝑥)
)

= 0, (60)

which, by virtue of Eq. (55), gives

𝑧 = −𝑝1𝑥 + 𝑂
(

𝑥2 log(𝑥)
)

= − 𝛼1
𝛼1 + 𝛼2

𝑥 + 𝑂
(

𝑥2 log(𝑥)
)

. (61)

Recalling Eq. (57), we therefore arrive at the improved expansion

𝑦 = 𝑦0 −
𝛼1

𝛼1 + 𝛼2
𝑥 + 𝑂

(

𝑥2 log(𝑥)
)

(62)

and, after undoing our variable substitution,

𝛿↑𝑀 ,+(𝛥) = 𝛿0 −
𝛼1

𝛼1 + 𝛼2
𝛥 + 𝑂(𝛥2 log(𝛥)). (63)

Finally, it is easy to check that the crossing point of the linear part of (63) and 𝛿∞ is 𝛥 = (𝛼1+𝛼2)(𝛿0−𝛿∞)
𝛼1

. By pasting them together
t this crossing point, we obtain the delay formula (52) that is valid for all values of 𝛥.

Last but not least, 𝛿↑𝑀 ,−(𝛥) is obtained by exchanging 𝛼1 and 𝛼2 and replacing 𝛿∞ by 𝛿−∞ as well as 𝛥 by |𝛥| in (52), according
o our usual symmetry argument, which completes our proof. □

To conclude this section, we note that more accurate asymptotic expansions for the delay can be derived easily by further
ootstrapping steps. It turns out, however, that improving the accuracy for 𝛥 very close to 0 has its price in a rapid worsening of
he accuracy for larger values of 𝛥. Consequently, just pasting together the expansions for 𝛥 → 0 and 𝛥 → ±∞ would no longer be
ufficient to cover the whole range for 𝛥. Whereas bootstrapping could also be used to develop an asymptotic expansion at some
ntermediate point within this gap, the resulting improvement is not worth the effort.

6.4. Model parametrization and evaluation results

What is still needed to use our model, in particular, the delay formulas established in Theorems 6.4 and 6.5, is a practical
procedure for model parametrization: Given some data that characterize the delays of a real gate, one needs to determine appropriate
values for the model parameters 𝛼1, 𝛼2, 𝐶, 𝑅, 𝑅𝑛𝐴 , and 𝑅𝑛𝐵 and an appropriate pure delay 𝛿min that align our model with these data.

As in [14,16], we will parameterize our model based on the characteristic MIS delay values 𝛿↓𝑆 (−∞), 𝛿↓𝑆 (0), and 𝛿↓𝑆 (∞) according
to Fig. 4(a) and 𝛿↑𝑆 (−∞), 𝛿↑𝑆 (0), and 𝛿↑𝑆 (∞) according to Fig. 4(b). In sharp contrast to the parametrization procedure employed for
the original model in [16], which was based on least-squares fitting, we can exploit our explicit trajectory formulas to get rid of
any fitting. In fact, as already in Lemma 16, Lambert 𝑊 functions will turn out to be instrumental also here.

Theorem 6.6 (Gate Characterization). Let 𝛿↓𝑆 (−∞), 𝛿↓𝑆 (0), 𝛿
↓
𝑆 (∞) and 𝛿↑𝑆 (−∞), 𝛿↑𝑆 (0), 𝛿

↑
𝑆 (∞) be the MIS delay values of a real gate that shall

be matched by our model, in the sense that 𝛿↓𝑀 ,−(−∞) = 𝛿↓𝑆 (−∞), 𝛿↓𝑀 ,−(0) = 𝛿↓𝑀 ,+(0) = 𝛿↓𝑆 (0), 𝛿
↓
𝑀 ,+(∞) = 𝛿↓𝑆 (∞) and 𝛿↑𝑀 ,−(−∞) = 𝛿↑𝑆 (−∞),

𝛿↑𝑀 ,−(0) = 𝛿↑𝑀 ,+(0) = 𝛿↑𝑆 (0), 𝛿
↑
𝑀 ,+(∞) = 𝛿↑𝑆 (∞).

Given an arbitrarily chosen value 𝐶 for the load capacitance, this matching is accomplished by choosing the model parameters as follows:

𝛿 = 𝛿↓ (0) −
√

(

𝛿↓ (∞) − 𝛿↓ (0)
)(

𝛿↓ (−∞) − 𝛿↓ (0)
)

(64)
min 𝑆 𝑆 𝑆 𝑆 𝑆
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𝑅𝑛𝐵 =
𝛿↓𝑆 (−∞) − 𝛿min

𝐶 ⋅ log(2)
(65)

𝑅𝑛𝐴 =
𝛿↓𝑆 (∞) − 𝛿min

𝐶 ⋅ log(2)
(66)

Furthermore, using the function

𝐴(𝑡, 𝑅, 𝐶) = −2𝑅
(

𝑡 − 2𝑅𝐶 ⋅ log(2)
)

𝑊−1

(

( 2𝑅𝐶⋅log(2)
𝑡 − 1)𝑒 2𝑅𝐶⋅log(2)

𝑡 −1
)

+ 1 − 2𝑅𝐶⋅log(2)
𝑡

, (67)

determine 𝑅 by numerically8 solving the equation

𝐴
(

𝛿↑𝑆 (0) − 𝛿min, 𝑅, 𝐶
)

− 𝐴
(

𝛿↑𝑆 (∞) − 𝛿min, 𝑅, 𝐶
)

− 𝐴
(

𝛿↑𝑆 (−∞) − 𝛿min, 𝑅, 𝐶
)

= 0, (68)

and finally choose

𝛼1 = 𝐴
(

𝛿↑𝑆 (−∞) − 𝛿min, 𝑅, 𝐶
)

, (69)

𝛼2 = 𝐴
(

𝛿↑𝑆 (∞) − 𝛿min, 𝑅, 𝐶
)

. (70)

Proof. We first consider the parameters determined by the rising input transition case. To align the delay formulas in Theorem 6.4
with the given delay values, we just plug in 𝛿↓𝑆 (−∞) − 𝛿min, 𝛿

↓
𝑆 (0) − 𝛿min, and 𝛿↓𝑆 (∞) − 𝛿min in order to obtain the following system of

quations for our sought parameters 𝛿min, 𝑅𝑛𝐵 and 𝑅𝑛𝐴 :

𝛿↓𝑆 (0) − 𝛿min −
log(2) ⋅ 𝐶 ⋅ 𝑅𝑛𝐴𝑅𝑛𝐵

𝑅𝑛𝐴 + 𝑅𝑛𝐵
= 0

𝛿↓𝑆 (∞) − 𝛿min − log(2) ⋅ 𝐶 ⋅ 𝑅𝑛𝐴 = 0
𝛿↓𝑆 (−∞) − 𝛿min − log(2) ⋅ 𝐶 ⋅ 𝑅𝑛𝐵 = 0

Some straightforward algebra shows that this system is equivalent to the following one:
1

𝑅𝑛𝐴
+ 1

𝑅𝑛𝐵
=

log(2) ⋅ 𝐶

𝛿↓𝑆 (0) − 𝛿min

1
𝑅𝑛𝐴

=
log(2) ⋅ 𝐶

𝛿↓𝑆 (∞) − 𝛿min

1
𝑅𝑛𝐵

=
log(2) ⋅ 𝐶

𝛿↓𝑆 (−∞) − 𝛿min

It follows that
1

𝛿↓𝑆 (0) − 𝛿min
= 1

𝛿↓𝑆 (∞) − 𝛿min
+ 1

𝛿↓𝑆 (−∞) − 𝛿min
,

which can be rewritten into a quadratic equation for 𝛿min, namely,

𝛿2min − 2𝛿↓𝑆 (0)𝛿min + 𝛿↓𝑆 (0)𝛿
↓
𝑆 (∞) + 𝛿↓𝑆 (0)𝛿

↓
𝑆 (−∞) − 𝛿↓𝑆 (∞)𝛿↓𝑆 (−∞) = 0.

It is easy to verify that it has the solution stated in Eq. (64). Note that we need to take the negative solution in order to ensure that
𝛿min ≤ 𝛿↓𝑆 (0).

We now turn our attention to the parameters determined by the falling input transition case. We first justify Eq. (67) by
considering 𝐴

(

𝛿↑𝑆 (0) −𝛿min, 𝑅, 𝐶
)

, which corresponds to setting 𝑡 = 𝛿0 = 𝛿↑𝑆 (0) −𝛿min as defined in Lemma 16. Abbreviating 𝛼 = 𝛼1+𝛼2

and noting that 𝛼 = 2𝑅𝑎 according to Eq. (25), we start from Eq. (50) in the proof of Lemma 16, which states 𝑒
−2𝑅𝛿0

𝛼 (1 + 2𝑅𝛿0
𝛼 ) = 2 −4𝑅2𝐶

𝛼 .
By raising both sides to the power of 𝛼∕(2𝑅), we get 1 < (1 + 2𝑅𝛿0

𝛼 )
𝛼
2𝑅 = 2−2𝑅𝐶𝑒𝛿0 that is equivalent to (1 + 𝜔

𝑦 )
𝑦 = 𝛽 with 𝜔 = 2𝑅𝛿0 > 0,

𝑦 = 𝛼 > 0, and 𝛽 = 𝑒2𝑅(𝛿0−2𝑅𝐶 log(2)) > 1. Once again, by the substitution 𝑧 = 1 + 𝜔
𝑦 > 1, we get 𝑒

𝜔
𝑧−1 log(𝑧) = 𝛽. Accordingly, by taking

the natural logarithm on both sides, we arrive at

log(𝑧) = (𝑧 − 1)𝛾 , (71)

for 𝛾 = log(𝛽)
𝜔 > 0. We need to solve Eq. (71) for 𝑧 > 1 so as to obtain 𝛼 = 𝑦 = 𝜔

𝑧 . From Eq. (71), we get by exponentiation 𝑧𝑒−𝑧𝛾 = 𝑒−𝛾 ,
nd multiplication by −𝛾 finally gives us −𝑧𝛾 𝑒−𝑧𝛾 = −𝛾 𝑒−𝛾 . We can solve this equation for −𝑧𝛾 by means of the Lambert 𝑊 function.
ince 𝛾 > 0 and we need the solution to satisfy 𝑧 > 1, we must take the branch 𝑊−1 here to compute

𝑧 = −𝑊−1(−𝛾 𝑒−𝛾 )
𝛾

.

8 Whereas there might be a way to solve it analytically, we did not find it so far.
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Table 4
Model parameter values for the 15 nm CMOS NOR gate used for producing Fig. 4(a) and Fig. 4(b). The chosen capacitance value is 𝐶 = 3.6331599443276 𝑓 𝐹 .

Parameters determined by falling output transitions
𝛿min = 16.963423585525 𝑝𝑠 𝑅𝑛𝐴 = 8.760489389736 𝑘𝛺 𝑅𝑛𝐵 = 8.658111065573 𝑘𝛺

Parameters determined by rising output transitions
𝑅 = 6.539995525955 𝑘𝛺 𝛼1 = 20.4461 ⋅ 10−9 𝛺 𝑠 𝛼2 = 9.3487 ⋅ 10−9 𝛺 𝑠

Fig. 7. Our proposed computed (𝛿↓∕↑𝑀 (𝛥)), the measured (𝛿↓∕↑𝑆 (𝛥)), and those computed by the baseline model in [16] for the 15nm CMOS NOR gate from [14].

Plugging in the values of 𝑧 and 𝛾 into 𝑦 = 𝜔
𝑧 , we obtain

𝑦 = − − log(𝛽)
𝑊−1(−

log(𝛽)
𝜔 𝛽

−1
𝜔 ) + log(𝛽)

𝜔

. (72)

Finally, replacing 𝜔 resp. 𝛽 by their ‘‘generic’’ value 2𝑅𝑡 resp. 𝑒2𝑅(𝑡−2𝑅𝐶 log(2)) (where 𝛿0 is replaced by 𝑡) in Eq. (72) gives Eq. (67).
It only remains to justify Eq. (70) and Eq. (69), where we use the same argument as in the proof of Lemma 16: We can use literally

the same derivations as above, except that we start from the variant of Eq. (50) where 𝑎 is replaced by 𝛼2
2𝑅 resp. 𝛼1

2𝑅 for Eq. (70)
resp. Eq. (69). This finally also explains why we can determine 𝑅 by (numerically) solving Eq. (68). □

We are now ready to compare the delay predictions of our Theorems 6.4 and 6.5 with the ones provided in the original paper [16].
For that purpose, we employ our Theorem 6.6 for computing the parameters for the same 15 nm technology CMOS NOR gate used
in [16], which are summarized in Table 4, and visualize the delay predictions of our model: Fig. 7 depicts our delays (blue curve)
and compares it to the analog reality (dashed red curve), as well as to the predictions provided by the original model in [16] (dashed
range curve).

Since we are utilizing almost the same delay formulas and parameters as those used in [16] for the rising input transition case,
we observe identical blue and orange curves, which closely match the gate’s real MIS delays. There is a significant improvement in
the delay predictions of our model over the one in [16] for the falling input transition case, however. In particular, according to
Fig. 7(b), our model accurately predicts the real delays even for very small values of 𝛥, where [16] is considerably off.

7. Conclusions

We presented a general continuity proof for a broad class of first-order thresholded hybrid models, which arise naturally in
igital integrated circuits. We showed that, under mild conditions regarding causality, digitized hybrid gates can be composed to
orm circuits with unique and well-behaved executions. We introduced the intricacies of multi-input switching effects in multi-input
ates and proved the continuity of two state-of-the-art digitized hybrid models for CMOS NOR gates. Moreover, we revisited the
urrently best of these models and provided a completely new analysis of its MIS delay predictions, based on explicit solutions of
he involved ODEs, which not only resulted in a much better accuracy but also in an explicit model parametrization procedure.

The main strength of our approach is its simplicity combined with a very reasonable delay prediction accuracy. In the context of
igital integrated circuits, this enables analytic delay formulas and fast dynamic timing simulation with a surprisingly high accuracy.
onsequently, the slow analog simulations of the large ODE systems describing a typical circuit can be replaced by a fast discrete
vent simulation that utilizes our delay formulas. Our implementation in the Involution Tool revealed that this reduces typical
imulation times by several orders of magnitude. At the same time, the achievable delay prediction accuracy is also the main
eakness of our approach, as our simple first-order thresholded hybrid gate models cannot capture all the intricacies of real circuit

mplementations.
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