
ScienceDirect

Available online at www.sciencedirect.com

Procedia CIRP 126 (2024) 111–116

2212-8271 © 2024 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 17th CIRP Conference on Intelligent Computation in Manufacturing Engineering
(CIRP ICME‘23)
10.1016/j.procir.2024.08.309

17th CIRP Conference on Intelligent Computation in Manufacturing Engineering (CIRP ICME ‘23)

Keywords: Smart manufacturing; Digital twin; Edge computing; Dockerisation

1. Introduction

Trends such as Industry 4.0 and Cyber Physical Production
Systems (CPPS) have led to the development of various sensor
and actuator systems and respective communication protocols
utilized in Computer Numerical Control (CNC) machining
processes such as milling. These new systems provide large
amounts of high-frequent process data points regarding tool
vibration, temperature, or cutting forces, and can be used for
process optimization purposes.

However, the integration and synchronization of sensor and
actuator systems into commercial CNC systems is still a
challenge for the manufacturing industry [1], [2] For data-
driven process control, the sensors and actuators must interact
at an application level (of the ISO-OSI model[3]) with the
CNC. Retrofitting existing machine tools remains a difficult
task requiring manual engineering effort due to the proprietary
interfaces and the lack of standardization of individual control
systems.

Problems may also occur when processing the vast amount
of data produced by multiple sensors utilizing the computing
resources of the CNC, especially if cameras or other sensors
with high data rates are involved. Additionally, the fusion of
raw sensor data and relevant CNC data, like axis positions,
spindle speed, etc. may be a difficult task requiring additional
manual engineering effort, thus, limiting the opportunities for
data analysis and machine learning approaches [4]

Due to this increasing demand for a flexible integration of
conventional CNC systems with new sensor and actuator
technology as well as new needs regarding high-frequency data
processing, edge computing increasingly becomes the focus of
researchers and developers [5], [6].

With its capabilities to provide additional computation
power and open microservice architecture, edge devices enable
new opportunities for manufacturers to retrofit existing
machines and integrate new sensor/actuator technologies [2]

CNC Machine Tool Focused Edge Computing in Manufacturing
L. Tonejca (née Plessing)*, C. Mayer, T. Trautner, G. Mauthner, F. Bleicher

TU Wien, Institute of Production Engineering and Photonic Technologies, Karlsplatz 13, 1040 Vienna, Austria

* Corresponding author. Tel.: +43676844881108; E-mail address: tonejca@ift.at

Abstract

This paper presents a method for standardized integration of external sensors and actuators into CNC machine tool systems utilizing edge
computing technology. Different communication protocols and various means for triggering external devices at a chosen machining operation
were studied and evaluated using a sensory tool holder. The benefits of the presented architecture are the independence of the host operating
system, easy customization, lightweight architecture, and standard protocols. Focusing on the demands for modern edge devices led to
containerized modules with customizable interfaces. During manufacturing processes, the system was evaluated in terms of performance and
reliability.

© 2024 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 17th CIRP Conference on Intelligent Computation in Manufacturing Engineering
(CIRP ICME‘23)

112 L. Tonejca (née Plessing) et al. / Procedia CIRP 126 (2024) 111–116

2. Related Work

Due to trends such as Industry 4.0 and the Industrial Internet
of Things (IIoT), research has focused on industrial
communication protocols as well as edge/cloud architectures in
recent years. Historically, industrial applications utilize a vast
variety of fieldbus systems such as CAN, Modbus, Profibus,
Profinet or EtherCAT for integrating CNC controllers and its
respective periphery such as programmable logic controllers
(PLC), sensors and actuators [7]. Additionally, recent
developments led to new TPC/IP based protocols acting on the
application level such as CoAP, HTTP, AMQP, OPC UA and
MQTT [8]. While some attempt to standardize industrial
communication between different machine tools and its
periphery, the integration of sensors remains a challenge [9].

With the convergence of IT (Information Technology) and
OT (Operational Technology) edge devices come increasingly
into focus. They provide CPPS with additional computing
power and flexibility in terms of applications and functionality.
Especially the concept of application containerization is a trend
for enhancing easy upscaling and flexible adjustment of
software code [10]. Current industrial edge device vendors,
such as Siemens or TTTech, offer functionality regarding data
connectivity, vertical integration of additional hardware as well
as Docker environments for containerized applications.

 The Siemens Industrial Edge for Machine Tools focuses on
the need of domain specific manufacturers and aims a straight-
forward integration with popular CNC systems. Providing a
variety of connectivity protocols such as OPC UA, Modbus
TCP or Profinet, it allows an easy integration of different
heterogeneous field devices into the existing system. With
docker application being implemented on the hardware
operating system, it is possible to run applications written in
high-level coding languages like C++ or Python [11]. In
contrast, Nerve is an edge computing platform by the company
TTTech. Additionally, own hardware with multiple ports to
connect different sensors and actuators, as well as an I/O port
to ensure Ethernet-based fieldbus connectivity is offered.
Applications can be deployed as docker containers or utilize
the integrated CoDeSys Runtime for Soft PLC applications
[12].

Demonstrating a manufacturing use-case utilizing edge
devices, Garcia et al. [2] proposed a micro-service architecture
based on Docker container. A job manager service handles
service requests, data acquisition and provision of results to the
Programmable Logic Controller (PLC). However, the
communication with the production system is reduced to a
message from a placeholder and does not address the special
case of CNC machines.

In [13], the authors demonstrate the integration of an
external vibration sensor into the CNC control, enabling bi-
directional communication using machine tool individual M-
Commands and NC-Code comments, to trigger communication
between the two separate systems. While communication
between the sensor and the CNC has been implemented
successfully, machine tool specific integration work had to be
performed to provide the respective functionality.

Past research in the field of industrial communication
protocols, edge computing, and containerization of micro-
services highlights new opportunities for vertical integration in
the industrial networks. While several relevant technologies
have been discussed individually, current research indicates a
lack of approaches for respective system integration especially
in the machine tool and CNC machining domain.

3. Concept for flexible and portable sensor and actuator
integration for CNC machine tools

This paper presents an innovative concept for flexible and
portable integration of retrofitted sensor and actuator
technology in modern machine tools. In this work, edge devices
are used as standardized middleware for bi-directional
communication between the sensors/actuators and the CNC
system. First, proper design guidelines have been selected to
specific requirements for the development. Second, the
envisioned architecture is described. Third, an overview about
the prototype development is given.

3.1. Design Requirements

To investigate the optimal edge architecture for retrofitting
existing hardware, several requirements about the design of the
envisioned system architecture need to be defined. The
following requirements have been defined in order to design a
applicable prototype for a wide group of manufacturers:

 No additional hardware other than a standard industrial edge
device is needed to enhance retrofitting.

 Interaction between machine tools and external devices
shall take place only at the application level.

 Adaptability of the application by the customer is necessary
to react to changing needs such as new sensors or actuators.

 In general, high usability, manageability, and scalability is a
must to enable a wide range of applications.

Considering the software and hardware requirements in
manufacturing companies, several boundary conditions for the
prototype development were defined and evaluated. Table 1
illustrates the requirements for the architecture design and
prototype development.

Table 1. Hardware and software requirements for prototype development.

Edge device hardware requirements

Operating
System (OS)

Likely OSs of modern edge devices are Linux-based
variants or Windows distributions.

Control
interface

Most controls are accessible through IP on top of
Ethernet as a network access protocol.

Control
protocol

Either a proprietary API or a standard communication
interface, like OPC UA, MQTT, or Modbus, are
available at the control for data exchange.

Control
vendors

Popular control manufacturers for CNC machines are
Heidenhain, Siemens and Fanuc.

Edge
hardware

An optimal edge architecture allows a straightforward
implementation with existing edge hardware.

L. Tonejca (née Plessing) et al. / Procedia CIRP 126 (2024) 111–116 113

Functional requirements for the edge application

External
connectivity

Connectivity at application level to the CNC machine
and to retrofitted devices.

Internal
connectivity

Connectivity from the machine tool to the sensors or
actuators over the edge application.

Data
streaming

Continuous data collection from the machine tool and
retrofitted sensors.

Data
processing

Onward streaming to an information distributor or
storage of the collected data.

Flexibility Flexibility in common machine tools, edge devices,
controls, and OSs of edge hardware.

Programming
language

Python is one of the most popular high-level
programming languages amongst engineers and comes
with a large community and open-source libraries [14].

Functionality
distribution

As continuous integration and deployment (CI/CD)
processes are essential for time and resource-efficient
implementation, maintenance, and horizontal scaling,
containerization is becoming popular in software
development communities as an alternative to
virtualization [15]. Docker is a containerization tool with
a large community and a free repository with already
compiled images of various applications.

3.2. System Architecture

The proposed architecture (Fig. 1) has been setup similarly
to other existing middleware solutions e.g., the fledge-iot
architecture [16], using southbound and northbound
communication services, notification services for events and a
local buffer. An industrial edge device is connected to the
machine tool control as well as to the retrofitted sensors and
actuators. The edge device provides additional computation
capacity thus, the machine tool control is not overloaded with
various data extraction requests.

A deployment platform is running on the edge device that
hosts individual applications using an open micro-service
architecture based on docker containers. This modularity
ensures easy deployment and flexibility regardless of the

machine tool control or sensor/actuator provider. Hence, the
proposed architecture remains independent and flexible for
various adaptions during the lifecycle.

For providing bi-directional connectivity between the
machine tool control and the sensor/actuator system, two
separate communication modules are developed, providing
easy reconfigurability for different open or proprietary
interfaces used. Each application module is written in Python
and containerized via Docker.

The main task of the Control Communicator Module (CC)
is to provide pre-defined trigger points integrated in the NC-
Code to synchronize the bi-directional communication between
the sensor/actuator and the numerical control. In the proposed
architecture, these trigger points can be identified by the edge
application during execution, triggering relevant actions such
as start of a data gathering service or the activation of a feedrate
optimization service on the machine control. A suitable trigger
point is e.g., using the current tool number from the numerical
control databus. In that case, the CC is frequently requesting
the last used T-Command from the PLC memory providing the
currently used tool identification number. In case of a tool
change, the associated sensor- or actuator-ID is looked up in a
configuration file, and respective actions such as sensor
activation for data streaming can be executed.

To pass on the activation commands, the CC communicates
with the Sensor Communicator Module (SC) via HTTP
protocol over the internal Docker network. The SC is a HTTP-
Server providing a REST-API based on the Python library
aiohttp and performs three tasks: (I) Connection/disconnection
of sensor devices, (II) start/stop the data stream of sensor
devices and (III) providing subsequent data processing services
with sensor data. Those three services run as asynchronous
background tasks, triggered by HTTP requests. Once the
communication is established, the data stream is initiated by
sending another HTTP request to the SC. The proposed
implementation uses standard ethernet based protocols which
run on any Linux-based hardware for internal communication.

Fig. 1: Modular edge architecture for retrofitting an existing CNC machine with sensors and actuators.

114 L. Tonejca (née Plessing) et al. / Procedia CIRP 126 (2024) 111–116

Before collecting data, the connection status of the sensor is
verified to avoid connection errors. By sending the respective
HTTP request, the data collection terminates. Temporarily, the
data is stored in a queue and provided to other containers or
services via a UNIX Domain Socket (UDS). UDSs are standard
components of UNIX systems and are used for Inter-Process
Communication on the host [8].

The Local Data Storer reads data from the UDS to store it
locally, while the Cloud Communicator prepares the data for
cloud processing. The architecture allows the deployment of
individual modules for further data processing tasks on the
edge device e.g., a Failure Detector Module, which analyses
the incoming acceleration data and triggers a warning, if a
threshold is exceeded.

In this study, the interchangeable structure was organized by
using a Docker-compose files which controls the installation of
the application modules as Docker images.

4. Prototype Evaluation

4.1. Experimental Setup

The concept has been implemented as a prototype at the
manufacturing laboratory of TU Wien Institute for Production
Engineering and Photonic Technologies (IFT) in Vienna. To
analyze and evaluate key design requirements such as
flexibility and portability, different prototype versions have
been implemented utilizing different machine tool
manufacturers, CNC systems, communication protocols as
well as edge device hardware. An overview about the different
experimental setups used are shown in Fig. 2. Different
variants of the prototypes are listed, beginning with the
Operating System (OS), the industrial communication
protocol, the NC manufacturer, and the method of triggering
external devices from the machine tool. The vertical arrows
indicate the different combinations used for the respective
prototype.

The first four versions represent the evolving prototypes of
the edge architecture. To evaluate its general usability, the
following two versions are test runs of the 4th prototype on a
different edge device (4*) and at a different machine tool (4**).
All prototypes were tested on the DMU 75 Monoblock with a
Fanuc control. The last prototype was also verified on the WFL
M35 Millturn with a Sinumerik control.

Based on the Focas-API, Fanuc controls can be used with a
proprietary OPC UA server which uses embedded Ethernet on
the network access layer. The server is not preinstalled on the
control but must be deployed retrospectively and at the moment
only runs on Windows 10 or lower Windows Versions.
Alternatively, the Focas-API can be implemented on any OS
using a C-library for direct access of Fanuc NC variables.
While Focas refers to the direct use of the C-library, a C-
Wrapper provides the same API as Python functions. In
contrast, the Sinumerik control has an OPC UA server
implemented to begin with.

The sensor triggering and operation information was
implemented since the 4th prototype as was the final
containerized architecture. While the hardware in the first four
prototypes is a laptop with 3,2GHz and 16GB RAM, the one

for 4* was the Nerve MFN100 from TTTech with Debian as
OS, and the one in 4** an Intel Nuc11.

For retrofitting demonstration purposes, an exemplary
sensor system has been selected. The Sensory Tool Holder
(STH) is a development of the IFT and utilizes an acceleration
sensor integrated in the tool holder for high-frequent vibration
measurements during the machining process. Via Bluetooth
Low Energy, the sensor passes the data to a Signal
Transmission Unit (STU), which communicates over a CAN-
USB-Adapter with the edge device. The STU requires the tool-
ID of a specific sensory tool holder as input to start the data
stream, especially if more are in close proximity of the reading
device. Thus, the correct input at the right time of the
machining process is needed to ensure successful monitoring
[17].

4.2. Results

The different prototypes have been implemented in the
laboratory and were evaluated in experiments on CNC
machines including the sensory tool holder at the application
level. Evaluation questions proposed by Cabaj [18] considering
aspects such as effectiveness, scalability or stakeholder
support, have been utilized for systematic and comparable
evaluation of the implementations.

The first prototype consists of two threads: one for
communicating to the machine tool via OPC UA and the other
to the sensor by activating the command line tool from within
the program – starting the data collection of both systems
through manual activation. The data stream over the OPC UA
server yielded an update frequency of 9Hz for the transmission
of the absolute position of the 5 axes: X, Y, Z, A, and C (20
Bytes in total), while the STH streamed data at 5 kHz.

Due to the C-bound API, the second prototype did not
communicate to the machine tool and the sensor in a parallel
Python program. This and the third prototype required manual
STH activation. In the fourth and last prototype, a C-wrapper
for Python provided the functions of the raw C-library as
Python library but shows similar computational efficiency to
pure C code. The fourth prototype consists of Docker
containers and is managed by a docker-compose file that
defines dependencies and starts the services accordingly.

As shown in Fig. 3, the data of the CNC and the STH are
collected in parallel by asynchronous services of the prototype.

For the first variant of the 4th prototype (4* in Fig. 2), the
edge hardware was switched to the Nerve MFN 100 of TTTech

Fig. 2: Overview of developed test prototypes.

L. Tonejca (née Plessing) et al. / Procedia CIRP 126 (2024) 111–116 115

- an industrial edge device that runs on Debian (Linux-based
OS) and comes with a preinstalled Docker environment.

In the second variant (4**), a machine tool from a different
vendor and its present edge device were retrofitted with STH
through the proposed edge application. To do so, the CC was
switched to an application that reads the data points of the CNC
machine using OPC UA and distributes them using MQTT.

The functionality of the sensor activation through the
current tool was verified on a different machine and different
edge device. While the data processing container of the earlier
variant saves the data locally, the other calculates an indicator
for instability, calculated from the acceleration data, and passes
the information on to an MQTT broker (Fig. 4).

Table 2 summarizes the main evaluation for the described
prototypes. The evaluation questions about the effectiveness of
the edge application, its implementation and maintenance
efforts (time and cost wise), its scalability and likeliness to be
supported by stakeholders, are answered positively with the 4th

prototype.
In the order of the prototype evolution, the responses of the

evaluation questions are justified in Table 3.

Table 2. Prototype Evaluation in comparison.

Evaluation question \ Prototype # 1 2 3 4

Effectiveness ~ ~ ~ ~ +

Feasibility (time) ~ ~ ~ +

Viability (cost) - ~ + +

Scalability - + + +

Stakeholder support ~ - ~ +

Table 3. Answers of evaluation questions per prototype evolution.

Question Rate Justification

1st prototype (DMU + OPC UA + Windows)

Effectiveness ~ (+) Connectivity between CNC and STH tested
(-) NC data rate: 1,5 kbps (20 Byte à 9Hz)

Feasibility
(time)

~ (-) extra OPC UA server installation needed
(+) fast OPC UA server configuration

Viability
(cost)

- (-) extra Focas OPC UA license necessary
(-) extra Windows Edge needed, if not present

Scalability - (-) no containerization due to Windows
dependency

Stakeholder
support

~ (+) OPC UA popularity
(-) Windows supporting hardware required

2nd prototype (DMU + C library + Windows)

Effectiveness ~ (~) only CNC connection tested
(+) NC data rate: 20kbps (140 Byte à 19Hz)

Feasibility
(time)

~ (+) C-library installation by script possible
(-) configuration requires C-Know how

Viability
(cost)

~ (+) no extra Focas OPC UA license necessary
(-) extra Windows Edge needed, if not present

Scalability + (+) containerization of C-Library possible

Stakeholder
support

- (-) C is not popular amongst engineers
(-) Windows supporting hardware required

3rd prototype (DMU + C library + Ubuntu)

Effectiveness ~ (~) only CNC connection tested
(+) NC data rate: 9 kbps (80Byte à 14Hz)

Feasibility
(time)

~ (+) C-library installation by script possible
(-) configuration requires C-Know how

Viability
(cost)

+ (+) no extra Focas OPC UA license necessary
(+) no extra Windows Edge needed

Scalability + (+) containerization of C-Library possible

Stakeholder
support

~ (-) C is not popular amongst engineers
(+) Linux hardware is popular in IoT

4th prototype (DMU + C-Wrapper + Ubuntu)

Effectiveness ~ + (+) Connectivity between CNC and STH tested
(~) NC data rate: 5 kbps (80Byte à 6Hz)

Feasibility
(time)

+ (+) C-library installation by script possible
(+) easy configuration with Python

Viability
(cost)

+ (+) no extra Focas OPC UA license necessary
(+) no extra Windows Edge needed

Scalability + (+) containerization of C-Library possible

Stakeholder
support

+ (+) Python is popular amongst engineers
(+) Linux hardware is popular in IoT

Fig. 4: Prototype 4* saves the files locally (left), while 4** distributes them over an MQTT broker (right).

Fig. 3: Acceleration data (AccX), spindle speed (SS) and feed rate (FR) from
different data sources using a common timestamp.

116 L. Tonejca (née Plessing) et al. / Procedia CIRP 126 (2024) 111–116

5. Discussion

 The need for adding external sensors or actuators to existing
setups is met by the use of standard edge hardware, standard
industrial protocols, and formats, using a popular high-level
programming language with open-source libraries.
Additionally, three ways of informing retrofitted devices about
the current state of the machining process through the edge
application. We demonstrated the flexibility of the software
modules by switching the NC for the subscription of MQTT
topics. Additionally, we switched the data processing task from
one that stores the data locally to an external visualization
service as shown in Fig. 4. Basic Python and Docker skills are
sufficient for the modification. We studied the usability of the
application on different hardware. The switching between two
Linux-based OS is straightforward. A transition to a Windows-
based system is possible but requires extra attention in terms of
interfaces. Different communication protocols, MQTT, HTTP,
and UDS, were used to exchange information with the SC.

Our prototype validations confirm the previous results of
Garcia et al. [4]. They implemented a modular middle-ware
consisting of asynchronous jobs to achieve a reduced
complexity of the software and with it, higher feasibility for
SMEs. In contrast to their model, we extended the border of the
edge application to the machine tool itself. That way, only one
application must be maintained saving time and necessary
human resources. The work of Mauthner et al. [13], who
validated the approach of passing on the moment of a new
CAM operation to the edge application through NC-Code
messages, presents a valuable alternative for a more specific
sensor triggering to our approach of writing operation numbers
to macro variables. As the concept aims to broaden the
applicable setups, it would add a possible solution for
Sinumerik controls.

6. Conclusion and Future Work

Four different prototypes of an edge application for
retrofitting CNC tools with external hardware have been
implemented and tested - not only concerning the internal
architecture but also communicating the current line of a
running NC-Code to the edge application. As a result, the
architecture of an edge application is proposed that allows
general usability by making assumptions about standard
hardware and software conditions of a manufacturing system
and by testing the result on different machine controls.

The final edge application is deployed on a modern edge
device and consists of containerized application modules
written in Python using standard protocols and interfaces for
inside and outside communication. To verify its flexibility in
the system environment, we tested it in a different setup and
exchanged the modules with other applications.

Future research should study the integration of different
external devices and additional modules, be it in terms of
varying functionality, hardware setups, or interfaces.

References

[1] J. Lee, J. Singh, M. Azamfar, and V. Pandhare, “Industrial AI and
predictive analytics for smart manufacturing systems,” Smart
Manufacturing: Concepts and Methods, pp. 213–244, Jan. 2020, doi:
10.1016/B978-0-12-820027-8.00008-3.

[2] A. Garcia, J. Franco, F. Saez, J. R. Sanchez, and J. L. Bruse,
“Containerized edge architecture for manufacturing data analysis in
Cyber-Physical Production Systems,” Procedia Comput Sci, vol. 204, pp.
378–384, Jan. 2022, doi: 10.1016/J.PROCS.2022.08.046.

[3] GeeksforGeeks, “Layers of OSI Model.”
https://www.geeksforgeeks.org/layers-of-osi-model/ (accessed May 18,
2023).

[4] L. Kong, X. Peng, Y. Chen, P. Wang, and M. Xu, “Multi-sensor
measurement and data fusion technology for manufacturing process
monitoring: a literature review,” International Journal of Extreme
Manufacturing, vol. 2, no. 2, p. 022001, Mar. 2020, doi: 10.1088/2631-
7990/AB7AE6.

[5] C. H. Lee, Z. L. Wu, Y. T. Chiu, and V. S. Chen, “Heterogeneous
Industrial IoT Integration for Manufacturing Production,” Proceedings -
2019 International Symposium on Intelligent Signal Processing and
Communication Systems, ISPACS 2019, Dec. 2019, doi:
10.1109/ISPACS48206.2019.8986308.

[6] M. H. ur Rehman, I. Yaqoob, K. Salah, M. Imran, P. P. Jayaraman, and C.
Perera, “The role of big data analytics in industrial Internet of Things,”
Future Generation Computer Systems, vol. 99, pp. 247–259, Oct. 2019,
doi: 10.1016/J.FUTURE.2019.04.020.

[7] I. Ungurean and N. C. Gaitan, “A software architecture for the industrial
internet of things—a conceptual model,” Sensors (Switzerland), vol. 20,
no. 19, pp. 1–19, Oct. 2020, doi: 10.3390/s20195603.

[8] G. Aceto, V. Persico, and A. Pescapé, “A Survey on Information and
Communication Technologies for Industry 4.0: State-of-the-Art,
Taxonomies, Perspectives, and Challenges,” IEEE Communications
Surveys and Tutorials, vol. 21, no. 4, pp. 3467–3501, Oct. 2019, doi:
10.1109/COMST.2019.2938259.

[9] W. Z. Khan, M. H. Rehman, H. M. Zangoti, M. K. Afzal, N. Armi, and K.
Salah, “Industrial internet of things: Recent advances, enabling
technologies and open challenges,” Computers & Electrical Engineering,
vol. 81, p. 106522, Jan. 2020, doi:
10.1016/J.COMPELECENG.2019.106522.

[10] B. I. Ismail et al., “Evaluation of Docker as Edge computing platform,” in
ICOS 2015 - 2015 IEEE Conference on Open Systems, Institute of
Electrical and Electronics Engineers Inc., Jan. 2016, pp. 130–135. doi:
10.1109/ICOS.2015.7377291.

[11] “Edge for IT specialists - Industrial Edge - Global.”
https://www.siemens.com/global/en/products/automation/topic-
areas/industrial-edge/it-specialists.html#Edgedevices (accessed May 08,
2023).

[12] “MFN 100 – Nerve 2.6.1 Documentation.”
https://docs.nerve.cloud/device_guide/mfn100/#additional-device-
specific-information (accessed May 08, 2023).

[13] G. Mauthner, W. Votruba, C. Ramsauer, L. Plessing, T. Trautner, and F.
Bleicher, “Development of a CAM-in-the-Loop System for Cutting
Parameter Optimization using an Instrumented Tool Holder,” Procedia
CIRP, vol. 107, pp. 326–331, 2022, doi: 10.1016/J.PROCIR.2022.04.053.

[14] A. Dwivedi and A. Jaiswal, “Python: The Versatile Language-Recent
Trends in Programming Languages,” vol. 8, no. 1, p. 2021, 2021, doi:
10.37591/RTPL.

[15] A. Eftimie and E. Borcoci, Containerization Using Docker Technology.
[16] fledge-iot, “Fledge Architecture.” https://fledge-

iot.readthedocs.io/en/v1.9.2/fledge_architecture.html (accessed May 19,
2023).

[17] P. Schörghofer, F. Pauker, N. Leder, J. Mangler, C. Ramsauer, and F.
Bleicher, “Using sensory tool holder data for optimizing production
processes,” Journal of Machine Engineering, vol. 19, no. Vol. 19, No. 3,
pp. 43--55, 2019, doi: 10.5604/01.3001.0013.4079.

[18] M. Cabaj, “Evaluating Prototypes,” 2016. [Online]. Available:
www.betterblock.org

