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1. Introduction

Trends such as Industry 4.0 and Cyber Physical Production
Systems (CPPS) have led to the development of various sensor 
and actuator systems and respective communication protocols 
utilized in Computer Numerical Control (CNC) machining 
processes such as milling. These new systems provide large 
amounts of high-frequent process data points regarding tool 
vibration, temperature, or cutting forces, and can be used for 
process optimization purposes.  

However, the integration and synchronization of sensor and 
actuator systems into commercial CNC systems is still a 
challenge for the manufacturing industry [1], [2] For data-
driven process control, the sensors and actuators must interact 
at an application level (of the ISO-OSI model[3]) with the 
CNC. Retrofitting existing machine tools remains a difficult 
task requiring manual engineering effort due to the proprietary 
interfaces and the lack of standardization of individual control 
systems. 

Problems may also occur when processing the vast amount 
of data produced by multiple sensors utilizing the computing 
resources of the CNC, especially if cameras or other sensors 
with high data rates are involved. Additionally, the fusion of 
raw sensor data and relevant CNC data, like axis positions, 
spindle speed, etc. may be a difficult task requiring additional 
manual engineering effort, thus, limiting the opportunities for 
data analysis and machine learning approaches [4] 

Due to this increasing demand for a flexible integration of 
conventional CNC systems with new sensor and actuator 
technology as well as new needs regarding high-frequency data 
processing, edge computing increasingly becomes the focus of 
researchers and developers [5], [6]. 

With its capabilities to provide additional computation 
power and open microservice architecture, edge devices enable 
new opportunities for manufacturers to retrofit existing 
machines and integrate new sensor/actuator technologies [2] 
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2. Related Work 

Due to trends such as Industry 4.0 and the Industrial Internet 
of Things (IIoT), research has focused on industrial 
communication protocols as well as edge/cloud architectures in 
recent years. Historically, industrial applications utilize a vast 
variety of fieldbus systems such as CAN, Modbus, Profibus, 
Profinet or EtherCAT for integrating CNC controllers and its 
respective periphery such as programmable logic controllers 
(PLC), sensors and actuators [7]. Additionally, recent 
developments led to new TPC/IP based protocols acting on the 
application level such as CoAP, HTTP, AMQP, OPC UA and 
MQTT [8]. While some attempt to standardize industrial 
communication between different machine tools and its 
periphery, the integration of sensors remains a challenge [9].  

With the convergence of IT (Information Technology) and 
OT (Operational Technology) edge devices come increasingly 
into focus. They provide CPPS with additional computing 
power and flexibility in terms of applications and functionality. 
Especially the concept of application containerization is a trend 
for enhancing easy upscaling and flexible adjustment of 
software code [10]. Current industrial edge device vendors, 
such as Siemens or TTTech, offer functionality regarding data 
connectivity, vertical integration of additional hardware as well 
as Docker environments for containerized applications.  

 The Siemens Industrial Edge for Machine Tools focuses on 
the need of domain specific manufacturers and aims a straight-
forward integration with popular CNC systems. Providing a 
variety of connectivity protocols such as OPC UA, Modbus 
TCP or Profinet, it allows an easy integration of different 
heterogeneous field devices into the existing system. With 
docker application being implemented on the hardware 
operating system, it is possible to run applications written in 
high-level coding languages like C++ or Python [11]. In 
contrast, Nerve is an edge computing platform by the company 
TTTech. Additionally, own hardware with multiple ports to 
connect different sensors and actuators, as well as an I/O port 
to ensure Ethernet-based fieldbus connectivity is offered. 
Applications can be deployed as docker containers or utilize 
the integrated CoDeSys Runtime for Soft PLC applications 
[12].  

Demonstrating a manufacturing use-case utilizing edge 
devices, Garcia et al. [2] proposed a micro-service architecture 
based on Docker container. A job manager service handles 
service requests, data acquisition and provision of results to the 
Programmable Logic Controller (PLC). However, the 
communication with the production system is reduced to a 
message from a placeholder and does not address the special 
case of CNC machines.   

In [13], the authors demonstrate the integration of an 
external vibration sensor into the CNC control, enabling bi-
directional communication using machine tool individual M-
Commands and NC-Code comments, to trigger communication 
between the two separate systems. While communication 
between the sensor and the CNC has been implemented 
successfully, machine tool specific integration work had to be 
performed to provide the respective functionality. 

Past research in the field of industrial communication 
protocols, edge computing, and containerization of micro-
services highlights new opportunities for vertical integration in 
the industrial networks. While several relevant technologies 
have been discussed individually, current research indicates a 
lack of approaches for respective system integration especially 
in the machine tool and CNC machining domain. 

3. Concept for flexible and portable sensor and actuator 
integration for CNC machine tools 

This paper presents an innovative concept for flexible and 
portable integration of retrofitted sensor and actuator 
technology in modern machine tools. In this work, edge devices 
are used as standardized middleware for bi-directional 
communication between the sensors/actuators and the CNC 
system. First, proper design guidelines have been selected to 
specific requirements for the development. Second, the 
envisioned architecture is described. Third, an overview about 
the prototype development is given. 

3.1. Design Requirements 

To investigate the optimal edge architecture for retrofitting 
existing hardware, several requirements about the design of the 
envisioned system architecture need to be defined. The 
following requirements have been defined in order to design a 
applicable prototype for a wide group of manufacturers: 

 No additional hardware other than a standard industrial edge 
device is needed to enhance retrofitting. 

 Interaction between machine tools and external devices 
shall take place only at the application level. 

 Adaptability of the application by the customer is necessary 
to react to changing needs such as new sensors or actuators.  

 In general, high usability, manageability, and scalability is a 
must to enable a wide range of applications. 

Considering the software and hardware requirements in 
manufacturing companies, several boundary conditions for the 
prototype development were defined and evaluated. Table 1
illustrates the requirements for the architecture design and 
prototype development. 

Table 1. Hardware and software requirements for prototype development. 

Edge device hardware requirements 

Operating 
System (OS) 

Likely OSs of modern edge devices are Linux-based 
variants or Windows distributions. 

Control 
interface 

Most controls are accessible through IP on top of 
Ethernet as a network access protocol. 

Control 
protocol 

Either a proprietary API or a standard communication 
interface, like OPC UA, MQTT, or Modbus, are 
available at the control for data exchange. 

Control 
vendors 

Popular control manufacturers for CNC machines are 
Heidenhain, Siemens and Fanuc. 

Edge 
hardware 

An optimal edge architecture allows a straightforward 
implementation with existing edge hardware. 
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Functional requirements for the edge application 

External 
connectivity  

Connectivity at application level to the CNC machine 
and to retrofitted devices. 

Internal 
connectivity 

Connectivity from the machine tool to the sensors or 
actuators over the edge application. 

Data 
streaming 

Continuous data collection from the machine tool and 
retrofitted sensors. 

Data 
processing 

Onward streaming to an information distributor or 
storage of the collected data. 

Flexibility Flexibility in common machine tools, edge devices, 
controls, and OSs of edge hardware. 

Programming 
language 

Python is one of the most popular high-level 
programming languages amongst engineers and comes 
with a large community and open-source libraries [14]. 

Functionality 
distribution 

As continuous integration and deployment (CI/CD) 
processes are essential for time and resource-efficient 
implementation, maintenance, and horizontal scaling, 
containerization is becoming popular in software 
development communities as an alternative to 
virtualization [15]. Docker is a containerization tool with 
a large community and a free repository with already 
compiled images of various applications. 

3.2. System Architecture 

The proposed architecture (Fig. 1) has been setup similarly 
to other existing middleware solutions e.g., the fledge-iot 
architecture [16], using southbound and northbound 
communication services, notification services for events and a 
local buffer. An industrial edge device is connected to the 
machine tool control as well as to the retrofitted sensors and 
actuators. The edge device provides additional computation 
capacity thus, the machine tool control is not overloaded with 
various data extraction requests.  

A deployment platform is running on the edge device that 
hosts individual applications using an open micro-service 
architecture based on docker containers. This modularity 
ensures easy deployment and flexibility regardless of the 

machine tool control or sensor/actuator provider. Hence, the 
proposed architecture remains independent and flexible for 
various adaptions during the lifecycle. 

For providing bi-directional connectivity between the 
machine tool control and the sensor/actuator system, two 
separate communication modules are developed, providing 
easy reconfigurability for different open or proprietary 
interfaces used. Each application module is written in Python 
and containerized via Docker.  

The main task of the Control Communicator Module (CC)
is to provide pre-defined trigger points integrated in the NC-
Code to synchronize the bi-directional communication between 
the sensor/actuator and the numerical control. In the proposed 
architecture, these trigger points can be identified by the edge 
application during execution, triggering relevant actions such 
as start of a data gathering service or the activation of a feedrate 
optimization service on the machine control. A suitable trigger 
point is e.g., using the current tool number from the numerical 
control databus. In that case, the CC is frequently requesting 
the last used T-Command from the PLC memory providing the 
currently used tool identification number. In case of a tool 
change, the associated sensor- or actuator-ID is looked up in a 
configuration file, and respective actions such as sensor 
activation for data streaming can be executed. 

To pass on the activation commands, the CC communicates 
with the Sensor Communicator Module (SC) via HTTP 
protocol over the internal Docker network. The SC is a HTTP-
Server providing a REST-API based on the Python library 
aiohttp and performs three tasks: (I) Connection/disconnection 
of sensor devices, (II) start/stop the data stream of sensor 
devices and (III) providing subsequent data processing services 
with sensor data. Those three services run as asynchronous 
background tasks, triggered by HTTP requests. Once the 
communication is established, the data stream is initiated by 
sending another HTTP request to the SC. The proposed 
implementation uses standard ethernet based protocols which 
run on any Linux-based hardware for internal communication.  

Fig. 1: Modular edge architecture for retrofitting an existing CNC machine with sensors and actuators. 
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Before collecting data, the connection status of the sensor is 
verified to avoid connection errors. By sending the respective 
HTTP request, the data collection terminates. Temporarily, the 
data is stored in a queue and provided to other containers or 
services via a UNIX Domain Socket (UDS). UDSs are standard 
components of UNIX systems and are used for Inter-Process 
Communication on the host [8]. 

The Local Data Storer reads data from the UDS to store it 
locally, while the Cloud Communicator prepares the data for 
cloud processing. The architecture allows the deployment of 
individual modules for further data processing tasks on the 
edge device e.g., a Failure Detector Module, which analyses 
the incoming acceleration data and triggers a warning, if a 
threshold is exceeded.  

In this study, the interchangeable structure was organized by 
using a Docker-compose files which controls the installation of 
the application modules as Docker images.  

4. Prototype Evaluation 

4.1. Experimental Setup 

The concept has been implemented as a prototype at the 
manufacturing laboratory of TU Wien Institute for Production 
Engineering and Photonic Technologies (IFT) in Vienna. To 
analyze and evaluate key design requirements such as 
flexibility and portability, different prototype versions have 
been implemented utilizing different machine tool 
manufacturers, CNC systems, communication protocols as 
well as edge device hardware. An overview about the different 
experimental setups used are shown in Fig. 2. Different 
variants of the prototypes are listed, beginning with the 
Operating System (OS), the industrial communication 
protocol, the NC manufacturer, and the method of triggering 
external devices from the machine tool. The vertical arrows 
indicate the different combinations used for the respective 
prototype. 

The first four versions represent the evolving prototypes of 
the edge architecture. To evaluate its general usability, the 
following two versions are test runs of the 4th prototype on a 
different edge device (4*) and at a different machine tool (4**). 
All prototypes were tested on the DMU 75 Monoblock with a 
Fanuc control. The last prototype was also verified on the WFL 
M35 Millturn with a Sinumerik control. 

Based on the Focas-API, Fanuc controls can be used with a 
proprietary OPC UA server which uses embedded Ethernet on 
the network access layer. The server is not preinstalled on the 
control but must be deployed retrospectively and at the moment 
only runs on Windows 10 or lower Windows Versions. 
Alternatively, the Focas-API can be implemented on any OS 
using a C-library for direct access of Fanuc NC variables. 
While Focas refers to the direct use of the C-library, a C-
Wrapper provides the same API as Python functions. In 
contrast, the Sinumerik control has an OPC UA server 
implemented to begin with.  

The sensor triggering and operation information was 
implemented since the 4th prototype as was the final 
containerized architecture. While the hardware in the first four 
prototypes is a laptop with 3,2GHz and 16GB RAM, the one 

for 4* was the Nerve MFN100 from TTTech with Debian as 
OS, and the one in 4** an Intel Nuc11.  

For retrofitting demonstration purposes, an exemplary 
sensor system has been selected. The Sensory Tool Holder
(STH) is a development of the IFT and utilizes an acceleration 
sensor integrated in the tool holder for high-frequent vibration 
measurements during the machining process. Via Bluetooth 
Low Energy, the sensor passes the data to a Signal 
Transmission Unit (STU), which communicates over a CAN-
USB-Adapter with the edge device. The STU requires the tool-
ID of a specific sensory tool holder as input to start the data 
stream, especially if more are in close proximity of the reading 
device. Thus, the correct input at the right time of the 
machining process is needed to ensure successful monitoring 
[17]. 

4.2. Results 

The different prototypes have been implemented in the 
laboratory and were evaluated in experiments on CNC 
machines including the sensory tool holder at the application 
level. Evaluation questions proposed by Cabaj [18] considering 
aspects such as effectiveness, scalability or stakeholder 
support, have been utilized for systematic and comparable 
evaluation of the implementations.  

The first prototype consists of two threads: one for 
communicating to the machine tool via OPC UA and the other 
to the sensor by activating the command line tool from within 
the program – starting the data collection of both systems 
through manual activation. The data stream over the OPC UA 
server yielded an update frequency of 9Hz for the transmission 
of the absolute position of the 5 axes: X, Y, Z, A, and C (20 
Bytes in total), while the STH streamed data at 5 kHz. 

Due to the C-bound API, the second prototype did not 
communicate to the machine tool and the sensor in a parallel 
Python program. This and the third prototype required manual 
STH activation. In the fourth and last prototype, a C-wrapper 
for Python provided the functions of the raw C-library as 
Python library but shows similar computational efficiency to 
pure C code. The fourth prototype consists of Docker 
containers and is managed by a docker-compose file that 
defines dependencies and starts the services accordingly.  

As shown in Fig. 3, the data of the CNC and the STH are 
collected in parallel by asynchronous services of the prototype. 

For the first variant of the 4th prototype (4* in Fig. 2), the 
edge hardware was switched to the Nerve MFN 100 of TTTech 

Fig. 2: Overview of developed test prototypes.



L. Tonejca (née Plessing)  et al. / Procedia CIRP 126 (2024) 111–116 115

- an industrial edge device that runs on Debian (Linux-based 
OS) and comes with a preinstalled Docker environment.  

In the second variant (4**), a machine tool from a different 
vendor and its present edge device were retrofitted with STH 
through the proposed edge application. To do so, the CC was 
switched to an application that reads the data points of the CNC 
machine using OPC UA and distributes them using MQTT. 

The functionality of the sensor activation through the 
current tool was verified on a different machine and different 
edge device. While the data processing container of the earlier 
variant saves the data locally, the other calculates an indicator 
for instability, calculated from the acceleration data, and passes 
the information on to an MQTT broker (Fig. 4).  

Table 2 summarizes the main evaluation for the described 
prototypes. The evaluation questions about the effectiveness of 
the edge application, its implementation and maintenance 
efforts (time and cost wise), its scalability and likeliness to be 
supported by stakeholders, are answered positively with the 4th

prototype.  
In the order of the prototype evolution, the responses of the 

evaluation questions are justified in Table 3. 

Table 2. Prototype Evaluation in comparison. 

Evaluation question \ Prototype # 1 2 3 4 

Effectiveness ~ ~ ~ ~ + 

Feasibility (time) ~ ~ ~ + 

Viability (cost) - ~ + + 

Scalability - + + + 

Stakeholder support ~ - ~ + 

Table 3. Answers of evaluation questions per prototype evolution.  

Question  Rate Justification 

1st prototype (DMU + OPC UA + Windows) 

Effectiveness ~ (+) Connectivity between CNC and STH tested 
(-) NC data rate: 1,5 kbps (20 Byte à 9Hz) 

Feasibility 
(time) 

~ (-) extra OPC UA server installation needed 
(+) fast OPC UA server configuration 

Viability 
(cost) 

- (-) extra Focas OPC UA license necessary 
(-) extra Windows Edge needed, if not present 

Scalability - (-) no containerization due to Windows 
dependency 

Stakeholder 
support 

~ (+) OPC UA popularity 
(-) Windows supporting hardware required 

2nd prototype (DMU + C library + Windows) 

Effectiveness ~ (~) only CNC connection tested 
(+) NC data rate: 20kbps (140 Byte à 19Hz) 

Feasibility 
(time) 

~ (+) C-library installation by script possible 
(-) configuration requires C-Know how 

Viability 
(cost) 

~ (+) no extra Focas OPC UA license necessary 
(-) extra Windows Edge needed, if not present 

Scalability + (+) containerization of C-Library possible 

Stakeholder 
support 

- (-) C is not popular amongst engineers 
(-) Windows supporting hardware required 

3rd prototype (DMU + C library + Ubuntu) 

Effectiveness ~ (~) only CNC connection tested 
(+) NC data rate: 9 kbps (80Byte à 14Hz) 

Feasibility 
(time) 

~ (+) C-library installation by script possible 
(-) configuration requires C-Know how 

Viability 
(cost) 

+ (+) no extra Focas OPC UA license necessary 
(+) no extra Windows Edge needed 

Scalability + (+) containerization of C-Library possible 

Stakeholder 
support 

~ (-) C is not popular amongst engineers 
(+) Linux hardware is popular in IoT 

4th prototype (DMU + C-Wrapper + Ubuntu) 

Effectiveness ~ + (+) Connectivity between CNC and STH tested 
(~) NC data rate: 5 kbps (80Byte à 6Hz) 

Feasibility 
(time) 

+ (+) C-library installation by script possible 
(+) easy configuration with Python 

Viability 
(cost) 

+ (+) no extra Focas OPC UA license necessary 
(+) no extra Windows Edge needed 

Scalability + (+) containerization of C-Library possible 

Stakeholder 
support 

+ (+) Python is popular amongst engineers 
(+) Linux hardware is popular in IoT 

Fig. 4: Prototype 4* saves the files locally (left), while 4** distributes them over an MQTT broker (right).

Fig. 3: Acceleration data (AccX), spindle speed (SS) and feed rate (FR) from 
different data sources using a common timestamp. 
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5. Discussion 

 The need for adding external sensors or actuators to existing 
setups is met by the use of standard edge hardware, standard 
industrial protocols, and formats, using a popular high-level 
programming language with open-source libraries. 
Additionally, three ways of informing retrofitted devices about 
the current state of the machining process through the edge 
application. We demonstrated the flexibility of the software 
modules by switching the NC for the subscription of MQTT 
topics. Additionally, we switched the data processing task from 
one that stores the data locally to an external visualization 
service as shown in Fig. 4. Basic Python and Docker skills are 
sufficient for the modification. We studied the usability of the 
application on different hardware. The switching between two 
Linux-based OS is straightforward. A transition to a Windows-
based system is possible but requires extra attention in terms of 
interfaces. Different communication protocols, MQTT, HTTP, 
and UDS, were used to exchange information with the SC. 

Our prototype validations confirm the previous results of 
Garcia et al. [4]. They implemented a modular middle-ware 
consisting of asynchronous jobs to achieve a reduced 
complexity of the software and with it, higher feasibility for 
SMEs. In contrast to their model, we extended the border of the 
edge application to the machine tool itself. That way, only one 
application must be maintained saving time and necessary 
human resources. The work of Mauthner et al. [13], who 
validated the approach of passing on the moment of a new 
CAM operation to the edge application through NC-Code 
messages, presents a valuable alternative for a more specific 
sensor triggering to our approach of writing operation numbers 
to macro variables. As the concept aims to broaden the 
applicable setups, it would add a possible solution for 
Sinumerik controls. 

6. Conclusion and Future Work 

Four different prototypes of an edge application for 
retrofitting CNC tools with external hardware have been 
implemented and tested - not only concerning the internal 
architecture but also communicating the current line of a 
running NC-Code to the edge application. As a result, the 
architecture of an edge application is proposed that allows 
general usability by making assumptions about standard 
hardware and software conditions of a manufacturing system 
and by testing the result on different machine controls.  

The final edge application is deployed on a modern edge 
device and consists of containerized application modules 
written in Python using standard protocols and interfaces for 
inside and outside communication. To verify its flexibility in 
the system environment, we tested it in a different setup and 
exchanged the modules with other applications. 

Future research should study the integration of different 
external devices and additional modules, be it in terms of 
varying functionality, hardware setups, or interfaces. 
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