
Katastrophensimulation für
mobile Virtual Reality Geräte

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Media and Human-Centered Computing

eingereicht von

Thomas Hannes Wechdorn, Bsc
Matrikelnummer 01427618

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Mag.rer.nat. Dr.techn. Hannes Kaufmann
Mitwirkung: Dr. Christian Schönauer

Wien, 14. Oktober 2024
Thomas Hannes Wechdorn

Univ.Prof. Mag.rer.nat.
Dr.techn. Hannes Kaufmann

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Wide Area Disaster Simulation for
Mobile VR Devices

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Media and Human-Centered Computing

by

Thomas Hannes Wechdorn, Bsc
Registration Number 01427618

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Mag.rer.nat. Dr.techn. Hannes Kaufmann
Assistance: Dr. Christian Schönauer

Vienna, 14th October, 2024
Thomas Hannes Wechdorn

Univ.Prof. Mag.rer.nat.
Dr.techn. Hannes Kaufmann

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Thomas Hannes Wechdorn, Bsc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 14. Oktober 2024
Thomas Hannes Wechdorn

v

Danksagung

Es gibt zu viele Menschen, die mir während dieser Reise zur Seite standen, um sie
alle namentlich zu erwähnen. Daher bitte ich um Verständnis, wenn ihr euch in den
folgenden Zeilen nicht wiederfindet – ihr seid nicht vergessen. Mein Dank gilt meinen
Großeltern, Hannes und Antoinette Wechdorn, die mich ermutigt haben, mit dem Studium
zu beginnen, zu einer Zeit, in der es mir schwerfiel, an mich selbst zu glauben. Ich
möchte mich auch bei meiner Lebensgefährtin Sabrina Horvath bedanken, die meine
eingeschränkte Zeit (meistens) akzeptiert und mich all die Jahre unterstützt hat, auch
an den Tagen, an denen ich vielleicht etwas weniger einfach war, als an anderen. Sowie
bei meinen Eltern Christine Hartleb, Andreas Hartleb und Christian Wechdorn, die
nie auch nur einen Moment an mir gezweifelt haben. Ein weiterer Dank geht an meine
Kolleg*innen in der Arbeit, die – manchmal zu meinem Leidwesen – immer an meinen
Studienfortschritten interessiert waren. Ein besonderes Dankeschön geht dabei an unsere
Well-Being Officer Anita Angerer, die mich stets mit Tipps, Snacks und offenen Ohren
unterstützt hat. Ein großes Dankeschön geht auch an Wassily Bartuska und Michael
Pucher, mit denen ich nicht nur als Kommilitone verbunden bin, sondern auch als
Freund. Dank euch kann ich auf die schwierigen Zeiten unseres Studiums mit einem
Lächeln zurückblicken. Ein besonderer Dank gilt auch Andreas Peer für die Hilfe bei
der Organisation der User-Study und die Übernahme der Operator Rolle. Abschließend
möchte ich mich bei Christian Schönauer für all die Ratschläge und die Unterstützung
sowie die schnellen Antworten auf meine – ich bin sicher, zahlreichen – Fragen bedanken.
Ich bin jedem Einzelnen von euch dankbar für alles, was ihr für mich getan habt und
immer noch tut.

vii

Acknowledgements

There are too many people who stood by my side during this journey to be explicitly
named, so forgive me if you are not named in the following sentences, but be sure you are
not forgotten. I want to thank my grandparents Hannes and Antoinnete Wechdorn, who
encouraged me to go and start studying during a time, where I had a hard time believing
in myself. I also want to thank my partner Sabrina Horvath, for (mostly) accepting my
limited time and being supportive all these years, even on days where I may have been a
bit less easy to handle. As well as my parents Christine Hartleb, Andreas Hartleb and
Christian Wechdorn for never doubting me even once. I also want to thank my colleagues
from work, who were, sometimes to my annoyance, always interested in the progress
of my studies. A special thank you goes to our well-being officer Anita Angerer, who
always supported me with tips, snacks and open ears. I also want to say thank you to
Wassily Bartuska and Michael Pucher, who I not only connected with as fellow students
but as friends. It’s because of you guys, that I can look back on the harder times of our
studies with a smile. Also, a special thanks to Andreas Peer for your help in organizing
the user study and playing the role of the operator. Last but not least, I want to thank
Dr. Christian Schönauer for all your advice and guidance and your very quick replies to
my questions, of which I’m sure there were many. I am thankful for every single one of
you, what you did and still do for me.

ix

Kurzfassung

Die Simulation von Katastrophen in realen Umgebungen kann kostspielig und gefährlich
sein. Dennoch ist es wichtig, dass Einsatzkräfte entsprechend auf katastrophale Ereignisse
vorbereitet und geschult sind. Virtual Reality Training ist ein möglicher Ansatz, um Ein-
satzkräfte bei der Vorbereitung zu unterstützen. Dank mobilen stand-alone VR Headsets
sind VR Headsets heute erschwinglicher denn je. Die Mobilität und Erschwinglichkeit
gehen jedoch mit einer geringeren Rechenleistung einher. Das Ziel dieser Arbeit war es, ein
Katastrophen-Trainingsszenario, speziell einen Waldbrand mit sich ausbreitendem Feuer
in angemessener visueller Qualität für die Ausbildung von Einsatzkräften zu implementie-
ren und in die bestehende Unity 3D Trainingsanwendung VROnSite zu integrieren, sodass
das Szenario auf einem mobilen stand-alone VR-Headset mit akzeptabler Performance
ausgeführt werden kann.

Ein Workflow zur Erstellung weitläufiger Gelände wurde im Rahmen dieser Arbeit defi-
niert und am Beispiel eines 3 km2 großen Bereichs von Stammersdorf, Wien umgesetzt.
Zusätzlich wurde eine interaktive Visualisierung von Rauch und Feuer implementiert,
bei der sich das Feuer ausbreitet und sowohl Rauch als auch Feuer aus der Ferne wahr-
genommen werden können. Diese beiden Funktionalitäten wurden in die bestehende
VR-Trainingsanwendung VROnSite integriert. Ein Waldbrand Trainingsszenario wurde
vorbereitet, um die implementierten Funktionalitäten mit einer Experten-Benutzerstudie
zu evaluieren. Acht Teilnehmer aus verschiedenen freiwilligen Feuerwehren aus Niederös-
terreich nahmen daran teil und bewerteten die Akzeptanz und Benutzerfreundlichkeit des
Trainings. Das Training wurde insgesamt gut angenommen und erzielte auf der System
Usability Scale eine Bewertung von 88,125 Punkten. Alle Teilnehmer gaben an, dass
das VR-Waldbrand-Szenario ihnen helfen würde, sich auf Einsätze bei Waldbränden
vorzubereiten.

Im Rahmen dieser Arbeit wurden außerdem verschiedene Optimierungseinstellungen
hinsichtlich ihrer Performance verglichen. Dabei zeigte sich, dass Leistungsoptimierung
unumgänglich ist, um eine flüssige Darstellung mit akzeptablen 72 Bildern pro Sekunde
für VR-Anwendungen zu erreichen. Zudem wurde deutlich, dass Optimierungstechniken
gezielt und mit Bedacht eingesetzt werden sollten, da andernfalls die Bildqualität negativ
beeinträchtigt werden kann, ohne dass dabei eine echte Verbesserung in der Performance
erzielt wird.

xi

Abstract

Simulation of disasters on real training grounds can be costly and dangerous, nevertheless
it is important that first responder are prepared and trained for disastrous events
accordingly. Virtual Reality training is one possible approach to help with preparedness.
Thanks to mobile stand-alone Virtual Reality Headsets, VR devices are more affordable
than ever, but mobility and affordability come at the price of lower computational power.
The aim of this thesis was to implement disaster training scenario, specifically a forest fire,
with extending fires and adequate visual quality for first responder training integrated in
the existing Unity 3D training application VROnSite while being runnable on a mobile
stand-alone VR device with acceptable performance. Specifically, a workflow to create
wide roaming terrains was defined and implemented with the example of a 3 km2 area of
Stammersdorf, Vienna as part of this thesis. Additionally, an interactive smoke and fire
visualization, with spreading fire, where both smoke and fire can be perceived from a
distance were implemented. Both these features were added to the existing VR training
application VROnSite. A training scenario was prepared to evaluate the implemented
functionalities with an expert user study with eight participants from different volunteer
fire departments from Lower Austria regarding acceptance and usability. The training
was overall well received, with a SUS score of 88.125 and all eight participants thinking
that the VR forest fire scenario would help them prepare for operations involving forest
fires. As part of this thesis, I also compared some performance optimization settings
showing that performance optimization is critical for rendering in acceptable 72 frames
per second for VR applications, while also showing that optimization techniques should
be used cautiously and targeted, otherwise image quality can be affected negatively with
no real benefit in performance.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Problem Statement . 1
1.2 Aim of the work . 2
1.3 Methodological approach . 2

2 State of the Art 3
2.1 When is Virtual Reality Training appropriate? 3
2.2 VROnSite . 4
2.3 Virtual Reality Fire Training . 5
2.4 Fire Simulation . 9
2.5 Performance Optimization . 11
2.6 Other Notable Applications . 15

3 Design 19

4 Implementation 25
4.1 Terrain . 25
4.2 Fire and Smoke . 43

5 Evaluation 49
5.1 User Study Evaluation . 49
5.2 Performance Evaluation . 59

6 Discussion 75

7 Summary and Future Work 79

List of Figures 81

xv

List of Tables 85

Acronyms 87

Bibliography 89

Appendix 95

CHAPTER 1
Introduction

1.1 Problem Statement

Rescue workers face challenging situations on a daily basis. They are trained to handle
dangerous situations with appropriate measures and care to minimize damage, rescue
people, and avoid worst-case scenarios. Disasters like forest fires and floods which are
appearing more frequently because of climate change are presenting rescue workers with
new challenges. Simulation of such catastrophic events on real training grounds are rather
expensive and mistakes of the trainees can lead to injuries. Thus, there is a strong need
for new and innovative training methods. Virtual Reality (VR) is one possibility to create
immersive and realistic training scenarios. VR hardware became cheaper and easier to use
in recent years, not least because of wireless stand-alone VR Headsets. Since stand-alone
VR Headsets are independent of computers, they need their own processing units (CPU
and GPU), memory and battery, all while staying comfortable. While stand-alone VR
Headsets are more affordable and less restricting because of a lack of cables, they also
introduce some drawbacks when creating content for such devices, especially performance.
For VR applications, performance is a key factor on the one hand, as low frame rates
can introduce motion sickness or other forms of discomfort and therefore making an
application completely unusable. On the other hand, training should prepare trainees
for real situations as well as possible, thus also requiring a certain level of realism. For
this reason, the thesis aims to find a process for creating wide roaming terrains and
allowing for disaster simulation in the Unity 3D Engine, striking a balance between being
performant and visually adequate while still running at an acceptable frame rate on a
mobile VR Headset.

1

1. Introduction

1.2 Aim of the work
The aim of this thesis is to develop a wide roaming 3D terrain and a simulation of
forest fires, while being performance-friendly enough to run on mobile VR devices.
The 3D terrain will be based on a designated 2.99 km2 area of the real-world location
Stammersdorf, Vienna. To ensure that the surface model of the area is as close as possible
to its real world counterpart, open geographic information system data will be used as
base. The prototype will be implemented in an existing Unity 3D Virtual Reality training
application VROnSite [35], with a mobile stand-alone VR Headset, such as the Meta
Quest 3, as target platform. The prototype will then be validated through a qualitative
user study with experienced firefighters and a targeted group size of eight, leading to
insights in its usefulness, usability, and possible improvements for further development
and research.

Specifically, the following research questions will be answered:
Q1: How well do expert users assess and accept first responder training of wide area
disaster events on a mobile stand-alone VR system ?
Q2: How well can optimization-methods reduce the computation power needed on a
mobile stand-alone VR device for the simulation of wide area disaster events while
maintaining the visual realism necessary?

1.3 Methodological approach
The methodological approach taken for this thesis was started with a literature review,
followed by the implementation of a prototype in the VROnSite Unity application and
evaluated by both a user study with expert users and performance measurements.

• Literature Review: A classic literature review focusing on the state-of-the-art
research on first responder VR fire trainings and applications, Fire simulation, and
VR performance and optimization techniques in Chapter 2.

• Implementation of Prototype: Implementation of a VR wide area fire simulation
with spreading fire and smoke, visible from a distance on a Virtual Environment of
a 2.99 km2 area of the real world location Stammersdorf, Vienna in Unity for the
existing VROnSite first responder training application with multi user support in
Chapter 4.

• Expert User Evaluation: A user study with eight expert users focusing on the
evaluation and acceptance of the implemented prototype with a prepared forest
fire scenario in Chapter 5.1.

• Performance Evaluation: A performance evaluation with six different testing
scenarios to measure the performance of the current prototype implementation and
compare the performance different settings in Chapter 5.2.

2

CHAPTER 2
State of the Art

The state-of-the-art chapter tries to give an overview of current research and applications
on VR fire trainings, fire models and optimization methods used for real time applications.
First, the question when VR Training is appropriate in general and if it is appropriate
for the Virtual Reality forest fire training which should be implemented as part of this
thesis is answered. Next, a short description of the current status of VROnSite, the
application which serves as a base for the implementation part of this thesis is given,
which will be followed by an overview of research on VR fire trainings and some research
on high-level performance optimization methods for Unity and VR. Lastly, this chapter
will be concluded by taking a look at some related applications, which didn’t fit in other
sections but are still relevant or of interest for this thesis.

2.1 When is Virtual Reality Training appropriate?
Before going into depth on state-of-the-art and related work, one central question should
also be addressed. When is Virtual Reality Training an appropriate choice as a train-
ing method instead or even preferred compared to other methods of training? Jeremy
Bailenson, founding director of the Virtual Human Interaction Lab of the Stanford
University, proposed the so-called DICE criteria as guidelines to decide if a use case
may be suitable for VR training or not [19]. To apply the DICE framework, we take
a look at the use case if it would be realized in the real world and check each one of
the criteria for this use case. If at least one or more of the criteria apply, VR training
can be considered as a training method. The DICE criteria are an acronym and consist of:

Dangerous - When training in real life is dangerous, it could lead to injuries or mistakes
could cost lives, e.g. a training with real fire may lead to severe burns or even end deadly.
Impossible - When experiences can’t be reproduced in real life like changing the color
of your skin.

3

2. State of the Art

Counterproductive - When the goal of the training is counterproductive to the means
of the training itself, e.g. burning down a forest is counterproductive to the goal of
extinguishing fire and protecting a forest with minimal damage to the environment.
Expensive (or Rare) - When the execution of the training would be so expensive or
an occurrence of something is so rare that it can’t be easily replicated e.g. the cost of
damage done on a forest and other environmental damage plus the cost of the materials
used and the repairing of said damage through reforesting, which of course not only
"costs" money but also time.

Being evident in the examples above training for forest fires in the real world is at least
dangerous, counterproductive and expensive and while it’s not impossible it arguably is
at least impractical, thus a Virtual Reality Training application for forest fires can be
considered a valid VR training application according to the DICE framework.

2.2 VROnSite
VROnSite [35] is an immersive multi-user first responder VR training simulation with the
goal to provide training for squad leaders. The basic setup consists of one person being
the operator on a personal computer and n persons (6 was the highest person count tested
yet, but more could be feasible) being the trainees wearing a mobile VR Headset. The
operator has the control over the Virtual Environment (VE), called scenarios in VRonSite,
and can trigger certain events like the appearance (or disappearance) of virtual persons or
objects like cars or fires. The trainees have a first person view from the position of their
avatar and depending on the setup can either move via standard controller of the used
mobile VR Headset or with the Cyberith Virtualizer1, a treadmill like device allowing to
move in the virtual world by simply walking on the spot as seen in figure 2.1.

Figure 2.1: Cyberith Virtualizer

VrOnSite also records training sessions and allows reviewing and replay the recordings
in its own designated replay mode. Since the fire spreading, the smoke and the VE of

1https://www.cyberith.com/

4

2.3. Virtual Reality Fire Training

Stammersdorf will be implemented directly in VROnSite, a more in depth look will be
provided in the Design and Implementation chapters of this thesis.

2.3 Virtual Reality Fire Training
Research on VR fire training is not a new topic. In 1997 Tate et al. developed a prototype
for shipboard firefighting with a head mounted display and joystick and found that Virtual
Environments could indeed prove effective as a training method [43]. Compared to then
technology has evolved rapidly with the appearance of consumer level Virtual Reality
Headsets led by the Oculus Rift in the year of 2013 (later acquired by Meta), followed
by Headsets of other companies (such as HTC or Valve) and lastly mobile stand-alone
Headsets, which are not dependent on a connection to a PC. It may not come as a
surprise, that these VR Headsets (stand-alone or not) were and still are used in recent
VR research.

Recent and current research on VR fire training can be roughly grouped in two categories
- training for civilians and training for professionals. Training for civilians focuses on
teaching how to behave in case of fire emergencies [27, 37] or training on how to effectively
use firefighting tools like a fire extinguisher [36]. Training for professionals focuses on
first responders and firefighters and how to effectively extinguish fires [28] or how to
coordinate operations [31] or gaining insight and understanding on the spreading of fire
in different environments [29].

Most of existing literature is focused on training for civilians, but since VROnSite [35] is
aimed at training professionals, specifically squad leaders, the focus in this section will
also be on recent VR training research for professionals and applications for professionals.

Belleman et al. developed a firefighter VR training prototype with a focus on ship fires
in cooperation with the Royal Military Academy and the Belgian Navy to help face the
challenge of possible knowledge loss because of upcoming retirement waves combined
with extensive hiring of new recruits [21]. The prototype was developed in the Unreal
Engine and provides multi-user functionality and a separate trainer view, from which for
example fire and smoke can be controlled. A Vive Pro was used as VR Headset connected
to a backpack PC, for allowing relatively unhindered movement. While the paper does
not explicitly mention it, it can be assumed that the Vive Pro tracking via base stations
was used for movement, as a limit of 6 by 6 meter is mentioned, which is the same area
two Vive Base stations approximately track. The application was taken up by the Cyber
Innovation Hub of the German Bundeswehr [38], but seemingly no further research based
on the paper of Belleman et al. has been published yet.

Other researches like Tao et al.[42] or Braun et al. [22] also researched VR ship firefighting
prototypes and Vukelic et al. [45] published a literature review in 2023 as part of the
INNO2MARE project giving an overview of VR fire training research for ships (also
known as maritime firefighting) and summarizing common gaps . Even though ship fires
are usually enclosed fires compared to open "wide area" fires, Some of the challenges

5

2. State of the Art

Figure 2.2: Trainee View of VR marine firefighter training developed by Bellemans et.al

between Maritime firefighting and "wide area" firefighting overlap, like the visualization
and spreading of fire and smoke.

Most of the literature relies on VR Headsets in their prototypes and studies, but there
also is research using other VR technologies. Lee et al. researched VR firefighter training
for Commanders during the COVID pandemic to avoid possible infections during group
trainings [31]. The training setup did not use an VR Headset but instead relied on VR
Projection by using three projectors and three screens with a size of 4.8 meter by 2.6
meter as seen in figure 2.3.

Figure 2.3: Test setup used by Lee et al.[31].

The trainee can move through the VE via a joystick and has to give commands through
a wireless radio. The trainer receives the commands and acts according to these received
commands with virtual firefighters inside the simulation. For the simulation, the com-
mercial software Advanced Disaster Management Solution (ADMS) was used, where two
scenarios based on real fires of tin houses and five-story buildings were created. For the
evaluation, the trainees were evaluated by three domain experts before receiving a fire
command course and directly after according to predefined criteria in a VR Scenario, and
generally performed better after. Lee et al. argue that since every trainee has received
traditional training the pre fire commander training evaluation results can be assumed as

6

2.3. Virtual Reality Fire Training

the traditional training results, as every trainee is regularly receiving traditional training,
while the post fire commander training evaluation results are the VR training results [31].

Grabowski compared the effectiveness of an VR projection training based on the Cave
Automatic Virtual Environment (CAVE) and VR Headset based trainings. The CAVE
setup consisted of three projected images on the walls and one on the ceiling and HTC
Vive Base Stations with a controller attached to the end of a water hose to being
able to measure the rotation and position and use it in the training application [28].
Additionally, the trainees can also change the amount of water shooting out of the water
hose. According to Grabowski The scenario designed for the VR Headset was more
difficult compared to the scenario designed for the CAVE, as the scenario for the VR
Headset aims to train the use of a water hose with assistance of another firefighter and
is aimed at trainees already familiar with the handling of the tools like the water hose.
Overall, the cadets being part of the study found the VR Headset compared to the CAVE
both slightly more immersive and slightly more useful [28].

Figure 2.4: CAVE Setup for training scenario by Grabowski [28].

Professional VR Fire Training Applications

FLAIM2 is a commercial immersive Virtual Reality Training System developed in Aus-
tralia, coming in two different versions. One is a fire extinguisher training for companies
using a stand-alone VR-Headset (Vive Focus 3 at the time of writing this thesis) and
the other is a training for professional firefighters, using a backpack PC, a Vive Pro
non-stand-alone VR Headset , a fire proximity heat suit, simulating heat, a mask captur-
ing biometric data and a replica water hose. FLAIM offers multiple different training
scenarios and regularly receives new ones via updates. Since December 2022 FLAIM also
offers some multi-user scenarios [2].

FLAIM is not only used by fire brigades in Australia but also in other countries including
but not limited to Brazil [9] and the US [7].

For German-speaking countries in Europe there is FireFighterVR VR training available
developed by Northdocks GmbH in Germany4 backed by the Werkfeuerwehrverband

2https://flaimsystems.com/
4https://www.firefightervr.de/

7

2. State of the Art

Figure 2.5: Image of the setup for professional fire training for FLAIM. 3

Deutschland also known as WFVD. FireFighterVR is an online platform where different
scenarios can be downloaded and then run on a non-stand-alone VR Headset connected
to a Computer. FireFighterVR requires users to have a VR Headset (on the level of
Oculus Quest, or HTC Vive Pro) and a PC with capable hardware and does not come
with any hardware delivered contrary to FLAIM. FireFighterVR does not seem to have
multi-user functionality, and there is no information on how widespread its usage in
German-speaking countries is.

British company RiVR (Reality in Virtual Reality Limited) developed RiVR Investigate,
a VR application not focused on effectively fighting fires but on investigating virtual
environments to find the original cause of fire or explosions. The RiVR Investigate setup
needs a PC or Laptop, a VIVE or Oculus (with Linkcable) VR Headset. RiVR allows
multi-user trainings over the internet, with the possibility to communicate and pass
items between users. To keep virtual environments as realistic as possible, each scene
provided in the application is based on a real fire, for which a real environment is built
before being burnt by a controlled fire. To make sure that a level of realism is high when
digitalizing the environment, photogrammetry is used. RiVR has a cooperation with
Reality Capture, an industry-leading photogrammetry software, which was acquired by
Epic Games, the developer of the Unreal Engine, in 2021.

All these professional systems have one thing in common: they are using PC connected
VR Headsets. While PC connected VR Headsets allows for higher visual fidelity as the
computations and rendering are handled by a PC, it comes literally at a cost. Each
client not only needs a VR Headset but also needs to be connected to an adequately
powered PC, to be able to run the training at all. This is one of the gaps this work tries
to address, reducing the overall system cost by only needing one PC or Notebook as

8

2.4. Fire Simulation

Figure 2.6: Example of environments in RiVR investigate

server and one stand-alone mobile VR Headset for each client, thus effectively reducing
the level of entry. As mobile VR Headsets have computing power around (high-end)
cellphones and are only running on a battery instead of a stationary power supply it is
necessary to keep the performance of an application in mind when building applications
to reach a certain level of visual fidelity while still being able to reach relatively high
frame rates around 72 frames per seconds (FPS) or even more.

2.4 Fire Simulation
A physically accurate spreading of fire is dependent on many physical factors such as
wind, the materials that are burning, temperature to name only a few. As applications
targeting VR Headsets need to be performant to stereoscopically render two images at
the same time, one for each eye, at high frame rates most of the maritime VR fire fighting
research considered by Vukelic et al. relied on particle effects to visualize and simulate
fire in a performant manner [45]. One exception was the research by Cha et al. [26]
from 2012, which implemented a fire and smoke visualization in the OGRE5 open source
3d graphics engine based on computational fluid dynamics (CFD) data computed by
the Fire Dynamics Simulator (FDS)6, which was developed by the National institute of
standards and technology.

Lu et al. tried to model accurate smoke behavior in the Unity 3D engine for a post-
earthquake scenario [33]. They compared particle effects with simulated CFD data from
the FDS and deemed that the initial stage of smoke build up shortly after the fire breaks
out deviates too much from the CFD simulation in indoor scenarios, while in the later
stages when rooms are quite heavily filled with smoke and visibility is overall low particle

5https://www.ogre3d.org/
6https://pages.nist.gov/fds-smv/

9

2. State of the Art

Figure 2.7: VR prototype of Cha et al. [26]

effects are sufficient. A comparison of the two approaches for a room filled with a lot
of smoke can be seen in figure 2.8. Volume rendering based on CFD data while more
realistic is also more computational expensive, to tackle this problem Lu et al. proposed
a hybrid solution where a Volume Rendering Approach is used for the smoke in the initial
stages which is then switched out with particle systems during runtime when the rooms
are filled with smoke for better performance. For the visualization of fire, Lu et al. relied
on particle effects only instead of CFD Data.

Figure 2.8: Comparison of Volume Rendering (a) and Particle Effects (b) for Smoke
Rendering by Lu et al. in later stages where the room is filled with a large amount of
smoke [33]

Lorusso et al. used CFD Data from FDS by creating animations out of the CFD Data
by using the 3D Plot format7, importing it into Paraview8 and exporting each frame

7https://www.grc.nasa.gov/WWW/wind/valid/plot3d.html
8https://www.paraview.org/

10

2.5. Performance Optimization

of simulation as separate 3D object [32]. The 3D objects were merged in Blender into
a single OBJ sequence with the OBJsequence plugin (Note: no reference was provided
by Lorusso et al., thus the exact plugin used is unknown) and then converted into an
alembic file using the Sverchok plugin9, which can be imported into Unity. An example
of this can be seen in 2.9.

Figure 2.9: Smoke example of Lorusso et al. [32]

For all the aforementioned approaches it is important to note that the computational fluid
dynamics data was simulated and pre-processed beforehand, thus not being “interactive”
as the pre-processed CFD data can’t react to changes in the VE during real time training
e.g., the extinguishing of fire or the addition of new objects to the VE during runtime. To
counter this problem, Grabowski tried to simulate different scenarios via CFD depending
on possible actions of the trainees beforehand and blends the different scenarios then
accordingly during runtime [28].

One Fire model being able to react to such changes is the model proposed by Moreno
et al. [34]. Moreno et al. divided the VE in a grid with a cell size of 3 by 3 meter,
where each cell has a type (e.g., grass, tall trees, water, road), a state (e.g., not burning,
burning, burnt) and some other variables like wind and slope that define its behavior.
The algorithm was designed with urban and wildfires in mind and also allows fire to jump
over “barrier” cells and burn a tree across water cells, if wind blows in the according
direction, for example.

All the presented research was using a capable (at least for the time of publishing of the
respective papers) PCs to simulate and visualize the fire and smoke, to the best of my
knowledge no publication as yet was targeting a mobile stand-alone VR Headset, where
fire and smoke have to be rendered on the mobile VR Headset instead of a capable PC,
thus requiring a stronger focus on performant implementations of features.

2.5 Performance Optimization
Mobile VR Devices have come a long way, but the hardware gap between a mobile VR
device and current PC hardware are quite large. UploadVR used the GFXBench Aztec

9https://sverchok.readthedocs.io/en/latest/main.html

11

2. State of the Art

ruins to compare the hardware of the Quest 2 with an Nvidia GTX 1060 and the Quest
2 fared around 6.13 times worse than the GTX 1060 as can be seen in figure 2.10.

Figure 2.10: GPU comparison between Quest 2 and GTX1060

I tried to side load GFXBench on a Quest 3 to get a comparable score, but sadly the
benchmark tools don’t seem to run properly on Quest 3 and no score is achieved as a
result. Other devices with the same 740 GPU as the Quest 3 achieve scores between 3217
and 4414 according to the GFXBench Database10 as seen in figure 2.11a. Compared
to an up-to-date high-end graphics Card the NVIDIA RTX 4090 which reaches score
between 15186 and 16988 for the weaker notebook variant or 27437 and 30537 for the
PC variant depending on the rendering API (OpenGL or Vulkan) used as can be seen
in figure 2.11b, showing that the 740 GPU is around 3.5 to 4.73 times weaker than a
RTX 4090 notebook variant and around 6.21 to 9.14 times weaker than a RTX 4090 PC
variant. Since it can be seen that even devices with the same GPU can have significantly
different scores, these values should only be considered as a rough estimate for the GPU
power of the Quest 3 as the performance also depends on different factors like clock levels
of the GPU and available memory in the device.

(a) 740 GPU scores of other devices between
3217 and 4414 for OpenGL and Vulkan on
GFXBench

(b) Nvidia RTX 4090 scores between 15186 and
30537 for OpenGL and Vulkan on GFXBench

Figure 2.11

According to Meta itself, the Quest 3 is approximately as powerful as a "Rift min-
spec machine" which Meta lists from a GPU perspective as an NVIDIA GTX 960 or
alternatively a GTX 1050 on the minimum requirements page for the Rift [8], which
reach a score between 1435 and 1767 on GFXBench as seen in figure 2.13a and figure

10https://gfxbench.com/result.jsp

12

2.5. Performance Optimization

2.13b respectively, opening up the possibility that the Quest 3 GPU may be up to around
19.12 times weaker than an RTX 4090 desktop variant.

This may suggest that the 740 may be clocked significantly lower in the Quest 3 than for
example in the Samsung Galaxy S23 mobile phone used in the GFXBench comparison.
And indeed, in the “The Future of Meta Quest, Mixed Reality, AI and More” presentation
[3] held on the 28th of September 2023 it is stated the GPU clock of the Quest 3 depending
on the used mode is between 492 MHz and 599 MHz, as seen in Fig 2.12, while the GPU
clock of the Samsung Galaxy S23 is 720MHz [4].

Figure 2.12: GPU and CPU Clocks of the Quest 3

(a) Nvidia GTX 960 scores between 1767 and
1850 for OpenGL and Vulkan on GFXBench

(b) Nvidia GTX 1050 scores between 1435 and
1465 for OpenGL and Vulkan on GFXBench

Figure 2.13

Research on performance optimization for stand-alone VR Headsets specifically is scarce.
Hosny et al. tried to optimize an Unreal Engine 4 building blocks application for the
Meta Quest [40]. After optimizing the draw calls, the game thread and GPU thread
via GPU instancing, disabling of Tick, the Unreal equivalent to Unity’s Update, instead
using an event based updating which is only called on changes instead of every frame,
and an overall reduction of polygons which need to be drawn the application was able
to display 12100 blocks instead of 120 initially before dropping frames, showing that
optimization is a crucial step when porting applications from a VR Headset connected to
a PC to a stand-alone VR Headset.

13

2. State of the Art

Singh et al. tested a range of non VR specific Unity optimization techniques and compiled
them and their influence on performance [41]. While the paper gives reason to critique
that neither the specs of used hardware nor Unity version are explicitly mentioned, it is
assumed that some findings should be generally applicable. Singh et al. grouped and
compiled their findings in three categories, API Optimizations 2.1, Memory optimizations
2.2 and GPU optimizations 2.3. While there are specific test cases listed which were
used to achieve the API and GPU optimization findings, it is not clear how the Memory
optimization suggestions were acquired. Nevertheless, since they mostly align with the
Garbage Collection best practices of Unity itself [12], they can still be considered as valid
suggestions. The tables were taken over from Singh et al. and reworded based on their
performance tests and the Garbage Collection Best Practices of Unity. Some details
were added to the table entries as some descriptions were not specific enough, e.g., “Use
StringBuilder class to build string, it build (sic!) string without allocation”[41]. As soon
as the toString() method is used on a StringBuilder there is an allocation to the heap,
which would not be sufficiently clear without further clarification. In The GPU Table 2.3
some entries were omitted, as they were neither explicitly tested in the paper of Singh
et al. nor sufficiently explained to be deemed useful, e.g. “Optimize Image Effects with
different settings” [41].

Nusrat et al. studied performance optimizations on 45 open source VR projects and
identified 183 performance relevant changes via static code analysis and derived overall
nine findings from it. Nusrat et al. compiled the changes in four groups, with examples
for each. The groups and examples are ordered by number of appearance, meaning the
first group had the most observed findings overall in the identified changes and the first
example for each group was the most observed optimization belonging to this group,
while the last example was observed the least.

Graphics Simplification - Reducing the complexity of shaders and the polygon count
of 3D models, reducing resolution, simplifying particle effects, removing game objects
from scenes.
Rendering Optimizations - Draw call batching (reducing number of draw calls),
rendering setting changes (turning on occlusion culling or light baking), disabling game
objects to avoid the calling of unity life cycle methods.
Heap Avoidance - Using field (member) references instead of initializing objects multiple
times, avoidance of language features which create temporary objects, using primitive
types instead of “boxed” data.
Other categories - Replacing deprecated or non performant API calls with more efficient
API calls, replacing foreach with for loops, caching, using conditions to avoid unnecessary
calculations, moving code from Unity Update to Start().

Many of the changes compiled by Nusrat et al. are also part of the findings of Singh et al.
showing that non VR specific optimizations most likely are also effective for VR projects.
Since the analysis by Nusrat et al. was only done via static code analysis and not tested
and bench-marked, there is no explicit proof that performance actually improved.

14

2.6. Other Notable Applications

API Optimization Techniques

Update()/ FixedUp-
date()

Replacing the use of Update/FixedUpdate per game object instance
with a single Update call which calls a custom function on each game
object. Singh et al. described the performance test case as “1000
instances populated with a custom function, custom function updated
by single Update() function” [41]. While an interesting statement, the
implementation is not described in more detail in the paper.

Loop in Update() Reducing the execution of loops in Update by using conditions

Use Caching

What Singh et al. mean with caching is getting and storing relevant
game components of game objects (like the Renderer or custom scripts)
in the Start() function in a field (member) variable as reference instead
of getting it each Update().

SendMessage()
Using components on the same game object as references and calling
functions directly instead of triggering functions of other game objects
via SendMessage()

Find() Using components as a reference instead of using the Find() method
Transform .localposi-
tion

Transform.position gets recalculated every time it is used, so it should
be replaced with Transform.localposition where possible.

Vector3.sqrMagnitude
Using sqrMagnitude() instead of Vector3.Distance() for distance checks
if possible. The exact implementation or examples are not provided in
the paper.

Camera.main Using and storing the main camera as reference instead of calling Cam-
era.main

Table 2.1: Table of API optimizations gathered by Singh. et al.[41] reworded and with
some additions

2.6 Other Notable Applications
In this section some plugins and programs used will be shortly discussed together with
some alternatives. A more in depth look in the specific workflows used can be found in
the Implementation Chapter 4.

QGis

QGis is an open source software to view, create and edit geographic information system
data like map data or digital elevation models. A commercial alternative to QGis would
be the ArcGis Desktop software.

Gaia Pro

Gaia is a commercial procedural terrain generation tool for Unity 3D developed by
Procedural Worlds. It allows of the creation of a generated terrain through a step-by-step
assistant, which allows the configuration of the terrain and also asks if Unity project

15

2. State of the Art

Memory Optimization Techniques

GC trigger frequency Reducing the frequency of how often the Garbage Collection is triggered
by avoiding allocations on the heap space.

GC trigger time Triggering the Garbage Collection manually at non-critical moments
regarding performance via GC.Collect() [12].

Caching

Since caching reuses objects instead of creating new ones, no new heap
space is allocated when accessing reference fields. Every code using "new"
or Instantiate allocates space on the heap, including the creation of lists
and arrays. [6].

Per frame allocation Heap space should be allocated only during Start() or loading of levels,
avoid operations allocating heap space in Update() or LateUpdate().

New collection
Creating and initialising Collections in Start() and reusing them with
the .Clear() method, which empties the collection but keeps the memory
reserved.

Object Pool
Instead of redundantly creating and destroying game objects (e.g. for
missile or bullet prefabs) object pooling should be used. Unity also has
its own implementation of an object [13] which can be used.

StringBuilder

Using StringBuilder when a String gets changed multiple times in a single
update as each change of the String would allocate new heap space since
Strings are immutable. By using Stringbuilder only the final toString()
call allocates on the heap memory.

String Concatenate
Avoid using string concatenation by separating texts if possible e.g. for
Score: 44 create a fixed textfield with Score and the value separately
instead of updating the textfield like score+value.toString() [12].

Debug.Log() Removing all Debug.Log(), which are not needed for builds
GameObject .Com-
pareTag()

Using GameObject.CompareTag() instead of directly comparing gameob-
ject.tag with a string via double equal signs (==).

Table 2.2: Table of Memory optimizations gathered by Singh. et al.[41] reworded and
with some additions

settings should be adapted to optimal settings for the usage of Gaia. Additionally, Gaia
comes with a range of assets like shader, models, and textures delivered and supports
all three render pipelines of Unity 3D (Standard, Universal, High Definition). Gaia also
provides some performance optimizing methods like using tiled terrains, terrain streaming
and automatic replacement of far away terrains with so-called lower fidelity “impostors”,
basically being an implementation of the “Level-of-Detail” optimization method. Gaia
uses a non-destructive workflow, meaning all operations which are done on the terrain
(like changing textures, or modifying the topology of the terrain) are stored in a session
manager and can be reverted. It is also possible to create Terrains from grayscale images
or height maps, and all Gaia tools can also be used for terrains created with the standard
Unity terrain creation workflow. For the implementation of the thesis Gaia Pro 2021
3.4.1 was used, but in the meantime a newer version Gaia Pro 2023 is available.

16

2.6. Other Notable Applications

Rendering
Processes

Optimization
Technique Optimization Examples

Batching

Reducing the
number of draw
calls through
batching

Using the same material on different objects
Consider static batching for non-moving objects, but keep
memory usage in mind as Unity uses the memory to store
the combined Mesh [14]
Singh et al. suggest using dynamic batching, with consid-
eration of the used memory [41]. These suggestions can be
ignored for most projects as dynamic batching only works
for meshes with less than 300 vertices and Unity explicitly
warns that the using of dynamic batching is designed for old
low end-devices and may even use more CPU resources than
the overhead of a draw call [10].
Using Sprite atlases for UI elements which are shown at the
same time
Using texture atlases if possible for objects shown at the
same time
Disabling renderer components and cameras not in use

SetPass call
& Batching

Reduce amount of
rendered objects Decreasing Camera Draw Distance

Using occlusion culling to avoid rendering covered objects

SetPass call Decreasing draw
calls per object Avoiding dynamic lights

Using baked light and shadows
Tweaking real time shadow settings like shadow quality
Avoiding reflection probes

Fill rate

Decreasing num-
ber of pixels that
GPU has to ren-
der each second

Decreasing the rendering resolution
Avoiding complex fragment shaders
Minimizing overdraw

Memory
Bandwidth

Decreasing tex-
ture memory
needed

lowering texture quality settings
reducing the texture size
Using compressed textures. Unity provides recommendations
for each platform [11]
Using Mip Maps for objects which are not close to the camera
all the time

Vertex pro-
cessing

Reducing number
of vertices and ver-
tex operations per-
formed per frame

Lowering the number of vertices by reducing poly count of
3D models
Using normal maps instead of models with high poly count
for higher detail
Disabling vertex tangents for meshes without normal maps
Using Level of Detail (LOD) variants for models
Reduce vertex shader complexity

Table 2.3: Example of some GPU optimizations described by Singh. et al.[41]

17

2. State of the Art

GeNa Pro

GeNa is also developed by Procedural Worlds and can be used for the creation of streets,
rivers or for placing game objects with splines and other methods. Additionally, Gena
can also be used to procedurally spawn objects in a scene. Since Gaia and Gena are both
developed by Procedural Worlds, they have some interconnected functionality e.g. Gena
can automatically split created streets on the seams of terrain tiles to be able to unload
them together with the terrain when terrain streaming is used without needing much
additional setup. The used version for the implementation was GeNa Pro 3.5.6.

GIS Terrain Loader, GIS Downloader & Terrain Streaming System V2

The GIS Terrain Loader, GIS Downloader and the Terain Streaming System V2 are
commercial Unity plugins developed by GisTech11. The GIS Terrain Loader can directly
create Terrains from GIS Data like GeoTiff files but also from height maps and grayscale
images. Additionally, it can import GIS Vector Lines for roads and even trees. GIS
Terrain Loader has no terrain streaming functionality built in. The GIS Downloader
allows to directly download Map Data from multiple services like ArcGIS, Bings Maps
or Mapbox. The GIS Downloader is also able to create DEMs by “collecting elevation
points from different servers, focusing on free high resolution datasets with a spatial
resolution of 30 meters and below.”[5]. It is unclear which services are used exactly, and if
DEMs for all countries are covered by that functionality. Data downloaded from the GIS
Downloader can be directly used in the GIS Terrain Loader. Lastly, there’s the Terrain
Streaming System V2 which comes bundled with the GIS Downloader and enables terrain
streaming for the downloaded terrain. The Terrain Streaming System comes bundled
with the GIS Downloader, but the GIS Downloader can also be acquired separately.

11https://www.gistech.org/

18

CHAPTER 3
Design

This chapter aims to give an overview of the overall system design and a short overview of
relevant existing VROnSite modules for this thesis. Since each component in VROnSite
is modular, it was important that fire, smoke, and the terrain were also designed and
implemented in a modular way, without having dependencies on each other or other
functionalities, like seen in figure 3.1. For the overview I chose to group the modules
from a software implementation perspective, which is not necessarily reflected from a
user perspective e.g., the “core” functionality of VROnSite includes the “scenario editor”
but from a code perspective, the scenario editor is encapsulated in such a way that it can
be seen as a separate module. The only dependency additional modules are “allowed” to
have is the dependency on the “core” module, which contains all the basic functionality.
In practice, this also means that already existing VROnSite modules have to avoid
dependencies to these new functionalities and still be working without any, with any or
with all the other modules imported. This interoperability requirement made it necessary
to also adapt already existing modules, as detailed in Chapter 4.

Core

The Core module of VROnSite contains the base functionality including prepared multi-
user scenarios, where the operator can place additional predefined objects during runtime,
the networking and trainee behavior like locomotion with controller. The operator acts
as the host or server of the application and is usually running on a PC or Notebook,
while for each trainee the application is running on a mobile VR Headset worn by the
trainee. Additionally, the core module contains the following submodules: Interaction,
Distribution and Networking and Visualization. These modules, while theoretically
separate, are tightly coupled regarding functionality and structure.
The interaction submodule handles the interaction between trainees and different objects,
e.g., giving trainees the possibility to drag some objects or injured persons or even virtual
keyboards to use web views of web pages.

19

3. Design

Figure 3.1: VROnSite Module Overview

The distribution and networking submodule is based on the Unity Netcode taking care
of the distribution and synchronization of trainees, objects, and events like the spawning
of an injured person for all trainees during runtime but also setting the scene up when
trainees get connected or a new scene is loaded making sure that the training scene is
the same for all trainees. Additionally, the networking submodule provides convenience
methods to be used for other modules for spawning and deleting objects correctly. Lastly,
there is the visualization submodule, which is using the default Unity Rendering Engine
with different camera related settings and visualizations for trainees and operators,
performance related graphic settings and some specific settings only relevant for VR
Headsets like the activation of Foveated Rendering.

Scenario Editor

The Scenario Editor allows editing and preparing existing predefined environments, by
adding spawn points of trainees and the operator and a range of predefined objects,
which will be automatically spawned when starting training in the prepared scene. In
the “Scenario Editor” it is also possible to mark these predefined objects as “operator
spawnable” which simply means, that marked objects can also be spawned during runtime
by the operator. Scenarios created by the scenario editor can then be used for training
sessions without any limitations compared to predefined scenarios.

20

AfterActionReview Module

The AfterActionReview module records the training sessions and allows reviewing them,
with the possibility to pause at any moment, to evaluate the training and give feedback
to trainees. The recording contains the voice of the operator, the movement of trainees
(as seen by the operator, but also from the first person view of the trainee) and the
spawning and de-spawning of objects, in addition to the movement and transformation
changes of objects.

Standard

The standard content module includes interactive and non-interactive assets used for the
creation and adaption of scenes like buildings but also models and animations for first
responder and fire brigades, including vehicles and audio files.

Customs

The customs submodule contains assets for special use cases like a virtual environment
for an airport or custom controls including models for the in and outside of an airport,
planes, and custom tools like a fingerprint scanner.

Injured

The injured submodule contains models, animations, and audio for persons of different
ages with a range of different injuries.

Fire and Smoke Module

The Fire and Smoke Module handles the visualization and behavior of fire and smoke,
suitable for mobile stand-alone VR devices. The fire had to be integrated in the core
module and scenario editor, as it needs to be placeable (and deletable) by the operator
during runtime as well as from the scenario editor. Additionally, the fire needed to be
implemented in the AfterActionReview Module to not only be visible during replay,
but also to have the same spread behavior as during a training session. The spawning
(and control) of fire and smoke should be handled by the Server Application, while
the rendering should be handled directly on the device it is shown on, specifically the
mobile VR-Headset for Trainees, PC or Notebook for operator. For the spread of the
fire, a simple spread-over-time algorithm was used. The fire is growing over time with a
configurable rate until a configurable maximum size is reached. As soon as it touches
another “burnable” object, the other objects also start burning, which in turn again
starts a small fire, which grows over time and is able to “burn” other objects in reach,
thus effectively spreading over an area via “burnable” objects. The algorithm makes sure
that an object can only start burning once. The operator has the ability to “extinguish”
each single spawned fire individually, thus hindering the spread. Additionally, there’s the
possibility to write “burn down” behavior for different objects. For the prototype, only

21

3. Design

Figure 3.2: Basic behavior of the fire spread algorithm

Figure 3.3: Visualized explanation of the fire spread algorithm

the tree burn down was implemented, where the model gets changed to a burnt down
tree model after some time or if the fire gets extinguished, whichever happens first. A
simplified flow chart of the algorithm can be seen in 3.2.

A visualized explanation of the basic behavior of the fire spread algorithm can be seen in
figure 3.3, where 1. is the set-up of the scene with no fire yet. In 2. a fire gets placed - in
case of VROnSite by the operator. In 3. The fire grows big enough to touch and ignite
an additional tree and finally, in 4. the first tree model changed to a burnt tree model,
while the fire of the second tree ignited the third tree but did not add another fire to the
first tree.

Terrain Module

The Terrain Module handles the visualization of a terrain in the Core module and the
Scene Editor module, as well as in the AfterActionReview module. This includes the
loading and unloading depending on the position of the trainee (Streaming), as well as
separate default settings for the operator and trainees and the ability to adapt these

22

settings, as the application used by the operator is usually run on a notebook or PC and
thus can handle a higher load than a mobile stand-alone VR Headset could. A basic
visualization for the loading behavior of the terrain can be seen in figure 3.4a for the
operator, where all tiles are loaded and in figure 3.4b for the trainee, where tiles are only
getting loaded within a certain distance to the player position, to free up memory and
thus reduce the impact on performance.

(a) For the operator, all terrain tiles are loaded
(green) and none unloaded, as the operator is
usually run on capable hardware.

(b) For the trainee, only tiles within a cer-
tain distance to the player position are loaded
(green) while the rest are unloaded for perfor-
mance reasons (white).

Figure 3.4: Character images were taken from https://www.vecteezy.com/vecto
r-art/987953-isometric-people-character-set

The implementation actually resulted in two artifacts - one, reusable objects (prefabs) to
be used in Scenes with terrains to set up VROnSite and Gaia accordingly without the need
for additional custom code, and two - a scenario of a designated part of Stammersdorf,
usable in the scenario editor for the creation of custom scenarios.

23

https://www.vecteezy.com/vector-art/987953-isometric-people-character-set
https://www.vecteezy.com/vector-art/987953-isometric-people-character-set

CHAPTER 4
Implementation

This chapter aims to provide a detailed and easily reproducible description of the
implementation of the Terrain creation, the spreading fire and smoke and the performance
optimization for mobile VR devices in the Unity engine. The VROnSite project provided
used the Unity LTS 2021.3 version, thus this was also the version used for the following
feature implementations. All implementations are also possible on the latest Unity
version to date (2023.2) as of writing this thesis. For the sake of completeness, it
should be mentioned that a Windows computer and the Windows distribution of Unity
was used for development. Additionally, if multiple approaches were considered for a
feature implementation, the alternative approaches will be mentioned together with an
explanation about the reasons which contributed for choosing one over the other.

4.1 Terrain
A terrain or Virtual Environment for Virtual Reality consist of one or multiple 3D
textured meshes. In training applications user are usually placed in a first person-view in
the Virtual Environment, having the freedom to look any way they like, moving through
or on the VE by the implemented locomotion method e.g., walking on the terrain via
controller or teleport through it. In VROnSite the user can move on VEs by walking
on them with a controller or by driving on them with prepared vehicles. Movement and
Collisions are handled via Unity Physics System and so-called colliders, which can be
described as simplified geometry to represent complex meshes and their interactions in a
physical based layer. To be able for the user to walk on the terrain, both the player and
the terrain need a collider. Unity provides a special “Terrain Collider” for Unity Terrains,
which while simplified, deliver an accurate representation in the physics simulations. This
introduces some requirements for the creation of a terrain based on a real environment
in VROnSite and other first-person VR applications: Since movement is physics based,
the terrain should be as accurate as possible regarding elevation and smoothness, to

25

4. Implementation

Figure 4.1: Visualized terrain creation workflow

make sure all important areas are accessible and not blocked by steep slopes, walls, or
rifts not existing in the real counterpart. Additionally, the placement of objects like
buildings or trees according to an orthographic photo, also requires faithfulness to the
real environment to a certain degree, especially if buildings should be accessible, while
still being not too taxing on the intended hardware.

The approach taken for the implementation is visualized in 4.1 and can be roughly broken
down in the following steps:

1. Creating a height map from digital elevation models

2. Creating a Unity terrain from the height map

3. Terrain tiling and streaming

4. Populating terrain with objects

5. Texturing Terrain with texture masks created from an orthographic photograph

Height map Creation from Digital Elevation Models

For the implementation of the terrain, a digital elevation model (DEM, German: Digitales
Geländemodell or DGM) of the target area Stammersdorf was used. DEMs for Austria
can be found on the open source government platform data.gv.at. DEMs can be either
provided directly as GeoTiff files or acquired via a geographic information systems (GIS)
program (e.g., QGIS, ArcGis) if the source provides a web coverage service (WCS)
interface for the relevant area.

To get suitable DEM data of Vienna, the public GeoDaten-Viewer1 of the Stadtvermessung
can be used.

1https://www.wien.gv.at/ma41datenviewer/public/

26

4.1. Terrain

The DEM files in the Geo-Daten Viewer Vienna are provided as tiles with resolution of 1
meter and a size of 2500m by 2500m. They can be downloaded by clicking on a tile and
selecting the wished format in a pop-up, which in my case is a TIFF file.

so
Figure 4.2: Screenshot of the Vienna Geodaten-Viewer

While the city of Vienna also provides a Web Map Service (WMS), a Web Map Tile
Service (WMTS) and a Web Feature Service (WFS) only the WMS provided actually
contains an elevation layer allowing to visualize the elevation in a GIS viewer. It is
important to note that WMS only provide image data which may look identical to actual
elevation data in a GIS viewer but instead of providing height data only provide lower
bit depth image data, which results in a loss of accuracy when being used as a height
map compared to a GeoTiff and is therefore not an optimal choice. To be precise, the
image provided by the WMS service is a greyscale PNG image with a depth of 8 bit,
meaning that the possible height values will be limited between 0 and 255, while GeoTiff
allows to store higher bit information. For the purpose of Unity terrain creation usually
a 16 bit height map is used, but GeoTiff in general allows a bit depth of up to 64 bit
depending on the program used for reading or creating the GeoTiff e.g. GDAL2).

Usually, it is necessary to match the area contained in the DEMs to the designated target
area. This can be achieved with a GIS program, for this thesis QGis 3.26 was used.

First, for easier visual navigation, an orthographic photograph of Vienna from the year
2022 was imported. This was done by adding the WMTS3 provided by the city of Vienna
as a source in QGIS and loading the orthographic photograph as a layer. Then, the
aforementioned DEMs with the GeoTiff format were loaded into QGIS, as seen in Fig.
4.3.

Since each file is imported as a separate layer, the layers were merged via the raster merge
function of QGis. Afterward, a quadratic shape layer in the size of the designated target

2https://gdal.org/drivers/raster/gtiff.html
3https://data.wien.gv.at/daten/wmts/1.0.0/WMTSCapabilities.xml

27

4. Implementation

Figure 4.3: Screenshot of imported orthographic photograph and digital elevation models
(DEMs)

area with 1730 meter by 1730 meter was created and used as a boundary for exporting
the merged layer. Here, the minimum and maximum value of the resulting layer, which
can be found in the layer properties as seen in figure 4.4 are of interest, as they will be
used on two occasions in the set-up process:

1. For converting the final GeoTiff to a Unity compliant RAW file.

2. As a Y (height) value for the terrain inside of Unity.

For our designated area, the minimum was 7.193 meter and the maximum 93.317 meter,
resulting in a difference of 86.124 meter.

Figure 4.4: Showing the minimum and maximum value of the merged layer in the layer
properties

28

4.1. Terrain

Depending on the coordinate reference system (CRS, German: Koordinatenbezugssystem
or KBS) used (or by mismatching CRs of layers) it may happen that the measurements
of the shape layer may not be accurate, therefore measuring the shape file manually with
a measuring tool is strongly advised at this step.

Finally, the matched layer can be exported as GeoTiff and converted with gdal (Geospatial
Data Abstraction Library), which is automatically installed together with QGis, to a
Unity conform RAW in the command line with the following command :

gdal_translate.exe -of [file format] -ot [data format]
-scale [input min value] [input max value]
[output min value] [output max value]
-outsize [outsize resolution] [outsize resolution]
[name of input file] [name of output file]

Exemplary, the RAW conversion of Stammersdorf was done with the following command:

gdal_translate.exe -of ENVI -ot UInt16
-scale 7.1963 93.317 0 65535
-outsize 4097 4097
height_map_1m.tif heightmap_1m_4096.raw

An explanation of the parameter used can be found here, note that obvious parameters
like “name” have been left out. Other available parameters can be found in the official
gdal documentation. 4

• file format: ENVI - has to be used for .raw files, additionally creates a .hdr and
raw.aux.xml file. The .hdr file and raw.aux.xml file contain meta information, while
the .raw file contains the image data. For Unity height map purposes, only the
.raw file is needed.

• scale: scales the incoming values according to the output values, e.g. 7.1963 -> 0,
93.317 -> 65535

• data format: UInt16 - Unity expects a .raw file in a 16 bit format.

• outsize resolution: resolution of raw file - (power of 2) + 1 e.g. 257, 513. Note:
If the terrain is created with the Unity Terrain Toolbox plugin instead, an exact
power of 2 resolution is expected.

In the following section, two workflows for creating terrains from .RAWS will be presented,
as both were used initially to compare ease of use and overall functionality:

4https://gdal.org/programs/gdal_translate.html

29

4. Implementation

Figure 4.5: GaiaManager

1. Terrain Creation with Gaia

2. Standard Unity Terrain Creation Process

4.1.1 Workflow 1: Terrain Creation with Gaia
The Gaia plugin also allows creation of terrains from height maps, which then can
be easily integrated in the Gaia Pipeline for rendering and streaming functionalities.
Compared to Unity, the source height map can also be a grayscale image, but leads to a
loss of detail compared to RAW files as mentioned above.

To create Terrains in Gaia the Gaia Manager has to be used. In figure 4.5 the settings
I used for setting up the terrain can be seen. When creating a Terrain with Gaia
it is automatically checked if Texture Streaming and Incremental Garbage Collection
are activated in the Unity Project Settings to avoid performance spikes when loading
terrains together with a recommendation to activate and the option to activate either
of these settings immediately. Incremental Garbage Collection is actually activated by
default when creating a new Unity Project, but was not activated in the already existing
VROnSite Unity Project, which was used for implementing the Terrain creation.

Initially, Gaia creates a “random” Terrain in the Scene with the values defined in the
set-up. To adapt Gaia Terrains, so-called “Stamper” have to be used. Stampers are,
like the name implies, Gaia specific stamps which can be used to work on the terrain
with different operations like raising or lowering height. Stampers can be created via
another Gaia Component called the Scanner, which can create Stamper from Textures,
Meshes, other Terrains or RAW height maps. The Scanner is also activated via the Gaia

30

4.1. Terrain

Manager, which then expects one of the aforementioned files to be dragged and dropped
in it as seen in figure 4.6 and saved as a scan. Then a Stamper has to be created via
the Gaia Manager and the newly created scan selected via Stamps -> Exported Scans.
The scale of the created stamp is seemingly not adhering to real world measurements,
thus special care needs to be taken of the height value for the stamp. In my case, setting
the Y-Axis of the stamp to the difference between lowest and highest point of the height
map (the 86.124 meters calculated above) did result in a vastly different overall height
for the stamp. One workaround to still set the stamp to a nearly accurate height, is by
creating a 3d Object in Unity, setting the calculated height to the object and adapt the
Y-scale of the stamp until it matches the height of the 3D object as close as possibly. A
tenth of the calculated Y-value (8.6124) provided a good approximated value to start,
but was still not completely accurate. Additionally, it should be noted that the Stamper
Preview is also not completely accurate, and the resulting terrain after the stamp will
not be completely in line with the preview.

Figure 4.6: Screenshot of the Gaia Scanner

The resulting terrain was already split in tiles by Gaia for performance according to the
settings chosen in the set-up, has already set up a working Terrain Loader automatically,
which handles Terrain Streaming for the multiple tiles and can be further configured via
Terrain Loader Settings. Nevertheless, after comparing the Gaia terrain creation options
with the integrated Unity terrain option, ultimately, the native Unity terrain generation
process was chosen to be used for the final implementation. This decision leads to some
difficulties when integrating the terrain in the Gaia set up for using Gaia functionalities

31

4. Implementation

like the terrain loading and streaming. The deciding factor to use the standard Unity
Terrain creation pipeline was the fact that Gaia does not allow to generate terrain tiles
in arbitrary sizes, but only in 8 predefined sizes 256 meters to 16384 meters in power of 2
steps (e.g., 512, 1024 etc.) per tile. Specifically, this would mean 36 (6 times 6) tiles with
256 times 256 meters each for a terrain of 1778 meters times 1778 meter or 16 (4 times
4) tiles with 512 times 512 meters each for a terrain of 2048 times 2048 meters. This,
combined with the above-mentioned height value inaccuracy, lead to continuing with
the standard Unity terrain creation approach, which will be explained in the following
section.

4.1.2 Workflow 2: Creating Unity Terrain from Height Map
Depending on the size of the terrain, it is recommended to split the terrain in multiple
tiles and implement terrain loading (also known as streaming) which loads terrains only if
the viewer is close enough to them. With Gaia this was handled during terrain creation,
for the Unity approach this needs to be handled separately. Detailed comparisons and
the impact on performance depending on number of terrains, terrain size and the usage
of level of detail (LOD) will be described in the Evaluation chapter.

There are multiple ways to achieve the tiling of a large terrain, like directly exporting
multiple smaller RAW files with the process explained in the section Preparing and
creating a height map for Unity. When this approach is used, the min and max
height values and the height difference of every tile need to be used for creating the
corresponding terrain tile in unity.

Another possibility would be to use an image processing tool allowing the processing of
RAW files like ImageMagick to tile the resulting RAW file containing the whole area into
smaller tiles, resulting in one .RAW file for each terrain tile.

One straightforward solution to create terrain tiles is using the Unity Terrain Tools
package, which is supported starting with Unity 2021.1, as there’s no need to handle
separate tile height values or manual assignment of textures for each tile should any be
used. For Unity versions below 2021.1 the Terrain Tools exists as a preview package
starting from version 2019.1.

To use a RAW file for Terrain creation, first a new Unity Terrain object needs to be
created. There in the inspector under Texture Resolution (On Terrain Data) the Import
Raw... button can be found.

The following settings have to be used for height maps created by this workflow:

• Depth: Bit 16

• Set Resolution manually, if not taken automatically

• Byte Order: Windows

• Flip Vertically

32

4.1. Terrain

Figure 4.7: Import Raw Button in Inspector of Unity Terrains

4.1.3 Setting up Terrain Streaming with Gaia
In the approach that Gaia uses for Terrain Streaming, each terrain tile is contained in its
own scene, allowing to unload and load terrain scenes as additive scenes separately. Since
loading and unloading is a costly operation, Gaia also implements a Cache, which keeps
the Terrain in memory by only deactivating the root GameObject of the terrain scene for
a certain time if the player reaches a configured distance before actually unloading it.

In case the terrain was created by Gaia directly, the set-up happens automatically, but it
is also possible to use Gaia’s Terrain Streaming functionality for Terrains created with
the standard Unity approach.

If a Terrain Loader Manager is added to a scene with terrain created with the Unity
workflow, it is missing all options compared to a Terrain Loader Manager set up by Gaia
automatically, as seen in figure 4.8b.

The reason for this behavior is the Gaia Session Storage, where each change in the
terrain (made with Gaia Tools) is recorded to enable a non-destructive workflow. A
non-destructive workflow allows reverting to each individual working step, compared to
a destructive workflow where only the last state is stored. The creation of the Terrain
Loader Manager component also created a Gaia Session Manager found under the Gaia
Tools Objects. There, a field named “Session Data” can be found, which leads to the
Path where Gaia stores its sessions (\Assets\Gaia User Data\Sessions). Inside there
is a separate folder for each session (e.g. GS-20240324 - 165359 -> GS-Date - Time)
containing a TerrainScenes.asset, which is the so-called Terrain Scenes Storage. This
is used by the Gaia Loader to determine which and how many scenes are part of the
corresponding main scene and can be loaded in both, the editor and during runtime.
After manually creating a Terrain Loader Manager, the List of Terrain Scenes here is
as empty as seen in figure 4.9. After increasing the Terrain Scenes List size by pressing
the + button and filling out the data of one of the terrains to be streamed, the Terrain
Loader Manager shows all the options needed to set it up.

Another option is to create a temporary Terrain with Gaia, and then use the Add Terrain
Field scene in figure 4.9. Here, one terrain at a time can be added by either using

33

4. Implementation

(a) TerrainLoaderManager created by Gaia (b) TerrainLoaderManager created manually

Figure 4.9: TerrainScenes with empty Terrain Scene list

34

4.1. Terrain

drag and drop or searching for the correct terrain data and then confirming with the
“Ingest” button. “Ingesting” terrains configures the terrain not only for the Terrain
Loader Manager but also in the Session Storage.

Since both of these workflows are rather tedious, I created a helper Unity Editor script
as part of the thesis, which allows for a faster set up. When Gaia Ingests a terrain,
it is moved to a newly created separate scene and added to the Session Storage. The
solution I created is basically a copy of the relevant code triggered by the “Ingest” button
but instead of being executed for only one terrain, the script executes the code for each
selected terrain in the Scene Editor instead. Since ingesting is setting up terrain tiles
correctly in both Terrain Loader Manager and Session Storage, no further tinkering with
either of them is needed after execution of the script. When opening the “main” scene
in the editor, the Gaia Terrain Loader now handles loading all terrain tiles as additive
scenes in the editor. Terrain Loading is now functional in the editor and also during
runtime in case a Gaia Player is used. Since VROnSite uses its own “player” objects, or
to be more precise objects having a camera and thus serving as “window” into the VE
for the user, it is necessary to set them up accordingly as well, which will be explained in
the following section.

4.1.4 Integrating Terrain Loading in VROnSite
Gaia splits the scene setup in one main scene containing necessary scripts for Gaia in
Editor and during Runtime (Terrain Loader Manager and Session Manager) and multiple
additional scenes each containing a terrain tile. The Terrain Loader Manager handles
loading and unloading of the Terrains in the Editor, but since terrain loading during
runtime should be dependent on the position of camera, it is necessary to equip each
potential “player” game object containing camera on it or in its hierarchy with a Terrain
Loader. VROnSite has four such objects, stored as Prefabs: the “Operator” prefab, the
“Trainee” prefab, the “EditorManager” prefab and the “Replay” prefab. The “Operator”
prefab is spawned on the server, meaning there’s only one in the scene, and is usually run
on a notebook or pc. The “Operator” prefab has all the necessary operator scripts like
for example the operator camera, operator movement handling and the operator spawn
manager, which allows spawning new objects, visible for all connected instances, into the
VE during runtime. The “Trainee” prefab is spawned for each trainee (usually using a
VR headset) connected to the server and contains all the necessary trainee scripts and
objects like for example the camera, the movement handling and network objects. The
"EditorManager" prefab is used as “player” object, when the scenario editor is used, where
new scenarios can be either created or existing scenarios edited. Lastly, the “Replay”
prefab is used in the AfterActionReplay, where scenario replays can be watched.

Since each of these prefabs is not made up of a single object, but instead a hierarchy of
multiple game objects, it is necessary to make sure that the terrain loading is set up on
an object which actually reflects the correct position of the “player object”. To illustrate
the problem with an example: If the terrain loader would be placed at the root object
called “Player”, but the movement and thus the translation is actually happening on a

35

4. Implementation

child game object called “Trainee” the terrain loading would actually not work correctly,
as the unchanging translation of the root object “Player” would be used for calculating
the relevant terrains and since no movement is happening on the root “Player” object
but only on the child, the root “Player” object always stays at the same position. The
safest way to set up the terrain loader is finding the game object containing the camera
and attaching it to said game object. Even in the case that the game object containing
the camera is not moved directly, but instead a parent object is moved, the correct
translation will be used as the global position instead of the local position is used for
calculating the relevant terrains for loading or unloading.

The obvious solution would now be simply placing the Terrain Loader script provided by
Gaia in the prefab on the object containing the camera. That, however, would break one
of the principles established in the design chapter. By placing the Terrain Loader directly
in these prefabs, a dependency from a functionality to my VROnTerrain module be
established and only dependencies from content modules to functionality are allowed, not
the other way round. To tackle this I created a GaiaSetup prefab, which can be placed
in a Terrain scenario and sets itself during runtime, dependent on the mode started, and
allows setting terrain loading boundaries for both operator and trainees.

During Update, the GaiaSetup script scans for one of relevant player game objects in the
following order:

1. Check if the VROnSite ClientManager has an instance defined and get the gameob-
ject in case it is - ClientManager.Instance returns the trainee object containing the
relevant trainee game object for the connected client if executed as trainee or an
operator game object if executed as operator.

2. Check if the LobbyManager has an instance defined and that the instance has a
reference to the EditorManager set, in case it is get said game object.

3. Check if no game object was found yet and a game object with the name "Replay-
Camera" is existing and get the associated game object.

4. If a game object was found, add a Gaia TerrainLoader, set a custom terrain loading
mode called RuntimeAlwaysVrOnSite and set it up with predefined bounds, which
are used to check if terrains should be loaded or unloaded and set the setup variable,
so the checks are not getting executed anymore. Should nothing be found, try again
in the next update. A more detailed explanation of TerrainLoaderModes can be
found below.

As a side note: Finding game objects by name is a costly command and should be avoided
if possible, since it’s only happening during the loading of the scene as the GaiaSetup
script is only in the terrain scene itself, not in the Lobby, which works as a hub for the
operator. For trainees on mobile VR headsets the find GameObject should not be called
at all, as the ClientManager should already be available, thus performance impact should

36

4.1. Terrain

be negligible, as the execution of the logic above is not repeated as soon as a game object
was set.

Gaia provides some predefined TerrainLoaderModes: Disabled, EditorSelected, EditorAl-
ways and RuntimeAlways [18]. Each of these provide the possibility to set boundaries
i.e., the range in which terrain tiles should be loader or unloaded and the RuntimeAlways
mode additionally, allows setting a minimum distance and maximum distance and time
values for each distance how often the need to load or unload terrains should be checked.
In VROnSite there should be different boundaries, since the Operator is usually run
on a PC or Notebook the possibility to set larger boundaries should be given. Thus, I
rewrote the Terrain Loader script provided by Gaia to offer an additional Mode called
RuntimeAlwaysVROnSite in which it is possible to set distinct trainee and operator
boundaries. Since the Scene Editor and the AfterActionReplay are also usually run on
a Notebook or PC, the code for the RuntimeAlwaysVROnSite mode checks with the
VROnSite ClientManager instance if the player mode is trainee, which then results in
setting of the trainee boundaries or if either no player mode is set or set to operator,
then the operator boundaries are set.

4.1.5 Terrain Objects
Unity standard terrain texturing uses the same approach as is used for terrain sculpting,
adding trees and other details like grass, brushes. These brushes can be scaled up to
a size of 500, which would correspond to 500 meters with default Unity settings. One
option would be to take an orthographic map as reference and paint textures accordingly
onto the terrain. Another option is to use Gaia’s non-destructive workflow and apply
textures according to certain spawn rules, like using a texture on the terrain that has
a defined distance to a certain point on the terrain or if a slope has a certain angle or
for a certain height. These spawn rules can be used in combination for a single texture,
but can also be configured separately for multiple different textures. I used an Image
Mask spawn rule, where black areas in the image should be textured on the terrain, and
transparent areas ignored. Gaia gives multiple possibilities how the mask can be set up,
it would also be possible to paint the transparent areas and ignore the black ones, or use
one of the r (red), g (green), b (blue) channels of the image as a mask. I created the
mask in an image editing software (GIMP) based on the landscape map of the area via
an automatic selection tool and then filled the selected areas with black and deleted the
rest. An example of such a mask can be seen in figure 4.10.

The masks were saved with 1730 times 1730 pixel, corresponding to the terrain size of
1730 by 1730 meter. The rules are applied in sequential order, meaning that if the first
rule draws only over parts of terrain, and the second rule draws over the whole terrain,
then the results of the first rule will be overdrawn by the second rule. If the order of the
rules will be swapped, then the first rule paints the whole terrain and the second will
only draw over the parts, thus having a combination of the two rules as a result. Overall,
I defined four texture rules, each with a different texture: A Grass rule without any mask
set, thus painting the whole terrain with a grass texture, a Fields rule and two different

37

4. Implementation

Figure 4.10: Example of a mask created for fields used for terrain texturing

Grapevine rules which all use a different mask to texture fields and two different types of
grapevine soils over the whole terrain according to the masks. At this point it should be
noted that only four terrain textures (per terrain tile) were used for performance reasons
and that in general Spawners should only contain textures which will be used on the
terrain, as even set up textures which are unused have an impact on performance. A
more detailed explanation will be given in the Evaluation chapter. figure 4.11 shows
the Spawner settings used, the list of the Spawn rules and a preview of the areas which
will be textured marked by a color related to a spawning rule. A Spawner provides two
buttons, “Fit to Terrain” and “Fit to World”. “Fit to Terrain” sets the range value in the
spawner to match the size of the Spawner to a single terrain Tile, while “Fit to World”
matches the size of the Spawner to the Gaia World, which includes all terrain tiles. In
the Stammersdorf scenario, when using “Fit to World” the range is set to 865 as the
range is measured from the center of the terrain (or terrain tile) and thus is set to half of
the terrain size, which 865 (half of 1730) meters in my case.

To set up an Image Mask in the Spawner, Mask Settings needs to be added, by clicking
on the "+’-button of a rule and opening extended settings. For Stammersdorf I used an
Image Mask with the Alpha Channel as Filter Mode, as seen in figure 4.12. All the other
settings have been left on default.

The areas of interest to be used for training are the main square of Stammersdorf and a
parking area in the Senderstraße, where a forest is also located. Thus, it was necessary
to remodel these areas with more detail than the rest of the terrain by placing additional
objects like trees and buildings in the scene. The two areas are marked in the terrain
from a top-down perspective as seen in figure 4.13, where the top left area is the parking
area and the area in the bottom right is the main square.

38

4.1. Terrain

Figure 4.11: Settings used for the Spawner and overview of the Spawn rules. Each color
to the right of the rule is the preview color used on the terrain and shows the area which
will be textured after applying said rules.

Figure 4.12: Settings used for the Image Mask for the fields rule

Additionally, the road network should be remodeled for the whole terrain, to allow travel
between the two points of interest. The Road network was modeled via Procedural
Worlds GeNa, which allows placing different kind of models either via splines or other
methods of placement like brushes or procedural generation. One advantage of using
GeNa is, that it automatically adheres to the terrain tiling of Gaia, meaning that if a
street (or any other model placed via spline) crosses over the boundary of one terrain
tile into another the resulting mesh is automatically split there, allowing to unload also
only parts of a street related to a certain terrain when unloading terrain tiles instead of
having to unload (or load) the whole street mesh. Another advantage is the function to
“flatten” (or “raise”) the terrain under the street — since the height map has “only” an
accuracy of 1 meter, the streets intersected the ground in several places. This can be
achieved by the GeNa Carve Extension, which is automatically available when a GeNa

39

4. Implementation

Figure 4.13: Top-Down view of the textured terrain, with the Senderstraße parking lot
marked in the top left and the main square of Stammersdorf in the bottom right

Figure 4.14: Example of flattening terrain under a street with the Gena Carve Extension

road is placed in the scene. The extension provides some parameters like width, shoulder
and noise, where the shoulder depending on the “shoulder fall off curve” can provide a
fall-off e.g., a slope, at the edges of the defined width and noise can provide some random
raised areas to break symmetry and add more uniqueness to the pathway. An example
of the Geva Carve Extension in preview mode can be seen in figure4.14.

To adapt the visualization of the street to the application’s needs, the GeNa Road
Extension has to be used, as seen in figure 4.15. The road extension has settings like
the width, the street having a certain layer or a collider and the so-called “Road Profile”.
A “Road Profile” is a GeNA specific scriptable object having settings for shader and
materials and textures.

It is advised to create a separate “Road Profile” for each type of road that should be used
in the scene, to avoid accidental changes. In theory, it should be possible to prepare a
GeNa Spawner with a sidewalk mesh, add a GeNa Spawner Extension with an offset and

40

4.1. Terrain

Figure 4.15: Overview of the Gena Road Extension settings

Figure 4.16: Example of possible mesh misalignment of road barriers introduced by the
GeNa Spawner Extension. Image is taken from the official "GeNa Pro And Gaia Pro -
Level Design Example" Youtube video [15].

spawn multiple sidewalk meshes automatically with an offset, for some unknown reason,
I couldn’t get this to work as no meshes spawned at all, even with example Spawners
provided by GeNa. Nevertheless, while the Spawner approach may be automated to a
degree, it leads to other disadvantages due to the fact that a sidewalk would then be built
up from multiple smaller meshes, introducing the possibility of misalignment of these
smaller meshes relatively to each other and bigger performance impact than a single
longer sidewalk mesh. An example of such misalignment can be seen in figure 4.16. Thus,
in the end, sidewalks were also placed manually.

41

4. Implementation

The disadvantage of this approach is the need to manually place the streets and that
each node of the spline has the same width, thus changing width in streets can not
be handled accurately. As a workaround, I created multiple splines having a separate
thickness each, to be able to model the road network more accurately, although still
not perfectly accurate. Modeling the road network with multiple streets introduces a
new problem. Road Creation in GeNa is handled in two steps. First, the splines are
placed and adapted with the extensions and road profile as mentioned above. In a second
step, a road needs to be “baked”. In this step the spline previews are getting converted
to a real mesh, where all settings like the collider and layer but also the split of the
mesh along terrain tile borders are getting applied to the final mesh. Out of the box,
GeNa only allows baking a single road via a “Bake Road” button in the GeNa Road
Extensions. For Stammersdorf the road network was modelled with 44 different Splines,
baking each Road manually would be a tedious task, thus I created a helper editor script
which allows the baking of multiple roads at once. The script gets the spline component
of each selected gameobject in the editor and checks if the spline component is active
and enabled, then the road extension of each such spline is gotten and if available the
Bake method provided by GenaRoadExtension objects is called.

There are also external Unity plugins allowing to import road networks from Open Street
Map exported streets. Sadly, the roads of open street map did not accurately match the
GIS maps provided by the city of Vienna at all, thus not being a suitable alternative for
modelling the road network.

The trees were placed via a GeNa brush with random size, rotation, and color modifier
so that each tree looks slightly different even though the same model was used. In the
current VE are 138 trees placed for the forest and the parking area and 50 additional
trees for the main square area. The tree model used is s SpeedTree model with 672
triangles with the default SpeedTree shader used.

The buildings and the contents of the building were provided and placed by Bytewood
e.U5. In some spaces the terrain clipped through buildings, which are accessible for
trainees, making the terrain visible inside the buildings, as the terrain data provided by
the city of Vienna was not “flattened” under buildings. To flatten the terrains under the
building, an editor script created by the user “ZeroCool” and adapted by the GitHub
user “KurtDekker” was further adapted by me and used on trainee accessible buildings
[16, 17]. In the version of “KurtDekker” the script was searching for any terrain object
in the scene if none was provided via drag and drop. Since in the Stammersdorf scenstio
there are multiple terrain tiles and therefore multiple terrains this approach led to no
usable results, thus, I rewrote the script to fire a ray cast either below or above the game
object to which the script is attached to check for terrains. If a terrain is found it is set
as terrain to be used for flattening and a debug message showing the name of the found
terrain and the information that the height will be applied after pressing the button again
is shown. The reason for this two-step implementation is, that some accessible buildings

5https://bytewood.com/

42

4.2. Fire and Smoke

are actually covering multiple terrains, because they are placed at the borders of two
tiles being placed next to each other. This step allows checking if the found terrain is
the expected terrain to be flattened and in case it is, now allows dragging and dropping
the correct one in the terrain field to be used before continuing with the flattening step.

4.2 Fire and Smoke
Rendering realistic simulated fire and smoke is computationally expensive. As mentioned
in the state-of-the-art chapter 2, the most realistic behavior at present can be achieved
by using computational fluid dynamics combined with volume rendering as implemented
by e.g. Lu et al. [33] or Lorusso et al. [32]. One problem with such implementations
is the lack of interactivity during run time, since CFDs have to be pre-computed to be
usable for real time simulations. Grabowski tried to improve this by preparing multiple
simulations, which were then blended accordingly to reflect user actions [28]. Still,
all these implementations were designed for VR headsets in combination with a PC,
not a stand-alone mobile VR headset, which performance wise is more comparable to
smartphones than computers. This combined with the fact, that smoke should be visible
on a distance for wide area simulation and thus can’t be culled to reduce the performance
impact particle effects were chosen for the implementation of smoke and fire.

As a base a fire variant already prepared for mobile hardware from The “Ultra Realistic
Fire and Smoke”6 Unity Package was used and adapted. The first step was to reduce
the number of non-essential particle emitters. Since each and every tree in the scene
should be able to burn, and there are 138 trees in the parking lot area and 50 trees in
the main square, reducing the number of emitters and particles is essential, to have a
performant visualization of fire and smoke. The mobile fire was made up of three different
emitters for fire and one additional emitter for smoke. One emitter was handling the
“main fire”, one as a slightly different colored center fire, and one was creating sparks.
As the center fire emitter and the spark emitter only added details to the main fire, they
were completely removed, thus reducing the worst case emitter count by 376 possible
emitters. Additionally, the maximum allowed particles per emitter were reduced from
1000 to 30 for the fire and reduced to 5 for the smoke. It should be noted, that the
mobile fire of the unity package also never surpassed 30 particles for the main emitter
in my tests, as particle lifetime was configured, so that particles usually died before
reaching more than 30 particles at a single time for the main emitter. All three fire
emitters combined reach a maximum particle amount between 130 and 140, while the
smoke capped out at around 50 particles but sometimes hit 51, resulting in around 190
particles worst case per fire in the original mobile fire prefab. Since fewer particles also
mean that e.g., less smoke is rendered, I balanced this out by increasing the particle size
of each smoke particle and decreasing the lifetime of particles to still give the illusion of
a continuous stream of smoke being present all the time while the fire is burning. The

6https://assetstore.unity.com/packages/vfx/particles/fire-explosions/ultra-realistic-fire-and-smoke-
13549

43

4. Implementation

second step was to remove the light source attached to the fire. While an additional light
source adds realism, it also adds a burden to the performance, let alone 188 additional
light sources in the worst case. A visual comparison between the original fire and the
adapted fire can be seen in figure 4.17.

(a) Original fire prefab for mobile from the
"Ultra Realistic Fire and Smoke" Unity pack-
age

(b) Adapted fire with only one fire emitter
and particle count for fire reduced to 30 and
for smoke to 5

Figure 4.17

The spreading of the fire was handled by a simple scale-over-time algorithm, where the
growth is not handled by increasing the amount and/or lifetime of particles, but by
increasing the scale of the fire and smoke emitter. For scaling to work on particle emitters
the Emitter Scaling Mode has to be set to Hierarchical, otherwise the scale values of the
transform of the gameobject are ignored. Each fire starts to spread (grow) the moment it
is set (either by the operator or already in the scene) up to a configurable maximum size.
For the Stammersdorf scenario, I used a maximum size of 12 meter and the spread is set
to 10 centimeters per second. To not only grow but spread to other objects, each fire
has a collider (with the is trigger flag activated), which checks for collisions with other
objects: If another objects has the “burnable” tag, the other object also starts to burn.
An example of the fire spread and a burnt tree can be seen in 4.18 All this behavior is
handled in a single script called Firebehavior. After some time, or when the fire gets
extinguished by the operator the model of the tree should change from the normal tree to
a burned down tree, this is handled in a “BurnDown” method in a Treebehavior script,

44

4.2. Fire and Smoke

Figure 4.18: In-application screenshot from operator perspective of spreading fire and a
burnt tree.

which gets called by Firebehavior.

In case an object would be hit by multiple growing fires, it would start to burn multiple
times as seen in figure 4.19a with a separate fire each time. In turn, the new fires would
also spawn fires to the “original” burning trees, which in turn can again spawn new fires
on the other tree, leading to an infinite fire spawn loop as visualized in figure 4.19b.
This is unwanted behavior, as the impact of multiple fires per object on performance
would be immense compared to the arguably negligible use for trainees. To avoid this
additional to a Firebehavior script a FireController script is introduced, which has a
ConcurrentDictionary in which each burning gameobject will be stored as value, with
the unique InstanceId available from the Unity Object class as key. Addtionally, the
instanceId is set to the FireSpread, so each fire knows which tree it belongs to and can
trigger the "burnDown" on the correct tree. If the fire was parented to the tree, this
could have been solved easier via a GetComponentInParents call, but for some reason
when trying this approach a major mismatch between the fire positions of the client and
the server occurred. The FireController offers some convenience methods to check if a
specific tree is (or was) already burning and to get or add burning Trees to the controller.
It should be noted, that the InstanceId is not persisted between different executions
of scenes, meaning that a tree may have a different InstanceId between two sessions.
For my implementation, this does not lead to problems, but should be considered for
implementations relying on the need of persisted Unitys InstanceIds.

So, while in this scene the fire spread is only set for trees, as only trees have a burnable
tag added, the fire spread should also work with other objects with slight adaptions of
the script by taking the size of the burning objects in account to define a more accurate
individual maximum spread size.

45

4. Implementation

(a) Exemplary visualization of one tree getting
ignited twice by different fires (b) Exemplary visualization of infinite fire loop

Fire and Smoke Integration in VROnSite

Since VROnSite is a distributed system with clients and a server, some additional
measures need to be taken for the implementation. The spawning, the deletion, and the
size of fire should be handled by the operator to avoid inconsistencies and to keep the
state of the application in a single place, to also allow for the connection of clients after
the application started or in case of possible re-connects. Thus, the FireSpread scripts
checks if the ClientManagerInstance provided by VROnSite is an operator and only then
executes the logic. A new helper function was introduced in VROnSites ClientManager
called SpawnNetworkFirePrefabServerRpc which additionally handles the setting of the
clientInstanceId of the burning object the fire belongs to in the FireSpread component of
the newly spawned fire. A NetworkTransform was added to the fire prefab and set, so
that the scale of the object gets distributed from the operator to the clients.

Changing a model in the RendererComponent is not distributed via standard Unity
networking, thus I had to implement a workaround. Instead of changing the model, the
normal tree model gets despawned and the burnt tree model then gets spawned instead.
Both spawning and despawning are done via a helper function provided by VROnSites
ClientManager, which not only destroys or spawns the network object on all clients
and the server but also handles the necessary steps to record the despawn or spawn for
the AfterActionReview functionality. Before an object is spawned over the network, it
is instantiated via the standard Unity prefab instantiate method. While the standard
instantiate allows for setting a position and a rotation, it is not possible to set a scale. As
mentioned before, each tree has a different scale, this scale needs to be taken over to the
burnt tree, to make sure that the different sizes of the trees are still accounted for even if
they are burnt down. For this reason, the helper method SpawnNetworkPrefabServerRpc
of the ClientManager of VROnSite had to be adapted. The method was enhanced with
an optional parameter Vector3 scale=default. By assigning a default value, the other
invocations in the existing VROnSite code could still compile without throwing an error.
Additionally, the logic was adapted to set the scale, if it is not the default value. By

46

4.2. Fire and Smoke

setting the scale after instantiating the object but before triggering the network spawn,
the scale values are also reflected on the spawned objects on client side. In figure 4.20
an example image can be seen of a relatively progressed fire already integrated in the
VROnSite application.

Figure 4.20: Screenshot from VROnSite of forest fire with multiple ignited and burnt
trees.

When testing the functionality in the AfterActionReview I found that VROnSite can’t
handle multiple events happening in the same frame. The reason for this is, that the
last entry in a frame, simply overwrites the one before it, making it impossible to store
multiple events per frame as of now. To avoid this issue, I added a little delay to make
sure that all spawns and despawns happen in different frames. In fact, this means
that there is a delay before spawning the new burnt tree and before despawning the
old normal tree. The reason that a delay is needed also before spawning a burnt tree
is that the change may also have been triggered by the operator extinguishing a fire.
Extinguishing a fire also triggers a distributed despawning of the fire and registers in
the AfterActionReview. Thus, to make sure that the despawning of fire is not getting
overwritten by the spawning of the tree, a delay was added here as well.

47

CHAPTER 5
Evaluation

The evaluation chapter will be divided into two sections. The first section will be an
explanation of the setup for the user study setup, including the evaluation. The second
section is the performance evaluation of different settings on the mobile VR hardware
and an explanation which approach was used for measuring the performance.

5.1 User Study Evaluation
To answer the first research question, Q1 “How well do expert users assess and accept
first responder training of wide area disaster events on a mobile stand-alone VR system
?” I conducted a user study with a total of eight people who are active members in a
voluntary fire brigade. The user study was conducted in the voluntary fire brigade of
Langelebarn, Lower Austria. The setup consisted of one Notebook, which ran the server
and was handled by an expert operator, and four Meta Quest 3 prepared on a swivel
chair to be used by the expert users for the study. With the swivel chair, it was possible
to turn around for the participants and facing the same direction they are moving in
VR, without needing to stand for the whole test. The VR part was split in two separate
scenarios: First, the trainees were introduced to the Quest 3 and the controls in a simple
scenario, where they got an explanation on how to move and how to interact with objects.
This introduction took around 10 to 15 minutes per group. After the warm-up, the
second scenario containing the VE of Stammersdorf was loaded, where the spreading
fire with visible smoke was prepared. In this scenario, the expert users were informed of
smoke rising from the forest near the parking lot of Stammersdorf and to react to the
situation accordingly. One of the users in VR was asked to take the role of the leader,
handling coordination with the control center and giving audible commands to the other
three VR participants. A car was placed in the scene, which was also driveable by the
participants. Additionally, the leader had the ability to contact a control center — which
was played by the system operator — to call for back up and other information. The

49

5. Evaluation

scenario was played out in such a way, that the users also have the opportunity to see
the fire from a distance and not only up close. The scenario overall took between 30 and
45 minutes per group.

An image taken during the study can be seen in figure 5.1

Figure 5.1: Image taken during the study, showing the study setup with four participants
on the swivel chairs and the operator in the back.

The setup of the user study was as follows:

• Pre-Training Questionnaire: A questionnaire before the users participate in the VR
Training to get an overview of the age, gender, current physical wellness with the
classic simulator sickness questionnaire [39] of the users and some general questions
about their experience with training scenarios and technical affinity.

• Warm-Up: Giving a status report of the situation that will be encountered in the
scenario and explaining the basic controls in a basic training scenario to get people
accustomed to the VR experience.

• Playing through the scenario in VR in a group of four participants and an expe-
rienced operator, which was not part of the study participants, to trigger events
like starting the forest fire in the VE. This was done twice with four different
participants, each time.

• Post-Training Questionnaire: Asking for the well-being of the user, to see if any
kind of cybersickness was introduced because of the training, asking questions
about their experience with the terrain, fire, smoke and general questions regarding
the usability of the system with a system usability scale questionnaire [23].

50

5.1. User Study Evaluation

Participants had the possibility to ask questions if one or more of the questions were
unclear, but none asked for clarification, thus it should be fair to assume, that the
questions were generally understandable. All questions, besides the well-being questions,
were answered on a typical 5 point Likert scale from not agreeing at all to agreeing
strongly. Additionally, users had the possibility to provide additional information in
three open questions should they wish to add something. It should be noted that the
questionnaire originally was conducted in German but is translated to English for the
sake of consistency in the thesis. The German questionnaires used for the study can be
found in the appendix.

Pre-Training Questionnaire Results

All eight of the participants were male and seven of them between the age of 23 and 49,
with a median value of 38, the eighth user either forgot or refused to fill out the age. Since
all the participants identified as male, the pronoun “he” will be used where appropriate
in the result chapter. Seven of the users were active in a leadership position, and six
of those seven are also active in an educational function. Two participants had no role
in education, one of which also had no leadership role. Six participants regularly have
trainings prepared for them. Two participants are having one to three trainings prepared
for them per year, two four to seven trainings, two more than seven trainings, leaving
two participants for which no trainings are regularly prepared. Five of the participants
also prepare trainings for other people in leadership roles, two prepare more than seven,
one between four and seven and two participants prepare between one and three training
for leadership positions per year.

Six of the participants also regularly take part in simulation exercises, two participate in
between one and three simulation exercises, three in between four and seven and one
participates in more than seven per year. Most of the participates rate themselves as fit,
one as very fit, five as moderately fit and two as averagely fit.

Overall, seven participants had prior experience with VR, although the experience level
with VR was mixed. Four of the participants have an average experience level with
VR, two users have little experience with VR and one user each had a high level of
experience and non respectively. One of the attendees had no prior experience with
Virtual Reality, two had slight experience, four average experience and one had a large
amount of experience with Virtual Reality. While seven participants had experience with
VR, only six participants had experience with a gamepad, although with an overall higher
experience level compared to the VR experience results. Three of the participants stated
a high level of experience with gamepads, two stated an average level of experience, and
the last one a low level of experience.

In the cybersickness pre-evaluation, three of the participants felt absolutely healthy with
no symptoms stated. Five of the participants were sweating, three slightly and two
moderately. Additionally, one of the five participants also felt slightly tired. It should be

51

5. Evaluation

1. Please indicate how many training exercises are prepared for you on average per year.

None 1-3 4-7 More than 7
2 (25%) 2 (25%) 2 (25%) 2 (25%)

2. Please indicate how many training exercises you prepare on average per year
for other persons in leadership roles.

None 1-3 4-7 More than 7
3 (37.5%) 2 (25%) 1 (12.5%) 2 (25%)

3. Please indicate how many simulation exercises you participate in on average
per year.

None 1-3 4-7 More than 7
2 (25%) 2 (25%) 3 (37.5%) 1 (12.5%)

4. How would you rate your personal fitness level?

Not fit Slightly fit Averagely fit Moderately fit Very fit
2 (25%) 5 (62.5%) 1 (12.5%)

5. Do you have prior experience with Virtual Reality?

None Low Average Moderate High
1 (12.5%) 2 (25%) 4 (50%) 1 (12.5%)

6. Do you have experience or prior practice in using a gamepad?

None Low Average Moderate High
2 (12.5%) 1 (25%) 2 (50%) 3 (12.5%)

Table 5.1: Results for pre study questionnaire

noted that on the day of the evaluation the temperate was up to 34 degrees Celsius and
the room prepared for the training had no cooling measures installed.

52

5.1. User Study Evaluation

Post-Training Questionnaire Results

According to the cybersickness post-evaluation, the amount of participants who were
experience sweating were increasing from five to seven, with four slightly sweating and
three moderately sweating. The one participant, who was slightly tired before the training,
did experience no increase in fatigue and was still slightly tired after the training. No
further symptoms were experienced by any of the participants. Again, it should be noted,
that it was a hot day in Langenlebarn with a temperature of up to 34 degrees Celsius on
the day of study. There was no air conditioning or other cooling devices in the room,
leading to an overall hotter room as more people stayed in the room, which resulted in
the increased sweating of some participants, which can also be seen when comparing the
pre questionnaires of the first and the second training group. For the first training group,
only one person experienced slight sweating before the training, while for the second
training group all four of the participants experienced at least slight sweating.

General Questions

All the participants agree (six strongly), that the forest fire scenario would help them to
prepare for forest fire operations, resulting in a mean value of µ= 4.75 and a standard
deviation of σ = 0.433012702. The expectations that the participants have regarding
forest fires scenario were met for seven out of eight participants (six strongly) and one
participant was neutral regarding his expectations, leading to a µ= 4.625 and σ =
0.695970545. Again, all of the participants agreed (five strongly) with the statement,
that the VR forest fire training could be a useful addition to traditional training methods
(µ= 4.625 and σ = 0.484122918).

Thus, the results strongly indicate that the implementation of forest fires may be a
suitable and well received alternative to additional training methods, would they be used
in training for professional firefighters.

Six of the participants did not (four) or only slightly (two) perceive any kind of delay or
stuttering during the VR training. The other two, however, have perceived stuttering or
delays, resulting in a µ= 2.25 and σ = 1.08972473. The aforementioned results can also
be seen in table 5.2. Interestingly, the two participants stating to notice stuttering or
delays fairly, were using the same Meta Quest 3 in the first and second run respectively,
which may be indicating some issue with the device itself. Combined with the fact that
the results of the post cybersickness questionnaire did not indicate any worsening of the
well-being of the participants, it should be safe to assume that the perceived stuttering or
delays were not happening very frequently, as these usually lead an increase in dizziness
or nauseousness.

53

5. Evaluation

1. The VR forest fire scenario would help me prepare for operations involving forest fires

Strongly Disagree Disagree Neutral Agree Strongly Agree
2 (25%) 6 (75%)

2. The VR forest fire scenario meets my expectations for virtual training on
forest fires

Strongly Disagree Disagree Neutral Agree Strongly Agree
1 (12.5%) 1 (12.5%) 6 (75%)

3. I would find the VR forest fire training useful as an additional training method
alongside traditional training methods

Strongly Disagree Disagree Neutral Agree Strongly Agree
3 (37.5%) 5 (62.5%)

4. I noticed unexpected stuttering or delays during the training

Strongly Disagree Disagree Neutral Agree Strongly Agree
2 (25%) 4 (50%) 2 (25%)

Table 5.2: Results for general questions about the training

Fire and Smoke Questions

The visualization of fire was perceived as suitable by seven participants, of which six
strongly agreed, and as neutral by the last participant, resulting in µ= 4.625 and σ
= 0.695970545. The fire was also perceivable from a distance according to all the
participants (seven strongly agreed, one agreed) with a µ= 4.875 and σ = 0.330718914.
Most participants also found the behavior of the fire suitable for the training (five
strongly agreed, two agreed), with only one user finding it unsuitable (µ= 4.375 and σ
= 0.992156742). This suggests that the fire implementation was overall accepted and
deemed suitable by the expert firefighters participating in the study.

Even though the visualization was deemed suitable by seven participants as well, the
suitability was overall rated slightly worse with four participants agreeing strongly and
three agreeing (µ= 4.375 and σ = 0,695970545) compared to six strongly agreeing and
one agreeing (µ= 4.625 and σ = 0.695970545) regarding suitability of the visualization
for smoke and fire, respectively. A possible explanation for the difference in perceived
suitability can be found in the open free text question, where three of the participants
stated that the smoke should be black instead of white, before the fire is extinguished
with water. Nevertheless, the smoke could be noticed as well from a distance as the fire
according to the participants, with seven agreeing strongly with the statement regarding
perceptibility of smoke from a distance and one agreeing (µ= 4.875 and σ = 0.330718914).
The behavior of the smoke was also regarded as slightly worse than the behavior of
fire when compared, while six participants stated that the fire was suitable (five agreed

54

5.1. User Study Evaluation

strongly, one agreed), one user was neutral regarding the suitability of the smoke behavior
and the last one even disagreed, although not strongly (µ= 4,25 and σ = 1,089724736).

During the implementation, the focus lied on being able to visualize fire and smoke
without perceiving noticeable stutters, diminishing the experience and possibly leading
to cybersickness symptoms. The justified critic regarding the behavior of smoke and in a
lesser form also for fire, was to be expected and leaves room for future work to optimize
and focus on the behavior specifically. Interestingly, the training was still perceived as
useful for preparing for forest fires and generally met the expectations of the users (as
seen in Table 5.2), which could possibly indicate a certain leniency or lowered expectation
for realistic behavior of fire and smoke in VR forest fire training because of its novelty for
the participants. Overall, the fire and smoke section was the one with the strongest fill
rate for the open question. Six participants wrote comments, of which four indicated, that
they liked the fire and smoke (“very realistic”, “liked it very much”, “strongly modeled”)
and three mentioned the issue with the color of the smoke. The aforementioned results
can also be seen in table 5.3.

It should also be noted that the participant stating Disagree for the behavior of fire and
smoke, asked questions before the study regarding behavior of fire and smoke, e.g., if
the fire was incorporating material properties and weather in its behavior, or if smoke
reacted on wind conditions. This was not implemented as part of this study and may
have had an impact on his answers. Sadly, the participant did not fill out the open
questions, making it hard to identify the problems perceived by this participant.

Terrain Questions

The level of familiarity with Stammersdorf of the participants was equally distributed, as
four participants were familiar with the area of Stammersdorf (two strongly), and four
not or only slightly familiar with Stammersdorf (two slightly). Seven of the participants
believe (six strongly) that VEs can convey knowledge about real world locations, while
one participant felt neutral about it. Most participants were confident in their ability to
identify parts of Stammersdorf recreated in the VE, as seven of the participants agreed
(five strongly) that they can identify the locations depicted in the training in the real
world, while one was very certain (strongly disagreed) that he could not, leading to a
µ= 4.125 and σ = 1.363589014. Identical answers were given by each participant for the
question, if the participants think they could navigate better through the simulated area
of Stammersdorf in the real world (µ= 4.125 and σ = 1.363589014).

If the results are grouped by familiarity with Stammersdorf, three of four participants who
were not or only slightly familiar with Stammersdorf were rather confident in their ability
to recognize the visualized parts of the VE in the real environment of Stammersdorf
and as confident in their ability to navigate through Stammersdorf better than before
the training. The two participants who were not at all familiar with Stammersdorf

55

5. Evaluation

1. The visualization of the fire was suitable for the training.

Strongly Disagree Disagree Neutral Agree Strongly Agree
1(12.5%) 1 (12.5%) 6 (75%)

2. I could perceive the fire from a distance.

Strongly Disagree Disagree Neutral Agree Strongly Agree
1 (12.5%) 7 (87.5%)

3. The behavior of the fire was suitable for the training.

Strongly Disagree Disagree Neutral Agree Strongly Agree
1 (12.5%) 2 (37.5%) 5 (62.5%)

4. The visualization of the smoke was suitable for the training.

Strongly Disagree Disagree Neutral Agree Strongly Agree
1 (12.5%) 3 (37.5%) 4 (50%)

5. I could also perceive the smoke from a distance.

Strongly Disagree Disagree Neutral Agree Strongly Agree
1 (12.5%) 7 (87.5%)

6. The behavior of the smoke was suitable for the training.

Strongly Disagree Disagree Neutral Agree Strongly Agree
1 (12.5%) 1 (12.5%) 1 (12.5%) 5 (62.5%)

Table 5.3: Results for questions focused on fire and smoke

agreed to both questions (one strongly) that they feel like they could recognize parts
of Stammersdorf and even navigate better through Stammersdorf than before. One of
the two participants who was not familiar with Stammersdorf felt “Neutral” about the
improvement of his ability to recognize and navigate through the real Stammersdorf,
while the other was confident (strongly agreed) that he can now recognize and navigate
better through Stammersdorf.

The four participants who were familiar with Stammersdorf were for the most part also
confident in their ability to recognize parts of the VE in the real world, as three of four
strongly agreed with the statement that they could recognize parts of the VE in reality
and gave the same answer regarding navigation. The last participant felt like he can not
recognize parts of the VE at all (strongly disagree) in reality and also gave the same
regarding the navigation statement. Sadly, the free text question was not filled out by
said participant, leaving the meaning up to interpretation.

The visual representation of Stammersdorf was perceived as suitable by seven of the

56

5.1. User Study Evaluation

participants (six strongly agree). The last participant was neutral regarding the suitability
of the visualization, resulting in µ= 4,625 and σ = 0.695970545. Three of four participants
who were familiar (two familiar, one strongly familiar) with Stammersdorf agreed strongly
with the suitability of the visualization, while the last one, who was also strongly familiar
with Stammersdorf, felt neutral about the visualization.

All participants agreed (seven strongly) that large areas are important for leadership
trainings in forest fire scenarios (µ= 4.875 and σ = 0.330718914).

Also, seven of the participants agreed (five strongly) that the structure of the virtual
environment has an influence on the decision-making of leaders in VR forest fire scenarios,
while one was neutral regarding that statement (µ= 4.5 and σ = 0.707106781).

Overall, all participants agreed that the VE of Stammersdorf was suitable for the training,
six even strongly leading to a µ= 4.75 and σ = 0.433012702. The aforementioned results
can also be found in table 5.4.

Now, with taking a look at the other answers provided by the participant who strongly
disagreed with being better in navigating in the real Stammersdorf after the training
could be explained in two ways: One, the person knows Stammersdorf extremely well and
is very confident in his local knowledge of the area that he felt like that the presented
visualization was not detailed enough for the participant to learn anything new. Two, the
person felt that the environment was quite lacking in its visualization and structure of
Stammersdorf. While the second option is a valid conclusion, it should be noted that the
participant regarded the visual representation of the environment as “Neutral” instead of
disagreeing or even strongly disagreeing with the suitability of the visualization of the
VE and even agreed regarding the overall suitability of the VE for the training. Still, the
participant also stated that he thinks he can not recognize any part of the VE in the real
environment, which rather supports explanation one.

Usability Questions

The usability questions were standard system usability scale question and will be evaluated
following the standard system usability scale formula, where the sum of each average for
every odd question is subtracted by the sum of the average for each even question, then
increased by 20 and multiplied by 2.5 [23].

score = 2.5(20 +
�

(Q1, Q3, Q5, Q7, Q9) −
�

(Q2, Q4, Q6, Q8, Q10))

Overall, the answers were rather positive with seven participants, who would use the
VR system for forest fires frequently (five strongly agree) and none of the participants
finding the system unnecessarily complex (all strongly disagree). Seven participants
regarded the system easy to use and easy to learn for most people (six strongly agreed

57

5. Evaluation

1. I was already familiar with the area of Stammersdorf, Vienna, before the warm-up.

Strongly Disagree Disagree Neutral Agree Strongly Agree
2 (25%) 2 (25%) 2 (25%) 2 (25%)

2. I believe that virtual environments can convey knowledge of real-world loca-
tions.

Strongly Disagree Disagree Neutral Agree Strongly Agree
1 (12.5%) 1 (12.5%) 6 (87.5%)

3. I think I can recognize parts of the virtual environment (Stammersdorf) in
reality.

Strongly Disagree Disagree Neutral Agree Strongly Agree
1 (12.5%) 1 (12.5%) 1 (12.5%) 5 (62.5%)

4. I think I can now navigate the area of Stammersdorf shown in the training
better in the real world.

Strongly Disagree Disagree Neutral Agree Strongly Agree
1 (12.5%) 1 (12.5%) 1 (12.5%) 5 (62.5%)

5. The visual representation of the virtual environment was suitable for the
training.

Strongly Disagree Disagree Neutral Agree Strongly Agree
1 (12.5%) 1 (12.5%) 6 (87.5%)

6. I think the simulation of large areas is important for leadership training in
forest fire scenarios.

Strongly Disagree Disagree Neutral Agree Strongly Agree
1 (12.5%) 7 (87.5%)

7. I think the structure of the virtual environment influences the decision-making of
leaders in VR forest fire scenarios.

Strongly Disagree Disagree Neutral Agree Strongly Agree
1 (12.5%) 2 (25%) 5 (62.5%)

8. I think the virtual environment was suitable for the training.

Strongly Disagree Disagree Neutral Agree Strongly Agree
2 (25%) 6 (75%)

Table 5.4: Results for questions focused on the terrain of Stammersdorf

58

5.2. Performance Evaluation

for both statements), but still only five think could use the system without support of a
technical person, two would need support and one felt neutral regarding that statement.
Interestingly, even though two participants felt like they needed technical support, all
participants stated that they did not need to learn a lot to use the system. This could
imply, that the technical support person may actually be needed for set up purposes
like when putting on the VR headset or getting the controllers while having the headset
already on instead of interacting with the VR application for the training. Nevertheless,
all user felt confident in their use of the VR system for forest fires (six agreed strongly).

Seven users strongly disagreed with the statement regarding the cumbersomeness of the
application, while one strongly agreed. The free text questions, sadly, give no further
insight regarding that statement for said participant. As the participant deemed the
system easy to learn for other people (strongly agreed) and also felt very confident in his
usage of the system (strongly agreed), it should be fair to assume, that this simply may
have been a mistake.

The numerical evaluation with the answers provided by the participants (as seen in Table
5.5) leads to:

88.125 = 2.5(20 +
�

(4.5, 4.625, 4.625, 4.75, 4.75) −
�

(1, 2.625, 1.75, 1.5, 1.125))

The SUS formula results in an above average score of 88.125, which implies that the VR
Training application was perceived as rather usable by the participants. According to
research of Bangor et al., who tried to map SUS scores to adjectives, a score above 85.5
can be interpreted as excellent [20].

5.2 Performance Evaluation
The Unity Profile, an out of the box available tool inside of Unity, gives a lot of insight
in overall performance of an application. Sadly, the output is limited to the last 300 to
2000 frames, depending on configuration. If we assume an average frame rate of 120 fps,
this would only be around 16 seconds of material. It is possible to save the complete
profiler data in its own file by activating the binary log via script and defining a file path:

UnityEngine.Profiling.Profiler.enabled = true;
UnityEngine.Profiling.Profiler.enableBinaryLog = true;
string filepath = Application.persistentDataPath + "/"
+ _fileName + SystemInfo.deviceModel + ".data";
UnityEngine.Profiling.Profiler.logFile = filepath;

59

5. Evaluation

1. I think that I would like to use this VR system for forest fires frequently.

Strongly Disagree Disagree Neutral Agree Strongly Agree
1 (12.5%) 2 (25%) 5 (62.5%)

2. I found the VR system for forest fires unnecessarily complex.

Strongly Disagree Disagree Neutral Agree Strongly Agree
8 (100%)

3. I thought the VR system for forest fires was easy to use.

Strongly Disagree Disagree Neutral Agree Strongly Agree
1 (12.5%) 1 (12.5%) 6 (75%)

4. I think that I would need the support of a technical person to be able to use
this VR system for forest fires.

Strongly Disagree Disagree Neutral Agree Strongly Agree
1 (12.5%) 4 (50%) 1 (12.5%) 1 (12.5%) 1 (12.5%)

5. I found the various functions in this VR system for forest fires were well in-
tegrated.

Strongly Disagree Disagree Neutral Agree Strongly Agree
1 (12.5%) 1 (12.5%) 6 (75%)

6. I thought there was too much inconsistency in this VR system for forest
fires.

Strongly Disagree Disagree Neutral Agree Strongly Agree
4 (50%) 2 (25%) 2 (25%)

7. I would imagine that most people would learn to use this VR system for for-
est fires very quickly.

Strongly Disagree Disagree Neutral Agree Strongly Agree
2 (25%) 6 (75%)

8. I found the VR system for forest fires very cumbersome to use.

Strongly Disagree Disagree Neutral Agree Strongly Agree
7 (87.5%) 1 (25%)

9. I felt very confident using the VR system for forest fires.

Strongly Disagree Disagree Neutral Agree Strongly Agree
2 (25%) 6 (75%)

10. I needed to learn a lot of things before I could get going with this VR sys-
tem for forest fires.

Strongly Disagree Disagree Neutral Agree Strongly Agree
7 (87.5%) 1 (12.5%)

Table 5.5: Results for general questions about the training

60

5.2. Performance Evaluation

This approach works independent of targeted platform, no matter if executed on Windows
or Android. One problem is, that the resulting files need a lot of space, resulting in
multiple gigabyte used per file. In theory this files can then be loaded in the Unity
Profiler and analyzed in more detail, in practice the loading of larger Profiler files was
not possible and resulted in Unity shutting down.

Benchmarking on the Quest bring additional difficulties for performance comparisons.
One problem is that the performance of the Quest is not static, meaning that the same
scenario can have different results depending on certain conditions like the temperature
of the Quest. The Quest then either provides more or less hardware power through
higher or lower clocks of the CPU and GPU, which is handled through so-called CPU or
GPU levels. While Unity theoretically allows setting these levels per code, the values set
weren’t reflected on the Quest, suggesting that this functionality may not work correctly.
Another problem is that the Quest can’t run at uncapped frame rates but in the case but
only in predefined caps. For the Quest 3 the allowed frame rate caps are 60fps, 72fps,
90fps and 120fps. This makes performance testing more difficult, as only scenarios and
settings which are resulting in dropped frames are actually comparable, at least by frame
rate alone.

The final approach to compare settings and their impact on performance was setting
the Meta Quest to the highest FPS cap possible (120fps for the Quest 3) and run-
ning the test scenarios in the setup used for trainings with the application, meaning
the performance tests were done in the Stammersdorf scene and the application run-
ning in client on the meta quest and server mode on a PC. The real setup provides
a solid base load, making the performance impact visible faster than when an empty
scene would be used, especially combined with the frame rate cap set to 120fps, when
the application was initially designed to run with 72 fps, which is the default set-
ting when creating a Quest 3 build with Unity. To change the frame rate cap, the
Unity.XR.Oculus.Performance.TrySetDisplayRefreshRate(frame rate) can be used in a
scrip, where frame rate is the targeted number of frames as a float. The test scenarios
were designed to be short enough, so they can still be extracted from the Profiler set
to 2000 frames, which in the case of Quest 3 for 120fps means that a test can take at
most 16.67 seconds. To make the player move automatically, the Cinemachine package
of Unity was used. This was achieved by creating a Cinemachine DollyTrack with a
DollyCart. Dolly track and dolly cam are terms used in film making, where the dolly
cam is a camera on rails, the dolly tracks. This behavior is replicated by Cinemachine,
where the dolly track defines the “rails” the cart should follow the form of a curve made
from two or more points. The dolly cart can then either be controlled by script or set to
automatically move along the track. To function in a networked setting, it is necessary
to add a Networkbehavior and NetworkTransform component to the dolly cart and make
sure that the code executed in the Unity Update function of the CinemachineDollyCart
script is only executed for the server. For this reason, I created a DollyCartVROnSite
script which inherits from CinemachineDollyCart, where I simply copied the code from
CinemachineDollyCart and added a condition that checks if the executing entity is the

61

5. Evaluation

(a) Profiler showing the right spike as the highest

(b) Profiler showing the left spike as the highest

Figure 5.2: Profiler showing different (misleading) visualizations of spikes depending on
width of window for the same data set

operator (server). Would the code also be executed on the client, the position of the
dolly cart on the client would be constantly getting set back to the original position,
thus resulting in the dolly cart not moving at all. To move the player, I added another
script to the Trainee game object called Automatic Movement, which disables the normal
trainee movement behavior and sets the position and rotation of the trainee game object
to the position and rotation of the dolly cart in every frame. Since the server and client
setup is used. An additional script was added to the cart, so that once the dolly cart
reaches the end of the dolly track. At first, an automated process to trigger tests in
the build was implemented, but the setup time for setting up the scene and networking
among other things, did not consistently need the same time between tests, thus often
resulting in frame spikes in the profiler, which were not part of the actual functionality
which should be tested. To counter this, I decided to start the tests manually by pressing
the Space Key after the profiler has stabilized. To make sure that the recorded frames of
testing actually measure the same behavior and resulting in comparable performance
tests, at the start and end of the test so-called Profile Marker are used. Profile Marker
can be placed in the Unity Update function and then have an extra entry in the Profiler,
allowing to make certain code identifiable in the profiler. As an example, how it was
used in the first test cased: One profile marker is set when space is pressed to start the
test (and the cart is not moving yet), while the other is set once the cart reached the end
of the track. Thus giving a clear start and end for the relevant section of frames, which
can then be used to make an appropriate comparison.

To actually compare different frame sets of the profiler the Unity Profiler Analyzer
Package was used, which can compare two profiler data sets and returns some overall
stats like median, average, min, and max frame rate. At this point I’d like to mention,
that there seems to be a bug in the Profiler, which doesn’t accurately visualize spikes
depending on the width of the profiler window.

The first test scene was the player moving closer to the forest with 138 trees as used
in the Stammersdorf training scenario from a distance of around 170 meters, once with

62

5.2. Performance Evaluation

Tree LODs on and once with Tree LODs off. For the Tree LOD on setting, each tree had
an LOD Group with 4 Different Level of Detail states: Full Quality with 672 triangles,
Medium Quality with 560 Triangles, Low Quality with 220 Triangles and finally a single
plane with a texture, called a bill board. The distance to the forest is set, so that initially
the lowest LOD (bill board) is active and that all different LODs are activated when the
cart moves closer.

(a) Initial position in the LOD test. (b) Final position in the LOD test activated.

The first LOD off Test was completed in 1923 frames, with an average frame time of
8.35 ms, while the first LOD on test was completed in 1911 frames, with an average
frame time of 8.44 ms as seen in figure 5.4 and figure 5.5a. Completing the test with
less recorded frames, actually means having worse performance, than completing the test
in more frames, as the test was running for a fixed time and achieving to render more
frames in a fixed time budget effectively means a higher frame rate.

Figure 5.4: Showing the relevant frame areas for LOD Test 1. The upper blue graph is
for LOD on and the lower orange graph for LOD off.

The time budget for a single frame when aiming for 120 fps is 8.33 ms. Unexpectedly,
the test with LODs off could keep closer to the frame rate target with an average of
119.76 frames, while the Test with LODs had an average frame rate of 118.34 frames per
seconds. The test was repeated two additional times, and each time the LOD off run
was faster, as seen in figure 5.5, where all the statistics of all three runs are posted. This
indicates that the test scene geometry complexity was overall not very taxing on the
Meta Quest 3. While interesting, that the overhead of activating LODs can introduce
worse performance than having no LODs at all, a more interesting fact that can be seen

63

5. Evaluation

(a) First run (b) Second run (c) Third run

Figure 5.5: Summary of the three test runs. “Left” are the statistics for LOD on runs,
while “Right” are the statistics for the “LOD” off run.

is that in all three test the “Max” stat (the highest amount of time a frame needed to be
processed) is over twice as high.5.6. The biggest differentiating factor in favour of LOD
off is Shader.CreateGPUProgram, which is only called when LODs are activated, while
all others also appear for LOD off. “Create GPU Program” is called when a (new) shader
is loaded onto the GPU, which is triggered because each LOD uses a shader variant.
Nevertheless, rendering itself took around 0.23 ms longer in average when LODs were
off, showing the positive impact on rendering performance when LODs are enabled in
reduced rendering times as seen in figure 5.7. Additionally, in 5.4 some performance
spikes can be seen for the LOD on graph in blue. The hierarchy view of the Profiler
confirms that the Shader.CreateGPUProgram call was mostly responsible for the spikes,
as can be seen in 5.8 for the left spike.

Figure 5.6: Overview of biggest performance differences in favour of LOD off

Figure 5.7: Overview of biggest performance differences in favour of LOD on

Unity allows to “pre-warm” shader, which enables that shader are not uploaded to the
GPU in the frame they are first needed, but already once the first scene is loaded. The
setting to activate preloading can be found in the graphics settings. When activated,

64

5.2. Performance Evaluation

Figure 5.8: Hierarchy view of the first spike in the Unity Profiler

(a) First LOD on run with pre-
warmed shader

(b) Second LOD on run with
pre-warmed shader

(c) Third LOD on run with pre-
warmed shader

Figure 5.9: ’Left" is the LOD on run with pre-warmed shaders, “Right” is the first LOD
off run

the performance gap between LOD on and LOD off is nearly closed, as can be seen in
figure [?]. The differences in performance are comparable to the test before: culling was
faster for LOD off runs, while drawing geometry was faster for LOD on runs. This poses
the questions if Unity is using its culling code to handle the visibility of LODs, as these
would mean more objects to handle compared to LOD off. Although, since the Unity
Engine is not open source, this suspicion can’t be confirmed.

In the second test was the player moving closer to 100 fire particle systems positioned
in a ten by ten grid with a maximum particle count of thirty each, once with particles
as billboards and once with particles as meshes with GPU instancing enabled. Smoke
was disabled in both instances for this test. A screenshot of the 100 billboard particle
systems can be seen in figure 5.10. The billboard test runs needed between 8.49 ms and
8.53ms resulting in around 117 fps and were between 3.31 and 3.71 milliseconds faster in
average than the GPU instancing test runs with 11.84ms up to 12.20ms average frame
time resulting in around 83fps, as can be seen in figure 5.11

The biggest difference stems from the garbage collection according to the Profiler Analyzer,
as seen in figure 5.12. Although on closer inspection, the garbage collection was only
triggered in a single frame in both runs, thus garbage collection may introduce spikes but
can not be made responsible for the general difference in performance. The second-biggest
difference is the PlayerLoop marker also doesn’t give much insight, as the PlayerLoop is
the overarching update loop on the main thread running all other Unity update functions.
EarlyUpdate.XRUpdate and specifically OculusRuntime.WaitToBeginFrame, which is

65

5. Evaluation

Figure 5.10: Fire particle systems with billboard fires in 10 by 10 grid

(a) First run (b) Second run (c) Third run

Figure 5.11: ’Left" fire particles are billboards, “Right” fire particles are meshes with
GPU instancing

part of EarlyUpdate.XRUpdate, are of more relevance as they indicate that frames were
either rendered “too fast” and need to be stalled to be not transmitted too early to
the Quest 3 for the targeted frame rate, or frame times were missed and need to be
stalled for transmission of the next frame. Since neither of the tests ran not at 120 fps it
should be fair to assume, that frame target were missed more often than not, especially
in the case of the GPU instanced test. Most of the other markers were in favor of
billboard rendering, although slightly, as can be seen in the differences for Camera.Render
(most other rendering related markers are part of Camera.Render) and managing the
particle system, in figure 5.12. This suggests, that the differences although slight taken
individually are summing up overall leading to missing the targeted frame time more
often for GPU instanced particle systems when compared to billboard particle systems.

In the third test the impact of the maximum number of particles per particle system was
tested with the same ten by ten particle system grid once using the adapted fire with
only one emitter and a maximum of 30 particles per fire and once using to the original
mobile fire, consisting of three separate emitters emitting between 130 and 140 particles.

66

5.2. Performance Evaluation

Figure 5.12: Summary of interesting performance markers for the second test.

(a) First run (b) Second run (c) Third run

Figure 5.13: ’Left" is the adapted 30 particle fire, “Right” is the original 130 particle fire

Figure 5.14: Example of “fire wiggler” script frame time

As before, the camera was starting around 170 meters away and smoke was disabled for
both instances in this test. This results in around 130 to 140 particles less per fire, or
13000 to 14000 particles less over the whole grid. The average frame time of the adapted
fire particle system was between 8.6 and 8.76 ms resulting in around 116 frames, while
the average frame time of the original particle system was between 16.68ms and 16.79ms
resulting in around 60 frames, as seen in figure 5.13. In figure 5.15 it can be seen that
rendering was in average 1.58 ms faster, while updating the particle systems was around
0.42 ms faster. The original fire particle system had an additional “fire wiggler” script
attached. This script randomized the emission rate, particle lifetime, size and speed of
each fire, which also added up to 1.5 ms per frame, as seen in figure 5.14. Additionally, it
can be seen that frames often had to be stalled because frame times were missed, adding
another 4.68 ms in average.

In the fourth test, smoke was added to the adapted fire with fewer particles of the third
test. Here, adapted smoke was tested using only five particles in comparison to the
original 50 particles “mobile” smoke provided by the unity package. In practice that
means 45 particles less per emitter, resulting in 4500 particles less over the ten by ten

67

5. Evaluation

Figure 5.15: Summary of performance markers for the third test.

(a) First run (b) Second run (c) Third run

Figure 5.16: ’Left" is the adapted 5 particle smoke, “Right” is the original 50 particle
smoke

grid. The adapted fire and smoke test ran with an average of 9.38 to 9.59 ms, which is
around 106 fps, while the adapted fire with original smoke ran with an average frame time
of 13.75 to 14.12 ms, which is around 71 fps, as seen in figure 5.16. The biggest notable
difference can be found in Camera.render with 0.57 ms and ParticleSystem.Update with
0.18ms, as seen in figure. In average 2.08ms were stalled, because of missed frame times.

An additional observation made was, that in all particle tests two, three, and four it
could be seen that getting closer to the grid of the particle system lead to consistently
lower frame rate. Some possible explanations could be that higher resolution textures
were used when getting closer to the fires, or that the so-called overdraw is at fault here.
This observation was not closer investigated in this thesis.

In the fifth test, the influence of terrain streaming and the number of terrain tiles was
measured. Here, the Stammersdorf terrain was loaded in different setups: as full terrain
with one single terrain tile with the size of 1730 meter by 1730 meter, as 4 by 4 terrain

68

5.2. Performance Evaluation

Figure 5.17: Summary of performance markers for Test 4.

(a) Single terrain tile (b) 4 by 4 terrain tiles (c) 8 by 8 terrain tiles (d) 16 by 16 terrain tiles

Figure 5.18: Performance of terrain tile configurations without any additional spawned
objects

tiles with a size of 432.5 meter by 432.5 meter, as 8 by 8 terrain tiles with a size of 216.25
by 216.25 meter and as 16 by 16 terrain tiles with a size of 108.125 meter by 108.125
meter. For each test, the terrain loading was set to follow the transform of the player
object and load terrains with a bounding box of 200 meter centered on the player. The
player was positioned in the center of the scene, to load the maximum possible number
of terrain tiles within the bounding box restriction. After the scene was fully loaded,
multiple rows with 400 trees were spawned row by row up to a maximum of 16 rows,
beginning on the row of tiles farthest away from the player in its initial view direction.

The full terrain loaded as a single terrain tile before spawning any additional objects had
an average frame time of 8.35 ms, resulting in an average frame rate of 119,8 fps, staying
fairly close to the 120 fps cap. None of the other terrain configurations had noteworthy
differences in performance, with an average of 8.35 ms for four by four and eight by eight
tiles and an average of 8.34 ms for 16 by 16 tiles. While the max and min frame time
show larger gaps, they were not reliably different from each other on further tests.

For the full terrain the average frame time was 8.33 ms or around 120fps for spawning
up to two rows (800 trees) and dropped to an average of 17.28ms or around 57 fps after
having spawned 3 rows (1200 trees) as seen in figure 5.19.

After spawning an additional row (1600 trees) the frame time increased further to an

69

5. Evaluation

Figure 5.19: Full Terrain: “Left” performance for up to three rows. “Right” performance
for four rows

average of 31.44 ms or a frame rate of around 32 fps, as seen in figure 5.20. Note that
the listed start and end range are not completely identical between figure 5.19 “Right”
and 5.20 "Left’, the reason is that the range of frames can not be explicitly defined but
have to be selected by dragging a rectangle with a mouse, which proves to be not the
most accurate of selection methods and sometimes even doesn’t allow the selection of a
single frame but only a range of frames as start or end.

For the four by four terrain, the frame time dropped to around an average of 15.88ms or
around 62 frames after spawning six rows (2400 trees) and to an average of 24.92ms or
around 40 frames after seven rows (2800 trees), as seen in figure 5.21a and figure 5.21b
respectively. Meaning that twice as many objects could be spawned before the frame
rate was affected negatively compared to the full terrain, where no terrain streaming was
used. Additionally, the spawn of the seventh row dropped to “only” 40 fps compared to
the fourth row spawn for the full terrain, which dropped to 30 fps.

The results for all the tiled terrains were nearly identical again, independent of the
configuration for the amount of tiles used (4x4,8x8,16x16) all had the same impact on
frame rate in this test case. Six rows of trees (2400 trees) reduced the frame rate to
around 60 fps and 7 rows of trees (2800 trees) to around 40 fps.

The Profile Analyzer showed similar behavior between all frame rate jumps: Cam-
era.Drawing increased between frame rate jumps and a lot of frames were missed and
had to be stalled. A more interesting finding was on the render thread: All terrain

70

5.2. Performance Evaluation

Figure 5.20: Full Terrain: “Left” performance for four rows. “Right” performance for
five rows

(a) 4 by 4: “Left” performance for up to five
rows. “Right” performance for six rows

(b) 4 by 4: “Left” performance for six rows.
“Right” performance for seven rows

Figure 5.21

71

5. Evaluation

(a) 8 by 8: “Left” performance for up to five
rows. “Right” performance for six rows

(b) 8 by 8: “Left” performance for six rows.
“Right” performance for seven rows

Figure 5.22

(a) 16 by 16: “Left” performance for up to
five rows. “Right” performance for six rows

(b) 16 by 16: “Left” performance for six
rows. “Right” performance for seven rows

Figure 5.23

72

5.2. Performance Evaluation

Figure 5.24: GFx.WaitForGfxCommandFromMainThread on Render Thread

(a) Original Fire: “Left” Foveated Rendering
off, “Right” Foveated Rendering on

(b) Adapted Smoke: “Left” Foveated Ren-
dering off, “Right” Foveated on

Figure 5.25

test scenarios waited a lot of time on commands from the main thread, as seen on 5.24.
According to official Unity Documentation [44] this may indicate a bottleneck on the
main thread, while Gfx.WaitForPresentOnGfxThread may indicate a GPU bottleneck.
Gfx.WaitForPresentOnGfxThread was not seen in any of the terrain test configurations,
indicating that in this case it may indeed be a CPU and not GPU related performance
bottleneck.

In the sixth test, foveated Rendering was tested. Foveated Rendering renders outer parts
of the screen in lower resolution, mimicking the natural blurriness of vision, where objects
in the center of the human field of view appear sharper than those close to the border.
Foveated on and off was tested with the original high particle fire of test three with the
“fire wiggle” script deactivated, and an additional run with the adapted smoke of test
four. There was no overall noteworthy impact on performance, as seen in either first or
second test setup in 5.25, indicating that the increase in frame time is most likely CPU
based instead of GPU based, as foveated Rendering should decrease the GPU load.

73

CHAPTER 6
Discussion

The first prototype was overall well received and accepted by the expert users in the
expert study. All attendees agreed that the VR forest fire training would be a useful
addition to traditional training methods, and all participants besides one felt that their
expectation for VR forest fire training were met. Overall, 87.5% were positive, they
would use the VR forest fire training frequently. The terrain itself was deemed as suitable,
with no additional comments for either improvements or pain points. While also received
positively, most free text comments were received for fire and smoke, where one participant
did not find the behavior of smoke and fire very suitable and others mentioned that the
color of the smoke should be darker instead of white. The SUS score of 88.125, which
can be seen as excellent according to Bangor et al.[20], also supports this by showing a
high usability value and acceptance of the expert users participating in the study. The
SUS score of 88.125 is comparable to the SUS score of 84.58 received by Grabowski for
VR cadets in the study of a VR fire training prototype [28]. Grabowski’s results for
experienced firefighters were lower with a score of 67.67, which is to be expected since
the training was aimed at cadets and not experienced firefighters.
The results of the user study also should be regarded cautiously, as three of eight
participants had either none or low experience with VR, which could have lead to more
positive answers because of overall the novelty of the experience. Also, none of the
participants identified as female while in 2023 around 9.5% of firefighters were female
according to the Austrian "Bundesfeuerwehr Verband" [1], thus the participants are not a
perfect representation of the overall target group. During the tests, some network latency
was seen in the initial connection stage, which was not encountered before in a controlled
test environment. It is not clear what exactly introduced the extended connection times,
but once connected the latency seemed fine and should have had no impact on the results.
Summarized and applied to the first research question, Q1: “How well do expert users
assess and accept first responder training of wide area disaster events on a mobile stand-
alone VR system?” it is fair to say, that the first prototype used by expert users was

75

6. Discussion

assessed and accepted excellently. Acceptance was very high, as seven out of eight users
would use the system frequently, and all eight users agreed that it would be a meaningful
addition to standard training methods. Seven out of eight participants also believe, that
virtual environments can convey knowledge of real world locations and six participants
felt like their navigation skills for the real counterpart of the areas visualized in the
training improved. Additionally, seven of the users think that the structure of the virtual
environment is important and has an influence on decision-making for leaders, showing
a need for training scenarios, which are built closely mirroring reality through virtual
environments based on real locations. This, combined with the SUS score of 88.125, shows
that wide area forest fire and more generally wide area disaster trainings should prove to
be a feasible, well-accepted and useful possibility to extend the current training received
by first responders. Especially, when taking in consideration that more occurrences of
natural disasters like floods and forest fires are expected because of climate change [24]
[30].

Regarding performance, it was evident that optimization methods are a necessary step to
reduce computation power on mobile stand-alone VR devices and keep frame rates at an
acceptable level, as seen especially on the particle effect tests (test 2, test 3, test 4) nearly
doubling frame rate for test 3 and an increased frame rate of 30 to 40 frames for test 2
and 4. Also, a tiled terrain with terrain streaming allowed to spawn twice the amount of
objects (2400 trees) compared to using a single full size terrain tile before reducing the
frame rate. Interestingly, the amount of tiles used, did not have a significant influence on
the performance. LODs and foveated rendering unexpectedly did not have a noticeable
impact on performance. This can most likely be explained, that the maximum renderable
triangle count of the Quest 3 was not exceeded in test case 1, thus using LODs which
effectively use reduced complexity models with lower polygon count and lower resolution
textures, had not the expected effect. Also, the LOD test showed that performance
optimizations often just shift the complexity from one area to another: While the polygon
count and the rendering time was indeed reduced, albeit slightly, new performance spikes
were introduced because of additional shaders that needed to be loaded for each LOD,
when shown for the first time. This problem can also be often seen in modern video
games, and is known as “shader compilation stutter” [25]. None of the tests seemingly
were GPU limited, thus foveated rendering did not show any noticeable performance
improvements. Nevertheless, this shows that preemptive optimization should not be used
for every optimization method available. Foveated rendering has a noticeable impact on
image quality, as the outside areas on the screens get rendered in lower resolution. By
using foveated rendering preemptively, image quality may suffer even when there may
be no gain in performance at all. In comparison, the negative visual impact of LODs
should be negligible, as well configured LODs change on distances that in an optimal
scenario changes should be unperceivable, or at least hardly perceivable, to users and
thus may be considered to be used pre-emptively under the assumption that pre-warming
shaders keeps shader stutter spikes from appearing even when used for a larger number
of different models.

76

Summarized and applied to the second research question Q2: "How well can optimization-
methods reduce the computation power needed on a mobile stand-alone VR device for the
simulation of wide area disaster events while maintaining the visual realism necessary?"
it was shown that optimization are not only working well, when used right, but even
absolutely necessary, when simulating wide areas. The optimization of particle effects
and terrain streaming was proving to be effective for reducing the performance load on
the Quest 3, allowing for higher frame rates when used. The LOD test was not showing
the expected results, for one, because LODs can introduce performance spikes when
shader prewarming is not configured, and for two, because the prepared test scene did
not put enough strain on the Quest 3 as the scene was most likely not rendering enough
triangles simultaneously to make the frame rate suffer.

The implementation of smoke and fire were tested on trees only, while the fire spread
script was written in a way that generally every object can start burning in theory, some
additional script changes would be necessary to make the fire spread according to the
length and height of the object, instead of a predefined fixed height and width to properly
work. Another crucial feature to improve the realism of the fire and smoke behavior
is that the particle systems of fire and smoke react to wind. In theory this is already
enabled, but neither performance nor behavior were tested yet with wind in the Unity
Scene as part of this thesis.

Extensive performance tests and measurements in Unity seem to be not optimal yet. The
Unity profiler can only track up to 2000 frames and while there is a possibility to log
more frames by saving them to a file via scripts, Unity crashed as a whole when trying
to import bigger files. It should also be noted, that the profiler itself introduces some
performance overhead, which further increases when increasing the number of tracked
frames from the default setting of 300 frames tracked. Thus, the measured performance
may also not be completely in line with a release client, which is usually shipped without
profiling. Additionally, performance can also vary between Unity versions, while I expect
that the general influence of settings on performance is mostly the same (i.e., option A is
faster than option B) the rate of how much these settings impact performance may differ.

The VROnSite project is using the Unity built-in render pipeline, so all tests and findings
are only applicable for the built-in render pipeline and do not automatically apply to
other render pipelines availabe in Unity like the Universal Render Pipeline (URP) or
High Definition Render Pipeline (HDRP). Also, since the tests were only executed on
a Meta Quest 3, performance may vastly differ for other stand-alone VR headsets like
the Meta Quest 2 or the Pico 41. Thus, the generalizability of the performance results
is certainly limited without further testing. In the Unity Engine road map on the 20th
September 2024 Unity announced that the built-in render engine will be deprecated
starting with Unity 6 and completely removed with Unity 7 to be replaced by a Unified
Renderer, which is a combination of the URP and the HDRP, thus, the findings have, to
be frank, an expiry date. Nevertheless, it is common practice to use Long-Term-Support

1https://www.picoxr.com/de/products/pico4

77

6. Discussion

versions and instead of the latest most up-to-date version to avoid bugs and experimental
features, thus, the findings still provide value even after the initial release of Unity 7.

78

CHAPTER 7
Summary and Future Work

In the Design chapter 3 and Implementation chapter 4, a terrain creation workflow
using real height data as a base was proposed and implemented for a roughly 3 km2
area of Stammersdorf in the Unity 3D Engine, together with an efficient fire and smoke
implementation, both being able to run on stand-alone VR headsets at a mostly stable
frame rate of 72fps. These functionalities were then implemented in the existing VR
training application VROnSite and used for both a user study with expert users and a
performance evaluation in the Evaluation chapters 5.1 and 5.2 respectively.

For the user study, eight expert users participated in a predefined VR training scenario
of a forest fire in the area of Stammersdorf. The training was overall received very well,
with a SUS score of 88.125, which can be regarded as excellent [20] and all participants
being able to see the fire and smoke from a distance. Still, the participants identified
room for improvement in the visualization of the smoke, and one participant for the
behavior of fire and smoke.

For the performance evaluation, six tests were defined, implemented and evaluated. The
results show that performance optimization is essential when developing for stand-alone
VR headsets and can increase frame rates significantly but should be used cautiously
to pre-optimize as e.g., optimizations like foveated rendering have a negative impact on
image quality but no performance benefit if the performance bottleneck is introduced by
the CPU side of the application.

This thesis opens up the possibilities for future work in different directions. The creation
of the terrain still involves a lot of manual steps, which could be analyzed and see which
steps can be automatized in future work to reduce the time needed for creation of terrains
based on GIS data. Another possibility is to introduce physical properties like type of
wood, slope, and wind in the fire simulation and adapt spreading behavior for fire and
smoke accordingly. As already mentioned in the Discussion chapter 6 the built-in render
pipeline will be deprecated and removed in the future, thus future work could use the

79

7. Summary and Future Work

Universal Render Pipeline instead and repeat the performance evaluation there with an
additional focus on where the CPU limitations seen in the tests stem from. Another
topic in this direction could be trying to incorporate the Unity Data-Oriented Technology
and the Entity Component System, which should boost performance in CPU limited
scenarios [46]. A more general but not less useful topic would be the creation of a reusable
performance testing process for Unity for VR applications, which could prove useful in a
multitude of Unity VR projects.

80

List of Figures

2.1 Cyberith Virtualizer . 4
2.2 Trainee View of VR marine firefighter training developed by Bellemans et.al 6
2.3 Test setup used by Lee et al.[31]. 6
2.4 CAVE Setup for training scenario by Grabowski [28]. 7
2.5 Image of the setup for professional fire training for FLAIM. 1 8
2.6 Example of environments in RiVR investigate 9
2.7 VR prototype of Cha et al. [26] . 10
2.8 Comparison of Volume Rendering (a) and Particle Effects (b) for Smoke

Rendering by Lu et al. in later stages where the room is filled with a large
amount of smoke [33] . 10

2.9 Smoke example of Lorusso et al. [32] . 11
2.10 GPU comparison between Quest 2 and GTX1060 12
2.11 . 12
2.12 GPU and CPU Clocks of the Quest 3 . 13
2.13 . 13

3.1 VROnSite Module Overview . 20
3.2 Basic behavior of the fire spread algorithm 22
3.3 Visualized explanation of the fire spread algorithm 22
3.4 Character images were taken from https://www.vecteezy.com/vecto

r-art/987953-isometric-people-character-set 23

4.1 Visualized terrain creation workflow . 26
4.2 Screenshot of the Vienna Geodaten-Viewer 27
4.3 Screenshot of imported orthographic photograph and digital elevation models

(DEMs) . 28
4.4 Showing the minimum and maximum value of the merged layer in the layer

properties . 28
4.5 GaiaManager . 30
4.6 Screenshot of the Gaia Scanner . 31
4.7 Import Raw Button in Inspector of Unity Terrains 33
4.9 TerrainScenes with empty Terrain Scene list 34

1https://flaimsystems.com/products/trainer

81

https://www.vecteezy.com/vector-art/987953-isometric-people-character-set
https://www.vecteezy.com/vector-art/987953-isometric-people-character-set

4.10 Example of a mask created for fields used for terrain texturing 38
4.11 Settings used for the Spawner and overview of the Spawn rules. Each color to

the right of the rule is the preview color used on the terrain and shows the
area which will be textured after applying said rules. 39

4.12 Settings used for the Image Mask for the fields rule 39
4.13 Top-Down view of the textured terrain, with the Senderstraße parking lot

marked in the top left and the main square of Stammersdorf in the bottom
right . 40

4.14 Example of flattening terrain under a street with the Gena Carve Extension 40
4.15 Overview of the Gena Road Extension settings 41
4.16 Example of possible mesh misalignment of road barriers introduced by the

GeNa Spawner Extension. Image is taken from the official "GeNa Pro And
Gaia Pro - Level Design Example" Youtube video [15]. 41

4.17 . 44
4.18 In-application screenshot from operator perspective of spreading fire and a

burnt tree. 45
4.20 Screenshot from VROnSite of forest fire with multiple ignited and burnt trees. 47

5.1 Image taken during the study, showing the study setup with four participants
on the swivel chairs and the operator in the back. 50

5.2 Profiler showing different (misleading) visualizations of spikes depending on
width of window for the same data set . 62

5.4 Showing the relevant frame areas for LOD Test 1. The upper blue graph is
for LOD on and the lower orange graph for LOD off. 63

5.5 Summary of the three test runs. “Left” are the statistics for LOD on runs,
while “Right” are the statistics for the “LOD” off run. 64

5.6 Overview of biggest performance differences in favour of LOD off 64
5.7 Overview of biggest performance differences in favour of LOD on 64
5.8 Hierarchy view of the first spike in the Unity Profiler 65
5.9 ’Left" is the LOD on run with pre-warmed shaders, “Right” is the first LOD

off run . 65
5.10 Fire particle systems with billboard fires in 10 by 10 grid 66
5.11 ’Left" fire particles are billboards, “Right” fire particles are meshes with GPU

instancing . 66
5.12 Summary of interesting performance markers for the second test. 67
5.13 ’Left" is the adapted 30 particle fire, “Right” is the original 130 particle fire 67
5.14 Example of “fire wiggler” script frame time 67
5.15 Summary of performance markers for the third test. 68
5.16 ’Left" is the adapted 5 particle smoke, “Right” is the original 50 particle smoke 68
5.17 Summary of performance markers for Test 4. 69
5.18 Performance of terrain tile configurations without any additional spawned

objects . 69

82

5.19 Full Terrain: “Left” performance for up to three rows. “Right” performance
for four rows . 70

5.20 Full Terrain: “Left” performance for four rows. “Right” performance for five
rows . 71

5.21 . 71
5.22 . 72
5.23 . 72
5.24 GFx.WaitForGfxCommandFromMainThread on Render Thread 73
5.25 . 73

83

List of Tables

2.1 Table of API optimizations gathered by Singh. et al.[41] reworded and with
some additions . 15

2.2 Table of Memory optimizations gathered by Singh. et al.[41] reworded and
with some additions . 16

2.3 Example of some GPU optimizations described by Singh. et al.[41] . . . 17

5.1 Results for pre study questionnaire . 52
5.2 Results for general questions about the training 54
5.3 Results for questions focused on fire and smoke 56
5.4 Results for questions focused on the terrain of Stammersdorf 58
5.5 Results for general questions about the training 60

85

Acronyms

CAVE Cave Automatic Virtual Environment. 7

HDRP High Definition Render Pipeline. 77

URP Universal Render Pipeline. 77

VE Virtual Environment. 4

VR Virtual Reality. 1

WFS Web Feature Service. 27

WMS Web Map Service. 27

WMTS Web Map Tile Service. 27

87

Bibliography

[1] Feuerwehr statistik 2023. https://www.bundesfeuerwehrverband.at/20
24/02/02/feuerwehr-statistik-2023-34-000-einsaetze-mehr-kli
mawandel-zeigt-seine-auswirkungen/. Accessed: 2024-10-05.

[2] Flaim trainer software update and new scenarios – r2 2022flaim trainer software
update and new scenarios – r2 2022. https://docs.unity3d.com/Manual/
class-TextureImporterOverride.html. Accessed: 2024-04-24.

[3] The future of meta quest, mixed reality, ai and more. https://www.facebook
.com/MetaforDevelopers/videos/847258756776961. Timestamp around
35:20 ; Accessed: 2024-04-24.

[4] Galaxy s23 series thrashes the s22 in gpu benchmark. https://www.sammobile.
com/news/galaxy-s23-series-thrashes-the-s22-in-gpu-benchma
rk/. Accessed: 2024-04-24.

[5] Gis data downloader asset description. https://assetstore.unity.com/pac
kages/tools/integration/gis-data-downloader-199112?fbclid=I
wAR2dVOdf-vIJp3fO8QGz6Gcepo4_cL0rp144cSUAwGXfFdLr8LFE7QqzcU
A#description17. Accessed: 2024-04-24.

[6] Illogika studio | how to avoid garbage. https://illogika-studio.gitbooks
.io/unity-best-practices/content/how-to-avoid-garbage.html.
Accessed: 2024-04-24.

[7] Memphis fire department the first us metro to adopt flaim trainer. https://flai
msystems.com/case-studies/memphis-fire-department-the-first
-us-metro-to-adopt-flaim-trainer. Accessed: 2024-04-24.

[8] Meta | oculus rift s minimum requirements. https://www.meta.com/de-de/
help/quest/articles/headsets-and-accessories/oculus-rift-s
/rift-s-minimum-requirements/. Accessed: 2024-04-24.

[9] Paraná fire department rolls out first of its kind immersive firefighter training in
latin america. https://flaimsystems.com/case-studies/parana-fir
e-department-rolls-out-first-of-its-kind-immersive-firefig
hter-training-in-latin-america. Accessed: 2024-04-24.

89

https://www.bundesfeuerwehrverband.at/2024/02/02/feuerwehr-statistik-2023-34-000-einsaetze-mehr-klimawandel-zeigt-seine-auswirkungen/
https://www.bundesfeuerwehrverband.at/2024/02/02/feuerwehr-statistik-2023-34-000-einsaetze-mehr-klimawandel-zeigt-seine-auswirkungen/
https://www.bundesfeuerwehrverband.at/2024/02/02/feuerwehr-statistik-2023-34-000-einsaetze-mehr-klimawandel-zeigt-seine-auswirkungen/
https://docs.unity3d.com/Manual/class-TextureImporterOverride.html
https://docs.unity3d.com/Manual/class-TextureImporterOverride.html
https://www.facebook.com/MetaforDevelopers/videos/847258756776961
https://www.facebook.com/MetaforDevelopers/videos/847258756776961
https://www.sammobile.com/news/galaxy-s23-series-thrashes-the-s22-in-gpu-benchmark/
https://www.sammobile.com/news/galaxy-s23-series-thrashes-the-s22-in-gpu-benchmark/
https://www.sammobile.com/news/galaxy-s23-series-thrashes-the-s22-in-gpu-benchmark/
https://assetstore.unity.com/packages/tools/integration/gis-data-downloader- 199112?fbclid=IwAR2dVOdf-vIJp3fO8QGz6Gcepo4_cL0rp144cSUAwGXfFdLr8LFE7QqzcUA#description 17
https://assetstore.unity.com/packages/tools/integration/gis-data-downloader- 199112?fbclid=IwAR2dVOdf-vIJp3fO8QGz6Gcepo4_cL0rp144cSUAwGXfFdLr8LFE7QqzcUA#description 17
https://assetstore.unity.com/packages/tools/integration/gis-data-downloader- 199112?fbclid=IwAR2dVOdf-vIJp3fO8QGz6Gcepo4_cL0rp144cSUAwGXfFdLr8LFE7QqzcUA#description 17
https://assetstore.unity.com/packages/tools/integration/gis-data-downloader- 199112?fbclid=IwAR2dVOdf-vIJp3fO8QGz6Gcepo4_cL0rp144cSUAwGXfFdLr8LFE7QqzcUA#description 17
https://illogika-studio.gitbooks.io/unity-best-practices/content/how-to-avoid-garbage.html
https://illogika-studio.gitbooks.io/unity-best-practices/content/how-to-avoid-garbage.html
https://flaimsystems.com/case-studies/memphis-fire-department-the-first-us-metro-to-adopt-flaim-trainer
https://flaimsystems.com/case-studies/memphis-fire-department-the-first-us-metro-to-adopt-flaim-trainer
https://flaimsystems.com/case-studies/memphis-fire-department-the-first-us-metro-to-adopt-flaim-trainer
https://www.meta.com/de-de/help/quest/articles/headsets-and-accessories/oculus-rift-s/rift-s-minimum-requirements/
https://www.meta.com/de-de/help/quest/articles/headsets-and-accessories/oculus-rift-s/rift-s-minimum-requirements/
https://www.meta.com/de-de/help/quest/articles/headsets-and-accessories/oculus-rift-s/rift-s-minimum-requirements/
https://flaimsystems.com/case-studies/parana-fire-department-rolls-out-first-of-its-kind-immersive-firefighter-training-in-latin-america
https://flaimsystems.com/case-studies/parana-fire-department-rolls-out-first-of-its-kind-immersive-firefighter-training-in-latin-america
https://flaimsystems.com/case-studies/parana-fire-department-rolls-out-first-of-its-kind-immersive-firefighter-training-in-latin-america

[10] Unity documentation | dynamic batching. https://docs.unity3d.com/Man
ual/dynamic-batching.html. Accessed: 2024-04-24.

[11] Unity documentation | dynamic batching. https://docs.unity3d.com/Man
ual/class-TextureImporterOverride.html. Accessed: 2024-04-24.

[12] Unity documentation | garbage collection best practices. https://docs.unity
3d.com/Manual/performance-garbage-collection-best-practices
.html. Accessed: 2024-04-24.

[13] Unity documentation | objectpool. https://docs.unity3d.com/2021.2/Do
cumentation/ScriptReference/Pool.ObjectPool_1.html. Accessed:
2024-04-24.

[14] Unity documentation | static batching. https://docs.unity3d.com/Manual/
static-batching.html. Accessed: 2024-04-24.

[15] Gena pro and gaia pro - level design example. https://www.youtube.com/wa
tch?v=cQ9odT9gtvY, December 2020. Accessed: 2024-06-02.

[16] Unity forum | terrain leveling. https://forum.unity.com/threads/terrai
n-leveling.926483/], July 2020. Accessed: 2024-06-02.

[17] Github gist | terrain leveling adapted by kurtdekker. https://gist.githu
b.com/kurtdekker/f9e7b0bdf4b2f9c0455a99f7f0f4a77a, August 2021.
Accessed: 2024-06-02.

[18] Terrain loading i& streaming in gaia pro i& gaia pro 2021. https://canopy.p
rocedural-worlds.com/library/tools/gaia-pro-2021/written-a
rticles/creating_runtime/2-terrain-loading-streaming-in-gai
a-pro-gaia-pro-2021-r64/, December 22, 2021. Accessed: 2024-06-02.

[19] J. Bailenson. Experience on Demand: What Virtual Reality Is, How It Works, and
What It Can Do. W. W. Norton, 2018.

[20] A. Bangor, P. Kortum, and J. Miller. Determining what individual sus scores mean:
Adding an adjective rating scale. Journal of usability studies, 4(3):114–123, 2009.

[21] M. Bellemans, D. Lamrnens, J. De Sloover, T. De Vleeschauwer, E. Schoofs, W. Jor-
dens, B. Van Steenhuyse, J. Mangelschots, S. Selleri, C. Hamesse, T. Fréville,
and R. Haeltermani. Training firefighters in virtual reality. In 2020 International
Conference on 3D Immersion (IC3D), pages 01–06, 2020.

[22] P. Braun, M. Grafelmann, F. Gill, H. Stolz, J. Hinckeldeyn, and A.-K. Lange. Virtual
reality for immersive multi-user firefighter-training scenarios. Virtual Reality I&
Intelligent Hardware, 4(5):406–417, 2022. Computer graphics for metaverse.

[23] J. Brooke. Sus: A quick and dirty usability scale. Usability Eval. Ind., 189, 11 1995.

90

https://docs.unity3d.com/Manual/dynamic-batching.html
https://docs.unity3d.com/Manual/dynamic-batching.html
https://docs.unity3d.com/Manual/class-TextureImporterOverride.html
https://docs.unity3d.com/Manual/class-TextureImporterOverride.html
https://docs.unity3d.com/Manual/performance-garbage-collection-best-practices.html
https://docs.unity3d.com/Manual/performance-garbage-collection-best-practices.html
https://docs.unity3d.com/Manual/performance-garbage-collection-best-practices.html
https://docs.unity3d.com/2021.2/Documentation/ScriptReference/Pool.ObjectPool_1.html
https://docs.unity3d.com/2021.2/Documentation/ScriptReference/Pool.ObjectPool_1.html
https://docs.unity3d.com/Manual/static-batching.html
https://docs.unity3d.com/Manual/static-batching.html
https://www.youtube.com/watch?v=cQ9odT9gtvY
https://www.youtube.com/watch?v=cQ9odT9gtvY
https://forum.unity.com/threads/terrain-leveling.926483/]
https://forum.unity.com/threads/terrain-leveling.926483/]
https://gist.github.com/kurtdekker/f9e7b0bdf4b2f9c0455a99f7f0f4a77a
https://gist.github.com/kurtdekker/f9e7b0bdf4b2f9c0455a99f7f0f4a77a
https://canopy.procedural-worlds.com/library/tools/gaia-pro-2021/written-articles/creating_runtime/2-terrain-loading-streaming-in-gaia-pro-gaia-pro-2021-r64/
https://canopy.procedural-worlds.com/library/tools/gaia-pro-2021/written-articles/creating_runtime/2-terrain-loading-streaming-in-gaia-pro-gaia-pro-2021-r64/
https://canopy.procedural-worlds.com/library/tools/gaia-pro-2021/written-articles/creating_runtime/2-terrain-loading-streaming-in-gaia-pro-gaia-pro-2021-r64/
https://canopy.procedural-worlds.com/library/tools/gaia-pro-2021/written-articles/creating_runtime/2-terrain-loading-streaming-in-gaia-pro-gaia-pro-2021-r64/

[24] C. Burton, S. Lampe, D. I. Kelley, W. Thiery, S. Hantson, N. Christidis, L. Gud-
mundsson, M. Forrest, E. Burke, J. Chang, H. Huang, A. Ito, S. Kou-Giesbrecht,
G. Lasslop, W. Li, L. Nieradzik, F. Li, Y. Chen, J. Randerson, C. P. O. Reyer, and
M. Mengel. Global burned area increasingly explained by climate change. Nature
Climate Change, Oct 2024.

[25] S. Butler. What is shader compilation and why does it make pc games stutter?
https://www.howtogeek.com/846514/what-is-shader-compilati
on-and-why-does-it-make-pc-games-stutter/, Nov 2022. Accessed:
2024-10-25.

[26] M. Cha, S. Han, J. Lee, and B. Choi. A virtual reality based fire training simulator
integrated with fire dynamics data. Fire Safety Journal, 50:12–24, 2012.

[27] Y. Fu and Q. Li. A virtual reality–based serious game for fire safety behavioral skills
training. International Journal of Human–Computer Interaction, 0(0):1–17, 2023.

[28] A. Grabowski. Practical skills training in enclosure fires: An experimental study
with cadets and firefighters using cave and hmd-based virtual training simulators.
Fire safety journal, 125:103440, 2021.

[29] R. V. Hoang, M. R. Sgambati, T. J. Brown, D. S. Coming, and F. C. Harris. Vfire:
Immersive wildfire simulation and visualization. Computers I& Graphics, 34(6):655–
664, 2010. Graphics for Serious Games Computer Graphics in Spain: a Selection
of Papers from CEIG 2009 Selected Papers from the SIGGRAPH Asia Education
Program.

[30] J. Kimutai, R. Vautard, M. Zachariah, R. Tolasz, V. Šustková, C. Cassou, B. Clarke,
K. Haslinger, M. Vahlberg, R. Singh, E. Stephens, H. Cloke, E. Raju, N. Baumgart,
L. Thalheimer, F. Otto, G. Koren, S. Philip, S. Kew, P. Haro, J. Vibert, and
A. Von Weissenberg. Climate change and high exposure increased costs and disruption
to lives and livelihoods from flooding associated with exceptionally heavy rainfall in
Central Europe. Sept. 2024.

[31] S.-C. Lee, C.-Y. Lin, and Y.-J. Chuang. The Study of Alternative Fire Commanders’
Training Program during the COVID-19 Pandemic Situation in New Taipei City,
Taiwan. IJERPH, 19(11):1–22, May 2022.

[32] P. Lorusso, M. De Iuliis, S. Marasco, M. Domaneschi, G. P. Cimellaro, and V. Villa.
Fire emergency evacuation from a school building using an evolutionary virtual
reality platform. Buildings, 12(2), 2022.

[33] X. Lu, Z. Yang, Z. Xu, and C. Xiong. Scenario simulation of indoor post-earthquake
fire rescue based on building information model and virtual reality. Advances in
Engineering Software, 143:102792, 2020.

91

https://www.howtogeek.com/846514/what-is-shader-compilation-and-why-does-it-make-pc-games-stutter/
https://www.howtogeek.com/846514/what-is-shader-compilation-and-why-does-it-make-pc-games-stutter/

[34] A. Moreno, J. Posada, Álvaro Segura, A. Arbelaiz, and A. García-Alonso. Interactive
fire spread simulations with extinguishment support for virtual reality training tools.
Fire Safety Journal, 64:48–60, 2014.

[35] A. Mossel, C. Schönauer, M. Froeschl, A. Peer, J. Göllner, and H. Kaufmann.
Immersive training of first responder squad leaders in untethered virtual reality.
Virtual Reality, 204:1–15, Dec. 2020.

[36] M. A. Nasaruddin, N. H. Azmi, N. Ibrahim, E. M. Saari, and N. A. Ahmad.
Development of virtual reality fire extinguisher game for safety training. AIP
Conference Proceedings, 2750(1):040026, 06 2023.

[37] S. Ooi, A. Kikuchi, T. Goto, and M. Sano. Development and verification of mixed
disaster training system in virtual reality based on experience learning. In 2021
10th International Conference on Educational and Information Technology (ICEIT),
pages 29–33, 2021.

[38] B. Pairet. Vrfftu. https://xrlab.rma.ac.be/vrfftu/. Accessed: 2024-04-24.

[39] K. S. B. Robert S. Kennedy, Norman E. Lane and M. G. Lilienthal. Simulator
sickness questionnaire: An enhanced method for quantifying simulator sickness. The
International Journal of Aviation Psychology, 3(3):203–220, 1993.

[40] Y. S. Sadek Hosny, M. A.-M. Salem, and A. Wahby. Performance optimization
for standalone virtual reality headsets. In 2020 IEEE Graphics and Multimedia
(GAME), pages 13–18, 2020.

[41] N. P. Singh, B. Sharma, and A. Sharma. Performance analysis and optimization
techniques in unity 3d. In 2022 3rd International Conference on Smart Electronics
and Communication (ICOSEC), pages 245–252, 2022.

[42] R. Tao, H.-x. Ren, and X.-q. Peng. Ship fire-fighting training system based on virtual
reality technique. In M. S. Mohamed Ali, H. Wahid, N. A. Mohd Subha, S. Sahlan,
M. A. Md. Yunus, and A. R. Wahap, editors, Modeling, Design and Simulation of
Systems, pages 249–260, Singapore, 2017. Springer Singapore.

[43] D. Tate, L. Sibert, and T. King. Virtual environments for shipboard firefighting
training. pages 61–68, 215, 04 1997.

[44] U. Technologies. Common profiler markers. https://docs.unity3d.com/Man
ual/profiler-markers.html#:~:text=Gfx.WaitForCommands,bottl
eneck%20on%20the%20main%20thread. Accessed: 2024-10-25.

[45] G. Vukelic, D. Ogrizovic, D. Bernecic, D. Glujic, and G. Vizentin. Application of vr
technology for maritime firefighting and evacuation training—a review. Journal of
Marine Science and Engineering, 11(9), 2023.

92

https://xrlab.rma.ac.be/vrfftu/
https://docs.unity3d.com/Manual/profiler-markers.html#:~:text=Gfx.WaitForCommands,bottleneck%20on%20the%20main%20thread.
https://docs.unity3d.com/Manual/profiler-markers.html#:~:text=Gfx.WaitForCommands,bottleneck%20on%20the%20main%20thread.
https://docs.unity3d.com/Manual/profiler-markers.html#:~:text=Gfx.WaitForCommands,bottleneck%20on%20the%20main%20thread.

[46] H. Zahran. Boosting performance with unity dots and ecs. https://www.linked
in.com/pulse/boosting-performance-unity-dots-ecs-hamam-zah
ran-clrbf#:~:text=Performance%3A%20DOTS%20excels%20in%20CPU
,cleaner%20code%20and%20easier%20maintenance., Mar 2024. Accessed:
2024-10-05.

93

https://www.linkedin.com/pulse/boosting-performance-unity-dots-ecs-hamam-zahran-clrbf#:~:text=Performance%3A%20DOTS%20excels%20in%20CPU,cleaner%20code%20and%20easier%20maintenance.
https://www.linkedin.com/pulse/boosting-performance-unity-dots-ecs-hamam-zahran-clrbf#:~:text=Performance%3A%20DOTS%20excels%20in%20CPU,cleaner%20code%20and%20easier%20maintenance.
https://www.linkedin.com/pulse/boosting-performance-unity-dots-ecs-hamam-zahran-clrbf#:~:text=Performance%3A%20DOTS%20excels%20in%20CPU,cleaner%20code%20and%20easier%20maintenance.
https://www.linkedin.com/pulse/boosting-performance-unity-dots-ecs-hamam-zahran-clrbf#:~:text=Performance%3A%20DOTS%20excels%20in%20CPU,cleaner%20code%20and%20easier%20maintenance.

Appendix

95

1/2

TeilnehmerIn #: ________

Allgemeine Informationen

1. Alter: ___________ (Jahre)

2. Geschlecht: [] männlich [] weiblich [] divers
3. Sind Sie mit einer Führungsaufgabe betraut? [] Ja [] Nein
4. Sind Sie im Rahmen der Ausbildung tätig? [] Ja [] Nein

5. Bitte geben Sie an, wie viele Übungen im Schnitt pro Jahr für Sie vorbereitet werden.

Keine 1-3 4-7 Mehr als 7

6. Bitte geben Sie an wie viele Übungen Sie im Schnitt pro Jahr für andere Führungskräfte
vorbereiten.

Keine 1-3 4-7 Mehr als 7

7. Bitte geben Sie an, an wie vielen Planspielen Sie im Schnitt pro Jahr teilnehmen.

Keine 1-3 4-7 Mehr als 7

8. Wie würden Sie Ihren persönlichen Fitness-Level einschätzen?

Keine Fitness Geringe Fitness Durchschnittlich Moderate Fitness Starke Fitness
1 2 3 4 5

9. Haben Sie Vorerfahrung mit Virtual Reality?

Keine Gering Durchschnitt Moderat Viel
1 2 3 4 5

10. Haben Sie Übung / Vorerfahrung in der Benutzung eines Gamepads?

Keine Gering Durchschnitt Moderat Viel
1 2 3 4 5

2/2

Prä-Exposition Simulatorkrankheit
Bitte markieren Sie, welche der folgenden Symptome aktuell auf Sie zutrifft. Die gleiche Fragestellung
wird Ihnen nach dem Experiment nochmals gestellt.

1. Allgemeines Unwohlsein Kein Gering Moderat Stark

2. Müdigkeit Keine Gering Moderat Stark

3. Kopfweh Kein Gering Moderat Stark

4. Schwitzen Kein Gering Moderat Stark

5. Übelkeit Kein Gering Moderat Stark

6. Unscharfes Sehen Nein Ja (Gering Moderat Stark)

7. Schwindel Nein Ja (Gering Moderat Stark)

8. Verwirrtheit Nein Ja (Gering Moderat Stark)

1/6

FRAGEBOGEN TRAINING

TeilnehmerIn #: ________

Post-Exposition Simulatorkrankheit
Bitte markieren Sie, welche der folgenden Symptome aktuell auf Sie zutreffen.

1. Allgemeines Unwohlsein Kein Gering Moderat Stark

2. Müdigkeit Keine Gering Moderat Stark

3. Kopfweh Kein Gering Moderat Stark

4. Schwitzen Kein Gering Moderat Stark

5. Übelkeit Kein Gering Moderat Stark

6. Unscharfes Sehen Nein Ja (Gering Moderat Stark)

7. Schwindel Nein Ja (Gering Moderat Stark)

8. Verwirrtheit Nein Ja (Gering Moderat Stark)

Generelle Fragen

1. Das VR Waldbrand Szenario würde mir helfen mich für Einsätze mit Waldbränden vorzubereiten

Trifft nicht zu Trifft eher nicht zu Unentschieden Trifft eher zu Trifft zu
1 2 3 4 5

2. Das VR Waldbrand Szenario erfüllt meine Erwartungen an ein virtuelles Training für Waldbrände

Trifft nicht zu Trifft eher nicht zu Unentschieden Trifft eher zu Trifft zu
1 2 3 4 5

3. Ich fände das VR Waldbrand Training nützlich als zusätzliches Training zu herkömmlichen Trainings
Methoden

Trifft nicht zu
Trifft eher nicht

zu
Unentschieden Trifft eher zu Trifft zu

1 2 3 4 5

2/6

4. Ich konnte während des Trainings unerwartetes Ruckeln oder Verzögerungen wahrnehmen

Trifft nicht zu
Trifft eher nicht

zu
Unentschieden Trifft eher zu Trifft zu

1 2 3 4 5

Feuer und Rauch

1. Die Visualisierung des Feuers war geeignet für das Training

Gar nicht Kaum Okay Gut Sehr Gut
1 2 3 4 5

2. Ich konnte das Feuer auch aus der Ferne wahrnehmen.

Sehr schlecht Schlecht Unentschieden Gut Sehr gut
1 2 3 4 5

3. Das Verhalten des Feuers war geeignet für das Training

Trifft nicht zu Trifft eher nicht zu Unentschieden Trifft eher zu Trifft zu
1 2 3 4 5

4. Die Visualisierung des Rauchs war geeignet für das Training

Sehr schlecht Schlecht Unentschieden Gut Sehr gut
1 2 3 4 5

5. Ich konnte den Rauch auch aus der Ferne wahrnehmen.

Sehr schlecht Schlecht Unentschieden Gut Sehr gut
1 2 3 4 5

6. Das Verhalten des Rauchs war geeignet für das Training

Sehr schlecht Schlecht Unentschieden Gut Sehr gut
1 2 3 4 5

Bitte beschreiben Sie kurz Ihre Erfahrung mit dem Feuer und Rauch in dem Trainingsszenario (was
mochten Sie besonders, was sollte verbessert werden, was hat Ihnen gefehlt...) :

3/6

Terrain

1. Ich hatte bereits vor dem ‘Warm-up’ Ortskenntnisse von Stammersdorf, Wien

Trifft nicht zu
Trifft eher nicht

zu
Unentschieden Trifft eher zu Trifft zu

1 2 3 4 5

2. Ich glaube, dass Virtuelle Umgebungen Ortskenntnisse für die echte Welt vermitteln können

Trifft nicht zu
Trifft eher nicht

zu
Unentschieden Trifft eher zu Trifft zu

1 2 3 4 5

3. Ich denke, dass ich Teile aus der Virtuellen Umgebung (Stammersdorf) in der echten Umgebung
wiedererkennen kann

Trifft nicht zu
Trifft eher nicht

zu
Unentschieden Trifft eher zu Trifft zu

1 2 3 4 5

4. Ich denke, dass ich mich in dem Training dargestellten Teil von Stammersdorf nun auch in der
echten Welt dort besser zurechtfinden kann

Trifft nicht zu
Trifft eher nicht

zu
Unentschieden Trifft eher zu Trifft zu

1 2 3 4 5

5. Die visuelle Darstellung der Virtuellen Umgebung war geeignet für das Training

Trifft nicht zu
Trifft eher nicht

zu
Unentschieden Trifft eher zu Trifft zu

1 2 3 4 5

6. Ich denke, die Simulation von weitläufigen Gebieten ist wichtig für Führungskräftetrainings in
Waldbrandzsenarien

Trifft nicht zu
Trifft eher nicht

zu
Unentschieden Trifft eher zu Trifft zu

1 2 3 4 5

4/6

7. Ich denke, dass der Aufbau der virtuellen Umgebung Einfluss auf die Entscheidungsfindung von
Führungskräften in VR-Waldbrandszenarien hat

Trifft nicht zu
Trifft eher nicht

zu
Unentschieden Trifft eher zu Trifft zu

1 2 3 4 5

8. Ich denke, dass die Virtuelle Umgebung geeignet war für das Training

Trifft nicht zu
Trifft eher nicht

zu
Unentschieden Trifft eher zu Trifft zu

1 2 3 4 5

Falls es Dinge gab, die Ihnen bei der Visualisierung oder dem Aufbau des Geländes gut oder weniger
gut gefallen haben, erwähnen sie diese bitte kurz mit Erläuterung was Sie daran gestört oder ihnen
gefallen hat:

5/6

Fragen zur Benutzerfreundlichkeit des VR-Systems für Waldbrand

1. Ich denke, ich würde das
VR-System für Waldbrand
Training regelmäßig nutzen.

Trifft
nicht zu

Trifft eher
nicht zu

Unentschieden
Trifft eher

zu
Trifft zu

1 2 3 4 5

2. Ich habe das VR-System
für Waldbrand Training als
unnötig komplex
empfunden.

Trifft
nicht zu

Trifft eher
nicht zu

Unentschieden
Trifft eher

zu
Trifft zu

1 2 3 4 5

3. Ich denke, das VR-System
für Waldbrand Training war
leicht zu benutzen.

Trifft
nicht zu

Trifft eher
nicht zu

Unentschieden
Trifft eher

zu
Trifft zu

1 2 3 4 5

4. Ich denke, ich würde
Unterstützung einer
technisch versierten Person
benötigen, um das VR-
System für Waldbrand
Training zu verwenden.

Trifft
nicht zu

Trifft eher
nicht zu

Unentschieden
Trifft eher

zu
Trifft zu

1 2 3 4 5

5. Ich fand, dass die
unterschiedlichen
Funktionen (speziell Gelände,
Feuer, Rauch) gut in das VR-
System für Waldbrand
Training integriert waren.

Trifft
nicht zu

Trifft eher
nicht zu

Unentschieden
Trifft eher

zu
Trifft zu

1 2 3 4 5

6. Ich finde, dass es zu viele
(technische) Inkonsistenzen
im VR-System für
Waldbrand Training gab.

Trifft
nicht zu

Trifft eher
nicht zu

Unentschieden
Trifft eher

zu
Trifft zu

1 2 3 4 5

7. Ich könnte mir vorstellen,
dass die meisten Leute
schnell lernen würden, wie
man das VR-System für
Waldbrand Training
verwendet.

Trifft
nicht zu

Trifft eher
nicht zu

Unentschieden
Trifft eher

zu
Trifft zu

1 2 3 4 5

8. Ich fand das VR-System für
Waldbrand Training sehr
umständlich zu benutzen.

Trifft
nicht zu

Trifft eher
nicht zu

Unentschieden
Trifft eher

zu
Trifft zu

1 2 3 4 5

6/6

9. Ich war sicher, das VR-
System für Waldbrand
Training richtig zu benutzen.

Trifft
nicht zu

Trifft eher
nicht zu

Unentschieden
Trifft eher

zu
Trifft zu

1 2 3 4 5

10. Ich musste eine Menge
Dinge lernen, bevor ich das
VR-System für Waldbrand
Training nutzen konnte.

Trifft
nicht zu

Trifft eher
nicht zu

Unentschieden
Trifft eher

zu
Trifft zu

1 2 3 4 5

Bitte beschreiben Sie kurz Ihre Erfahrung mit dem VRWaldbrand Training (was mochten Sie
besonders, was sollte verbessert werden, was hat Ihnen gefehlt...) :

	Kurzfassung
	Abstract
	Contents
	Introduction
	Problem Statement
	Aim of the work
	Methodological approach

	State of the Art
	When is Virtual Reality Training appropriate?
	VROnSite
	Virtual Reality Fire Training
	Fire Simulation
	Performance Optimization
	Other Notable Applications

	Design
	Implementation
	Terrain
	Fire and Smoke

	Evaluation
	User Study Evaluation
	Performance Evaluation

	Discussion
	Summary and Future Work
	List of Figures
	List of Tables
	Acronyms
	Bibliography
	Appendix

