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Kurzfassung

Röntgenaufnahmen des Brustkorbs sind ein zentrales Instrument in der medizinischen
Diagnostik, doch ihre Auswertung stellt erhebliche Herausforderungen dar, die den Ein-
satz zuverlässiger computerunterstützter Verfahren notwendig machen. Diese Studie
erforscht die Anwendung von Deep Learning zur Verbesserung der Interpretierbarkeit
und Genauigkeit der Diagnosen von Brust-Röntgenbildern durch die Erzeugung von
Erklärungen in natürlicher Sprache (NLEs). Bestehende einstufige neuronale Netzwerke
erweisen sich zwar als effektiv, jedoch mangelt es ihnen oft an Erklärbarkeit, was ihre
Akzeptanz in der Klinik beeinträchtigt. Zur Lösung dieses Problems stellen wir ein
innovatives „Explain-then-Predict“-Modell vor, das die BLIP-2-Architektur mit einer
Q-former-Komponente kombiniert, um NLEs während des diagnostischen Vorgangs zu
erstellen und zu evaluieren. Im Unterschied zu bisherigen Methoden, die nachträglich
Erklärungen liefern, ohne diagnostische Ergebnisse zu beeinflussen, nutzt unser Modell
die NLEs, um seine Vorhersagen zu untermauern und zu rechtfertigen, wodurch die Erklä-
rungen mit dem klinischen Denken harmonisiert und das Vertrauen in die automatisierte
Diagnostik gestärkt wird.

Unser primäres Forschungsziel ist die Evaluierung, inwiefern ein Modell das Bild-Text-
Kontrastlernen einsetzen kann, um treue NLEs zu generieren, die unmittelbar die Klas-
sifikationsgenauigkeit verbessern. Wir entwickeln einen multimodalen Ansatz, der für
jedes diagnostische Etikett NLEs erzeugt, die anschließend vom Q-former hinsichtlich
ihrer Relevanz und Genauigkeit im Vergleich zum zugehörigen Röntgenbild bewertet
werden. Dieses Modell wird end-to-end auf dem MIMIC-NLE-Datensatz trainiert und
verwendet ein innovatives Trainingsregime, das die Erstellung von Erklärungen sowie
deren Bewertungsgenauigkeit verbessert.

Empirische Ergebnisse belegen, dass unser Ansatz die Leistung der besten aktuellen
Methoden zur Brust-Röntgenklassifikation erreicht und gleichzeitig Erklärungen bietet,
die intrinsisch mit den diagnostischen Ergebnissen verknüpft sind. Dies fördert nicht nur
ein tieferes Verständnis der Entscheidungsfindung des Modells, sondern steigert auch
den praktischen Nutzen des Modells in realen klinischen Einsatzgebieten. Die Beiträge
dieser Arbeit weisen auf eine vielversprechende Richtung für zukünftige Forschungen
in der medizinischen Bildgebung hin, mit einem Schwerpunkt auf der Integration von
aussagekräftigen Modellen, die sowohl die Interpretierbarkeit als auch die Genauigkeit
diagnostischer KI-Systeme verbessern.
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Abstract

Chest X-rays are a foundational tool for medical diagnostics, and yet interpreting them
takes radiologists’ time and is subject to challenges, prompting the development of reliable
computer-assisted methods. This thesis investigates how interpretability of deep-learning-
based chest X-ray diagnostics can be improved without compromising accuracy. It does so
through the generation and utilization of natural language explanations (NLEs). Existing
single-stage neural networks are clinically effective but often lack explainability, which
limits their clinical adoption. To address this, we propose a novel "explain-then-predict"
approach that leverages the BLIP-2 architecture and its Q-former component to generate
NLEs and evaluate their relevance during the diagnostic process. Unlike previous methods
that generate post-hoc explanations that do not affect the diagnostic outcomes, our
solution incorporates the generated NLEs to guide its predictions, aligning explanations
with clinical reasoning and enhancing explanation faithfulness by design.

Our work evaluates the extent to which an NLE-generating model can leverage image-
text contrastive learning to measure how relevant a generated NLE is to an X-ray. We
introduce a multimodal framework that generates NLEs for each diagnostic label, which
are then assessed for relevance against the corresponding X-ray image by the Q-former.
This model is further trained end-to-end to refine both the generation of explanations
and the diagnosis accuracy.

Empirical results show that our approach matches state-of-the-art chest X-ray classifi-
cation performance, while also providing explanations that are intrinsically tied to the
diagnostic output. This allows to get an understanding of the model’s outputs while en-
hancing its utility in clinical settings. The contributions of this work suggest a promising
direction for future research in computer-assisted medical imaging analysis, focusing on
the integration of explanatory models that can enhance both the interpretability and
accuracy of such deep-learning-based diagnostic systems.
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CHAPTER 1
Introduction

Chest X-rays are the most frequently prescribed type of chest radiologic diagnostic tool
due to their low cost and invasivity, but their interpretation remains challenging even
for experienced radiologists [1]. Computer vision-based X-ray diagnosis tools can help
reduce misdiagnoses [2] and ease radiologists’ workload by automating some parts of
their workflow. The most common approach for this are single-stage neural networks
that directly map an input X-ray image to diagnosis labels [3].

1.1 Motivation And Problem Statement
Single-stage classifiers, despite their success in medical image analysis, suffer from a lack
of explainability for their predictions, which limits their adoption in real clinical settings.
Explainability is crucial in such environments, where trustworthiness, transparency, and
an understanding of model decisions are essential for safe and effective usage [4]. In the
absence of explanations for their predictions, models are difficult to trust, particularly
when the consequences of their errors can be life-threatening.

The opacity of such models also does not allow to detect and mitigate their potential
biases that can for example be related gender, ethnicity, or socio-economic background
and can have serious consequences [5]. For instance, if a model is biased towards certain
demographic characteristics, it could result in misdiagnosis or inappropriate treatments
for underrepresented groups, leading to significant ethical and medical challenges.

Different explainability techniques have been designed to probe black-box models. A
popular approach for image classifiers, which are typically used for X-ray diagnosis, is to
compute saliency maps that allow users to visualize the degree to which every pixel of
an image contributed to the classification prediction [6]. While these methods illustrate
which parts of the input most influence the output, a limitation to their usefulness is
that they highlight where there model focused without justifying why those particular
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1. Introduction

Figure 1.1: Example of how attention maps can be visualized for chest X-ray processing
models in [7]. The attention focuses on an area of pulmonary edema (encircled in red,
left) and on small pleural effusions (encircled in blue, right).

areas were relevant. This limitation makes it challenging to assess whether the model’s
focus is medically valid or if it is relying on spurious correlations.

An example of such spurious correlations arises in [8], where a skin lesion classifier was
found to associate the presence of rulers in images with malignancy, leading to incorrect
conclusions. Similarly, [9] demonstrated that the use of gentian violet surgical skin
markers in dermoscopic images caused a drastic reduction in a deep learning model’s
diagnostic performance, dropping its specificity from 84.1% to 45.8%. This emphasizes
the dangers of using non-explainable models in clinical practice: a model can be basing
its decisions on irrelevant artifacts, potentially being more harmful than beneficial, and
this can go unnoticed without model explainability techniques.

Additionally, most current explainability methods for image classifiers, like saliency maps,
are generated a posteriori, after the model made its prediction, independently from the
training process. This lack of integration means that these explanations do not influence
how the model is trained or how it forms its decision boundaries. In practice, this implies
that models can still make predictions based on clinically irrelevant features and are not
constrained to focus on clinically relevant areas during training.

In the context of chest X-ray diagnosis, the problem is compounded by the complexity
of the images and the wide range of pathologies they can reveal. Chest X-rays are one
of the most common diagnostic tools in clinical practice, used for detecting thoracic
abnormalities and conditions such as pneumonia, pulmonary edema or pleural effusion
for example. Making correct diagnoses requires detailed examination of subtle features
that can significantly vary across medical conditions. That is why it is crucial that deep
learning models not only achieve high accuracy but also provide explanations that align
with clinical reasoning. For instance, to diagnose pneumonia, the model should focus on
regions of the lung that show opacities or consolidation rather than irrelevant artifacts.

The motivation for this work stems from these limitations in available explainability
techniques and from the urgent need for more trustworthy AI systems in healthcare. An
effective explainable model should offer faithful, clinically meaningful explanations that
constrain the model’s learning process to focus on relevant features, thereby ensuring
both interpretability and clinical validity.
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1.2. Aim Of The Work

1.2 Aim Of The Work
In the work described in this document, the overall aim is to generate chest X-ray diagnoses
with explanations that do not suffer from the limitations described for saliency maps.
The approach we take to this is inspired by [10], which started research in the direction
of neural networks that generate explanations for their decisions in natural language.
This was motivated by the observation that humans tend to learn from explaining
concepts themselves, hinting that natural language explanation (NLE) generation could
be beneficial to the overall task learning process [10].

This paradigm would be very desirable for chest X-ray (CXR) diagnoses, as radiologists
are used to debating such explanations in radiology reports [11]. NLEs could enable
radiologists to challenge a model’s outputs more naturally, and to get a more intuitive
understanding of what a model’s prediction was based on. Moreover, unlike saliency
maps, text-based explanations can clarify the reasoning behind a decision, not just
attribute importance to input features. The task of generating NLEs for chest X-ray
diagnoses has been introduced in [12] based on similar motivations. The authors publish
the MIMIC-NLE dataset, composed of 38,003 image-NLE pairs, along with baseline NLE
generation models.

Figure 1.2: At inference, the model is prompted for an NLE for each pathology for a
given chest X-ray image to autoregressively decode candidate NLEs. Those are fed into
the critic model (Q-former) to compute their similarity to the X-ray image: the diagnosis
is made based on the similarity to the image (faithful NLEs have higher similarities).

We are both the first to apply modern, large-scale vision-language models (VLMs) to this
problem and to consider an "explain-then-predict" framework that encourages faithfulness
of the NLEs. Figure 1.2 depicts the architecture of our model. We use modules from BLIP-
2 [13], such as the Q-Former, and use those to generate natural language explanations
for labels the model is prompted with.

3



1. Introduction

To diagnose a given chest X-ray image, our model is prompted to generate a natural
language explanation for each possible diagnosis label. All candidate explanations that
have been generated are then fed back into the critic Q-former block of the model,
which has been pre-trained to maximize the similarity of image and text embeddings
of true image-NLE pairs and to minimize the similarity of false pairs. Thus, that critic
outputs low similarities for NLEs that are irrelevant or unfaithful to the image and
high similarities for explanations that accurately reflect the X-ray. This way, the final
classification output is based on the explanation and its relevance to the input, and not
vice versa. The explanations act as an information bottleneck in the prediction process,
making the explanations for positive labels faithful by design, as the output is determined
based on them and how they relate to the medical image.

By carrying out this work, the goal is to answer the following research question: To
what extent can image-text contrastive models improve classification performance and
faithfulness in a self-rationalising approach to chest X-ray analysis? To do so, we look
into the three following research sub-questions:

• To what degree can self-rationalisation match state-of-the-art chest X-ray classifiers?

• How effectively can a contrastive vision-language model capture NLE relevance?

• How much can a contrastive critic enhance NLE generation quality and faithfulness?

4
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1.3 Contributions
In the effort to answer these research questions, we make the following contributions:

• We detect that unfaithful NLEs, even those that have been generated without taking
the chest X-ray into account at all, are convincing and lead to acceptable natural
language generation metrics. We therefore highlight the need for a critic that can
capture if an NLE is relevant to a chest X-ray to avoid generating unfaithful NLEs
that go undetected.

• We demonstrate that multimodal models measuring image-text similarity between
NLEs and CXR images are capable of separating true and false chest X-ray/NLE
pairs when trained on an image-text contrastive objective for X-ray/NLE pairs,
both for ground-truth and model-generated NLEs. We find that the Q-former
component proposed in the BLIP-2 architecture can be used as an NLE critic given
that it was pre-trained with an image-text-contrastive loss. We also validate the
Q-former’s critic capabilities and its benefit over some alternative vision-language
models as it achieves better retrieval and critic performance than a CLIP [14] model
trained on the same data and off-the-shelf medical CLIP models.

• Based on those findings, we propose a new "explain-then-predict" approach to
CXR classification that makes predictions by generating candidate explanations
in natural language for all diagnoses, and measuring their relevance to the chest
X-ray to decide on the outcome. Our approach is based on the BLIP-2 architecture
[13], as we find that its Q-former component’s image-text representation learning
capabilities lead to a better explanation critic than CLIP to judge if an explanation
is true for a given X-ray. That Q-former can also be leveraged as part of the NLE
generation pipeline that is based on the commonly used BLIP-2 vision language
model architecture. We are the first to leverage this larger framework specifically
for the task of NLE generation for chest X-rays, as well as to employ its Q-former
component for a self-rationalized approach to classification. We show that this
architecture is beneficial as it leads to better NLE generation performance than
alternative, more straightforward image captioning approaches, and that it, to
our knowledge, currently achieves the best NLE-generation performance on the
MIMIC-NLE dataset. We also verify that training it is beneficial in comparison to
using off-the-shelf CXR-specialized vision-language-models like CheXagent [15].

• Based on this, we leverage the critic capabilities of the Q-former and train the
pipeline described in the previous point end-to-end. We introduce an explicit
information bottleneck by generating explanations for each potential diagnosis, and
making the classification decision based on the Q-former output similarity between
the generated explanation for a given disease and the chest X-ray. By doing so, we
match state-of-the-art chest X-ray classification performance 1 on our dataset while
generating faithful NLEs by design.

1We consider the best performing non-ensemble approach on the CheXpert [16]
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1. Introduction

• We also show that representation learning performed for the NLE generation and
chest X-ray classification tasks is beneficial to each other. A vision encoder pre-
trained for NLE generation leads to better chest X-ray classification in a simple
setting, and more importantly, in our full pipeline, we find that further propagating
the critic (classification) loss to the natural language generation part of the network
end-to-end is beneficial. By conditioning NLE generation on the critic’s loss, we
further improve classification performance of the full pipeline and outperform the
state-of-the-art chest X-ray classifier.

1.4 Overview of the methodological approach
To design, train and validate the full model we introduce, we focus on the MIMIC-NLE
dataset [12]. Built upon the MIMIC-CXR dataset [18], it contains 38,003 image-NLE
pairs explaining the presence of thoracic pathologies and findings representing 14 different
labels. We use the official split of the dataset where the three splits have the same class
distribution, and contain 37,016, 273 and 714 images for the train, validation and test
splits respectively.

The inference flow of the full model is illustrated in Figure 1.2. The model components are
inspired from the BLIP-2 [13] architecture, but leveraged differently: a vision transformer,
a Q-former (which is a BERT [19] encoder), a projection layer and a LLaMA-2 [20]
language model. As the CheXagent vision-language model [15] is based on the same
architecture, and pre-trained on a large corpus of chest X-ray related datasets and tasks,
we initialize our vision encoder and language model with the CheXagent weights to
take advantage of their pre-training. This does not lead to data leakage as they use the
same official split of MIMIC-CXR and MIMIC-NLE in their dataset as we do [15]. The
components of the full pipeline are trained on the MIMIC-NLE dataset in the following
four stages.

1. Stage 1 - Q-former, aligning representations of image and text: In our
first stage of training, we focus on training the Q-former component of the network.
The goal of this step is to train the Q-former to align the representations of
corresponding images (X-rays) and texts (explanations), to maximize the similarity
of corresponding image-text embedding pairs while minimizing the similarity of
false pairs. As illustrated in Figure 4.2, we do this by training the Q-former
on a combination of the three same objectives as for BLIP-2 [13]: image-text
contrastive, and image-text matching and image-grounded generation losses. We
train on all image - NLE pairs contained in the MIMIC-NLE train split while
preprending "Evidence for {LABEL}", with the label of the given NLE, to
the explanations.

multi-label chest X-ray classification benchmark (https://paperswithcode.com/sota/
multi-label-classification-on-chexpert): DeepAUC [17]. We re-train the model, with
parameter tuning, on our dataset to ensure fair comparability.
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1.4. Overview of the methodological approach

2. Stage 2 - NLE generation: The next goal is to learn to generate natural language
explanations (text sequences) given an input X-ray image and prompt of the form
"Evidence for {LABEL}". Just as in the second stage of BLIP-2 training [13]
and as illustrated in Figure 3.2, we leverage the Q-former pre-trained in the previous
stage to embed the image, add a projection layer ("adapter") to re-project the latent
representation before concatenating it to the embedded prompt and feeding the
entire sequence into the pre-trained autoregressive decoder language model. The
pipeline is trained using a cross-entropy loss (a language generation task) while
unfreezing the Q-former and adapter parameters, on all NLEs contained in the
train split of the MIMIC-NLE dataset.

3. Stage 3 - end-to-end training of the critic: In the last two stages, we assemble
all components into a pipeline that solves our main task, classifying chest X-rays
while generating natural language explanations for positive labels. While Figure
1.2 describes the full pipeline that first generates explanations for every candidate
label and then classifies based on the similarity of the explanation to the X-ray,
this training stage focuses on further training the critic (Q-former) as shown in
Figure 5.1. We consider all chest X-rays in the training dataset, and for every
image, generate candidate NLEs for all labels, make the classification prediction
based on them, and propagate the binary cross-entropy loss from the multi label
classification task back to the critic Q-former that is kept unfrozen in the pipeline.

4. Stage 4 - end-to-end training of NLE generation: The final stage of training
further conditions NLE generation on the critic (classification) signal. This is
achieved by considering the same model pipeline and data as in Stage 3, but this
time freezing the critic Q-former while training the parameters of the adapter
block of the NLE generation part of the network on a combination of the binary
cross-entropy loss (multi-label classification) and the cross entropy loss (language
generation) as illustrated in Figure 5.2. As the sampling operation involved in
decoding NLEs to feed into the critic would not be differentiable in the pipeline, we
employ the Gumbel-Softmax trick to approximate the latent representation of the
decoded sequences, and project them through a trained linear layer before feeding
them into the Q-former. That linear layer aligns these representations with what
would be the representation of the decoded sequence after tokenization with the
Q-former’s tokenizer.

The models obtained from each stage are evaluated on the MIMIC-NLE test split against
different baselines and state of the art models:

1. Stage 1: To verify if the Q-formers image-text contrastive capabilities can be
leveraged to detect false X-ray/NLE pairs, we measure the area under the curve
(AUC) score for all possible pairs in our evaluation dataset, and we verify the
separability with a Mann-Whitney U-test as well. We do the same thing for model-
generated NLEs as well. In addition, we validate the Q-formers ranking (and thus

7



1. Introduction

image-text representation) capabilities by measuring recall at 1, 5 and 10. To
confirm that the Q-former is beneficial in addition to a simpler CLIP model trained
with an image-text contrastive loss only, we compare these evaluation metrics with
such a model trained on the same data.

2. Stage 2: We validate the NLE generation capabilities of our model by generating
explanations for every positive label of all X-rays contained in the test split of the
dataset, and measuring BLEU1, BLEU4, ROUGE1 and ROUGEL scores considering
the ground-truth explanations. These scores are compared to those of baselines
of different levels of complexity that we train: a language model pre-trained on
medical data (GPT-2 or LLaMA-2) where images are embedded with a chest X-ray
specific ResNet50 and passed through a projection layer before being prepended
to the LM input, zero-shot prompting of CheXagent [15] or training a medical
language model on the textual prompts only without inputting any image signal,
to verify how such an unfaithful model would compare and behave.

3. Stage 3 and Stage 4: The evaluation of the final stage tests the full pipeline,
and thus evaluates how perform for the main task we want to solve: chest
X-ray classification. We generate NLEs for every label on each chest X-ray of
the testing dataset. Based on the relevance of the NLEs to the X-ray images, we
make final classification predictions, and measure per-class and mean AUC scores
considering the ground truth labels. We measure those AUC scores for our different
baselines and alternative models: simple classifiers (different vision encoders with a
classification head), zero-shot prompting of CheXagent [15] and DeepAUC [17], the
currently state-of-the-art non-ensemble chest X-ray classifier.

For further details on the methodology, setup and results for each of our training stages,
please refer to Chapter 3, Chapter 4 and Chapter 5.

8



1.5. Structure Of The Thesis

1.5 Structure Of The Thesis
To communicate our work and results, this document is organized as follows:

The reader is first familiarized with the main concepts involved in this work, how they
have been covered in the literature, as well as with published work that is related to our
project in Chapter 2.

Then, we describe how we approach the task of generating natural language explanations
for positive labels on chest X-rays in Chapter 3, where we also identify how unfaithful
explanations can still lead to good natural language generation evaluation metrics.

Based on this observation, we explore how similarity between image (X-ray) and text
(explanation) representations can capture faithfulness of explanations to chest X-rays to
build an explanation critic in Chapter 4.

In Chapter 5, we document how we integrate the NLE generator and the critic in
a single pipeline to perform X-ray classification in an "explain-then-predict" approach.
We also describe how training it end-to-end leads to the explanation generation model
benefitting from the critic signal.

Finally, we summarize our key findings, highlight the limitations of our results and the
future work they could benefit from in Chapter 6.
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CHAPTER 2
Related Work And Key Concepts

The multimodal model introduced in this work involves techniques from the fields of
explainable AI and vision, text, and multimodal representation learning. To describe the
literature in these fields and introduce important concepts, Section 2.1 will summarize
the history and current state of vision and language representation learning, including
joint image-text modeling and their application in chest X-ray analysis. Section 2.2 will
introduce explainable AI, summarizing post-hoc and self-explaining approaches to AI
model interpretability. It will also cover natural language explanations: their generation,
usage and evaluation. Finally, it will discuss the application of explainable AI to chest
X-ray processing, highlighting unresolved aspects that inspired this thesis.

2.1 Vision and language representation learning
First, we discuss vision and language representation learning, which forms the foundation
for many modern deep-learning applications by enabling machines to understand and
integrate visual and textual information. These representations serve as the basis for
tasks such as image captioning, visual question answering or multimodal retrieval, many
of which are relevant to the topics discussed in this thesis. The aim is not only to provide
a comprehensive overview of the literature but also to critically analyze the strengths and
limitations of different methods. By understanding the historical context and current
trends, we identify the gaps and opportunities that this thesis seeks to address. This
foundational knowledge sets the stage for the subsequent sections, where these principles
are applied to the specific challenges of vision and language representation learning in
the medical domain, particularly in the analysis of chest X-rays.

2.1.1 In the natural domain
While deep learning is currently applied to a multitude of modalities, focus will be
placed on learning representations of the two types involved in the work described in
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this thesis: images (in our case X-rays) and text (patient context, diagnosis explanations,
X-ray reports...). First, the literature about learning visual and textual representations
independently will be described before elaborating on how they are unified in multimodal
models that handle both text and images as part of their inputs and outputs.

2.1.1.1 Vision models

Learning good visual representations is essential to solve different downstream tasks on
images, such as segmentation or object detection. While before 2012, signal processing
techniques and filters were used to extract properties from images to create their repre-
sentations, the AlexNet published in that year [21] jump-started the dominant use of
deep learning for visual representation learning by significantly outperforming shallow
approaches on the 2012 ImageNet challenge.

Visual feature extractors: Inspired by the performance achieved by the AlexNet,
many convolutional neural network (CNN) architectures were created to learn ever better
visual representations, such as the GoogLeNet [22] or the VGG-Net [23]. A major
breakthrough was achieved in 2015 with the ResNet [24] that introduced the use of skip
connections in CNNs. These connections sum the input signal of a layer to its output to
create the final output. Among other benefits, this allows later layers to simply output 0
to forward the input when the network is too deep for a particular task, reducing the
need to tailor the model size too precisely. This family of models is still widely used in
contemporary approaches as a convolution-based visual feature extraction backbone.

An alternative architecture to CNNs for deep-learning-based visual representation learn-
ing was introduced in 2021: the Vision Transformer (ViT) [25]. While at the time of
publication of [25], they were found to scale better than CNNs, some argue that hybrid
models such as Swin-T [26] or MLP-Mixer [27] work better at scale, or that CNNs can
be just as powerful as ViTs [28], while a different direction of research still believes that
scaling pure vision transformers is more promising [29].

(Pre)training visual feature extractors: The authors of [30] empirically found
scaling laws for computer vision that show that model, data and compute scaling provides
consistent performance gains in diverse downstream tasks. As more compute became
more accessible with time, supervised training on labelled data became a limitation as
obtaining such data is expensive. This is why weakly- and self-supervised training has
become widely used to pretrain large vision backbones.

For example, SimCLR [31] introduced a self-supervised training method where two views
of the same unlabeled image are created (through transformation), and the representa-
tions of both views are constrained to be similar in the representation space (contrastive
approach). Non-contrastive approaches have also been adopted to eliminate the need for
negative samples, such as Bootstrap Your Own Latent [32], where two neural networks,
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an online and a target network, are used to learn effective visual representations by
predicting the latent representation of one augmented view from another. An alternative
approach to self-supervised training of e.g. vision transformers has been inspired by
masked language modeling: the masked autoencoder (MAE) [33]. Patches of the image
are hidden, and based on the learned representation of the available patches, the network
learns to predict the hidden ones through a decoder.

Using the pretrained backbones to solve computer vision tasks: Most pure
computervision tasks solved by deep neural networks are one of the following.

• Classification: given a set of classes, an input image has to be classified into one or
multiple of those classes.

• Object detection: given a set of classes, instances of those classes have to be detected
in an input image, and each instance should be localized by a bounding box. This
task is typically solved in the literature with models such as Faster R-CNN [34],
Mask R-CNN [35] (CNN-based) or DETR [36] (ViT-based).

• Segmentation: given a set of classes, determine the class of each pixel of the image
(thus creating masks of the different classes, optionally of their instances, in the
image). This task is typically solved in the literature with models such as the U-Net
[37], Mask R-CNN [35] (CNN-based), DETIC [38] or Segment Anything Model
(SAM) [39] (ViT-based).

The different architectures used to solve these tasks generally have the same structure. A
vision backbone, which is a network that learns visual representations (as described in the
previous subsection) and a task specific module that takes the visual representation output
by the backbone, and uses it as an input to the task specific network. In most settings,
transfer learning is performed by taking a pretrained backbone that has already learned to
extract high-level features, and the complete network (with some layers potentially frozen)
is further trained end-to-end. The simplest example of this is in image classification,
where the image representation is fed into a simple fully connected network that outputs
class logits.

2.1.1.2 Language models

Similarly to the visual modality, strong language representations are the foundation
to good performance on downstream natural language processing (NLP) tasks. While
the transformer architecture introduced in 2017 revolutionized language modeling [40],
different approaches can be used to learn text representations as well.
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Text representation learning: Initially, shallow models relied on text feature ex-
traction methods like bag of words or TF-IDF. But word embedding approaches like
Word2Vec [41] and GloVe [42] democratized the learning of dense vector representations
for words based on their co-occurrence patterns in text, allowing deep networks to encode
semantic similarity between words. Similarly, methods like Skip-Thought [43] or InferSent
[44] learned such representations of full sentences or documents through a process of
predicting neighboring sentences instead of words.

However, the publication of the Transformer architecture in 2017 [40] started a wave of
new, foundational models in textual representation learning. The “Bidirectional Encoder
Representations from Transformers” (BERT) [19] leverages the transformer encoder block
to generate context-sensitive embeddings where each token attends to the full sequence
at each layer. This led to very powerful text representations, that power downstream
tasks like retrieval or classification for example. This approach inspired other transformer
encoder-only models such as T5 [45] or RoBERTa [46] which are still very commonly
used text encoders.

Language modeling: Language modeling is the task of predicting the upcoming, most
probable word in a sequence of text - most often iteratively to generate the full sequence.
It is the problem behind many generative AI applications in the textual modality, and
solutions have made great progress with the use of transformers in this field too.

Earlier approaches to language modeling relied on n-gram statistics to predict the
most probable word, but these techniques failed to capture long-range dependencies in
the sequences and the semantic relations between the words. This is why, just as for
representation learning where transformers allowed to capture those relations better as
we mentioned for BERT earlier, transformer-based language models were democratized
after 2017. These language models are most often either decoder-only or encoder-decoder
transformer architectures, and follow scaling laws that support how scaling compute,
data and model size has a large potential, as shown for example by the Chinchilla scaling
laws [47]. Thus, such models have been scaled to very large amounts of parameters,
and have been pretrained on Internet-scale text corpora in a self-supervised manner
similarly to vision pretraining, for example through masked language modeling and
next token prediction [20]. Those models are then further instruction-tuned to follow
user-instructions and to be aligned to human preferences, and optionally fine-tuned to
domain specific data.

While transformer-based language models currently make state-of-the-art progress on an
approximatively monthly basis, some large language model families that achieve excellent
performance on diverse text-based tasks through prompting and few-shot learning only
include ChatGPT (GPT-4) [48], Mistral [49], LLaMa (currently LLaMa 3) [20] or Gemini
[50].
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2.1.1.3 Vision-language models: fusing vision and language representations

Some tasks however require inputs of both text and image modalities. This is why some
families of models aim to learn representations of image and text in a common represen-
tation space, and to combine the representations of image and text for downstream tasks
where the input and output are of both modalities.

Image-text joint representation learning: When learning aligned text and image
representations, typically for vision-language pretraining, the objective is that represen-
tations of images and texts referring the same thing end up close to each other in the
latent space, while unrelated embeddings should be as distant as possible. This idea is at
the core of contrastive learning, which was democratized when its effectiveness at scale
was proven at the publication of “Contrastive Language-Image Pre-training” (CLIP) [14].
It introduces a learning objective and sampling strategy to pre-train an image and a text
encoder jointly.

Figure 2.1: Overview of the CLIP pretraining strategy. Source: https://openai.
com/research/clip.

As illustrated in Figure 2.1, for each batch, n image/text pairs are sampled from the
pre-training dataset. All images and texts are processed through their corresponding
encoders. Then, the dot product between all image and text embeddings is computed,
measuring their similarities. The learning objective aims to maximize the similarity
of the true image/text pairs, while minimizing the similarity to the rest of the batch.
This pushes embeddings of corresponding image and text to be similar. The authors
of CLIP observed that this training strategy scales to billions of image-text pairs very
efficiently, enables competitive zero-shot transfer to image classification on unseen classes,
and leads to vision backbones that compete with state-of-the-art label-supervised ones
[14]. Alternatively, a very competitive joint representation is obtained through a similar
approach based on a pairwise sigmoid loss, eliminating the need for the overall pairwise
similarities of the batch for normalization, in SigLIP [51]. The removal of that constraint
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unlocks larger batch sizes on equal compute while also training better with smaller
batches [51].

More data efficient approaches to such image-text pretraining have also been proposed.
[52] introduce more data-efficient contrastive language-image pre-training through joint
learning with self-supervision. For example, [52] introduces “Multi-View Supervision”
where it uses text and image augmentation to take advantage of positive pairs in addition
to other self-supervised objectives.

Finally, [53] proves that a competitive joint representation can be learnt through caption-
ing as a pretraining task rather than contrastive learning, and that contrastive learning is
not the only way to learn aligned image-text representations. Instead of training a vision
and text encoder jointly with a contrastive loss, they train the vision transformer encoder
with a transformer decoder tasked to generate captions for the image, using a cross-entropy
loss. During pretraining, the model switches between two caption generation modes:
the captions are either generated autoregressively with a causal self-attention mask, or
through parallel decoding, where the mask forces the decoder to predict the full caption
based on the image exclusively. This pretraining strategy leads to vision backbones that
match or outperform equivalent CLIPs in few-shot and supervised classification, and
outperform them in captioning or visual question answering tasks [53].

Model architectures for multimodal tasks: Common multimodal tasks include
multimodal classification (classifying based on image and text inputs), visual question
answering (VQA) (answering natural language questions based on an input image), multi-
modal chatting (chatbots that support image inputs too) or image captioning (generating
natural language descriptions of input images).

One approach to solving these tasks is to train multimodal models from scratch. The
architectures used for these tasks are similar, with the exception of classification tasks.
The image captioning task for example has long been solved through architectures trained
specifically for this multimodal task of outputting text based on an input image. Popular
research for image captioning [54], [55], [56], [57] relied on feeding the output of a
CNN encoder into a recurrent neural network (RNN) decoder to generate the captions
sequentially. More modern approaches use a transformer image encoder and text decoder
in a similar setup [53]. Alternatives to this encoder-decoder approach have also been
proposed, such as for example the fusion-encoder [58] or the dual encoder [14].

But pretraining from scratch on image-text is hard to scale due to the limited availability
of such data. For this reason, many methods take pretrained vision and language models,
optionally freeze some of their parts, and further train them together by combining them
in different ways in order to take advantage of the capacities learned on pure image
and text pretraining respectively [59] [60]. Different approaches are used to combine
the representations from both modalities. The overall idea is to have modality-specific
encoders, and feed their output into a fusion module. This module combines these latent
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representations and aligns them to the output modality. A common approach for the
fusion module is to use a weighted sum of the latent representation’s features with learnt
weights, while an alternative is to simply concatenate the two feature vectors and pass
them through a fully connected network, sometimes including attention mechanisms, for
reprojection. The output vector of this fusion module is then fed into the task specific
model used for classification or language generation for example. However, fusion can
happen at different stages.

Some specific approaches to combining pretrained modules to create vision-language
models that proved excellent scaling and performance include Flamingo [61], LLaVA [62]
and BLIP [63].

• Flamingo adds cross-attention layers in the pretrained LLM to inject the visual
features. These layers are trained on a large image and text dataset with a language
modeling loss [61].

• Alternatively, LLaVA combines a pre-trained LLM and vision encoder with a vision-
language connector network [62]. This is a lightweight fully-connected network that
learns to project the visual representations into the LLMs input embedding space.
The model, including this network, go through supervised training on image-text
pairs to learn this projection through VQA and image captioning tasks.

• “Bootstrapping Language-Image Pre-training for Unified Vision-Language Under-
standing and Generation” (BLIP) [63] is an approach to leveraging pretrained
vision and language models to train a vision-language model that can be prompted
for different vision-language-tasks that was introduced in 2022. It introduced a
pretraining framework that combines three kinds of losses at pretraining. Image-text
contrastive (ITC) involving the image and text unimodal encoders to encourage
similar latent representations of related images and captions, image-text matching
(ITM) involving the image-grounded text encoder to learn fine-grained alignment
between vision and language, and a captioning loss [63].

• BLIP-2 [13] was proposed the following year, taking a different approach. It
bootstraps pre-trained vision encoders and language models by aligning the visual
representations to the language model’s representation via a Querying Transformer
(“Q-former”). This module is a lightweight transformer architecture (originally a
pretrained BERT model [13]), that learns textual queries which attend to the image
latent in order to generate an image representation that is relevant to the language
model. This allows a very parameter-efficient training of the pipeline in comparison
to the size of the involved models, leading to beating state-of-the-art performance
with significantly less trainable parameters [13]. The model is trained in two
stages. The first stage bootstraps vision-language (VL) representation learning
by freezing the vision encoder and training the Q-former with the three combined
losses described for BLIP, while the second stage bootstraps vision-to-language
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generation from the frozen language-model by training the full pipeline end-to-end
with a text generation objective.

Other large scale vision-language models (VLMs) that also bootstrap such pretrained
modules and that have been scaled enough on curated data to develop a perception
and understanding of text and images include Qwen-VL [64], PaLI-X [65] or CogVLM
[66]. Evaluating such multimodal is not fully unified yet, though benchmarks like SEED-
Bench [67] and MME [68] are being adopted. These are datasets of manually generated
instruction-answer samples to limit data leakage to foundation model pretraining.

2.1.2 In the medical domain
Medical diagnosis is the process of attributing a pathology to a patient’s symptoms. To
do this, medical doctors take the patient’s context into account (medical history, lifestyle,
symptoms. . . ) and enrich it by requesting different sorts of medical imaging (MRI, fMRI,
CT, X-ray. . . ). Since this thesis works with chest X-ray (CXR) images, this Section will
mainly focus on X-ray imaging data.

X-rays are numerically available as images, while patient context can be represented
as (optionally structured) text. Therefore, models that leverage patient context and/or
X-rays need to learn and use representations of the two modalities discussed in the
previous Section 2.1.1 for the downstream tasks on (chest) X-rays that are introduced in
the following subsections.

2.1.2.1 Chest X-ray classification for automated diagnosis

Due to the cost-effectiveness and low invasiveness (low doses of radiation in comparison
to CT), X-rays are very commonly prescribed to diagnose chest pathologies. However,
accurate reading of this imagery requires years of training and medical experience. This
is why research has been pursuing generating diagnoses of chest X-rays automatically
through different deep-learning-based approaches.

The most common approach to automated CXR classification in the literature is to use
an image encoder (e.g. a CNN) and feed its output into a classification module (most
often a fully connected network). This was introduced in [69] for chest X-rays, where such
an architecture was leveraged to classify view orientations of CXRs. [70] then used the
same approach to classify pulmonary tuberculosis. From there on, publications like [71]
or [72] benchmarked different CNN architectures for this task, and introduced different
architectural tweaks and data augmentations to improve performance. Alternatively to
CNNs, [73] introduced attention-driven spatial transformer networks to classify anomalies
in CXRs. LT-ViT [74] also obtained competitive performance on multiple CXR classifica-
tion datasets by using a vision-transformer as encoder [74]. While some took advantage
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of ensembling ([75], [76]) to further improve performance metrics, the overall approach
to solving the task remained the same by adding classifiers on top of vision backbones.

The CheXpert [16] benchmark can be considered to compare the performance of the
most recent approaches to multi-label classification on chest X-rays in the literature. On
the 14 abnormality labels present on the dataset, the ten best performing publications
obtain an average area under the curve (AUC) score of 0.933 to 0.928 [77], making
them all very similarly effective in practice. While seven of those 10 publications use
ensembling techniques to optimise these performance scores [78] [79], DeepAUC-v1 [17]
and two versions of Conditional-Training-LSR [78] obtain a 0.93 AUC score with a
single model that achieves the current state-of-the-art performance in multi-label chest
X-ray classification. [78] obtain this through a CNN that leverages dependencies among
abnormality labels and label smoothing as uncertain labels are frequent in the benchmark,
while the approach of [17] is based on optimizing a CNN for AUC maximization through
a margin-based min-max surrogate loss function. The work of this thesis includes a chest
X-ray diagnosis (as classification) task as we generate natural language generations for
each label, and a critic selects the relevant explanations, implicitly selecting positive
labels. Thus, we will compare our classification performance to these aforementioned
state-of-the-art approaches to CXR classification.

Alternatively to pure image classification, some research efforts approached X-ray di-
agnosis by including localization information in the diagnoses. [80, 81, 82, 83] did this
as an object detection task, identifying bounding boxes delimiting areas corresponding
to a given class (e.g. abnormality label in the case of CXRs). Strongly supervised ap-
proaches used algorithms like YOLO variants or Faster R-CNN to localize abnormalities
in chest X-rays [84]. More recent works like AnaXnet trained two blocks independently, a
Faster R-CNN that localizes anatomical regions, and a graph convolutional network that
classifies the presence of abnormalities in each bounding box (multiclass classification)
[85]. Due to limited availability of bounding box annotations in X-rays, works like [82]
[81] [80] used weakly- or semi-supervised learning to solve this task. Similarly, [86, 87,
88] tried solving this as a segmentation task, predicting the membership of each pixel
to abnormality classes. For example, [87] used a DenseNet architecture to segment
cardiomegaly in chest X-rays while [86] used a U-Net structure for this segmentation
task.

However, these different approaches to chest X-ray diagnosis present some flaws that
limit their adoption in medical settings. The deep-learning models lack explainability for
their predictions, leading to confirmation bias in doctors relying on them and difficulty to
understand their mistakes [5]. Moreover, as they are not constrained on the information
from the chest X-rays they use to make their predictions, they often use irrelevant areas
of chest X-rays (such as artifacts specific to some imaging hardware used in parts of the
dataset) that a professional would not have used to make their diagnosis [12]. Attempts
to solve these limitations will be presented in Section 2.2.3.
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2.1.2.2 Medical vision-language foundation models and chest X-ray report
generation

Biomedical language models such as PubMedBERT [89], [90] or Med-PaLM [91, 92]
have proven that large language models trained or fine-tuned on medical text corpora
led to very competitive performance on medical question answering problems such as
the US Medical Licensing Examination where Med-PaLM 2 obtained state of the art
performance [92].

As most medical tasks involve images and text (in many cases, a medical professional
includes medical imaging in their diagnosis process), similar medical foundation models
trained image and text data could be leveraged for many downstream tasks.

Medical vision-language foundation models: One approach to building such
foundation models is to train as general and versatile medical models as possible. The
most notable in this category are Med-Flamingo [93], LLaVA-Med [94] and Med-PaLM
M [95]. These are generalist vision-language models that have been trained on different
types of imaging and corresponding medical text including dermatology, pathology or
radiology. This allows for broad downstream use with little to no further training on
various medical tasks. Med-Flamingo [93] is an OpenFlamingo model [96] trained on
medical textbook images and text for few-shot visual question answering (VQA), while
LLaVA-Med [94] is an adaptation of the previously described LLaVA [62] on multimodal
data from PubMed. Further instruction tuning allow the use of this foundation model as a
medical generalist chatbot [94]. Med-PaLM M [95] is a version of PaLM-E [97] fine-tuned
on a large biomedical dataset, leading to a foundation model supporting different types
of medical images, text and genomics. Similarly, XrayGPT trains a combination of the
vision encoder from MedCLIP and a pre-trained Vicuna LM on medical data.

Image-text contrastive foundation models have also been trained on medical or even
X-ray-specific data. For example, MedCLIP [98] is such a model that was trained on
unpaired medical image and text data. For chest X-rays specifically, GloRIA [99] learns to
align embeddings of words of reports and regions of images, while BioVIL [100] combined
a similar local alignment strategy with a classical contrastive global alignment between
the full chest X-rays and reports. The currently best performing CLIP-based model
for chest X-rays is CXR-CLIP [101], which obtains this performance through diverse
data-efficient vision-language pretraining techniques, a broader dataset including an
image-label dataset where labels are augmented to natural language prompts, and the
use of a combination of image, text, and image-text contrastive losses in each batch.

Some foundation models are more specialized for better performance on a specific family
of tasks, while still being more general than task-specific models. For example, some
foundation models focus on different CXR tasks through a single model. ELIXR [102] is
such a model that aligns a CXR-specialized image encoder to a medical LLM (PaLM 2
[92]) for tasks like medical VQA.
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MAIRA-1 [103] is an alternative state-of-the-art radiology-specific multimodal foundation
model that takes a similar approach. It aligns a CXR-specific image encoder with a
Vicuna-7b LLM previously fine-tuned on medical text, leading to state-of-the-art CXR
report generation performance metrics [103].

Figure 2.2: GPT-4 evaluation of reports generated by CheXagent and competing medical
foundation models on the MIMIC-CXR dataset. Source: [15, Figure 3].

Finally, a recently published and competitively performing CXR foundation model is
CheXagent [15]. This is obtained by first pre-training a clinical LLM on CXR reports, a
vision encoder on CXR images, and then training a bridger network between those two
components. This bridger follows the BLIP-2 approach described in Section 2.1.1.3. A
Q-former bridging the two networks is trained in two stages, with the difference that the
first stage includes only image captioning and image-text contrastive losses, while BLIP-2
also uses an image-text matching loss. The model then performs competitively on a
large array of CXR-related tasks: view classification, binary disease classification, single
disease identification, multi diseases identification, visual question answering, image-text
reasoning and report generation [15]. Figure 2.2 illustrates how this CXR-specialized
model most often beats other multimodal medical foundation models mentioned in this
section.

Chest X-ray report generation: Physicians communicate their findings and observa-
tions from medical imaging through medical reports. The production of such a report,
on average, takes five to ten minutes [104]. To reduce this time, one of the main tasks
pursued through deep learning on chest X-rays is report generation. The goal is to
assist radiologists in making faster and accurate diagnoses by generating CXR reports in
natural language based on an input CXR image. A successful solution generates clinically
accurate reports that correctly describe the patient’s condition and symptoms, with
fluent, realistic and human-readable language [105].

Historically, this task was most often solved with report-generation-specific models,
similar to those used in image captioning. Early approaches like [106, 107] relied on
CNNs to extract features from CXR images that were then fed into recurrent neural
networks (RNNs) to generate the natural language reports. Attempts at improving this
overall architecture have been made based on different ideas. [108] and [109] classify the
top-k most probable diseases in the X-ray in a first stage, and then feed that information
into the decoder for more accurate reports. Works like [110] and [111] try to alleviate

21



2. Related Work And Key Concepts

the fact that RNNs are not best at generating long sentences and paragraphs [112] by
replacing the RNN with a Transformer-based decoder, while [113] does so through a
hierarchical RNN architecture. To integrate prior medical knowledge in report generation
models, [114, 115, 116] built knowledge graphs to guide report generation with that
knowledge.

A different direction of improvement on these report-generation-specific architectures
is through the addition of a visual bottleneck, as recently done in [117, 118]. RGRG,
introduced in [117], builds upon the typical encoder-decoder architecture by addiction
region-of-interest (ROI) detection and selection stages. The CXR image is input into a
Faster R-CNN object detector that was trained to output bounding boxes and embeddings
for 29 anatomical regions in chest X-rays. Those regions are then fed into a region selection
module (a binary classifier) as well as an abnormality classifier at training to include the
abnormality information in the learnt embeddings. Only the four regions with maximal
logits output by the region selection classifier are fed into the transformer-decoder that
generates sentences for each ROI independently, forming the CXR report altogether. This
approach allows the model to focus on relevant and important areas of the X-ray only,
which led to state-of-the-art clinical efficacy and natural language generation metrics at
the time of publication. [118] built upon this idea leveraging a similar anatomical region
detecting Faster R-CNN, but using a finding classifier head instead of a region selection
one. Thus, each bounding box is assigned an anatomical region label as well as diagnosis
labels. To generate the report, these regions of interest and their labels are encoded
as triples in natural language (for example "Opacity LOCATED_AT Spine"), and the
top-k region embeddings are concatenated to their corresponding embedded triples to
form a single sequence fed to the transformer-decoder for report generation. The main
difference to RGRG [117] is that the decoder takes all selected regions of interest as an
input for full report generation instead of generating independent sequences for each
region, allowing it to reason over the different findings. This led to a slight improvement
in clinical efficacy and natural language generation metrics over RGRG [118].

But increasingly often, medical multimodal foundation models such as those described at
the beginning of this Subsection are used for this medical image-to-text task. Designed
for natural language generation based on image-text input, these models generalize well
and turn out to often outperform the task-specific architectures described in the previous
paragraph. For example, the previously described MAIRA-1 and LLaVA-Med foundation
models [103], trained for multiple CXR-related task, outperform the best performing
CXR-specific architectures such as [117, 118] both in clinical efficacy and natural language
generation [103, 94].

Evaluating CXR report generation: To compare these different approaches to chest
X-ray report generation, two families of metrics are used: clinical efficacy (CE) metrics
that measure how good the model is at finding the medical symptoms and pathologies in
the X-ray, and natural language generation (NLG) metrics that measure how fluent,

22



2.2. Explainable AI

realistic and close to human writing the generated text is.

• Clinical efficacy metrics: These metrics are those that would be used for
the underlying medical task without language generation. In the case of report
generation, the reports communicate the findings of diagnoses and symptoms, which
is a (multi-label) classification task. Hence, the clinical efficacy metrics used are
classification metrics like weighted AUC score, F1 score, or accuracy.

• Natural language generation metrics: The metrics used to measure how fluent
and realistic the generated text is are those usually used to evaluate language
models and image captioners. They include the following metrics.

– BLEU : Based on the ratio of common 1-to-n-grams between the ground-truth
and generated text. For example, BLEU-3 takes anything between unigrams
and trigrams into account. The reported metric is usually the average BLEU
score across all generated texts.

– ROUGE-L: Based on the non-consecutive word longest common subsequence
(LCS) between the ground-truth and generated text. The longer the common
subsequence, the higher is the ROUGE-L score. Similarly to a F-score,
ROUGE-L is computed using the precision and recall based on the LCS.

– CIDEr : Based on the overlap in words between the ground-truth and gen-
erated text. Computes the TF-IDF weight vector of unigrams to 5-grams
of the two sequences, and then the cosine similarity between the four vector
representations of both texts. The CIDEr score is the mean of those four
similarities.

– METOR: Measures the similarity between the generated and ground-truth
text considering exact word matches, synonym matches, stemming matches,
and paraphrase matches. Additionally, it incorporates precision, recall, and
alignment-based scoring, penalizing differences in word order to provide a
more nuanced evaluation than for example BLEU.

2.2 Explainable AI
Literature from the domain of psychology has highlighted how humans rely on explana-
tions for learning by building inferences to enrich their prior knowledge [119]. Meanwhile,
[4] highlights how explainability is essential for intelligent systems to be trusted, especially
in medical settings. Explainability is also needed to detect biases like racism or sexism
that AI systems can develop [120]. While this shows how generating explanations for
decisions made by neural networks is important, as deep learning models grow larger, it
gets increasingly difficult to explain how they used their input to make their prediction.
We therefore need to make sure that these systems are interpretable to attain their
widespread use and public trust. In this section, we will describe how the explainability
of modern neural networks is approached in the literature. We will begin by describing
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the two categories of approaches to explainable AI (XAI), then discuss natural language
explanations (NLEs), to finally explore how these XAI concepts are used in deep learning
applied to chest X-rays.

2.2.1 Different approaches to explainable AI
Making neural networks explainable is approached in two fundamental ways in the
literature. Post-hoc explanation techniques are the most common. They are independent
of the model training, and aim at explaining predictions of a trained target model by
probing it in different ways. The other approach to explainability are self-explaining
models. These are models designed to generate explanations for their predictions at
inference, and that were trained with that explainability objective as well.

Figure 2.3: Categorization of the explainability methods mentioned in this section.

2.2.1.1 Post-hoc explainers

Post-hoc explanation generation is a family of techniques that are used to explain the
predictions of already trained and frozen models. They are completely independent from
training, and thus, do not constrain the model to take these predictions into account in
its training objective. An example of such methods is LIME [121], where an independent,
explainable model, such as linear regression, is trained on a neighborhood of the model
prediction it explains. In this section, we will mostly focus on post-hoc explainers for
visual and multimodal models, as this thesis focuses on visual input (a chest X-ray image).

These post-hoc explainers can further be divided into two subcategories, as illustrated
in Figure 2.3. Model-agnostic explainers solely rely on calling the model on various
inputs, while model-dependent explainers are based on having access to the model’s
architecture and trained weights. Common examples of the first category are LIME
[121], KernalSHAP [122] or the more recent LS-Tree [123]. These have the advantage
of being applicable on a broader amount of models as they are independent from their
architecture. Notable explainers from the second category are LRP [124], Grad-CAM
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[125], Deep- and MaxSHAP [126] as well as saliency maps [127]. The latter are obtained
by computing the gradient of the class of an input sample and deriving the saliency maps
from a first-order Taylor expansion of the image [127]. While they are not applicable as
often as model-agnostic explainers, they have the potential to generate more accurate
explanations: explainers that only probe the models through different inputs can infer
correlations between the inputs and outputs that do not have to represent how the model
works inside, while these model-dependent explainers often base their explanations on
the model’s inner weights and activations.

These techniques base their explanations on features of the model input. Most often,
they quantify the importance of each feature for a prediction on a given input, or select
a subset of the features that played a significant role in put prediction. In the case of
images, these explanations are usually at the pixel level, while for natural language, they
are usually at the granularity of tokens. An explanation based on importance weights
for a natural language sequence would be a vector of importance scores of the length
of the sequence, or a heatmap for an image. A subset-based explanation would be the
important tokens of the sequence in the case of a natural language sentence.

2.2.1.2 Self-explaining models

Self-explaining models take a different approach to explainability in comparison to post-
hoc explanation methods by designing the models to also output explanations for their
predictions. These are models that have an explanation-generating module as part of
their architecture. Typically, they are composed of a predictor module (that generates
the task specific output) and an explanation generation module (that also takes the
predictor module output as an input) [128]. Due to this design, the main difference with
post-hoc explanation approaches is that generating explanations is part of the training
objective of the model. However, there are also exceptions in such models that are solely
supervised on the task-specific prediction and do not include the explanation generation
in the training objective, as for example [129], or counterfactual explanations that are
post-hoc explanations describing the minimal amount of modifications to be made to the
input to change the model’s prediction [130].

We group the predictor module of self-explaining models in two categories: "predict-then-
explain" or "explain-then-predict". We will refer to models that generate a prediction and
feed the prediction, optionally along other signals like the input or outputs of inner layers,
as "predict-then-explain" (PTE). In contrast, "explain-then-predict" (ETP) self-explaining
models are models that first generate explanations for different possible outputs, and
then take those potential explanations into account to make their final prediction.

Predict-then-explain: Most rationalized models are PTE approaches to self-explaining
AI. In these models, such as [131, 132, 133, 134, 135], explanation generation is an
extension to the existing task architecture. A task-module predicts the task-specific
output, and subsequently, an explanation generation module generates the explanation
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in the form of a subset of the input or natural language for example [136]. The potential
flaw of these approaches is that the explanation is still generated after the choice of label,
possibly leading to unfaithful explanations that justify wrong outputs in a persuasive
way. In clinical settings, this would have a high potential of inducing confirmation bias.

Explain-then-predict: In ETP models, the explainer module is trained to output an
explanation based on a premise (input) and hypothesis (one of the potential task-specific
outputs). The task-specific output, such as a label, is then predicted by a module that
never gets the full input, and makes it prediction only based on the explainer’s output
(the candidate explanation). This creates an information bottleneck for the task-specific
prediction and forces the explainer to generate explanations that contain relevant and
faithful information. While in some works, such a setup led to a decrease in task-specific
performance metrics in comparison to PTE [137, 131], the generated explanations were
more faithful and useful.

This configuration also has the theoretical advantage of allowing the model to potentially
“reason” over explanations before outputting its prediction. This is similar to what was
recently achieved with Chain-of-Thought (CoT) prompting [138] in LLMs, where
allowing the language model to output its reasoning before generating the final answer
led to better behavior in some downstream tasks [138]. Similarly, a vision-language ETP
model, ReVisE [139], improves its explanations for VQA iteratively through such an
“explain-then-predict” approach that reminds of CoT prompting: a BLIP-2-like architec-
ture generates grounded answers based on an image and natural language question as
well as a rationale (explanation) for that answer. Iteratively, a new answer is generated
taking the output rational into account as an input, until convergence where the answer
does not change anymore. One could also argue that some of the report-generation
models cited in Section 2.1.2.2 also are ETP approaches. As described in Section 2.1.2.2,
RGRG [117] and the architecture introduced in [118] first find abnormal areas in the
chest X-ray and generate reports based on this subset of the input only. The selected
abnormal areas can act as visual grounding, a form of explanation, and the task-specific
output is generated based on that explanation only. While these explain-then-predict
systems are rarer than predict-then-explain ones, they will be discussed in further detail
and with more examples in Section 2.2.2.
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2.2.2 Natural Language Explanations
A particular type of explanations generated by self-explaining models are natural
language explanations (NLEs). These are sentences in natural language that provide
arguments supporting a prediction the way a human would. For example, a NLE for a
classifier labeling an image as “animal” in a binary setting could be “Four legged silhouette
with brown furs. Humans do not have fur and stand on two legs”. Such explanations are
very valuable as they could describe the model’s reasoning in a human-intelligible way,
even to people that are not familiar with AI systems.

2.2.2.1 Generating and leveraging natural language explanations

Generating NLEs: [10] and [140] spurred research in the direction of neural nets
generating explanations for their decisions in natural language, inspired by the fact
that humans learn from explanations and examples, but also from creating explanations
themselves. This research direction was further supported by the creation of datasets
containing natural language explanations. The ACT-X and VQA-X datasets [141] con-
tained natural language and visual explanations for VQA and visual activity recognition,
and were published with the PJ-X model that generates a prediction with feature-based
and natural language explanations. The BDD-X dataset [142] contains natural language
explanations for choices made by a self-driving car and was used to train a car-controlling
model explaining its choices in natural language. In most cases, the architecture is
task-specific, with the addition of an explanation-generation module which is a language
model like GPT-2 [143] which takes the model input, along with the task-specific output
in some cases, as an input for NLE generation.

But NLEs are not only used in pure natural language processing as in [137], or in
visual question answering. Intelligible explanations for visual reasoning are particu-
larly important in real-world settings [144], as [145] showed for assistive technologies
or [146] for interactive learning for example. [147, 148, 149] built models generating
NLEs in computer vision settings, while [12, 150, 151, 142] did so in multimodal ones.
For example, the e-UG model [136], based on the works of [152], uses the UNITER
vision-language transformer-based encoder as a task-specific-module that predicts a label.
The intermediate representations based on which the label was generated are fed to the
explanation-generation module which is GPT-2 [143] language model.

Additional benefits of integrating NLE generation: Including NLE generation in
an architecture can be beneficial in more ways than just by improving transparency. For
example, training with NLEs can also enhance model training. Adding natural language
explanations of reasoning to a model’s training data is a way of integrating further
external knowledge into the model, as it also learns the content of these explanations.
This was for example leveraged in [153] where NLEs generated by GPT-3 [154] were used
to improve the reasoning capabilities of smaller language models. Additionally, [154]
introduced the ability of LLMs to perform in-context learning (ICL), which is making
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accurate predictions on data that was not seen in training by being prompted with a few
examples. It turns out that performing in-context learning with NLEs provided in the
examples (reffered-to as “X-ICL” [155]) leads to better performance on tasks requiring
complex reasoning [155, 156, 154].

2.2.2.2 Evaluating natural language explanations

Evaluation methods and metrics for extractive explanations of machine learning models
[157, 158, 159, 160] are not suitable for natural language explanations which are generated
rather than extracted from the input. The simplest and most common approach to
evaluating NLEs is to measure the similarity between the generated and ground-truth
explanation with metrics like those described in Section 2.1.2.2’s paragraph on evaluating
report generation, for example BLEU [161]. Some publications like [142] also perform
human evaluation, but this approach is challenging and expensive to scale. However,
these NLE-generation evaluation metrics measure the persuasiveness of the explanations
rather than their faithfulness. Faithfulness is defined as “the accuracy with which the
explanation describes the decision-making process of the target model. Faithfulness of
an explanation should not be confused with the property of an explanation to provide
ground-truth argumentation for solving the task at hand, which is independent of a model
decision-making process” in [162]. [131] introduces two conditions that are required for
a NLE to be faithful: feature importance agreement and robustness equivalence. To
measure them, the model input is altered and the change in model output is measured
to observe the degree of label-NLE association [149]. The underlying idea is that an
explanation can be faithful only if it is closely tied to the predicted label, and they
should therefore be similarly affected by noise or by the removal of important explanation
features for robustness equivalence and feature importance agreement respectively.

Domain-specific NLE faithfulness metrics also have been introduced as fields like medicine
rely on more precise and factual explanations. In the chest X-ray analysis field for
example, the “CLinical EVidence” (CLEV) score measures the clinical accuracy of these
explanations using the CheXbert labeler to extract the evidence labels mentioned in the
NLE and ground-truth explanation, and computing the accuracy of their detection as
faithful NLEs should be based on the same evidence and findings in chest X-ray diagnosis
[12].

To make NLE-generation evaluation more unified and comparable, benchmarks are being
developed and adopted, such as e-SNLI [137] in the natural language field and e-ViL
[136] for vision-language tasks.

2.2.3 Explainability in AI for chest X-rays
Model explainability is especially crucial in medical settings because mistakes are directly
affect human lives, and when they happen, they need to be detected and understood
immediately to correct them and the underlying model. Moreover, medical professionals
need to understand the model’s reasoning to challenge it based on their own knowledge
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to limit confirmation bias. But how are these explainable AI techniques applied to
deep-learning-based X-ray analysis, and are they sufficient for those constraints? In this
section, we will begin by describing how post-hoc explainers and self-explaining models
are used in radiology AI to then outline the limitations of these current applications that
drive and inspire the work described in this thesis.

2.2.3.1 How post-hoc explainers are applied to chest X-rays

Post-hoc explanation techniques are the most common approach to explainable AI for
chest X-ray analysis [163]. In this image processing task, the intuitive way to add
explainability is to employ tools such as saliency maps to visually highlight the areas
that contributed the most to a prediction [164]. Similar heatmaps are generated for
automated CXR diagnosis using GradCAM variants in [165, 166, 167, 168]. This post-
hoc explanation techniques generates the heatmaps through a weighted combination
of forwarding activation maps fed through a ReLU activation function [169]. Different
post-hoc visual explainers were compared in studies such as [170] where GradCAM
and LIME are tested on a chest X-ray classification model, or [171] where SHAP and
GradCAM++ are employed and compared to radiologist annotations.

Figure 2.4: Examples of GradCAM activation maps on chest X-rays. Source: [166,
Figure 9].

Some more recent approaches, such as the LT-ViT [74], use transformers as vision encoders
which enables them to visualize the importance of image-regions without GradCAM
and related variants by directly visualizing the smoothened attention maps of specific
tokens (the [CLS] token for overall contribution or the [LBL] token for class-specific
information). Even though this post-hoc explainability is directly built-into the model in
comparison to the other post-hoc explainers that were mentioned, it still is performed
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a posteriori and does not constrain the model to learn from relevant areas. Therefore,
self-explaining approaches are still required to address these limitations.

2.2.3.2 Self-explaining models for chest X-rays

Though less common, self-explaining models are applied to chest X-rays to add explain-
ability to automated CXR processing as well. Early works in this direction learnt to
extract explicit rules for X-ray classification, making the model decisions inherently
explainable. For example, [172] performs classical image feature extraction through
programmatic filters and then extracts “IF-THEN” rules based on these features for
explainable rule-based classification. Similarly, [169] learns a decision-tree to classify
chest X-rays.

But more modern deep-learning-based self-explaining models for chest X-rays also exist.
As mentioned in Section 2.2.1.2, some two-stage approaches to CXR report generation
like [118, 117] perform visual grounding of the clinical observations they generate by
design as they first detect abnormal or anatomical areas, and only feed those to the report
generation module. Since the generated content was made based on that area only, these
regions of interest can be used as visual explanations generated before the task-specific
prediction (report generation) was made, making this an explain-then-predict approach.
An alternative visually-self-explaining model that generates heatmaps like GradCAM
for example is the CXRNet [173]. It introduces an encoder-decoder-encoder architecture
for CXR classification, where the first encoder extracts features from the X-ray, the
decoder reconstructs the input X-ray with an importance heatmap overlaid, and the last
encoder extracts feature from this generated image to include that information in the
final classification output. This pipeline is trained with label-only supervision without
requiring heatmap annotations, thus making this a self-explaining explain-then-predict
alternative to post-hoc visual explainability techniques like GradCAM.

Generating explanations in natural language (NLEs) for chest X-rays has not been
explored as much yet. This task differs from report generation as generating NLEs
isolates the reasoning capabilities of the model to specifically explain the presence of
individual labels. Very recently, [174] has explored this through a hybrid approach
between post-hoc explaining and self-explaining models for localized natural language
generation. It introduces a model that learns to align both chest X-rays with report-level
embeddings and chest X-ray patches with sentence-level embeddings through combined
global and localized contrastive losses to then explain predictions by computing similarity
scores between areas of the X-rays and different descriptions. This leads to localized
explanation generation that is not purely post-hoc as it is integrated to the loss at training.
However, the task of generating natural language explanations for predictions on chest
X-rays has been explicitly introduced and formalized in [12]. The publication releases
the MIMIC-NLE dataset, containing more than 38,000 NLEs for thoracic pathologies
extracted from the largest chest X-ray report dataset, MIMIC-CXR [18]. It also describes
and benchmarks baseline models for this new task that were explicitly trained to generate
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natural language explanations for chest X-ray diagnoses (two CXR-captioning-based
approaches adapted from TieNet [107] and RATCHET [175] and a model combining
GPT-2 and a DenseNet-121 called “DPT”). As a part of this benchmark, it presents
a new metric to evaluate the quality of the generated NLEs in addition to the report
generation described in Section 2.1.2.2: the CLEV (CLinical EVidence) score. The
CheXbert labeler [176] is used to extract the evidence labels mentioned in the gen-
erated and ground-truth NLEs, and computes the accuracy over all generated NLEs
as clinically accurate NLEs should include the same findings as the ground-truth ones [12].

2.2.3.3 Limitations of current applications of explainable AI to chest X-rays
and how they inspired the work done in this thesis

As discussed in this section, attempts at explaining automated chest X-ray analysis
systems are most commonly made through post-hoc explaining techniques that do not
constrain the model to learn from relevant features and only generate those explanations
a posteriori. Even the self-explaining models that have been mentioned always apply a
predict-then-explain approach. While [118, 117] are an exception to a certain degree, they
do not generate NLEs that explain the reasoning but only visual areas that were taken
into account, and they do not express how and why those areas were used. The NLE
generation baselines introduced in [12] also all have a predict-then-explain approach where
the explanation generator is conditioned on the output of the task-specific predictor. To
our knowledge, explain-then-predict approaches to NLE generation for chest X-ray are yet
to be introduced. Moreover, [177] argues that the current predict-then-explain paradigm
in vision-language settings leads to completely independent language and vision-language
models. The disconnection between explanation generation and task-specific answering
prevents the final prediction from leveraging the reasoning and information contained in
the explanation.

This is what drives our approach to generate natural language explanations for CXR
diagnoses in an explain-then-predict paradigm. By first generating an explanation for
each diagnosis (label) and then selecting the ones that are actually true and relevant
for the input X-ray, the critic (classifier) leverages the content of the explanations when
making diagnoses. This in turn constrains the model to learn to generate clinically
faithful explanations that are truly relevant to the image in order to be selected by the
critic, and places explanation generation at a central role in the learning of the model
which is different to current approaches to explainable chest X-ray diagnosis. These
explainable diagnoses that were made using on the reasoning contained in the explanation
then have the potential to be challenged by medical professionals to avoid confirmation
bias when using such a system as assistance in a clinical setting.
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CHAPTER 3
Generating Natural Language
Explanations for Chest X-ray

diagnoses

To solve our overall goal of predicting CXR diagnoses with and based on natural language
explanations, the first step is to be able to generate accurate NLEs for positive pathologies
on chest X-rays. This is why, in this first chapter, we describe our effort in building a
vision-language model that takes a chest X-ray image and a textual prompt specifying a
label (pathology) and generates an accurate explanation for why that label is positive for
the medical image in natural language.

3.1 Problem setting
Natural language explanations for chest X-ray diagnoses offer radiologist-friendly expla-
nations that reflect how these professionals articulate their findings [12]. They can help
identify potential biases or errors in the model’s reasoning, leading to safer and more
reliable diagnoses in a real world setting. This is why, in our effort of building a system
that outputs faithful natural language explanations for each output diagnosis, we begin
by solving the task of generating explanations for labels that we know are positive for a
given chest X-ray.

Solving this task can be formalized as training a multimodal machine learning model f
that processes both visual and textual inputs to generate a natural language sequence.
The inputs and output of the model are defined as follows:

• Let I represent an input (chest X-ray) image, encoded as a tensor suitable for
processing by the model.
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• Let s represent a textual prompt in the form of a string, specifically structured
as "Evidence for {LABEL}", where {LABEL} is dynamically replaced with the
relevant label.

The output of the model is a natural language sequence y, which is a decoded string
representing the natural language explanation for the given label and X-ray. The
interaction between the inputs and the output can be described by the function f :

y = f(I, s; θ) (3.1)

where θ represents the parameters of the model, which may include weights of neural
networks, settings for the encoding and decoding mechanisms, and other relevant model-
specific parameters.

The authors introducing the task of generating NLEs for CXR diagnoses propose baselines
for this exact task [12]. Their proposed approaches revolve around in a first step classifying
the positive labels, and then generating NLEs for those labels only. Since our dataset also
only contains NLEs for positive labels, and because we want to generate NLEs justifying
the presence of a pathology to see if they are actually faithful to the image to make our
classification decision in our overall approach, we learn to generate NLEs for positive
labels only in this stage. As the problem has so far been tackled with simpler models, we
also explore if a larger and more sophisticated architecture can more accurately model
these NLEs.

3.2 Method
To solve this problem, we base our work on the BLIP-2 vision-language architecture for
our model f due to its promise of enabling more nuanced interactions between the text
and image modalities while bootstrapping pre-trained base vision and language models
[13].

Figure 3.1: Illustrating how BLIP-2 bootstraps a trained image encoder and decoder-
based LLM. Image from [13].

As illustrated in Figure 3.1, this architecture improves the integration of image and text
information through a Query Transformer ("Q-former"). This component is essentially a
BERT model, which introduces a fixed number of learnt query tokens that are not derived
from actual text inputs but are instead designed to capture various aspects of the image.
These query tokens interact with the image features through a cross-attention mechanism
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within the Transformer structure to extract and represent the most salient features
for the task at hand. The resulting image representation is fed through a projection
layer (referred to as adapter) before being concatenated to the tokenized input sequence
(prompt) of the frozen LLM to align it with the model’s input space.

BLIP-2 is trained in two stages. The first one pre-trains the Q-former component
based on a combination of three losses (image-text matching, image-text contrastive
and captioning) to align image and text representations. This will be further covered in
Chapter 4, and we here focus on the second stage shown in Figure 3.1 which focuses on
vision-language modeling.

Figure 3.2: Language modeling stage (stage 2) of the training of our model. The Q-former
and language-model-input adapter are trained at this stage, using a cross-entropy loss on
the token logits (language modeling training).

Figure 3.2 represents the model we train to learn to generate an NLE for a given chest
X-ray and label. We use the same setup as the BLIP-2 model: a vision encoder, a
Q-former, an adapter linear layer and a large language model. We use EVA-CLIP-g [178]
for the vision encoder, BERT [19] for the Q-former and LLaMA-2 [20] as a language model
architecture. Based on the observation that CheXagent [15], a chest X-ray-specialized
vision-language foundation model, is also based on the same BLIP-2 architecture and
pre-trained on a large set of chest X-ray data 1, we choose to initialize the weights of our
vision encoder and language model based on CheXagent’s. This allows us to bootstrap
their CXR-specialized vision encoder and clinical language model as we work on the
same domain. The Q-former and adapter components however are initialized randomly,
as we train them to specifically model the task of NLE generation. For this second stage
training focused on language modeling, we initialize the Q-former with the weights from
our first stage of training focused on the Q-former itself, which is discussed in Chapter 4.

1While MIMIC-CXR and MIMIC-NLE are included, they use the same official split as we do [15],
avoiding data leakage.
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To train this model to generate natural language explanations, we use the training split
of the MIMIC-NLE dataset that is further described in Section 3.3. As the dataset only
contains NLEs for positive labels, the training samples consist of every image-NLE pair
of the train split, associated with their respective labels. To train the model in Figure 3.2,
we feed an image and prompt as an input, and train for autoregressive language modeling
with a cross-entropy loss just as the language modeling stage of BLIP-2 [13]. We thus
learn to auto-regressively decode NLE sequences from the prompt and image-information-
carrying tokens. The prompt to the model is of the form Evidence for {LABEL}
where the specific label is inserted. This form of prompting allows to generate explanations
for different labels, but also allows the addition of more information in the future, such
as patient context for example. Just as BLIP-2, we only train the Q-former and adapter
parameters at this stage, bootstrapping the already chest-X-ray-specialized vision encoder
and language model.

3.3 Experimental setup

3.3.1 Dataset and processing
As for all of our experiments, we use the MIMIC-NLE dataset [12]. It extends the
MIMIC-CXR dataset [18] by extracting natural language explanations for the positive
diagnoses of a subset of its chest X-ray images. The NLEs in the dataset focus on
explaining diagnoses that are positive or uncertain, as negative findings generally don’t
require case-specific explanations. Those explanations were automatically extracted
from the radiology reports provided in MIMIC-CXR using a BERT-based labeler, a
set of clinical explanation keywords, and an empirically and clinically validated set of
extraction rules. The creators begin by extracting the Findings and Impression sections
from the radiology reports, which contained the descriptive portions of the reports. They
then filter the extracted sequences to remove noise and information that is not visible
in the images, like patient history. Afterwards, the CheXbert [179] labeler is used to
identify the 14 chest X-ray labels of the dataset that can be mentioned in every extracted
sentence. To determine which labels in an NLE are being explained and which are the
evidence, the authors designed an evidence graph that formalizes label combinations with
high-confidence relationships. The graph shows which labels can act as evidence for other
labels, for example, Consolidation is considered evidence for Pneumonia. Based on this
graph, mutually exclusive rules are defined to formalize valid NLEs based on the label
and the present of explanation keywords: for example, the combination of Consolidation
and Pneumonia is considered a valid NLE even without an explanation keyword because
the evidence relationship is generally clear [12].

This process yields a dataset of 38,003 image-NLE pairs or 44,935 image-diagnosis-NLE
triplets as some NLEs can explain multiple diagnoses. They are split into 37,016 training,
273 development and 714 testing image-NLE pairs. The label distribution is the same
across splits, and the label counts and proportions are for example described for the test
split of the dataset in Figure 3.3.
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Figure 3.3: Class counts and proportions for the train split of the MIMIC-NLE dataset.

We only keep half of the labels, specifically those with the highest proportions of positive
samples also associated with NLEs: aspiration, pneumonia, pulmonary edema, vascular
congestion, atelectasis, pleural effusion, and COPD/emphysema. This selection primarily
impacts evidence classes2, which naturally generate fewer NLEs. We consider this
advantageous, as focusing on NLE generation for evidence classes would be less beneficial.
Our decision to filter labels is driven by our aim to showcase the potential of our approach
when there is sufficient data for all selected labels, rather than striving to build a
model that comprehensively covers all pathologies. In our NLE-generation training and
evaluation process, we consider image-NLE pairs of the dataset as samples. Additionally,
we also consider the label associated to each pair to craft the prompt for which we learn
to generate that NLE for the given X-ray. We process the images in 224x224 resolution,
in grayscale for the DenseNet vision encoder and in RGB for other models. During the
training process, we apply data augmentations to the chest X-rays such as randomly
flipping the images horizontally, rotating them by up to 10 degrees and applying random
affine transformations with no rotation but with translations and scaling, converting
them to tensor format. At both train- and test-time, we normalize the pixel values based
on the training data’s mean and standard deviation values.

2Types of findings or abnormalities that are directly observable in the radiographic image and that
suggest or indicate the presence of a pathological condition.
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3.3.2 Evaluation metrics
To measure and compare natural language generation performance, we focus on some
typical natural language generation metrics, BLEU-1, BLEU-4, ROUGE-1 and ROUGE-L
scores, which are also measured in [12]. The BLEU-n scores quantify the correspondence
of n-grams between the generated and ground-truth NLEs, while ROUGE-1 measures
the overlap in unigrams and ROUGE-L is based on the longest common subsequence to
take coherence and order of textual elements into account.

3.3.3 Baselines
To verify if the added complexity of the BLIP-2 architecture is beneficial for chest X-ray
NLE generation, we compare our results to multiple baselines.

1. We also implement and train a simpler baseline approach to vision-language mod-
eling illustrated in Figure 3.4 by connecting an image encoder to a pre-trained
language model only through a lightweight adapter linear layer. We train two
models of this form.

• The first one combines the chest X-ray pre-trained DenseNet-121 vision encoder
provided by TorchXRayVision [180] with the BioGPT language model, a GPT-
2-based model pre-trained on large-scale biomedical literature [90] through a
simple projection layer. For this model, all LM, vision encoder and adapter
parameters are trainable.

• The second baseline uses the same components but replaces the BioGPT
language model with the CheXagent LLaMA-2-based language model used in
our main model. In this case, only the vision encoder and adapter parameters
are trainable, keeping the pre-trained large language model frozen.

2. We also introduce a "blind" baseline, which consists of only the BioGPT language
model where all parameters are trainable. This model does not take any visual input,
thus generating an NLE solely based on the "Evidence for {LABEL}" prompt,
thus generating unfaithful NLEs by design as it ignores the chest X-ray itself. This
baseline serves as a sanity check verifying how much an unfaithful model that does
not ground its explanation in the medical image can still generate persuasive NLEs
that could lead to good natural language generation (NLG) metrics.

3. To determine how well a chest X-ray specialized foundation vision-language model
performs off the shelf on this NLE generation task, we also consider a baseline
where we prompt CheXagent for explanations for positive labels. Note that the
MIMIC-NLE dataset was included in its pre-training corpus, so this is not purely
"zero-shot" as it has already encountered natural language explanations. We do not
further train this baseline.
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Figure 3.4: Structure of our captioning baselines for NLE generation. A vision encoder’s
output is fed into a projection layer to create image tokens that are concatenated to the
tokenized prompt to create the LLM input. Vision encoder, adapter, and for some cases
language model parameters are trained using a cross-entropy loss.

4. Finally, we also consider the BLEU and ROUGE scores reported in the publication
that introduced the NLE generation task for chest X-rays and the MIMIC-NLE
dataset [12]. We do not re-run their models, and only report their values as a check
that we do not score significantly below the baselines that they introduce, and to
verify that our added complexity is beneficial to a certain degree.

3.3.4 Training setup
We implement our model based on the LAVIS library’s [181] official implementation
of the BLIP-2 model. The vision encoder and language model weights are loaded in
16-bit floating point precision and kept frozen. The Q-former and adapter weights are
in 32-bit floating point precision. We train for 100 epochs, while implementing early
stopping based on the NLG metrics on the dev split of MIMIC-NLE, leading to the best
model being stopped at epoch 58. We obtain our best results by freezing the Q-former
weights for the first two epochs, first only training the adapter that has been randomly
initialized, and keeping the Q-former weights training for the rest of the training. We
use the AdamW optimizer with a weight decay factor of 0.01 and separate learning rates
of 2e−6 for the Q-former and 5e−5 for the adapter. These hyperparameters, as well as
the benefit of using distinct learning rates, have been determined through tuning on the
dev dataset. The training is run on a single Nvidia H100 GPU with 80GB of VRAM
using a batch size of 32.

As for the baselines, we use 32-bit floating point precision for all trainable parts of the
networks. For the BioGPT + DenseNet baseline, we use a batch size of 128, a weight
decay factor of 0.02 and a cosine-decay-scheduled learning rate ranging from 1e−5 to
1e−6, and the best model is early stopped at epoch 9. The BioGPT-only baseline uses
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the same configuration but the learning rate ends at 5e−6 instead and early stops at
epoch 18. Finally, the CheXagent LM + DenseNet baseline is trained with a batch size
of 64, a weight decay factor of 0.02 and a cosine-decay-scheduled learning rate ranging
from 1e−4 to 9e−6. The best model is trained for 84 epochs.

3.4 Results and discussion
The training dynamics of our model are stable. As shown in Figure 3.5, the cross-entropy
loss does go down without large spikes while the validation BLEU and ROUGE scores
grow before plateauing, and even slightly starting decreasing, hinting at overfitting. This
is not a problem as we use our early-stopped checkpoint at step 400 of the 58th epoch
which led to the best NLG metrics on the validation split of MIMIC-NLE. The baselines
we have trained displayed very similar training dynamics. During validation, we also
track the image-text contrastive capabilities of the Q-former for which it was pretrained in
the previous stage (as discussed in Chapter 4). As expected given the fact that this stage
is trained only with a captioning objective, image-text contrastive capabilities decrease
as the validation AUC goes down slightly the longer we train (12% after 100 epochs).
This not a problem for the BLIP-2 architecture as the purpose of the Q-former is to align
the image and text representations before the captioning training. However, in our case
where we want to reuse the image-text contrastive capabilities of the Q-former in the
final system, this observation motivates our decision to use two different sets of Q-former
weights in our final system for the critic and natural language generation Q-formers.

Figure 3.5: Training loss and validation BLEU-1, BLEU-4 and ROUGE-L scores over
the 100 epochs of training.

The results of the evaluation on the test-split of the MIMIC-NLE dataset of our trained
model, as well as of our different baselines introduced in 3.3.3, are summarized in Table
3.1.

40



3.4. Results and discussion

Model BLEU-1 ↑ BLEU-4 ↑ ROUGE-1 ↑ ROUGE-L ↑
BioGPT LM Only 0.1047 0.0225 0.1791 0.1588
BioGPT LM + vision proj. 0.1941 0.044 0.2376 0.2059
CheXagent LM + vision proj. 0.2391 0.0819 0.3088 0.2791
CheXagent zero-shot 0.1426 0.0329 0.2493 0.2376
RATCHET, best in [12] 0.225 0.047 - 0.222
Ours 0.2312 0.0764 0.3323 0.3034

Table 3.1: NLG metrics of our model and baselines for the task of NLE generation for
positive labels on the official test split of the MIMIC-NLE dataset. The best value for
each metric is in bold.

A first observation that can be made is that we validate that we at least match or beat
the metrics reported for the best baseline (RACHET) in [12]. While this is not a direct
comparison, this was a first sanity check to ensure that we do meaningful work on this
task, and that the complexity we add in our approaches is beneficial. Furthermore, all of
our approaches (our simpler baselines and our proposed model) that take the X-ray image
as an input exhibit significantly better NLG scores than the zero-shot prompting of the
CheXagent foundation model, which has scores that are close to the blind baseline with
textual prompts only. This is observed even though CheXagent is a strong chest X-ray
generalist model, that also includes MIMIC-NLE in its pretraining dataset, meaning that
it encountered NLEs at training. This shows that it still seems beneficial to train custom
models for this natural language explanation generation task for chest X-ray daignoses,
as ev en our much smaller and simpler baselines report significantly higher NLG scores.

Overall, we consider our approach as the best performing out of the evaluated models,
closely followed by the baseline combining a DenseNet with the CheXagent language
model. While that baselines has slightly better BLEU scores, our approach is the most
balanced and consistent across metrics: it has significantly higher ROUGE scores while
BLEU-1 and BLEU-4 are very close. The performance of our model also confirms that the
added complexity of the Q-former seems justified for NLE generation. It is also important
to note that the NLG metrics we report here a proxy for NLE quality rather than an exact
measure, further highlighting the need to look at the whole picture rather than difference
on a single metric. NLEs are a specific type of text that is usually only one sentence,
and where some specific medical keywords are more important than others. BLEU and
ROUGE do not measure whether the generated text provides medically accurate and
relevant information, only whether it resembles the reference texts in structure and
vocabulary. Those metrics focus on exact matches of words or phrases and do not account
for the meaning or the semantic correctness of the content. This is particularly critical
in medical NLEs, where different wordings can convey the same essential information
but might not be recognized by these metrics.
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Finally, an important result of these experiments is that "blindly" (without taking the
X-ray image into account) generating NLEs, by only generating an explanation for the
given label with a language model, leads to roughly half as good NLG metrics. However,
the generated explanations are still convincing and do not lead to completely bad metrics.
This highlights the danger of a model generating NLEs that sound plausible but that are
not faithful to the medical image, which would be a particularly critical problem in a
clinical setting that needs to be detected. This motivates our work on designing a "critic"
part of our system that is able to differenciate between NLEs that are faithful to the
X-ray and explanations that are not, which we explore in the following chapter.
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CHAPTER 4
Building a critic: Can image-text
similarity capture faithfulness of

natural language explanations?

While we have shown that we can generate natural language explanations for chest X-ray
diagnoses, our work has also highlighted the risk of decoding persuasive unfaithful NLEs
that do not base their content on the X-ray’s content. This is what drives the need to
build a critic model that is able to detect unfaithful or irrelevant NLEs, explanations
that are not true in regard to the medical image.

Our goal here is to determine if a critic can capture NLE faithfulness, making it able
to separate true image-NLE pairs from false ones. This capability is key in our overall
"explain-then-predict" approach to chest X-ray diagnosis, as this idea of making a label
prediction based on the relevance of the generated explanation to the image hinges on
a critic that is able to reject explanations for labels that are not present in the image,
because the explanations for those labels will inherently be unfaithful. In this chapter,
we investigate how well such a critic can be achieved through image-text similarity, using
a vision-language model that learns joint image-text representations like CLIP or the
Q-former component of our BLIP-2-based network.

4.1 Problem setting
The task we are attempting to solve is to determine if an NLE is faithful and relevant
to the visual content of a chest X-ray (if it corresponds to the image). This problem of
differentiating between relevant or faithful NLEs from unfaithful ones can be formalized
as a multimodal binary classification task, where a model f processes image and text
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inputs to output a classification label determining if the NLE is true for the given image.
The inputs and output of the model are as follows:

• Let I represent an input (chest X-ray) image, encoded as a tensor suitable for
processing by the model.

• Let n represent an NLE preprended with a textual prompt specifying the label it
explains in the form of a string, specifically structured as "Evidence for {LABEL}:
{EXPLANATION}".

The output of the model is a probability y ∈ [0; 1] that the NLE n is true for the chest
X-ray image I. The interaction between the inputs and the output can be described by
the function f :

y = f(I, n; θ) (4.1)

where θ represents the parameters of the model, which may include weights of neural
networks, settings for the encoding and decoding mechanisms, and other relevant model-
specific parameters.

4.2 Method
While this problem could be approached many different ways and with different types of
models, we base our method on the idea of reusing a component of our already complex
natural language generation pipeline. Since we include a model that was trained including
an image-text contrastive loss, the Q-former, in our captioning architecture, we explore
how the image-text similarity capabilities of that component capture faithfulness of NLEs
to an image. The overall approach is to train the Q-former on our image-NLE pairs, as it
would be done for a BLIP-2 model in any case, and to then evaluate if the representations
learnt by that model can capture image faithfulness, for example with true NLEs being
more similar to their corresponding images than random false NLEs reliably.

Figure 4.1: Q-former pre-training for BLIP-2, from [13].

The Q-former component combines our vision encoder features with a BERT transformer-
based text encoder to optimize cross-modal understanding through cross-modal attention
layers where learnt query tokens can attend information from both text and image
embeddings. This setup allows the model to focus on relevant parts of an image given a

44



4.2. Method

text query (and vice versa), enhancing the model’s understanding of how text and image
content correspond to each other. As illustrated in Figure 4.1 and Figure 4.2, we use
the same combined learning objective to pre-train our randomly initialized Q-former
as BLIP-2 [13] while training all parameters of the Q-former and keeping the vision
encoder frozen. This combined loss is a sum of an image-text contrastive, and image-text
matching and a text-generation loss. The text generation loss is used to enhance the
linguistic understanding of the model. It trains the model to predict words that have been
intentionally masked in the text, based on the context provided by both the remaining
words and the corresponding image, to ensure that the model can integrate both textual
and visual information to improve language generation. The image-text matching loss
trains an added lightweight head to output if the input pair of image and text correspond
to each other. Finally, the image-text contrastive loss aims to align the embeddings of
the text and the images in a shared multimodal space. This helps the model learn a
robust representation where corresponding images and texts are close to each other, while
non-corresponding pairs are farther apart, through a contrastive learning framework. This
is essential for aligned image and text representations that are then used in the language
generation pipeline, but we also leverage this property of the learnt representation to
repurpose the Q-former as a critic.

The combined learning objective Ltotal is specified as follows:

Ltotal = λ1LITC + λ2LITM + λ3LIGT, (4.2)

where λ1, λ2, and λ3 are hyperparameters that control the relative contributions of each
loss component.

LITC = − 1
N

N�
i=1

�
log exp(sim(vi, ti)/τ)�N

j=1 exp(sim(vi, tj)/τ)
+ log exp(sim(ti, vi)/τ)�N

j=1 exp(sim(ti, vj)/τ)

�
, (4.3)

where vi and ti represent the image and text embeddings for the i-th sample, respectively,
sim(·, ·) is a similarity function (e.g., cosine similarity), τ is a temperature parameter
that controls the sharpness of the distribution, and N is the batch size.

LITM = − 1
N

N�
i=1

[yi log p(match|vi, ti) + (1 − yi) log(1 − p(match|vi, ti))] , (4.4)

where yi ∈ {0, 1} is the ground truth label indicating whether the image and text pair
match, and p(match|vi, ti) is the predicted probability that the image vi matches the
text ti.

LIGT = − 1
N

N�
i=1

T�
t=1

log p(wi,t|vi, wi,<t), (4.5)

where wi,t represents the t-th word in the target sequence for the i-th sample, wi,<t

represents all words before the t-th word, and T is the length of the target sequence.
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Figure 4.2: Our Q-former training process: both an image and an NLE with its corre-
sponding prompt are encoded with the Q-former. A combination image-text contrastive,
image-text matching and text-generation losses is computed and backpropagated.

Figure 4.3: Illustrations of how our Q-former is used to embed images and text.

The idea is that, as we constrain our image (X-rays) and text (NLEs) representations to
be similar to eachother when they correspond, and dissimilar when they do not, we could
leverage the similarity between an image and a generated candidate NLE to determine if
the generated explanation is relevant and using the combined BLIP-2 loss on our entire
train split of MIMIC-NLE, considering all pairs of X-rays and their corresponding NLEs
as training samples. We use the resulting model weights as Q-former base weights for the
NLE-generation pipeline described in Chapter 3, but also investigate if the image-text
similarity properties of the trained Q-former are able to discriminate between true and
false (unfaithful) image-NLE pairs. To do so, we measure the similarity between all, true
and false, image-NLE pairs. We do this for both the ground-truth NLEs of that dataset,
and for NLEs generated by our model and the blind baseline that have been trained
and described in Chapter 3. This allows us to verify if faithfulness is also captured for
model-generated NLEs (as the blind model generates unfaithful NLEs by design) also
are detected by this model, and not just false pairs from the dataset itself. We then
verify, through multiple metrics, if true and false pairs can be separated and detected
accurately based on those similarities.
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If the Q-former captures NLE relevance and faithfulness effectively, the true
and false pairs from the ground-truth dataset and generated by our proposed model
should be separable based on similarities, while the NLEs generated by the blind model
should not be as even the "true pairs" (NLEs generated for the corresponding X-ray)
should be unfaithful as the NLE was not generated based on the image’s content. In
that case, false pairs and NLEs generated for their image should not have significantly
different similarities as both are not faithful to the medical images.

4.3 Experimental setup
4.3.1 Dataset and processing
The training is performed on the test split of the MIMIC-NLE dataset, while hyperpa-
rameters are determined from tuning on the validation split and all models are evaluated
on the test split of the dataset described in Section 3.3.1. We apply the same prepro-
cessing steps and data augmentations for these experiments. We consider all image-NLE
pairs of the dataset, where each NLE is prepended with its a prompt containing its
corresponding label of the form Evidence for {LABEL}: {NLE}. This is to ensure
that the x-ray-NLE similarities learnt take the label information into account.

4.3.2 Evaluation metrics
To evaluate the retrieval performance of the representations learnt by the Q-former we
train, we measure Recall at k (Recall@k) for k ∈ 1, 5, 10.

More importantly, we quantify to what degree true and false image-NLE pairs are
separable through the image-text similarity by measuring the AUC score for the binary
classification true-or-false pair classification task. In addition, we verify the statistical
significance of the separability of both classes with a Mann-Whitney U-test. We also
include the mean similarity of positive and negative pairs as an additional information
about the similarity-value differences between those two groups.

4.3.3 Baselines
To confirm that the combination of three losses to train our Q-former is beneficial, we
also train a baseline purely using a CLIP loss. As illustrated in Figure 4.4, in this setup,
we use the Q-former to encoder the text while the image is only embedded with the
vision encoder. That latent representation is directly used in the CLIP loss, without
attending to the Q-formers query tokens. The representations are learnt solely using the
CLIP loss that constraints related image- and text-embeddings to have a high cosine
similarity while unrelated ones are forced to be as distant as possible [14].

When evaluating retrieval performance, we additionally include the pre-trained PubMed
CLIP model [182] as an off-the-shelf, zero-shot baseline 1. This CLIP-based model has

1The authors have made three variations of the model available, using ResNet-50, ResNet-50×4 and
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Figure 4.4: Q-former-alternative baseline trained on a single CLIP loss: the image is
embedded with the vision encoder only, and does not attend to the Q-former query
tokens.

been trained on the Radiology Objects in COntext dataset that provides PubMed-mined
multimodal medical data from different types of medical imaging for various physiological
regions [183].

4.3.4 Training setup

The implementation of the Q-former is based on the LAVIS library [181]. The vision
encoder weights are loaded from the CheXagent checkpoint [15] in 16-bit floating point
precision and frozen at training, while all other Q-former parameters are in 32-bit floating
point precision and randomly initialized. We train 64 learnable query-tokens for the
Q-former. Training is performed for 35 epochs, but the best performing model is early
stopped at the 26th epoch. We achieved our best results by only training the vision and
text representation projection layers and the query tokens for the first six epochs, and
then unfreezing all parameters of the Q-former. We train on 4 Nvidia Titan RTX GPUs,
providing 24GB of VRAM each, using a data-distributed-parallel strategy. This allows us
to obtain a total batch size of 128. We train using the AdamW optimizer with a weight
decay factor of 0.01 and a learning rate of 5e−7 for the projection layers and 2e−6 for the
BERT part of the Q-former. We also clip the gradients to a maximum norm of 1.0.

As for the CLIP-loss-only baseline, we train the model on a single Nvidia H100 GPU
with 80GB of VRAM using a batch size of 256. The training configuration is the same,
except that we use a learning rate of 5e−4 for the image and text projection layers.

ViT32 as vision backbones. We used the ViT32-based model, available at https://huggingface.co/
flaviagiammarino/pubmed-clip-vit-base-patch32.
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4.4 Results and discussion
Training the Q-former was very sensitive to setup variations and hyperparameter changes.
In many scenarios, loss was very spiky, decreased slowly, we observed fast overfitting and
image-text matching did not improve. As shown in Figure 4.5, we have achieved more
stable training where all three losses converge. The key aspects to succesful Q-former
training were most importantly a large batch size, gradient clipping and progressively
unfreezing layers as we train. Keeping the BERT part of the Q-former frozen for the first
5 epochs and only training the query tokens and vision and text projection layers, and
then unfreezing the full model (as visible in the loss-drop at step 8200 on Figure 4.5)
significantly improved learning dynamics. The image-text contrastive loss is more stable
than image-text matching, which did not converge at all at smaller batch sizes. Placing
a focus on it by scaling it or down-weighting other components of the loss did not help.
We also also attempted oversampling NLEs from minority classes at training which did
not improve dynamics. Large batch sizes led it to start to converge, and increases in
batch size always improved stability in image-text matching loss. If the trend we saw
by increasing our batch size continues, it could probably learn with even more stable
dynamics with more hardware, and the fact that BLIP-2 training was done using way
larger batches on multiple GPUs [13] supports this supposition. But the representation
learning constrained by this image-text matching loss still is beneficial the experiments
we ran excluding this loss led to both worse image-text contrastive performance and
worse downstream NLE generation performance.

Figure 4.5: Evolution of the combined and individual losses during Q-former training.

The recall scores obtained by our model, reported in Table 4.1, beat both our CLIP-loss-
only trained baseline and the off-the-shelf PubMed CLIP model.
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Model R@1 i2t ↑ R@1 t2i ↑ R@5 i2t ↑ R@5 t2i ↑ R@10 i2t ↑ R@10 t2i ↑
PubMed CLIP (0-shot) 0.0013 0.0013 0.0064 0.0064 0.014 0.0216
Ours (CLIP loss) 0.0102 0.0152 0.033 0.047 0.0788 0.0801
Ours (BLIP-2 loss) 0.0178 0.0191 0.0801 0.0648 0.1182 0.1067

Table 4.1: Retrieval performance (recall at k, referred to as R@k) of our Q-former
pretrained on a pure CLIP loss or a BLIP-2 combined loss, and of a pre-trained PubMed
CLIP model on all chest X-ray/NLE pairs of of the MIMIC-NLE test split. The best
value for each metric is in bold.

Model NLE source Mean pos.
NLE sim.

Mean neg.
NLE sim. AUC ↑ Separability

(Mann-Whitney)
Ours, CLIP loss

Ground truth
0.3084 0.2487 0.7314 ✓

Ours, BLIP-2 loss 0.3474 0.2301 0.792 ✓
PubMed CLIP 0.2535 0.2535 0.5 ×
Ours, CLIP loss BioGPT LM

only
0.2531 0.2369 0.5676 ✓

Ours, BLIP-2 loss 0.2199 0.2019 0.5499 ✓
Ours, CLIP loss Our NLE

generator
0.3154 0.249 0.7701 ✓

Ours, BLIP-2 loss 0.3677 0.2432 0.8452 ✓

Table 4.2: Separation capabilities of true and false image-NLE pairs, for both ground-
truth and generated NLEs. For the different models, mean similarity for negative and
positive pairs and AUC is reported, as well as the result of a statistical Mann-Whitney
U-test for separability. The best AUC is in bold.

This confirms that the combined loss adding the image-text matching and language
modeling losses is beneficial to representation learning for retrieval, and thus, for critic
performance as it is based on the retrieval capabilities. Moreover, as even the baseline
we train significantly beats the zero-shot use of PubMed CLIP, we confirm that training
our own models for this specific task is beneficial.

The results of our investigation of the critic’s capabilities to separate true and false
image-NLE pairs based on image-text similarity are summarized in Table 4.2. As the
zero-shot PubMed CLIP baseline did not have good retrieval results, it is not able to
capture NLE relevance at all here: there is no difference in mean similarity between
positive and negative image-NLE pairs, we get an AUC score of 0.5 for the binary
classification task based on the similarity and the Mann-Whitney U-test fails. However,
for both ground-truth NLEs and for the NLEs generated by our NLE-generation pipeline,
both our BLIP-2 loss trained and CLIP loss trained models learn features such that the
true and false pairs are separable based on image-text similarity (confirmed by both AUC
and Mann-Whitney U-tests). There is a clear distinction in similarity, as illustrated by
the mean similarities, between both kinds of pairs. The best AUC score (and difference
in mean similarities) is achieved by the Q-former trained with the combined BLIP-2 loss
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in both settings, confirming that this combined loss is beneficial to learn stronger image
and text representations that capture NLE relevance and faithfulness better.

Additionally, we observe that there is only a small difference in mean similarity for
positive and negative pairs using NLEs generated the blind model (BioGPT language
model only taking the textual prompt as an input), and AUC scores are also very close to
0.5. This model generates unfaithful NLEs even for "true" pairs (generating an NLE for a
label that is true for the given chest X-ray) by design as it never gets the image signal to
generate the explanation. The image-text-similarity-based critic models seem to capture
this as well, as the unfaithful generated explanations do not have very different similarities
from randomly shuffled false NLEs, while our visually-grounded NLE generators create
faithful NLEs for true pairs that can be separated from the unfaithful NLEs generated
for labels that are negative for the X-rays.

Our Q-former is thus able to capture the faithfulness of an explanation to a medical
image based on image-text representation similarities, and can therefore be leveraged as
an explanation relevance critic in our self-rationalized approach to chest X-ray diagnosis.
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CHAPTER 5
Leveraging the critic: An

end-to-end trained
"explain-then-predict"

self-rationalized approach to chest
X-ray diagnosis

We validated that our model can generate NLEs for positive labels of chest X-rays
(Chapter 3). Additionally, we demonstrated that the Q-former component can serve as a
critic that measures if an NLE is faithful and relevant to the visual content of a chest
X-ray in Chapter 4. Assuming that these components perform as expected, we construct
a self-rationalized "explain-then-predict" approach to CXR diagnosis, where candidate
NLEs are generated for each possible label, and the diagnosis decision is made based on
the faithfulness of the explanation to the radiological image. This chapter describes how
we implement and validate this method.

5.1 Problem setting
In our full pipeline, the main task we solve is multi-label chest X-ray classification, while
additionally generating natural language explanations for positive diagnoses. The goal is
to build a model that accepts a chest X-ray image as an input, and that outputs class
probabilities for the seven classes of the dataset, along with natural language explanations
for the classes having probabilities exceeding a certain threshold. We highlight that
classification is the main task being solved and evaluated, and alternative models are
therefore not required to generate NLEs for positive diagnoses.
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5.2 Method

We aim to assess whether learning to generate natural language explanations enhances
chest X-ray classification performance. In order to achieve this, we integrate our NLE
generation and critic components into a self-rationalized pipeline. We adopt an "explain-
then-predict" approach, as illustrated in Figure 1.2, which outlines the inference flow.
To generate predictions for a chest X-ray, we decode an NLE for every possible label,
and then measure the image-NLE similarities with the critic Q-former. We base label
predictions on similarities that reflect the relevance of generated explanations to the
image: we first explain every pathology, and predict based on how relevant and truthful
to the image the explanations are.

Figure 5.1: First stage of end-to-end training: the critic Q-former is optimized based on
its discrimination performance of generated NLEs.

Since this pipeline assembles previously trained components, it can function without
additional training. We however decide to further train the end-to-end model. As
mentioned in Section 3.4, we use two separate sets of weight for the Q-former used for
natural language generation and for the one used as a critic, as further optimizing the
Q-former NLG degraded critic capabilities. In memory constrained environments, a
single Q-former can be used with a tradeoff to be made by freezing the Q-former at a
given point during nle-generation training to preserve it. We first further train the critic
Q-former for the classification task within the end-to-end framework. As pictured in
Figure 5.1, we do this by, for every image of each batch, decoding NLEs for all 7 labels
of the dataset, and embedding the image and candidate NLEs with the critic Q-former.
Similarities between the image and NLEs are measured and used as output logits for
the labels corresponding to the NLEs. We compute a binary cross-entropy loss for those
predictions, and propagate it back through the network to the critic Q-former that is the
only part of the pipeline with trainable parameters at this stage.
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Figure 5.2: Second (optional) stage of end-to-end training: the natural language generation
pipeline is conditioned on the critic’s loss using the Gumbel-Softmax trick to allow
backpropagation into the NLG components.

We then additionally find that we can also leverage the critic’s gradients to improve the
NLE generation part of the pipeline itself in this end-to-end setting in an additional
training stage following the critic optimization. This is achieved by using the same
setup, but this time integrating the natural language generation cross-entropy loss in
addition to the classification binary cross-entropy loss and only training the NLG adapter
parameters (the image-embedding projection layer before the language model input),
as summarized in Figure 5.2. However, this configuration implies backpropagating the
gradients from the critic back to early components of the NLG part of the network that
are placed before the language model, while sampling tokens is not differentiable. To
circumvent this, we leverage the Gumbel-Softmax trick [184]. Instead of decoding a
sequence by sampling tokens from the language model output probability distribution,
we obtain a continuous and differentiable approximation of the language model’s output
by perturbing the logits with Gumbel noise and applying a softmax function, which
allows us to backpropagate gradients through the LLM’s outputs and to train the entire
pipeline end-to-end without breaking the flow of gradient information. Specifically, we
define the categorical distribution with class probabilities πi for i = 1, . . . , k, where k is
the number of possible output classes (tokens). To draw samples that are differentiable,
we add Gumbel noise gi to the logits zi of the language model and apply the softmax
function to approximate the sampling. This can be described as follows:

yi = exp ((zi + gi)/τ)�k
j=1 exp ((zj + gj)/τ)

, (5.1)

where gi are i.i.d. samples from the Gumbel distribution, i.e.,

gi = − log (− log (Ui)) , Ui ∼ Uniform(0, 1). (5.2)

The temperature parameter τ > 0 controls the smoothness of the approximation. As
τ → 0, the Gumbel-Softmax distribution approaches a one-hot categorical sample,
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whereas for higher values of τ , the distribution becomes smoother, allowing for more
effective gradient-based optimization during training. The approximation of the model
output is fed through a linear layer (referred to as "LM adapter") to re-align it with
the critic Q-former’s input space, as the Q-former is trained taking BERT-tokenized
sequences as an input.

This method has the benefit of generating explanations that are faithful to the model by
design as the prediction was made based on the explanations themselves and how they
relate to the image. Moreover, using the Q-former we trained as part of the BLIP-2-based
NLE-generation pipeline as a critic, leveraging the strong features we learn in the first
stage of training, also has the advantage of not requiring the use of further computing
resources on training an additional critic model from scratch, and instead getting more
value of that stage of training that is required before learning to generate NLEs.

5.3 Experimental setup
5.3.1 Dataset and processing
We perform all experiments on the official splits on the MIMIC-NLE dataset. For this
stage of training, we obtain the best results by dropping the data augmentations we
used in the previous steps. We only normalize the pixel values based on the train split’s
value distribution. At training and inference, each chest X-ray image of the dataset is
considered as a sample. For critic tuning, the image is provided with the values of the
7 class labels. As for the NLG training based on the critic, we also include the NLEs
for positive labels when they are available to be able to compute the language modeling
cross-entropy loss.

5.3.2 Evaluation metrics
To measure multi-label chest X-ray classification performance, we rely on the area under
the curve (AUC) score. We focus on this score as it quantifies the model’s ability to
distinguish between classes across different classification thresholds, whereas scores like
F1, accuracy or recall depend on chosing an optimal classification threshold which is not
the focus here. Moreover, works in the literature most often report AUC scores for chest
X-ray classification. Using the same metric enables fairer comparison. We report AUC
for each individual label as well as the average score across classes for each model.

5.3.3 Baselines
To evaluate the classification performance of our method, we include multiple CXR
classification baselines. We train three simple classification baselines that follow the
pattern pictured in Figure 5.3: the X-ray is embedded with a vision encoder, and the
embedding is fed into a classification head that is either a projection layer or a multi-layer
perceptron. All parameters are trainable and a binary cross-entropy loss is employed for
training. We train three such baselines: one uses CheXagent’s pre-trained vision encoder,
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another uses the chest-X-ray-pretrained DenseNet-121 provided by TorchXRayVision
[180], and the third one uses the same DenseNet architecture but initializes the weights
with those from the captioning baseline based on the DenseNet and BioGPT we have
trained in Chapter 3. The last baseline allows us to explore if the features learnt when
training for NLE generation are beneficial to classification performance.

Figure 5.3: Overall architecture of our classification baselines: image features are extracted
and fed into a simple classification head while training all model parameters.

We also include zero-shot prompting of CheXagent as a baseline. The foundation model
is prompted for the presence of each disease, and the class probability is derived from
the logits of "yes" or "no" equivalent tokens when answering the question. For positive
labels, we also prompt the model to generate natural language explanations.

Finally, we re-train the currently state-of-the-art non-ensemble chest X-ray classification
model on our dataset to fairly verify how our method compares to the best performing
classification-specialized models. As mentioned in Chapter 1, we choose the DeepAUC
[17] method that tops the CheXpert multi-label chest X-ray classification benchmark
when ensemble-methods are not taken into account [77]. This approach further trains
a pre-trained DenseNet-201 with a classification head by directly optimizing the AUC
score instead of using a cross-entropy loss which may not align with maximizing AUC,
especially in medical imaging where class imbalances are common [17].

5.3.4 Training setup

For the first stage of end-to-end training where only the critic Q-former is tuned, we
initialize the network with the weights from NLE-generation training described in Chapter
3 and the critic Q-former with the weights obtained by pre-training the Q-former as
described in Chapter 4. All weights are loaded in 32-bit floating point precision except
for the vision encoder that is in 16-bit floating point precision. Training is performed
with a batch size of 128 images on 8 Nvidia A100 GPUs equipped with 80GB of VRAM
each, leading to a total batch size of 1024. The AdamW optimizer is employed using a
weight decay factor of 0.01 and a cosine-scheduled learning rate ranging between 5e−6

and 5e−7, and gradients are clipped to a norm of 0.75. Early stopping occurs during the
18th epoch of training.
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As for the additional stage of end-to-end training where the NLG part of the network
learns from the critic’s signal, we initialize the network from the resulting checkpoint of
the first stage of end-to-end training. We train on the same hardware, but using a batch
size of 8, leading to a total batch size of 64. We still clip the gradients to a norm of 0.75,
but use a learning rate of 3e−5 for the LM adapter that reprojects the Gumbel-Softmax
approximation and 1e−5 for the adapter that is part of the NLG pipeline. Unfreezing the
NLG Q-former at this stage has not been beneficial in our experiments. The AdamW
weight decay factor is set to 0.05.

Both DenseNet-based baselines are trained with a batch size of 128 using a learning rate of
1e−4. The version using NLE-generation-pretrained weights is trained for 4 epochs, while
the other model is early stopped after 7 epochs. The CheXagent-vision-encoder-based
baseline uses a batch size of 32 for 3 epochs with a learning rate of 1e−5.

Finally, the DeepAUC baseline is trained for 20 epochs using a batch size of 32, with
the AUC optimizer’s learning rate set to 0.1, an epoch decay of 0.002, a decay of 1.2,
a margin of 1 and a weight decay of 1e−5. These parameters have been based on the
descriptions provided in the DeepAUC publication [17] and further parameter tuning on
the MIMIC-NLE dev set to provide a fair comparison to our method.

5.4 Results and discussion
The training process for the critic Q-former converges smoothly, with a stable increase
in per-class AUC scores. The additional stage of end-to-end training behaved with less
stability in early experiments due to the fact that for many positive labels, NLEs are not
available in the MIMIC-NLE dataset. At smaller batch sizes, this led to often having
batches with very little NLEs or no NLEs at all. Similarly, some batches happened to
not have any positive labels. Larger batches were key in this setting, and this required
optimization and some engineering tricks to achieve as this stage of end-to-end training
is particularly memory-heavy. During the first stage of end-to-end training, as the NLG
components are all frozen, we were able to decode NLEs for all candidate labels of all
images of the dataset once and cache them for all subsequent epochs, allowing large batch
sizes, which is not possible in this second stage that trains NLE generation components.
With a batch size of 8 × 8, the training stabilized: losses converged more smoothly,
validation AUC scores grew and over 30 epochs of training, only a single batch was
encountered where no NLE was available, and there was no batch without positive labels.

The classification performance on the test split of MIMIC-NLE, measured by per-class
and mean AUC, is reported in Table 5.1 and Table 5.2. A first observation is that learning
to generate NLEs for classification labels seems to be beneficial to the task of chest X-ray
classification. The DenseNet-based baseline where the DenseNet checkpoint from our
captioning baseling was used to initialize the vision encoder weights outperforms the
same DenseNet baseline where the same vision encoder was initialized with the chest
X-ray specialized weights used to initialize the captioning baseline as well. As expected,
the state-of-the-art DeepAUC model beats the performance of all of our baselines.
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Class DeepAUC CheXagent Ours
(critic tuned)

Ours
(NLG tuned)

CheXagent
vis. encoder

DenseNet
vis. encoder

DenseNet vis. encoder
(from captioning weights)

Pulmonary Edema 0.79 0.79 0.82 0.82 0.66 0.77 0.78
Vascular congestion 0.71 0.68 0.72 0.73 0.51 0.67 0.68
Pneumonia 0.66 0.62 0.68 0.69 0.59 0.61 0.60
Aspiration 0.62 0.62 0.63 0.62 0.55 0.44 0.46
Atelectasis 0.70 0.64 0.68 0.69 0.68 0.65 0.68
Pleural effusion 0.85 0.83 0.81 0.82 0.81 0.80 0.81
copd/emphysema 0.90 0.71 0.89 0.88 0.77 0.74 0.84

Table 5.1: Per-class chest X-ray classification performance for each label. AUC scores for
our baselines (vision encoder + projection layer or MLP, zero-shot CheXagent prompting),
the state-of-the art CXR classifier (DeepAUC) and our end-to-end trained model (both
with only critic end-to-end training and additional natural language generation training
conditioned on the critic loss). The AUC value for each class (row) is in bold.

Metric DeepAUC CheXagent Ours
(critic tuned)

Ours
(NLG tuned)

CheXagent
vis. encoder

DenseNet
vis. encoder

DenseNet vis. encoder
(from captioning weights)

Mean AUC (all classes) 0.747 0.699 0.747 0.750 0.653 0.669 0.693

Table 5.2: Overall classification performance comparison with mean AUC scores.

Model BLEU-1 ↑ BLEU-4 ↑ ROUGE-1 ↑ ROUGE-L ↑
Ours, critic tuned 0.2184 0.0584 0.2853 0.2585
Ours, NLG tuned 0.2015 0.0548 0.2853 0.2611

Table 5.3: NLG metrics after each stage of end-to-end training of the pipeline. NLEs are
only evaluated for positive samples. The best value for each metric is in bold.

Our explain-then-predict pipeline, after further training the critic, matches the overall
performance of that state-of-the-art model, confirming that our self-rationalized
approach is able to solve the classification task effectively while additionally
generating faithful explanations in natural language by design.

We also show that by further training the natural language generation part of the pipeline
based on the critic’s signal, we align the generated NLEs with the critic’s diagnoses
better which leads to beating the best X-ray classification model, DeepAUC, achieving
the best classification performance across all classes, with a slightly better mean AUC
score of 0.75 on the MIMIC-NLE test split. Conditioning natural language explanation
on the critic’s signal is beneficial to the overall classification task. With this second stage
of end-to-end training, we show that a self-rationalized chest X-ray classifier can beat
state of the art CXR classification models while generating faithful NLEs. These NLEs
can be considered faithful as the model makes its prediction based on them and their
relevance to the input image directly, but also because in Chapter 4, we have shown
that unfaithful NLEs (generated by the blind baseline) are not sufficient to perform the
classification task. Our end-to-end system achieving the best classification performance
therefore further supports the fact that that the generated NLEs are faithful.
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However, the improvement of the classification pipeline by further adapting natural
language explanation generation based on the critic’s loss does not explicitly reflect in
better NLG scores for the generated NLEs. As shown in Table 5.3, the BLEU and
ROUGE scores remain very similar, with slightly lower BLEU scores and higher ROUGE
scores. As we mentioned earlier, these metrics do not perfectly measure NLE quality in
a clinical setting and are more of a proxy of good NLE generation, so this might not
fully reflect how this stage influences NLE quality itself. However, given how the first
stage of end-to-end training where only the critic is optimized is already sufficient to
match the state-of-art classifier performance, and how this last stage is by far the longest
most compute-intensive training stage of our method, this last step of further training
the NLG pipeline on critic signal can be considered optional in practical applications.
Based on the system’s priority, a tradeoff can be made: it might be worth doing this
part of training if classification performance is key and resources are available, but in a
resource-constrained setting, the model achieves state-of-the-art performance with only
the first step of end-to-end training.
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CHAPTER 6
Conclusion And Future Work

In this thesis, we explored a novel “explain-then-predict” approach to chest X-ray
(CXR) diagnosis that integrates natural language explanation (NLE) generation into the
diagnosis process. Our method addresses the limitations of traditional single-stage neural
networks and post hoc interpretability techniques, which often lack the transparency and
explainability essential for medical applications. We aimed to construct a self-rationalizing
system that not only classifies CXRs but also provides faithful and medically relevant
explanations for its decisions.

6.1 Key results
Through a series of experiments described in the thesis, we achieved the following key
results:

1. NLE Generation and Faithfulness: We demonstrated the feasibility of gener-
ating natural language explanations for CXR diagnoses, using a vision-language
architecture based on BLIP-2. Our model outperformed simpler baseline models,
such as those using dense vision encoders and medical language models, as well
as published results on the MIMIC-NLE dataset, on BLEU and ROUGE metrics.
However, we also noted the limitations of these metrics in capturing the clinical
relevance of explanations. Notably, we observed that simple language models
trained without considering the image input produced unfaithful but persuasive
NLEs. This finding underscores the importance of being able to capture NLE
faithfulness.

2. Image-Text Similarity as a Critic: In response to the challenge of unfaithful
explanations, we introduced an NLE critic module that judges the relevance of an
explanation to a chest X-ray by leveraging the Q-former component of the BLIP-2
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architecture as it performed as a better critic than alternative vision-language
models. We trained the Q-former using a combination of image-text contrastive,
image-text matching, and captioning losses to align the representations of images
and texts. Our experiments showed that the critic effectively captured the relevance
of NLEs to CXRs, separating faithful explanations from unfaithful ones accurately.
Our method showed that false NLEs, whether generated by unfaithful models or
randomly shuffled pairs, had significantly lower image-text similarity than true
NLEs.

3. Self-Rationalized “Explain-Then-Predict” Approach to classification:
By combining NLE generation with a critic that measures the faithfulness of
explanations, we built a self-rationalized diagnostic model that first generates
explanations and then makes classification predictions based on the relevance of
those explanations to the input image. We further trained the entire system end-
to-end in two stages. First, we trained the critic on the classification task using
the generated NLEs, and we then conditioned the NLE generation on the critic’s
feedback. These steps improved classification performance, achieving a mean AUC
score of 0.75 and outperforming the state-of-the-art DeepAUC [17] classifier, while
also generating faithful NLEs.

4. Multimodal Learning Benefits: We also observed that training the vision-
language model in an end-to-end manner, where the critic’s feedback was propa-
gated to the NLE generation module, led to improvements in both classification
performance and explanation quality. Additionally, initializing the vision encoder
of a classification model with weights resulting from learning NLE generation also
led to better performance than weights that result from classification pretraining.
The integration of multimodal learning showed that NLE generation and chest
X-ray classification tasks benefit from each other, as improvements in one domain
contributed positively to the other.

5. Evaluation on the MIMIC-NLE Dataset: Throughout our experiments, we
used the MIMIC-NLE dataset, which contains 38,003 image-NLE pairs. Our model
consistently outperformed simpler models and other baselines in terms of natural
language generation metrics, such as BLEU and ROUGE, as well as classification
performance, achieving competitive results with the current best-performing CXR
classifiers. Notably, our method also improved the interpretability of the model’s
predictions, providing a robust, explainable solution for real-world clinical settings.

In summary, we have developed a novel multimodal architecture that not only improves
chest X-ray classification accuracy but also generates natural language explanations that
are both faithful to the medical image and relevant to the clinical decision-making process.
Our “explain-then-predict” approach provides a step toward more explainable and usable
machine learning models in healthcare, particularly in the context of medical imaging.
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6.2 Limitations and future works
While our approach yields promising results, several areas offer potential for further
improvement. Firstly, our model was trained and evaluated on a subset of pathologies
where a sufficient amount of NLEs was available in our dataset, limiting its generalizability
to less represented conditions. This choice demonstrated the technique’s capabilities when
data is available. Future work could explore handling rarer pathologies using few-shot
learning, data augmentation, or synthetic data generation. Of course, further work on
creating larger NLE datasets for chest X-rays would be ideal.

Secondly, the improvement in AUC scores in comparison to the state-of-the-art baseline
that we achieve are small. These incremental improvements however seem to be typical
on benchmarks like CheXagent, where the differences in the leaderboard are in a similar
magnitude [77]. More importantly, our goal was not to surpass the state-of-the-art
classification model but to ensure our self-rationalized approach achieved comparable
performance without sacrificing accuracy for explainability. In that sense, our goal is
achieved and this small improvement in AUC is not a problem and does not change our
conclusions. However, a useful follow-up work would also be to test our method on other
datasets to further explore how the method generalizes on data with different pathologies
and different biases.

While we integrate information from two different modalities in our model, another
opportunity for future work would be to explore how additional information could be
included in the model and how it could improve performance. For example, patient
context could be added as unstructured input in the prompt or through a structured
format, or longitudinal data could be supported by the model as it is often available in
radiological settings.

Additionally, it would be beneficial to validate the model’s performance in real-world
clinical settings in another study. While the MIMIC-NLE dataset offers a solid foundation
for testing, real-world data from clinical radiology departments could provide further
insights into the model’s effectiveness and reliability in diverse scenarios. Collaboration
with radiologists and clinicians in a user study to validate the generated explanations
would help ensure that the model’s outputs are both clinically relevant and useful for
medical professionals in practice.

Lastly, our approach remains computationally expensive, especially the last end-to-end
training stage involving the Gumbel-Softmax trick to propagate the critic loss to NLE-
generation components. The full inference pipeline is large (about 8.5b parameters) and
by the nature of the explain-then-predict approach, to predict labels for a single image, as
many sequences have to be decoded as there are labels. While the decoding cost is offset
by the very short sequence length, this remains a costly architecture for a classification
task. Training the entire solution has a non-negligible environmental impact.
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We estimate that training the entire pipeline produces 88 kg of CO2 equivalents 1.
However, 82% of those emissions are generated by the last stage of end-to-end training
that we have proposed as optional as explained in Section 5.4. Therefore, we highlight
the importance of weighing the benefit of this step when using this method, as well as
the opportunity for further research in making this step more efficient, potentially by
further exploring using PPO for this step as we mentioned attempting in Section 5.4.
While we believe the computational and environmental cost is justified in clinical settings
where faithful explanations significantly enhance classification labels’ utility, there is a lot
of potential for further work that makes this setup more efficient. For example, scaling
down the architecture and its components and how much that impacts performance could
be explored, as well as distilling our model’s knowledge into a smaller one. Generating
more synthetic NLEs for training could also potentially help offset a loss in performance
when scaling down the model size. As this thesis focused on showing the capabilities of
the approach, we believe there are a lot of opportunities to make it even more efficient
while preserving its advantages.

1This is based on the formula provided by [185], using an estimation of CO2 per kWh in Austria
provided by [186] as the hardware we used is hosted in that country. This calculation estimates the cost
of training all components of the pipeline once, and does not take iteration and other experiments into
account.
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Used

In this document, text-generation models and chatbots accessed through ChatGPT [187]
or Claude [188] have only been used as an aid for specific sentence improvement and
refinement, to iterate on formulations or to brainstorm key ideas, or to refine the latex
presentations of equations that formalize some concepts in this work, and not to generate
blocks of multiple sequences or full paragraphs.

In general, to address specific sentences or chunks that might have needed improvement,
the following prompt template has been used:

I will give you parts of my master thesis manuscript.
Please carefully read through them and list any mistakes, poor
wording, or issues in writing that should be addressed.
List every modification you would make as a bullet point.
Content: {CONTENT}

The output was a bullet list of potential mistakes and problems that were then manually
integrated and taken into account instead of letting the model rewrite the sequences.

Additionally, ChatGPT and DeepL [189] have been used to assist in the translation and
cleaning up of the German version of the Abstract, by using DeepL to generate a rough
translation, cleaning and improving it manually, and prompting ChatGPT with that
German version and the English abstract to fix mistakes, poor formulations and any
discrepancies in content.
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