
Enhancing Fault Diagnosis in
Safety-Critical Cyber-Physical

Systems

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktorin der Technischen Wissenschaften

by

Drishti Yadav, M.Tech.
Registration Number 12035748

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dr. Ezio Bartocci

The dissertation has been reviewed by:

Prof. Domenico Bianculli Prof. Giulia Pedrielli

Vienna, 30th September, 2024
Drishti Yadav

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Declaration of Authorship

Drishti Yadav, M.Tech.

I hereby declare that I have written this Doctoral Thesis independently, that I have
completely specified the utilized sources and resources and that I have definitely marked
all parts of the work - including tables, maps and figures - which belong to other works
or to the internet, literally or extracted, by referencing the source as borrowed.

Vienna, 30. September 2024
Drishti Yadav

iii

To my parents
Usha Yadav and Alakh Ram Yadav

“The deeds done by mother and father for their children constantly..., there is no requital
to these actions performed by the parents.”

- Shrimad Valmiki Ramayana, Ayodhya Kanda,
Chapter [Sarga] 111, Verse [Shlok] 9

Acknowledgements

I wholeheartedly dedicate this thesis to my beloved parents, whose unwavering love and
sacrifices have sculpted the person I am today. Through every trial and triumph, in joy
and sorrow, your endless support has been my anchor. Your belief in me, even in the
simplest of accomplishments, fills me with gratitude and humility. To my dear father,
though you have transcended the mortal realm, your presence remains palpable, guiding
me through life’s journey. I carry your love and teachings in my heart, always. Love you
Mummy, Love you Papa!

I am also deeply thankful to the Almighty for bestowing upon me the gift of life and
for showering me with boundless blessings. Whenever I have sought guidance, support,
or love, I have found solace in the divine presence that surrounds me. Furthermore, I
extend my heartfelt appreciation to my sister, Dr. Shilpee Yadav, whose unconditional
love, support, and encouragement have been the cornerstone of my PhD journey. Simply
put, this dissertation owes its existence to the indispensable support of my parents, the
divine, and my sister.

Embarking on the journey towards a doctoral thesis entails navigating a challenging path
fraught with numerous obstacles. I am profoundly grateful for the invaluable guidance
and mentorship provided by my advisor, Univ.Prof. Dr. Ezio Bartocci. His unwavering
support, profound expertise, and professional acumen have been invaluable assets, guiding
me through both moments of triumph and adversity. He has not only made this academic
endeavor achievable but also guided the research process, imparting in me the ability to
nurture my own potential. Thank you so much, Ezio!

I am equally indebted to my collaborators, who have served as invaluable mentors
and partners in my academic journey. Dr. Dejan Ničković, Senior Scientist at AIT
Austrian Institute of Technology, Austria, and Prof. Leonardo Mariani, University of
Milano-Bicocca (UniMiB), Milan, Italy, have been pivotal figures in my PhD pursuit.
Their never-ending support, patience, and encouragement have been the bedrock of my
scholarly endeavors, propelling me forward on the path to academic excellence. I am
immensely grateful for their guidance and mentorship, which have been instrumental in
shaping my academic trajectory. Thank you, Leo! Thank you, Dejan! Without a grain
of doubt, Ezio, Leo, and Dejan, the trio, have been the finest mentors I could have ever
asked for.

vii

I am deeply honored to have undertaken a research stay at the Department of Informatics,
Systems, and Communication DISCo, UniMiB, under the guidance of Prof. Leonardo
Mariani. I also express my heartfelt gratitude to TU Wien for awarding the KUWI
grant, which facilitated my research stay abroad. Additionally, I extend my thanks to the
Doctoral College Resilient Embedded Systems, hereafter DC-RES (which is run jointly by
the TU Wien’s Faculty of Informatics and the University of Applied Sciences Technikum
Wien) for funding the publication of my research work. I also want to extend my gratitude
to the academic and administrative staff at DC-RES and CPS (Cyber-Physical Systems)
research group at TU Wien for their continuous assistance, guidance, and cooperation
during my academic journey.

I am grateful to the members of the Proficiency Evaluation Committee, my advisor
Univ.Prof. Dr. Ezio Bartocci, Prof. Karl M. Göschka as the National Expert and
Ao.Univ.Prof. Andreas Steininger as the Chairperson, for their invaluable feedback and
suggestions. Furthermore, I extend my thanks to Prof. Domenico Bianculli and Prof.
Giulia Pedrielli for their diligent review of my thesis and for their insightful comments
and suggestions.

I am immensely grateful for the opportunity to have travelled to various countries
around the world and present my research work at prestigious conferences including
(1) ISSRE 2022 in Charlotte, North Carolina, USA; (2) ESEC/FSE 2022 in Singapore,
and (3) ICST 2023 in Dublin, Ireland. Additionally, I had the privilege of attending the
Informatics Europe Summer School on Informatics Education Research (SCHIER) 2024,
supported by IBM Research Europe and hosted at the IBM Innovation Studio & Think
Lab Zurich, in Rüschlikon, Switzerland. The summer school offered unique and exciting
moments, including visits to IBM’s Quantum Computing Lab and Nanotechnology
Center—absolutely fascinating! Furthermore, I truly appreciate the chance to participate
as a student volunteer at ISSTA/ECOOP 2024 in Vienna and share my research at the
Doctoral Symposium, where the insightful feedback I received was highly valuable. All
these experiences not only allowed me to expand my network but also provided valuable
insights and perspectives. Additionally, the chance to explore new places and cultures
during these trips added an extra dimension of enjoyment to the entire experience.

My tenure at TU Wien has been enriched by the camaraderie and support of my
exceptional research group and friends. To Lilly, Mahum, Elisa, Eleonora, Michele,
Monika, Luigi, Francesco, Ignacio, Axel, Andreas, David, Ennio, Stefan and Emad, I
extend my heartfelt gratitude for making my stay at TU Wien feel like home. Your
steadfast support and friendship have brought immense strength, comfort, and joy. I
extend my heartfelt gratitude for the cherished memories of our ‘Pasta Thursdays’ and
‘Cake Fridays’, our delightful trips, shared lunches, Christmas Parties, the TU Ball
2024, and the joyous occasions of indulging in chocolates, snacks, or cakes without any
reason. Our conversations, spanning topics both profound and mundane, have enriched
my life beyond measure. Thank you all for these treasured moments. Also, big thanks to
Eleonora and Mahum for joining me on that wild and totally unforgettable skydiving
adventure!

I am also grateful to all my friends who have accompanied me on this journey, enriching
my life with laughter, camaraderie, and invaluable learning experiences. Special thanks
to my dear friend, Niveditha, for her steadfast presence during times of need, invaluable
emotional support and for treating me to delightful Indian cuisines. A heartfelt thanks
to her family, especially her husband Abilash, for their kindness and encouragement.

On top of that, the friends I have made through DC-RES have been a tremendous
support. I especially want to give a big applause to Lilly, who is not just a great friend
but also my go-to guide in the new Viennese adventure. Your help and support during
those early days in Vienna were priceless, and I cannot thank you enough for it! A big
shoutout to Mahum for her friendship, endless support and positivity. Our memorable
trips and fun-filled adventures would not have been the same without her. Huge thanks
to Mahum and Hugo for helping me ace the Formal Methods exam. Massive appreciation
to Luigi for hooking me up with GitLab and walking me through the ropes. And huge
thanks to Mahyar for the amazing chats about life and those mouthwatering Iranian
sweets. Also, heartfelt appreciation to Raghda and Najla for all the laughter and great
conversations we have shared together. To all the DC-RES PhD students, your support
is deeply appreciated.

I would like to express my heartfelt thanks to all my relatives, family friends, uncles, and
aunts who always cheer me on for even the smallest achievements. My deepest gratitude
goes to my uncles Mahesh, Santosh, and Ganesh for their unwavering belief in me and
their enduring love and support. I am also thankful to my uncle and aunt, Pramod
and Kiran, for their abundant love, blessings, and encouragement. Special thanks to
my aunt Shweta, uncle Rajendra, and my lovely cousin Mahek for their love, blessings,
delightful meals, and warm hospitality during my visits to Denmark, especially during
our festivals. I also want to express my gratitude to the new family I have found in
Denmark – my aunt’s friends: Rashida, Tanya, Veena, Anju, Arpita, and their families.
Their love, warmth, and flavorsome Indian food made me feel like I was back home in
India. Thank you all!

My deepest love and gratitude are extended to all my teachers and mentors, whose
wisdom and guidance have shaped my academic journey in profound ways. Grateful
acknowledgments to Dr. R. N. Patel, my Bachelor’s mentor, and Dr. Om Prakash
Verma, my Master’s advisor, for their encouragement and guidance. To every person I
have encountered along the way, I am indebted for the invaluable lessons learned, even in
the simplest of interactions.

Lastly, to my dear family, whose relentless support and encouragement have been my
guiding light, I express my deepest appreciation. Your love and encouragement have
sustained me through every trial and tribulation. I eagerly anticipate reuniting with you
all after more than four years, promising to cherish every moment spent together. Thank
you for being the pillars of strength in my life!

Thank you, everyone.

Abstract

Cyber-Physical Systems (CPSs) present increasingly complex challenges, particularly
within safety-critical domains. Ensuring the correctness of safety-critical CPSs is crucial
for maintaining their viability and full operational capacity, as undetected failures can
be not only costly but also life-threatening. The timely detection and diagnosis of
faults are essential in the CPS development cycle, given the prohibitively high costs
of rectifying faults post-hardware integration. Consequently, thorough testing of CPSs
becomes paramount, underscoring the necessity for advanced fault diagnosis procedures
that can accurately detect, explain, and rectify faults.

In this thesis, we develop innovative tools and methods tailored for CPSs, aimed at
facilitating swift and accurate fault diagnosis. Our contributions encompass fault injection,
global optimization, search-based testing for fault localization, mutation testing against
formal properties, and signal feature coverage-based testing. This holistic approach offers
significant advantages over existing methods, ensuring thorough testing across various
scenarios.

The proposed solutions have been evaluated using publicly available benchmarks from
diverse domains, demonstrating the applicability and effectiveness of our research. The
findings of this thesis advance the knowledge in CPS testing, paving the way for more
reliable and safe CPSs in the future.

xi

Kurzfassung

Cyber-Physical Systems (CPSs) stellen immer komplexere Herausforderungen dar, ins-
besondere in sicherheitskritischen Bereichen. Die Gewährleistung der Korrektheit sicher-
heitskritischer CPS ist von entscheidender Bedeutung für die Aufrechterhaltung ihrer
Funktionsfähigkeit und vollen Betriebskapazität, da unentdeckte Ausfälle nicht nur kost-
spielig, sondern auch lebensbedrohlich sein können. Angesichts der unerschwinglich hohen
Kosten für die Behebung von Fehlern nach der Hardwareintegration ist die rechtzeitige
Erkennung und Diagnose von Fehlern im CPS-Entwicklungszyklus von entscheidender
Bedeutung. Daher ist eine gründliche Prüfung von CPS von größter Bedeutung, was die
Notwendigkeit fortschrittlicher Fehlerdiagnoseverfahren unterstreicht, mit denen Fehler
genau erkannt, erklärt und behoben werden können.

In dieser Arbeit entwickeln wir innovative Werkzeuge und Methoden, die auf CPSs
zugeschnitten sind und darauf abzielen, eine schnelle und genaue Fehlerdiagnose zu
ermöglichen. Unsere Beiträge umfassen Fehlerinjektion, globale Optimierung, suchbasierte
Tests zur Fehlerlokalisierung, Mutationstests anhand formaler Eigenschaften und auf der
Abdeckung von Signalmerkmalen basierende Tests. Dieser ganzheitliche Ansatz bietet
erhebliche Vorteile gegenüber bestehenden Methoden und gewährleistet gründliche Tests
in verschiedenen Szenarien.

Die vorgeschlagenen Lösungen wurden anhand öffentlich verfügbarer Benchmarks aus
verschiedenen Bereichen bewertet, was die Anwendbarkeit und Wirksamkeit unserer
Forschung belegt. Die Ergebnisse dieser Arbeit erweitern das Wissen über CPS-Tests
und ebnen den Weg für zuverlässigere und sicherere CPSs in der Zukunft.

xiii

Contents

Abstract xi

Kurzfassung xiii

Contents xv

List of Publications xix

1 Introduction 1
1.1 Research Gaps and Problem Statement 5
1.2 Scientific Goals and Objectives . 8
1.3 Methodology . 12
1.4 Thesis Contributions . 13
1.5 Thesis Organization . 15

2 Background 17
2.1 Signal Temporal Logic (STL) . 17
2.2 CPS Simulink Models . 18
2.3 Mutation Testing . 20
2.4 Faults and Mutations in Simulink . 22

3 Fault Injection 23
3.1 Introduction . 23
3.2 Architecture and Implementation of FIM 24

3.2.1 Fault Injection Library . 26
3.2.2 Fault Injection . 28
3.2.3 Fault Configuration . 28

3.3 Tool Usage . 29
3.4 Tool Evaluation . 33
3.5 Related Work . 33
3.6 Conclusion . 35

4 Blood Coagulation Algorithm: A Global Optimizer 37
4.1 Introduction . 37

xv

4.2 Blood Coagulation Algorithm . 41
4.2.1 Inspiration . 41
4.2.2 Mathematical Model and Optimization Algorithm 43

4.3 Optimization Testbed and Experimental Platform 47
4.3.1 Benchmark Set . 47
4.3.2 Experimental Setup . 48

4.4 Experimental Results and Discussion 51
4.4.1 Intensification and Diversification Capabilities of BCA 51
4.4.2 Convergence Analysis . 55
4.4.3 Statistical Significance Analysis 58
4.4.4 Influence of High Dimensionality 58

4.5 BCA for Standard Engineering Problems 60
4.6 BCA for Falsification of CPSs . 71

4.6.1 The Problem . 72
4.6.2 Simulation Results . 72

4.7 Conclusion . 75

5 Fault Localization 77
5.1 Introduction . 77
5.2 STL-guided Fault Localization . 79

5.2.1 Testing . 79
5.2.2 Localizing faults . 84

5.3 Fault Localization with Equivalence Checking 86
5.4 Empirical Evaluation . 87

5.4.1 CPSDebug . 88
5.4.2 Experimental Setup . 89
5.4.3 Results . 92

5.5 Related Work . 96
5.6 Conclusion . 97

6 Property-Based Mutation Testing 99
6.1 Introduction . 99
6.2 Property-Based Mutation Testing . 102
6.3 Mutation Testing of CPS Simulink Models 104

6.3.1 Search-Based Generation of Mutation Adequate Test Cases . . 104
6.3.2 Test Suite Reduction . 105

6.4 Evaluation . 106
6.4.1 Research Questions . 106
6.4.2 Experimental Setup . 107
6.4.3 Results . 109

6.5 Threats to Validity . 113
6.6 Insights and Reflections . 114
6.7 Related Work . 115
6.8 Conclusion . 116

7 Signal Feature Coverage and Testing 117
7.1 Introduction . 117
7.2 Signal Feature Coverage . 119

7.2.1 Signal Features . 119
7.2.2 Signal Feature Coverage . 121
7.2.3 Testing for Signal Feature Coverage 123

7.3 Empirical Evaluation . 128
7.3.1 Experimental Setup . 129
7.3.2 Results and Discussion . 133
7.3.3 Threats to Validity . 144

7.4 Related Work . 145
7.5 Conclusion . 146

8 Summary and Future Work 147
8.1 Summary . 147
8.2 Outlook and Future Research Directions 149

List of Figures 151

List of Tables 153

List of Algorithms 155

Bibliography 157

List of Publications

This thesis draws upon the research papers published in International Conference Pro-
ceedings and Journals. Across all of these papers, the authors are listed alphabetically.

• Drishti Yadav. 2024. From Fault Injection to Formal Verification: A Holistic
Approach to Fault Diagnosis in Cyber-Physical Systems. In Proceedings of the
33rd ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA 2024), Vienna, Austria, September 16-20, 2024. ACM, New York, NY,
USA, 1896–1900. https://doi.org/10.1145/3650212.3685552.

• Ezio Bartocci, Leonardo Mariani, Dejan Nickovic, and Drishti Yadav. 2022. FIM:
fault injection and mutation for Simulink. In Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2022, Singapore, Singapore, November 14-18,
2022, Abhik Roychoudhury, Cristian Cadar, and Miryung Kim (Eds.). ACM, USA,
1716–1720. https://doi.org/10.1145/3540250.3558932.

• Drishti Yadav. 2021. Blood coagulation algorithm: A novel bio-inspired meta-
heuristic algorithm for global optimization. Mathematics, 9(23), 3011. https:
//doi.org/10.3390/math9233011. Received the “Feature Paper” recognition.

• Ezio Bartocci, Leonardo Mariani, Dejan Nickovic, and Drishti Yadav. 2022.
Search-based Testing for Accurate Fault Localization in CPS. In IEEE 33rd In-
ternational Symposium on Software Reliability Engineering, ISSRE 2022, Char-
lotte, NC, USA, October 31 - Nov. 3, 2022. IEEE, USA, 145–156. https:
//doi.org/10.1109/ISSRE55969.2022.00024.

• Ezio Bartocci, Leonardo Mariani, Dejan Nickovic, and Drishti Yadav. 2023.
Property-Based Mutation Testing. In IEEE Conference on Software Testing,
Verification and Validation, ICST 2023, Dublin, Ireland, April 16-20, 2023. IEEE,
USA, 222–233. https://doi.org/10.1109/ICST57152.2023.00029.

In addition to the above mentioned published works, this thesis also includes material
from the following unpublished work, which is currently under submission:

• Ezio Bartocci, Leonardo Mariani, Dejan Nickovic, and Drishti Yadav. 2024. Signal
Feature Coverage and Testing for CPS Dataflow Models. Under Submission.

xix

https://doi.org/10.1145/3650212.3685552
https://doi.org/10.1145/3540250.3558932
https://doi.org/10.3390/math9233011
https://doi.org/10.3390/math9233011
https://doi.org/10.1109/ISSRE55969.2022.00024
https://doi.org/10.1109/ISSRE55969.2022.00024
https://doi.org/10.1109/ICST57152.2023.00029

Furthermore, the following publication was released during my PhD research, but it is
unrelated to the thesis content:

• Drishti Yadav. 2021. Criteria for good qualitative research: A comprehensive
review. The Asia-Pacific Education Researcher, 31(6), 679-689. https://doi.org/10.
1007/s40299-021-00619-0.

https://doi.org/10.1007/s40299-021-00619-0
https://doi.org/10.1007/s40299-021-00619-0

CHAPTER 1
Introduction

In an era defined by relentless innovation and technological advancement, the impact
of Science and Technology on society has been profound and far-reaching. From the
intricate machinery powering our daily lives to the vast network of interconnected systems
shaping our collective future, the emergence of Cyber-Physical Systems (CPSs) stands
as a testament to humanity’s relentless pursuit of innovation and progress [OJL+22].
These systems, seamlessly integrating the digital and physical realms, have revolutionized
countless aspects of society, from transportation and manufacturing to infrastructure and
healthcare. Artificial Intelligence (AI), Robotics, Drones, and a multitude of intercon-
nected devices form the foundation of CPSs, harmonizing a complex interplay of data
and operations to enhance efficiency, safety, and convenience [Um19,SS22].

At the forefront of this technological revolution lie pillars such as autonomous driving,
smart factories driving Industry 4.0, and the paradigm shift in urban living epitomized by
smart mobility and buildings. For example, recent strides in technological advancements
within CPSs have garnered considerable momentum, evidenced by initiatives like the
Austrian “5G Playground,” [5G 24] which is pioneering innovative solutions in intelligent
transportation systems, robots and smart cities. Also, initiatives like the “Austrian Action
Programme on Automated Mobility” [FM24] and “Digibus Austria” [oTG24] spearhead
the development of autonomous vehicle technology, promising safer and more efficient
transportation solutions for tomorrow’s cities. These groundbreaking and transformative
technologies are not exclusive to developed nations but are also being embraced by
developing countries. For instance, India’s “Smart Cities Mission” [MoHUAGoI24] seeks
to harness CPSs to optimize urban infrastructure and enhance quality of life. Besides, the

©2024 Copyright held by the owner/author(s). Parts Reproduced, Reused, Reprinted, with permis-
sion, from Drishti Yadav. 2024. From Fault Injection to Formal Verification: A Holistic Approach to
Fault Diagnosis in Cyber-Physical Systems. In Proceedings of the 33rd ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA 2024), Vienna, Austria, September 16-20, 2024.
ACM, New York, NY, USA, 1896–1900. https://doi.org/10.1145/3650212.3685552

1

https://doi.org/10.1145/3650212.3685552

1. Introduction

seamless integration of CPSs stands as a cornerstone in India’s endeavors towards space
exploration, notably demonstrated in historic missions like “Chandrayaan-3” [ISRO24b]
and “Aditya-L1” [ISRO24a] by India’s space agency: Indian Space Research Organisation.

Cyber-Physical Systems (CPSs), by definition, transcend the boundaries between the
digital and physical realms, embodying a symbiotic relationship between hardware and
software. Beyond the rudimentary definition lies a complex interplay of sensors, actuators,
AI algorithms, and communication networks, orchestrating a symphony of data and actions
to achieve predetermined goals [Lee15]. More specifically, CPSs represent a cutting-edge
fusion of computational prowess, communication capabilities, and control mechanisms,
embodying highly collaborative, intelligent and automated systems [YZH20]. Unlike
conventional systems, CPSs operate at a level of complexity that demands sophisticated
design methodologies. These systems are tasked with orchestrating intricate interactions
not only within their own subsystems but also with the external environment. In essence,
CPSs transcend conventional engineering boundaries, focusing on the convergence of cyber
and physical worlds to create dynamic, interconnected systems capable of adapting and
responding to real-world challenges with unprecedented efficiency and precision [PZL12].

However, with technological progress comes heightened complexity. The proliferation of
interconnected devices, coupled with the exponential growth of data and computational
power, has ushered in an era where CPSs operate at unprecedented scales and intricacies.
Sources of complexity abound, from the heterogeneity of system components to the
dynamic and unpredictable nature of real-world environments. Amidst this complexity,
the imperative for CPSs to be safe and reliable cannot be overstated. Mission-critical
and safety-critical applications such as autonomous vehicles and medical devices hinge
on flawless operation, with the slightest error carrying potentially catastrophic conse-
quences. In essence, the following incidents stand as poignant reminders of the gravity
of the situation and the possible repercussions of failure, encompassing both financial
ramifications and human casualties.

1. Northeast Blackout (2003): The Northeast blackout of 2003, caused by a software
bug in the alarm system of the control room at FirstEnergy Corporation in Ohio,
resulted in the loss of power for over 50 million people in the northeastern United
States and parts of Canada1. This CPS failure led to widespread disruptions,
economic losses, and compromised public safety.

2. SpaceX CRS-7 Mission Failure (2015): In June 2015, SpaceX’s Falcon 9 rocket
carrying a Dragon spacecraft exploded shortly after liftoff during the CRS-7 mission
to resupply the International Space Station (ISS). The failure resulted in the loss
of valuable cargo and dealt a blow to space exploration efforts2.

3. Tesla Autopilot Crashes: Incidents involving Tesla vehicles using the Autopilot
feature have resulted in collisions and fatalities. Notable incidents include a 2016

1Source: Final Report on the August 14, 2003 Blackout
2Source: SpaceX CRS-7 Mission Failure Investigation Report

2

crash where a Tesla Model S in Autopilot mode collided with a tractor-trailer,
resulting in the death of the Tesla driver3.

4. Uber Self-Driving Car Crash (2018): In March 2018, an Uber autonomous vehicle
struck and killed a pedestrian in Tempe, Arizona. The vehicle was in self-driving
mode at the time of the accident4.

5. Boeing 737 MAX Crashes (2018-2019): The crashes of Lion Air Flight 610 in
October 2018 and Ethiopian Airlines Flight 302 in March 2019, both involving
Boeing 737 MAX aircraft, resulted in a total of 346 fatalities. Investigations revealed
flaws in the aircraft’s Maneuvering Characteristics Augmentation System (MCAS),
a CPS designed to enhance flight stability5. Following the occurrence of these two
fatal crashes, Boeing encountered significant penalties, legal actions, and incurred
substantial costs, amounting to billions of dollars, in efforts to enhance the safety
of its products and restore its public image.

These examples serve as stark reminders of the need for robust design and testing to
ensure the safety and reliability of CPSs across various domains, lest they lead to further
loss of life, economic turmoil, and disruptions to essential services.

In order to address the risks associated with CPS failures, it is crucial to implement
comprehensive design and Verification and Validation (V&V) procedures. With the advent
of intelligent CPSs, verification needs to be conducted across different levels, encompassing
both hardware and software components, and system-wide functionalities. Consequently,
to streamline the development process and alleviate the complexities encountered by
engineers during the design phase, novel frameworks have been established. These
frameworks, including formal methods, simulation-based testing, and hybrid approaches,
offer promising avenues for enhancing the effectiveness of V&V processes in ensuring the
reliability and safety of CPSs. Among these approaches, Model-Based Design (MBD) has
emerged as a pivotal strategy, with researchers and practitioners increasingly embracing
model-based development as a cornerstone of this endeavor [JCL11]. By adopting a
model-centric framework, engineers can simulate and analyze CPS behavior in a controlled
environment under various conditions, facilitating early identification and resolution of
potential issues before deployment, thus mitigating risks and enhancing system robustness.
The benefits of this approach are manifold, ranging from early error detection and reduced
development costs to streamlined collaboration and decision-making.

More precisely, MBD is a methodology that employs simulation to comprehend the
behavior of either a forthcoming or an existing physical system. This approach, facilitated
by model-based development tools, expedites the development of smarter connected
systems by enabling engineers to simulate intricate products as systems-of-systems
across the entire development life cycle [ARM17, TTT21]. Contrary to traditional
design methodologies, MBD offers a distinct approach. Instead of relying on complex

3Source: National Highway Traffic Safety Administration (NHTSA) Investigation Report
4Source: National Transportation Safety Board (NTSB) Report
5Source: Final Report on Lion Air Flight 610, Final Report on Ethiopian Airlines Flight 302

3

1. Introduction

structures and extensive software code, designers utilize MBD to craft plant models
with sophisticated functional attributes using continuous-time and discrete-time building
blocks. These models, when integrated with simulation tools, foster rapid prototyping,
software testing, and verification [NM18,PGZ+23].

The importance of MBD for CPSs becomes particularly evident given the plethora of
tools available for development. Numerous MBD tools support various facets of CPS
development, each offering unique capabilities. For instance, SysML6 and AADL7 provide
comprehensive modeling languages tailored for CPS design, while LabVIEW8 offers
a versatile platform for developing and deploying measurement and control systems.
MATLAB™/Simulink®9 from MathWorks®, widely favored by researchers, facilitates
model-based development and simulation, enabling fail-safe design strategies for CPSs.
Additionally, Modelica10 enables multi-domain modeling and simulation, and dSPACE11

provides real-time simulation and testing solutions. Besides, Ansys SCADE Suite12

offers capabilities for graphical modeling, simulation, verification, and automatic code
generation, ensuring the reliability and safety of CPS software. In addition to these
tools, the academic community has devised various hybrid automata modeling frame-
works to effectively capture the complexities of CPSs. These frameworks, including
HyVisual [LZ06], Petri Nets [DA94], PowerDEVS [BK11], and Shift [DGV96], offer
versatile approaches to modeling CPS dynamics. Collectively, these tools and frameworks
empower engineers and researchers to efficiently design, simulate, and validate CPSs,
underscoring the pivotal role of MBD in advancing CPS technologies. Among the arsenal
of model-based development tools, MATLAB™/Simulink® stands out as a ubiquitous
choice, offering a comprehensive suite of functionalities tailored to the intricacies of CPS
design. Its robust simulation capabilities, coupled with extensive libraries and intuitive
interfaces, make it indispensable for engineers and researchers navigating the complexities
of modern CPSs.

It is imperative to acknowledge that achieving a bug-free state in a CPS is challenging.
The heterogeneity of CPS components gives rise to various classes of faults, each demand-
ing meticulous debugging and testing. These faults, whether permanent or transient,
contribute to the complexity of CPS and necessitate rigorous debugging processes. As
development progresses, the cost of error detection and correction escalates at each
stage, underscoring the importance of ensuring system correctness as early as possible.
Timely fault detection holds utmost importance, as addressing faults after hardware
integration proves to be excessively costly. This has prompted the adoption of “shift-left”
testing, emphasizing the need to address V&V concerns early in the development lifecycle
and advocating for early intervention to preempt potential issues. By adhering to this

6https://sysml.org/
7https://insights.sei.cmu.edu/library/architecture-analysis-and-design-language-aadl-tool/
8https://www.ni.com/en/shop/labview.html
9https://in.mathworks.com/products/simulink.html

10https://modelica.org/
11https://www.dspace.com/en/ltd/home.cfm
12https://www.ansys.com/products/embedded-software/ansys-scade-suite

4

https://sysml.org/
https://insights.sei.cmu.edu/library/architecture-analysis-and-design-language-aadl-tool/
https://www.ni.com/en/shop/labview.html
https://in.mathworks.com/products/simulink.html
https://modelica.org/
https://www.dspace.com/en/ltd/home.cfm
https://www.ansys.com/products/embedded-software/ansys-scade-suite

1.1. Research Gaps and Problem Statement

approach, test suites are positioned to be robust, effectively identifying defects before they
are introduced into the production environment. Consequently, adopting the shift-left
mindset facilitates the timely detection and resolution of issues, contributing to the
overall quality and reliability of the software product.

V&V techniques, particularly with the adoption of Shift-left testing (aka Design-time
testing), are pivotal in ensuring a CPS’s adherence to design constraints and performance
expectations. These techniques, whether exhaustive or simulation-based, serve as essential
checkpoints throughout the development process, helping to identify and rectify potential
issues early on. However, the heterogeneous and intricate nature of CPSs introduces a
myriad of theoretical and practical challenges to the verification process.

1.1 Research Gaps and Problem Statement
As discussed above, ensuring the rapid and accurate detection and diagnosis of faults is
paramount in guaranteeing the viability and full operational capacity of safety-critical
CPSs. The consequences of undetected failures in such systems can be both costly and
life-threatening. Therefore, comprehensive testing is indispensable in CPS development
to ensure fault-free operation and rectify faults before product release. In verifying the
safety aspects of CPSs, it is essential that fault diagnostics are highly advanced, capable of
precisely identifying the location and nature of faults. This advanced capability facilitates
efficient fault rectification, contributing to the overall reliability and safety of the system.

Despite the increasing complexity of CPSs and advancements in test methodologies,
there remains a notable gap in the provision of automated and effective tools and
methodologies for systematic fault-based testing, including fault detection and
analysis. This deficiency limits the ability of engineers to conduct comprehensive
fault diagnostics of CPSs, thereby jeopardizing their reliability and safety in critical
applications. Consequently, there is a pressing need for the development of efficient
tools and methodologies to assist engineers in apt fault diagnostics of safety-critical
CPSs, addressing this critical gap in current CPSs development practices and
ensuring their robustness and integrity in real-world scenarios.

Under the umbrella of fault diagnostics and fault-based testing for CPSs, fault injection,
optimization-based falsification, fault localization, mutation testing, coverage-based
testing and formal verification form a cohesive network of activities, as illustrated in
Figure 1.1. Rather than existing as isolated processes, these activities complement and
reinforce each other synergistically, enhancing fault analysis and system testing. Each of
these activities is integral, contributing significantly to the evaluation of CPS robustness,
reliability, and fault tolerance. Fault injection involves deliberately introducing faults or
errors into the system to evaluate how it responds under adverse conditions. Once faults
are injected, Fault Localization (FL) comes into play, aiming to pinpoint the precise

5

1. Introduction

location of these faults within the system. This step is essential for understanding the
root causes of system failures and facilitating targeted debugging and rectification efforts.
Optimization-based falsification, aka Falsification Testing (FT), employs (meta-)heuristic
strategies to systematically search for inputs that violate specified safety properties,
enhancing the effectiveness of fault detection. By leveraging (meta-)heuristic strategies,
this approach effectively explores the system’s behavior space to uncover potential failures.
Mutation Testing (MT) complements fault injection and localization by assessing the
effectiveness of test cases in detecting and addressing faults. It involves introducing small
changes or mutations to the system’s code or specifications to evaluate the adequacy of
existing test cases. This process helps identify weaknesses in the testing approach and
ensures comprehensive coverage of potential fault scenarios. Besides, Coverage-Based
Testing focuses on creating test cases that thoroughly exercise different parts of the
system to (i) achieve maximum coverage, and (ii) validate the behavior and functionality
of the system under various operating conditions, including normal operation and fault
scenarios. By generating diverse and comprehensive test cases, engineers can uncover
latent faults and vulnerabilities in the system, enhancing its reliability and resilience.

Fault Diagnosis
of CPS

Model-Based
Development

Model-Based
Design

Model-Based
Testing

Fault-Based
Testing

Formal
Verification

Fault
Localization

Mutation
Testing

Coverage-
Based Testing

Falsification
Testing

Optimization
(Meta-)heuristics

Fault
Injection

Formal
Specification

Figure 1.1: Overview of Fault Diagnosis of CPSs.

Formal Verification and Formal Specifications are also crucial elements in this network.
Formal Specifications are detailed and precise descriptions of the behavior and properties
that a system or component should exhibit. These specifications use formal languages
and mathematical notation to define what the system is supposed to do, often in terms
of its desired properties and constraints, serving as a benchmark for correctness. Formal

6

1.1. Research Gaps and Problem Statement

Verification then uses mathematical techniques to prove or disprove whether the system
meets these specifications. This process provides a rigorous method for validating the
system’s adherence to its requirements, complementing other testing activities by ensuring
that the system meets formally defined criteria. Altogether, these activities create an
integrated and interconnected network of processes that work in tandem to assess the
robustness, reliability, and safety of CPSs. By integrating these approaches, engineers
can effectively identify, analyze, and mitigate faults, ultimately enhancing the overall
quality of CPSs.

In practice, fault diagnostics of CPSs can benefit from a structured methodology that
preselects and prioritizes the most suitable techniques for identifying and addressing sys-
tem faults. Building on the interconnected network of activities (illustrated in Figure 1.1)
that can be flexibly applied in various sequences depending on the system’s specific needs,
a possible methodology would begin with fault injection to simulate potential faults and
assess the system’s response under controlled conditions, providing a basis for further fault
analysis and testing. Preselecting fault injection allows the identification of vulnerable
components or behaviors in the CPS, which lays the groundwork for the subsequent
stages of the methodology. Once fault injection has been carried out, optimization-based
falsification is employed to generate test inputs that could potentially lead the system into
unsafe states. Falsification serves as a bridge between fault injection and other testing
activities, enriching the exploration of the system’s behavioral space to uncover a broader
range of possible failures. After identifying faulty behaviors through fault injection
and falsification, the focus is on fault localization to precisely identify the location of
faults within the CPS, thereby providing a detailed fault map of the system. With
potential faults identified and localized, mutation testing is used to assess the quality
and robustness of the test cases, providing valuable feedback on the comprehensiveness
of the testing approach and highlighting areas that may require more focused testing
efforts. Building on the outcomes of mutation testing, coverage-based testing is employed
to ensure maximum exploration of the system’s behavior. Coverage-based testing not
only seeks to validate the system’s functionality under varied conditions but also aims to
uncover latent faults that may have been overlooked in previous stages. Finally, formal
verification serves as the conclusive step in the methodology: This step complements
all previous activities by providing a high level of assurance that the system meets its
formally defined requirements, thereby confirming its overall robustness and integrity.

The methodology outlined above integrates these activities where each stage builds upon
the results of the previous ones. Fault injection sets the stage for exploring system
vulnerabilities, optimization-based falsification enriches fault scenarios, fault localization
identifies specific issues, mutation testing evaluates the testing adequacy, coverage-based
testing ensures thorough validation, and formal verification provides a rigorous check
against formal specifications. Note that this methodology is designed to be flexible,
allowing the sequence of activities to be adjusted depending on the CPS’s characteristics
and specific fault diagnosis goals. For example, in some cases, starting with fault
injection may be more appropriate to explore the system’s response to faults before

7

1. Introduction

formal verification. Alternatively, if the system’s design is highly complex, performing
formal verification upfront can help define the constraints and expectations that guide
all subsequent testing efforts.

It is worth mentioning that the quality of a test suite is closely linked to its ability to
pinpoint faults (fault localization) and detect them accurately. Additionally, there is a
strong correlation between the extent of test coverage and the suite’s capacity to identify
faults effectively. Moreover, the thoroughness with which a test suite exercises the internal
behavior of a system directly influences its ability to reveal faults. Consequently, it is
imperative to pursue several strategies: (1) developing tools for automatically injecting
faults into CPS models, thereby facilitating fault diagnostics; (2) improving the search-
based testing of CPS using advanced meta-heuristic approaches; (3) designing methods
to automatically generate test suites that possess high fault-localization capabilities;
(4) devising test generation procedures that effectively uncover faults; and (5) creating
effective strategies for generating tests that ensure maximum coverage of the system’s
behavior.

1.2 Scientific Goals and Objectives
This thesis focuses on the development of tools and techniques to verify the safety
aspects of CPSs, thereby facilitating efficient fault diagnostics. Below, we delineate the
primary research objectives, providing a succinct summary13 of the current state-of-the-
art limitations for each objective. Additionally, for each research objective, we pose a
corresponding Research Question (RQ) and articulate the intended scientific goal.

1. Injecting faults and mutating CPS models
Safety-critical CPSs must function reliably under both normal and adverse conditions,
where components may exhibit unexpected behaviors. To ensure these systems meet
stringent safety and reliability standards, adherence to industrial safety guidelines
like ISO 26262 and IEC 61508 is crucial. These standards are designed to validate
that the systems conform to necessary safety requirements and are built with fail-
safe mechanisms to prevent catastrophic failures. Ensuring safety, a non-negotiable
requirement in these systems, often involves evaluating how the system behaves
under abnormal conditions, such as the presence of faults [BV07]. Techniques like
fault injection and mutation testing are advocated by industrial safety standards to
advance the development of CPSs, particularly in safety-critical fields such as the
automotive industry [PFK+13]. These methodologies help assess a system’s fault
tolerance and dependability [ALRL04], enabling a thorough verification of its safety
and correctness [EL17].
Automated and programmatic fault injection mechanisms are essential prerequisites
for conducting large-scale mutation testing evaluations effectively. These mechanisms
enable the injection of faults of various types into the system model in an automated

13In the upcoming chapters, we will provide a comprehensive reference list (Related Work section).

8

1.2. Scientific Goals and Objectives

fashion, i.e., without requiring human intervention during the injection process. For
an effective fault injection process, several key requirements must be fulfilled:

• Automation: The process should support fully automated fault injection without
requiring human intervention, allowing for extensive evaluations.

• Diversity of Fault Types: It must allow the injection of a wide variety of faults to
comprehensively test the system.

• Scalability: The mechanism should be scalable to accommodate complex and
large-scale Simulink models typical of CPSs.

• Seamless Integration: It should integrate smoothly with existing simulation
environments and testing frameworks used for Simulink models, facilitating a
streamlined testing workflow.

• Reproducibility: Fault injections must be repeatable and consistent to ensure the
reliability of the testing outcomes.

Currently, there is a notable absence of a fault injection solution for Simulink that
fulfills all identified requirements. This deficiency contributes to the lack of systematic
experiments on CPS testing approaches, leading us to the following research question:
RQ1: How to leverage automated and systematic injection of faults in CPS
models to allow scalable experiments?
Goal: The objective is to develop a solution for automatically injecting faults and
mutations into CPS Simulink models, meeting the specified requirements outlined above.
Specifically, our focus is on leveraging existing state-of-the-art tools for fault injection
and mutation to create a fault injection mechanism. This mechanism will offer a
diverse range of faults and detailed options for fault configuration, enabling scalable14

experiments.

2. Improving search-based testing
Extensive research has been conducted on verifying CPSs through exhaustive sim-
ulations and monitoring algorithms. Safety assessments in CPSs are grounded in
high-level system requirements expressed as formal temporal logic specifications, such
as Signal Temporal Logic (STL) [DM10]. STL facilitates the representation of real-
time properties over dense-time and real-valued behaviors of CPS, providing both
qualitative and quantitative semantics. The quantitative robustness semantics of STL
indicate how robustly a property15 is satisfied or violated.
In the context of CPSs, optimization algorithms, particularly metaheuristics, are
essential for effective testing. These algorithms can systematically navigate the complex

14In this context, “scalable” refers to the fault injection process’s ability to handle increasing complexity
and size of CPS models without a significant loss in performance or effectiveness. The process should
be capable of injecting faults into large-scale Simulink models with numerous components, signals, and
intricate interactions while maintaining accuracy, efficiency, and automation.

15Throughout this thesis, we use the terms specification, formal requirement, (formal) property, and
temporal logic formula interchangeably.

9

1. Introduction

input spaces of CPSs, uncovering faults and ensuring system robustness. Particularly,
falsification is an effective method for identifying violations of a specification through
counterexamples [ZLA+21]. For automatic test generation in CPS safety evaluation,
optimization-based falsification, or search-based testing, is frequently employed. This
approach aims to identify a falsifying input that triggers a violation of the STL
property. Despite the use of various metaheuristic strategies in falsification, such
as Simulated Annealing [AF12] and Tabu Search [DJKM15], the trade-off between
intensification (exploitation) and diversification (exploration), remains a significant
challenge. Consequently, the development of new algorithms is crucial to address the
unique and varied challenges presented by CPSs, guided by the necessity to not only
balance exploration and exploitation in the search process, but also achieve faster
convergence, and perform well in both constrained and high-dimensional spaces. By
continuously innovating and refining these algorithms, we can significantly enhance the
reliability and safety of CPSs in practical applications. This leads us to the following
question:
RQ2: How can optimization algorithms be further refined to enhance
testing of CPSs in practical applications?
Goal: The objective is to develop a high-level heuristic strategy to efficiently tackle the
exploration-exploitation trade-off in search-based testing, also capable of handling high-
dimensional search spaces and constrained optimization tasks, as those encountered in
advanced CPS controllers.

3. Accurately localizing faults in CPS models
Run-time monitoring techniques are effective for detecting faulty or spurious behaviors
in systems by utilizing monitors for STL properties [FMN15]. Numerous efforts have
been made to pinpoint faults in a system-under-test (SUT) by analyzing observed
violating and falsifying traces. However, fault localization in the presence of multiple
faults remains largely unaddressed in the literature. Besides, existing fault localization
methods are often time-consuming and resource-intensive. Therefore, there is a need
to develop methods that can accurately localize faults with lower costs and greater
efficiency. This brings us to the following research question:
RQ3: How to use the observed behaviors of a system to localize multiple
faults (potentially large in number) accurately?
Goal: The objective is to develop an accurate fault localization method closely integrated
with testing, capable of maintaining robustness even when confronted with numerous
faults in the SUT, potentially of varying types, while also being cost-effective.

4. Mutation Testing of CPS models against formal specifications
Mutation testing, a recognized software quality assurance technique for evaluating
test suites, is proficient at estimating the overall fault-revealing capacity of a test
suite. However, its practicality and informativeness diminish when validating software
against specific requirements, a common necessity for embedded software subjected to

10

1.2. Scientific Goals and Objectives

rigorous safety property validation. In such cases, traditional mutation testing proves
impractical and inefficient in fault detection. This leads us to the following research
question:

RQ4: How can mutation testing be adapted or enhanced to effectively
reveal faults in embedded software subjected to rigorous safety property
validation?

Goal: The objective is to propose a new approach for mutation testing of CPS models
against formal properties. More specifically, we aim to provide a formal definition for
killing mutants with respect to properties. In addition, for CPS models, we focus on
designing a test generation strategy to generate test cases that can kill the mutants
with respect to formal properties effectively.

5. Defining new notion of coverage for testing CPS models
Within the domain of embedded software testing, practitioners commonly assess
the effectiveness of test suites by examining their code coverage and fault-revealing
capabilities. Various metrics, such as input coverage, output coverage, and structural
coverage, are employed to measure coverage adequacy. Structural coverage metrics,
widely utilized in both research and industry [FA11,YLW06, IPJF19], offer insights
into how thoroughly a test suite exercises system elements, thus identifying potential
shortcomings in test cases. However, studies suggest that solely relying on struc-
tural coverage criteria may be insufficient for fault detection in software models and
programs [GRS+16, IH14, NA09, SP10]. Particularly for CPS dataflow models, the
interconnected nature of elements in these models means that executing a test case
to cover one element may trigger the execution of numerous others. Consequently,
depending solely on these metrics for CPS dataflow model testing may yield limited
benefits, failing to provide a comprehensive understanding of how well the system’s
internal behavior has been tested.

To adequately test CPS models, it is crucial to utilize more sophisticated and refined
coverage metrics tailored to capture the intricate behaviors and interactions inherent
in these models. By refining coverage metrics in this manner, we can ensure that
the testing efforts adequately explore the full spectrum of system functionalities and
potential failure modes. This leads us to the following research question:

RQ5: How can coverage metrics be refined and advanced to effectively
capture the nuanced behaviors and interactions within CPS models?

Goal: The objective is to design a new coverage metric that thoroughly exercises the
internal behavior of a CPS model. Additionally, we aim to (i) design a test generation
strategy that maximizes our coverage metric, and (ii) investigate the effectiveness of
the generated test cases in revealing faults.

11

1. Introduction

1.3 Methodology
The research outlined in this thesis predominantly adopts the Design Science Research
(DSR) methodology [Hev07] to address the aforementioned research questions. Design
science is a research approach centered on crafting and validating prescriptive knowledge.
Particularly suited for practical engineering challenges, it furnishes frameworks for devising
and assessing solutions to specific problems.

Conducting a
Systematic

Literature Review
Identifying the
Research gaps

Defining the
Research

contributions

Methodology
(Design Science Research)

Relevance Cycle

Defining the research
problem

Defining the research
scope

Defining the assessment
and acceptance criteria

Rigor Cycle

Identifying the
expertise that define
the state-of-the-art in

CPS testing

Identifying the existing
artifacts and processes
related to the research

problem

Design Cycle

Awareness,
Suggestions,
Development,
Evaluation,
Finalization

Figure 1.2: Steps of research development methodology (Design Science Research).

Figure 1.2 illustrates the steps of the research development methodology. We addressed the
problem identification and motivation in Section 1.1, and the objectives for the envisioned
solution in Section 1.2. These activities were informed by Systematic Literature Reviews
(SLRs) [KBB+09], allowing for a comprehensive understanding of the current state-of-the-
art and related work in the field. Our SLR on fault diagnostics and fault-based testing of
CPSs, explored the extensive works on topics including, but not limited to: CPSs, V&V,
testing, falsification, fault- and mutation-analysis, STL, fault identification and diagnosis.

Additionally, we outlined the artifacts that are planned to be designed and developed
in the research in Section 1.2. Their contribution, encompassing tools and methods, to
the body of knowledge in the realm of CPS testing, is encapsulated in Section 1.4. To
assess our developed tools and methods, we employed Simulink benchmarks sourced from

12

1.4. Thesis Contributions

different venues as our experimental subjects. Further information on these case studies
and our experiments is provided in the subsequent chapters.

The prototypes and tools for the work detailed in Chapters 3-7 were developed using
CPS models across different platforms and MATLAB versions. Additionally, we utilized
different tools, including those for monitoring STL specifications, to implement our
approaches. Each chapter will provide specifics regarding the platforms and tools used in
the implementation process.

Lastly, the dissemination of the findings is addressed in “List of Publications”. Generally,
each response to the RQ yields a valuable artifact (either tools or methods), which is
shared through publications in scientific conferences and journals.

1.4 Thesis Contributions
This thesis endeavors to construct a fault-based testing framework customized for safety-
critical CPSs, streamlining and enhancing fault diagnosis in these systems. Specifically, it
targets CPS Simulink models with safety requirements articulated using Signal Temporal
Logic (STL). The thesis introduces innovative tools and methodologies that surpass
conventional approaches, enabling thorough CPS testing. Illustrated in Figure 1.3, the
thesis unfolds with the following distinctive contributions:

Enhanced Fault Injection and Mutation Framework for Simulink Models. One
of the principal contributions of this thesis is the introduction of an open-source tool
named FIM for systematic Fault Injection and Mutation in Simulink models. Unlike
previous approaches, FIM offers automated and programmable fault injection capabilities,
eliminating the need for manual intervention during the injection process. FIM offers
a broader range of faults and mutations for CPS Simulink models and streamlines
automated fault injection. Additionally, FIM is highly scalable, generating numerous
mutants quickly via configuration files. Moreover, it enables testers to control fault block
activation and parameter adjustment, enhancing rigorous testing of the SUT against
failures to assess its fault tolerance.

Introducing Blood Coagulation Algorithm: A Bio-inspired Global Optimizer.
This thesis presents a novel bio-inspired optimization algorithm inspired by the biological
process of blood coagulation, called the Blood Coagulation Algorithm (BCA), which
surpasses other state-of-the-art optimizers in terms of exploration, exploitation, avoidance
of local optima, and convergence. As the thesis unfolds, we will illustrate BCA’s efficacy
in navigating high-dimensional search spaces, handling constrained optimization tasks,
and facilitating the optimization-based falsification (i.e., search-based testing) of CPS
models. These qualities position BCA as a competitive solution for addressing real-world
optimization challenges, including those encountered in CPS testing.

Improving Fault Localization with Search-based Testing. As another significant
contribution, this thesis presents a novel search-based testing method for precisely
localizing faults in CPS Simulink models. The method leverages two test executions

13

1. Introduction

SUT
(Simulink model)

𝜙
STL formula

Fault Injection Tool: FIM
(Chapter 3)

Answer to RQ1

Fault Localization
Approach
(Chapter 5)

Answer to RQ3

Global Optimizer: BCA
(Chapter 4)

Answer to RQ2

Property-Based
Mutation Testing
(Chapter 6)

Answer to RQ4

Thesis Contributions

Signal Feature
Coverage and

Testing
(Chapter 7)

Answer to RQ5

Figure 1.3: Overview of the Thesis: Mapping Contributions to Research Questions and
Dependencies.

with contrasting outcomes (one passing and the other failing) to provide precise details
about the fault location, thereby reducing the scope and effort required for debugging.
Furthermore, our method demonstrates the capability to effectively localize multiple
faults while enhancing fault localization cost and computational efficiency, as detailed
later in this thesis.

Enhancing Test Suite Evaluation with Property-Based Mutation Testing.
This thesis introduces Property-Based Mutation Testing (PBMT), a novel extension
to traditional mutation testing method, to evaluate the effectiveness of test suites in
relation to properties, a previously unexplored area in mutation-based testing literature.
Additionally, this research proposes a search-based approach for generating test cases to
automatically identify mutants relevant to PBMT experiments, supported by empirical
findings for CPS Simulink models.

Introducing Signal Feature Coverage for Enhanced CPS Testing. Another key
contribution of this thesis is the introduction of the innovative concept of signal feature
coverage, a coverage criterion specifically designed for CPS dataflow models. Signal
feature coverage is based on standard signal features and involves exercising the internal
signals of a CPS dataflow model concerning their various time and frequency domain
characteristics. Furthermore, this thesis proposes a search-based test generation strategy
aimed at maximizing this coverage. As elaborated upon in subsequent chapters of the
thesis, we will evaluate the performance of existing test generation strategies in terms

14

1.5. Thesis Organization

of signal feature coverage and demonstrate how test suites designed to maximize this
coverage can enhance fault detection.

1.5 Thesis Organization
This thesis presents significant contributions (outlined in Section 1.4) aimed at enhancing
fault diagnosis in safety-critical CPS. The contents of the thesis stem from four published
conference papers [BMNY22a, BMNY22c, BMNY23, Yad24], one published journal pa-
per [Yad21] and one unpublished work (which is under submission and review), reflecting
research conducted between the years 2020 and 2024. In this introductory chapter, we
have delved into the context and motivations behind this thesis. The subsequent chapters
are structured as follows:

Chapter 2. This chapter lays the groundwork for subsequent chapters, introducing
foundational concepts essential for the analyses and implementations ahead. We begin
by exploring the basics and syntax of Signal Temporal Logic (STL). Following this, we
delve into a detailed examination of CPS Simulink models, covering their structure and
functionalities. Additionally, we establish foundational definitions pertinent to mutation
testing. Finally, we explore methods for conducting mutations on Simulink models. The
material presented in this chapter comes from [BMNY22c] and [BMNY23].

Chapter 3. In this chapter, we introduce our fault injection and mutation tool, referred
to as FIM, which holds a central role in this thesis. We begin by elucidating the rationale
behind developing FIM. Next, we delve into the conceptual challenges that informed and
influenced the features of FIM, followed by an exploration of its architecture. We illustrate
the tool’s application through a case study, present evaluation findings, review related
work on fault injection and mutation, and conclude by summarizing our contributions.
The content of this chapter is primarily derived from [BMNY22a], with the exception
of certain details regarding tool usage. Note that FIM is the foundational tool for fault
seeding and mutant generation in the subsequent chapters (i.e., Chapters 5, 6 and 7).

Chapter 4. In this chapter, we introduce the Blood Coagulation Algorithm (BCA), our
bio-inspired optimization algorithm, which stands as another significant contribution of
this thesis. We delve into the inspiration behind the algorithm and its workings, followed
by a comprehensive assessment of BCA’s performance across various mathematical
functions, real-world engineering design challenges, and falsification task involving CPS
Simulink model. The chapter closes with a summary of the contributions and findings.
All the content in this chapter is sourced from [Yad21]. Note that the BCA optimizer will
be utilized for handling optimization tasks in the following chapters (i.e., Chapters 5, 6
and 7).

Chapter 5. In this chapter, we introduce a search-based testing method aimed at
precisely localizing faults within CPS Simulink models, constituting another fundamental
contribution of this thesis. We tackle fault localization in scenarios involving both explicit
specifications (i.e., when formal properties are present) and implicit specifications (i.e.,

15

1. Introduction

when formal properties are absent). Following this, we present the results of our evaluation
on CPS Simulink models, illustrating the effectiveness of our approach compared to a
state-of-the-art fault localization technique. The chapter concludes with an examination
of related research and a summary highlighting the primary contributions and findings.
All information in this chapter comes from [BMNY22c].

Chapter 6. In this chapter, we delve into our novel approach to mutation testing,
called Property-Based Mutation Testing (PBMT), which evaluates software against formal
properties, adding a new dimension to traditional mutation testing. We start by explaining
the motivation behind PBMT, followed by formally defining how to kill a mutant with
respect to a property. Next, we explore a search-based test generation strategy aimed at
creating mutation-adequate test cases. Then, we present the evaluation results obtained
from applying our approach to Simulink models, comparing them with state-of-the-art
testing techniques and discussing the insights obtained from our experiments. Finally,
we wrap up the chapter with a discussion on related work and a brief summary of our
contributions and findings. The content in this chapter is sourced from [BMNY23].

Chapter 7. In this chapter, we introduce signal feature coverage, a new coverage criterion
for evaluating the thoroughness of test suites for testing CPS dataflow models. We also
present feature-coverage testing, a search-based test generation strategy specifically
designed to maximize signal feature coverage. Additionally, we apply our feature-coverage
testing approach to various sets of target signals and their respective features, including
scenarios where CPS models are tested against STL specifications. We then present our
evaluation results through experiments with various Simulink models and comparisons
to current testing methods. Lastly, we discuss the related work and conclude the chapter
with a concise summary of our contributions and findings. The content of this chapter is
unpublished and currently under submission.

Chapter 8. This chapter serves as the conclusion of this thesis, recapitulating the
primary outcomes and research findings, and proposing future research avenues aimed at
advancing fault diagnosis in CPSs.

16

CHAPTER 2
Background

In this chapter, we provide essential background information necessary for understanding
the rest of this thesis. Additionally, we introduce the notations and fundamental concepts
utilized consistently throughout this work.

2.1 Signal Temporal Logic (STL)
In recent years, researchers have employed temporal logic formalisms to express safety
properties for the verification of safety-critical CPSs. Signal Temporal Logic (STL) [MN13]
is a prominent formalism for specifying temporal properties of dense-time real-valued
behaviors in hybrid systems, which include both continuous and discrete dynamics, such
as those found in safety-critical CPSs. The formal syntax of STL is defined as follows:

Φ := f(x(j)) > 0 | ¬Φ | Φ1 ∧ Φ2 | □IΦ | ♦IΦ | Φ1UIΦ2

In this context, the formula f(x(j)) > 0 represents a signal predicate, where x(j) denotes
the value of signal x at time instant j, and f is a function mapping the signal domain
D to R. The interval I ⊆ R≥0 specifies an arbitrary time period. The propositional
logic operators ¬ and ∧ follow standard logical semantics, with ¬ indicating logical
negation and ∧ indicating logical conjunction. Additional temporal operators are defined
as follows:

©2022 IEEE. Parts Reproduced, Reused, Reprinted, with permission, from Ezio Bartocci, Leonardo
Mariani, Dejan Ničković and Drishti Yadav, “Search-based Testing for Accurate Fault Localization in
CPS,” 2022 IEEE 33rd International Symposium on Software Reliability Engineering (ISSRE), Charlotte,
NC, USA, 2022, pp. 145-156, https://doi.org/10.1109/ISSRE55969.2022.00024

©2023 IEEE. Parts Reproduced, Reused, Reprinted, with permission, from Ezio Bartocci, Leonardo
Mariani, Dejan Ničković and Drishti Yadav, “Property-Based Mutation Testing,” 2023 IEEE Conference
on Software Testing, Verification and Validation (ICST), Dublin, Ireland, 2023, pp. 222-233, https:
//doi.org/10.1109/ICST57152.2023.00029

17

https://doi.org/10.1109/ISSRE55969.2022.00024
https://doi.org/10.1109/ICST57152.2023.00029
https://doi.org/10.1109/ICST57152.2023.00029

2. Background

• The always operator denoted by □: □IΦ signifies that Φ must be true for every
sample within the interval I.

• The eventually operator denoted by ♦: ♦IΦ means that Φ must be true at least
once during the interval I.

• The until operator denoted by U : Φ1UIΦ2 means that Φ1 must hold continuously
within the interval I until Φ2 becomes true.

The Boolean satisfaction semantics, also known as qualitative semantics, of STL provides
a boolean evaluation of the property Φ. If the signal predicate is satisfied, its Boolean
satisfaction is ⊤; otherwise, it is ⊥. We use the operators U , ♦, and □ to represent UI ,
♦I , and □I when the interval I is [0, ∞).

In addition to qualitative semantics, STL provides quantitative robust semantics [DM10],
which enables the computation of the degree to which the traces generated by a system
satisfy the property Φ when executed against a test input. More in details, the quantitative
robust semantics of STL offer a robustness degree, indicating the distance between the
observed behavior and the set of behaviors specified by Φ. For an STL formula Φ, the
robustness quantifies the satisfaction of a trace w with respect to Φ. This is expressed as a
real-valued quantity ρ : R(w, Φ), such that: (1) ρ > 0 ⇒ w |= Φ, and (2) ρ < 0 ⇒ w |= ¬Φ.
For a comprehensive understanding of the quantitative robust semantics of STL properties,
we refer the reader to the work by Donze and Maler [DM10].

2.2 CPS Simulink Models
In the preceding chapter, we discussed the prevalent use of the MathWorks™ Simulink® en-
vironment in the MBD of CPSs [Mat22e,Mat22b]. Simulink enables non-software engineers
to craft intricate systems, compile them into low-level code, and simulate the models
to observe their performance with various test inputs. During the MBD of a CPS in
the MathWorks™ Simulink® environment, engineers construct a Simulink model M
representing the system as a block diagram. Below, Figure 2.1 presents an example of
a Simulink model along with its key components. A Simulink model M comprises the
following components:

• A collection of blocks B: These serve as the fundamental units within a Simulink
model. The functional behavior of each block delineates the cause-effect relationship,
defining its operational role.

• A series of ports P : Blocks receive data through their input ports and transmit it via
their output ports. It is worth noting that blocks may also include trigger, action,
enable, and reset ports, which we omit from our examination.

• An array of lines L: These represent connections that indicate the flow of data or
signal propagation from one block to another. The block transmitting data is termed
the source block, while the receiving block is the target block. Every line l ∈ L is
distinctly identified by the output ports of its source block and the input ports of its
target block.

18

2.2. CPS Simulink Models

Figure 2.1: Example of a Simulink model. Black nodes indicate input ports while white
nodes indicate output ports. Blocks b4, b8, b12 are hierarchical; remaining blocks are
atomic. ©2022 IEEE.

Each of the mentioned components is assigned a unique numeric identifier within the
model, referred to as its handle. This handle serves as a pointer to access and modify
the corresponding component within the model. Typically, a model M retrieves inputs
from designated input blocks or sources (e.g., as illustrated by the In1 and In2 blocks in
Figure 2.1) and generates outputs through designated output blocks or sinks (e.g., the
Out1, Out2, and Out3 blocks in Figure 2.1). Additionally, M comprises a set of state
variables V = {VI , VH , VO} s.t. VI , VH and VO represent the input, hidden or internal
and output state variables respectively, and a set of signals S, where signals are defined
as the mapping S : L → V .

Additionally, blocks in a Simulink model can be classified into two types: atomic and
hierarchical. An atomic block does not contain any other blocks within it, whereas a
hierarchical block encompasses atomic blocks as well as other hierarchical blocks. A
block is considered the parent of one or more blocks when it encapsulates them as its
subsystems. In Figure 2.1, the top-level model M is at hierarchy level 1. Furthermore, b1
to b3, b8, and b9 to b11 are children of M at hierarchy level 2, while b5 to b7 are children
of M at hierarchy level 3.

Moreover, Simulink provides numerous libraries containing built-in blocks that streamline
the design and rapid development of CPS. Users also have the option to create and
integrate custom libraries and blocks tailored to their specific requirements, including
user-defined functionalities and customizable parameters.

Upon completing the CPS design in Simulink, users proceed to compile and simulate the
model M using a specified test case t, which represents an input to the system. We define
a function Simulate that takes M and t as inputs, executes the simulation of M, and
returns traces of all input-internal-output (IIO) signals as the final output. Assuming the
model employs fixed-length sampling, representing a broad category of Simulink models,
a trace consists of a sequence of (timestamp, value) pairs, with a constant period between

19

2. Background

consecutive samples. We denote all traces generated for M for a given test case t as
out(M, t). Symbolically, out(M, t) = Simulate(M, t). Generally, a trace refers to the
progression of the states of M over discrete time steps, from q = 0 to q = qT , where the
finite time horizon qT > 0. The values in a simulation trace are recorded in chronological
order of signal evolution, ranging from q = 0 to q = qT .

2.3 Mutation Testing
In this section, we introduce the foundational principles and background information
regarding regular mutation testing (MT).

MT is based on the following two foundational assumptions [ABD+79,DLS78]: (1) the
Competent Programmer Hypothesis which posits that “programmers create programs
that differ from the correct one mostly by small syntactic errors” [BMNY23], and (2)
the Coupling Effect which suggests that “complex faults are coupled to simple faults in
such a way that a test data set that detects all simple faults in a program will detect a
high percentage of the complex faults” [GJG17]. Numerous studies have explored these
hypotheses, demonstrating that MT results can reliably predict a significant portion of
high-priority real bugs [PIFJ21,JJI+14,ABLN06,ABL15]. While not every bug is coupled
with mutants, MT remains a valuable tool for assessing the quality of a test suite.

Now, let us delve into the fundamental concepts of MT.

Definition 2.3.1 (Mutation operator). “A mutation operator is a source-code transfor-
mation that introduces a modification in the program-under-test. More rigorously, given
a program P , a mutation operator op is a function that takes as inputs P and a location
k inside P and creates a syntactic alteration of P at location k, if the location can be
mutated with op.” [BMNY23]

Definition 2.3.2 (Mutant). “For a given program P and a set of mutation operators O =
{op1, op2, ..., opn}, a mutant p is the result of the application of a mutation operator op ∈ O
to P at a specified location k. A mutant created by the application of only one mutation
operator to P is known as First Order Mutant (FOM). The application of multiple
mutation operators to P results in a Higher Order Mutant (HOM) [JH09].” [BMNY23]

For a test suite T and a test t in T , we denote t |= p when the test passes on the mutant
p, and t ̸|= p when the test fails on the mutant p. The output generated by p with t is
represented by O(t, p), and T p

U denotes the universal set comprising every possible valid
test case for p.

Definition 2.3.3 (Killed Mutant). “A mutant p is said to be killed by T if at least one
test case t in T fails when exercising p, i.e., ∃t ∈ T : t ̸|= p.” [BMNY23]

Definition 2.3.4 (Live Mutant). “Mutants that do not lead to the failure of any test
case t ∈ T are said to be live or survived. Formally, p is said to be live if ∀t ∈ T , t |=
p.” [BMNY23]

20

2.3. Mutation Testing

Definition 2.3.5 (Equivalent Mutant). A mutant p is considered equivalent to the
original program P if they produce identical outputs for every possible input. Formally, p
is equivalent to P if ∀t ∈ T P

U , O(t, p) = O(t, P). Essentially, no test case can differentiate
between an equivalent mutant and the original program [DPV+20]. It is important to
note that detecting equivalent mutants is an undecidable problem.

Definition 2.3.6 (Invalid Mutant). “A mutant p is considered invalid if it cannot be
compiled [VDB+22]. Such a mutant is not included in the mutation coverage.” [BMNY23]

Definition 2.3.7 (Mutation coverage). The adequacy of a test suite T can be gauged
using the mutation coverage (referred to as the mutation score MS), which is calculated
as the ratio of killed mutants to the total number of valid non-equivalent mutants:

Mutation coverage = #killed mutants
#valid mutants − #equivalent mutants

T is considered to achieve complete (i.e., 100%) mutation test adequacy if it successfully
kills all non-equivalent valid mutants. Achieving full mutation coverage guarantees that T
is both robust against the modeled mutation types and responsive to minor modifications
in the program-under-test (P).

Definition 2.3.8 (Redundant Mutant). Redundant mutants are not beneficial as they
utilize resources without adding value to the testing process since they are killed whenever
other mutants are killed. This redundancy can be characterized by duplicate and subsumed
mutants [PKZ+19]. Duplicate mutants are equivalent to each other but not equivalent to
the original program [OPB21]. On the other hand, Subsumed mutants are not equivalent
to each other but are killed by the same test cases. The subsumption relation is defined
as follows [KAO15]: We say that pi subsumes pj , denoted pi → pj , if and only if the
following two conditions are met:

1. ∃t ∈ T P
U : t ̸|= pi. More simply, there is a test case t for which pi and P produce

distinct outputs, indicating that pi is not equivalent to P.
2. ∀t ∈ T P

U , if t ̸|= pi, then t ̸|= pj . Essentially, if pi produces a different output than
P for any possible test case t applied to P, the same holds true for pj .

In Regular MT, for a test case t ∈ T to kill a mutant p, it must satisfy the following
three conditions [OP97,OU01]:

1. Reachability: the test case t should reach the mutated statement in p.
2. Necessity: the test case t should infect the program state, leading to distinct program

states for p and P.
3. Sufficiency: the incorrect (or erroneous) program state should propagate to the output

of p and be checked by t, demonstrating a noticeable variation in the outputs of p and
P for t.

21

2. Background

The aforementioned three conditions are referred to as the Reach-Infect-Propagate (RIP)
model. The effectiveness of a test case t ∈ T in killing a mutant p is influenced by the
observability of the program state, resulting in the following two prevalent types of MT:

1. Weak MT : A test case t ∈ T kills a mutant p if only the first two conditions of the
RIP model are satisfied.

2. Strong MT : A test case t ∈ T kills a mutant p iff all three conditions of the RIP model
are fulfilled.

Automated tests, commonly equipped with an oracle, typically check particular segments
of the output state by comparing the observed program behavior with the expected
one. Nonetheless, if the oracle fails to check the specific portion of the output state that
contains the erroneous value, it will not detect the failure. Thus, the oracle should also
reveal the failure [LO16], according to the Reach-Infect-Propagate-Reveal (RIPR) model.

2.4 Faults and Mutations in Simulink
In the preceding section (Section 2.3), we provided a general overview of Mutation
Testing. When applying these concepts to Simulink models, the program P corresponds
to the Simulink model, and mutations represent changes made to the model’s components
or signal paths. In this context, the location k in the program P where the mutation
operator is applied is either a model’s component or a signal path.

Simply put, mutations in Simulink models involve making changes to the behavior of a
Simulink model. Typically, there are two primary methods to make these alterations:

1. Line mutations: Modifying the behavior of signals that travel through lines connecting
different blocks (as shown in ‘Fault in line’ in Figure 2.2).

2. Block mutations: Altering the behavior of a block, such as changing its functionality
(illustrated by ‘Faults in block’ in Figure 2.2).

Figure 2.2: Mutations in a SUT (the seeded fault blocks F are highlighted in red). A,
B and C are blocks of original SUT. Internal signals s and s′ provide knowledge of the
fault location. ©2023 IEEE.

22

CHAPTER 3
Fault Injection

We present FIM, an open-source toolkit designed for automated fault injection and
mutant generation within Simulink models. FIM enables the injection of faults into
specific components, accommodating various common fault types and mutation
operators. Users can customize parameters to regulate fault actuation timing and
persistence. Moreover, additional flags empower users to activate individual fault
blocks during testing, facilitating the observation of their impacts on overall system
reliability. We offer insights into FIM’s design and architecture, along with an
evaluation of its performance using a case study derived from the avionics domain.

3.1 Introduction
Safety-critical CPSs are required to maintain reliability even during unexpected scenarios.
Consequently, adherence to relevant industrial standards (like ISO 26262 and IEC 61508)
is imperative to ensure that such systems meet the necessary safety requirements.

To address the increasing complexity of modern CPS, researchers and industry profes-
sionals have embraced model-based design and development coupled with a lightweight
verification approach based on simulation and testing. The MATLAB™ Simulink® ecosys-
tem from MathWorks® has emerged as the predominant standard for MBD in the CPS
domain. Over the past decade, the formal methods and control theory communities

©2022 Copyright held by the owner/author(s). Parts Reproduced, Reused, Reprinted, with per-
mission, from Ezio Bartocci, Leonardo Mariani, Dejan Ničković, and Drishti Yadav. 2022. FIM: Fault
Injection and Mutation for Simulink. In Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE’22), November 14-18,
2022, Singapore, Singapore. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3540250.3558932

23

https://doi.org/10.1145/3540250.3558932

3. Fault Injection

have introduced more systematic approaches to simulation-based verification. Notably,
falsification testing has gained traction in this context [NSF+10]. This line of research has
yielded numerous publications, including contributions featured in prominent conferences
such as CAV [AH15,ADD+17,ZHA19,ZLA+21].

While methods like falsification testing have demonstrated success in identifying bugs
within CPS designs, it is notable that these methods are often assessed using a limited
number of examples and in an ad-hoc manner. A systematic evaluation of a testing strat-
egy typically involves analyzing its ability to detect undesirable system behaviors in the
presence of faults [BV07,BBC+16]. This evaluation is typically conducted through fault
injection [ALRL04] and mutation testing [JH11], activities recommended by industrial
safety standards, particularly in safety-critical domains [PFK+13]. For large-scale muta-
tion testing evaluations to be conducted effectively, it is essential to have a mechanism
for automatically and programmatically injecting faults of various types into the system
model, without manual intervention during the injection process. Currently, there is
a lack of a fault injection solution tailored for Simulink that fulfills all the identified
requirements, which explains the absence of systematic experiments in evaluating CPS
testing approaches.

To address this issue, we introduce FIM (Fault Injection and Mutation Engine), an
open-source tool designed to inject faults into Simulink models in a manner that meets
the specified requirements. FIM offers the following programmable features:

• A comprehensive fault model encompassing sensor, hardware, and network faults,
alongside a mutation operator library;

• Systematic fault injection across various segments of a model:
– Creation of multiple copies of the original model, with each copy containing a

single injected fault, or
– Generation of a single copy of the original model, with all faults injected into

that specific copy;
• Option to confine fault injection to specific sections of the model;
• Dynamic activation and deactivation of faults

Chapter organization. Section 3.2 offers an overview of FIM’s architecture, core
features, and operational flow. The utility of the tool is outlined in Section 3.3. Section 3.4
assesses the tool’s efficacy through experimental data derived from an aerospace domain
example. In Section 3.5, we delve into the related literature. Finally, Section 3.6 provides
concluding remarks.

3.2 Architecture and Implementation of FIM
In the process of designing and implementing our fault injection and mutation framework,
we encountered several conceptual challenges that motivated and shaped the features of

24

3.2. Architecture and Implementation of FIM

FIM:

• Understanding the Specifics of Simulink: We grappled with the intricacies of Simulink
models, delving into the programmatic editing of model components and grasping
the nuances of masking. This understanding was crucial for designing a compre-
hensive fault injection library with parameterized blocks.

• Exploring Injection Strategies: We experimented with various injection strategies
before settling on the addition of new blocks as the preferred mechanism. This
approach offered the highest level of control without compromising the ability to
observe and alter variable values.

• Enabling Large-Scale Experiments: We prioritized the capability to conduct large-
scale experiments, developing an interface that minimizes the need for manual
interactions during experiments.

• Handling a Large Set of Injected Faults: We explored multiple strategies for man-
aging a large set of injected faults, ultimately supporting two complementary
approaches: generating multiple models with one fault each and generating a single
model with all faults included.

Now, we walk through the tool architecture and workflow, emphasizing its essential
features. Figure 3.1 illustrates the architecture of FIM, with its three primary compo-
nents: (1) the Fault Injection Library, (2) the Fault Injection Module, and (3) the Fault
Configuration.

Fa
ul
tI
nj
ec

tio
n
Lib

ra
ry

(F
In
jLi

b)

M
UL

TI
M
OD

EL
SI
NG

LE
M
OD

EL

…
1

Fault

n

Fault

n

1

1

Fault

n

Fault
…SU

T

…

SU
T

SU
T

Fa
ul
tI
nj
ec

tio
n

Fault Configuration

SUT

Fault List

Output
Directory

FIM

n

1
…M

UT
AT

ED
M
UT

AT
ED

SU
T

SU
T

M
UT

AT
ED

SU
T

FAULT

TABLE Fault
Enable List

…

Figure 3.1: Workflow and Structure of FIM.
License: CC BY 4.0

25

https://creativecommons.org/licenses/by/4.0/

3. Fault Injection

3.2.1 Fault Injection Library

The Fault Library in FIM is a specialized Simulink library browser that contains various
parameterized blocks designed for different types of faults and mutation operators. Users
have the flexibility to expand this library with additional faults and mutation operators as
needed. Depending on the fault type specified by the user in the list of desired mutations
(referred to as fault_list1), the insertion or replacement of blocks occurs accordingly.
Blocks labeled as “Faults” in Table 3.1 represent the insertion of fault blocks, while those
associated with “Block mutations” indicate the replacement of the corresponding block
with the specified block mutation operator. Figure 3.2 illustrates an instance of both line
mutation and block mutation within the Simulink model of a system.

Table 3.1: Faults and mutation operators.

Type Name Description

Faults
(Line
mutations)

Negate changes a signal u to −u
Invert inverts a non-zero signal u to 0; if u is 0, makes

0 to 1
Stuck-at 0 makes the signal value zero
Absolute changes a signal u to |u|
Noise adds a band limited white noise to the input

signal based on specified fault value [noise power]
Bias/Offset adds a predefined +ve or −ve offset (bias) value

to input
Stuck-at the signal value stucks at the last correct value

before fault occurrence
Time Delay introduces a delay of specified duration. During

the delay, the value of the signal is the same as
the last value observed before the time of fault
occurrence.

Bit Flip Bitwise NOT operation on boolean signal
Package Drop replaces the input by the specified fault value

Block
mutations

ROR Relational Operator Replacement
LOR Logical Operator Replacement
S2P Sum to Product mutation
P2S Product to Sum mutation
ASR Arithmetic Sign Replacement (for 2-Input Sum

Block)
License: CC BY 4.0

It is worth noting that FIM supports commonly used faults and mutation operators,
based on existing literature. Specifically, fault types such as Stuck-at, Package

1The fault_list is a user-specified list detailing the desired faults/mutations.

26

https://creativecommons.org/licenses/by/4.0/

3.2. Architecture and Implementation of FIM

drop, Bias/Offset, Noise, Time delay, and Bit flips are adapted from Error-
Sim [SMSJ17], MODIFI [SVET10], SIMULTATE [PRWN16], and FIBlock [FMMJ21].
Additionally, faults like Negate, Invert, and Absolute, along with Block mutation
operations such as ROR, LOR, and P2S, are derived from SIMULTATE [PRWN16]. Stan-
dard arithmetic operator replacements like S2P and ASR are commonly used in mutation
testing.

+-

set point

-K-

1

pos
2 1

+-

set point
1

pos
2 1PID

+-

set point
-K-

1

pos
2

11 1

Noise

1
2

set point
1

pos
2 1PID1

S2P_Mutation

FAULT
IN

LINE
BLOCK

M
UTATION

Subsystem of the Mutated SUTSubsystem of the Original SUT

Figure 3.2: Illustration of some faults/mutations in a SUT (the injected fault blocks are
highlighted in red).
License: CC BY 4.0

Each fault block in FIM is implemented as a masked subsystem featuring distinct block
parameters. A flag named FIEnableflag is incorporated into each fault block, allowing
users to activate or deactivate it as needed. Since FIM is designed to handle deterministic
faults, all fault blocks include the parameter FaultOccurenceTime to specify when the
fault should be triggered. Additionally, the block parameter FaultEffect dictates the
duration for which the fault persists.

FIM offers two types of fault effects:

• Infinite time: This effect causes the fault block to produce erroneous output from
the FaultOccurenceTime until the end of the simulation.

• Constant time: In this case, the fault occurs at the specified FaultOccurenceTime
and persists for the duration specified by the block parameter FaultDuration.

Furthermore, fault blocks related to Noise, Bias/Offset, and Package Drop include
an extra block parameter called FaultValue, which allows users to adjust the fault value.
Similarly, blocks associated with ROR, LOR, and ASR have an additional parameter
called OperatorNum to select the relevant operator. The correspondence between various
operators and their respective numbers is detailed in Table 3.2.

27

https://creativecommons.org/licenses/by/4.0/

3. Fault Injection

Table 3.2: List of operators for block mutations.

Mutation Operator number : Corresponding Operation
ROR 1 : >, 2 : <, 3 : <=, 4 : >=, 5 : ==, 6 : ̸=
LOR 1 : AND, 2 : OR, 3 : NAND, 4 : NOR, 5 : XOR, 6 : XNOR
ASR 1 : +−, 2 : −−, 3 : ++, 4 : −+

3.2.2 Fault Injection
The Fault Injection Module is tasked with injecting faults based on the specified mu-
tations (fault_list). In the SINGLE-MODEL scenario, which involves mutations with
a single model, FIM duplicates the SUT and injects all desired faults into the copied
file. Conversely, in the MULTI-MODEL scenario, which entails mutations with multiple
models, FIM duplicates the SUT and injects a single fault into each copied file. This
process repeats until all desired faults are injected, resulting in multiple copies of the
SUT with one fault injected per copy.

SINGLE-MODEL mode offers two main advantages: (i) it generates and compiles a
single model, and (ii) it allows for the examination of the simultaneous effects of multiple
faults within a single mutated SUT. On the other hand, MULTI-MODEL mode offers
simplicity and smaller individual model sizes.

The Fault Injection Module leverages the fundamentals of programmatic editing of
Simulink models to inject faults into the mutated SUT. It stores information such as line
handles, block handles, and source-destination blocks (along with their respective ports)
in a persistent cache for fault injection. During fault injection, it also preserves signal
logging information and enhances the model layout to comply with modeling guidelines
and improve model readability.

Once all desired faults are injected, the Fault Injection Module generates a fault table
(.xlsx file) containing detailed information about the injected fault blocks. Each injected
fault block is assigned a unique name, which is later used by the Fault Configuration
component to control its activation.

3.2.3 Fault Configuration
Utilizing the generated fault table, users can now customize the faults to be uti-
lized in an experiment. FIM enables users to input another configuration file, termed
fault_enable_list, which is a table (in .csv or .xlsx format) containing fields to define the
block(s) to be activated alongside the relevant fault parameters. Following the specifica-
tions outlined in the fault_enable_list, the Fault Configuration component activates the
corresponding fault blocks within the mutated SUT and configures them based on the
specified fault parameters. The fault block earmarked for activation is identified by its
unique identifier (fault number) as listed in the fault table.

28

3.3. Tool Usage

3.3 Tool Usage
A specific requirement for FIM is that users must have a licensed installation of MATLAB™
and Simulink®. We have developed FIM in MATLAB™ R2020b, providing a command-
line interface that enables users to execute the tool from the command prompt. In both
SINGLE- and MULTI-MODEL modes, the Fault Injection and Fault Configuration tasks
are managed by distinct customized functions. Essentially, user-defined configuration
files and the output directory control the overall behavior of FIM.

For fault injection, FIM utilizes the functions FISingle and FIMulti for SINGLE-
MODEL and MULTI-MODEL scenarios, respectively. Each of these functions requires
two arguments: a configuration file, defining the set of faults to be injected, and an
output directory, specifying where the output will be saved. Typically, the configuration
file contains details about the SUT and the fault_list. The fault_list is a table that
specifies the target fault location and the desired type of fault/mutation. The target fault
location can be identified using the names of source, destination, or parent blocks, or by
specifying the hierarchy levels of the SUT. This flexibility allows the user to control the
fault injection space. Depending on the selected mode (SINGLE- or MULTI-MODEL),
FIM generates either a single mutated model with all desired faults injected in one model
copy or a set of mutated models, each with one fault injected. Additionally, FIM outputs
the generated fault table to the user-specified output directory.

After fault injection, the user can review the generated fault table to identify which
fault blocks to activate and configure. In the fault configuration process, FIM employs
the functions FCSingle and FCMulti for SINGLE-MODEL and MULTI-MODEL
cases, respectively. These functions include an additional argument, fault_enable_list,
which outlines the faults to be activated in the subsequent run and their activation
strategy. As output, the selected fault blocks are activated, and the corresponding
fault parameters are configured upon executing the appropriate command based on the
SINGLE-/MULTI-MODEL mode.

For a step-by-step demonstration of our tool, we present a case study based on the Aircraft
Elevator Control System (AECS) from the avionics-aerospace domain [GM05]. This
Simulink model comprises various hierarchical subsystems, such as the Controller, Plant,
and Sensors. The model’s input variable is the ‘Pilot Command,’ which governs the
positions of the left and right actuators, resulting in two output variables. Additionally, the
model includes various types of signals, including real-valued, Boolean, and enumerated
(state machine) variables. Mutations in any of these signals have the potential to induce
faulty behavior in the model.

Injecting faults. Through the following steps, we systematically inject desired faults
into the AECS (our System Under Test, SUT) using our tool, resulting in a mutated SUT.
In this example, we focus solely on the SINGLE-MODEL approach, where all mutants
are accessible through a single Simulink model. Let us assume our input configuration
file is named ‘FIMConfigur_sfaircraft.txt’.

29

3. Fault Injection

Table 3.3 provides an example fault_list. The level_final column specifies the hier-
archy depth to which we restrict our fault injection. The Src_or_InportName col-
umn indicates that faults are injected into all lines whose Input port/Source is named
“Src_or_InportName”. The Dst_or_OutportName column indicates that all lines whose
Output port/Destination is named “Dst_or_OutportName” will be mutated. The Par-
entBlock column specifies the name of the block to select all lines originating from or
included within this ParentBlock. The Faulttype_ft column indicates the type of fault/mu-
tation. Since block mutations (e.g., ASR, S2P, P2S, ROR, LOR) operate on blocks
rather than lines (signals), we denote “NA” and do not specify any Src_or_InportName,
Dst_or_OutportName, or ParentBlock.

Table 3.3: A sample fault_list for the AECS.

level_final Src_or
_Inport
Name

Dst_or
_Outport
Name

Parent
Block

Fault
type_ft

Controller NA NA Left
Control
Laws

Bias/
Offset

Plant/Actuators/Right Outer Hy-
draulic Actuator

NA NA NA Negate

Plant/Actuators/Left Outer Hy-
draulic Actuator/Hydraulic Actuator

NA NA NA ASR

Controller/Right Control Laws/IO
Control Law

NA NA NA S2P

Plant/Actuators/Right Inner Hy-
draulic Actuator/Hydraulic Actuator

NA NA NA P2S

Controller/Right Control Laws/ Sub-
system

NA NA NA ROR

Let us now assume that we want to save the information of all the mutants in the
folder ‘Results’. After setting up the configuration file, we start the fault injection
in the MATLAB environment using the following command at the command prompt:
FISingle(‘FIMConfigur_sfaircraft.txt’,‘Results’). As soon as the command
is entered, FIM initializes, loads the FInjLib, creates a copy of the original model and
starts injecting faults in the copied file. Note that by default, all the injected faults are
turned off. When the command has executed, the mutated SUT (single Simulink model
with all mutants) is saved, and the generated fault table (see Table 3.4) is stored in
the folder ‘Results’. In Table 3.4, Column My_faulty_model indicates the name of the
mutated SUT. Column My_faulty_block indicates the unique name of the fault block
added in the SUT. Column Parentblock indicates the subsystem within which the fault is
injected. Column Fault_Type gives the name of the fault or block mutation operator.
Columns SRC_details and DST_details respectively provide the full names of the source

30

3.3. Tool Usage

and destination blocks corresponding to the line in which the fault is injected. Columns
SRC_port_number and DST_port_number specify the respective port numbers of the
source and destination. Such a detailed description of the injected faults will assist the
user to identify the exact location of the fault block in the mutated SUT.

The first fault injected into the mutated SUT is Bias/Offset s.t. the fault block
(Offset1) is placed between the lines connecting the source (pointed by SRC_details and
SRC_port_number) to the corresponding destination. Note that the source/destination
information for block mutations (e.g., ASR, ROR, etc.) are not given by the fault
table in Table 3.4 since they are faults in blocks and not in signals (or lines). Some
mutations (or injected faults) are shown in Figure 3.3.

+-

set point

(a) Original SUT

-K-
set point

pos
Offset3

1 1

0.000325

(b) Mutated SUT

1

2

1

pos
2 1

Offset4

1 1 +-

Offset1

1 1

Offset2

1 1 1

Figure 3.3: Mutations in the ‘Controller/Left Control Laws/Direct Link Control Law’
subsystem of AECS.

Configuring faults. After fault injection, we can look into the generated fault
table to identify the fault blocks which we want to turn on. Let us assume that we
want to turn on the blocks Offset1 and ArSignReplOperator38 and, configure them for
desired fault parameters. We now define the fault_enable_list which is a table (see
Table 3.5) with the following properties: Column FaultBlock_Num specifies the unique
number of the fault block in accordance with the fault table. Column Faultvalue_fv
indicates the amplitude of the fault (valid only for Noise, Bias/Offset and Package
Drop faults; otherwise “NA”). Column FaultOccurenceTime_fot indicates the time of
fault occurence. Column FaultEffect_fe indicates the fault effect (either ‘Infinite time’ or
‘Constant time’). Column FaultDuration_fd specifies the fault persistence time (valid
only for ‘Constant time’ fault effect; otherwise “NA”). Column FaultOperatorNumber_fo
specifies the operator in case of the block mutations: ROR, LOR and ASR.

Let us assume that we save this fault_enable_list in ‘Faultlist_Aircraft.csv’
file. The selected fault blocks are switched on and the respective fault parameters are
configured after the execution of the following command:
FCSingle(‘FIMConfigur_sfaircraft.txt’,‘Results’, ‘Faultlist_Aircraft.csv’).

31

3. Fault Injection

Ta
bl

e
3.

4:
So

m
e

en
tr

ie
s

of
th

e
f
a
u
l
t
t
a
b
l
e

(b
as

ed
on

th
e

fa
ul

t_
lis

t
in

Ta
bl

e
3.

3)
.

M
y_

fa
ul

ty
_

m
od

el
M

y_
fa

ul
ty

_
bl

oc
k

P
ar

en
tb

lo
ck

Fa
ul

t_
T

yp
e

SR
C

_
de

ta
ils

D
ST

_
de

ta
ils

SR
C

_
po

rt
_

nu
m

be
r

D
ST

_
po

rt
_

nu
m

be
r

A
irc

ra
ft_

co
py

O
ffs

et
1

A
irc

ra
ft

_
co

py
/

C
on

-
tr

ol
le

r/
Le

ft
C

on
tr

ol
La

w
s/

D
ire

ct
Li

nk
C

on
-

tr
ol

La
w

B
ia

s/
O

ffs
et

A
irc

ra
ft

_
co

py
/

C
on

tr
ol

le
r/

Le
ft

C
on

tr
ol

La
w

s/
D

i-
re

ct
Li

nk
C

on
tr

ol
La

w
/S

um

A
irc

ra
ft

_
co

py
/

C
on

tr
ol

le
r/

Le
ft

C
on

tr
ol

La
w

s/
D

i-
re

ct
Li

nk
C

on
tr

ol
La

w
/G

ai
n

1
1

··
·

··
·

··
·

··
·

··
·

··
·

··
·

··
·

A
irc

ra
ft_

co
py

A
rS

ig
nR

ep
l

O
pe

ra
to

r3
8

A
irc

ra
ft

_
co

py
/P

la
nt

/
A

ct
ua

to
rs

/L
ef

tO
ut

er
H

yd
ra

ul
ic

A
ct

ua
to

r/
H

y-
dr

au
lic

A
ct

ua
to

r

A
SR

-
-

-
-

Ta
bl

e
3.

5:
A

sa
m

pl
e

fa
ul

t_
en

ab
le

_
lis

t
fo

r
th

e
A

EC
S.

Fa
ul

tB
lo

ck
_

N
um

Fa
ul

tv
al

ue
_

fv
Fa

ul
tO

cc
ur

en
ce

T
im

e_
fo

t
Fa

ul
tE

ffe
ct

_
fe

Fa
ul

tD
ur

at
io

n_
fd

Fa
ul

tO
pe

ra
to

r
N

um
be

r_
fo

1
10

0
4

In
fin

ite
tim

e
N

A
N

A
38

N
A

2
C

on
st

an
t

tim
e

3
3

32

3.4. Tool Evaluation

3.4 Tool Evaluation
To evaluate the performance of our tool, we conducted experiments on the AECS for
both the SINGLE-MODEL and MULTI-MODEL modes. These experiments were carried
out on a MacBook Pro equipped with an Apple M1 chip, 16 GB RAM, and macOS Big
Sur running MATLAB™ R2020b.

The fault injection times, averaged over ten independent runs, for both scenarios are
summarized in Table 3.6. The Target and Fault type columns indicate the target fault
location and fault type, respectively. Column n displays the number of faults injected.
Please note that (i) n is determined by the structure of the target location, and (ii) the fault
generation time is influenced by both the fault type and the target location. Our results
demonstrate that the fault injection process is faster and requires less computational
resources in the SINGLE-MODEL scenario compared to the MULTI-MODEL case. In
particular, with regards to the AECS model, FIM requires an average of 0.92 seconds
for injecting a single fault in the SINGLE-MODEL mode, while in the MULTI-MODEL
mode, it requires an average of 2.87 seconds for single fault injection.

In summary, based on our fault injection experiments and the resulting findings, we draw
the following conclusions:

1. The MULTI-MODEL approach requires more resources, making SINGLE-MODEL
the preferred option when efficiency is paramount.

2. However, while SINGLE-MODEL offers efficiency, it may present challenges in terms
of model size and complexity, potentially complicating visualization, debugging, and
analysis. In contrast, the MULTI-MODEL approach, by creating smaller models,
often makes it easier to analyze fault injection results. Each model can be examined
individually, which simplifies understanding the impact of individual faults on the
system and improves the overall interpretability of the results.

3. In contrast to the MULTI-MODEL scenario, the SINGLE-MODEL setup is advanta-
geous for investigating the interplay between multiple faults, which may potentially
be activated at different points in time.

4. To leverage the advantages of both modes, users can initially utilize the SINGLE-
MODEL approach by default. If specific faults warrant further investigation, users
can switch to the MULTI-MODEL mode to analyze their individual effects, enhancing
the interpretability and comprehensibility of the analysis.

3.5 Related Work
A multitude of fault injection tools and techniques are available, tailored to specific
fault types, SUT characteristics, and injection methodologies [HTI97,KDN14,NCM16,
SVS14,VS05,ZAV+04]. Notably, numerous tools have been developed for fault injection
in Simulink models [PRWN16,SVET10,SMSJ17,FMMJ21], albeit with certain limita-
tions and drawbacks. For instance, MODIFI [SVET10] and ErrorSim [SMSJ17] provide

33

3. Fault Injection

Ta
bl

e
3.

6:
Fa

ul
t

In
je

ct
io

n
(m

ut
an

t
ge

ne
ra

tio
n)

tim
e

(in
se

co
nd

s)
fo

r
A

EC
S.

Ta
rg

et
Lo

ca
ti

on
an

d
Fa

ul
t

de
ta

ils
n

Fa
ul

t
In

je
ct

io
n

ti
m

e
Ta

rg
et

Fa
ul

t
ty

pe
SI

N
G

LE
-

M
O

D
EL

M
U

LT
I-

M
O

D
EL

‘C
on

tr
ol

ler
’s

ub
sy

st
em

wi
th

pa
re

nt
bl

oc
k

‘L
ef

tC
on

tr
ol

La
ws

’
Bi

as
/O

ffs
et

20
16

.3
8

53
.5

3
Pl

an
t/

A
ct

ua
to

rs
/R

ig
ht

O
ut

er
H

yd
ra

ul
ic

A
ct

ua
to

r
N

eg
at

e
17

14
.0

5
46

.3
1

Pl
an

t/
A

ct
ua

to
rs

/L
ef

t
O

ut
er

H
yd

ra
ul

ic
A

ct
ua

to
r/

H
yd

ra
ul

ic
A

ct
ua

to
r

A
SR

2
3.

73
11

.0
2

C
on

tr
ol

le
r/

R
ig

ht
C

on
tr

ol
La

w
s/

IO
C

on
tr

ol
La

w
S2

P
1

1.
83

3.
58

Pl
an

t/
A

ct
ua

to
rs

/R
ig

ht
In

ne
r

H
yd

ra
ul

ic
A

ct
ua

to
r/

H
yd

ra
ul

ic
A

ct
ua

to
r

P2
S

3
2.

58
7.

92

C
on

tr
ol

le
r/

R
ig

ht
C

on
tr

ol
La

w
s/

Su
bs

ys
te

m
RO

R
2

3.
05

6.
99

To
ta

l
45

41
.6

2
12

9.
35

Li
ce

ns
e:

C
C

BY
4.

0

34

https://creativecommons.org/licenses/by/4.0/

3.6. Conclusion

limited options for fault types and are not publicly accessible. Meanwhile, SIMUL-
TATE [PRWN16] offers an interactive user interface using Python and MATLAB, which,
while user-friendly, may impede scalability for experiments requiring the injection of
numerous faults. Additionally, another model-based fault injection method [FMMJ21]
supports typical fault injections but lacks automated support for fault block placement
within the SUT.

In contrast, FIM surpasses existing tools in several aspects: (i) it encompasses a broader
range of faults and mutations (see Section 3.2), (ii) it facilitates automated fault injection
through a seamless user interface directly within the MATLAB environment without
requiring additional setup, and (iii) it boasts unparalleled scalability in fault injection,
allowing experiment design through configuration files for the generation of a vast number
of mutants within seconds.

3.6 Conclusion
We introduced FIM, an open-source toolkit designed for the automated injection of faults
and generation of mutants in Simulink models. Testers can manage the activation of
fault blocks according to their specific tasks and fine-tune fault parameters to thoroughly
assess the SUT’s fault tolerance. We believe FIM represents a significant advancement
in the verification process for safety-critical CPSs. Verification experts and testers can
utilize and customize our tool to meet their safety evaluation and testing requirements.
Besides, our tool provides testers with the flexibility to update it by (i) modifying the
automated scripts for fault injection and configuration, and (ii) expanding the fault
library with additional operators, including conditional and cascaded faults.

Data Availability Statement. FIM is openly available at https://gitlab.com/DrishtiYadav/
fimtool and is also available on the Zenodo repository [BMNY22b] via https://doi.org/
10.5281/zenodo.6554973. Tool demonstration video is available at https://youtu.be/
0EJri93Y_Gg. A detailed, step-by-step demonstration of FIM, including specific com-
mands for two usage scenarios, is also available online.

35

https://gitlab.com/DrishtiYadav/fimtool
https://gitlab.com/DrishtiYadav/fimtool
https://doi.org/10.5281/zenodo.6554973
https://doi.org/10.5281/zenodo.6554973
https://youtu.be/0EJri93Y_Gg
https://youtu.be/0EJri93Y_Gg

CHAPTER 4
Blood Coagulation Algorithm: A

Global Optimizer

We present a new population-based bio-inspired metaheuristic optimization al-
gorithm named the Blood Coagulation Algorithm (BCA). BCA is inspired by
the process of blood coagulation in the human body, leveraging the cooperative
behavior of thrombocytes and their efficient strategy of clot formation. These
biological principles are modeled to enhance intensification and diversification
within a search space.

A thorough comparison with various leading metaheuristic algorithms was con-
ducted using a suite of 23 well-known benchmark functions, showcasing BCA’s
effectiveness. Our extensive evaluation covers performance and convergence be-
havior of BCA. The comparative analysis and statistical testing indicate that
BCA delivers highly competitive and statistically significant results relative to
other prominent metaheuristic algorithms. Additionally, experimental outcomes
highlight BCA’s consistent performance in high-dimensional search spaces. We
further demonstrate BCA’s practicality by applying it to solve several real-world
engineering problems, including Falsification testing of CPSs.

4.1 Introduction
In recent years, researchers have developed numerous nature-inspired and bio-inspired
optimization algorithms, drawing from the collective behaviors of organisms. These

©2021 Copyright held by the author. Parts Reproduced, Reused, Reprinted, with permission, from
Drishti Yadav. 2021. Blood Coagulation Algorithm: A Novel Bio-Inspired metaHeuristic Algorithm for
Global Optimization. Mathematics 2021, 9(23), 3011. https://doi.org/10.3390/math9233011.

37

https://doi.org/10.3390/math9233011

4. Blood Coagulation Algorithm: A Global Optimizer

algorithms effectively address complex optimization problems across diverse fields, in-
cluding engineering design, digital image processing, networks and communications,
power and energy management, data analysis, machine learning, robotics, and medical
diagnosis [FROC+20]. Recently, there has been increased interest in the effective use
of evolutionary and swarm intelligence-based algorithms. Their popularity stems from
their simplicity, ease of implementation, flexibility, ability to avoid local optima, and
gradient-free nature [BLS13].

Nature-inspired metaheuristic1 algorithms address optimization problems by mimicking
natural processes. These algorithms are classified into four categories: evolution-based,
swarm-based, physics-based, and human behavior-based, as outlined in Table 4.1.

Population-based metaheuristic optimization algorithms, despite their diversity, share a
fundamental characteristic: they all strive to balance diversification (exploration) and
intensification (exploitation) [ČLM13].

1. Diversification maintains diversity and enables exploration of various promising
regions within the search space. Utilizing randomized operators effectively aids in
comprehensive and global exploration by applying random perturbations to the search
agents (or design variables). Consequently, an efficient optimization algorithm should
incorporate sufficient randomization to generate a larger number of solutions spread
across the problem landscape during the initial stages of optimization. Without
adequate diversification, an optimizer may prematurely converge to local optima.

2. Intensification demonstrates the ability to conduct a detailed local search within the
promising regions identified during the diversification phase of the problem landscape
(i.e., the search space). This characteristic focuses the search process on local areas,
specifically around higher-quality solutions, rather than spanning broad areas of the
search landscape. Without sufficient intensification, the optimizer may fail to achieve
convergence.

Therefore, achieving an appropriate balance between diversification and intensification is
crucial for any metaheuristic algorithm to find the global optimum. Without this balance,
the algorithm risks getting trapped in local optima and converging prematurely.

Despite the abundance of existing metaheuristic approaches and their applications in
various techno-scientific and industrial domains, the question remains: Is there a need
for new optimization algorithms? The answer is yes. The effectiveness of metaheuristic
techniques in solving optimization problems hinges on the balance between diversification
and intensification [ČLM13]. Each metaheuristic approach employs a unique method
to achieve this balance. According to the No-Free-Lunch (NFL) theorem [WM97], no
single optimization algorithm is universally efficient for all types of problems. This
theorem asserts that while a particular optimizer might excel across many problems,
it may perform poorly on specific problems, making it ineffective overall. Essentially,

1The Greek prefix “meta” in “metaheuristics” signifies that these algorithms operate at a “higher
level” compared to problem-specific heuristics. Metaheuristics are typically employed for problems lacking
an adequate problem-specific solution algorithm [BLS13].

38

4.1. Introduction
Ta

bl
e

4.
1:

N
at

ur
e-

in
sp

ire
d

m
et

ah
eu

ris
tic

al
go

rit
hm

s.

C
at

eg
or

y
C

ha
ra

ct
er

is
ti

cs
E

xa
m

pl
es

Ev
ol

ut
io

n-
ba

se
d

In
sp

ire
d

by
th

e
co

nc
ep

to
fn

at
-

ur
al

ev
ol

ut
io

n;
Em

ul
at

e
th

e
bi

ol
og

ic
al

ev
ol

ut
io

na
ry

be
ha

v-
io

rs
su

ch
as

re
co

m
bi

na
tio

n,
m

ut
at

io
n,

an
d

se
le

ct
io

n

G
en

et
ic

A
lg

or
ith

m
(G

A
)

[H
ol

92
],

G
en

et
ic

Pr
og

ra
m

m
in

g
(G

P)
[K

oz
94

],
D

iff
er

en
tia

lE
vo

lu
tio

n
(D

E)
[L

S0
4]

,B
io

ge
og

ra
ph

y
B

as
ed

O
pt

im
ize

r(
BB

O
)[

Si
m

08
],

an
d

Ev
ol

ut
io

na
ry

St
ra

te
gy

(E
S)

[B
ac

91
].

Sw
ar

m
-b

as
ed

Em
ul

at
e

th
e

so
ci

al
be

ha
vi

or
s

(e
.g

.,
de

ce
nt

ra
liz

ed
,s

el
f-

or
ga

-
ni

ze
d

sy
st

em
s)

of
or

ga
ni

sm
s

liv
in

g
in

sw
ar

m
s,

flo
ck

s,
or

he
rd

s;
In

sp
ire

d
by

th
e

co
lle

c-
tiv

e
na

tu
ra

lb
eh

av
io

r
of

liv
in

g
or

ga
ni

sm
s

e.
g.

,h
un

tin
g,

fo
od

se
ar

ch
,m

at
in

g,
et

c.

Pa
rt

ic
le

Sw
ar

m
O

pt
im

iz
at

io
n

(P
SO

)
[K

E9
5]

,G
re

y
W

ol
fO

pt
im

iz
er

(G
W

O
)

[M
M

L1
4]

,W
ha

le
O

pt
im

iza
tio

n
A

lg
or

ith
m

(W
O

A
)

[M
L1

6]
,

B
ut

te
rfl

y
O

pt
im

iz
at

io
n

A
lg

or
ith

m
(B

O
A

)
[A

S1
9]

,
H

ar
ris

H
aw

k
O

pt
im

iz
at

io
n

(H
H

O
)

[H
M

F+
19

],
C

uc
ko

o
Se

ar
ch

(C
S)

[G
YA

13
],

M
ot

h-
Fl

am
e

op
tim

iz
at

io
n

(M
FO

)
[M

ir1
5]

,F
lo

we
r

Po
lli

na
tio

n
A

l-
go

rit
hm

(F
PA

)
[Y

K
H

14
],

Fi
re

fly
A

lg
or

ith
m

(F
A

)
[G

YA
11

],
Sa

lp
Sw

ar
m

O
pt

im
iz

at
io

n
(S

SA
)

[M
G

M
+

17
],

A
nt

co
lo

ny
op

tim
iz

at
io

n
(A

CO
)

[B
lu

05
],

K
ril

lH
er

d
(K

H
)

[G
A

12
],

Im
pr

ov
ed

El
ep

ha
nt

H
er

d-
in

g
O

pt
im

iz
at

io
n

(I
EH

O
)

[S
SK

22
],

Em
pe

ro
r

pe
ng

ui
n

an
d

Sa
lp

Sw
ar

m
al

go
rit

hm
(E

SA
)

[D
hi

21
],

et
c.

Ph
ys

ic
s-

ba
se

d
In

sp
ire

d
by

th
e

ph
ys

ic
al

la
w

s
be

hi
nd

na
tu

ra
lp

he
no

m
en

a
Si

m
ul

at
ed

A
nn

ea
lin

g
(S

A
)

[K
G

JV
83

],
G

ra
vi

ta
tio

na
lS

ea
rc

h
A

lg
o-

rit
hm

(G
SA

)
[R

N
PS

09
],

Bl
ac

k
H

ol
e

(B
H

)
al

go
rit

hm
[H

at
13

],
Si

ne
Co

sin
e

A
lg

or
ith

m
(S

CA
)

[M
ir1

6b
],

Bi
g-

Ba
ng

Bi
g-

Cr
un

ch
(B

B-
BC

)
op

tim
iz

at
io

n
al

go
rit

hm
[E

E0
6]

,W
at

er
C

yc
le

A
lg

or
ith

m
(W

C
A

)
[E

SB
H

12
],

A
rt

ifi
ci

al
El

ec
tr

ic
Fi

el
d

A
lg

or
ith

m
(A

EF
A

)
[Y

+
19

],
et

c.
H

um
an

be
ha

vi
or

-
ba

se
d

Em
ul

at
e

so
m

e
hu

m
an

be
ha

v-
io

rs
;I

ns
pi

re
d

by
th

e
so

ci
al

be
-

ha
vi

or
s

of
hu

m
an

s

In
te

rio
r

Se
ar

ch
A

lg
or

ith
m

(I
SA

)
[G

an
14

],
M

in
e

B
la

st
A

lg
or

ith
m

(M
BA

)[
SB

EH
13

],
H

ar
m

on
y

se
ar

ch
(H

S)
al

go
rit

hm
[G

K
L0

1]
,I

m
pe

-
ria

lis
t

C
om

pe
tit

iv
e

A
lg

or
ith

m
(I

C
A

)
[A

G
L0

7]
,T

ea
ch

in
g-

Le
ar

ni
ng

B
as

ed
O

pt
im

iz
at

io
n

(T
LB

O
)

[R
SV

11
],

So
cc

er
Le

ag
ue

C
om

pe
ti-

tio
n

(S
LC

)a
lg

or
ith

m
[M

R
14

],
Ex

ch
an

ge
M

ar
ke

tA
lg

or
ith

m
(E

M
A

)
[G

B
14

],
So

ci
o

Ev
ol

ut
io

n
an

d
Le

ar
ni

ng
O

pt
im

iz
at

io
n

A
lg

or
ith

m
(S

EL
O

)
[K

K
S1

8]
,e

tc
.

Li
ce

ns
e:

C
C

BY
4.

0

39

https://creativecommons.org/licenses/by/4.0/

4. Blood Coagulation Algorithm: A Global Optimizer

when considering all possible optimization problems, the average performance of all
algorithms is equal. Therefore, the NFL theorem supports the continuous development
of new metaheuristic optimizers to address a broader range of complex and unsolved
problems. This rationale underpins the ongoing effort to create new and powerful nature-
or bio-inspired metaheuristic algorithms and to enhance existing ones, either to solve
current complex problems more efficiently or to tackle new challenges. This motivation
drives our proposal of a novel optimizer to compete with existing algorithms.

More specifically, in the context of CPSs, optimization algorithms, particularly meta-
heuristics, are crucial for effective testing. These algorithms can systematically navigate
the complex input spaces of CPSs, uncovering faults and ensuring system robustness. The
development of new algorithms is essential to cater to the unique and varied challenges
presented by CPSs, guided by the insights from the NFL theorem and the necessity to
balance exploration and exploitation in the search process. By continually innovating
and refining these algorithms, we can significantly improve the reliability and safety of
CPSs in practical applications.

Contributions. We introduce Blood Coagulation Algorithm (BCA), a new bio-inspired
metaheuristic optimization algorithm. To our knowledge, no previous study in this
context is available in the optimization literature. The core concept of BCA is to mimic
the cooperative behavior of thrombocytes during blood coagulation, which leads to
hemostasis. Thrombocytes work together, moving towards the injury site to form a
stable clot. BCA emulates this process to efficiently solve single-objective optimization
problems and locate optima within a complex search space.

The efficiency of BCA is tested on a set of 23 mathematical benchmark functions,
including unimodal, multimodal, and fixed-dimensional problems. Additionally, we assess
BCA’s performance on high-dimensional functions to demonstrate its robustness for
larger problems. To further validate its effectiveness and applicability, we apply BCA
to six standard engineering design optimization problems and test its efficiency in the
falsification of CPSs. The results reveal that BCA is highly competitive with state-of-the-
art algorithms, showcasing exceptional performance and optimization capabilities across
all benchmark test functions and real-world engineering problems evaluated in this study.

To summarize, the main contributions of this chapter are as follows:

1. Introduction of the bio-inspired Blood Coagulation Algorithm (BCA), which mimics
the behavior of thrombocytes during blood coagulation.

2. Implementation and evaluation of the BCA using 23 mathematical benchmark func-
tions, demonstrating its competitiveness with state-of-the-art algorithms.

3. Validation of the BCA’s effectiveness through application to real-world challenges,
including six engineering design problems and a falsification testing problem on a CPS
from the automotive domain.

Chapter Organization. Section 4.2 delves into the background and inspiration drawn
from the human blood coagulation process, providing essential information along with

40

4.2. Blood Coagulation Algorithm

the mathematical model and computational procedures of the proposed BCA. Section 4.3
describes the testbed of 23 benchmark optimization functions used in this study and
details the experimental setup employed for the optimization tasks. The results of these
experiments are discussed in Section 4.4. In Section 4.5, the performance of BCA is
evaluated using six standard engineering optimization problems. Additionally, Section 4.6
examines BCA’s effectiveness in a real-world case study involving the falsification of
CPSs. Finally, Section 4.7 concludes the chapter.

4.2 Blood Coagulation Algorithm
In this section, we begin by introducing the inspiration behind the proposed Blood
Coagulation Algorithm (BCA). Next, we delve into the mathematical model detailing
the intensification and diversification phases of the BCA. Notably, BCA is a population-
based, derivative-free optimization method, making it suitable for solving a wide range
of well-defined optimization problems.

4.2.1 Inspiration
The proposed BCA draws inspiration from the natural biological process of blood
coagulation in the human body. Blood is vital for transporting essential nutrients and
oxygen to cells and removing metabolic waste. It is primarily composed of blood cells and
plasma. Blood cells include erythrocytes (red blood cells), leukocytes (white blood cells),
and thrombocytes (platelets). Thrombocytes play a critical role in coagulation (clotting),
the process that transforms blood from a liquid to a gel, resulting in the formation of
a blood clot [Cha14]. This coagulation process is essential for hemostasis, which stops
blood loss from a damaged vessel and initiates repair. Thus, thrombocytes are essential
in hemostasis, sealing ruptured blood vessels and preventing further blood loss.

The blood coagulation mechanism involves the stimulation, linkage and aggregation of
thrombocytes, along with the accumulation and maturation of fibrin [GBB20]. Hemostasis
begins with vasoconstriction, where the blood vessel wall constricts to reduce blood flow
to the injury site and minimize blood loss. Thrombocytes then adhere to the injured
blood vessel, forming a soft plug. Subsequently, thrombocytes trigger the final stage of
hemostasis: blood coagulation, illustrated in Figure 4.1.

Two distinct biological models have been proposed to explain hemostasis: the Coagulation
Cascade model and the Cell-Centric model. The Coagulation Cascade model, developed in
the mid-1960s, was the first widely accepted explanation of the coagulation process [DR64,
Mac64]. However, it has significant limitations when compared to the physiological
coagulation model and cannot adequately account for all phenomena related to in
vivo hemostasis. In the early 2000s, the Cell-Centric model was introduced as an
alternative [HMI01]. This model replaces the traditional “cascade” hypothesis, proposing
that coagulation occurs on various cell surfaces in four phases: initiation, amplification,
propagation, and termination [FSDC10]. The four phases of the Cell-Centric model,

41

4. Blood Coagulation Algorithm: A Global Optimizer

Injury
• Damage to blood vessel
• Leakage of blood (and its

components)

Step 1

Vascular spasm
• Muscular contraction

near the point of injury
• Reduction in blood loss

Step 2

Thrombocyte plug formation
• Activation of thrombocytes by

chemicals released from the site
of injury

• Release of chemicals by bound
thrombocytes to activate and
attract other thrombocytes

• Migration of thrombocytes
towards the site of injury

Step 3

Final stage of Coagulation
• Formation of a stable

clot

Step 4

Figure 4.1: Schematic of Hemostasis illustrating the general steps of blood clotting.
License: CC BY 4.0

which form the foundation of the current theory of coagulation centered on cell surfaces,
are outlined below [OL11]:

1. Initiation phase: The clotting process begins when tissue factor (TF) from suben-
dothelial cells activates the production of small amounts of clotting factors, including
thrombin, which is crucial for coagulation.

2. Amplification phase: Once sufficient procoagulant substances are produced, this
phase extends the coagulation process from TF-bearing cells to thrombocytes. Throm-
bin from the initiation phase activates thrombocytes, causing them to adhere and
start forming a clot.

3. Propagation phase: Activated thrombocytes bind with other essential clotting
factors. These interactions, driven by a feedback mechanism, lead to increased
thrombin production. This phase only occurs once a certain threshold of thrombin is
reached [JB05].

4. Termination phase: The coagulation process concludes with the formation of a
stable blood clot.

Our proposed algorithm, the Blood Coagulation Algorithm (BCA), is inspired by the
cell-centric model of hemostasis for blood coagulation. This model involves the activation
of thrombocytes and their migration to the injury site, guided by stochastic chemotactic
mechanisms.

42

https://creativecommons.org/licenses/by/4.0/

4.2. Blood Coagulation Algorithm

4.2.2 Mathematical Model and Optimization Algorithm
We now outline the steps of the proposed BCA, detailing how the different phases of the
blood coagulation process are mathematically modeled. We use a simple mapping to
replicate the cell-centric model of hemostasis within the algorithm. Table 4.2 provides a
description of the variables used in the mathematical formulation of BCA.

Table 4.2: Description of variables utilized in the mathematical formulation of BCA.

Variable(s) Description
AR Activation rate
θ Threshold
Pf Propagation factor
NP op Population size
n Number of dimensions/variables
x Position vector of the thrombocyte
x∗ Position vector of the best thrombocyte obtained so far
xrand Random position vector (a random thrombocyte) selected from

the current population
dbest Distance of a thrombocyte from the best thrombocyte
p1 Uniformly distributed random number in the range [0, 1]
p2 Uniformly distributed random number in the range [0, 1]
Max_iter Maximum number of iterations
t Current iteration
r1 Uniformly distributed random number in the range [0, 1]
License: CC BY 4.0

4.2.2.1 Initialization phase

The BCA begins by defining the objective function and delineating the solution space.
Additionally, the parameters of the BCA are initialized. The optimization problem is
formulated in terms of an objective function f(x) as follows:

min
x

f(x) x ∈ [LB, UB] (4.1)

To address an optimization problem using population-based meta-heuristic techniques,
the variables are structured as an array. In the BCA, this array is referred to as the
thrombocyte position (analogous to the chromosome in Genetic Algorithms or the particle
position in Particle Swarm Optimization). For an n-dimensional problem, the thrombocyte
position is represented by a 1 × n array, mathematically expressed as follows:

Thrombocyte position, x = [x1, x2, x3,, xn] (4.2)

It is important to note that each thrombocyte position xi must lie within a specified range,
[LBi, UBi], where LBi and UBi represent the lower and upper bounds, respectively.

43

https://creativecommons.org/licenses/by/4.0/

4. Blood Coagulation Algorithm: A Global Optimizer

During the initialization phase, a population of thrombocyte positions (i.e., solutions2)
is generated, as shown in Equation (4.3). These positions are randomly generated
(uniformly distributed) and are mathematically represented as a matrix of size NPop × n,
where the number of rows corresponds to the population size and the number of columns
corresponds to the dimensions of the optimization problem. These dimensions are also
referred to as the design, decision, or optimization variables.

Population of solutions =

thrombocyte position1
thrombocyte position2
thrombocyte position3

...
thrombocyte positionNP op

 =

x1

1 x1
2 . . . x1

n

x2
1 x2

2 . . . x2
n

...
...

x
NP op

1 x
NP op

2 . . . x
NP op
n

(4.3)

The values for each decision variable [x1, x2, x3, . . . , xn] can be represented as real numbers
(floating-point values) for continuous problems, or as elements from a predefined set
for discrete problems. The cost (or fitness) of a thrombocyte position is determined by
evaluating the cost function, which is expressed as follows:

Costi = f(xi
1, xi

2, ..., xi
n), ∀i = 1, 2, 3,, NP op (4.4)

The thrombocyte position with the lowest cost (fitness) value is identified as the best
solution, denoted as x∗. This marks the end of the initialization phase and the begin-
ning of the updating phase in the BCA. During this phase, the algorithm undertakes
intensification and diversification tasks to pursue optimal solutions.

4.2.2.2 Updating phase

Figure 4.2 illustrates all the stages of the updating phase in the BCA. To update the
positions of the thrombocytes, we utilize the Activation Rate (AR). After an injury,
thrombocytes are activated by chemicals released at the injury site. If the thrombocytes
are not fully activated, the coagulation process slows down. Once activated, thrombocytes
update their positions either based on a randomly chosen thrombocyte or the best
thrombocyte, which increases the likelihood of rapidly converging towards the global
optimum. Once activated, thrombocytes tend to remain active throughout the coagulation
process. Therefore, we use a lower AR value, specifically AR = 0.1, in this work. A
uniformly distributed random number p1 in the range [0, 1] is used for comparison with
the activation rate AR.

When p1 > AR, the thrombocytes become activated and are prepared to undergo
changes in their positions. The positions can be updated based on either diversification
(exploration) or intensification (exploitation), as outlined below:

Diversification or Exploration. When the concentration of procoagulants exceeds
the threshold (θ), rapid thrombin production occurs, facilitated by the migration of

2Throughout this chapter, the terms solutions and thrombocyte positions are used interchangeably.

44

4.2. Blood Coagulation Algorithm

IN
TE
N
SI
FI
C
A
TI
O
N

(P
er
fo
rm

lo
ca
ls
ea
rc
h
fo
re

xp
lo
iti
ng

th
e

se
ar
ch

sp
ac
e)

DIVERSIFICATION
(Update using a random thrombocyte)

INTENSIFICATION
(Update using the best thrombocyte)

𝜽

𝟎

𝟏

𝟎 𝟏𝐀𝐑

𝑝

𝑝�
Figure 4.2: Different updating phases of BCA.

License: CC BY 4.0

a large number of thrombocytes to the injury site. To compare with the threshold θ,
we utilize a uniformly distributed random number p2 in the range [0, 1]. When both
p1 > AR and p2 > θ, the thrombocytes migrate and update their positions. The
migration of thrombocytes occurs in a random manner, based on the positions of other
thrombocytes. During the diversification phase, the position of a thrombocyte is updated
using another thrombocyte randomly selected from the population. Therefore, the
conditions (p1 > AR)∧ (p2 > θ) emphasize diversification and enable the BCA to conduct
a global search. The mathematical representation is as follows:

d = |Cxrand(t) − x(t)| (4.5)

x(t + 1) = xrand(t) − Pf d (4.6)
Please note that the values of xrand(t) in Equation (4.5) and Equation (4.6) are identical;
hence, there is no duplication in sampling. Here, C represents a coefficient arbitrarily set
as C = 2r1, where r1 is a uniformly distributed random number in the range [0, 1]. We
introduce the Propagation factor Pf , which serves as a scaling parameter controlling the
step sizes of the random walks. This parameter governs the intensity of randomness in
the BCA. To expedite overall convergence, the perturbation should gradually decrease.
Therefore, the value of Pf is adaptively reduced at each iteration using the following
reduction formulation:

Pf (t) = 2
�

1 − t

Max_iter

�
∀ t = 1, 2, ..., Max_iter (4.7)

The parameters Pf and C are responsible for enhancing both diversification and intensi-
fication throughout the iterations.

45

https://creativecommons.org/licenses/by/4.0/

4. Blood Coagulation Algorithm: A Global Optimizer

Intensification or Exploitation. When (p1 > AR) ∧ (p2 ≤ θ), it highlights a local
search and exploitation of the search space. Here, the best thrombocyte position is
determined, and the remaining thrombocytes adjust their positions based on their
distances from the best thrombocyte. This behavior is mathematically described by the
following equations:

dbest = |x∗(t) − x(t)| (4.8)
x(t + 1) = x∗(t) − x′ (4.9)

where x′ = Pf x(t) + Cdbest.

It is worth noting that we update x∗ in each iteration whenever a superior solution is
discovered. The most promising solution identified in each iteration is regarded as the
best attained solution or the closest approximation to the optimum obtained thus far.
Additionally, we observe (as shown in Equation (4.9)) that any thrombocyte can adjust
its position within the vicinity of the current best thrombocyte (the best thrombocyte
obtained thus far). Consequently, the BCA enables effective intensification (exploitation)
of the search space. Furthermore, we assume a 50% probability of selecting either
diversification or intensification to update the positions of the thrombocytes during
optimization. Therefore, we set θ = 0.5 in this study. We note that depending on the
value of p2, the BCA seamlessly transitions between diversification and intensification.

In cases where p1 ≤ AR, the thrombocytes are not yet fully activated and thus not
prepared for the propagation phase (i.e., thrombin production). We assume that the
thrombocytes are only partially activated, leading to the formation of a platelet plug
responsible for primary hemostasis3. In this scenario, we update the positions of the
thrombocytes by exploiting the current best thrombocyte to exploit the search space
further. This is expressed mathematically as follows:

x(t + 1) = x∗(t) − kPf d′ (4.10)

where d′ = |Cx∗(t) − x(t)| and k = Pf (C − 1).

4.2.2.3 Termination phase

The updating phase continues until the termination criteria, such as reaching a tolerance
limit (where a specific error rate is achieved), completing the maximum number of
iterations (Max_iter), observing no improvement in fitness after a predefined number
of iterations, or another suitable condition, is met. In this study, we adopt reaching
the maximum number of iterations (Max_iter) as the termination criterion. Upon
completion of the updating phase, the termination phase begins, during which the
termination criteria are assessed. The BCA outputs the best solution (i.e., thrombocyte
position) and its corresponding fitness value.

The Blood Coagulation Algorithm: The three aforementioned phases constitute the
entire framework of BCA, as demonstrated in Algorithm 4.1.

3Immediately following an injury, thrombocytes promptly create a plug at the injury site; this process
is known as primary hemostasis.

46

4.3. Optimization Testbed and Experimental Platform

Algorithm 4.1: The Blood Coagulation Algorithm (BCA)
Input : Objective function

f(x), x = [x1, x2, x3,, xn], n = number of dimensions.
Output : the optimal solution x∗

1 Initialize BCA parameters (NP op, Max_iter, θ, AR)
2 Initialize randomly a population of solutions between LB and UB
3 Calculate the cost (fitness) of initial solutions
4 x∗ = The best thrombocyte position (i.e., solution)
5 while (t < Max_iter) do
6 for each thrombocyte xi do
7 Update Pf (i.e., Propagation factor), C, p1, p2
8 if p1 > AR then
9 if p2 > θ then

10 Select a random thrombocyte, xrand

11 Update the position of the current thrombocyte: Equation (4.6)
12 else
13 if p2 ≤ θ then
14 Update the position of the current thrombocyte: Equation (4.9)
15 end if
16 end if
17 else
18 if p1 ≤ AR then
19 Update the position of the current thrombocyte: Equation (4.10)
20 end if
21 end if
22 end for
23 Check if any thrombocyte violates the boundary and adjust it
24 Evaluate the fitness of each thrombocyte
25 Update x∗ if better solution is found
26 Update iteration counter t ← t + 1
27 end while
28 return x∗ ; // the best thrombocyte position (solution)

4.3 Optimization Testbed and Experimental Platform

4.3.1 Benchmark Set

To assess the effectiveness and adaptability of the proposed BCA optimizer, we evaluate
its performance on a selection of mathematical functions with known global optima. To
achieve this, we utilize a collection of widely studied benchmark functions from existing
literature as our optimization test bed. This comprehensive set of benchmark functions
comprises two main types:

47

4. Blood Coagulation Algorithm: A Global Optimizer

1. Unimodal benchmark functions: Unimodal functions possess a singular global opti-
mum. Due to their lack of local optima, they primarily demonstrate intensification
(exploitation). These functions are particularly useful for examining the convergence
characteristics and the intensity of exploitation exhibited by the proposed algorithm.
The unimodal functions (f1 to f7) investigated in this study are enumerated in Table
4.3, along with their mathematical formulations.

2. Multimodal benchmark functions: Multimodal functions often contain numerous local
optima. Consequently, an optimizer must possess the capacity to navigate away from
local optima to reach the global optimum. Thus, these functions serve to reveal the
diversification (or exploratory) capabilities of BCA and its ability for escaping local
optima. The multimodal functions (f8 to f13), along with their specifications, are
outlined in Table 4.3. Additionally, it is noteworthy that fixed-dimension multimodal
functions (f14 to f23) are also included in this investigation.

The search landscapes of the objective functions, including unimodal (f1 to f7), multi-
modal (f8 to f13), and fixed-dimension multimodal (f14 to f23) functions, are depicted in
Figure 4.3, Figure 4.4, and Figure 4.5, respectively.

(a) f1 (b) f2 (c) f3 (d) f4

(e) f5 (f) f6 (g) f7

Figure 4.3: Search space of unimodal functions (2-D view). (License: CC BY 4.0)

4.3.2 Experimental Setup
The proposed algorithm is implemented using the MATLAB® (R2020b) programming
platform. Our experiments are conducted on a system equipped with an Apple M1 chip
and 16 GB of RAM, running macOS Big Sur. In each experiment, we use a termination
criterion for BCA based on the maximum number of iterations (Max_iter), set to 1000.
Additionally, a population size of 30 is selected. The activation rate is set to 0.1, and the
threshold is set to 0.5. To ensure meaningful statistical analysis and minimize statistical
errors, we conduct 30 independent runs for each function. Furthermore, we record both

48

https://creativecommons.org/licenses/by/4.0/

4.3. Optimization Testbed and Experimental Platform

Table 4.3: List of Benchmark functions.

Mathematical description D Range fmin

U
ni

-m
od

al

f1(x) =
)n

i=1 x2
1 30 [-100, 100] 0

f2(x) =
)n

i=1 |xi| +
!n

i=1 |xi| 30 [-10, 10] 0
f3(x) =

)n

i=1(
)i

j=1 xj)2 30 [-100, 100] 0
f4(x) = maxi {|xi|, 1 ≤ i ≤ n} 30 [-100, 100] 0
f5(x) =

)n

i=1[100(xi+1 − x2
i)2 + (xi − 1)2] 30 [-30, 30] 0

f6(x) =
)n

i=1[xi + 0.5])2 30 [-100, 100] 0
f7(x) =

)n

i=1 ix4
i + random[0, 1) 30 [-1.28, 1.28] 0

M
ul

ti-
m

od
al

f8(x) =
)n

i=1 −xi sin(
#

|xi|) 30 [500, 500] −418.982×n

f9(x) =
)n

i=1[x2
i − 10 cos(2πxi) + 10] 30 [-5.12, 5.12] 0

f10(x) = −20 exp (−0.2
#

1
n

)n

i=1 x2
i) −

exp (1
n

)n

i=1 cos 2πxi) + 20 + e
30 [-32, 32] 0

f11(x) = 1
4000

)n

i=1 x2
i − !n

i=1 cos
�

x1√
i

�
+ 1 30 [-600, 600] 0

f12(x) = π
n

{10 sin(πy1) +
)n

i=1(yi − 1)2[1 +
10 sin2(πyi+1)] + (yn − 1)2} +

)n

i=1 u(xi, 10, 100, 4)
where yi = 1 + xi+1

4

u(xi, a, k, m) =

k(xi − a)m, xi > a

0, −a < xi < a

k(−xi − a)m, xi < −a

30 [-50, 50] 0

f13(x) = 0.1{sin2(3πx1) +
)n

i=1(xi − 1)2[1 + sin2(3πxi + 1)] +
(xn − 1)2[1 + sin2(2πxn)]} +

)n

i=1 u(xi, 5, 100, 4)
30 [-50, 50] 0

Fi
xe

d-
di

m
en

sio
n

M
ul

tim
od

al

f14(x) =
�

1
500 +

)25
j=1

1
j+

)2
i=1

(xi−aij)6

�−1

2 [-65, 65] 1

f15(x) =
)11

i=1

�
ai − x1(b2

i +bix2)
b2

i
+bix3+x4

�2 4 [-5, 5] 0.00030

f16(x) = 4x2
1 − 2.1x4

1 + 1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [-5, 5] -1.0316

f17(x) =
�

x2 − 5.1
4π2 x2

1 + 5
π

x1 − 6
�2

+ 10
�

1 − 1
8π

�
cos x1 + 10 2 [-5, 5] 0.398

f18(x) = [1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2
1 − 14x2 + 6x1x2 +

3x2
2)][30+(2x1−3x2)2(18−32x1+12x2

1+48x2−36x1x2+27x2
2)]

2 [-2, 2] 3

f19(x) = −)4
i=1 ci exp

)3
j=1[aij(xj − pij)2] 3 [1, 3] -3.86

f20(x) = −)4
i=1 ci exp

)6
j=1[aij(xj − pij)2] 6 [0, 1] -3.32

f21(x) = −)5
i=1[(X − ai)(X − ai)T + ci]−1 4 [0, 10] -10.1532

f22(x) = −)7
i=1[(X − ai)(X − ai)T + ci]−1 4 [0, 10] -10.4028

f23(x) = −)10
i=1[(X − ai)(X − ai)T + ci]−1 4 [0, 10] -10.5363

D = the dimensionality of the search space (i.e., number of variables);
Range = the boundary of the search space [Lower Bound, Upper Bound]; fmin = global optimum
License: CC BY 4.0

49

https://creativecommons.org/licenses/by/4.0/

4. Blood Coagulation Algorithm: A Global Optimizer

(a) f8 (b) f9 (c) f10

(d) f11 (e) f12 (f) f13

Figure 4.4: Search space of multimodal functions (2-D view). (License: CC BY 4.0)

(a) f14 (b) f15 (c) f16 (d) f17

(e) f18 (f) f19 (g) f20 (h) f21

(i) f22 (j) f23

Figure 4.5: Search space of the fixed-dimension multimodal benchmark functions (2-D
view). (License: CC BY 4.0)

50

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

4.4. Experimental Results and Discussion

the mean (average fitness value) and the standard deviation (SD) of BCA for each
benchmark function.

To demonstrate the effectiveness of the proposed BCA on the benchmark test functions,
we conduct a comparative analysis with other established nature-inspired meta-heuristic
algorithms. To accomplish this, we assemble a suite comprising 12 state-of-the-art
optimizers, as outlined in Table 4.4. The parameter settings for these optimizers are
also detailed in Table 4.4. To achieve optimal performance, we configure the parameters
according to the values reported in the literature. We assume that the parameters selected
for the other methods (as listed in Table 4.4) represent the most suitable choices for
the optimization task. To ensure a fair comparison, we set the population size and the
maximum number of iterations for each optimizer to 30 and 1000, respectively.

Moreover, to identify significant differences in the results yielded by different optimizers,
we additionally conduct the non-parametric Wilcoxon statistical test [DGMH11] with a
significance level of 5%. This test complements our experimental simulations and basic
statistical analysis.

4.4 Experimental Results and Discussion
For every benchmark function, we conducted 30 simulations for each algorithm, encom-
passing both BCA and the other algorithms enumerated in Table 4.4, using randomly
generated populations. The statistical4 results, including the mean and standard devia-
tion, are presented in Table 4.5 and Table 4.6.

4.4.1 Intensification and Diversification Capabilities of BCA
The assessment of BCA’s intensification (exploitation) capability is conducted using the
unimodal benchmark functions (f1 to f7). Furthermore, to gauge BCA’s effectiveness
in exploring diverse regions of the search space (diversification), we employ multimodal
benchmark functions (f8 to f23), which exhibit numerous local optima. The statistical
findings, as indicated by the evaluation metrics (mean and SD) presented in Tables 4.5
and 4.6, underscore BCA’s competitiveness against other meta-heuristic algorithms. It is
noteworthy that BCA outperforms many algorithms across most functions, highlighting
its superior performance.

The findings presented in Tables 4.5 and 4.6 demonstrate that the proposed BCA
consistently outperforms its competitors across f1 to f5 (unimodal test functions) and
f8 to f13 (multimodal test functions). Notably, BCA exhibits significantly superior
results compared to its counterparts in handling 84.6% of the functions f1 to f13 over
30 dimensions. This underscores the superior performance of BCA relative to other
algorithms. Moreover, for the fixed-dimensional multimodal benchmark function f14, the
results obtained with BCA are superior and competitive. BCA delivers superior results for

4Throughout this chapter, numbers in the form n1E±n2 represent n1 × 10±n2 .

51

4. Blood Coagulation Algorithm: A Global Optimizer

Table 4.4: Parameter settings of various algorithms.

Algorithm Parameter Value

(All algorithms) Population size 30
Maximum number of iterations 1000

DE [SP97] Scaling factor 0.5
Crossover probability 0.5

PSO [KE95]

Topology fully connected
Inertia factor Linear reduction from 0.9 to

0.1
c1 2
c2 2
Velocity limit 10% of dimension range

GA [BDT99]

Type Real coded
Selection Roulette wheel (Proportion-

ate)
Crossover Probability 0.8
Mutation Gaussian (Probability 0.05)

CS [GYA13] Discovery rate of alien solutions
(pa)

0.25

GWO [MML14] Convergence parameter (a) Linear reduction from 2 to 0

MFO [Mir15] Convergence constant (a) [-2 -1]
Spiral factor (b) 1

FPA [YKH14] Probability switch (p) 0.8

FA [GYA11]
α 0.5
β 0.2
γ 1

BAT [YHG12]

Qmin (Minimum frequency) 0
Qmax (Maximum frequency) 2
A (Loudness) 0.5
r (Pulse rate) 0.5

GSA [RNPS09] Gravitational constant 100
Alpha coefficient 20

AOA [ADM+21] α 5
µ 0.5

BBO [Sim08]

Habitat modification probability 1
Immigration probability limits [0, 1]
Step size 1
Max immigration (I) and Max em-
igration (E)

1

Mutation probability 0.005
License: CC BY 4.0

f15, as evident from Tables 4.5 and 4.6. The competitiveness of the results for functions
f16 to f19 is notable, with most approaches yielding favorable results. Consequently,
based on the results presented in Tables 4.5 and 4.6, the proposed BCA consistently
attains the highest quality solutions for f14 to f23 (fixed-dimension multimodal) test

52

https://creativecommons.org/licenses/by/4.0/

4.4. Experimental Results and Discussion

Table 4.5: Comparison of the results obtained by BCA with other state-of-the-art
meta-heuristic algorithms. The best results are kept in bold.

F Metric BCA DE PSO GA CS GWO MFO

f1
Mean 9.80E-28 1.33E-03 1.83E+04 1.03E+03 9.06E-04 1.18E-27 1.01E+03
SD 1.70E-22 5.92E-04 3.01E+03 5.79E+02 4.55E-04 1.47E-27 3.05E+03

f2
Mean 8.91E-17 6.83E-03 3.58E+02 2.47E+01 1.49E-01 9.71E-17 3.19E+01
SD 1.36E-11 2.06E-03 1.35E+03 5.68E+00 2.79E-02 5.60E-17 2.06E+01

f3
Mean 7.63E-16 3.97E+04 4.05E+04 2.65E+04 2.10E-01 5.12E-05 2.43E+04
SD 2.46E-15 5.37E+03 8.21E+03 3.44E+03 5.69E-02 2.03E-04 1.41E+04

f4
Mean 7.01E-10 1.15E+01 4.39E+01 5.17E+01 9.65E-02 1.24E-06 7.00E+01
SD 1.77E-09 2.37E+00 3.64E+00 1.05E+01 1.94E-02 1.94E-06 7.06E+00

f5
Mean 3.72E+00 1.06E+02 1.96E+07 1.95E+04 2.76E+01 2.70E+01 7.35E+03
SD 8.72E+00 1.01E+02 6.25E+06 1.31E+04 4.51E-01 7.78E-01 2.26E+04

f6
Mean 1.36E-02 1.44E-03 1.87E+04 9.01E+02 3.13E-03 8.44E-01 2.68E+03
SD 9.83E-03 5.38E-04 2.92E+03 2.84E+02 1.30E-03 3.18E-01 5.84E+031

f7
Mean 3.95E-04 5.24E-02 1.07E+01 1.91E-01 7.29E-02 1.70E-03 4.50E+00
SD 4.78E-04 1.37E-02 3.05E+00 1.50E-01 2.21E-02 1.06E-03 9.21E+00

f8
Mean -1.25E+04 -6.82E+03 -3.86E+03 -1.26E+04 -5.19E+19 -5.97E+03 -8.48E+03
SD 4.30E+01 3.94E+02 2.49E+02 4.51E+00 1.76E+20 7.10E+02 7.98E+02

f9
Mean 1.70E-14 1.58E+02 2.87E+02 9.04E+00 1.51E+01 2.19E+00 1.59E+02
SD 3.04E-14 1.17E+01 1.95E+01 4.58E+00 1.25E+00 3.69E+00 3.21E+01

f10
Mean 8.88E-16 1.21E-02 1.75E+01 1.36E+01 3.29E-02 1.03E-13 1.74E+01
SD 2.89E-11 3.30E-03 3.67E-01 1.51E+00 7.93E-03 1.70E-14 4.95E+00

f11
Mean 3.49E-15 3.52E-02 1.70E+02 1.01E+01 4.29E-05 4.76E-03 3.10E+01
SD 1.86E-14 7.20E-02 3.17E+01 2.43E+00 2.00E-05 8.57E-03 5.94E+01

f12
Mean 4.19E-06 2.25E-03 1.51E+07 4.77E+00 5.57E-05 4.83E-02 2.46E+02
SD 5.43E-04 1.70E-03 9.88E+06 1.56E+00 4.96E-05 2.12E-02 1.21E+03

f13
Mean 1.99E-03 9.12E-03 5.73E+07 1.52E+01 8.19E-03 5.96E-01 2.73E+07
SD 5.37E-03 1.16E-02 2.68E+07 4.52E+00 6.74E-03 2.23E-01 1.04E+08

f14
Mean 9.98E-01 1.23E+00 1.39E+00 9.98E-01 1.27E+01 4.17E+00 2.74E+00
SD 3.02E-10 9.23E-01 4.60E-01 4.52E-16 1.81E-15 3.61E+00 1.82E+00

f15
Mean 3.07E-04 5.63E-04 1.61E-03 3.33E-02 3.13E-04 6.24E-03 2.35E-03
SD 4.59E-04 2.81E-04 4.60E-04 2.70E-02 2.99E-05 1.25E-02 4.92E-03

f16
Mean -1.03E+00 -1.03E+00 -1.03E+00 -3.78E-01 -1.03E+00 -1.03E+00 -1.03E+00
SD 6.32E-06 6.78E-16 2.95E-03 3.42E-01 6.78E-16 6.78E-16 6.78E-16

f17
Mean 3.98E-01 3.98E-01 4.00E-01 5.24E-01 3.98E-01 3.98E-01 3.98E-01
SD 9.31E-05 1.69E-16 1.39E-03 6.06E-02 1.69E-16 1.69E-16 1.69E-16

f18
Mean 3.00E+00 3.00E+00 3.10E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00
SD 1.28E-04 0.00E+00 7.60E-02 0.00E+00 0.00E+00 4.07E-05 0.00E+00

f19
Mean -3.86E+00 -3.86E+00 -3.86E+00 -3.42E+00 -3.86E+00 -3.86E+00 -3.86E+00
SD 3.69E-03 3.16E-15 1.24E-03 3.03E-01 3.16E-15 3.14E-03 1.44E-03

f20
Mean -3.32E+00 -3.27E+00 -3.11E+00 -1.61E+00 -3.32E+00 -3.25E+00 -3.23E+00
SD 3.33E-01 5.89E-02 2.91E-02 4.60E-01 1.77E-15 6.43E-02 6.42E-02

f21
Mean -1.01E+00 -9.64E+00 -4.14E+00 -6.66E+00 -5.05E+00 -8.64E+00 -6.88E+00
SD 2.00E+00 1.51E+00 9.19E-01 3.73E+00 1.77E-15 2.56E+00 3.18E+00

f22
Mean -1.04E+00 -9.74E+00 -6.01E+00 -5.58E+00 -5.08E+00 -1.04E+00 -8.26E+00
SD 2.51E-04 1.98E+00 1.96E+00 2.60E+00 8.88E-16 6.78E-04 3.07E+00

f23
Mean -1.05E+01 -1.05E+01 -4.72E+00 -4.69E+00 -5.12E+00 -1.08E+01 -7.65E+00
SD 2.93E-07 8.88E-15 1.74E+00 3.25E+00 1.77E-15 1.72E+00 3.57E+00

License: CC BY 4.0

functions compared to alternative algorithms.

To gain deeper insights into the intensification and diversification capabilities of BCA,
we track the search history of thrombocytes. Figure 4.6 showcases the search history of
thrombocytes across some benchmark functions. Notably, we visualize the 2D versions
of these functions to illustrate the positions of thrombocytes over successive iterations.

53

https://creativecommons.org/licenses/by/4.0/

4. Blood Coagulation Algorithm: A Global Optimizer

Table 4.6: Results obtained with other state-of-the-art meta-heuristic algorithms. The
best results are kept in bold. (Additional results of Table 4.5)

F Metric FPA FA BAT GSA AOA BBO

f1
Mean 2.01E+03 7.11E-03 6.59E+04 6.08E+02 6.67E-07 7.59E+01
SD 5.60E+02 3.21E-03 7.51E+03 4.64E+02 7.45E-07 2.75E+01

f2
Mean 3.22E+01 4.34E-01 2.71E+08 2.27E+01 0.00E-00 1.36E-03
SD 5.55E+00 1.84E-01 1.30E+09 3.36E+00 0.00E-00 7.45E-03

f3
Mean 1.41E+03 1.66E+03 1.38E+05 1.35E+05 6.87E-06 1.21E+04
SD 5.59E+02 6.72E+02 4.72E+04 4.86E+04 6.87E-06 2.69E+03

f4
Mean 2.38E+01 1.11E-01 8.51E+01 7.87E+01 1.40E-03 3.02E+01
SD 2.77E+00 4.75E-02 2.95E+00 2.81E+00 1.90E-03 4.39E+00

f5
Mean 3.17E+05 7.97E+01 2.10E+08 7.41E+02 2.49E+01 1.82E+03
SD 1.75E+05 7.39E+01 4.17E+07 7.81E+02 3.64E-01 9.40E+02

f6
Mean 1.70E+03 6.94E-03 6.69E+04 3.08E+03 3.47E-04 6.71E+01
SD 3.13E+02 3.61E-03 5.87E+03 8.98E+02 3.47E-04 2.20E+01

f7
Mean 3.41E-01 6.62E-02 4.57E+01 1.12E-01 3.92E-06 2.91E-03
SD 1.10E-01 4.23E-02 7.82E+00 3.76E-02 3.92E-06 1.83E-03

f8
Mean -6.45E+03 -5.85E+03 -2.33E+03 -2.35E+03 -1.22E+04 -1.24E+04
SD 3.03E+02 1.16E+03 2.96E+02 3.82E+02 1.22E+03 3.50E+01

f9
Mean 1.82E+02 3.82E+01 1.92E+02 3.10E+01 3.42E-07 0.01E+00
SD 1.24E+01 1.12E+01 3.56E+01 1.36E+01 3.42E-07 0.00E+00

f10
Mean 7.14E+00 4.58E-02 1.92E+01 3.74E+00 8.88E-16 2.13E+00
SD 1.08E+00 1.20E-02 2.43E-01 1.71E-01 8.88E-16 3.53E-01

f11
Mean 1.73E+01 4.23E-03 6.01E+02 4.86E-01 1.00E-06 1.46E+00
SD 3.63E+00 1.29E-03 5.50E+01 4.97E-02 1.21E+06 1.69E-01

f12
Mean 3.05E+02 3.13E-04 4.71E+08 4.63E-01 4.28E-06 6.68E-01
SD 1.04E+03 1.76E-04 1.54E+08 1.37E-01 4.28E-06 2.62E-01

f13
Mean 9.59E+04 2.08E-03 9.40E+08 7.61E+00 3.10E-01 1.82E+00
SD 1.46E+05 9.62E-04 1.67E+08 1.22E+00 3.10E-01 3.41E-01

f14
Mean 9.98E-01 3.51E+00 1.27E+01 9.98E-01 9.98E-01 9.98E-01
SD 2.00E-04 2.16E+00 6.96E+00 4.52E-16 5.54E-01 4.52E-16

f15
Mean 6.88E-04 1.01E-03 3.00E-02 1.03E-03 3.12E-04 1.66E-02
SD 1.55E-04 4.01E-04 3.33E-02 3.66E-03 2.64E-04 8.60E-03

f16
Mean -1.03E+00 -1.03E+00 -6.87E-01 -1.03E+00 -1.03E+00 -8.30E-01
SD 6.78E-16 6.78E-16 8.18E-01 6.78E-16 5.48E-05 3.16E-01

f17
Mean 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 5.49E-01
SD 1.69E-16 1.69E-16 1.58E-03 1.69E-16 2.54E-06 6.05E-02

f18
Mean 3.00E+00 3.00E+00 1.47E+01 3.00E+00 3.00E+00 3.00E+00
SD 0.00E+00 0.00E+00 2.21E+01 0.00E+00 1.00E-02 0.00E+00

f19
Mean -3.86E+00 -3.86E+00 -3.84E+00 -3.86E+00 -3.86E+00 -3.78E+00
SD 3.16E-15 3.16E-15 1.41E-01 3.16E-15 4.29E-04 1.26E-01

f20
Mean -3.29E+00 -3.28E+00 -3.25E+00 -3.24E+00 -3.32E+00 -2.70E+00
SD 1.95E-02 6.36E-02 5.89E-02 1.51E-01 1.25E+01 3.57E-01

f21
Mean -5.21E+00 -7.67E+00 -4.26E+00 -8.65E+00 -8.85E+00 -8.31E+00
SD 8.15E-02 3.50E+00 2.55E+00 1.77E+00 1.25E+00 2.88E+00

f22
Mean -5.34E+00 -9.63E+00 -5.60E+00 -1.02E+01 -1.04E+01 -9.38E+00
SD 5.36E-02 2.29E+00 3.02E+00 7.27E-03 2.21E+00 2.59E+00

f23
Mean -5.29E+00 -9.75E+00 -3.97E+00 -1.01E+01 -1.05E+01 -6.23E+00
SD 3.56E-01 2.34E+00 3.00E+00 1.70E+00 1.02E+00 3.78E+00

License: CC BY 4.0

54

https://creativecommons.org/licenses/by/4.0/

4.4. Experimental Results and Discussion

(a) f1 (b) f2 (c) f4 (d) f6

(e) f7 (f) f9 (g) f10 (h) f11

(i) f12 (j) f13

Figure 4.6: Illustration of the search history of thrombocytes. For visualization, we
consider 2D version of the benchmark functions.
License: CC BY 4.0

Analyzing Figure 4.6, we observe that the distribution of thrombocytes demonstrates
BCA’s capability in exploring diverse regions of the search space. Moreover, it effectively
exploits the vicinity of favorable areas to converge towards global optimal solutions.
The convergence of thrombocytes towards global optima underscores BCA’s ability to
escape local optima effectively. Additionally, we examine the trajectories of randomly
selected thrombocytes (2D visualization) to further elucidate BCA’s diversification
potential (Figure 4.7). Different colors denote distinct thrombocyte trajectories, revealing
their exploration across various regions of the search space. These zig-zag patterns in
trajectories signify the diverse searching behavior of thrombocytes. Furthermore, these
trajectories terminate in the vicinity of global optima, affirming BCA’s capability to
navigate away from local optima, particularly in the case of multimodal functions.

4.4.2 Convergence Analysis
To comprehend the convergence behavior and assess the efficacy of an optimization
algorithm, it is vital to achieve a balance between intensification and diversification,
mitigating the exploration/exploitation trade-off and avoiding premature convergence

55

https://creativecommons.org/licenses/by/4.0/

4. Blood Coagulation Algorithm: A Global Optimizer

(a) f1 (b) f2 (c) f4 (d) f6

(e) f7 (f) f9 (g) f10 (h) f11

(i) f12 (j) f13

Figure 4.7: Trajectories of some randomly chosen thrombocytes for some of the benchmark
functions (We consider 2D version of the benchmark functions).
License: CC BY 4.0

and entrapment in local optima. To evaluate this, we compare the convergence curves of
BCA with several other meta-heuristic approaches such as DE, BAT, MFO, and GWO, as
depicted in Figure 4.8. These curves illustrate the fitness value of the objective function
against the number of iterations. The convergence plots reveal BCA’s competitive
performance and its ability to demonstrate robust convergence behavior across various
benchmark functions when compared with other state-of-the-art optimizers.

In Figure 4.8, the convergence behavior of BCA across function optimization reveals three
distinct patterns. Firstly, there is an acceleration in convergence as iterations progress
for functions f1, f3, and f9. Secondly, for unimodal functions, rapid convergence is
apparent from early iterations, indicating BCA’s quick exploitation of favorable solution
spaces (mainly f1, f3, f5, f7). Another noteworthy observation is the quick avoidance of
local optima for multimodal functions f9, f11, and f13. Figure 4.8 also illustrates early
convergence to global optima for fixed-dimensional multimodal functions f15, f17, and f19,
showcasing BCA’s capability in extensive diversification within fewer iterations, coupled
with effective intensification in promising solution areas. This behavior is attributed to
diverse position-updating mechanisms and a gradual reduction in the propagation factor

56

https://creativecommons.org/licenses/by/4.0/

4.4. Experimental Results and Discussion

(a) f1 (b) f3 (c) f5

(d) f7 (e) f9 (f) f11

(g) f13 (h) f15 (i) f17

(j) f19 (k) f21 (l) f23

Figure 4.8: Comparison of convergence curves of BCA and few eminent algorithms for
some of the benchmark functions.
License: CC BY 4.0

57

https://creativecommons.org/licenses/by/4.0/

4. Blood Coagulation Algorithm: A Global Optimizer

(Pf) across iterations. The third observed behavior manifests as convergence towards
global optima primarily in later iterations, as evidenced by the curves of fixed-dimensional
multimodal test functions f21 and f23. This phenomenon likely arises from BCA’s initial
difficulty in finding optimal solutions, prompting continued exploration of the solution
space until convergence to the global optimum is achieved.

Verification of convergence at global optima can also be obtained from the thrombocytes’
search history (Figure 4.6) and their trajectories (Figure 4.7). In Figure 4.6, the dense
regions in the contour plots of benchmark functions signify convergence of thrombocytes
in those areas. Notably, BCA avoids premature convergence, as the optimal solution
resides within these dense regions. Additionally, thrombocyte trajectories (Figure 4.7)
terminate in regions housing global optima, further affirming convergence. These obser-
vations underscore BCA’s adept balance of intensification and diversification, facilitating
attainment of global optimal solutions. Overall, these analyses affirm BCA’s high efficacy
in addressing optimization challenges.

4.4.3 Statistical Significance Analysis
In our work, we employ the widely recognized Wilcoxon rank-sum test to statistically
assess the efficacy of BCA relative to other optimization algorithms, as outlined in the
literature [DGMH11]. Conducted at a significance level of 0.05, this test aims to identify
significant differences between the outcomes of BCA and alternative optimizers. The
resulting p-values, presented in Table 4.7, signify whether BCA exhibits superiority over
its counterparts. Observations of p-values below 0.05 indicate the robust performance of
BCA. Analysis of the p-values in Table 4.7 underscores BCA’s significant outperformance
compared to its competitors, with statistically meaningful differences observed across the
majority of the test functions.

4.4.4 Influence of High Dimensionality
To showcase the robustness of BCA across varying problem dimensions, we conduct a
scalability assessment. This analysis elucidates how the optimizer performs as problem
dimensions increase, shedding light on its efficacy for both low and high-dimensional
scenarios. Our evaluation encompasses both unimodal (f1 −f7) and multimodal (f8 −f13)
problems across dimensions ranging from 30 to 1000. By systematically exploring a wide
range of dimensions, we gain insights into BCA’s ability to maintain solution quality
across diverse problem complexities.

Figure 4.9 depicts the scalability outcomes of BCA across various test functions at different
dimensionalities (particularly, 30, 50, 80, 100, 500 and 1000). Analyzing the convergence
curves, it is evident that BCA maintains strong performance across high-dimensional
environments. Notably, BCA showcases an ability to converge to optimal solutions swiftly,
as evidenced by the early iterations where optimal solutions are often attained. The
curves also underscore BCA’s adeptness in balancing intensification and diversification
tendencies in multivariable optimization scenarios. Additionally, we compute the mean

58

4.4. Experimental Results and Discussion

Ta
bl

e
4.

7:
p
-v

al
ue

s
of

th
e

W
ilc

ox
on

ra
nk

-s
um

te
st

w
ith

5%
sig

ni
fic

an
ce

fo
r

BC
A

ve
rs

us
ot

he
r

al
go

rit
hm

s
fo

r
th

e
be

nc
hm

ar
k

fu
nc

tio
ns

w
ith

30
in

de
pe

nd
en

t
ru

ns
.(p

-v
al

ue
s

≥
0.

05
ar

e
in

di
ca

te
d

in
bo

ld
fa

ce
.

N
aN

in
di

ca
te

s
“N

ot
a

N
um

be
r”

re
po

rt
ed

by
th

e
te

st
.)

F
D

E
P

SO
G

A
C

S
G

W
O

M
FO

F
PA

FA
B

A
T

G
SA

A
O

A
B

B
O

f 1
3.

52
E-

11
2.

73
E-

11
3.

62
E-

11
3.

53
E-

11
3.

49
E-

11
3.

29
E-

11
2.

78
E-

11
3.

28
E-

11
2.

06
E-

11
3.

19
E-

11
3.

45
E-

11
2.

87
E-

11
f 2

2.
78

E-
11

2.
67

E-
11

4.
31

E-
11

2.
71

E-
11

2.
91

E-
11

2.
48

E-
11

3.
89

E-
11

2.
91

E-
11

2.
49

E-
11

2.
48

E-
11

2.
28

E-
11

4.
45

E-
11

f 3
4.

31
E-

11
2.

91
E-

11
3.

18
E-

11
4.

37
E-

11
4.

65
E-

11
4.

81
E-

11
2.

98
E-

11
3.

27
E-

11
3.

21
E-

11
3.

46
E-

11
4.

01
E-

11
2.

78
E-

11
f 4

2.
38

E-
11

2.
65

E-
11

1.
27

E-
11

2.
32

E-
11

2.
42

E-
11

2.
20

E-
11

1.
91

E-
11

1.
99

E-
11

1.
94

E-
11

2.
29

E-
11

2.
84

E-
11

2.
56

E-
11

f 5
2.

71
E-

11
2.

71
E-

11
2.

89
E-

11
2.

79
E-

11
2.

68
E-

11
2.

09
E-

11
3.

02
E-

11
3.

00
E-

11
2.

39
E-

11
2.

16
E-

11
2.

36
E-

11
2.

98
E-

11
f 6

4.
27

E-
11

2.
84

E-
11

2.
63

E-
11

4.
20

E-
11

4.
30

E-
11

4.
71

E-
11

2.
03

E-
11

3.
67

E-
11

3.
61

E-
11

3.
28

E-
11

4.
39

E-
11

5.
91

E-
11

f 7
2.

33
E-

11
2.

42
E-

11
2.

63
E-

11
2.

36
E-

11
2.

29
E-

11
2.

67
E-

11
1.

07
E-

11
3.

01
E-

11
5.

28
E-

11
2.

87
E-

11
2.

93
E-

11
2.

77
E-

11
f 8

2.
90

E-
10

2.
79

E-
11

2.
48

E-
10

2.
99

E-
10

2.
85

E-
10

2.
82

E-
10

2.
22

E-
10

2.
76

E-
10

2.
90

E-
10

2.
39

E-
10

2.
96

E-
10

2.
91

E-
10

f 9
3.

16
E-

12
2.

45
E-

11
1.

66
E-

12
3.

11
E-

12
3.

41
E-

12
3.

56
E-

12
3.

00
E-

12
3.

91
E-

12
2.

50
E-

12
3.

71
E-

12
3.

55
E-

12
3.

97
E-

12
f 1

0
2.

87
E-

12
1.

19
E-

12
1.

66
E-

12
2.

86
E-

12
2.

84
E-

12
2.

49
E-

12
2.

37
E-

12
2.

45
E-

12
1.

79
E-

12
2.

05
E-

12
2.

13
E-

12
4.

67
E-

12
f 1

1
3.

01
E-

11
1.

56
E-

13
1.

31
E-

12
3.

05
E-

11
3.

60
E-

11
3.

91
E-

11
3.

61
E-

11
3.

11
E-

11
2.

00
E-

11
2.

78
E-

11
3.

06
E-

11
2.

14
E-

11
f 1

2
2.

81
E-

11
1.

87
E-

11
2.

18
E-

11
2.

05
E-

11
2.

87
E-

11
2.

48
E-

11
1.

76
E-

11
2.

92
E-

11
1.

99
E-

11
2.

47
E-

11
3.

05
E-

11
2.

66
E-

11
f 1

3
2.

28
E-

11
2.

54
E-

11
2.

18
E-

11
2.

82
E-

11
2.

61
E-

11
2.

29
E-

11
1.

55
E-

11
1.

08
E-

11
3.

07
E-

11
2.

81
E-

11
2.

10
E-

11
2.

41
E-

11
f 1

4
2.

39
E-

09
5.

21
E-

08
6.

32
E

-0
2

6.
16

E-
14

7.
27

E-
08

3.
24

E-
08

1.
81

E
-0

1
1.

48
E-

09
1.

37
E-

12
9.

23
E-

05
1.

63
E-

06
3.

25
E-

06
f 1

5
1.

92
E-

11
7.

39
E-

11
9.

67
E-

11
3.

34
E-

11
8.

69
E-

11
5.

29
E-

11
2.

78
E-

11
3.

92
E-

10
2.

56
E-

11
1.

37
E-

11
1.

67
E-

08
2.

82
E-

09
f 1

6
N

aN
1.

93
E-

13
2.

35
E-

12
N

aN
N

aN
N

aN
N

aN
N

aN
4.

61
E-

10
N

aN
3.

92
E-

10
2.

66
E-

12
f 1

7
1.

27
E

-0
1

1.
84

E-
12

3.
28

E-
11

1.
27

E
-0

1
1.

27
E

-0
1

1.
27

E
-0

1
1.

27
E

-0
1

1.
27

E
-0

1
1.

27
E

-0
1

2.
71

E-
12

1.
39

E-
12

1.
55

E-
11

f 1
8

8.
29

E-
11

2.
59

E-
13

4.
36

E-
10

3.
28

E-
08

2.
16

E-
11

1.
99

E-
10

3.
29

E-
12

1.
09

E-
10

2.
27

E-
12

6.
82

E-
13

3.
05

E-
09

3.
84

E-
10

f 1
9

3.
05

E-
11

2.
48

E-
10

2.
39

E-
09

2.
29

E-
11

2.
76

E-
10

1.
66

E-
12

8.
69

E-
11

3.
01

E-
11

2.
48

E-
10

5.
48

E-
09

3.
64

E-
11

3.
52

E-
11

f 2
0

3.
42

E-
04

7.
21

E-
05

3.
93

E-
05

N
aN

4.
39

E-
05

2.
16

E-
04

1.
07

E-
05

8.
27

E-
04

2.
29

E-
05

1.
01

E-
04

2.
49

E-
05

3.
27

E-
04

f 2
1

1.
64

E-
07

8.
11

E-
06

3.
46

E-
11

7.
37

E-
10

1.
07

E-
08

1.
44

E-
05

5.
28

E-
10

1.
05

E-
12

2.
45

E-
08

2.
91

E-
08

1.
38

E-
08

2.
16

E-
09

f 2
2

1.
34

E-
11

6.
47

E-
11

1.
98

E-
11

5.
71

E-
11

5.
37

E-
11

3.
59

E-
11

2.
46

E-
11

2.
04

E-
10

2.
38

E-
11

4.
28

E-
12

1.
09

E-
08

1.
89

E-
09

f 2
3

N
aN

1.
28

E-
12

2.
05

E-
10

2.
51

E-
11

1.
94

E-
08

4.
85

E-
09

8.
37

E-
08

1.
39

E-
09

4.
37

E-
12

3.
61

E-
08

2.
57

E-
10

3.
08

E-
08

Li
ce

ns
e:

C
C

B
Y

4.
0

59

https://creativecommons.org/licenses/by/4.0/

4. Blood Coagulation Algorithm: A Global Optimizer

and standard deviation (SD) of results over 1000 iterations and 30 runs for dimensions of
30, 100, and 1000. These results, presented in Table 4.8, demonstrate BCA’s consistent
performance across various dimensions for most test functions (f1 − f13). Overall, these
experimental findings underscore the scalability and efficiency of BCA, particularly in
handling high-dimensional tasks.

Table 4.8: Influence of high dimensionality on the performance of BCA: Results of
benchmark functions (f1 − f13) with different dimensions.

Dimensions = 30 Dimensions = 100 Dimensions = 1000
Mean SD Mean SD Mean SD

f1 9.80E-28 1.70E-22 5.06E-15 1.95E-14 1.24E-13 3.93E-13
f2 8.91E-17 1.36E-11 9.80E-08 5.24E-07 2.60E-07 8.97E-07
f3 7.63E-16 2.46E-15 2.40E-11 9.48E-11 1.35E-08 5.71E-08
f4 7.01E-10 1.77E-09 1.95E-08 8.32E-08 5.08E-08 1.52E-07
f5 3.72E+00 8.72E+00 3.34E+01 3.69E+01 5.41E+01 3.85E+01
f6 1.36E-02 9.83E-03 3.25E-01 2.59E-01 7.73E+01 4.58E+01
f7 3.95E-04 4.78E-04 5.25E-04 4.79E-04 6.34E-04 7.71E-04
f8 -1.25E+04 4.30E+01 -4.18E+04 2.01E+02 -4.18E+05 4.36E+03
f9 1.70E-14 3.04E-14 4.92E-14 1.06E-13 1.81E-12 2.70E-12
f10 8.88E-16 2.89E-11 7.27E-10 2.34E-09 9.14E-09 2.78E-08
f11 3.49E-15 1.86E-14 2.16E-15 7.31E-15 5.55E-15 2.60E-14
f12 4.19E-06 5.43E-04 2.31E-03 1.28E-03 2.74E-03 1.64E-03
f13 1.99E-03 5.37E-03 7.14E-02 5.95E-02 1.01E+00 7.95E-01
License: CC BY 4.0

4.5 BCA for Standard Engineering Problems
Next, we illustrate the effectiveness and versatility of the proposed algorithm (BCA)
in tackling real-world engineering optimization challenges, both constrained and un-
constrained. To assess its performance, we apply BCA to six standard benchmark
engineering design problems: the welded beam design problem, pressure vessel design
problem, tension/compression spring design problem, three-bar truss design problem,
speed reducer design problem, and gear train design problem.

The engineering design optimization tasks undertaken and the variables involved are
summarized in Table 4.9. In addressing these problems, BCA is employed across 30
independent runs, each comprising a population size (NP op) of 30 and 1000 iterations.
To handle the various constraints inherent in engineering design problems, a constraint
handling method is necessary. For simplicity, we adopt the death penalty approach (also
known as scalar penalty function), where solutions violating constraints are penalized
with a significant fitness value [Coe02]. This method ensures that solutions adhering to

60

https://creativecommons.org/licenses/by/4.0/

4.5. BCA for Standard Engineering Problems

(a) f1 (b) f2 (c) f3

(d) f4 (e) f5 (f) f6

(g) f7 (h) f8 (i) f9

(j) f10 (k) f11 (l) f12

(m) f13

Figure 4.9: Scalability analysis of the proposed BCA for different dimensions of the
benchmark functions (f1 − f13).
License: CC BY 4.0

61

https://creativecommons.org/licenses/by/4.0/

4. Blood Coagulation Algorithm: A Global Optimizer

constraints are favored during optimization. Also, we compare the results of BCA with
other meta-heuristic approaches in the literature.

Table 4.9: Brief description of the tackled engineering design optimization problems.
Problem D, C Objective Description of variables
Welded beam design 4, 7 Minimize cost thickness of weld (h), length of the clamped bar

(l), height of the bar (t), thickness of the bar (b)
Pressure vessel design 4, 4 Minimize cost the thickness of the shell (Ts), the thickness of

the head (Th), the inner radius (R), the length
of the cylindrical section without considering the
head (L)

Tension-compression
spring design

3, 4 Minimize weight wire diameter (d), mean coil diameter (D), num-
ber of active coils (N)

Three-bar truss design 2, 3 Minimize weight area of bars 1 and 3 (A1), area of bar 2 (A2)
Speed reducer design 7, 11 Minimize weight Face width (x1), Teeth module (x2), Number of

teeth (x3), First shaft length (x4), Second shaft
length (x5), First shaft diameter (x6), Second
shaft diameter (x7)

Gear train design 4, 0 Minimize gear ratio Gear teeth: Ta, Tb, Td, Tf

Note: D = number of variables, C= total number of constraints
License: CC BY 4.0

Welded beam design problem. The welded beam design problem stands as a classic
benchmark, aiming to minimize the fabrication expenses related to the welded beam. It
involves constraints on shear stress (τ), bending stress (σ), buckling load (Pc), and end
deflection (δ) of the beam, with design variables outlined in Table 4.9. Mathematically,
the optimization objective can be expressed as follows:

Consider x = [x1 x2 x3 x4] = [h l t b]
Minimize f(x) = 1.10471x2

1x2 + 0.04811x3x4(14.0 + x2)
Subject to g1(x) = τ(x) − τmax ≤ 0
g2(x) = σ(x) − σmax ≤ 0,
g3(x) = δ(x) − δmax ≤ 0,
g4(x) = x1 − x4 ≤ 0,
g5(x) = P − Pc(x) ≤ 0,
g6(x) = 0.125 − x1 ≤ 0,
g7(x) = 1.10471x2

1 + 0.04811x3x4(14.0 + x2) − 5.0 ≤ 0,
Variable range 0.1 ≤ x1 ≤ 2,
0.1 ≤ x2 ≤ 10,
0.1 ≤ x3 ≤ 10,
0.1 ≤ x4 ≤ 2
where τ(x) =

"
(τ ′)2 + 2τ ′τ ′′ x2

2R + (τ ′′)2,

τ ′ = P√
2x1x2

, τ ′′ = MR
J , M = P

L + x2

2

�
, R =

$
x2

2
4 +

x1+x3

2

�2
, J = 2

�√
2x1x2

�
x2

2
4 +

x1+x3
2

�2�

,

62

https://creativecommons.org/licenses/by/4.0/

4.5. BCA for Standard Engineering Problems

σ(x) = 6P L
x4x2

3
, δ(x) = 6P L3

Ex4x2
3
, Pc(x) = 4.013E

"
x2

3x6
4

36
L2

�
1 − x3

2L

"
E
4G

�
,

P = 6000 lb, L = 14 in., δmax = 0.25 in., E = 30 × 106 psi, G = 12 × 106 psi,
τmax = 13600 psi, σmax = 30000 psi

Many researchers have tackled this engineering design optimization problem using various
algorithms. Table 4.10 presents a comparison of the best solution attained by BCA
and other algorithms. The results clearly demonstrate that BCA achieves an optimal
design with minimized cost, surpassing all other algorithms. Additionally, statistical
metrics derived from 30 independent runs of BCA, including the best, worst, mean, and
standard deviation (SD) values, are compared with existing algorithms in the literature,
as shown in Table 4.11. The statistical analysis for the welded beam design problem
presented in Table 4.11 underscores BCA’s ability to produce superior results, reaffirming
its effectiveness in tackling this optimization challenge.

Pressure vessel design problem. Another renowned structural design benchmark
problem is the pressure vessel design, which aims to minimize the overall fabrication
cost (including material, forming, and welding) of a cylindrical pressure vessel with
hemispherical heads at both ends. The design variables are outlined in Table 4.9. The
optimization model for this problem can be expressed mathematically as follows:

Consider x = [x1 x2 x3 x4] = [Ts Th R L]
Minimize f(x) = 0.6224x1x3x4 + 1.7781x2x2

3 + 3.1661x2
1x4 + 19.84x2

1x3
Subject to g1(x) = −x1 + 0.0193x3 ≤ 0,
g2(x) = −x2 + 0.00954x3 ≤ 0,
g3(x) = −πx2

3x4 − 4
3πx3

3 + 1296000 ≤ 0,
g4(x) = x4 − 240 ≤ 0,
Variable range 0 ≤ x1 ≤ 99,
0 ≤ x2 ≤ 99,
10 ≤ x3 ≤ 200,
10 ≤ x4 ≤ 200

Numerous researchers have tackled this design problem using various algorithms, encom-
passing both meta-heuristic approaches and mathematical techniques. Table 4.12 offers
a comparison of the optimal solutions obtained by BCA and other prominent algorithms
documented in the literature. Upon reviewing the results in Table 4.12, it is apparent that
BCA yields results comparable to PO and even surpasses other optimizers. Thus, we can
assert that BCA is proficient in discovering feasible optimal designs for pressure vessels
at minimized costs (specifically, 5885.3991). Furthermore, Table 4.13 presents statistical
insights (including best, worst, mean, and standard deviation values) of BCA and other
optimizers concerning the pressure vessel design problem. These results highlight the
superior performance of BCA compared to its counterparts. Notably, BCA exhibits a
considerably lower standard deviation of 8.4237, signifying its reliability and efficiency in
solving this optimization problem.

Tension/compression spring design problem. The aim of the tension/compression

63

4. Blood Coagulation Algorithm: A Global Optimizer

Table 4.10: Comparison of the best solution obtained by BCA with other algorithms in
the literature for the welded beam design problem.

Algorithm Optimal values of design variables Optimal cost
h l t b

BCA 0.205729 3.470471 9.036622 0.205729 1.72484
HHO [HMF+19] 0.204039 3.531061 9.027463 0.206147 1.73199057
RANDOM [RP76] 0.4575 4.7313 5.0853 0.66 4.1185
DAVID [RP76] 0.2434 6.2552 8.2915 0.2444 2.3841
SIMPLEX [RP76] 0.2792 5.6256 7.7512 0.2796 2.5307
APPROX [RP76] 0.2444 6.2189 8.2915 0.2444 2.3815
GA [Deb91] 0.248900 6.173000 8.178900 0.253300 2.433116
GA [Coe00] 0.208800 3.420500 8.997500 0.210000 1.748310
HS [LG04] 0.2442 6.2231 8.2915 0.2443 2.3807
ESs [MMC05] 0.199742 3.61206 9.0375 0.206082 1.7373
CDE [HWH07] 0.203137 3.542998 9.033498 0.206179 1.733462
MFO [Mir15] 0.203567 3.443025 9.230278 0.212359 1.732541
MVO [MMH16] 0.205611 3.472103 9.040931 0.205709 1.725472
SCA [Mir16b] 0.204695 3.536291 9.004290 0.210025 1.759173
GA [BDT99] 0.164171 4.032541 10.00000 0.223647 1.873971
ES [MMC08] 0.199742 3.612060 9.037500 0.20682 1.73730
SA [HF06] 0.20564426 3.472578742 9.03662391 0.2057296 1.7250022
Co-evolutionary PSO [HW07a] 0.20573 3.47049 9.03662 0.20573 1.72485084
GSA [RNPS09] 0.18219 3.856979 10.0000 0.202376 1.879952
Improved PSO [CEC08] 0.205729 3.470488 9.036624 0.205729 1.724852
DE [MMCCVRMD07] 0.20573 3.470489 9.0336624 0.205730 1.724852
CS [GYA13] 0.2015 3.562 9.0414 0.2057 1.73121
ABC [KB08] 0.205730 3.470489 9.036624 0.205730 1.724852
ACO [KT10a] 0.205700 3.471131 9.036683 0.205731 1.724918
PO [AYS20] 0.205730 3.470472 9.036624 0.205730 1.724851
CAEP [CCB04] 0.205700 3.470500 9.036600 0.205700 1.724852
HGA [YQ10] 0.205700 3.470500 9.036600 0.205700 1.7249
WCA [ESBH12] 0.205728 3.470522 9.036620 0.205729 1.724856
CGWO [KA18] 0.343891 1.883570 9.031330 0.212121 1.725450
GWO [MML14] 0.205676 3.478377 9.036810 0.205778 1.726240
CPSO [KdSC06] 0.202369 3.544214 9.048210 0.205723 1.728024
GA [CM02] 0.205986 3.471328 9.020224 0.206480 1.728226
WOA [ML16] 0.205396 3.484293 9.037426 0.206276 1.730499
CS [YD09] 0.182200 3.795100 9.998100 0.211100 1.946000
BA [Yan10] 0.154300 5.736100 8.862700 0.229700 2.084000
CapSA [BSAH21] 0.205723 3.470789 9.036622 0.205737 1.7249
License: CC BY 4.0

spring design problem [Aro04] is to minimize the weight of the spring while ensuring it
meets specific constraints related to shear stress, surge frequency, and deflection. The
design variables for this optimization problem are outlined in Table 4.9. Formally, the
optimization problem can be expressed as follows:

64

https://creativecommons.org/licenses/by/4.0/

4.5. BCA for Standard Engineering Problems

Table 4.11: Comparison of statistical results of BCA with other optimization algorithms
in the literature for solving the welded beam design problem.

Algorithm Best Worst Mean SD
BCA 1.72484 1.7272306 1.7254101 4.237E-7
MFO [Mir15] 1.732541 1.802364 1.775231 0.012397
MVO [MMH16] 1.725472 1.741651 1.729680 0.004866
SCA [Mir16b] 1.759173 1.873408 1.817657 0.027543
GA [BDT99] 1.873971 2.320125 2.119240 0.034820
ES [MMC08] 1.728226 1.993408 1.792654 0.07471
SA [HF06] 1.7250022 1.8843960 1.7564428 NA
Co-evolutionary PSO [HW07a] 1.728024 1.782143 1.748831 0.012926
Improved PSO [CEC08] 1.724852 NA 2.0574 0.2154
DE [MMCCVRMD07] 1.724852 1.725000 1.725 1.0E-15
CS [GYA13] 1.7312065 2.3455793 1.8786560 0.2677989
ABC [KB08] 1.724852 NA 1.741913 0.031
ACO [KT10a] 1.72918 1.775961 1.729752 0.009200
PO [AYS20] 1.724851 1.724852 1.724851 2.53E-07
CAEP [CCB04] 1.724852 3.179709 1.971809 0.443000
WCA [ESBH12] 1.724856 1.744697 1.726427 0.004290
CGWO [KA18] 1.725450 2.435700 2.428900 1.357800
CPSO [KdSC06] 1.728024 1.782143 1.748831 0.012900
CapSA [BSAH21] 1.72481904 1.72723071 1.72541110 4.2376E-7
PSO-DE [LCW10] 1.724852 1.724852 1.724852 6.7E-16
COMDE [MS12] 1.724852 1.724852 1.724852 1.6E-12
DELC [WL10] 1.724852 1.724852 1.724852 4.1E-13
MADE [HAL+18] 1.724852 1.724852 1.724852 9.6E-16
AMDE [AFI17] 1.724852 1.724852 1.724852 1.1E-15
NA = Not available, SD = Standard Deviation
License: CC BY 4.0

Consider x = [x1 x2 x3] = [d D N]
Minimize f(x) = (x3 + 2)x2x2

1
Subject to g1(x) = 1 − x2

2x3
71785x4

1
≤ 0,

g2(x) = 4x2
2−x1x2

12566(x2x3
1−x4

1) + 1
5108x2

1
≤ 0,

g3(x) = 1 − 140.45x1
x2

2x3
≤ 0,

g4(x) = x1+x2
1.5 − 1 ≤ 0,

Variable range 0.05 ≤ x1 ≤ 2.00,
0.25 ≤ x2 ≤ 1.30,
2.00 ≤ x3 ≤ 15.0

65

https://creativecommons.org/licenses/by/4.0/

4. Blood Coagulation Algorithm: A Global Optimizer

Table 4.12: Comparison of the best solution obtained by BCA with other algorithms in
the literature for the pressure vessel design problem.

Algorithm Optimal values of design variables Optimal cost
Ts Th R L

BCA 0.7782 0.3847 40.3215 199.973 5885.3991
MFO [Mir15] 0.835241 0.409854 43.578621 152.21520 6055.6378
MVO [MMH16] 0.845719 0.418564 43.816270 156.38164 6011.5148
SCA [Mir16b] 0.817577 0.417932 41.74939 183.57270 6137.3724
GA [BDT99] 0.752362 0.399540 40.452514 198.00268 5890.3279
HS [LG05] 1.099523 0.906579 44.456397 179.65887 6550.0230
DA [Mir16a] 0.782825 0.384649 40.3196 200 5923.11
Co-evolutionary PSO [HW07a] 0.812500 0.437500 42.091266 176.746500 6061.077
ES [MMC08] 0.812500 0.437500 42.098087 176.640518 6059.7456
CS [GYA13] 0.812500 0.437500 42.0984456 176.6363595 6059.7143348
ABC [AK12] 0.812500 0.437500 42.098446 176.636596 6059.714339
Improved PSO [HPW04] 0.812500 0.437500 42.098445 176.6365950 6059.7143
Penalty guided ABC [Gar14] 0.7781686 0.3846491 40.3210545 199.9802367 5885.40322828
DE [MMCCVRMD07] 0.812500 0.437500 42.098446 176.6360470 6059.701660
WOA [ML16] 0.812500 0.437500 42.0982699 176.638998 6059.7410
PO [AYS20] 0.7782 0.3847 40.3215 199.9733 5885.3997
NMPSO [ZK09] 0.8036 0.3972 41.6392 182.4120 5930.3137
GWO [MML14] 0.8125 0.4345 42.0892 176.7587 6051.5639
HPSO [HW07b] 0.8125 0.4375 42.0984 176.6366 6059.7143
G-QPSO [dSC10] 0.8125 0.4375 42.0984 176.6372 6059.7208
CDE [HWH07] 0.8125 0.4375 42.0984 176.6376 6059.7340
DE [LS04] 0.8125 0.4375 42.0984 176.6377 6059.7340
GA [CM02] 0.8125 0.4375 42.0974 176.6540 6059.9463
CPSO [KdSC06] 0.8125 0.4375 42.0913 176.7465 6061.0777
GSA [RNPS09] 1.1250 0.6250 55.9887 84.4542 8538.8359
HHO [HMF+19] 0.81758383 0.4072927 42.09174576 176.7196352 6000.46259
GA [Deb91] 0.812500 0.437500 42.097398 176.654050 6059.9463
Lagrangian multiplier (Kannan) [ML16] 1.125000 0.625000 58.291000 43.6900000 7198.0428
Branch-bound (Sandgren) [ML16] 1.125000 0.625000 47.700000 117.701000 8129.1036
DELC [WL10] 0.812500 0.437500 42.0984456 176.6365958 6059.7143
CSS [KT10b] 0.812500 0.437500 42.103624 176.572656 6059.0888
ESs [MMC05] 0.812500 0.437500 42.098087 176.640518 6059.7456
License: CC BY 4.0

Various optimization algorithms have been employed previously to tackle this design
challenge. Table 4.14 provides a comparative overview of the optimal solutions obtained
by BCA and alternative algorithms for the tension/compression spring design problem.
The results depicted in Table 4.14 indicate that BCA successfully identifies an optimal
spring design with minimal weight. Furthermore, statistical analyses comparing BCA
with other methods from existing literature are summarized in Table 4.15. These results
suggest that BCA either surpasses or performs comparably to other algorithms listed in
Table 4.15.

Three-bar truss design problem. This engineering design problem holds significance in
optimization studies due to its inherently constrained search space. The objective revolves

66

https://creativecommons.org/licenses/by/4.0/

4.5. BCA for Standard Engineering Problems

Table 4.13: Comparison of statistical results of BCA with other optimization algorithms
in the literature for solving the pressure vessel design problem.

Algorithm Best Worst Mean SD
BCA 5885.3991 5910.5321 5891.3265 8.4237
MFO [Mir15] 6055.6378 7023.8521 6360.6854 365.597
MVO [MMH16] 6011.5148 7250.9170 6477.3050 327.007
SCA [Mir16b] 6137.3724 6512.3541 6326.7606 126.609
GA [BDT99] 5890.3279 7005.7500 6264.0053 496.128
HS [LG05] 6550.0230 8005.4397 6643.9870 657.523
DA [Mir16a] 5923.11 222536 21342.2 47044.2
Co-evolutionary PSO [HW07a] 6061.077 6363.8041 6147.1332 86.4545
ES [MMC08] 6059.7456 7332.8798 6850.004 9426.000
CS [GYA13] 6059.714 6495.3470 6447.7360 502.693
ABC [AK12] 6059.714339 NA 6245.308144 205
Improved PSO [HPW04] 6059.7143 NA 6289.92881 305.78
WOA [ML16] NA NA 6068.0500 65.6519
GSA [RNPS09] NA NA 8932.9500 683.5475
PO [AYS20] 5885.3997 5908.0250 5891.8068 8.4746
NMPSO [ZK09] 5930.3137 5960.0557 5946.7901 9.1610
PSO-DE [LCW10] 6059.7140 NA 6059.7140 NA
HPSO [HW07b] 6059.7143 6288.6770 6099.9323 86.2000
CPSO [KdSC06] 6061.0777 6363.8041 6147.1332 86.4500
GWO [MML14] 6051.5630 6395.3600 6159.3200 379.6740
G-QPSO [dSC10] 6059.7208 7544.4925 6440.3786 448.4711
NA = Not available, SD = Standard Deviation
License: CC BY 4.0

around discovering the optimal configuration for a truss with three bars, minimizing its
weight. The specifics of this problem are outlined in Table 4.9, encompassing various
constraints related to stress, deflection, and buckling. Mathematically, this problem can
be expressed as follows:

Consider x = [x1 x2] = [A1 A2]
Minimize f(x) = (2

√
2x1 + x2)l

Subject to g1(x) =
√

2x1+x2√
2x2

1+2x1x2
P − σ ≤ 0,

g2(x) = x2√
2x2

1+2x1x2
P − σ ≤ 0,

g3(x) = 1√
2x2+x1

P − σ ≤ 0,

Variable range 0 ≤ x1, x2 ≤ 1,
where l = 100 cm, P = 2 kN/cm2, σ = 2kN/cm2

The results of applying BCA to solve the 3-bar truss design problem are detailed in

67

https://creativecommons.org/licenses/by/4.0/

4. Blood Coagulation Algorithm: A Global Optimizer

Table 4.14: Comparison of the best solution obtained by BCA with other algorithms in
the literature for the tension/compression spring design problem.

Algorithm Optimal values of design variables Optimal cost
d D N

BCA 0.05248 0.37594 10.24509 0.01267
PO [AYS20] 0.05248 0.37594 10.24509 0.01267
DEDS [ZLW08] 0.05169 0.35672 11.28897 0.01267
HEAA [WCZF09] 0.05169 0.35673 11.28829 0.01267
DELC [WL10] 0.05169 0.35672 11.28897 0.01267
WCA [ESBH12] 0.05168 0.35652 11.30041 0.01267
MADE [HAL+18] 0.05169 0.35672 11.28897 0.01267
GWO [MML14] 0.05169 0.35674 11.28885 0.01267
DE [LS04] 0.05161 0.35471 11.41083 0.01267
HS [LG05] 0.05115 0.34987 12.07643 0.01267
CPSO [KdSC06] 0.05173 0.35764 11.24454 0.01267
WOA [ML16] 0.05121 0.34522 12.00403 0.01268
GA [CM02] 0.05199 0.36397 10.89052 0.01268
GSA [RNPS09] 0.05028 0.32368 13.52541 0.01270
MFO [Mir15] 0.05000 0.313501 14.03279 0.012753902
MVO [MMH16] 0.05000 0.315956 14.22623 0.012816930
SCA [Mir16b] 0.050780 0.334779 12.72269 0.012709667
SSA [MGM+17] 0.051207 0.345215 12.004032 0.0126763
License: CC BY 4.0

Table 4.16. Moreover, the performance of BCA is benchmarked against various algorithms
documented in existing literature for tackling this challenge. The comparison reveals that
BCA delivers competitive results when compared with algorithms such as HHO [HMF+19],
DEDS [ZLW08], PSO–DE [LCW10], and SSA [MGM+17]. Notably, BCA surpasses several
other algorithms, including MVO [MMH16], GOA [SML17], MFO [Mir15], CS [GYA13],
and AOA [ADM+21]. These findings underscore BCA’s efficacy in navigating constrained
optimization spaces.

Speed reducer design problem. The objective of the Speed reducer design problem
is to minimize the weight of the speed reducer by determining the optimal values of
design variables. Constraints are imposed on stresses in the shafts, transverse deflection
of the shafts, surface stress, and bending stress of the gear teeth. The design variables
are outlined in Table 4.9. Mathematically, the problem can be expressed as follows:

Consider x = [x1 x2 x3 x4 x5 x6 x7]
Minimize f(x) = 0.7854x1x2

2(3.3333x2
3 + 14.9334x3 − 43.0934) − 1.508x1(x2

6 + x2
7) +

7.4777(x3
6 + x3

7) + 0.7854(x4x2
6 + x5x2

7)
Subject to g1(x) = 27

x1x2
2x3

− 1 ≤ 0,

68

https://creativecommons.org/licenses/by/4.0/

4.5. BCA for Standard Engineering Problems

Table 4.15: Comparison of statistical results of BCA with other optimization algorithms
in the literature for solving the tension/compression spring design problem.

Algorithm Worst Mean Best SD
BCA 0.0127 0.0127 0.0127 0.0000
PO [AYS20] 0.0128 0.0127 0.0127 0.0000
DELC [WL10] 0.0127 0.0127 0.0127 0.0000
HEAA [WCZF09] 0.0127 0.0127 0.0127 0.0000
PSO–DE [LCW10] 0.0127 0.0127 0.0127 0.0000
MADE [HAL+18] 0.0127 0.0127 0.0127 0.0000
AMDE [AFI17] 0.0127 0.0127 0.0127 0.0000
DEDS [ZLW08] 0.0127 0.0127 0.0127 0.0000
DE [LS04] 0.0128 0.0127 0.0127 0.0000
HPSO [HW07b] 0.0127 0.0127 0.0127 0.0000
ABC [AK12] NA 0.0127 0.0127 0.0128
CPSO [KdSC06] 0.0129 0.0127 0.0127 0.0005
GA [CM02] 0.0130 0.0127 0.0127 0.0001
WCA [ESBH12] 0.0130 0.0127 0.0127 0.0001
G-QPSO [dSC10] 0.0178 0.0135 0.0127 0.0013
CAEP [CCB04] 0.0151 0.0136 0.0127 0.0008
GSA [RNPS09] NA 0.0136 NA 0.0026
NA = Not available, SD = Standard Deviation
License: CC BY 4.0

g2(x) = 397.5
x1x2

2x2
3

− 1 ≤ 0,

g3(x) = 1.93x3
4

x2x4
6x3

− 1 ≤ 0,

g4(x) = 1.93x3
5

x2x4
7x3

− 1 ≤ 0,

g5(x) =

745x4
x2x3

�2
+(16.9×106)

� 1
2

110x3
6

− 1 ≤ 0,

g6(x) =

745x5
x2x3

�2
+(157.5×106)

� 1
2

85x3
7

− 1 ≤ 0,

g7(x) = x2x3
40 − 1 ≤ 0,

g8(x) = 5x2
x1

− 1 ≤ 0,
g9(x) = x1

12x2
− 1 ≤ 0,

g10(x) = 1.5x6+1.9
x4

− 1 ≤ 0,

g11(x) = 1.1x7+1.9
x5

− 1 ≤ 0,
Variable range 2.6 ≤ x1 ≤ 3.6,
0.7 ≤ x2 ≤ 0.8,

69

https://creativecommons.org/licenses/by/4.0/

4. Blood Coagulation Algorithm: A Global Optimizer

Table 4.16: Comparison of the best solution obtained by BCA with other algorithms in
the literature for the three-bar truss design problem.

Algorithm Optimal values of design variables Optimal cost
x1 x2

BCA 0.788662816 0.408283133832 263.8958434
HHO [HMF+19] 0.788662816 0.408283133832900 263.8958434
DEDS [WCZF09] 0.78867513 0.40824828 263.8958434
MVO [MMH16] 0.78860276 0.408453070000000 263.8958499
GOA [SML17] 0.788897555578973 0.407619570115153 263.895881496069
MFO [Mir15] 0.788244771 0.409466905784741 263.8959797
PSO–DE [LCW10] 0.7886751 0.4082482 263.8958433
SSA [MGM+17] 0.788665414 0.408275784444547 263.8958434
MBA [SBEH13] 0.7885650 0.4085597 263.8958522
Tsai [Tsa05] 0.788 0.408 263.68
Ray and Saini [RS01] 0.795 0.395 264.3
CS [GYA13] 0.78867 0.40902 263.9716
AOA [ADM+21] 0.79369 0.39426 263.9154
License: CC BY 4.0

17 ≤ x3 ≤ 28,
7.3 ≤ x4 ≤ 8.3,
7.3 ≤ x5 ≤ 8.3,
2.9 ≤ x6 ≤ 3.9,
5.0 ≤ x7 ≤ 5.5

The results achieved by BCA for the speed reducer design problem are compared against
various other algorithms documented in the literature, as presented in Table 4.17. The
comparison indicates that the performance of BCA is comparable to that of other
algorithms, demonstrating satisfactory performance. Additionally, statistical findings for
the speed reducer design problem utilizing BCA and other meta-heuristic algorithms
are summarized in Table 4.18. These statistical results affirm that BCA provides highly
competitive outcomes for addressing this problem.

Gear train design problem. The gear train design problem, a prominent discrete
optimization challenge in mechanical engineering, was first introduced in 1990 [San90].
Its objective is to minimize the gear ratio, as defined by Equation (4.11), for a compound
gear train comprising four gears. The problem revolves around optimizing the number
of teeth of these gears, resulting in four integer variables within the range of 12 to 60.
Mathematically, the cost (objective) function, is formulated as shown in Equation (4.12):

Gear ratio = Angular velocity of the output shaft
Angular velocity of the input shaft (4.11)

70

https://creativecommons.org/licenses/by/4.0/

4.6. BCA for Falsification of CPSs

Table 4.17: Comparison of the best solution obtained by BCA with other algorithms in
the literature for the Speed reducer design problem.

Algorithm Optimal values of design variables Optimal Weight
x1 x2 x3 x4 x5 x6 x7

BCA 3.5 0.7 17 7.3 7.7153 3.3502 5.2867 2994.471
PO [AYS20] 3.5 0.7 17 7.3 7.7153 3.3502 5.2867 2994.471
DEDS [ZLW08] 3.5 0.7 17 7.3 7.7153 3.3502 5.2867 2994.471
DELC [WL10] 3.5 0.7 17 7.3 7.7153 3.3502 5.2867 2994.471
WCA [ESBH12] 3.5 0.7 17 7.3 7.7153 3.3502 5.2867 2994.471
CapSA [BSAH21] 3.500 0.7 17 7.30 7.715320 3.350215 5.286654 2994.4710
HEAA [WCZF09] 3.5 0.7 17 7.3004 7.7155 3.3502 5.2867 2994.499
PSO-DE [LCW10] 3.5 0.7 17 7.3 7.8000 3.3502 5.2867 2996.348
MDE [MMVRC06] 3.5 0.7 17 7.3002 7.8000 3.3502 5.2867 2996.357
MFO [Mir15] 3.497455 0.700 17 7.82775 7.712457 3.351787 5.286352 2998.94083
WSA [BA15] 3.500 0.7 17 7.3 7.8 3.350215 5.286683 2996.348225
AAO [CZE17] 3.499 0.6999 17 7.3 7.8 3.3502 5.2872 2996.783
GWO [MML14] 3.501 0.7 17 7.3 7.811013 3.350704 5.287411 2997.81965
APSO [Gue16] 3.501313 0.7 18 8.127814 8.042121 3.352446 5.287076 3187.630486
CS [GYA13] 3.5015 0.7000 17 7.6050 7.8181 3.3520 5.2875 3000.9810
SCA [Mac64] 3.521 0.7 17 8.3 7.923351 3.355911 5.300734 3026.83772
FA [BO15] 3.507495 0.7001 17 7.719674 8.080854 3.351512 5.287051 3010.137492
AOA [ADM+21] 3.50384 0.7 17 7.3 7.72933 3.35649 5.2867 2997.9157
License: CC BY 4.0

f(Ta, Tb, Td, Tf) =

1
6.931 − TbTd

TaTf

�2

(4.12)

where Ti denotes the number of teeth on the i-th gear wheel, where i corresponds to a, b,
d, and f . The objective is to determine the number of teeth on each wheel to achieve a
gear ratio of 1

6.931 . Although this problem does not have explicit constraints, we impose
constraints by considering the range of variables.

The gear design problem has garnered significant attention from researchers and has
been addressed using various heuristic methods. In this study, we employ BCA to tackle
this problem and compare its performance with other algorithms found in the literature.
Table 4.19 summarizes the outcomes of the gear train design problem, including the
optimal parameters and the best objective function value obtained by BCA and alternative
algorithms. The results demonstrate that BCA yields competitive outcomes, matching
the optimal function value computed by other algorithms such as MFO, ABC, MBA, CS,
and ISA. This underscores BCA’s efficacy in effectively addressing discrete problems.

4.6 BCA for Falsification of CPSs
As previously discussed in Chapter 1, the falsification of CPSs plays a crucial role in
uncovering system parameters (i.e., counterexamples) that may lead to defects, thus
facilitating effective fault detection. In this context, we examine the Simulink model of

71

https://creativecommons.org/licenses/by/4.0/

4. Blood Coagulation Algorithm: A Global Optimizer

Table 4.18: Comparison of statistical results of BCA with other optimization algorithms
in the literature for solving the Speed reducer design problem.

Algorithm Worst Mean Best SD
BCA 2994.471026 2994.471026 2994.471026 0.000003
PO [AYS20] 2994.471057 2994.471051 2994.471047 0.000003
WCA [ESBH12] 2994.505578 2994.474392 2994.471066 0.007400
MDE [MMVRC06] NA 2996.367220 2996.356689 0.008200
DELC [WL10] 2994.471066 2994.471066 2994.471066 0.000000
DEDS [ZLW08] 2994.471066 2994.471066 2994.471066 0.000000
ABC [AK12] NA 2997.058000 2997.058000 0.000000
HEAA [WCZF09] 2994.752311 2994.613368 2994.499107 0.070000
PSO-DE [LCW10] 2996.348204 2996.348174 2996.348167 0.000006
SC [RL03] 3009.964736 3001.758264 2994.744241 4.000000
CapSA [BSAH21] 2998.09236 2995.12109 2994.47106 0.00002901
NA = Not available, SD = Standard Deviation
License: CC BY 4.0

the Automatic Transmission Controller System (ATCS), an illustration sourced from the
avionics domain [ZKH03,Mat22d]. This model encompasses two input signals—throttle
and brake—and features three outputs: vehicle speed v (mph), engine speed ω (RPM),
and the gear position.

4.6.1 The Problem

Our focus lies in determining whether the system consistently adheres to the temporal
property φ1

AT , which requires that both the engine and the vehicle speed never attain ω̄
and v̄, respectively. This requirement is formulated in STL as follows: φ1

AT (v̄ , ω̄) =
□((v < v̄) ∧ (ω < ω̄)). To violate this property, we search input signals capable of causing
either the vehicle speed or the engine RPM to reach their designated thresholds. For this
study, we set v̄ = 120 mph and ω̄ = 4500 RPM. The total duration of simulation is T =
30 seconds.

The falsification methodology represents an optimization problem focused on minimizing
the robustness, acting as the objective function, across decision variables z. These
variables determine the input signal(s). The objective is to find values for z that lead to
a resulting trace x with negative robustness, expressed as ρ(x, φ) < 0.

4.6.2 Simulation Results

In the following, we present the results of falsification testing with BCA and compare it
with (i) other optimizers and, (ii) a state-of-the-art falsification testing tool.

72

https://creativecommons.org/licenses/by/4.0/

4.6. BCA for Falsification of CPSs

Table 4.19: Comparison of results for Gear train design problem.

Approach Optimal values
fminTa Tb Td Tf

BCA 43 16 19 49 2.7009E-12
CAPSO [GYYT13] 49 19 16 43 2.701E-12
MFO [Mir15] 43 19 16 49 2.7009E-12
ABC [SBEH13] 49 16 19 43 2.7009E-12
MBA [SBEH13] 43 16 19 49 2.7009E-12
GeneAS [DG+96] 33 14 17 50 1.362E-9
CS [GYA13] 43 16 19 49 2.7009 E-12
PSO [PV05] 43 16 19 49 2.701E-12
Sequential linearization approach [LP91] 42 16 19 50 0.23E-6
Mixed-discrete nonlinear optimization with SA [ZW93] 52 15 30 60 2.36E-9
Nonlinear integer and discrete programming [San90] 45 22 18 60 5.712E-6
Mixed integer discrete continuous optimization [KK94] 33 15 13 41 2.146E-8
Mixed-variable evolutionary programming [CW97] 52 15 30 60 2.36E-9
GA [WC95] NA NA NA NA 2.33E-7
Mixed integer discrete continuous programming [FFC91] 47 29 14 59 4.5E-6
BOA [AS19] 43 16 19 49 2.701E-12
ISA [Gan14] NA NA NA NA 2.7009E-12
NA = Not available
License: CC BY 4.0

4.6.2.1 Comparison with other optimizers

We utilize MoonLight, a tool designed for monitoring temporal and spatial-temporal
properties of CPSs [BBL+20], to identify counterexamples for φ1

AT . Considering the
need for robustness values in solving the optimization problem, we adopt the quantitative
semantics in this study. Our approach to falsify the STL formula φ1

AT involves setting
the Brake input as constant (kept at 0) while defining the throttle input as a step signal
characterized by the step time, initial value, and final value. Additionally, we employ
BCA to tackle the optimization problem and evaluate its performance against three
established meta-heuristic techniques: GA, DE, and PSO. The parameter configurations
for these algorithms are detailed in Table 4.4.

Utilizing the MoonLight tool, we acquire counterexamples using each optimization
algorithm. Figure 4.10 illustrates the throttle input alongside the corresponding output
speed and RPM for the counterexample pertaining to φ1

AT obtained through BCA. The
robustness values obtained by BCA and other algorithms, along with the computation
time (i.e., the time required to falsify the property, in seconds), are summarized in
Table 4.20. Two metrics are provided for each tool/algorithm: (1) Robustness value: This
metric quantifies the robustness of the simulation trace with respect to the STL property.
A lower (more negative) robustness value signifies better counterexamples, indicating that
the approach has found more effective counterexamples, and (2) Computation Time (in

73

https://creativecommons.org/licenses/by/4.0/

4. Blood Coagulation Algorithm: A Global Optimizer

0 5 10 15 20 25 30
Time (seconds)

0

10

20

30

40

50

60

70

80

90
A

m
pl

itu
de

Input: Throttle

0 5 10 15 20 25 30
Time (seconds)

0

20

40

60

80

100

120

140

Sp
ee

d

Output: Vehicle speed

0 5 10 15 20 25 30
Time (seconds)

0

1000

2000

3000

4000

5000

R
PM

Output: Engine RPM

28 29 30
119.5

120

120.5

Figure 4.10: Input and output plots for the counterexample for φ1
AT (120, 4500) found

by BCA. The dash-dot lines show the thresholds of the outputs.

seconds): This indicates the time taken by each approach to find the counterexamples, with
lower values representing faster performance. Notably, BCA exhibits faster convergence
and surpasses other optimizers in performance. These findings underscore the competitive
edge of the proposed BCA in tackling the falsification challenges of CPSs, underscoring
its efficacy in addressing real-world optimization tasks, including search-based testing of
CPSs.

Table 4.20: Results for the falsification problem of ATCS.

Approach Robustness value Computation Time (s)
BCA -0.3564 28.3567
PSO -0.7236 56.4472
GA -1.6134 62.6923
DE -1.7380 65.5578

4.6.2.2 Comparison with S-TaLiRo

We also employ the S-TaLiRo tool, an open-source falsification testing toolbox for CPSs,
featured in the ARCH competition, as outlined in [DZS+15]. This tool enhances the
performance of falsification methods by applying coverage metrics to the state space of
hybrid systems.

We compare the results from S-TaLiRo with those obtained using BCA. For the BCA-
based falsification testing (FT) experiments, we utilize the RTAMT tool [NY20] for
monitoring and offline evaluation of STL properties. To ensure a fair comparison between
FT-BCA and FT-S-TaLiRo, we terminate the process as soon as a counterexample is
identified. Note that S-TaLiRo provides several stochastic optimization algorithms to
choose from, including Simulated Annealing (SA), Ant Colony Optimization (ACO),
Genetic Algorithms (GA), and Cross Entropy (CE). We present the results of the BCA-
based falsification testing experiments and compare them with all four optimization

74

4.7. Conclusion

algorithms available in S-TaLiRo. Our results are summarized in Table 4.21. Note that
the results presented are averaged over ten independent runs.

Table 4.21: Comparison of BCA-based falsification testing with S-TaLiRo.

Tool Algorithm Performance measure
Robustness value Computation Time (s)

S-TaLiRo

SA -0.0252 40.1423
ACO -0.0567 38.5672
GA -0.1435 46.3876
CE -0.0736 44.9159
BCA -0.1615 31.2671

We note that the BCA requires 31.2671 seconds to complete the testing, which is faster
compared to the computation times of the algorithms in S-TaLiRo. Specifically, SA,
ACO, GA, and CE take 40.1423, 38.5672, 46.3876, and 44.9159 seconds, respectively. The
lower computation time of BCA implies that it is not only more effective in identifying
counterexamples but also more efficient, potentially providing faster results with less
computational effort. The results suggest that the BCA-based approach is both more
effective and efficient compared to the stochastic optimization algorithms implemented
in S-TaLiRo. It achieves better robustness values and has a shorter computation time,
making it a preferable choice for falsification testing in terms of both performance and
efficiency.

Collectively, the results outlined in this chapter substantiate the efficacy and reliability
of the proposed BCA as a robust alternative to established meta-heuristic algorithms.

4.7 Conclusion
We introduced the Blood Coagulation Algorithm (BCA), a novel bio-inspired, population-
based optimization algorithm that mimics the natural process of blood coagulation
in the human body. To evaluate its performance, we conducted an extensive study
using 23 mathematical benchmark functions, comparing BCA against 12 state-of-the-
art algorithms. Our investigation covered intensification, diversification, local optima
avoidance, and convergence behavior using both unimodal and multimodal functions. The
simulation and statistical results demonstrate that BCA is competitive with other leading
algorithms. Its robust performance on high-dimensional functions suggests that BCA is
suitable for a wide range of optimization tasks. Furthermore, BCA’s effectiveness was
validated through six constrained and unconstrained engineering design problems, where
it consistently outperformed other meta-heuristic algorithms. Additionally, we tested
BCA for the falsification testing of CPS. The results indicated that BCA converges faster

75

4. Blood Coagulation Algorithm: A Global Optimizer

and delivers better performance than other optimizers. This makes BCA particularly
well-suited for the optimization challenges frequently encountered in CPS testing, such as
ensuring system reliability, safety, and performance under various conditions. In summary,
BCA not only proves its proficiency over other powerful meta-heuristic algorithms but
also shows great potential for solving a variety of benchmark and real-world problems,
especially in the domain of CPS testing.

Data Availability Statement. The experimental data and scripts are publicly accessible
at https://gitlab.com/DrishtiYadav/bca.

76

https://gitlab.com/DrishtiYadav/bca

CHAPTER 5
Fault Localization

Fault localization stands as a pivotal component in the development, validation,
and troubleshooting phases of CPS. However, finding the exact location of a fault
that triggered a failure within a CPS model poses a formidable challenge, largely
owing to the intricate structure and data-flow dynamics inherent in CPS models.
In this chapter, we introduce a methodology that leverages formal specifications
alongside search-based testing to achieve accurate fault localization. Given a CPS
Simulink model, a formalized requirement serving as a test oracle, and a test
case exhibiting failure against the formalized property, we develop a procedure
that utilizes search-based testing to generate an additional test case that satisfies
the same formalized property. Subsequently, we compare our two similar test
cases with opposite verdicts to find the precise fault location. We implement our
approach and assess its effectiveness through three case studies from automotive
and avionic domains. Through empirical comparison against a state-of-the-art
fault localization technique, we demonstrate that our method not only significantly
reduces the number of suspected model variables and blocks compared to the
previous work, but also remains resilient even with an increased number of active
faults in the underlying models.

5.1 Introduction
While MBD streamlines various design tasks, debugging faulty models remains a labor-
intensive and challenging process. It entails the meticulous identification of fault locations,

©2022 IEEE. Parts Reproduced, Reused, Reprinted, with permission, from Ezio Bartocci, Leonardo
Mariani, Dejan Ničković and Drishti Yadav, “Search-based Testing for Accurate Fault Localization in
CPS,” 2022 IEEE 33rd International Symposium on Software Reliability Engineering (ISSRE), Charlotte,
NC, USA, 2022, pp. 145-156, https://doi.org/10.1109/ISSRE55969.2022.00024

77

https://doi.org/10.1109/ISSRE55969.2022.00024

5. Fault Localization

often requiring substantial expertise from engineers to uncover the root cause of failures.
Rapid and accurate detection and diagnosis of faults are crucial for ensuring the continuous
and reliable operation of the system. This is particularly essential during the early stages
of CPS design, as undetected failures in safety-critical CPS can lead to significant costs
and potentially catastrophic consequences [LNB+17,LNB+16,BFMN18]. Thus, precise
fault localization is paramount as it can greatly expedite model correction processes and
facilitate the development of safe CPS designs.
Simulation-based testing and its derivatives, like falsification testing, are effective methods
utilized to detect defects in CPS design efficiently. Falsification testing, as documented
in several studies [Don10,ALFS11,ZSD+15,SF12], employs a formal language, such as
STL [MN04], along with its quantitative robustness semantics, to direct the search for
tests that violate the given specification. While simulation-based testing is effective
in identifying erroneous behavior in the model, it typically offers only the observed
behavior as an explanation for the specification violation. More recently, methods for
fault localization and explanation have emerged to aid in debugging MATLAB/Simulink
models [BMM+21, SS20, BFMN18, BMM+19, LNB+17]. These techniques, known as
gray-box procedures, employ various heuristics to pinpoint the fault, thus narrowing
down the debugging scope. A common characteristic among existing localization methods
is their detachment from testing activities. Consequently, the accuracy of localization
heavily relies on the quality of the test suite.
In procedural and object-oriented programming environments, fault localization has
been studied as the task of contrasting two comparable test executions with opposite
outcomes [ZJP+14,RR03], one passing and the other failing. However, these methods
rely on test generation strategies and heuristics that are not directly applicable to
data-flow-oriented computational models like CPS Simulink models.
Contributions. We propose a fault localization method closely integrated with falsifi-
cation testing, specifically designed for CPS Simulink models with explicit or implicit
specifications. We utilize STL as the formal language for expressing CPS requirements.
When explicit specifications are unavailable, we assume the existence of a correct reference
model and establish its equivalence to the model under test as our implicit specification.
In both scenarios, we employ the formal specification as a test oracle. For a test case
which fails based on the formalized property, we develop a process to generate an alter-
native passing test. This passing test helps pinpoint the fault location when compared
to the failing test. Essentially, we employ a global optimizer for search-based testing to
generate a new passing test case that closely resembles the original failing test, using
a specified distance measure. By examining the outcomes of these two similar tests
with opposing results, we extract precise fault location information, reducing the scope
and effort required for debugging. Our method categorizes and prioritizes suspicious
variables based on their timing and severity of violation, presenting them alongside their
corresponding model blocks. This list of suspicious blocks assists engineers in localizing
multiple faults, potentially of various types, within the model.
In summary, our primary contributions include: (1) Introducing a novel search-based

78

5.2. STL-guided Fault Localization

approach for automatically generating a passing test closely resembling a failing test for
(data-flow) Simulink models, and (2) Proposing a fault localization method for Simulink
models that leverages a failing test and its corresponding closely resembling passing test.

We apply our approach to three case studies spanning various application domains. We
implement our approach using both explicit STL specifications and implicit equiva-
lence checking, assessing its performance across 240 faulty variants of the case study
models harboring multiple faults. To gauge its effectiveness, we compare it against
CPSDebug [BMM+21,BMM+19], a leading fault localization technique for CPSs. The
experimental outcomes reveal that our approach outperforms the baseline in two key
aspects: (1) efficiently reducing the number of suspicious variables and thereby minimiz-
ing the blocks requiring inspection for fault localization, and (2) accurately pinpointing
fault locations in models with multiple faults. Particularly noteworthy is its superior
performance in accurately localizing faults in models with multiple underlying faults,
where the baseline exhibits diminished accuracy.

Chapter Organization. We introduce our fault localization approach in Sections 5.2
and 5.3. Following this, an empirical evaluation and a summary of the results are
presented in Section 5.4. Section 5.5 offers an enhanced review of related works. Our
conclusions are drawn in Section 5.6.

5.2 STL-guided Fault Localization
In this section, we elucidate the operational mechanism of our specification-guided fault
localization approach, referred to as STL-FL. Figure 5.1 provides a visual depiction of
the two core phases constituting the fault localization workflow:

1. Testing: This phase begins by assessing the SUT1 using an initial test suite to identify
failing test cases. Subsequently, a global optimizer is employed to create a new passing
test case for each failed test case, guided by the STL specification φ. The objective is
to generate a new passing test case that closely resembles its corresponding failing
test.

2. Localizing: In this phase, simulation outputs from the failed and passing test case pair
are utilized to pinpoint the exact location of the faulty component(s).

5.2.1 Testing
The objective of the testing phase is to select a collection of pairs, each consisting of a
failing and a passing test case, which serve as representatives for fault localization. These
pairs should exhibit similar executions, with any disparity likely attributed solely to the

1In contrast to stochastic systems where randomness is present in one or more system parts (such
as system parameters drawn from probability distributions), the systems considered in this thesis are
deterministic, meaning they produce the same output for a given input.

79

5. Fault Localization

Figure 5.1: An overview of STL-guided fault localization procedure (STL-FL).
©2022 IEEE.

activation of the fault under investigation. This enables a detailed (and point-by-point)
comparison of these executions, aiding in the precise localization of the fault.

During the testing phase, we find these pairs by first spotting the failing tests —those that
do not meet the given STL specification —from the available tests. Then, we create new
passing tests that get gradually closer to the failing one until we find the best candidate
for locating the fault.

We start by assuming that there is an initial test suite, denoted as T S, which has at least
one test case that violates a formalized requirement. This test suite can be provided
manually by a tester or generated using automated tools. These automated methods
might use coverage-based techniques [LNLB19], considering input, output, or structural
coverage. Alternatively, they might focus on methods for efficiently generating failing
test cases, like falsification testing [NSF+10].

Algorithm 5.1 delineates the process for choosing the test pairs. Beginning with an initial

80

5.2. STL-guided Fault Localization

Test Suite T S, the available test cases undergo evaluation against a faulty model. The
faulty model may have either a single fault or multiple faults. Each test case t from
T S is then used to simulate the faulty model to produce the simulation results (Line
4). Subsequently, the output traces are assessed against the STL specification φ by a
Monitor to assign either a pass or fail verdict to the test case (Lines 5-7). The Monitor
performs ‘Trace evaluation’ (refer to Figure 5.1) and generates a robustness measure of
the trace concerning φ (Line 5). The objective is to identify all the test cases leading to
the violation of the property φ: the algorithm groups all failing test cases resulting in
observable failures in the model (Line 7).

Algorithm 5.1: Test Suite Selection for localizing faults.
Input : T S : An initial test suite.

MF : A faulty model.
φ : An STL specification.

Output : T SF L : Set of failing-passing test case pairs.
1 T SNew = []
2 T SF L = []
3 for each item t ∈ T S do
4 out(MF , t) = Simulate(MF , t)
5 R(out(MF , t), φ) = Monitor(out(MF , t), φ)
6 if R(out(MF , t), φ) < 0 then
7 T SNew = T SNew ∪ {t}
8 end if
9 end for

10 for each item tf ∈ T SNew do
11 tp ← SearchPT(tf , MF , φ)
12 T SF L = T SF L ∪ {(tf , tp)}
13 end for
14 return T SF L

For each failing test case, the algorithm seeks a nearby passing test case that could aid
in localization. Specifically, for every failing test tf ∈ T SNew, the algorithm hunts for
a passing test case tp that closely resembles or is more similar to the failing test case
tf (Line 11). Our SearchPT() subroutine is depicted in Algorithm 5.2. The search is
framed as an optimization challenge to find a passing test tp that closely aligns with the
failing test tf , ensuring that the distance between tp and tf is minimized. This problem
is formulated as follows:

81

5. Fault Localization

Close passing test case search problem

Input: a faulty Simulink model MF with a failed test case tf and a formula φ
such that out(MF , tf) ̸|= φ.
Objective: Determine tp such that out(MF , tp) |= φ, and D(tf , tp) is minimized.

In our study, we utilize our BCA optimizer [Yad21], as elaborated in Chapter 4, for the
search operation. The pivotal aspect of determining the most analogous passing test
lies in defining the distance D(tf , tp) between the failing and passing test cases for the
faulty model MF . We compute this distance D(tf , tp) using the Euclidean distance (also
known as the Euclidean norm or L2 norm) between the signals associated with the test
cases tf and tp. The Euclidean distance stands out as one of the most commonly used
distance measures in real vector spaces, offering the advantage of gauging similarities
by quantifying the conventional distance between data points. Given that CPS models
frequently involve continuous real-valued variables, the Euclidean distance emerges as a
suitable choice for our analysis. Formally, the Euclidean distance D between two signals
y and z is expressed as:

D(y, z) = ||y − z||2 =

&''% g(
i=1

(yi − zi)2

In the above equation, y and z represent signals with a finite length of g samples, where
y = (y1, · · · , yg) and z = (z1, · · · , zg). Generally, the number of samples in a signal is
determined by the simulation and relies on the step-size, also known as the sample time,
of the model. As the simulations for test cases tf and tp are conducted on the same
faulty model, the timestamps (and consequently, the signal lengths) are ensured to match
across both executions. The outcome of the testing phase is denoted as T SF L (Line 14),
which comprises pairs of failing test cases and their corresponding close passing test cases
for the faulty model MF .

Let us delve into the SearchPT() subroutine illustrated in Algorithm 5.2, which
introduces the adaptation of BCA to address the formulated ‘Close passing test case
search’ task. Among various optimization algorithms available, we opted for BCA due to
several reasons: (1) its parameters are intuitively interpretable and require no tuning effort,
(2) it boasts a straightforward implementation, and (3) it exhibits high computational
efficiency. Additionally, we conducted performance evaluations comparing BCA with
other state-of-the-art optimizers, such as Particle Swarm Optimizer, Harmony Search,
Water Cycle Algorithm, and Imperialist Competitive Algorithm, for our optimization
problem. Our observations revealed that BCA surpasses others in terms of convergence
and speed. Below is an overview of BCA, which is a population-based optimizer, as
discussed previously in Chapter 4.

Definition 5.1. BCA follows these steps to explore the global optimum solution of an
objective function f(x) with n variables:

1. It initializes a population of candidates uniformly distributed across the search space.

82

5.2. STL-guided Fault Localization

2. It evaluates the fitness of each candidate and identifies the fittest candidate based on
f(x).

3. It updates the position of each candidate using specific criteria and optimizer parame-
ters. The fitness values are recalculated, and the global best solution is updated if
a superior solution is discovered. This process iterates until termination criteria are
satisfied.

In Algorithm 5.2, we commence by creating an initial population of candidates (Line 2)
and subsequently determining the fitness of each candidate, corresponding to the test
case (Line 3). The individuals within the initial population are generated by producing
test inputs that uniformly cover the numerical input range of the SUT. It is important
to note that genPop (Line 2) mirrors the first step of BCA as outlined in Definition 5.1,
ensuring that the initial population comprises a non-empty collection of test candidates,
the size of which is specified by the user. Currently, we focus solely on numerical input
domains since they are predominant in CPS models. However, other input domains could
also be addressed, provided a distance metric is available for their domain. For example,
a Boolean distance function could be employed for enumerated signals.

Algorithm 5.2: The SearchPT() subroutine.
Input : MF : A faulty model.

φ : An STL specification.
tf : A failing test case.

Output : tp : Close passing test case.
1 Initialize optimizer parameters
2 InitPop ← genPop() ; // Initial population
3 FitPop ← Cost(InitPop, φ) ; // fitness
4 tp ← Best(FitPop) ; // best solution
5 Dmax = D(tf , tp) ; // Initial Distance
6 while TimeOut() do
7 for each candidate u ∈ InitPop do
8 unew ← Update(u)
9 end for

10 FitPop ← Cost(InitPop, φ)
11 D ← D(tf , Best(FitPop))
12 if D < Dmax then
13 Dmax ← D ; // update the distance
14 Update tp ; // new best solution

15 end if
16 end while
17 return tp

In this context, the fitness for each candidate within the population denotes the quan-
titative measure of how robustly the execution trace of the faulty model MF adheres

83

5. Fault Localization

to the STL specification φ. Line 4 identifies the optimal test case from the population
that (1) is close to the failing test case tf and (2) satisfies φ. Line 5 calculates the initial
Euclidean distance between tf and the best solution tp, which serves as the algorithm’s
selection criterion. It is noteworthy that the algorithm iteratively updates the test cases
(Line 8) and acknowledges a new solution as the best one if it meets the selection criteria,
i.e., a closer passing test is found (Lines 12-15). The subroutine is designed to terminate
under certain conditions, as indicated by the guard for the while loop (Line 6), including
reaching the maximum number of iterations, observing no improvement after a set number
of iterations, or reaching a timeout.

5.2.2 Localizing faults
Algorithm 5.3 presents our method for localizing faults by examining anomalous events
in the SUT under the guidance of an STL specification. The inputs consist of a defective
(aka faulty) model and a Test Suite T SF L containing pairs of failing and passing test
cases. The fault localization algorithm operates on the premise that signals exhibiting
early temporal discrepancies between passing and failing test runs likely stem from faults
within the blocks generating these signals. The fault localization algorithm effectively
identifies model variables displaying significant early-time deviations between the failing
and closely passing test cases, associates these variables with the respective blocks, and
generates a list of suspicious blocks to aid in model debugging and rectification.

Algorithm 5.3: Fault Localization by analyzing anomalous events with STL.
Input : MF - A faulty model.

T SF L - Set of failing-passing test case pairs.
Output : SOIbest - Signals of interest.

blockListbest - List of suspicious blocks.
1 for each pair (tf , tp) ∈ T SF L do
2 out(MF , tf) = Simulate(MF , tf)
3 out(MF , tp) = Simulate(MF , tp)
4 d = |out(MF , tf) − out(MF , tp)|
5 dm, qviol ← Eval(d)
6 dnew = Normalize(dm)
7 SOI ← GetSignalInfo(dnew)
8 blockList ← Map(SOI)
9 end for

10 SOIbest, blockListbest = Π(T SF L, SOI, blockList)
11 return SOIbest, blockListbest

Engineers initiate the process with a test suite T SF L comprising pairs of failing-passing
test cases. Lines 2-3 execute the task illustrated in the ‘Faulty Model Simulation’ block
depicted in Figure 5.1. Specifically, Line 2 conducts a simulation of the faulty model
using the failing test case tf , yielding the simulation output for each model variable. Line

84

5.2. STL-guided Fault Localization

3 conducts a simulation of the faulty model using the passing test case tp to generate the
simulation output.

Lines 4-7 execute the process depicted as ‘Trace Analysis’ in Figure 5.1. Specifically, Line
4 calculates the deviations between the simulation traces obtained from the failing and
passing tests. It is important to note that we assume each trace is sampled periodically,
enabling direct point-by-point comparison between the two traces. Typically, out(MF , t)
represents an array of size Y × Z, where Y denotes the total number of samples of the
recorded signals, and Z is the total number of recorded signals. The deviation d (also an
array of size Y × Z) indicates the absolute differences between the Z recorded signals for
tf and tp. It is worth mentioning that the ‘minus’ sign in Line 4 signifies element-wise
subtraction of the values of each recorded signal at every timestamp for test case tp from
those of test case tf .

In Line 5 of Algorithm 5.3, the function Eval utilizes the calculated deviation d and
identifies the timestamp qviol when the initial irregularity occurs. Additionally, it organizes
all deviation values linked to qviol in descending order internally and outputs dm, which
is an array sized 1 × Z. More precisely, dm represents a sorted series of deviation values
for all recorded signals observed at the first instance of violation, qviol.

The function Normalize computes the vector-wise z-score of dm with a mean of 0 and
a standard deviation of 1 (Line 6). As a result, dnew becomes an array sized 1 × Z
containing normalized deviation values (observed first in time) for each recorded signal.
Normalization of data is applied to standardize the deviation values to a common scale,
ensuring that all measured deviations fall within the same numerical range.

In Line 7, the function GetSignalInfo retrieves the logging details of signals exhibiting
initial misbehavior, identified by normalized deviations exceeding zero. This condition,
based on normalized deviation values, enables focusing solely on a limited set of signals
demonstrating notably high deviations. (It is worth noting that qviol denotes the moment
when the first deviation occurs.) This process helps localize all internal signals within the
model accountable for the faulty behavior. Following this, Line 8 executes the function
Map (analogous to ‘Mapping’ in Figure 5.1), which correlates the Signals of Interest
(SOI) with their respective model blocks to pinpoint the suspicious blocks. The SOI
represents model variables (internal signals) that exhibit early and significant deviations
between tf and tp in the faulty model, essentially serving as indicators of the faults.

Finally, the failing-passing test case pair that results in the minimum number of SOI is
selected as the optimal pair. This selection process is handled by the function Π (Line 10),
referred to as ‘Selector’ in Figure 5.1. It is important to note that SOI and blockList
represent the sets of SOI and blockList linked with each pair (tf , tp) ∈ T SF L. For the
chosen optimal pair, the variables SOIbest and blockListbest are designated as the final
output, aiding in pinpointing the “culprit” signals and components responsible for the
failure, thereby localizing the faulty units (Line 11). Additionally, the violation time
(qviol) may also be provided as output to aid in understanding the context of the failure
and its timing.

85

5. Fault Localization

Table 5.1: Details of Failing-Passing test case pair for Example 1.

Test case Throttle parameters Robustness R D(tf , tp)
ST IV FV

tf 1 10 68 −1.8022 80.8332
tp 1 10 65 0.8242

©2022 IEEE.

Table 5.2: SOI for fault localization and the corresponding blocks.

Faulty variant Signal Index Signal Name Parent Block qviol(s)
Offset fault in Engine s2 EngineTorque:1 → Offset1:1 Engine 1.00
Note: qviol denotes the first time that the signal exhibits anomalous behavior w.r.t. the test case pair (tf , tp).

©2022 IEEE.

Example 5.1. Here, we illustrate the application of STL-FL with an example. We will
utilize the Simulink model of an Automatic Transmission Controller System, which is
elaborated in Section 5.4. For our demonstration, we will consider a faulty variant with
a Bias/Offset fault, where the fault value is set to 10 units. This fault is injected into the
signal path from the EngineTorque block to the Sum block within the Engine subsystem
of the model.

Assuming a constant brake signal (set to zero), we identify a failing test case tf for
the model concerning the corresponding STL property φ outlined in Table 5.3. In this
scenario, the test case reflects the throttle input signal. We suppose that the throttle
signal is a step signal defined by three parameters: Step Time (ST), Initial Value (IV),
and Final Value (FV). Employing our proposed ‘Close passing test case search problem’
detailed in Algorithm 5.2, we locate a passing test case tp (refer to Table 5.1).

Utilizing Algorithm 5.3, we identified the SOI to isolate the faulty component. We note
that only a single internal signal exhibits early misbehavior with normalized deviations
exceeding zero, as elaborated in Table 5.2. This identified SOI stem from the Engine
subsystem, precisely where we introduced the fault, thus confirming accurate localization
of the faulty component.

5.3 Fault Localization with Equivalence Checking
In numerous CPS scenarios, explicit specifications are absent. In such cases, throughout
different development stages, designers typically assess the design against a reference
model assumed or verified to be accurate. Equivalence testing, also known as back-to-back
testing, differential testing, or differential fuzzing in software engineering, is commonly
employed to ascertain equivalence between the reference model M and its updated or
refined version M′. Equivalence is established by comparing the output signals produced

86

5.4. Empirical Evaluation

by simulating both models using a single (equivalence) test case. Specifically, the recorded
output signals serve as the equivalence criteria between M and M′, representing an
implicit specification formally linking the two models. The non-equivalence between two
models can be articulated as:

m�
i=1

In1.i = In2.i� �� �
all inputs equal

∧
e�

o=1
out1.o ̸= out2.o� �� �

an output not equal

(5.1)

In this context, In denotes the collection of model inputs with a length of m, while out
signifies the set of traces for all input-internal-output (IIO) signals of the models with
e outputs. Referring to Figure 2.1, m = 2 and e = 3. Any configuration that fulfills
Formula (5.1) denotes two separate runs of M and M′ that yield a distinct output signal
for the identical input sequence.

Our method also includes support for equivalence checking. Similar to the procedure
outlined in STL-FL, the workflow of our equivalence-driven approach, referred to as
E-FL, initiates with testing, as elaborated in the preceding section. In this scenario, a
failing test signifies evidence of non-equivalence between the two models. For each failing
test, our objective is to locate the closest test case that produces an output most akin to
the failing test case. We employ a distance metric dist to assess the resemblance between
two outputs. We treat the search task as an optimization problem formulated as follows:
“Given a faulty model MF with a failing test case tf , determine tc (similar to tf) such
that dist(c1, c2) < θ where c1 = out.o(MF , tf) and c2 = out.o(MF , tc)”.

To expedite the convergence of the search task utilizing the BCA optimizer, we enforce a
constraint on the distance between the two outputs, stipulating dist(c1, c2) < θ where θ
is set to 0.05. The localization process mirrors that employed in STL-FL (refer to Lines
1-9 in Algorithm 5.3), albeit with the analysis of deviations conducted on the simulation
outputs of the failing test case tf and the newly identified test case tc.

5.4 Empirical Evaluation
In this section, we outline our research questions, detail our experimental configuration,
specify the metrics used for evaluation, and present the results of our experiments. The
following are the key research questions we aim to address:

RQ-5.1. [Fault Localization Ability] To what extent does our method reduce the
number of signals and blocks requiring inspection for fault localization? We assess the
effectiveness of our approach in minimizing the set of suspicious model variables and
blocks to be examined for fault localization. Specifically, we analyze how well our method
performs in this regard and compare our findings with those of the baseline technique,
CPSDebug [BMM+21], a state-of-the-art automated fault localization method for CPS
models.

87

5. Fault Localization

RQ-5.2. [Robustness Evaluation] How robust is our approach in scenarios where the
SUT exhibits numerous faults, potentially of diverse types? We investigate the resilience
of our approach by assessing its fault localization capabilities in the presence of multi-fault
models, comparing its performance against the baseline technique.

RQ-5.3. [Computational Efficiency] How does the computational efficiency of our
approach compare to that of the baseline technique? We gauge the computational efficiency
of our method by examining its computation time and comparing it with the performance
of the baseline technique.

To empirically assess our approach and address the research questions, we conducted
systematic experiments utilizing Simulink models spanning various safety-critical domains.
We devised a prototype implementation for our fault localization technique, as elucidated
in Section 5.2. The processes encompassing test generation, model simulation, and
model-based fault localization were realized within MATLAB. Additionally, for offline
assessment of STL properties, we employed the RTAMT tool [NY20], augmenting it with
our fault localization procedure outlined in Section 5.2.

5.4.1 CPSDebug

We now present a concise overview of our baseline method, CPSDebug [BMM+21], rec-
ognized as a state-of-the-art diagnostic solution tailored for Simulink models. CPSDebug
serves the purpose of localizing bugs within CPS designs and elucidating the root causes
of failures through a structured workflow comprising three primary phases.

During the testing phase, CPSDebug conducts simulations of the CPS Simulink model
under analysis using an initial test suite. Subsequently, it categorizes the test cases into
passing and failing ones based on their compliance with formal STL requirements.

Moving to the specification mining phase, CPSDebug leverages the passing test traces
to extract relevant properties that delineate the expected behavior of the model. This
process involves the utilization of two key tools: Daikon [ECGN01], which employs
template-based property inference to deduce likely properties for the input variables, and
Timed k-Tail (TkT) [PMGM22], an engine for automaton learning capable of generating
timed automata from timed traces.

Lastly, in the explaining phase, CPSDebug utilizes the inferred properties to analyze
failed traces and generate explanations for the detected failures. This phase encompasses
two main steps: (1) Monitoring, wherein CPSDebug analyzes failed traces to identify
signals violating the properties along with the corresponding violation time intervals, and
(2) Clustering and Mapping, where CPSDebug clusters the fail-annotated signals based on
their violation times and associates them with their respective model blocks. Ultimately,
CPSDebug employs the violated signals and their originating blocks to produce a sequence
of system snapshots for each cluster of property violations, thereby capturing the origins
of faults and the propagation of failures in both spatial and temporal dimensions.

88

5.4. Empirical Evaluation

Table 5.3: Key information about the Simulink models of our subjects.
Model Name #Blocks #Lines φ qT

Automatic Transmission Controller System (ATCS) 65 92 □((v ≤ v̄) ∧ (ω ≤ ω̄)) 30
Aircraft Elevator Control System (AECS) 825 577 □(↑ (cmd ≥ m) → ♦[0,T]□[0,a](|cmd − pos| ≤ n)) 10
Abstract Fuel Control System (AFCS) 253 283 □[Tstart,Tstop]¬((AF > Ref − tol) ∨ (AF < −Ref + tol)) 40
©2022 IEEE.

5.4.2 Experimental Setup
We conducted the experiments on a MacBook Pro equipped with an Apple M1 chip, 16
GB RAM, and running macOS Monterey with MATLAB® R2018b. This section provides
an overview of the subjects utilized for our experiments and evaluations. Additionally,
we detail the process of fault seeding, as well as the test suites and test oracles employed
in our experimental setup.

5.4.2.1 Case studies

For our experiments, we employ three Simulink models sourced from the automotive
and avionic sectors. Table 5.3 presents the dimensions of each model, along with the
corresponding STL specifications utilized in the experiments and the simulation time
denoted by qT . The STL specifications referenced in Table 5.3 are sourced from [Don10,
HAF14,BMM+21].

The Automatic Transmission Controller System (ATCS), as previously discussed
in Chapter 4, is a benchmark derived from the automotive field [HAF14]. This model
incorporates two inputs, namely the throttle ut and the brake ub, which regulate two
system outputs: vehicle speed v (mph) and engine speed ω (RPM). Throughout all
time instants, the inputs span the range [0, 100]. A critical safety requirement for this
system is to ensure that the vehicle speed v and engine speed ω do not surpass predefined
thresholds v̄ and ω̄. These thresholds are set as follows: v̄ = 120 mph and ω̄ = 4500
RPM.

The Aircraft Elevator Control System (AECS), as previously discussed in Chapter 3,
is a model originating from the avionics sector and features a redundant actuator
control module [GM05]. This model involves two output variables corresponding to the
positions of left and right actuators, driven by the input variable (Pilot Command).
One significant requirement entails achieving the desired aircraft position within a
predetermined timeframe. Formally, whenever the Pilot Command cmd exceeds a
threshold m, the measured actuator position pos must stabilize (i.e., become at most n
units away from cmd) within T +a time units. This requirement is expressed via the STL
specification in Table 5.3, with parameters set as m = 0.09, T = 2, a = 1, and n = 0.02.

The Abstract Fuel Control System (AFCS) is a renowned Powertrain Control
Verification Benchmark [JDK+14] sourced from the automotive domain, simulating the
air-fuel controller for an engine. This model accepts user inputs of throttle command
and engine speed to regulate both the fuel rate and the air-to-fuel (AF) ratio. The

89

5. Fault Localization

primary control objective is to uphold the AF ratio at the set-point Ref (i.e., the ideal
stoichiometric ratio) through closed-loop adjustments of pertinent model variables. The
STL requirement for this model encapsulates constraints on the AF ratio, with parameter
values set as Ref = 14.7, tol = 0.01, Tstart = 10, and Tstop = 40.

In our experiments, we established the base sample time for the models, namely ATCS,
AECS, and AFCS, as 0.04, 0.01, and 0.005 respectively. These models are openly accessible
in the Simulink/Stateflow online documentation provided by MathWorks [Mat22d,Mat22a,
Mat22c]. It is noteworthy that these models are indicative of typical industrial Simulink
models concerning their size, behavioral dynamics, and intricacy.

5.4.2.2 Fault Seeding

We utilize our software tool FIM [BMNY22a] (as elaborated in Chapter 3) to introduce
faults into a model. Our selection of faults for injection was based on those commonly
employed in the literature [FMMJ21, PRWN16, SVET10, SMSJ17]. Specifically, we
considered the following categories:

• Sensor faults: Including Stuck-at, Noise, and Bias/Offset.
• Hardware faults: Encompassing Bit-flip (single and multiple).
• Network faults: Involving Package drop and Time delay.
• Block mutations: Involving incorrect relational operator, incorrect logical operator,

and incorrect arithmetic operator.

By incorporating fault types from these diverse categories, we aimed to simulate a realistic
spectrum of fault scenarios commonly encountered in practical systems, facilitating the
evaluation of fault localization techniques. For each of the previously mentioned faults,
FIM generates tailored fault blocks equipped with flags to regulate their activation.
Specifically, FIM introduces faults into a model by (1) integrating fault blocks and
(2) substituting blocks with fault blocks, leveraging a specialized library of faults and
alterations. To achieve diversity, we introduced faults of various types in different segments
(target locations) of the SUT, particularly at varying hierarchical depths. Table 5.4
provides insight into the number of seeded faults (and their corresponding groups) for
each subject. In total, we seeded 15 faults in ATCS, 45 faults in AECS, and 20 faults in
AFCS models.

Before subjecting the fault model to testing, we implemented instrumentation to facilitate
the logging of all internal signals. This process involved assigning unique names to
each signal and activating data logging within the simulation engine. By leveraging the
activation flag embedded within the seeded fault blocks introduced by FIM, we could
selectively enable or disable specific faults, thereby generating distinct faulty variants of
the SUT. Each faulty variant represented an instrumented version of the faulty model
with the activation of specific faults of interest (FOI). Depending on user specifications
and the objectives of the testing task, FOI could range from a single fault to multiple
(i.e., equal to or greater than two) faults.

90

5.4. Empirical Evaluation

Table 5.4: Information of seeded faults in each case study.

Type ATCS AECS AFCS
Sensor faults 3 20 9
Hardware faults - 17 6
Network faults 9 - 4
Block mutations 3 8 1
Total 15 45 20
©2022 IEEE.

To address RQ-5.2, we generated various versions of our subjects with different combi-
nations of activated fault blocks. Specifically, we divided each subject into three sets of
faulty variants, where the number of active fault blocks ranged from 1 to 3 in each set.
For instance, for the ATCS model, each set comprised 15 faulty variants, while for the
AECS model, each set contained 45 faulty variants, and for the AFCS model, each set
included 20 faulty variants. Thus, we produced {45, 135, 60} faulty variants of {ATCS,
AECS, AFCS}, respectively, i.e., a total of 240 faulty variants. Additionally, to maintain
fairness in our evaluation, we ensured that the activated fault blocks encompassed diverse
types and were situated in different sections of the models.

5.4.2.3 Setup for Equivalence Testing

To assess the effectiveness of our approach in scenarios where STL specifications are
unavailable, we designate the initial/original versions of ATCS, AECS, and AFCS as
reference models. Their respective faulty variants serve as the models-under-test. Subse-
quently, we utilize the non-equivalence witness trace and employ the E-FL methodology
to pinpoint the source(s) of the fault injected into the models.

5.4.2.4 Test Suite and Test Oracle

We employ Adaptive Random Testing (ART) as described in [LNLB19] to produce the
initial test suite (T S). ART is a foundational method that uniformly samples test cases
within the valid input domains. Across each case study, we generate an initial T S
comprising 100 test cases.

For STL-FL, the monitor derived from the STL specification via the RTAMT library
serves as the test oracle. Conversely, for E-FL, we implemented a procedure that
computes the distance between the behaviors of the reference and the tested models,
which serves as our test oracle.

5.4.2.5 Evaluation metrics

We assessed the results of STL-FL and E-FL in the following aspects: Scope Reduction,
Fault Localization Cost, Fault Localization Accuracy, and Computation Time. Scope

91

5. Fault Localization

Reduction evaluates our approach’s effectiveness by measuring the degree to which it
reduces the overall model variables to a smaller set of suspicious variables crucial for
fault localization. Fault Localization Cost quantifies the absolute number of blocks
necessitating engineers’ attention to localize and rectify the fault. Fault Localization
Accuracy evaluates the approach’s efficacy in fault detection, determining whether the
faulty component is correctly pinpointed. Lastly, we analyze the computation time
required by our proposed approach.

5.4.3 Results
We present the experimental findings based on our evaluation criteria, using the ATCS
model as an illustrative example. To provide clarity, we assess STL-FL and E-FL under
the following test configurations:

• Test Configuration 1: [One-fault] A ‘Stuck-at 0’ fault introduced within the Engine
subsystem.

• Test Configuration 2: [Two-fault] Same as Test 1, with an additional ‘Time Delay’
fault within the Transmission/TransmissionRatio subsystem.

• Test Configuration 3: [Three-fault] Building upon Test 2, including a ‘Sum to
Product mutation’ within the Engine subsystem.

For each test configuration mentioned above, we employ both fault localization techniques,
STL-FL and E-FL, to pinpoint the SOI and their associated blocks within the SUT.
Subsequently, we assess the extent of reduction achieved in fault identification, as
illustrated in Table 5.5. The “Test” column indicates the type of test configuration, while
the “Approach” column specifies the fault localization method employed. In the “#SOI
(Reduction in #V ars)” column, we list the number of Signals of Interest, along with the
reduction in the number of variables achieved, indicated within parentheses. Here, SOI
refers to the suspicious variables exhibiting significant anomalous behavior at an early
stage. The “FL_Cost (Reduction in #Blocks)” column signifies the Fault Localization
Cost (FL_Cost), with the corresponding reduction degree reported within parentheses.
FL_Cost is determined by the total number of blocks necessitating inspection to localize
the fault(s) within the faulty model. Lastly, the “Fault(s) detected” column specifies
whether the faulty component(s), where the fault(s) were introduced, are correctly
identified.

Looking at Table 5.5, we note that our approach effectively identifies the root cause of the
fault by accurately pinpointing the faulty component across all three test configurations.
In Test Configuration 1, STL-FL identifies only one SOI, indicating a significant reduction
of 98.5% in the number of model variables. It is important to highlight that the reduction
in variables and blocks is calculated based on the values specific to the instrumented
fault model. Following fault injection and model instrumentation, the total number
of blocks in ATCS is 77, and the total number of model variables is 67. As shown in
Table 5.5, E-FL identifies two SOI in Test Configuration 1, achieving a reduction of 97%.
It is worth emphasizing that focusing on a small subset of suspicious signals enables a

92

5.4. Empirical Evaluation

Table 5.5: Scope reduction and fault detection in ATCS.

Test Approach #SOI (Reduction in #V ars) FL_Cost (Reduction in #Blocks) Fault(s) detected

1
STL-FL 1 (98.5%) 9 (88.3%) ✓
E-FL 2 (97.0%) 9 (88.3%) ✓
CPSDebug 8 (88.1%) 25 (67.5%) ✓

2
STL-FL 5 (92.5%) 24 (68.8%) ✓
E-FL 7 (89.5%) 24 (68.8%) ✓
CPSDebug 8 (88.1%) 25 (67.5%) × (Only one faulty component identified)

3
STL-FL 12 (82.1%) 24 (68.8%) ✓
E-FL 12 (82.1%) 24 (68.8%) ✓
CPSDebug 9 (86.5%) 34 (55.8%) × (Only one faulty component identified)

©2022 IEEE.

substantial decrease in the number of variables. This allows engineers to concentrate on
a smaller set of signals, simplifying the debugging process. Additionally, we observe that
the fault localization cost is low across all three Test Configurations. Using STL-FL, we
achieve reductions of 88.3%, 68.8%, and 68.8% in the number of blocks to be inspected
for Test Configurations 1, 2, and 3, respectively.

In contrast to CPSDebug, both STL-FL and E-FL not only narrow down the scope by
reducing the number of model variables and blocks but also accurately identify the faulty
components. It is evident that even though CPSDebug achieves higher reductions in the
number of suspicious signals, particularly for scenarios with more faults (as seen in Test
Configuration 3), it fails to correctly pinpoint the fault location.

We summarize the extent of reduction in model variables achieved by both STL-FL and
E-FL using statistical evaluation metrics, namely Mean and Standard Deviation (SD),
in Table 5.6. These values are derived from all three sets of faulty variants for each
subject. It is evident that both STL-FL and E-FL achieve substantial reductions in the
number of suspicious model variables. On average, STL-FL and E-FL yield reductions
of approximately 92% and 90%, respectively, for multi-fault scenarios (ranging from one-
to three-fault models).

Fault Localization Cost. To address RQ-5.1 and RQ-5.2, we calculate the FL_Cost for
all 240 faulty models using STL-FL, E-FL, and the baseline fault localization method
CPSDebug. Figure 5.2 illustrates the distributions of the FL_Cost values across all three
benchmarks for one-fault, two-fault, and three-fault models. Each box plot in Figure 5.2
contains 80 data points (15 for ATCS, 45 for AECS, and 20 for AFCS), representing 80
faulty variants in each category of one-, two-, and three-fault models. The horizontal
axis depicts the localization approach, while the vertical axis indicates the FL_Cost.

To statistically evaluate the fault localization performance of our approaches compared
to CPSDebug, we conducted the widely recognized non-parametric Wilcoxon rank-sum
test with a significance level of 5% [Wil92, GC14]. The results of the statistical test
demonstrate that for multi-fault models (with one to three faults activated), both STL-FL
and E-FL consistently outperform CPSDebug, as indicated by the obtained p-values
being less than 0.05.

93

5. Fault Localization

Table 5.6: Empirical evaluation of our approach.

Model Reduction in model variables
STL-FL E-FL

Mean SD Mean SD

ATCS
One-fault 0.9463 0.0263 0.9328 0.0120
Two-fault 0.8975 0.0158 0.8892 0.0118
Three-fault 0.8199 0.0143 0.8003 0.0092

AECS
One-fault 0.9742 0.0019 0.9577 0.0132
Two-fault 0.9526 0.0142 0.9217 0.0113
Three-fault 0.9021 0.0155 0.8835 0.0129

AFCS
One-fault 0.9704 0.0037 0.9602 0.0167
Two-fault 0.9364 0.0111 0.9153 0.0149
Three-fault 0.8926 0.0237 0.8748 0.0265

©2022 IEEE.

STL-FL E-FL CPSDebug

Approaches

10

20

30

40

50

60

70

80

F
a

u
lt

L
o

c
a

li
z
a

ti
o

n
C

o
s

t

(a) One-fault models

STL-FL E-FL CPSDebug

Approaches

10

20

30

40

50

60

70

80

F
a
u

lt
L

o
c
a
li
z
a
ti

o
n

C
o

s
t

(b) Two-fault models

STL-FL E-FL CPSDebug

Approaches

10

20

30

40

50

60

70

80

F
a
u

lt
L

o
c
a
li
z
a
ti

o
n

C
o

s
t

(c) Three-fault models

Figure 5.2: Distributions of FL_Cost for one-fault to three-fault models.
©2022 IEEE.

To sum up, our proposed approach demonstrates significant enhancement in fault lo-
calization cost compared to CPSDebug. On average, STL-FL reduces the FL_Cost
by approximately 43%, whereas E-FL achieves a reduction of nearly 35% in FL_Cost
compared to CPSDebug.

Fault Localization accuracy. We assess the overall accuracy of fault localization in the
proposed method and compare it with the baseline technique. Table 5.7 provides a
summary of fault localization accuracy, expressed as ‘total number of fault models for
which the faults were correctly identified/the total number of fault models’. The value
in parentheses represents the percentage of fault localization accuracy. Our observation
indicates that both STL-FL and E-FL exhibit improved fault localization accuracy
compared to CPSDebug, especially when confronted with an increasing number of
active faults in the models. Notably, while CPSDebug performs adequately with one-

94

5.4. Empirical Evaluation

Table 5.7: Fault Localization accuracy.

Approach ATCS AECS AFCS
STL-FL 45/45 (100%) 135/135 (100%) 60/60 (100%)
E-FL 45/45 (100%) 135/135 (100%) 60/60 (100%)
CPSDebug 22/45 (48.88%) 53/135 (39.25%) 25/60 (41.66%)
©2022 IEEE.

Table 5.8: Computational cost (in seconds).

Approach ATCS AECS AFCS

STL-FL
Testing 21.4 24.5 23.9
Localizing 2.3 3.1 2.8

E-FL
Testing 20.9 23.8 22.3
Localizing 2.3 3.1 2.8

CPSDebug 294.1 3394.6 2174.8
©2022 IEEE.

fault models, its accuracy diminishes significantly in the case of multi-fault models.
Furthermore, as shown in Table 5.5, the performance of CPSDebug deteriorates as the
number of active faults rises.

Computational cost. Table 5.8 outlines the computational time required for our procedure
applied to the three considered subjects. The costs for Testing and Localizing indicate the
average time taken by the approach to identify a bug in a model. These values are derived
from analyzing various fault variants (ranging from one to three faults) of our subjects for
a failing-passing test pair. Notably, Testing exhibits greater dominance than Localizing.
This is primarily attributed to the search task (i.e., optimization) involved in finding
the most similar test case. Additionally, it is worth mentioning that the involvement of
specification monitoring (through external tool invocation) in STL-FL results in slightly
higher computational costs compared to E-FL.

Looking at Table 5.8, both STL-FL and E-FL demonstrate acceptable global overheads
of {23.7, 27.6, 26.7}s and {23.2, 26.9, 25.1}s respectively, for bug localization in {ATCS,
AECS, AFCS} models. The higher computational cost associated with CPSDebug
primarily arises from specification mining utilizing Daikon and TkT. Our approach
showcases efficiency, completing the diagnosis in approximately 25 seconds on average,
significantly faster than CPSDebug, which requires an order of magnitude more time,
as evident from Table 5.8. To sum up, the answer to RQ-5.3 is that our approach is
more computationally efficient than the baseline, offering a cost-effective solution for
debugging CPS Simulink models.

95

5. Fault Localization

5.5 Related Work
In recent years, researchers and practitioners in CPSs have embraced two primary
methodologies to assess safety and reliability: set-based reachability analysis [DMVP15,
FGD+11,CÁS13] and rigorous testing, such as differential testing [GHJ07] and falsifica-
tion analysis [ALFS11,Don10]. Our approaches leverage the characteristics of both these
methodologies, with E-FL employing aspects of differential testing and STL-FL incorpo-
rating elements of falsification analysis. From a software engineering standpoint, fault
localization has presented ongoing challenges [PCJ+17,WGL+16]. While the presence of
faults can be detected by examining falsifying traces or related symptoms, pinpointing
the exact fault location within the SUT remains laborious. Recent studies have employed
conventional and iterative statistical debugging techniques [LNB+16,LLN+16,LNLB19]
to generate ranked lists of blocks requiring further investigation by an engineer to identify
fault locations. In contrast, our approach E-FL diverges from statistical methods by
utilizing (1) differential testing to identify failing test cases and (2) optimization to
identify new test candidates for fault localization.

Similar to our STL-FL approach, which relies on a STL specification to identify bugs,
the study by [DST17] delves into the neighborhoods of falsifying traces within CPSs.
Their aim is to pinpoint and analyze input segments responsible for violating the overall
specification. This methodology holds promise for systematically refining test candidates
to aid in debugging processes. Another approach, focusing on Spectrum-Based Fault
Localization (SBFL), integrates trace diagnostics with model slicing techniques [BFMN18].
However, due to the absence of empirical validation, the efficacy of this SBFL method in
reducing debugging efforts remains unclear. Moreover, this approach operates under the
assumption that faults are injected into specific SUT components, limiting its applicability
and making it challenging to gauge its effectiveness comprehensively.

CPSDebug [BMM+21] is a recently introduced tool that adopts a gray-box testing
methodology to localize bugs and explain failures within CPS designs. The foundational
principles of CPSDebug, which integrate testing, specification mining, and failure analysis
to uncover faults, are extensively elaborated in [BMM+19]. Our empirical assessment
indicates that our approach surpassed CPSDebug in performance. Additionally, Singh
and Saha [SS20] propose a bug localization technique based on matrix decomposition,
leveraging falsification of STL properties. Their method provides engineers with a set of
suspected signals thought to be responsible for the violation of the STL specification.

In contrast to existing methodologies, we extend our analysis to include a broader spectrum
of fault types and mutation operators applicable to Simulink models. Additionally, we
refrain from assuming the location of seeded faults or mutations within the SUT, except for
ignoring faults within Stateflow charts. Unlike conventional fault localization techniques,
our approach integrates two distinct strategies: (1) combining equivalence testing with
search-based testing, and (2) merging specification monitoring with search-based testing.
This fusion enables us to pinpoint the fundamental cause of anomalous occurrences that
ultimately culminate in observed failures. As a result, we generate a customized list of

96

5.6. Conclusion

suspicious model variables and blocks, ideally suited to aid engineers in their debugging
endeavors.

5.6 Conclusion
Venturing into the design of fail-safe CPS entails thorough understanding of its complexity
due to heterogeneous units. Besides, it is equally important to know how to deal with
observable failures in such systems due to anomalous behavior of any of its components.
Tracing back the signals through the model components and atomic units to reveal the
faulty blocks is of significant importance in debugging. However, localizing faults in
safety-critical CPS can be extremely challenging, due to the complexity in the behavioral
dynamics of the many intertwined elements present in CPS models.

We introduced a new method for localizing faults within Simulink models of safety-critical
CPS. This approach, guided by an STL property, leverages both failing executions and
automatically generated passing executions (resembling the failing ones) to identify the
anomalous signals, thereby identifying the probable faulty blocks. Besides, we instantiated
our approach using the concept of equivalence testing, wherein fault localization is
guided by implicit specifications. We demonstrated the effectiveness of our methodology
through three distinct scenarios. Our experimental findings indicate that our approach
adeptly localizes multiple faults within acceptable fault localization cost, surpassing the
performance of CPSDebug, a state-of-the-art fault localization technique.

Data Availability Statement. The experimental data and scripts are publicly accessible
at https://gitlab.com/DrishtiYadav/fl.

97

https://gitlab.com/DrishtiYadav/fl

CHAPTER 6
Property-Based Mutation Testing

Mutation testing is a well-established technique in software quality assurance,
commonly used to evaluate test suites. However, its effectiveness is limited
when validating software against specific requirements, especially in scenarios like
embedded systems where stringent safety properties are involved. In such cases, a
mutant is relevant only if it affects the satisfaction of the tested properties, and it
is considered meaningfully-killed w.r.t. a property only if it leads to the violation
of that property.

To overcome these limitations, we propose a novel approach called Property-Based
Mutation Testing. This method assesses the ability of a test suite to exercise the
software against specific properties. We conducted experiments with our property-
based mutation testing framework on Simulink models of safety-critical CPSs from
automotive and avionic domains. Our findings demonstrate how property-based
mutation testing is more informative than traditional mutation testing. These
results pave the way for advancements in mutation testing and test case generation
for CPSs.

6.1 Introduction
Software plays a critical role in ensuring the safety of applications like autonomous
vehicles and medical devices. Insufficient software quality assurance can lead to severe

©2023 IEEE. Parts Reproduced, Reused, Reprinted, with permission, from Ezio Bartocci, Leonardo
Mariani, Dejan Ničković and Drishti Yadav, “Property-Based Mutation Testing,” 2023 IEEE Conference
on Software Testing, Verification and Validation (ICST), Dublin, Ireland, 2023, pp. 222-233, https:
//doi.org/10.1109/ICST57152.2023.00029

99

https://doi.org/10.1109/ICST57152.2023.00029
https://doi.org/10.1109/ICST57152.2023.00029

6. Property-Based Mutation Testing

system failures, posing significant risks. Therefore, it is essential to conduct thorough
testing of software to verify that it complies with critical properties. Software testing is
a key aspect of quality assurance and raises important questions: How can we determine
if test cases are capable of detecting faults? How do we assess the effectiveness of our
test suites?

Mutation testing (MT) is a widely recognized technique used to evaluate the adequacy
of a test suite with respect to a fault model [DLS78, ABD+79, OPB21, FCA22]. MT
involves introducing artificial defects into the software being tested and then assessing
the test suite’s effectiveness by measuring the percentage of injected faults that the test
suite can identify. This injection process utilizes mutation operators that systematically
modify the software according to predefined patterns, resulting in modified versions
known as mutants. A test case is said to “kill” a mutant if its execution reveals observable
differences between the original program and the mutated version. The mutation score,
calculated as the ratio of killed mutants to non-equivalent mutants, serves as a measure
of the test suite’s effectiveness. Ideally, a test suite should achieve a mutation score of
one, indicating that it can detect all injected faults.

While MT is effective for evaluating a test suite’s performance against a broad range of
faults scattered throughout the software, its effectiveness diminishes when the goal is to
validate the software against specific requirements. This is particularly evident in the
realm of embedded software, where software often undergoes validation against precisely
defined safety properties. For instance, in our experimental evaluation, we utilized the
Automatic Transmission Controller System (ATCS), which is annotated with numerous
safety properties expressed using STL. Test cases are crafted to validate the software
against these properties.

When applying mutation testing to assess a test suite’s ability to thoroughly exercise
software concerning a specific property, two key challenges arise: the relevance of the
mutants and the relevance of the executions that detect and kill these mutants.

Relevance of Mutants with respect to a Tested Property: Not every mutant is pertinent
for evaluating the effectiveness of a test suite against a given property. Specifically, only
mutants whose effects propagate in a manner that leads to a violation of the property are
deemed relevant. Mutants that do not affect a property should not factor into assessing
the adequacy of a test suite concerning that property. Traditional mutation testing fails
to differentiate between these types of mutants, thereby overlooking the distinction when
calculating the mutation score.

Relevance of the Execution that Kills a Mutant. Simply generating different outputs for
the original and mutated programs is insufficient to eliminate a mutant when evaluating
a test suite against a property. Effectively exercising the software with respect to a
property requires the differences in outputs to be significant and impactful enough to
cause a violation of the property in question. Otherwise, the test is generating differences
that are marginal w.r.t. the testing objective. For example, in our evaluation of test
cases for the ATCS against a property dictating thresholds for engine and vehicle speeds,

100

6.1. Introduction

several tests managed to trigger a mutant in the Transmission component, resulting
in output discrepancies. However, these discrepancies did not lead to violations of the
specified properties, highlighting a deficiency in the test suite. This scenario is visually
depicted in Figure 6.1 (top), where the test induces differences in engine and vehicle
speeds without surpassing the threshold. Despite regular MT counting the mutant as
killed, the test does not prompt the software to violate the property. In reality, if the fault
were present in the original model, the test would not reveal it. This underscores how
mutations can be easily killed under regular MT in data-flow models, where most of the
components are activated in every computation and values propagate through the blocks
in the model. However, these propagated values often result in minor and insignificant
output differences. Killing mutants while considering the tested properties presents a
substantially more challenging task. For instance, Figure 6.1 (bottom) illustrates a test
that successfully reveals the mutant by violating the tested properties, as demonstrated
in our experiments.

0 10 20 30
Time (seconds)

0

20

40

60

80

100

120

V
eh

ic
le

Sp
ee

d
(m

ph
)

Output (Vehicle Speed)

0 10 20 30
Time (seconds)

0

1000

2000

3000

4000

E
ng

in
e

Sp
ee

d
(R

PM
)

Output (Engine Speed)

Original model
Mutant
Threshold

0 10 20 30
Time (seconds)

0

20

40

60

80

100

120

V
eh

ic
le

Sp
ee

d
(m

ph
)

Output (Vehicle Speed)

0 10 20 30
Time (seconds)

0

1000

2000

3000

4000

E
ng

in
e

Sp
ee

d
(R

PM
)

Output (Engine Speed)

26 28 30

116

118

120

122

Figure 6.1: Output plots for the original and mutated models of ATCS: (top) for a
test case satisfying the property on the mutant, (bottom) for a test case violating the
property on the mutant. The portion of the output trace (vehicle speed) responsible for
property violation is highlighted.
©2023 IEEE.

Contributions. In this chapter, we address these challenges by introducing the concept
of Property-Based Mutation Testing (PBMT) aimed at evaluating test suites against
properties or specifications. In doing so, we redefine key aspects of mutation testing
to gauge the efficacy of test suites in effectively exercising the software with respect to

101

6. Property-Based Mutation Testing

a property. Additionally, we devise a search-based test generation approach tailored
for Simulink models to systematically identify relevant mutants that could be killed
through meaningful executions, among a pool of injected mutants. Through empirical
analysis, we demonstrate that PBMT offers greater insights compared to traditional MT
in assessing the comprehensiveness of test suites. This evaluation is conducted using two
benchmarks within the realm of safety-critical CPSs, whose requirements are expressed
in STL formalism.

In summary, this chapter presents the following contributions:

1. Introduction of the innovative concept of Property-Based Mutation Testing designed
for testing software against properties.

2. Definition of a search-based strategy aimed at automatically identifying the mutants
relevant to PBMT experiments.

3. Presentation of empirical findings derived from experiments conducted on Simulink
models, illustrating the superior informativeness of PBMT compared to traditional
MT when assessing software against properties.

Chapter Organization. Section 6.2 introduces Property-Based Mutation Testing, our
proposed methodology. Section 6.3 details the process of testing CPS Simulink models
against STL specifications. Section 6.4 outlines our evaluation of two safety-critical
industrial benchmarks. Threats to validity are discussed in Section 6.5, while lessons
learned are described in Section 6.6. Related work is presented in Section 6.7, and
Section 6.8 concludes the chapter.

6.2 Property-Based Mutation Testing
In this section, we introduce PBMT, a mutation testing methodology aimed at validating
test suites against programs and their properties. This approach assumes a program P
written in a language L as the SUT, a property φ of the SUT, a test suite T , and a set
of mutation operators O. PBMT assesses the extent to which the test suite T validates
P against the property φ, focusing on the ability of T to uncover faults —as specified by
O—that could affect φ.

Definition 6.2.1 (φ-killed mutant). “A mutant p is said to be φ-killed by a test suite
T ⊂ T P

U iff ∃ a test case t ∈ T such that the following conditions hold:

1. O(t, P) |= φ, i.e., t satisfies φ when executed on the original program P, and
2. O(t, p) ̸|= φ, i.e., t violates φ when executed on the mutant p. It follows that t

exercises the mutation/fault in p in such a way that its effect is propagated to the
output up to the violation of the property φ.” [BMNY23]

©2023 IEEE. Parts Reproduced, with permission, from Ezio Bartocci, Leonardo Mariani, Dejan
Ničković and Drishti Yadav, “Property-Based Mutation Testing,” 2023 IEEE Conference on Software
Testing, Verification and Validation (ICST), Dublin, Ireland, 2023, pp. 222-233, https://doi.org/10.1109/
ICST57152.2023.00029

102

https://doi.org/10.1109/ICST57152.2023.00029
https://doi.org/10.1109/ICST57152.2023.00029

6.2. Property-Based Mutation Testing

The above two conditions together ensure that executing the mutant p with a test case t
results in an output that violates the property φ (i.e., O(t, p) ̸|= φ), while the original
program still satisfies it (i.e., O(t, P) |= φ). This indicates that the test effectively
exercises the software, so that if a fault is present, it is propagated to the output, creating
significant behavioral differences that ultimately violate the property φ.

Analogous to the concept of equivalent mutants in traditional mutation testing, we
introduce a refined category called φ-trivially different mutants. The idea here is that a
mutant is not only considered irrelevant if it behaves identically to the original program,
but also if the behavioral differences it introduces are insignificant with respect to the
property φ. In other words, no test case t ∈ T P

U can distinguish between the mutant p
and the original program P in terms of the property φ.

Definition 6.2.2 (φ-trivially different mutant). “A mutant p is φ-trivially different from
P iff ∄t ∈ T P

U : O(t, P) |= φ ∧ O(t, p) ̸|= φ.” [BMNY23]

The group of φ-trivially different mutants encompasses equivalent mutants. However,
determining which mutants are φ-trivially different is an undecidable problem.

Definition 6.2.3 (φ-adequate test suite). “A test suite T is φ-adequate w.r.t. a set
of mutation operators O if it kills all the non φ-trivially different mutants that can be
generated by O.” [BMNY23]

Definition 6.2.4 (Mutation score [BMNY23]). Given a program P, a set of mutation
operators O and a test suite T , if KDφ represents the φ-killed mutants and NTDφ

represents the non φ-trivially different mutants, then the mutation score assigned to T is
given by:

MSφ = |KDφ|
|NTDφ| (6.1)

The goal of developing test suites that meet the requirements of PBMT leads to what
is known as the Mutant Killing Problem. In essence, this problem entails finding a
test case t for a given program P and a mutant p of P , along with a property φ, where t
satisfies O(t, P) |= φ, while O(t, p) ̸|= φ.

PBMT poses unique challenges compared to regular MT:

• Higher risks of introducing φ-trivially different mutants: PBMT may generate more
irrelevant mutations compared to MT. In PBMT, in addition to equivalent mutants,
there could be mutants that are not equivalent but introduce irrelevant differences
concerning a property φ.

• Harder to kill mutants: In PBMT, mutants must be exercised in a way that not
only propagates to the output but also leads to the violation of φ. This requirement
makes killing mutants in PBMT more challenging compared to MT, as it necessitates
more stringent test cases that specifically target the violation of the property φ.

103

6. Property-Based Mutation Testing

6.3 Mutation Testing of CPS Simulink Models
We apply PBMT to safety-critical CPS Simulink models, which utilize STL to express
system safety properties. The fundamentals of Simulink models and STL are covered
in Chapter 2. In this section, we introduce a novel method to automatically identify
mutants that could be φ-killed (i.e., killed with respect to a property φ) by test suites.

6.3.1 Search-Based Generation of Mutation Adequate Test Cases
One of the primary challenges in mutation testing, including PBMT, lies in accurately
calculating the mutation score, which is complicated by the undecidable nature of
identifying equivalent mutants. In PBMT, this challenge is even harder due to the
necessity of identifying φ-trivially different mutants, which extend beyond equivalent
mutants. To tackle this problem, we devised a search-based test generation approach
leveraging insights into mutant locations to produce targeted executions, determining
whether a mutant can be φ-killed. While this method does not provide insights into
mutants not killed by the procedure, our experimental findings suggest that assuming
it can identify all φ-killable mutants offers a reasonable approximation of the mutation
score.

It is worth noting that the proposed test generation strategy is not feasible for generating
tests in real-world scenarios since it relies on knowledge of fault locations typically
unavailable during software testing. Nonetheless, within the PBMT framework, this test
generation strategy proves useful for gathering precise empirical data about the number
of φ-killable mutants.

Specifically, we define the ‘Property-based test search problem’ as an optimization
challenge aimed at discovering a φ-adequate test case, expressed as:

Property-based test search problem

Input: a Simulink model M, a FOM M′ (where signal s is altered to signal s′ or
block b with output s is modified to block b′ with output s′), and a property φ.
Problem: Find a test case t such that ρ(O(t, M), φ) > 0, ρ(O(t, M′), φ) < 0 and
D(s, s′) is maximum.

Our proposed ‘Property-based test search problem’ integrates three essential aspects, two
stemming from the definition of φ-killed mutant and one directing the search towards
the mutant and generating an execution that effectively alters the system state:

• ρ(O(t, M), φ) > 0 necessitates finding a test that succeeds on the original program.
• ρ(O(t, M′), φ) < 0 necessitates finding a test that violates φ in the modified

program.
• Maximizing D(s, s′) ensures that the mutation significantly affects the internal

signal.

104

6.3. Mutation Testing of CPS Simulink Models

We select the Euclidean distance (also known as the L2 norm) as the metric to calculate
the distance between s and s′. Given that CPS models consist of continuous real-valued
variables, the Euclidean distance, a widely used metric for real vector spaces, is an
appropriate choice for this computation. More precisely, for two signals of finite length
(each with k samples), denoted as s = (s1, · · · , sk) and s′ = (s′

1, · · · , s′
k), the Euclidean

distance between s and s′ is defined mathematically as:

D(s, s′) = ||s − s′||2 =

&''% k(
i=1

(si − s′
i)2

The optimization objective is to maximize D(s, s′) while ensuring that ρ(O(t, M), φ) > 0
and ρ(O(t, M′), φ) < 0 are met. To address this, we leverage BCA [Yad21], a global
optimization technique discussed in Chapter 4 and detailed in Algorithm 6.1. We selected
BCA due to its superior convergence and speed compared to other available optimizers.
Algorithm 6.1 adapts the standard BCA approach with two modifications. Firstly, the
initial population (Line 2) comprises randomly generated test cases within their valid
numerical input range. Secondly, fitness (Line 3) corresponds to the test objective function
value for the test cases, obtained by transforming the constrained optimization problem
into an unconstrained one using the scalar penalty constraint handling method [Coe02].
The algorithm iteratively updates the test cases (Lines 6-8) and selects the best solution
for the new population based on their fitness values (Lines 9-10). The fittest candidate
among all others in the population becomes the new global best solution (Lines 11-14).
Termination of Algorithm 6.1 (loop at Line 5) occurs upon finding a test case satisfying
the optimization constraints or exhausting the budget (time or maximum iterations).
For every mutant, we address the ‘Property-based test search problem’ to identify a test
case that kills it with respect to φ. The test suite generated through this process becomes
a fault-directed test suite, designed to uncover all the non φ-trivially different mutants.

6.3.2 Test Suite Reduction
To ensure the practicality of the fault-directed test suite, we implement an automatic
size reduction mechanism. We define a test case tr as φ-redundant with respect to a
fault-directed test suite T if the set of φ-killed mutants remains the same after adding tr

to T . In simpler terms, if including tr does not result in the discovery of any new φ-killed
mutants, then it is considered redundant in the context of T , i.e., |KDφ|T = |KDφ|T ∪ tr .
A φ-non-redundant test suite is one that excludes φ-redundant test cases. Typically, a test
suite may include redundant test cases without compromising its testing power, meaning
these redundant cases can still detect the same mutants with respect to φ. Essentially, a
single test case may be effective in detecting multiple mutations.
In our experiments, we employ a greedy algorithm similar to the one outlined in [PURMPL12]
for reducing the test suite size. Theoretically, covering all p non φ-trivially different
mutations would demand p test cases in the worst-case scenario. However, in practical
scenarios, a smaller number of tests typically prove sufficient.

105

6. Property-Based Mutation Testing

Algorithm 6.1: Search-based test generation.
Input : M : A Simulink model.

M′ : A mutant of M.
φ : An STL specification.

Output : tbest : A test case that φ-kills M′.
1 Initialize optimizer parameters
2 IP ← GenerateInitialPopulation()
3 FP ← Fitness(IP, M, M′, φ)
4 tbest, Fbest ← BestFound(FP)
5 while TimeOut() do
6 for each candidate k ∈ IP do
7 knew ← Update(k)
8 end for
9 FP ← Fitness(IP, M, M′, φ)

10 tnew, F ← BestFound(FP)
11 if F > Fbest then
12 Fbest ← F ; // update best fitness
13 tbest ← tnew ; // update best test

14 end if
15 end while
16 return tbest

6.4 Evaluation

Our evaluation seeks to investigate Property-Based Mutation Testing (PBMT) concerning
the testing of CPS Simulink models against STL properties, in comparison to regular
Mutation Testing (MT).

6.4.1 Research Questions

Our experiments seek to answer the following research questions:

RQ-6.1: Does PBMT provide a more accurate assessment of test suite adequacy compared
to MT when focusing on a safety property? To address this question, we evaluate the
effectiveness of various test suites using both PBMT and MT. We analyze the resulting
scores to determine how well the test cases exercise the software with respect to the
target property.

RQ-6.2: Do all mutation operators have an equal impact on PBMT? This question
explores the influence of various mutation operators on the mutation score, with the
goal of identifying operators that produce mutants that are either easily detectable or
challenging to detect.

106

6.4. Evaluation

Table 6.1: Details of Simulink models of our case studies.

Model Ref. #Blocks #Lines φ (STL specification) qT Sample time #Samples

ATCS [Don10] 65 92 □((v ≤ v̄) ∧ (ω ≤ ω̄)) 30 0.04 751
AECS [BMM+21] 825 577 □(↑ (cmd ≥ m) → ♦[0,T]□[0,a](|cmd − pos| ≤ n)) 10 0.01 1001
©2023 IEEE.

6.4.2 Experimental Setup
We performed our experiments on a MacBook Pro with Apple M1 chip, 16 GB RAM,
macOS Monterey with MATLAB™ R2018b. For our evaluation, we developed a prototype
implementation of both PBMT and MT with CPS Simulink models in MATLAB. We
used the RTAMT library [NY20] for offline evaluation of STL properties.

1. Our analysis is limited to FOMs.
2. Given that our simulations typically have a predetermined duration, we adopt a finite

time horizon (referred to as simulation time qT) for the Simulink models.
3. We presume a uniform (i.e., fixed-length) sampling interval in the Simulink models.
4. In each case of mutation, we assume that the fault is activated at the beginning of the

simulation and persists until its end.

Below, we delineate our experimental subjects, mutants, and test suites.

6.4.2.1 Experimental subjects

We assess PBMT using Simulink models from two industrial benchmarks within the
safety-critical domain. These benchmarks, namely the Automatic Transmission Controller
System (ATCS) and the Aircraft Elevator Control System (AECS), are publicly accessible
in the Simulink/Stateflow online documentation of MathWorks [Mat22d,Mat22a]. Both
systems are indicative of safety-critical CPS in terms of their size, complexity, and system
dynamics. These two models were previously discussed in Chapter 5. A summary of
their details is provided in Table 6.1.

6.4.2.2 Fault seeding and mutant generation

For each experimental subject, mutants were created using our FIM tool [BMNY22a]
(discussed in Chapter 3), which offers a range of mutation operators tailored for Simulink
models. We expanded FIM’s capabilities by introducing two supplementary operators
for injecting faults into Look-Up Tables (LUTs): (1) Injecting a stuck-at 0 fault into
any single entry, and (2) Exchanging entries between two randomly selected neighboring
positions.

Table 6.2 presents the count of mutants produced for each subject concerning the
particular mutation operator. In Table 6.3, the total number of mutants generated for
each subject and their respective generation time is provided. Notably, the process of

107

6. Property-Based Mutation Testing

mutant generation is fast, with an average duration of 1.74 seconds per mutant across
both ATCS and AECS.

Table 6.2: Number of mutants of our experimental subjects.

Type # Mutants
ATCS AECS

Noise 13 17
Bias/Offset 13 17
Negate 13 17
Absolute 13 17
ROR 0 10
S2P 1 3
P2S 2 6
ASR 3 8
LUT 2 5
©2023 IEEE.

Table 6.3: Information of generated mutants.

Subject Mutants generated Mutant generation time (seconds)
ATCS 60 68.76
AECS 100 261.64

©2023 IEEE.

6.4.2.3 Test Suite

To evaluate PBMT against MT, we compare test suites generated using two dis-
tinct strategies: Adaptive Random Testing (ART) [LNLB19] and Falsification Testing
(FT) [ADD+17,AH15]. ART serves as a baseline method that produces test cases uni-
formly distributed across valid input ranges, ensuring diversity in inputs. Conversely, FT
focuses on generating counterexamples, i.e., test cases that violate a given property for a
specific model [ZHA19,ZLA+21]. It is important to note that ART and FT operate in
fundamentally different ways. ART prioritizes generating numerous test inputs quickly,
emphasizing diversity but overlooking the specific property being tested. Conversely,
FT concentrates on creating tests specifically designed to violate the property under
examination. In FT, for each mutant M′, the objective is to generate a test case t such
that O(t, M′) ̸|= φ, indicating a violation of the property φ. The underlying hypothesis
suggests that while ART may yield a higher overall mutation score (MS), it might
result in a smaller mutation score specifically related to the property φ (MSφ) since the

108

6.4. Evaluation

generated tests are not tailored to φ. Conversely, FT may kill fewer mutants overall but
is expected to target more mutants relevant to φ, potentially resulting in a higher MSφ.

In our assessment, we created 30 test cases for ATCS and 50 for AECS using ART.
Meanwhile, FT generates a test that violates the property for each mutant, if successful.
In our falsification testing experiments, we utilize the BCA method and the S-TaLiRo
tool, as detailed in Chapter 4 (see Section 4.6.2.2), to generate test suites TF T −BCA and
TF T −S−T aLiRo. For S-TaLiRo, we use the built-in Simulated Annealing (SA) optimizer.

To gather data for addressing our research questions, we executed all test cases in the
test suite for each subject and mutant generated. For our experiments, we employed
parallel execution of multiple simulations using the Parallel Computing Toolbox™ within
the MATLAB/Simulink®environment. Table 6.4 presents the total number of executed
test cases (including both suites) and the overall execution time for each subject.

Table 6.4: Scale of Experiments.

Subject Total test cases executed Total execution time (seconds)
ATCS 150 4,768
AECS 250 43,412

©2023 IEEE.

6.4.3 Results
RQ-6.1 explores how effectively PBMT can assess the comprehensiveness of a test suite
concerning a safety property that the software-under-test must meet. We compare MT
and PBMT on our experimental subjects and calculate the mutation scores MS and
MSφ. It is worth noting that we utilize identical mutants to calculate both scores. The
outcomes are summarized in Table 6.5. The results for regular mutation testing (MT)
and Property-Based Mutation Testing (PBMT) are presented in separate rows, with
columns representing the ATCS and AECS subject systems. Each subject system displays
the scores attained by test suites generated through Adaptive Random Testing (TART)
and Falsification Testing (TF T −BCA and TF T −S−T aLiRo). Specifically, we provide details
on the number of generated mutants, the count of killable and φ-killable mutants, the
mutants killed by each test suite according to MT and PBMT, and finally the mutation
scores MS and MSφ.

To identify the killable mutants, we embarked on identifying the equivalent mutants.
Our examination of the non-killed mutants aimed to identify mutations that produced
variants indistinguishable from the original program. With a high degree of confidence,
we successfully identified all equivalent mutants. Indeed, all 13 equivalent mutants within
the ATCS model fall under the Absolute fault type, introduced in the ‘Transmission’
component. Each of these mutants attempts to alter certain signals into positive values,
a modification that is invalid due to the nature of those signals, which cannot be negative.

109

6. Property-Based Mutation Testing

Similarly, the AECS model encountered a comparable scenario, with 17 equivalent
mutants exhibiting the same behavior. For the identification of φ-killable mutants, we
leveraged the Search-Based Test Generation (SBTG) technique detailed in Algorithm 6.1.
Notably, the computational cost of the SBTG strategy exceeds that of ART and FT due
to its optimization constraints. Our procedure successfully pinpointed every φ-killable
mutant across thirty independent runs of the search algorithm, using a maximum of
1000 iterations as the stopping criterion. All the remaining φ-trivially different mutants
consist of equivalent mutants that are not susceptible to being killed. This outcome
reinforces our confidence in the effectiveness of our method to facilitate fully automated
experiments with Simulink models. We make the assumption that the mutants which are
not killed by our strategy are φ-trivially different mutants, indicating that they do not
need to be killed. Consequently, these mutants are omitted from the calculation of MSφ.

Table 6.5: Results of Mutation Testing.

Approach ATCS AECS
TART TF T −BCA TF T −S−T aLiRo TART TF T −BCA TF T −S−T aLiRo

MT

Mutants 60 60 60 100 100 100
Killable mutants 47 47 47 83 83 83
Killed mutants 47 46 46 74 70 69
Mutation Score MS (in %) 100% 97.87% 97.87% 89.15% 84.33% 83.13%

PBMT

Mutants 60 60 60 100 100 100
φ-killable mutants 47 47 47 83 83 83
φ-killed mutants 25 27 26 39 35 33
MSφ (in %) 53.19% 57.44% 55.32% 46.98% 42.16% 39.76%

©2023 IEEE.

When comparing the results between MT and PBMT, it is evident that the mutation
score obtained with MT is notably higher compared to PBMT. Specifically, the mutation
score (MS) ranges between 83.13% and 100% across all four test suites and both
subject systems. In contrast, the MSφ values range between 39.76% and 57.44%. This
disparity can be attributed to the inherent characteristics of Simulink models and data-
flow computations. In such models, it is generally easy to activate every component,
essentially covering all elements in the program. However, ensuring these components
effectively contribute to the computation, propagating faults to the output and causing
observable issues, is considerably more challenging. In essence, while reaching faults
may be relatively straightforward, meaningfully propagating and detecting faults presents
a greater difficulty. This trend is consistent across the test suites generated using two
different strategies.

These findings underscore the potential pitfalls of relying solely on MT, particularly
when critical properties need validation. For instance, consider the scenario depicted in
Figure 6.1 (top), where a test case can successfully “kill” a mutant but fails to “φ-kill”
it. Indeed, the test suites produced through ART and FT attain high mutation scores
(MS), potentially leading testers to conclude that the software is thoroughly being
tested. However, upon closer inspection, it becomes evident that these test cases may not

110

6.4. Evaluation

adequately detect even simple faults, such as those we introduced, which could impact
the property under consideration.

It is noteworthy that FT, which aims to falsify the property, does not necessarily kill more
mutants compared to ART, which prioritizes diversity over property testing. Moreover,
considering that nearly half of the killable mutants were not effectively targeted by the
φ-killing process, this highlights the necessity for further investigation into thoroughly
testing software concerning specific properties, particularly in the context of Simulink
programs.

Another notable observation is that all mutants killed by TF T −S−T aLiRo were also killed by
TBCA. However, TBCA, for both AECS and ATCS, achieved higher MSφ values compared
to TF T −S−T aLiRo. This indicates that BCA-based falsification testing generates test suites
capable of φ-killing mutants that were not addressed by the tests produced by S-TaLiRo.

Upon evaluating the tests, we observed a notable level of redundancy, wherein each
test had the ability to kill multiple mutants. Surprisingly, all mutants that were killed
by ART could be targeted by a single test. This underscores the notion that while
some surface faults are readily detectable, others, despite their simplicity, demand more
intricate testing methodologies for detection.

Conversely, our investigation revealed that it took four test cases, generated through our
SBTG technique, to uncover all 47 φ-killable mutations in ATCS. Similarly, a set of 12
test cases was sufficient to detect all 83 φ-killable mutations in AECS. This indicates
that while compact yet effective test suites can be devised to identify faults using PBMT,
a larger number of tests is necessary compared to regular MT to φ-kill the mutants.

RQ-6.2 examines the impact of individual mutation operators in PBMT. The objective is
to distinguish between operators that produce mutants easily captured by tests (referred
to as simple mutants), which may not significantly enhance test suite adequacy assessment,
and those generating mutants that are difficult to detect (known as stubborn mutants),
which could contribute more to assessing test suite thoroughness.

The results detailed in Table 6.6 encompass several metrics for each mutation operator:
(1) the count of generated mutants, (2) the count (and %) of φ-trivially different mutants,
(3) the count (and %) of NTDφ (non φ-trivially different mutants), (4) the mutation
score attained through ART, (5) the mutation score attained through FT, and (6) the
number (and %) of NTDφ mutants not killed by any test generation method (neither
ART nor FT). Note that Table 6.6 presents the combined results across both experimental
subjects (ATCS and AECS). Since BCA-based falsification testing produced test suites
that successfully φ-killed mutants which were not addressed by S-TaLiRo, we present the
results for TF T −BCA in Table 6.6.

Around fifty percent or more of the mutations generated by the Negate, ROR, S2P, and
ASR operators remained unkilled by either ART or FT. This observation hints that these
operators could potentially be more beneficial for PBMT, as they seem to produce faults
that are less easy to propagate to the output.

111

6. Property-Based Mutation Testing

Ta
bl

e
6.

6:
Su

m
m

ar
y

of
re

su
lts

of
PB

M
T

fo
r

in
di

vi
du

al
op

er
at

or
s.

N
o
i
s
e

N
e
g
a
t
e

B
i
a
s

A
b
s
o
l
u
t
e

R
O
R

S
2
P

P
2
S

A
S
R

L
U
T

#
M

ut
an

ts
ge

ne
ra

te
d

30
30

30
30

10
4

8
11

7
#

(%
)

of
φ

-t
riv

ia
lly

di
ffe

re
nt

m
ut

an
ts

0
(0

%
)

0
(0

%
)

0
(0

%
)

30
(1

00
%

)
0

(0
%

)
0

(0
%

)
0

(0
%

)
0

(0
%

)
0

(0
%

)
#

(%
)

N
T

D
φ

30
(1

00
%

)
30

(1
00

%
)

30
(1

00
%

)
0

(0
%

)
10

(1
00

%
)

4
(1

00
%

)
8

(1
00

%
)

11
(1

00
%

)
7

(1
00

%
)

M
S φ

A
R

T
(in

%
)

66
.6

7%
43

.3
3%

46
.6

6%
0%

0%
25

%
62

.5
%

45
.4

5%
85

.7
1%

M
S φ

F
T

(in
%

)
70

%
43

.3
3%

50
%

0%
0%

25
%

62
.5

%
45

.4
5%

28
.5

7%
#

(%
)

N
T

D
φ

no
tk

ill
ed

by
A

RT
+

FT
9

(3
0%

)
17

(5
6.

66
%

)
15

(5
0%

)
0

(0
%

)
10

(1
00

%
)

3
(7

5%
)

3
(3

7.
5%

)
6

(5
4.

54
%

)
1

(1
4.

28
%

)
©2

02
3

IE
EE

.

112

6.5. Threats to Validity

For example, all mutations created by the Negate operator in the AECS system affected
the Right Outer Hydraulic Actuator component. Although existing test cases could
readily infect the execution, such as altering the output of the ‘Line resistance’ block,
they were unable to fully propagate the impact due to the presence of an intermediate
signal (for instance, ‘Piston Force’), which masks alterations if they are not sufficiently
large.

None of the mutations introduced by the ROR operator were identified by TART and TF T .
Specifically, we noted that for all available test cases t ∈ TART ∪TF T , the robustness value
assessed for the STL property remained unchanged for every ROR mutant, mirroring the
behavior of the original model. However, certain test cases were able to induce noticeable
differences in the outputs and effectively φ-kill the mutants, as demonstrated by tests
generated using our SBTG technique.

Mutations produced by the S2P operator have also proven challenging to φ-kill. Further-
more, certain mutations generated by the ASR operator could not be identified by test
cases within TART and TF T . Despite altering internal signals, these mutations do not
impact the data-flow computations or signal propagation necessary to affect the property.
For instance, consider the ASR mutation in the ‘Hydraulic Actuator’ component of the
Right Inner Hydraulic Actuator unit of AECS, where the substitution of −+ with +−
induces notable changes in the local signal but lacks the strength to φ-kill the mutant.

Conversely, two operators did not yield significant benefits. The Absolute operator
solely produced equivalent mutants, implying caution in its application, especially in
systems designed to handle negative values. It is crucial to exercise control over where
faults are injected when employing this operator, although such scenarios are rare in
CPS. Overall, no valuable mutations were observed in our study subjects. Regarding the
LUT operator, all mutations were easily φ-killable except for one, which generated values
challenging to propagate to the output, yet feasible to propagate, as evidenced by the
test suites generated using our SBTG method. Despite being the sole operator targeting
look-up tables, testers may opt to omit it under stringent time constraints during testing.

6.5 Threats to Validity

We now delve into the validity threats, focusing on various perspectives and potential
risks:

External validity. One significant threat to external validity revolves around the
applicability of our findings to other software systems. Our experiments were conducted
within the domain of data-flow oriented computations, specifically focusing on Simulink
models. It is important to acknowledge that our observations might not be universally
applicable across different contexts, such as object-oriented programs. However, within
the realm of safety-critical CPS Simulink programs, where testing against safety properties
holds paramount importance, our results are notably clear and relevant. Furthermore,

113

6. Property-Based Mutation Testing

the manageable scale of our experiment facilitated manual mutation analysis, enabling
us to identify equivalent mutants effectively.

Another validity concern pertains to the representativeness of the injected faults. Our
study’s outcomes are based on common mutation operators tailored for Simulink models,
utilizing our FIM tool [BMNY22a] (discussed in Chapter 3) and its predefined mutation
operators. Additionally, we augmented these operators with extra mutation operator
to address LUTs. However, the absence of evidence regarding real faults limits the
breadth of our conclusions. We posit that our approach could potentially be expanded
to encompass models that possess documented (real) faults, thus alleviating this concern.
This avenue represents a potential direction for future research.

Internal validity. In our experiments, we solely examined FOMs, denoting faulty
Simulink models with only one fault/mutation. Models may harbor multiple faults/mu-
tations that could interact with one another. Consequently, the outcomes might diverge
when investigated with multi-fault Simulink models. However, given that the majority of
existing research on MT centers on FOMs of software artifacts [ALN13,TCPB+20], we
evaluated our technique using single-fault models, deferring the exploration of HOMs for
future investigations.

Conclusion validity. The primary threat to conclusion validity is random variations.
To mitigate this threat, we conducted thirty independent runs of the test generation
algorithms.

6.6 Insights and Reflections
We now walk through the lessons learned and insights gained from our experiments.

Insight 1 - Generating PBMT-adequate test suites presents challenges. Our
investigation reveals that neither of the two leading test generation strategies for Simulink
programs (of our two experimental subjects) achieved a high mutation score with PBMT.
Unlike regular MT, PBMT is more intricate: a test case capable of killing a mutant may
not effectively φ-kill the same mutant. Given the significant reliance of the embedded
software industry on properties for verification and validation, there is a pressing need to
develop testing tools that comprehensively assess software functionality. The conceptual-
ization of PBMT represents a notable advancement in the field, potentially shaping the
development of more refined and effective test generation strategies.

Insight 2 - MT inadequately gauges the comprehensiveness of a test suite.
While MT remains applicable to Simulink programs, its effectiveness is limited. Test
generation techniques may successfully kill mutants if properties are not taken into
account. This highlights the necessity of designing test cases that not only cover mutants
but also propagate the errors generated by mutants, thereby enhancing their detectability
in the output and the system properties. These crucial aspects of testing are not
adequately addressed within the scope and framework of traditional MT.

114

6.7. Related Work

Insight 3 - Test case generation guided by PBMT can yield effective test
cases. We introduced a Search-Based Test Generation (SBTG) technique aimed at
identifying test cases capable of φ-killing mutants. This approach has proven highly
effective in φ-killing mutants, suggesting its potential as a foundation for developing a
mutation-based test case generation strategy.

Insight 4 - Not all mutations equally contribute to testing CPS Simulink
models. Our findings suggest that certain mutation operators tend to produce mutants
that are less informative for testing purposes, i.e., they generate φ-trivially different
mutants. For example, the Absolute operator consistently generated equivalent mutants,
indicating its limited utility. Conversely, operators such as Negate, ROR, and ASR
produced mutants that were challenging to φ-kill, emphasizing the need for test case
generation strategies that thoroughly exercise the software in non-trivial manners.

6.7 Related Work
Mutation Testing. From a software engineering standpoint, MT stands out as a powerful
software testing method for evaluating the quality of test suites [DLS78,ABD+79]. The
literature on MT and analysis encompasses a broad array of theoretical inquiries and
empirical explorations across various software artifacts [JH11,SdSdS17].

The work in [PM11] combines symbolic execution, concolic execution, and evolutionary
testing to automate the test generation for weak MT of programs. Along a similar line of
research, the work in [PM12] introduces a path selection strategy aimed at selecting test
cases capable of killing the mutants. Additionally, efforts to minimize test suites have
been explored through techniques like Integer Linear Programming (ILP) [PLEBMBN18],
Greedy algorithms [JSKW16,PURMPL12], formal concept analysis [LG15], etc.

Several notable studies have investigated the applicability of MT to safety-critical in-
dustrial systems, as evidenced by empirical inquiries such as those reported in [BH12,
RWK17, DPHG+18, OPB21]. While the work in [OPB21] proposes a comprehensive
mutation analysis pipeline for assessing the quality of test suites for embedded software,
it overlooks the significance of software properties and how they should be handled during
MT. In contrast to conventional MT research, our approach incorporates properties
(allowing to express software requirements and specifications), enabling the formalization
of the notion of killing the mutants.

Mutations with Simulink models. Mutation in Simulink models primarily involves
introducing faults through alterations using mutation operators [B+12]. Various tools
and techniques have been proposed by researchers for generating mutants in Simulink
models, including SIMULTATE [PRWN16], MODIFI [SVET10], ErrorSim [SMSJ17] and
FIBlock [FMMJ21]. Additionally, SLforge [CMM+18] is noteworthy for its capability
to automatically generate random valid Simulink models for conducting differential
testing. Our work also introduces FIM (as discussed in Chapter 3), a toolkit designed
for systematically injecting faults into Simulink models in an automated manner. For

115

6. Property-Based Mutation Testing

our experiments, we chose FIM due to its higher level of automation compared to other
available tools.

Mutation-based test case generation. Mutation-based test case generation ap-
proaches in regular MT utilize mutants to generate test cases capable of identifying
errors and detecting mutants. Certain approaches focus on generating tests that uncover
mutations introduced in the specification, such as in UML models [KST+15,AAJ+14,
ABJ+15,ABJK11,KS16,FKS+19]. Property-Based Mutation Testing (PBMT), however,
diverges in several aspects: it does not aim at mutations within the specification, and it
introduces a unique concept in MT.

Existing methods for addressing Simulink models primarily concentrate on targeted
test-data generation, utilizing approaches such as search-based testing [ZC05,ZC08] or
behavioral analysis methods (like bounded reachability) [BHM+09,HRK11]. Essentially,
these techniques aim to create a test suite suitable for MT, achieving full mutation
coverage based on the RIP model. Drawing inspiration from these methods, we developed
our search strategy to automatically φ-kill mutants. Moreover, PBMT introduces a
unique form of MT that evaluates the adequacy of test suites concerning properties, a
concept not previously explored in mutation-based testing.

6.8 Conclusion
We introduced Property-based Mutation Testing (PBMT), an innovative approach aimed
at assessing the effectiveness of test suites concerning software properties. Our formulation
of mutant killability addresses the satisfaction (and violation) of a property in the original
program (and its mutated version). We establish rigorous semantics for PBMT and its
associated problem of mutant killing, enabling the generation of test cases through a
global optimizer-based search. Employing various test generation strategies, we examined
their impact on mutant killability.

Our investigation of PBMT focused on two Simulink models within the safety-critical CPS
domain, demonstrating the greater challenge and significance of testing software against
properties compared to conventional MT, where mutants are easily killed. Ultimately, our
assessment highlights the limitations of state-of-the-practice Adaptive Random Testing
and Falsification Testing techniques in generating test suites capable of effectively killing
mutants when evaluated against properties.

Data Availability Statement. The tools and experimental data are publicly accessible
at https://gitlab.com/DrishtiYadav/mt to facilitate reproduction and support future
research.

116

https://gitlab.com/DrishtiYadav/mt

CHAPTER 7
Signal Feature Coverage and

Testing

Designing CPSs typically involves dataflow modeling, which has a structure different
from traditional software, rendering standard coverage metrics inadequate for
thorough testing. To overcome this limitation, we introduce signal feature coverage,
a new metric for systematically testing CPS dataflow models. Signal feature
coverage is derived by leveraging various signal features. We developed a testing
framework within Simulink® to generate test cases based on this coverage metric.
Our approach was evaluated through experiments on five Simulink® models tested
against various STL specifications. The results show that our coverage-based
testing approach significantly outperforms state-of-the-art testing methods in
terms of fault detection capability.

7.1 Introduction
As discussed in Chapter 1, detecting faults promptly is vital in the CPS development
process because fixing issues after hardware integration is extremely expensive. With
the rising complexity of safety-critical CPSs [Res23], the importance of thoroughly
testing CPS dataflow models becomes more evident, highlighting the need for robust test
generation strategies that can swiftly identify and resolve potential issues. In embedded
software testing, the effectiveness of test suites is frequently assessed by examining their

The content of this chapter is from the following unpublished work which is currently under
submission: Ezio Bartocci, Leonardo Mariani, Dejan Ničković and Drishti Yadav, “Signal Feature
Coverage and Testing for CPS Dataflow Models”.

117

7. Signal Feature Coverage and Testing

code coverage and their fault-detection capabilities. Structural coverage metrics, such as
statement and branch coverage, are widely employed in both research [FA11,YLW06]
and industry [IPJF19]. These metrics assess how thoroughly a test suite exercises a
system’s components, identifying potential gaps in the testing process. Despite that, a
large body of related research works have shown that depending exclusively on structural
coverage criteria is frequently inadequate for identifying faults in software programs and
models [GRS+16, IH14, NA09, SP10]. This is especially the case for standard metrics
used in CPS dataflow models. Because of the interconnectedness of the elements in
these models, running a test case to cover one element often results in the activation of
multiple other elements. For example, our experiments showed that an average of 7.6
random test cases could cover over 90% of the signals in the CPS models we tested. In
one instance, a single test was enough to cover all the signals in the model. Consequently,
assessing structural coverage offers minimal understanding of a test suite’s effectiveness,
which might result in undetected flaws in the system. For comprehensive testing of CPS
dataflow models, it is vital to employ more advanced coverage metrics that accurately
reflect the complex behaviors and interactions within these models.

This chapter of the thesis introduces a novel approach to tackle this challenge, presenting
the concept of signal feature coverage. This coverage criteria involves the comprehensive
exploration of the internal signals within a CPS dataflow model, considering their diverse
time and frequency features. Unlike traditional coverage metrics constrained within the
0-100% range, signal feature coverage intentionally operates in an unbounded domain
from 0 to infinity, acknowledging that there is always room for more thorough software
testing. Much like traditional structural metrics, enhancing coverage can incur significant
costs, necessitating a careful balance between costs and benefits.

It is crucial to emphasize that our contribution goes beyond just introducing a new
coverage criterion. Building upon this concept, we developed Feature-Coverage Testing
(FCT), a search-based test generation strategy aimed at generating test suites that
maximize signal feature coverage. Additionally, we apply our FCT method to various
combinations of target signals and their specific features. The initial variant, termed
Comprehensive Feature-Coverage Testing, focuses on exhaustively testing the system
by maximizing the signal feature coverage of all features across all signals within a
dataflow model. Moreover, we explore a testing scenario that concerns CPS dataflow
models assessed against formal STL properties. More specifically, our second variant of
FCT, denoted as Specification-directed Feature-Coverage Testing, strives to maximize the
coverage exclusively for those features and signals that substantially influence both the
system outputs and the fulfillment of STL properties.

Contributions. In summary, this chapter delivers the following contributions:

1. Introduction of Signal Feature Coverage, a coverage criterion tailored to enhance
the assessment of test suites for CPS dataflow models.

2. Introduction of Feature-Coverage Testing, a novel approach for generating test
cases that can be implemented in two variations for comprehensive testing of CPS

118

7.2. Signal Feature Coverage

dataflow models.
3. Experimental evaluation of signal feature coverage and feature coverage testing

using five Simulink® models and ten STL properties. Results indicate that test
case generation based on signal feature coverage can yield an approximately 60%
increase in mutation score compared to traditional testing approaches.

Chapter Organization. In Section 7.2, we introduce the signal feature coverage
criterion and the corresponding coverage-based test generation algorithm. Section 7.3
details our evaluation using five industrial CPS dataflow Simulink models. Section 7.4
reviews related work, and Section 7.5 offers the concluding remarks.

7.2 Signal Feature Coverage
We begin by introducing the concept of a signal feature and outlining a collection of
such pertinent features (refer to Section 7.2.1). Subsequently, we propose signal feature
coverage (outlined in Section 7.2.2) as a metric for assessing test adequacy in CPS
dataflow models. Following this, we present an algorithm designed to generate test cases
that maximize the coverage of signal features (detailed in Section 7.2.3). Additionally,
we implement the feature-coverage based test generation method using a criterion that
prioritizes signals and features likely to have a significant influence on the system (detailed
in Section 7.2.3.2).

7.2.1 Signal Features
In this section, we explore signal features, which encompass statistical, spectral, and
other quantifiable properties of signals. We delineate a standardized set of signal features
commonly utilized in both CPS applications and signal processing. Our proposal includes
ten signal features that offer valuable insights into system behavior. The choice of these
features is justified by their recognized importance in signal processing, system analysis,
and fault detection, as evidenced by prior research [SG23,RMP20,KISH20,BG20,YET20,
KAC21]. These features have found widespread application across diverse fields such as
communications, biomedical applications, and control systems.

Integrating these features into our testing methodology for Simulink® models of CPSs,
our objective is to comprehensively assess essential aspects of signal behavior, facilitating
thorough system testing, fault diagnosis, and performance evaluation. We categorize
the chosen signal features into four distinct feature sets: Basic statistics, Higher-order
statistics, Impulsive metrics, and Frequency features. In what follows, we reserve the
use of the bold letter u for a signal of finite length which contains k samples such that
u = (u1, u2, ..., uk).

Basic statistics. Within this feature set are four distinct features. Basic statistics
are employed to measure the spread of a signal [SG23]. Table 7.1 outlines the features
encompassed in this set, comprising the mean, standard deviation, root-mean-square,
and shape factor.

119

7. Signal Feature Coverage and Testing

Table 7.1: The Basic Statistics feature set [SG23].

Feature Mathematical formula

Mean µ = 1
k

)k
i=1 ui

Standard Deviation (SD) σ =
"

1
k−1

)k
i=1 |ui − µ|2

Root-Mean-Square (RMS) uRMS =
"

1
k

)k
i=1 |ui|2

Shape factor (SF) uSF = uRMS
1
k

)k

i=1 |ui|

Table 7.2: The Higher-Order statistics and Impulsive metrics of a signal.

Feature Description Mathematical formula

Kurtosis It quantifies the distribution shape (length
of the tails) of a signal [RMP20].

ukurt =
1
k

)k

i=1(ui−µ)4�
1
k

)k

i=1(ui−µ)2
�2

Skewness It measures the asymmetrical spread of
a signal about its mean value [RMP20,
Mat23a].

uskew =
1
k

)k

i=1(ui−µ)3�
1
k

)k

i=1(ui−µ)2
� 3

2

Peak Value It is the peak or maximum absolute value
of the signal [SG23].

up = maxi |ui|

Impulse factor “It presents the impulsive behavior and
the multitude of peaks" [KBG+21] in the
signal.

uIF = up

1
k

)k

i=1 |ui|

Crest factor It indicates how extreme the peaks are in
the signal [Mat23a].

ucrest = up

uRMS
= up"

1
k

)k

i=1 |ui|2

Higher-order statistics. Within this feature set, there are two features. Higher-order
statistics assess the symmetry and flatness of a signal [SG23], offering insights into
system behavior via the third moment (skewness) and fourth moment (kurtosis) of the
signal [Mat23a], as summarized in Table 7.2.

Impulsive metrics. Within this feature set, there are three features. Impulsive metrics
are utilized to assess peak changes in the signal, encompassing peak value, impulse factor,
and crest factor [Mat23a], as discussed in Table 7.2.

Frequency features. The notion of frequency is straightforward for sinusoidal signals,
but real-world signals often exhibit greater complexity. Analyzing non-stationary signals
presents challenges in frequency analysis, prompting the emergence of instantaneous
frequency [Boa92a, Boa92b]. Instantaneous frequency captures the time-varying char-
acteristics of signals and holds significance across various applications such as seismic
analysis, radar systems, communications, and biomedical research. In our investigation,

120

7.2. Signal Feature Coverage

we incorporate the ‘Peak Instantaneous frequency’ feature into the frequency feature set
to enhance the analysis of associated signals. As a result, this feature set encompasses a
single feature.

In mathematical terms, the instantaneous frequency finst(t) is computed as the derivative
of the phase of the analytic signal derived from the input signal, represented as follows:

finst(t) = 1
2π

dφ

dt

In the above equation, φ represents the phase of the analytic signal uA derived from the
input signal u. The process involves computing the analytic signal uA by performing the
hilbert transform on u. Subsequently, the Peak Instantaneous frequency, represented as
uP IF , is determined as the maximum value of finst(t).

7.2.2 Signal Feature Coverage
Let us consider an internal signal s from a CPS dataflow model1 M and a feature x
associated with that signal, denoted as xs. We assume that this feature xs needs to
be exercised within a certain range R, bounded by its minimum (minR) and maximum
(maxR) values. Let Xs = {xs

1, xs
2, . . . , xs

n} represent a set of n observations of the feature
xs.

To assess the extent to which Xs exercises the feature x of s, we evaluate how uniformly
and densely the values in Xs sample the range of values for the feature. This method
provides a reasonable confidence regarding the test suite’s ability to encompass a wide
range of behaviors for the selected feature and signal.

To introduce this metric, we utilize a simple automatic binning algorithm to divide the
range R into N bins of equal width, denoted as R1, . . . , RN . For example, if R = [0, 10]
and N = 4, the resulting bins would be [0, 2.5), [2.5, 5), [5, 7.5), [7.5, 10]2. These N bins
are referred to as the Standard bins.

Given a set of observations Xs and a range R divided into N bins R1, . . . , RN , we
establish the concepts of bin occupancy and bin coverage as follows.

Definition 7.2.1 (Bin Occupancy). A bin Ri is considered occupied if there exists an
observation xs

i ∈ Xs such that xs
i falls within Ri. We define the bin occupancy function

Occ(Ri) as:

Occ(Ri) =
�

1, if Ri is occupied
0, otherwise

Definition 7.2.2 (Bin Coverage). The Bin Coverage, denoted by β, is then defined as

β = # Standard Bins Covered

Standard Bins
=

)N
i=1 Occ(Ri)

N
1We assume that the models are determinsitic.
2Typically, we consider the last bin to be inclusive on both ends.

121

7. Signal Feature Coverage and Testing

Figure 7.1 illustrates two scenarios of bin coverage for the same number of samples. In
the bottom scenario, eight samples achieve 100% bin coverage with a division into 6 bins.
Conversely, in the top scenario, the same eight samples only achieve 7

12 = 58.33% bin
coverage with a division into 12 bins.

minR maxR

minR maxR
Split in 12 bins, 58,33% bin coverage

Split in 6 bins, 100% bin coverage

feature x

feature x

Figure 7.1: Sample bin coverage of a feature.

To assess how densely and uniformly a feature is sampled, we determine the finest division
in bins of its domain that is covered by the available samples. Essentially, if a feature is
thoroughly exercised across its entire range, it should allow for a finer-grained division
that is well-covered by the available samples. We quantify this coverage by counting the
number of bins in the finest division. For example, if a set of ten samples covers up to
five standard bins (i.e., bins of equal length), the coverage achieved would be five.
Achieving higher coverage levels is increasingly harder with additional samples. For
example, covering four bins requires at least four evenly distributed values, whereas
covering a division in five or six bins, demands better distribution of samples.
This measure of coverage satisfies some unusual but useful properties. Notably, the
coverage is measured as a natural number, which (i) discretizes the domain, capturing
the incremental coverage levels that can be achieved, and (ii) is unbounded, reflecting
the idea that testers can continuously add further evidence to better exercise a system.
Indeed, an empirical research question pertains to identifying meaningful coverage levels
that offer a beneficial balance between cost and results. This question is not exclusive to
this coverage metric, but is also relevant to bounded coverage metrics, which are seldom
addressed until reaching 100% coverage.
In a more formal manner, considering a set of samples Xs, the signal feature coverage of
a feature x of a signal s can be defined as follows.

Definition 7.2.3 (Individual Signal Feature Coverage).

ζxs = arg max
N

(β ≥ 0.95) (7.1)

Note that here, to be practical and accommodate for intervals that might be particularly
hard or impossible to cover, we require the samples to cover a significant portion of the
standard bins, defined as 95% of the bins in the partition.

We see the signal feature coverage as primarily a multi-optimization problem, that is,
test suites should target the individual features and signals, and coverage reports should

122

7.2. Signal Feature Coverage

detail the results per signal. However, it is also possible to derive an aggregated coverage
measure for an entire system, such as considering the average or minimum feature coverage
value obtained for a system. In our analysis, we compute the coverage measure for a
system by determining the average of individual signal feature coverage values across the
target signals and target features within the system.

Definition 7.2.4 (Signal Feature Coverage). In conventional dataflow system models,
there is usually a wide range of signals, each possibly containing numerous features that
testers may want to explore beyond those initially discussed in Section 7.2.1. Let S
represent the set of all signals in the dataflow model of a system, and F denote the set
of all features. If S′ ⊆ S and F ′ ⊆ F are the subsets of signals and features that a tester
wants to examine, the Signal Feature Coverage is calculated as follows:

ζS′F ′ = 1
|S′||F ′|

(
s∈S′

(
x∈F ′

ζxs (7.2)

To customize the coverage evaluation based on specific testing needs, we offer two versions
of the meta-definition of ζS′F ′ with varying subsets of signals and features. For a thorough
examination and to gain a comprehensive insight into the system, a tester might aim to
explore the coverage of all features across all signals within a system model. This version
of signal feature coverage is referred to as the “Comprehensive Signal Feature Coverage”
(ζcomp), calculated with S′ = S (all signals) and F ′ = F (all features).

Alternatively, testers might choose to narrow their focus and calculate signal feature
coverage for a specific subset of signals and their corresponding subset of features, which
can be beneficial for system testing. These subsets are typically determined by testers
and may require domain knowledge or thorough testing. One relevant scenario involves
selecting only the features that could significantly impact a property φ under examination.
This variant of our coverage criterion is termed “φ-driven Signal Feature Coverage” (ζφ),
concentrating on the analysis of important features Fφ of important signals Sφ that
notably affect the satisfaction of φ. ζφ is essentially ζS′F ′ with S′ = Sφ and F ′ = Fφ.

7.2.3 Testing for Signal Feature Coverage
In this section, we introduce Feature-Coverage Testing (FCT), a test generation strategy
designed to maximize the signal feature coverage for S′ signals and their associated F ′

features. The test generation process is formulated as a single-objective optimization
problem aimed at maximizing the signal feature coverage of the target features of the
target signals of a system.

Signal feature coverage-based test generation problem

Input: a dataflow model M with S′ signals and F ′ features of each signal.
Problem: Find T S s.t. ζS′F ′ is maximum.

123

7. Signal Feature Coverage and Testing

The aim of this maximization problem is to generate a test suite T S comprising test cases
t ∈ T S that thoroughly cover the target features of the target signals within the system.
We implement the test generation process using Simulink® as our CPS dataflow modeling
and simulation platform, along with BCA (discussed in Chapter 4)3, to maximize signal
feature coverage by iteratively refining a test suite based on the coverage metric.

In our BCA-based test generation method, each test t is similar to a thrombocyte within
the swarm, while the swarm itself corresponds to a test suite. In our approach, we
formulated fitness (expressed as the objective function ζS′F ′) at the swarm level rather
than at the individual particle level. This choice is consistent with our aim of maximizing
ζS′F ′ , which is derived from the entire test suite rather than from individual test cases.

Similar to classical BCA, we initiate with an initial population, consisting of thrombocyte
positions. Here, thrombocyte positions signify individual test cases. It is important
to note that we represent each test case as a numerical vector [pos0, . . . , posN], where
each value posi denotes a characteristic of the system’s input signal. For example, in
the AECS model, the system’s input includes the pilot command, characterized by its
amplitude Amp and frequency Freq. Thus, the test case for the AECS model is expressed
as tAECS = [Amp, Freq], where both Amp and Freq take numeric values within their
valid ranges.

We then compute the fitness ζS′F ′ as outlined in Section 7.2.2. Upon performing the
coverage computation, we obtain a set of bins that partition the feature values of the
signal s associated with the test cases in the population. Our goal in maximizing feature
coverage is to ensure there is at least one element in each bin while also fostering diversity
in the feature values. To achieve this, we update the test cases using the BCA update
equations. The BCA update equations guide the tests to explore and converge towards
promising regions, optimizing the overall search process. When confronted with bins
containing multiple feature values, we pick a test case at random from that bin, designate
it as the global best, and update the other test cases within that bin using the regular
BCA update equations. Following the update, the algorithm recomputes the fitness. If
the objective function value ζS′F ′ shows improvement, the updated test suite is accepted
as an optimal solution. The process continues until the budget is exhausted.

Several testing needs can impact the generation of tests for feature-coverage testing,
which are outlined as follows.

7.2.3.1 Comprehensive Feature-Coverage Testing

When testing covers all signals S and features F , the method is referred to as Com-
prehensive Feature-Coverage Testing (FCT-C). The aim of FCT-C is to maximize the
coverage of all signal features, denoted as Comprehensive Signal Feature Coverage ζcomp.

3We also compared the performance of BCA with two other metaheuristic algorithms including
classical Particle Swarm Optimization (PSO) and Water Cycle Algorithm (WCA), observing similar
results up to two decimal places.

124

7.2. Signal Feature Coverage

This approach is achieved by applying the BCA framework discussed earlier to optimize
ζcomp.

7.2.3.2 Specification-directed Feature-Coverage Testing

In real-world scenarios, testing activities often prioritize ensuring the system’s adherence
to functional, non-functional, and safety requirements. Especially when conforming to
safety specifications is critical, testing aligns with formal specifications expressed in STL.
In these cases, we refer to the feature-coverage testing strategy as Specification-directed
Feature-Coverage Testing (FCT-S). Within FCT-S, the focus is on a meaningful subset
of features within the internal signals that have a significant impact on meeting the
specified safety requirements. In our implementation of FCT-S, we limit signal feature
coverage to the features of the internal signals that significantly impact the robustness
(and consequently the satisfaction/violation) of the STL specifications4. Identifying
features with the greatest impact on robustness helps streamline testing by focusing on
the most influential aspects of the system, thereby improving the effectiveness of the
fault detection process.

There is no unique way of measuring the impact of a feature on the robustness, and various
approaches have been proposed in the literature. One common approach is sensitivity
analysis, which introduces small perturbations to a feature’s value to observe changes
in system robustness, directly measuring the feature’s influence on the satisfaction or
violation of the formal specification. Another method is feature importance ranking,
used in machine learning models like decision trees or random forests, where a feature’s
significance is based on its contribution to decision-making or error reduction. These
techniques can be adapted to formal specification-based testing, prioritizing features
that significantly impact robustness outcomes. Other methods include causal inference,
assessing the causal effect of feature changes on robustness, and mutual information-based
techniques, which capture non-linear dependencies by measuring the shared information
between a feature and robustness score. However, these methods may introduce added
computational complexity or require extensive data, which can be challenging in practical
scenarios.

In our study, we propose estimating the impact of features on robustness by examining
the correlation between a feature’s values and the robustness of the simulation trace
concerning the STL property. The correlation can indicate whether a feature tends
to increase or decrease robustness as its values change, offering insights into how the
feature influences system behavior in relation to the formal specifications. We chose this
method because it provides a straightforward, data-driven way to identify significant
features. More specifically, we employ a statistical procedure based on bivariate analysis to
empirically uncover the correlations between each feature and the robustness metric, which
we found to be effective based on our experimental findings. However, it is important to

4It is worth mentioning that in specification-less scenarios, one could still evaluate the impact of a
feature directly on the model outputs. However, this approach holds limited relevance for CPS dataflow
models, which are typically tested against predefined requirements.

125

7. Signal Feature Coverage and Testing

note that correlation measures the strength and direction of a linear relationship between
features and robustness. If the relationship is non-linear, correlation may not adequately
capture the true impact of the feature, potentially leading to an incomplete assessment.

Algorithm 7.1 outlines our significant feature identification procedure, which iteratively
reduces (i) the signal population by considering its correlation with the output, and (ii)
the number of features by considering its correlation with the robustness with respect
to the STL property. It operates in three main stages. First (lines 6-9), the procedure
generates and executes tests to gather evidence of correlation among signals and features.
Second (lines 10-15), it progressively incorporates randomly generated test cases to the
existing test suite and checks correlation to iteratively reduce the set of the significant
signals and significant features. The gradual reduction in the number of signals is achieved
by discarding 20% (as per the discard threshold) of the least correlated signals in each
iteration. Third (line 16), it removes the redundant internal signals (i.e., those significant
signal variables whose values are implied by other significant signal variables) and their
associated features to derive the final reduced set of significant signals and features,
denoted as V̂H and X̂, respectively.

In more detail, the algorithm starts with a model M, a property φ, and a set of signal
features Feat to be investigated. In our experiments, we examine the ten features
outlined in Section 7.2.1. The algorithm initiates by randomly creating an initial test
suite (line 6). Subsequently, it employs the function Monitor to simulate the model
against each test in the test suite and calculate the robustness ρ (as explained in Chapter 2)
of each resulting simulation trace with respect to the STL property φ.

To identify the significant signals, the algorithm utilizes the FindTopS subroutine
(Algorithm 7.2) which calculates correlation coefficients between each internal signal in
VH and the output signals, assessing their level of association (lines 1-7). It then rejects
a small portion of the internal signals with weaker correlations with the system outputs,
based on the discard threshold (line 8). The resulting set of internal signals (i.e., V̂H) is
identified as those signals demonstrating strong association with the system output.

In the subsequent phase, the procedure employs the FindF subroutine (Algorithm 7.3)
to identify the features of each internal signal v ∈ V̂H that significantly influence the
robustness of φ. For every v ∈ V̂H , the algorithm computes the feature values for all the
features in the feature set Feat (line 2), and evaluates the correlation coefficient between
the signal feature values and the robustness ρ (line 3). It marks a feature as relevant
if it demonstrates a substantial impact on ρ, indicating that the absolute value of the
correlation coefficient surpasses the correlation threshold θ2. A threshold exceeding 50%
is selected to identify a subset of significant features X̂ that exert either strong or very
strong influence on the robustness values.

Next, the procedure incrementally adds a series of test cases to the existing test suite
(line 11), and recalculates the robustness (line 12) and correlation values to further reduce
the number of significant internal signals and significant features (lines 13-14).

As the final step, the procedure further reduces the number of significant signals and

126

7.2. Signal Feature Coverage

Algorithm 7.1: Feature Identification Procedure: Identifying significant features
of significant signal variables that impact φ.

Input : M - A CPS dataflow model.
φ - An STL specification of M.
Feat - A set of signal features.

Output : V̂H - Significant signal variables.
X̂ - Significant signal features.

1 SimData = []; Robustness = []
2 X̂ = []; CORR = []; corr = []
3 θ1 = 0.99 ; // initialize redundancy threshold
4 θ2 = 0.5; // initialize correlation threshold
5 θ3 = 0.2; // initialize discard threshold
6 T S = RandomTestSuite(M)
7 SimData, Robustness ← Monitor(T S, M, φ)
8 V̂H ← FindTopS(SimData, θ3) ; // identify internal signals

correlated with output

9 X̂ ← FindF(V̂H , SimData,Feat, Robustness, θ2) ; // identify features
that correlate with robustness

10 for q times do
11 T S = T S ∪ J ; // add tests to the test suite
12 SimData, Robustness ← Monitor(T S, M, φ)
13 V̂H ← FindTopS(SimData, θ3)
14 X̂ ← FindF(V̂H , SimData,Feat, Robustness, θ2)
15 end for
16 V̂H , X̂ ← Remove(SimData, θ1, V̂H , X̂) ; // discard redundant

internal signals and associated features

17 return V̂H , X̂

Algorithm 7.2: The subroutine FindTopS().
1 for each v ∈ VH do
2 for each item t ∈ T S do
3 corrv = Correlation(v, VOt)
4 CORR = CORR ∪ corrv

5 end for
6 corr = corr ∪ CORR
7 end for
8 V̂H ← Reject(corr, VH , θ3) ; // discard internal signals

exhibiting low correlation with output

9 return V̂H

127

7. Signal Feature Coverage and Testing

Algorithm 7.3: The subroutine FindF().
1 for each v ∈ V̂H do
2 A = Feature(Simdatav,Feat)
3 [γ] ← Select(A, Robustness, θ2) ; // identify features that

correlate with robustness

4 X̂ = X̂ ∪ [γ]
5 end for
6 return X̂

features by eliminating the redundant internal signals and their associated features
(line 16). To identify redundant internal signals, the procedure employs the function
Remove, which calculates the correlation coefficients between the current set of significant
internal signals using the Pearson method. It removes those that provide redundant
information. Specifically, when the correlation coefficient between any two internal
variables v1 and v2 exceeds the redundancy threshold θ1, one of the variables is discarded
from further analysis along with its associated features. The resulting set of significant
internal signals and features represents the targets of FCT-S. Test case generation is
ultimately defined by applying the BCA problem to maximize ζV̂HX̂, as described in the
previous section.

7.3 Empirical Evaluation
We conduct empirical assessments of the proposed coverage criteria alongside its related
coverage-based test generation strategies, comparing them against several state-of-the-art
test generation methods. Specifically, we explore the following RQs:

RQ-7.1-Coverage. To what extent do existing test generation methodologies explore the
features of CPS Simulink®models based on signal feature coverage? The first RQ aims to
find out if covering the features of signals is a non-trivial problem. This RQ examines the
efficacy of current test generation methods in terms of signal feature coverage. If current
methods already produce test suites with extensive feature coverage, further investigation
into maximizing coverage becomes redundant. To address this query, we compare
the performance of three test generation techniques against our feature-coverage test
generation method to check how thoroughly signals’ features can be covered and identify
any deficiencies in existing testing methods. Details of the considered test generation
methods are outlined in Section 7.3.1.1. Additionally, we explore how variations in
resource allocation affect the attained coverage, providing insights into the efficiency of
resource allocation in enhancing signal feature coverage.

RQ-7.2-Fault Revealing Capability. Do test suites that achieve high feature coverage
also uncover more faults in CPS Simulink® models? This question uses mutation testing
(MT) to evaluate the performance of feature coverage-based test generation methods,

128

7.3. Empirical Evaluation

specifically FCT-C and FCT-S, in comparison to established testing methods. The MT
procedure is detailed in Section 7.3.1.4, while the test generation techniques are discussed
in Section 7.3.1.1.

7.3.1 Experimental Setup
Now, we will outline the test generation methods under comparison, the platform used
for execution, the subjects of our experiments, and the mutations applied.

7.3.1.1 Test generation

In our analysis, we examine two groups of test generation methods: the two variations
of feature-coverage testing (FCT-C and FCT-S) and six state-of-the-art test generation
techniques for CPS Simulink models (namely ART, OD-VB, OD-FB, FT-BCA, FT-S-
TaLiRO and SDV-EC), as discussed below.

• Comprehensive Feature-Coverage Test Generation (FCT-C) is designed to generate
tests that cover all targets, including all signals and features. It aims to determine
achievable levels of signal feature coverage.

• Specification-directed Feature-Coverage Test Generation (FCT-S) is the approach that
focuses solely on important features of key signals (V̂H and X̂) identified using the
Feature Identification Algorithm detailed in Section 7.2.3.2.

• Adaptive Random Testing (ART)5 is a method for generating tests that prioritizes
creating varied test cases “by maximizing distances between the test inputs” [CLM05,
LNLB19], as previously mentioned in Chapter 6. It is often regarded as a baseline
because of its simplicity and efficacy.

• Output Diversity (OD) is a method for generating tests that aims to create test
cases with highly diverse outputs [LNLB19,MNBB19,MNBB15]. It employs a search-
based approach that begins with an initial test suite and then iteratively enhances
it by making small adjustments to the test cases to maximize output diversity. This
technique evaluates neighboring test cases at each iteration and selects the one that
notably increases output diversity. This process continues until further improvement
is no longer feasible. In this study, we consider two variations of OD: vector-based
(VB) and feature-based (FB), as proposed in [MNBB19]. The vector-based approach
directly analyzes output signal vectors, while the feature-based method operates on
feature vectors derived from output signals. This entails describing the output signals
based on their value as well as their first and second derivatives, which help identify
distinct signal shapes.

• Simulink® Design VerifierTM—Execution Coverage (SDV-EC) is utilized to generate
tests aimed at achieving model coverage. The test generation is configured to achieve
block execution coverage, a structural coverage metric that indicates whether each
5Considering that ART generally outperforms random testing (RT) in terms of both failure detection

and program-based coverage completeness [MZC+20,CKLW08], we have excluded RT from our comparison.

129

7. Signal Feature Coverage and Testing

block is executed during simulation. This coverage metric is most comparable to
statement coverage in code coverage analysis. Note that Simulink® Design VerifierTM

is a product from MathWorks6.
• Falsification Testing (FT) is a search-based approach used to generate tests that

violate system requirements or assumptions [ADD+17], as mentioned previously in
Chapter 6. Essentially, given an STL property φ of a model M, FT aims to find a
test case t such that ρ(φ, O(t, M)) < 0, meaning O(t, M) ̸|= φ. In our experiments,
we employ BCA to generate test cases guided by classical quantitative robustness. In
essence, FT’s goal is to create a test that violates the property being examined, with
the aim of uncovering bugs. We also use the S-TaLiRo tool, as discussed in Chapter 4
(see Section 4.6.2.2), for coverage-guided falsification-based test generation.

To address RQ-7.1, we analyze the effectiveness of two feature-coverage testing methods
(FCT-C and FCT-S), along with four state-of-the-art techniques: ART, OD-VB, OD-FB
and SDV-EC. However, since FT is tailored for fault detection rather than coverage,
we apply it exclusively to address RQ-7.2 in our MT experiments. Therefore, RQ-7.2
considers all the aforementioned test generation strategies. It is worth noting that we
conducted 30 independent runs of each test generation algorithm to mitigate the influence
of random fluctuations and to provide statistical insights.

7.3.1.2 Simulation Platform

For our experiments, we employed MATLAB® Simulink® R2018b provided by MathWorks®

and utilized the RTAMT library [NY20] for the offline assessment of STL properties.
These experiments were conducted on a MacBook Pro running macOS Ventura, equipped
with an Apple M1 chip and 16 GB of RAM.

7.3.1.3 Experimental Subjects

In addressing our RQs, we examined five diverse Simulink® models, sourced from [Mat22c,
Mat22d, Mat22a, EAF+22]. Also, we considered ten requirements expressed as STL
properties, representing essential conditions that these systems must adhere to. These
models have been extensively utilized in prior research works [NKJ+17,SS20,BMNY22c,
EAF+22].

Fault-Tolerant Fuel Control System (FCS). FCS serves as a benchmark within the
automotive sector, simulating a fuel control system designed for a gasoline engine [Mat22c].
It is represented as a hybrid system, incorporating differential equations along with a
switching condition. FCS operates with two inputs: throttle and engine speed, while
producing two outputs: Fuel Flow Rate and the air-to-fuel ratio (λ). The primary control
aim is to maintain λ in proximity to the reference mixture ratio (λref).

Automatic Transmission Controller System (ATCS). This has been previously
addressed in Chapter 5.

6https://in.mathworks.com/products/simulink-design-verifier.html

130

7.3. Empirical Evaluation

Table 7.3: Key features of selected Simulink models.

Model #Blocks #Lines T Sample time #Samples

FCS 215 190 110 0.01 11001
ATCS 65 92 30 0.04 751
AECS 825 577 10 0.01 1001
NN 105 123 40 0.001 40001
SC 173 144 35 0.01 3501

Aircraft Elevator Control System (AECS). This has been already discussed in
Chapter 5.

Neural-Network Controller (NN). The neural network controller is engineered to
uphold a magnet at a specific reference position over an electromagnet, securing a stable
hover [EAF+22,Mat24]. Operating with a reference position value (Ref) ranging between
1 and 3 as input, the model outputs the actual position (Pos) of the hovering magnet.
The aim is to guarantee that after alterations to the reference, the present position
consistently aligns with the reference with minimal deviation.

Steam Condenser with Recurrent Neural Network Controller (SC). The model,
initially presented in [YF19] and also employed in [EAF+22], simulates a dynamic steam
condenser model controlled by a Recurrent Neural Network in feedback. Operating within
an input range of [3.99, 4.01], the main objective is to maintain the output pressure
consistently within a predefined tolerance range.

Table 7.3 provides an overview of the essential features of the five models, including
the count of blocks, lines, simulation time denoted as T (in seconds), sampling time
(in seconds), and the total number of samples. Additionally, Table 7.4 outlines their
requirements described in natural language and in STL.

7.3.1.4 Property-Based Mutation Testing

To conduct the MT experiments necessary for addressing RQ-7.2, we utilize Property-
Based Mutation Testing (PBMT), as previously outlined in Chapter 6. In our experimental
setup, we employ FIM [BMNY22a], our tool designed for automatically injecting faults
and mutations into Simulink models, as detailed in Chapter 3. We utilize seven fault
types/mutation operators provided by FIM, which are commonly utilized in Simulink
model testing scenarios. These include three line mutations (Noise, Bias/Offset,
Negate) and four block mutations (ROR: Relational Operator Replacement, S2P: Sum to
Product Mutation, P2S: Product to Sum Mutation, ASR: Arithmetic Sign Replacement).
Notably, we opt out of using FIM’s Absolute operator due to its tendency to generate
mutants that are φ-trivially different from the original (φ-trivial mutants) [BMNY23].
Similarly, we exclude the Invert and Bit-flip operators due to their tendency to
produce invalid mutants. Table 7.5 provides insights into the number of valid mutants
(those that could be compiled) generated for each mutation operator across the various

131

7. Signal Feature Coverage and Testing

Ta
bl

e
7.

4:
Pr

op
er

tie
s

of
ex

pe
rim

en
ta

ls
ub

je
ct

s
in

na
tu

ra
ll

an
gu

ag
e

an
d

ST
L.

P
ro

pe
rt

y
R

ef
.

N
at

ur
al

La
ng

ua
ge

ST
L

Fa
ul

t-T
ol

er
an

tF
ue

lC
on

tr
ol

Sy
st

em
(F

C
S)

φ
F

C
S

1
[N

K
J+

17
]

A
lw

ay
s,

w
ith

in
th

e
in

te
rv

al
[τ

,T
],

th
e

ai
r-

to
-fu

el
ra

tio
(λ

)
m

us
t

no
t

ev
ol

ve
be

yo
nd

th
e

to
le

ra
nc

e
bo

un
ds

.
□

[τ
,T

](0
.8

λ
r

e
f

≤
λ

≤
1.

2λ
r

e
f
)

φ
F

C
S

2
[H

A
F1

4]
T

he
fu

el
flo

w
ra

te
sh

ou
ld

no
tb

e
0

fo
rm

or
e

th
an

1
se

co
nd

w
ith

in
th

e
ne

xt
10

0
se

co
nd

s
pe

rio
d.

¬♦
[0

,1
00

]□
[0

,1
](F

ue
lF

lo
w

R
at

e
=

0)

A
ut

om
at

ic
Tr

an
sm

is
si

on
C

on
tr

ol
le

r
Sy

st
em

(A
T

C
S)

φ
A

T
C

S
1

[H
A

F1
4]

"T
he

en
gi

ne
sp

ee
d

ne
ve

r
re

ac
he

s
ω̄

".
□

(ω
<

ω̄
)

φ
A

T
C

S
2

[H
A

F1
4]

"T
he

en
gi

ne
an

d
th

e
ve

hi
cl

e
sp

ee
d

ne
ve

r
re

ac
h

ω̄
an

d
v̄
,

re
sp

."
□

� (v
<

v̄
)∧

(ω
<

ω̄
)�

φ
A

T
C

S
3

[H
A

F1
4]

"I
fe

ng
in

e
sp

ee
d

is
al

wa
ys

le
ss

th
an

ω̄
,t

he
n

ve
hi

cl
e

sp
ee

d
ca

nn
ot

ex
ce

ed
v̄

in
le

ss
th

an
T

se
co

nd
s."

¬� ♦ [
0,

T
](v

>
v̄
)∧

□
(ω

<
ω̄

)�
φ

A
T

C
S

4
[H

A
F1

4]
"W

ith
in

T
se

co
nd

s,
th

e
ve

hi
cl

e
sp

ee
d

is
ab

ov
e

v̄
an

d
fro

m
th

at
po

in
t

on
,t

he
en

gi
ne

sp
ee

d
is

al
w

ay
s

le
ss

th
an

ω̄
)."

♦ [
0,

T
]� (v

≥
v̄
)∧

□
(ω

<
ω̄

)�
A

irc
ra

ft
El

ev
at

or
C

on
tr

ol
Sy

st
em

(A
EC

S)

φ
A

E
C

S
1

[B
M

M
+

21
]

W
he

ne
ve

r
th

e
Pi

lo
t

C
om

m
an

d,
de

no
te

d
as

cm
d,

ex
ce

ed
s

th
e

th
re

sh
ol

d
m

,
th

e
m

ea
su

re
d

ac
tu

at
or

po
sit

io
n,

po
s,

m
us

t
no

t
ex

ce
ed

a
di

st
an

ce
of

n
un

its
fro

m
cm

d
w

ith
in

a
tim

e
fr

am
e

of
Q

+
a

un
its

.

□
� ↑(

cm
d

≥
m

)→
♦ [

0,
Q

]□
[0

,a
](|

cm
d

−
p
os

|≤
n

)�

N
eu

ra
l-N

et
wo

rk
C

on
tr

ol
le

r
(N

N
)

φ
N

N
1

[E
A

F+
22

]
W

ith
in

th
e

tim
e

ho
riz

on
of

40
tim

e
un

its
,t

he
ou

tp
ut

w
ill

be
al

w
ay

s
cl

os
e

to
th

e
re

fe
re

nc
e

sig
na

lw
ith

in
2

se
co

nd
s.

□
[1

,3
7]

� |P
os

−
R

ef
|>

α
+

β
|R

ef
|→

♦ [
0,

2]
□

[0
,1

]¬
(α

+
β

|R
ef

|≤
|P

os
−

R
ef

|)�
φ

N
N

2
[E

A
F+

22
]

G
iv

en
th

e
re

fe
re

nc
e

sig
na

lR
ef

sa
tis

fy
in

g
1.

95
≤

R
ef

≤
2.

05
,t

he
ou

tp
ut

sa
tis

fie
s

a
co

nj
un

ct
iv

e
re

qu
ire

m
en

t
de

-
fin

ed
ov

er
di

ffe
re

nt
tim

e
in

te
rv

al
s.

♦ [
0,

1]
(P

os
>

3.
2)

∧
♦ [

1,
1.

5]
� □

[0
,0

.5
](1

.7
5

<
P

os
<

2.
25

)�
∧
□

[2
,3

](1
.8

25
<

P
os

<
2.

17
5)

St
ea

m
C

on
de

ns
er

wi
th

Re
cu

rr
en

tN
eu

ra
lN

et
wo

rk
C

on
tr

ol
le

r
(S

C
)

φ
S

C
1

[E
A

F+
22

]
A

lw
ay

s,
w

ith
in

th
e

in
te

rv
al

[3
0,

35
],

th
e

pr
es

su
re

ne
ve

r
go

es
be

lo
w

87
an

d
be

yo
nd

87
.5

..
□

[3
0,

35
](8

7
≤

P
re

ss
u

re
≤

87
.5

)

Pa
ra

m
et

er
s:

λ
r

e
f

=
14

.6
,τ

=
10

se
c,

ω̄
=

45
00

R
PM

,v̄
=

12
0

m
ph

,P
=

4
se

c,
m

=
0.

09
,Q

=
2

se
c,

a
=

1
se

c,
n

=
0.

02
,α

=
0.

00
5,

β
=

0.
03

132

7.3. Empirical Evaluation

Table 7.5: Mutation operators and number of mutants.

Type Operator # Mutants
FCS ATCS AECS NN SC

Line Mutation
Noise 10 13 17 10 10
Bias/Offset 12 13 17 10 10
Negate 10 13 17 0 0

Block Mutation

ROR 0 0 10 0 0
S2P 1 1 3 2 3
P2S 0 2 6 1 2
ASR 3 3 8 3 9

Total 36 45 78 26 34

subjects. For every valid FOM7 produced by FIM, we presume that the fault remains
active for the entire duration of the simulation, commencing at time 0 and persisting
until the end at time T .

For our PBMT evaluations, we utilize all the test generation techniques outlined in
Section 7.3.1.1. It is noteworthy that this selection allows for a comparison between
FCT-S (property-dependent) and FCT-C (property-independent) against other property-
dependent (FT) and property-independent (ART, OD-VB, and OD-FB) methods. Addi-
tionally, in our FT-based test generation setup (for both BCA and S-TaLiRo) for PBMT,
FT is applied individually to each mutant. To elaborate, for every mutant M′, FT
attempts to generate a test case t that violates the property, denoted as O(t, M′) ̸|= φ.

7.3.2 Results and Discussion
RQ-7.1 - Coverage

RQ-7.1 assesses the effectiveness of state-of-the-art test generation strategies in thoroughly
exercising features. As previously noted, the interconnected nature of elements in dataflow
models often results in the execution of multiple elements with just a few test cases.
This observation was confirmed in our experiments, where a single random test case
was sufficient to cover all signals in the ATCS model, and on average, 9.25 random test
cases were enough to cover more than 90% of the signals in the other four models. This
highlights the necessity for more advanced coverage criteria. Consequently, we compare
the signal feature coverage achieved by traditional test generation strategies with that of
our proposed FCT-S and FCT-C techniques.

Figure 7.2 shows the trends of ζcomp over time, averaged across 30 independent runs
for each experimental subject and all properties. For a detailed view of the variability

7In our study, we exclusively consider first-order mutants of Simulink models.

133

7. Signal Feature Coverage and Testing

in the ζcomp values across all techniques, refer to Figure 7.3. It is important to note
that ART, OD-VB, OD-FB, SDV-EC and FCT-C are property-independent techniques,
while FCT-S is property-directed. Thus, separate curves are shown for FCT-S for each
property. Additionally, because FCT-S includes a feature identification step to determine
significant signals and features, the initial coverage with FCT-S starts at zero.

Analyzing the figure reveals an initial brief period where our proposed FCT-C and
FCT-S techniques show lower performance in terms of the coverage metric. However,

(a) FCS model

(b) ATCS model

Figure 7.2: Trends over time of mean value of ζcomp for different test generation strategies
for various models.

134

7.3. Empirical Evaluation

(c) AECS model

(d) NN model

(e) SC model

Figure 7.2: Trends over time of mean value of ζcomp for different test generation strategies
for various models. (cont.)

135

7. Signal Feature Coverage and Testing

(a) (b) (c)

(d) (e)

Figure 7.3: Trends over time of ζcomp achieved by different test generation strategies:
Tubular visualization indicating minimum, maximum and mean values.

as time progresses, both techniques exhibit a rapid improvement, eventually surpassing
the state-of-the-art methods. This indicates that our techniques are capable of achieving
high coverage given sufficient time and resources. Table 7.6 details (1) the time required
for FCT-S to identify significant signals and features, referred to as Feature Identification
Time (FIT), and (2) the time for FCT-C/FCT-S to exceed the performance of state-
of-the-art methods in terms of ζcomp, referred to as Surpass Time (ST). According to
Table 7.6, the feature identification step takes an average of approximately 252.39 seconds
across all experimental subjects. Additionally, FCT-C consistently outperforms FCT-S in
surpassing state-of-the-art strategies, achieving higher ζcomp values earlier than FCT-S.

Upon examining Figure 7.2, it is evident that the curves representing the mean ζcomp for
various state-of-the-art strategies, namely ART, OD-VB, OD-FB and SDV-EC, either
overlap or closely align, indicating comparable performance among these techniques. In
particular, there is a considerable overlap between the curves for ART and SDV-EC.
As expected, the Comprehensive (FCT-C) approach, aimed at covering all features and
signals comprehensively, consistently achieves the highest coverage levels compared to
other methods, including the Specification-directed (FCT-S) technique. However, there is
an exception to this trend. Specifically, for the FCS model assessed against property φF CS

1 ,
the FCT-S method achieves slightly higher coverage values than FCT-C. We hypothesize
that this superior performance of FCT-S may be attributed to its effectiveness in covering

136

7.3. Empirical Evaluation

Table 7.6: Time required for identifying significant signals and features, and times at
which FCT-S/FCT-C surpass state-of-the-art strategies w.r.t. ζcomp.

Model Property FIT (s) ST for FCT-S (s) ST for FCT-C (s)
Average Worst Average Worst Average Worst

FCS φ1 241.33 254.81 450.23 462.56 400.67 405.34
φ2 270.24 279.65 471.02 482.10

ATCS

φ1 243.67 278.67 380.23 397.24

352.67 365.38φ2 246.73 269.66 384.56 395.26
φ3 245.79 265.57 379.68 387.91
φ4 244.83 271.58 372.59 380.26

AECS φ1 272.80 293.72 406.27 411.84 274.56 281.67

NN φ1 246.52 270.43 403.86 415.27 304.53 311.25
φ2 271.48 291.27 502.36 516.28

SC φ1 240.56 261.78 306.74 309.38 245.56 253.38

key features of key signals, leading to extensive coverage of multiple features across various
signals. This observation suggests that the FCT-S strategy might capture certain feature
values that could be challenging to cover with the Comprehensive (FCT-C) approach.

Looking at Figure 7.2, it is evident that both FCT-C and FCT-S tend to saturate towards
the later stages of the experiments, usually around 16k-18k seconds. This suggests
that achieving further coverage enhancement may become increasingly difficult. On the
contrary, state-of-the-art techniques do not show full saturation in ζcomp values, indicating
that there is still room for improvement. This implies that these techniques may require
additional time resources to generate tests that effectively cover the signal features.

In Figure 7.2, we also present the variability in ζcomp across 30 runs for each test generation
strategy using box plots captured at different time snapshots. Each box in the plot
contains 30 data points, where each data point signifies the ζcomp achieved by a test
suite generated in a single run. The horizontal axis denotes the test generation approach,
while the vertical axis represents the corresponding ζcomp values. Within each box, an
asterisk (*) denotes the mean value of ζcomp. Examining Figure 7.2a, we notice minimal
variation in the data for the FCS model, except for specific time snapshots. For instance,
at the 8k second snapshot, both OD-VB and OD-FB show outliers (illustrated as lower
whiskers in their respective boxes), indicating that certain test suites generated using
these techniques achieve coverage levels lower than the mean value. Furthermore, upon
analyzing all the box plots of the FCS model across various time snapshots, we observe
that ART and SDV-EC exhibit slightly better performance in terms of ζcomp among the
traditional strategies. However, their performance falls behind when compared to our
feature-coverage testing techniques.

137

7. Signal Feature Coverage and Testing

In comparison to the other models, the test suites generated for the NN model (Figure 7.2d)
demonstrate slightly greater variations in the ζcomp values. Furthermore, for certain
models, notably FCS (Figure 7.2a) and AECS (Figure 7.2c), across all time snapshots,
the box plots associated with FCT-C and FCT-S closely converge at similar levels. This
convergence implies that FCT-C and FCT-S exhibit comparable effectiveness in achieving
coverage levels for the specified properties in these models.
Across all experimental subjects, traditional ART and OD-based test generation meth-
ods demonstrate notably low coverage levels. On the other hand, FCT-C and FCT-S
approaches employ focused test generation designed to maximize feature coverage. Conse-
quently, the generated tests thoroughly exercise the target features of the internal signals,
resulting in significantly higher coverage levels compared to conventional test generation
methods, as depicted in Figure 7.2. These findings underscore the existence of a gap in
the capability of baseline techniques in covering signal features in CPS Simulink models.
It is crucial to acknowledge that the signals and features identified through our feature
identification procedure may not perfectly align with the true signals and features
influencing the STL property. Discrepancies could exist between the identified signals and
features and those genuinely affecting the satisfaction of the considered property, referred
to as the ground truth (GT) signals and features. Moreover, there is not a definitive
method for identifying the GT signals/features, as it is at the discretion of the tester
or involves selecting a specific procedure for this purpose. To assess the performance
of our feature identification step in capturing these features, we conduct correlation
analysis over a large set of tests among internal signals, features, and the quantitative
robustness of simulation traces with respect to the STL properties. This comprehensive
analysis spans an extended duration, encompassing 10,000 random tests for each model
and property, totaling approximately 74 hours across all our experimental subjects and
properties.
After determining the GT signals and features, we assessed the extent to which the
generated test suites cover the GT signals and features. Specifically, we assessed the
φ-driven Signal Feature Coverage of the ground truth signals and their associated features.
Figure 7.4 presents the trends of ζφ, which represent the φ-driven signal feature coverage
computed for the ground truth signals and features, averaged over 30 runs. Additionally,
Figure 7.5 illustrates the variability in ζφ across all models and properties. Notably, we
have a separate plot for each property of a model since ground truth features and signals
are specific to each property. Also, it is worth noting that the FCT-S-based test suites
utilized to compute ζφ-values for GT features and signals are the ones that we generated
focusing on maximizing coverage of signals and features identified through the feature
identification procedure. This approach provides valuable insights into the effectiveness of
our time-efficient feature identification procedure and offers indications of any correlation
between the identified signals+features and the ground truth signals+features.
Upon analyzing Figure 7.4, distinct patterns emerge, delineating three main categories
within the curves. Firstly, one set of curves suggests that the state-of-the-art testing ap-
proaches inadequately exercise the ground truth features and signals, failing to extensively

138

7.3. Empirical Evaluation

cover the signals most relevant to the property under test. Secondly, another set of curves
indicates that FCT-C achieves better coverage of these features and signals compared to
the state-of-the-art methods, highlighting the need for specific methods to thoroughly
cover relevant features of relevant signals. Lastly, a third set of curves showcases that
FCT-S surpasses both FCT-C and the state-of-the-art, achieving higher coverage of
the GT features and signals. This trend holds true across all experimental models and
properties. This observation underscores the effectiveness of our feature identification
procedure in identifying features and signals that contribute to the coverage of GT signals
and features, implying a correlation between them. Additionally, from Figure 7.4, we
note significant overlaps among the curves corresponding to the state-of-the-art testing
strategies across all experimental models and properties, indicating their comparable
performance in exercising the GT signal features.

Figure 7.3 presents the trends over time of ζcomp across various test generation techniques.
Employing a tubular visualization, we encapsulate the ζcomp values, integrating minimum,
maximum, and mean statistics. The tubular boundaries delineate the range between
minimum and maximum values, with the mean value represented by a bold line within this
range. Upon examining Figure 7.3 for the variability in ζcomp values, it is apparent that
the tubes are closely grouped, indicating minimal dispersion between the extreme (i.e.,
minimum and maximum) values. Furthermore, significant overlaps are observed among
the tubes corresponding to state-of-the-art techniques across most of our experimental
models and properties. Similarly, Figure 7.5 illustrates the variability in ground truth
signal feature coverage ζφ trends. This visualization employs the same tubular format,
capturing minimum, maximum, and mean ζφ values. Notably, the tightly packed tubes
suggest limited variance in the data. Due to the significant overlap among the data
points for ART- and SDV-EC-based test suites, we have excluded the SDV-EC curves
from Figure 7.3, Figure 7.4, and Figure 7.5 to enhance the readability of the plots. In
both Figure 7.3 and Figure 7.5, a distinct contrast in performance is evident between our
feature-coverage testing techniques and the state-of-the-art methods, with the former
demonstrating superior efficacy.

RQ-7.2 - Fault Revealing Capability

RQ-7.2 explores whether test suites generated based on signal feature coverage are more
effective at detecting faults compared to those created using state-of-the-art methods.
Specifically, we assess the mutant-killing capability of test suites produced by ART,
FT-BCA, FT-S-TaLiRo, SDV-EC, OD-VB, and OD-FB, and compare them to those
generated by our FCT methods, namely FCT-C and FCT-S.

Figure 7.6 presents the trends over time of the number of mutants φ-killed by test suites
generated using different methods. For clearer visualization and easier interpretation,
the plots display the average number of mutants φ-killed. For a detailed view of the
variability in the number of mutants φ-killed, readers can refer to Figure 7.7. For the
mutant-killing trends for various test suites, there is significant overlap between the

139

7. Signal Feature Coverage and Testing

Figure 7.4: Trends over time of the mean ζφ-values computed for ground truth signals
and features.

curves for ART and SDV-EC-based test suites. As a result, in each subplot of Figure 7.6
and Figure 7.7, only one of these curves is clearly visible at a time.

We verified the φ-killability of the mutants using the mutant-directed test generation
strategy outlined in [BMNY23], and also outlined in Algorithm 6.1 discussed in Chapter 6.
All generated mutants were confirmed to be φ-killable. As illustrated in Figure 7.6, distinct
patterns are evident among the curves. The curves for FCT-C and FCT-S consistently
show a significantly higher number of φ-killed mutants compared to all other state-of-the-
art testing methods. This trend is consistent across all models and properties, providing
strong evidence for the effectiveness of generating test cases that thoroughly exercise the
features of the internal signals.

An interesting observation is that the FT approach (both BCA and S-TaLiRo), which
focuses on property falsification, does not achieve a higher mutant kill count than other
state-of-the-art methods. In fact, it consistently performs less effective compared to
FCT-S and FCT-C across all system models and their respective properties. This
suggests that targeting falsification may be less effective in identifying faults than the
strategies employed by FCT-S and FCT-C. Similarly, the ART-based test generation,
which prioritizes diversity among inputs without considering the property, also shows
lower mutant-killing effectiveness. ART-generated test cases fail to sufficiently (i) explore
the internal behavior of the software and (ii) detect basic faults, such as those seeded
using FIM, that could impact the property. This outcome aligns with previous findings in
the literature [BMNY23], further highlighting the inadequacy of ART-generated test cases
for effective fault detection. It is also observed that the performance of SDV-EC-based

140

7.3. Empirical Evaluation

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 7.5: Trends over time of ζφ achieved by different test generation strategies: Tubular
visualization indicating minimum, maximum and mean values.

141

7. Signal Feature Coverage and Testing

Figure 7.6: Trends over time of the average number of φ-killed mutants by different test
generation strategies.

Figure 7.7: Trends over time of the number of φ-killed mutants by different test generation
strategies: Tubular visualization indicating minimum, maximum and mean values.

142

7.3. Empirical Evaluation

test suites in φ-killing the mutants is very similar to that of ART-based test suites,
including their signal feature coverage.
Furthermore, output diversity-based testing strategies (OD-VB and OD-FB) show lim-
ited effectiveness in fault detection. These strategies aim to increase the likelihood of
uncovering failures by diversifying test output signals, which enhance the chances of
detecting significant discrepancies between expected and actual outputs. However, our
PBMT evaluations across various models and properties suggest that the low mutant-
killing performance of OD-VB and OD-FB results from insufficient exploration of the
feature values within internal signals. This inadequate coverage prevents these strategies
from effectively identifying faults. More specifically, the OD-FB approach focuses on
diversifying the feature vectors of output signals but fails to diversify the features within
internal signals. We believe this shortcoming is due to the complex interconnections and
interactions between components and signals within the system. In essence, OD-VB and
OD-FB testing methods fall short in thoroughly examining the internal behavior of the
system model.
In contrast, FCT-S and FCT-C produce test cases that achieve greater feature coverage,
significantly improving their effectiveness in detecting and capturing system errors,
leading to a higher mutant-killing capability. These findings highlight the substantial
benefits of generating tests that cover a wide range of features and feature values. Such
tests are more likely to reveal faults by exercising them in ways that noticeably impact
safety properties. By focusing on the features of internal signals, feature-coverage testing
increases the chances of activating faults or erroneous behaviors linked to those features.
This approach is particularly effective because faults in CPSs are often associated with
specific signal characteristics or interactions between signals.
In summary, FCT-S and FCT-C proved to be the most effective test case generation
strategies, achieving the highest mutant kill count. The tests generated by FCT-S and
FCT-C exercise mutants in a manner that modifies the features of internal signals,
causing failures to propagate to the observable interface and resulting in system property
violations. Moreover, the superior performance of FCT-C and FCT-S underscores the
importance of diversity in the feature values covered by test cases. This diversity enables
a more thorough exploration of the system’s response space, increasing the likelihood of
uncovering various types of faults or corner cases that might be overlooked by feature-
insensitive testing approaches.
In Figure 7.7, we present the trends over time for the number of mutants φ-killed with
respect to a given property φ, showing minimum, maximum, and mean values. This
visualization provides a comprehensive view of the variability in mutant killing across
different scenarios, enhancing the understanding of overall performance. Examining
Figure 7.7, we observe that test suites generated by FCT-S and FCT-C demonstrate the
ability to kill the highest number of mutants, reaching a maximum mutation score of
100% (i.e., killing all φ-killable mutants) at around 18k seconds (approximately 5 hours)
for most experimental subjects. Additionally, we notice significant overlap among the
tubes representing the state-of-the-art testing strategies for certain subjects. In particular,

143

7. Signal Feature Coverage and Testing

in the FCS (property 1), AECS, NN (property 1), and SC models, the maximum number
of mutants killed appears slightly higher for ART-based and SDV-EC-based test suites.
However, it is crucial to emphasize that the overall mutant killing count for ART-based
and SDV-EC-based suites remains substantially lower compared to even the minimum
number of mutants killed by our FCT-C and FCT-S techniques.

Another important finding is that the Specification-directed feature-coverage testing
strategy, FCT-S, exhibits similar performance to the baseline FCT-C method. Across
most of our experimental models and properties, the differences in the mean number
of mutants φ-killed by FCT-C and FCT-S are marginal. This parity in performance
between FCT-S and FCT-C-based testing methods implies that while the specification-
directed approach thoroughly exercises signals and features strongly correlated with
the tested property, it may not necessarily improve mutant killing compared to the
feature-comprehensive strategy.

In our concluding analysis, we investigated the correlation between coverage values of
individual signal feature types and mutation scores to assess if particular features notably
impact mutation-killing capabilities. However, we did not observe a consistent pattern
across all our experimental subjects concerning the influence of individual signal features
on mutation-killing effectiveness. We aim to explore further the role of signal features in
fault detection as part of our future research endeavors.

7.3.3 Threats to Validity
Our evaluation is influenced by the following threats to validity:

External Validity: Like many studies, ours faces an external validity concern regarding
the generalizability of the results. To address this, we tested multiple properties and
CPS models across diverse application domains. The consistency of the results across all
properties and applications suggests that our findings provide a valuable and motivating
foundation for further investigation into the concept of signal feature coverage. Another
potential threat is the representativeness of the injected faults. Our results are based on
common faults and mutation operators specific to Simulink® models, as supported by
FIM (discussed in Chapter 3), to offer a fair and relevant evaluation with hundreds of
injected faults. Conducting an initial study of this scale with real Simulink® faults would
be challenging due to the necessity of a large dataset of actual faults.

Internal Validity: An internal validity concern involves the generated mutants. We
focused on FOMs, consistent with common research practices in MT, and supported
by evidence indicating their reliability as predictors of test suite effectiveness [JJI+14].
Exploring multi-fault Simulink® models remains an avenue for future research.

Conclusion Validity: One potential concern regarding conclusion validity relates to the
randomness inherent in the test generation methods. To address this, we conducted each
test case generation process 30 times. We reported both average results (as shown in
Figure 7.2, Figure 7.4, and Figure 7.6) and results regarding the variance of the computed

144

7.4. Related Work

metrics (depicted in Figure 7.3, Figure 7.5, and Figure 7.7). The uniformity of findings
across all subjects and the minimal variation in results suggest that the presence of
randomness does not pose a significant threat to our conclusions.

7.4 Related Work
In recent years, there has been a growing interest in coverage-based testing approaches for
CPS dataflow models. One prominent metric is input coverage, which focuses on achieving
diversity among input signals [LNLB19]. Similarly, output coverage aims to diversify sys-
tem outputs [MNBB19]. The studies presented in [MNBB19,MNBB15,LNLB19] explore
methods for generating tests that maximize output signal diversity in Simulink® models
by guiding the process based on the output values that need to be tested. The underlying
idea is that diversifying the output signals increases the chances of detecting significant
discrepancies between expected and actual outputs, thereby enhancing failure detection.
Structural coverage metrics for CPS dataflow models encompass block execution coverage,
decision coverage, condition decision coverage, modified condition decision coverage,
and node/edge/path coverage [Mat23b,TBAA15,AERP04]. While traditional coverage
criteria typically focus on input values, output responses, and structural elements, they
fall short of fully capturing the complexities and dynamic behaviors inherent in CPS
dataflow models. The dynamics of CPS dataflow models are particularly influenced by
internal signal features and interactions. Conventional testing strategies that rely solely
on input/output values fail to ensure comprehensive testing of the internal behavior of
the system, often missing critical faults, as highlighted by our empirical findings. Signal
feature coverage addresses these shortcomings by explicitly considering the internal signal
features within CPS dataflow models, thereby more effectively revealing system faults.

Several researchers have explored the use of signal features to improve the testing of
CPS models. Zander [ZN09] introduced a detailed taxonomy of signal features tai-
lored for dataflow models, advocating for their use in describing specifications and test
oracles. Similarly, Matinnejad et al. [MNBB19] examined signal features, highlight-
ing the importance of diversifying them to enhance test generation processes. Other
researchers have argued that internal signals are valuable for fault identification and
localization [LNLB19,GRS+16]. Liu et al. [LNLB19] suggested that considering inter-
nal signals can enhance fault localization in Simulink models, as faults become more
detectable when analyzing internal signals or intermediary outputs. Similarly, Gay et
al. [GRS+16] proposed that focusing on the final outputs of a Simulink model might
mask the effects of internal faults. In contrast, examining subsystem outputs can make
the impact of faults more evident. In this thesis, we contribute to this field by proposing
a novel approach based on signal feature coverage. This approach guides test generation
to focus on exercising the features of internal signals within CPS dataflow models, thus
enhancing the effectiveness of the testing process.

Another research avenue explores integrating formal methods [MWR+15] and model
checking techniques [NGM+19] with coverage-based testing. These methods use for-

145

7. Signal Feature Coverage and Testing

mal specifications to guide test case generation and verify system properties [DDD+15,
DYHF17,MYPF19]. For instance, Bartocci et al. [BBM+22] propose an adaptive test
generation strategy to achieve specification coverage for temporal logic properties. Addi-
tionally, Dokhanchi et al. [DZS+15] enhance falsification methods by applying coverage
metrics to the state space of hybrid systems. Our approach, however, leverages formal
specifications (specifically, system safety properties expressed in STL) to pinpoint crit-
ical signals and features, which are then used to generate test cases focused on signal
feature coverage. Furthermore, the automation of test case generation has been explored
using techniques such as genetic algorithms [OHY11,AWM+18] and search-based test-
ing [TAC+21,ZC08]. In line with these search-based strategies for achieving specific test
objectives, we utilize BCA to generate test cases that maximize signal feature coverage.

Moreover, researchers have investigated mutation-based testing for CPS Simulink dataflow
models, focusing on detecting seeded faults [BHM+09,HNT14]. As outlined in Chapter 6,
we introduced Property-Based Mutation Testing [BMNY23] to address mutation testing
for CPS Simulink models with respect to formal properties. In our experiments, we
utilized this approach to showcase the mutant-killing effectiveness of the test suites
generated by our feature-coverage testing methods.

7.5 Conclusion
We introduced signal feature coverage as a new coverage metric specifically designed
for CPS dataflow models, based on commonly observed signal features. Additionally,
we developed a test generation strategy aimed at maximizing signal feature coverage
for a specified set of features and signals. Our feature-coverage testing approach was
evaluated against four state-of-the-art methods, demonstrating superior fault detection
by enhancing the coverage of different features of the internal signal within a system
model. Our feature-coverage testing method consistently outperformed existing testing
strategies across all properties and subjects in our experiments.

The experimental results yielded the following important insights: (1) Utilizing signal
features leads to coverage criteria that more accurately reflect the behavior and intricacies
of CPS models. (2) Test suites designed to maximize signal feature coverage achieve
higher mutation scores.

Data Availability Statement. Our data package and all the details of our evaluation
results are available at https://gitlab.com/DrishtiYadav/fct_master.

146

https://gitlab.com/DrishtiYadav/fct_master

CHAPTER 8
Summary and Future Work

In this chapter, we encapsulate the essence of the thesis and illuminate potential paths for
future research. First, by distilling the core themes and findings, we offer a brief overview
of the thesis contributions in Section 8.1. Next, we identify unexplored areas and propose
avenues (in Section 8.2) for further investigation, paving the way for continued scholarly
inquiry and advancement in the field.

8.1 Summary
The primary contribution of this thesis, as indicated by its title, lies in the development
of a fault-based testing framework tailored for safety-critical CPSs, facilitating swift
and accurate fault diagnostics for such systems. The proposed framework integrates
several techniques, including fault injection, global optimization, search-based testing for
fault localization, mutation testing against formal properties, and feature coverage-based
testing. This amalgamation offers distinct advantages over existing approaches and
facilitates comprehensive testing across various scenarios. The focus of this thesis was
specifically on CPS Simulink models governed by STL specifications. These specifications
enable the encoding of intricate task requirements, encompassing both spatial and
temporal constraints within the system.

Chapter 3 introduced FIM, a toolkit designed for automating fault injection and mutant
generation tasks within Simulink models. With FIM, testers have the flexibility to control
the activation of fault blocks according to their testing objectives, and fine-tune fault
parameters to rigorously evaluate the system under test against failures, assessing its
fault tolerance. Verification experts and testers can adapt and customize our existing
open-source toolkit to suit their safety evaluation and testing requirements. The fault
injection tool FIM developed in this chapter forms the foundation for fault seeding and
mutant generation in the later chapters.

147

8. Summary and Future Work

Chapter 4 introduced a novel optimization algorithm termed Blood Coagulation Algorithm
(BCA), inspired by the mechanism of blood coagulation in the human body. Drawing from
the cooperative behavior of thrombocytes and their intelligent clot formation strategy,
BCA emphasizes intensification and diversification within a search space. Through
extensive testing on a benchmark of well-known functions and real-world optimization
problems, we compared BCA with several state-of-the-art meta-heuristic algorithms,
revealing its competitive and statistically significant performance. The BCA optimizer
introduced in this chapter plays a crucial role in the subsequent chapters, handling
optimization tasks efficiently.

Chapter 5 introduced a new technique for fault localization in Simulink models of safety-
critical CPS. Our method, guided by an STL property, utilizes both failing executions
and automatically generated passing executions resembling the failed ones to pinpoint
anomalous signals and, consequently, the probable faulty blocks. We also applied
our technique using equivalence testing, where fault localization aligns with implicit
specifications. We then showcased the efficacy of our approach, demonstrating that our
method effectively localizes multiple faults within an acceptable cost, surpassing the
performance of CPSDebug, a commonly used approach in the field.

Chapter 6 introduced Property-Based Mutation Testing (PBMT), an innovative approach
aimed at evaluating test suites based on software properties. We formalized the concept
of mutant killability concerning the satisfaction and violation of a property by the original
program and its mutated version, respectively. This formalization provided a robust
foundation for PBMT and its associated mutant killing problem, facilitating the use
of the BCA optimizer for test case generation. We employed various test generation
strategies to create test suites and examined their effectiveness in mutant killability.
Our investigation of PBMT utilized two Simulink models within the safety-critical CPS
domain, highlighting the challenges and relevance of testing software against properties
compared to traditional MT method. Additionally, our evaluation revealed that current
state-of-the-art techniques like Adaptive Random Testing and Falsification Testing still
have limitations in generating test suites capable of effectively killing mutants when
tested against properties.

Chapter 7 detailed the introduction of Signal Feature Coverage, a coverage metric
specifically designed for CPS dataflow models, focusing on common signal features. A
search-based test generation strategy was also developed to maximize this coverage for
a given set of features and signals. When compared to four leading test generation
techniques, our proposed search-based strategy was shown to maximize signal feature
coverage more effectively, resulting in superior mutant detection. This highlights the
advantage of utilizing signal features to establish a coverage criterion that is better suited
to capturing the behavior and intricacies of CPS models. Specifically, we demonstrated
that encompassing a broad spectrum of signal features can effectively address various
aspects of system functionality, thereby increasing the probability of detecting faults
caused by mutations.

148

8.2. Outlook and Future Research Directions

8.2 Outlook and Future Research Directions
The methodologies developed in this thesis, though focused on CPS Simulink models
governed by STL specifications, are applicable to other formal specification languages
for signal-based temporal properties. The fault localization method in Chapter 5, which
compares passing and failing test cases, can be used with any formal language that
has well-defined qualitative and quantitative semantics. Similarly, PBMT (evaluating
property satisfaction on the original program and their violation on mutants) and FCT-S
(identifying features impacting properties) are language-agnostic, given the availability of
these semantics. Fault injection is inherently language-independent. Additionally, the
Blood Coagulation Algorithm (BCA) is not tied to any specific formal language, though
its use in search-based tasks may involve formal specifications. Thus, with well-defined
semantics, our proposed methods remain broadly applicable and effective.

This thesis does not comprehensively explore every possible aspect of the presented
work. While this dissertation includes experimental validation, it is equally important to
assess the practical effectiveness of the proposed tools and methodologies in real-world
CPS development environments. To this end, we plan to conduct a user study with
professional engineers actively working on CPSs to evaluate the tools’ usability, efficiency,
and overall impact during fault diagnosis tasks. By simulating realistic scenarios, we aim
to gather feedback on workflow integration, identify areas for improvement, and refine
our approach. If access to professional engineers is limited, an initial study with students
specializing in CPS development will be considered for preliminary insights.

There are several promising avenues for future research that have yet to be explored
in this thesis or within the research community. At a broader level, a potential avenue
for future research involves exploring higher-order mutants within formal temporal
logic specifications, along with investigating falsification and coverage-based testing
in multi-fault CPS dataflow models. Developing more systematic tools that can offer
formal safety assurances when multiple faults are introduced into the system is crucial,
especially in scenarios involving complex CPS controllers with learning-based control
laws or learning-enabled perception, which inherently introduce stochastic elements into
the system.

Besides, on a more general level, a potential avenue for future research involves testing
with Simulink models that contain documented real faults, although this task is notably
challenging due to the scarcity of such models. Furthermore, future investigations could
involve testing our proposed tools and techniques across a broader range of Simulink
models and a larger set of STL properties. This approach aims to address potential
validity threats by enhancing the generalizability of the results obtained.

More with respect to the themes explored in this thesis, we consider FIM (as discussed in
Chapter 3) to be a significant advancement in the verification process for safety-critical
systems. Presently, FIM efficiently generates a considerable number of fault-injected
models, enabling scalable fault injection experiments. Future improvements may target
specific application scenarios, like offering more refined testing options. Conducting

149

8. Summary and Future Work

an empirical study to evaluate the costs and benefits of large-scale mutation testing
in Simulink models could provide valuable insights. Moreover, expanding the tool to
include additional options for fault events could enhance fault diagnosis and reasoning
capabilities. Lastly, integrating FIM with simulation-based verification engines employing
formal approaches for safety analysis holds promise for further enhancing its utility.

Another promising avenue for future research involves extending BCA to address multi-
objective and many-objective optimization problems. Additionally, investigating the
performance of BCA with various constraint handling approaches for solving constrained
optimization problems is another promising area for research. The capability of BCA
to deal with highly constrained problems also needs to be explored. Additionally, there
is a need for continued research to evaluate the effectiveness of the proposed algorithm
in addressing complex real-life applications characterized by complex search spaces and
high dimensionality across diverse multidisciplinary domains. Given the simplicity of the
BCA proposed in this thesis in Chapter 4, incorporating additional mechanisms such as
evolutionary updating structures and chaos-based updating strategies could be beneficial
for future research efforts.

Expanding upon the other subjects addressed in this thesis, there is potential for expanding
upon our fault localization methodology, as outlined in Chapter 5. This expansion could
involve integrating different test generation strategies and evaluating how they influence
the accuracy of fault localization as a whole. Additionally, delving into the interaction
among various failing executions within a system that violates a given specification
presents an intriguing avenue for exploration. Also, developing nuanced strategies to
select the most effective test cases from a test suite based on these interactions could be
a valuable endeavor.

Another prospective research trajectory involves adaptation of PBMT to closely associated
CPS modeling languages, encompassing Simulink models integrated with Stateflow Charts.
Additionally, there will be a need for further exploration into HOMs, along with research
endeavors aimed at addressing test case generation for exposing higher-order faults.
Furthermore, complex LUTs (including n-D lookup tables and Prelookup blocks) are also
used in model-based development of hybrid systems with Simulink. Mutations occurring
within these LUTs could present greater interest to testers, thus representing a potential
avenue for future research.

Another promising future research avenue involves expanding the study of signal feature
coverage to HOMs and assessing its applicability in more complex scenarios. Furthermore,
refining the testing approach by exploring the interactions of different signal features on
system specifications could enhance its effectiveness. These initiatives are set to expand
the knowledge in CPS testing, ultimately leading to the creation of more resilient and
dependable CPSs in the future.

To conclude, we hope that certain sections of this thesis will serve as a foundation for
further exploration and development, whether it is through expanding upon the points
outlined in the future prospects or applying the concepts in different domains.

150

List of Figures

1.1 Overview of Fault Diagnosis of CPSs. 6
1.2 Steps of research development methodology (Design Science Research). . . 12
1.3 Overview of the Thesis: Mapping Contributions to Research Questions and

Dependencies. 14

2.1 Example of a Simulink model. Black nodes indicate input ports while white
nodes indicate output ports. Blocks b4, b8, b12 are hierarchical; remaining
blocks are atomic. ©2022 IEEE. 19

2.2 Mutations in a SUT (the seeded fault blocks F are highlighted in red). A, B
and C are blocks of original SUT. Internal signals s and s′ provide knowledge
of the fault location. ©2023 IEEE. 22

3.1 Workflow and Structure of FIM. License: CC BY 4.0 25
3.2 Illustration of some faults/mutations in a SUT (the injected fault blocks are

highlighted in red). License: CC BY 4.0 27
3.3 Mutations in the ‘Controller/Left Control Laws/Direct Link Control Law’

subsystem of AECS. 31

4.1 Schematic of Hemostasis illustrating the general steps of blood clotting. Li-
cense: CC BY 4.0 . 42

4.2 Different updating phases of BCA. License: CC BY 4.0 45
4.3 Search space of unimodal functions (2-D view). (License: CC BY 4.0) . . 48
4.4 Search space of multimodal functions (2-D view). (License: CC BY 4.0) . 50
4.5 Search space of the fixed-dimension multimodal benchmark functions (2-D

view). (License: CC BY 4.0) . 50
4.6 Illustration of the search history of thrombocytes. For visualization, we

consider 2D version of the benchmark functions. License: CC BY 4.0 . . . 55
4.7 Trajectories of some randomly chosen thrombocytes for some of the benchmark

functions (We consider 2D version of the benchmark functions). License: CC
BY 4.0 . 56

4.8 Comparison of convergence curves of BCA and few eminent algorithms for
some of the benchmark functions. License: CC BY 4.0 57

4.9 Scalability analysis of the proposed BCA for different dimensions of the
benchmark functions (f1 − f13). License: CC BY 4.0 61

151

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

4.10 Input and output plots for the counterexample for φ1
AT (120, 4500) found by

BCA. The dash-dot lines show the thresholds of the outputs. 74

5.1 An overview of STL-guided fault localization procedure (STL-FL). ©2022
IEEE. 80

5.2 Distributions of FL_Cost for one-fault to three-fault models. ©2022 IEEE. 94

6.1 Output plots for the original and mutated models of ATCS: (top) for a test
case satisfying the property on the mutant, (bottom) for a test case violating
the property on the mutant. The portion of the output trace (vehicle speed)
responsible for property violation is highlighted. ©2023 IEEE. 101

7.1 Sample bin coverage of a feature. 122
7.2 Trends over time of mean value of ζcomp for different test generation strategies

for various models. 134
7.2 Trends over time of mean value of ζcomp for different test generation strategies

for various models. (cont.) . 135
7.3 Trends over time of ζcomp achieved by different test generation strategies:

Tubular visualization indicating minimum, maximum and mean values. . 136
7.4 Trends over time of the mean ζφ-values computed for ground truth signals

and features. 140
7.5 Trends over time of ζφ achieved by different test generation strategies: Tubular

visualization indicating minimum, maximum and mean values. 141
7.6 Trends over time of the average number of φ-killed mutants by different test

generation strategies. 142
7.7 Trends over time of the number of φ-killed mutants by different test generation

strategies: Tubular visualization indicating minimum, maximum and mean
values. 142

152

List of Tables

3.1 Faults and mutation operators. 26
3.2 List of operators for block mutations. 28
3.3 A sample fault_list for the AECS. 30
3.4 Some entries of the fault table (based on the fault_list in Table 3.3). 32
3.5 A sample fault_enable_list for the AECS. 32
3.6 Fault Injection (mutant generation) time (in seconds) for AECS. 34

4.1 Nature-inspired metaheuristic algorithms. 39
4.2 Description of variables utilized in the mathematical formulation of BCA. 43
4.3 List of Benchmark functions. 49
4.4 Parameter settings of various algorithms. 52
4.5 Comparison of the results obtained by BCA with other state-of-the-art meta-

heuristic algorithms. The best results are kept in bold. 53
4.6 Results obtained with other state-of-the-art meta-heuristic algorithms. The

best results are kept in bold. (Additional results of Table 4.5) 54
4.7 p-values of the Wilcoxon rank-sum test with 5% significance for BCA versus

other algorithms for the benchmark functions with 30 independent runs.(p-
values ≥ 0.05 are indicated in bold face. NaN indicates “Not a Number”
reported by the test.) . 59

4.8 Influence of high dimensionality on the performance of BCA: Results of
benchmark functions (f1 − f13) with different dimensions. 60

4.9 Brief description of the tackled engineering design optimization problems. 62
4.10 Comparison of the best solution obtained by BCA with other algorithms in

the literature for the welded beam design problem. 64
4.11 Comparison of statistical results of BCA with other optimization algorithms

in the literature for solving the welded beam design problem. 65
4.12 Comparison of the best solution obtained by BCA with other algorithms in

the literature for the pressure vessel design problem. 66
4.13 Comparison of statistical results of BCA with other optimization algorithms

in the literature for solving the pressure vessel design problem. 67
4.14 Comparison of the best solution obtained by BCA with other algorithms in

the literature for the tension/compression spring design problem. 68
4.15 Comparison of statistical results of BCA with other optimization algorithms

in the literature for solving the tension/compression spring design problem. 69

153

4.16 Comparison of the best solution obtained by BCA with other algorithms in
the literature for the three-bar truss design problem. 70

4.17 Comparison of the best solution obtained by BCA with other algorithms in
the literature for the Speed reducer design problem. 71

4.18 Comparison of statistical results of BCA with other optimization algorithms
in the literature for solving the Speed reducer design problem. 72

4.19 Comparison of results for Gear train design problem. 73
4.20 Results for the falsification problem of ATCS. 74
4.21 Comparison of BCA-based falsification testing with S-TaLiRo. 75

5.1 Details of Failing-Passing test case pair for Example 1. 86
5.2 SOI for fault localization and the corresponding blocks. 86
5.3 Key information about the Simulink models of our subjects. 89
5.4 Information of seeded faults in each case study. 91
5.5 Scope reduction and fault detection in ATCS. 93
5.6 Empirical evaluation of our approach. 94
5.7 Fault Localization accuracy. 95
5.8 Computational cost (in seconds). 95

6.1 Details of Simulink models of our case studies. 107
6.2 Number of mutants of our experimental subjects. 108
6.3 Information of generated mutants. 108
6.4 Scale of Experiments. 109
6.5 Results of Mutation Testing. 110
6.6 Summary of results of PBMT for individual operators. 112

7.1 The Basic Statistics feature set [SG23]. 120
7.2 The Higher-Order statistics and Impulsive metrics of a signal. 120
7.3 Key features of selected Simulink models. 131
7.4 Properties of experimental subjects in natural language and STL. 132
7.5 Mutation operators and number of mutants. 133
7.6 Time required for identifying significant signals and features, and times at

which FCT-S/FCT-C surpass state-of-the-art strategies w.r.t. ζcomp. . . . 137

154

List of Algorithms

4.1 The Blood Coagulation Algorithm (BCA) 47

5.1 Test Suite Selection for localizing faults. 81

5.2 The SearchPT() subroutine. 83

5.3 Fault Localization by analyzing anomalous events with STL. 84

6.1 Search-based test generation. 106

7.1 Feature Identification Procedure: Identifying significant features of signifi-
cant signal variables that impact φ. 127

7.2 The subroutine FindTopS(). 127

7.3 The subroutine FindF(). 128

155

Bibliography

[5G 24] Austria 5G PLAYGROUND CARINTHIA. 5g playground - what is
the playground?, 2024.

[AAJ+14] Bernhard K Aichernig, Jakob Auer, Elisabeth Jöbstl, Robert Korošec,
Willibald Krenn, Rupert Schlick, and Birgit Vera Schmidt. Model-
based mutation testing of an industrial measurement device. In
International Conference on Tests and Proofs, pages 1–19. Springer,
2014.

[ABD+79] Allen Troy Acree, Timothy Alan Budd, Richard A. DeMillo, Richard J.
Lipton, and Frederick Gerald Sayward. Mutation analysis. techreport
GIT-ICS-79/08, Georgia Institute of Technology, Atlanta, Georgia,
1979.

[ABJ+15] Bernhard K Aichernig, Harald Brandl, Elisabeth Jöbstl, Willibald
Krenn, Rupert Schlick, and Stefan Tiran. Killing strategies for model-
based mutation testing. Software Testing, Verification and Reliability,
25(8):716–748, 2015.

[ABJK11] Bernhard K Aichernig, Harald Brandl, Elisabeth Jöbstl, and Willibald
Krenn. Efficient mutation killers in action. In 2011 Fourth IEEE Inter-
national Conference on Software Testing, Verification and Validation,
pages 120–129. IEEE, 2011.

[ABL15] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an appropri-
ate tool for testing experiments? In Proceedings of the International
Conference on Software Engineering (ICSE), 2015.

[ABLN06] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin. Using
mutation analysis for assessing and comparing testing coverage criteria.
IEEE Transactions on Software Engineering, 32(8):608–624, 2006.

[ADD+17] Arvind S. Adimoolam, Thao Dang, Alexandre Donzé, James Kapinski,
and Xiaoqing Jin. Classification and coverage-based falsification for
embedded control systems. In Rupak Majumdar and Viktor Kuncak,

157

editors, Computer Aided Verification - 29th International Conference,
CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part
I, volume 10426 of Lecture Notes in Computer Science, pages 483–503.
Springer, 2017.

[ADM+21] Laith Abualigah, Ali Diabat, Seyedali Mirjalili, Mohamed Abd Elaziz,
and Amir H Gandomi. The arithmetic optimization algorithm. Com-
puter methods in applied mechanics and engineering, 376:113609,
2021.

[AERP04] Vadim Alyokhin, Benedikte Elbel, Martin Rothfelder, and Alexander
Pretschner. Coverage metrics for continuous function charts. In
15th International Symposium on Software Reliability Engineering
(ISSRE 2004), 2-5 November 2004, Saint-Malo, Bretagne, France,
pages 257–268, USA, 2004. IEEE Computer Society.

[AF12] Houssam Abbas and Georgios Fainekos. Convergence proofs for
simulated annealing falsification of safety properties. In 50th Annual
Allerton Conference on Communication, Control, and Computing,
Allerton 2012, Allerton Park & Retreat Center, Monticello, IL, USA,
October 1-5, 2012, pages 1594–1601. IEEE, 2012.

[AFI17] Hammoudi Abderazek, Djeddou Ferhat, and Atanasovska Ivana.
Adaptive mixed differential evolution algorithm for bi-objective tooth
profile spur gear optimization. The International Journal of Advanced
Manufacturing Technology, 90:2063–2073, 2017.

[AGL07] Esmaeil Atashpaz-Gargari and Caro Lucas. Imperialist competitive
algorithm: an algorithm for optimization inspired by imperialistic
competition. In 2007 IEEE congress on evolutionary computation,
pages 4661–4667. Ieee, 2007.

[AH15] Takumi Akazaki and Ichiro Hasuo. Time robustness in MTL and
expressivity in hybrid system falsification. In Daniel Kroening and
Corina S. Pasareanu, editors, Computer Aided Verification - 27th
International Conference, CAV 2015, San Francisco, CA, USA, July
18-24, 2015, Proceedings, Part II, volume 9207 of Lecture Notes in
Computer Science, pages 356–374. Springer, 2015.

[AK12] Bahriye Akay and Dervis Karaboga. Artificial bee colony algorithm
for large-scale problems and engineering design optimization. Journal
of intelligent manufacturing, 23:1001–1014, 2012.

[ALFS11] Yashwanth Annpureddy, Che Liu, Georgios Fainekos, and Sriram
Sankaranarayanan. S-taliro: A tool for temporal logic falsification for
hybrid systems. In International Conference on Tools and Algorithms

158

for the Construction and Analysis of Systems, pages 254–257. Springer,
2011.

[ALN13] Bernhard K Aichernig, Florian Lorber, and Dejan Ničković. Time
for mutants—model-based mutation testing with timed automata. In
International Conference on Tests and Proofs, pages 20–38. Springer,
2013.

[ALRL04] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl E.
Landwehr. Basic concepts and taxonomy of dependable and secure
computing. IEEE Transactions on Dependable and Secure Computing,
1(1):11–33, 2004.

[ARM17] Arend Aerts, Michel Reniers, and Mohammad Reza Mousavi. Model-
based testing of cyber-physical systems. In Cyber-Physical Systems,
pages 287–304. Elsevier, 2017.

[Aro04] Jasbir Singh Arora. Introduction to optimum design. Elsevier, 2004.

[AS19] Sankalap Arora and Satvir Singh. Butterfly optimization algorithm:
a novel approach for global optimization. Soft computing, 23:715–734,
2019.

[AWM+18] Aitor Arrieta, Shuai Wang, Urtzi Markiegi, Goiuria Sagardui, and
Leire Etxeberria. Employing multi-objective search to enhance re-
active test case generation and prioritization for testing industrial
cyber-physical systems. IEEE Trans. Ind. Informatics, 14(3):1055–
1066, 2018.

[AYS20] Qamar Askari, Irfan Younas, and Mehreen Saeed. Political opti-
mizer: A novel socio-inspired meta-heuristic for global optimization.
Knowledge-based systems, 195:105709, 2020.

[B+12] Nguyen Thanh Binh et al. Mutation operators for simulink models.
In 2012 Fourth International Conference on Knowledge and Systems
Engineering, pages 54–59. IEEE, 2012.

[BA15] Adil Baykasoğlu and Şener Akpinar. Weighted superposition at-
traction (wsa): A swarm intelligence algorithm for optimization
problems–part 2: Constrained optimization. Applied Soft Computing,
37:396–415, 2015.

[Bac91] Thomas Back. A survey of evolution strategies. In Proc. of Fourth
Internal. Conf. on Genetic Algorithms, 1991.

[BBC+16] Benjamin Bittner, Marco Bozzano, Roberto Cavada, Alessandro
Cimatti, Marco Gario, Alberto Griggio, Cristian Mattarei, Andrea

159

Micheli, and Gianni Zampedri. The xsap safety analysis platform. In
International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems, pages 533–539. Springer, 2016.

[BBL+20] Ezio Bartocci, Luca Bortolussi, Michele Loreti, Laura Nenzi, and
Simone Silvetti. Moonlight: A lightweight tool for monitoring spatio-
temporal properties. In International Conference on Runtime Verifi-
cation, pages 417–428. Springer, 2020.

[BBM+22] Ezio Bartocci, Roderick Bloem, Benedikt Maderbacher, Niveditha
Manjunath, and Dejan Ničković. Adaptive testing for specification
coverage and refinement in cps models. Nonlinear Analysis: Hybrid
Systems, 46:101254, 2022.

[BDT99] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. Swarm intelli-
gence: from natural to artificial systems. Oxford university press,
1999.

[BFMN18] Ezio Bartocci, Thomas Ferrère, Niveditha Manjunath, and Dejan
Ničković. Localizing faults in simulink/stateflow models with STL. In
Proceedings of the 21st International Conference on Hybrid Systems:
Computation and Control (part of CPS Week), pages 197–206, 2018.

[BG20] Seyede Marziyeh Ghoreshi Beyrami and Peyvand Ghaderyan. A
robust, cost-effective and non-invasive computer-aided method for
diagnosis three types of neurodegenerative diseases with gait signal
analysis. Measurement, 156:107579, 2020.

[BH12] Richard Baker and Ibrahim Habli. An empirical evaluation of muta-
tion testing for improving the test quality of safety-critical software.
IEEE Transactions on Software Engineering, 39(6):787–805, 2012.

[BHM+09] Angelo Brillout, Nannan He, Michele Mazzucchi, Daniel Kroening, Mi-
tra Purandare, Philipp Rümmer, and Georg Weissenbacher. Mutation-
based test case generation for simulink models. In Frank S. de Boer,
Marcello M. Bonsangue, Stefan Hallerstede, and Michael Leuschel, ed-
itors, Formal Methods for Components and Objects - 8th International
Symposium, FMCO 2009, Eindhoven, The Netherlands, November
4-6, 2009. Revised Selected Papers, volume 6286 of Lecture Notes in
Computer Science, pages 208–227, Berlin, Heidelberg, 2009. Springer.

[BK11] Federico Bergero and Ernesto Kofman. Powerdevs: a tool for hybrid
system modeling and real-time simulation. Simul., 87(1-2):113–132,
2011.

[BLS13] Ilhem Boussaïd, Julien Lepagnot, and Patrick Siarry. A survey on
optimization metaheuristics. Information sciences, 237:82–117, 2013.

160

[Blu05] Christian Blum. Ant colony optimization: Introduction and recent
trends. Physics of Life reviews, 2(4):353–373, 2005.

[BMM+19] Ezio Bartocci, Niveditha Manjunath, Leonardo Mariani, Cristinel
Mateis, and Dejan Ničković. Automatic failure explanation in CPS
models. In International Conference on Software Engineering and
Formal Methods, pages 69–86. Springer, 2019.

[BMM+21] Ezio Bartocci, Niveditha Manjunath, Leonardo Mariani, Cristinel
Mateis, and Dejan Ničković. CPSdebug: Automatic failure expla-
nation in CPS models. International Journal on Software Tools for
Technology Transfer, 23(5):783–796, 2021.

[BMNY22a] Ezio Bartocci, Leonardo Mariani, Dejan Nickovic, and Drishti Yadav.
FIM: fault injection and mutation for simulink. In Abhik Roychoud-
hury, Cristian Cadar, and Miryung Kim, editors, Proceedings of
the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/FSE
2022, Singapore, Singapore, November 14-18, 2022, pages 1716–1720,
USA, 2022. ACM.

[BMNY22b] Ezio Bartocci, Leonardo Mariani, Dejan Nickovic, and Drishti Yadav.
FIM: Fault Injection and Mutation for Simulink, May 2022.

[BMNY22c] Ezio Bartocci, Leonardo Mariani, Dejan Nickovic, and Drishti Yadav.
Search-based testing for accurate fault localization in CPS. In IEEE
33rd International Symposium on Software Reliability Engineering,
ISSRE 2022, Charlotte, NC, USA, October 31 - Nov. 3, 2022, pages
145–156, USA, 2022. IEEE.

[BMNY23] Ezio Bartocci, Leonardo Mariani, Dejan Nickovic, and Drishti Yadav.
Property-based mutation testing. In IEEE Conference on Software
Testing, Verification and Validation, ICST 2023, Dublin, Ireland,
April 16-20, 2023, pages 222–233, USA, 2023. IEEE.

[BO15] Adil Baykasoğlu and Fehmi Burcin Ozsoydan. Adaptive firefly al-
gorithm with chaos for mechanical design optimization problems.
Applied soft computing, 36:152–164, 2015.

[Boa92a] Boualem Boashash. Estimating and interpreting the instantaneous
frequency of a signal. i. fundamentals. Proceedings of the IEEE,
80(4):520–538, 1992.

[Boa92b] Boualem Boashash. Estimating and interpreting the instantaneous
frequency of a signal. ii. algorithms and applications. Proceedings of
the IEEE, 80(4):540–568, 1992.

161

[BSAH21] Malik Braik, Alaa Sheta, and Heba Al-Hiary. A novel meta-heuristic
search algorithm for solving optimization problems: capuchin search
algorithm. Neural computing and applications, 33(7):2515–2547, 2021.

[BV07] Marco Bozzano and Adolfo Villafiorita. The fsap/nusmv-sa safety
analysis platform. Int. J. Softw. Tools Technol. Transf., 9(1):5–24,
2007.

[CÁS13] Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan. Flow*: An
analyzer for non-linear hybrid systems. In International Conference
on Computer Aided Verification, pages 258–263. Springer, 2013.

[CCB04] Carlos A Coello Coello and Ricardo Landa Becerra. Efficient evolution-
ary optimization through the use of a cultural algorithm. Engineering
Optimization, 36(2):219–236, 2004.

[CEC08] Leticia C Cagnina, Susana C Esquivel, and Carlos A Coello Coello.
Solving engineering optimization problems with the simple con-
strained particle swarm optimizer. Informatica, 32(3), 2008.

[Cha14] S. Chamarthy. Normal coagulation and hemostasis. In Linda M.
McManus and Richard N. Mitchell, editors, Pathobiology of Human
Disease, pages 1544–1552. Academic Press, San Diego, 2014.

[CKLW08] Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, and W. Eric Wong. Does
adaptive random testing deliver a higher confidence than random
testing? In Hong Zhu, editor, Proceedings of the Eighth International
Conference on Quality Software, QSIC 2008, 12-13 August 2008,
Oxford, UK, pages 145–154, USA, 2008. IEEE Computer Society.

[CLM05] Tsong Yueh Chen, Hing Leung, and Ieng Kei Mak. Adaptive random
testing. In Advances in Computer Science-ASIAN 2004. Higher-
Level Decision Making: 9th Asian Computing Science Conference.
Dedicated to Jean-Louis Lassez on the Occasion of His 5th Birthday.
Chiang Mai, Thailand, December 8-10, 2004. Proceedings 9, pages
320–329, Berlin, Heidelberg, 2005. Springer, Springer.

[ČLM13] Matej Črepinšek, Shih-Hsi Liu, and Marjan Mernik. Exploration and
exploitation in evolutionary algorithms: A survey. ACM computing
surveys (CSUR), 45(3):1–33, 2013.

[CM02] Carlos A Coello Coello and Efrén Mezura Montes. Constraint-
handling in genetic algorithms through the use of dominance-based
tournament selection. Advanced Engineering Informatics, 16(3):193–
203, 2002.

162

[CMM+18] Shafiul Azam Chowdhury, Soumik Mohian, Sidharth Mehra, Siddhant
Gawsane, Taylor T Johnson, and Christoph Csallner. Automatically
finding bugs in a commercial cyber-physical system development tool
chain with slforge. In Proceedings of the 40th International Conference
on Software Engineering, pages 981–992, 2018.

[Coe00] Carlos A Coello Coello. Use of a self-adaptive penalty approach for
engineering optimization problems. Computers in Industry, 41(2):113–
127, 2000.

[Coe02] Carlos A Coello Coello. Theoretical and numerical constraint-handling
techniques used with evolutionary algorithms: a survey of the state
of the art. Computer methods in applied mechanics and engineering,
191(11-12):1245–1287, 2002.

[CW97] YJ Cao and QH Wu. Evolutionary programming. In Proceedings of
1997 IEEE International Conference on Evolutionary Computation
(ICEC’97), pages 443–446. IEEE, 1997.

[CZE17] Jacek M Czerniak, Hubert Zarzycki, and Dawid Ewald. Aao as a
new strategy in modeling and simulation of constructional problems
optimization. Simulation Modelling Practice and Theory, 76:22–33,
2017.

[DA94] René David and Hassane Alla. Petri nets for modeling of dynamic
systems: A survey. Autom., 30(2):175–202, 1994.

[DDD+15] Tommaso Dreossi, Thao Dang, Alexandre Donzé, James Kapinski,
Xiaoqing Jin, and Jyotirmoy V. Deshmukh. Efficient guiding strate-
gies for testing of temporal properties of hybrid systems. In Klaus
Havelund, Gerard J. Holzmann, and Rajeev Joshi, editors, NASA For-
mal Methods - 7th International Symposium, NFM 2015, Pasadena,
CA, USA, April 27-29, 2015, Proceedings, volume 9058 of Lecture
Notes in Computer Science, pages 127–142, Cham, 2015. Springer.

[Deb91] Kalyanmoy Deb. Optimal design of a welded beam via genetic
algorithms. AIAA journal, 29(11):2013–2015, 1991.

[DG+96] Kalyanmoy Deb, Mayank Goyal, et al. A combined genetic adap-
tive search (geneas) for engineering design. Computer Science and
informatics, 26:30–45, 1996.

[DGMH11] Joaquín Derrac, Salvador García, Daniel Molina, and Francisco Her-
rera. A practical tutorial on the use of nonparametric statistical tests
as a methodology for comparing evolutionary and swarm intelligence
algorithms. Swarm and Evolutionary Computation, 1(1):3–18, 2011.

163

[DGV96] Akash Deshpande, Aleks Göllü, and Pravin Varaiya. SHIFT: A
formalism and a programming language for dynamic networks of
hybrid automata. In Panos J. Antsaklis, Wolf Kohn, Anil Nerode,
and Shankar Sastry, editors, Hybrid Systems IV, Proceedings of the
Fourth International Workshop on Hybrid Systems, Ithaca, NY, USA,
October 1996, volume 1273 of Lecture Notes in Computer Science,
pages 113–133. Springer, 1996.

[Dhi21] Gaurav Dhiman. Esa: a hybrid bio-inspired metaheuristic optimiza-
tion approach for engineering problems. Engineering with Computers,
37:323–353, 2021.

[DJKM15] Jyotirmoy V. Deshmukh, Xiaoqing Jin, James Kapinski, and Oded
Maler. Stochastic local search for falsification of hybrid systems.
In Bernd Finkbeiner, Geguang Pu, and Lijun Zhang, editors, Auto-
mated Technology for Verification and Analysis - 13th International
Symposium, ATVA 2015, Shanghai, China, October 12-15, 2015, Pro-
ceedings, volume 9364 of Lecture Notes in Computer Science, pages
500–517. Springer, 2015.

[DLS78] Richard A. DeMillo, Richard J. Lipton, and Frederick Gerald Sayward.
Hints on test data selection: Help for the practicing programmer.
Computer, 11(4):34–41, April 1978.

[DM10] Alexandre Donzé and Oded Maler. Robust satisfaction of tempo-
ral logic over real-valued signals. In Krishnendu Chatterjee and
Thomas A. Henzinger, editors, Formal Modeling and Analysis of
Timed Systems - 8th International Conference, FORMATS 2010,
Klosterneuburg, Austria, September 8-10, 2010. Proceedings, volume
6246 of Lecture Notes in Computer Science, pages 92–106. Springer,
2010.

[DMVP15] Parasara Sridhar Duggirala, Sayan Mitra, Mahesh Viswanathan, and
Matthew Potok. C2e2: A verification tool for stateflow models. In In-
ternational Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 68–82. Springer, 2015.

[Don10] Alexandre Donzé. Breach, a toolbox for verification and parameter
synthesis of hybrid systems. In International Conference on Computer
Aided Verification, pages 167–170. Springer, 2010.

[DPHG+18] Pedro Delgado-Pérez, Ibrahim Habli, Steve Gregory, Rob Alexander,
John Clark, and Inmaculada Medina-Bulo. Evaluation of mutation
testing in a nuclear industry case study. IEEE Transactions on
Reliability, 67(4):1406–1419, 2018.

164

[DPV+20] Serge Demeyer, Ali Parsai, Sten Vercammen, Brent van Bladel, and
Mehrdad Abdi. Formal verification of developer tests: a research
agenda inspired by mutation testing. In International Symposium
on Leveraging Applications of Formal Methods, pages 9–24. Springer,
2020.

[DR64] Earl W. Davie and Oscar D. Ratnoff. Waterfall sequence for intrinsic
blood clotting. Science, 145(3638):1310–1312, 1964.

[dSC10] Leandro dos Santos Coelho. Gaussian quantum-behaved particle
swarm optimization approaches for constrained engineering design
problems. Expert Systems with Applications, 37(2):1676–1683, 2010.

[DST17] Ram Das Diwakaran, Sriram Sankaranarayanan, and Ashutosh
Trivedi. Analyzing neighborhoods of falsifying traces in cyber-physical
systems. In Proceedings of the 8th International Conference on Cyber-
Physical Systems, pages 109–119, 2017.

[DYHF17] Adel Dokhanchi, Shakiba Yaghoubi, Bardh Hoxha, and Georgios
Fainekos. Vacuity aware falsification for MTL request-response spec-
ifications. In 13th IEEE Conference on Automation Science and
Engineering, CASE 2017, Xi’an, China, August 20-23, 2017, pages
1332–1337, USA, 2017. IEEE.

[DZS+15] Adel Dokhanchi, Aditya Zutshi, Rahul T. Sriniva, Sriram Sankara-
narayanan, and Georgios Fainekos. Requirements driven falsification
with coverage metrics. In Alain Girault and Nan Guan, editors, 2015
International Conference on Embedded Software, EMSOFT 2015,
Amsterdam, Netherlands, October 4-9, 2015, pages 31–40, USA, 2015.
IEEE.

[EAF+22] Gidon Ernst, Paolo Arcaini, Georgios Fainekos, Federico Formica,
Jun Inoue, Tanmay Khandait, Mohammad Mahdi Mahboob, Claudio
Menghi, Giulia Pedrielli, Masaki Waga, et al. Arch-comp 2022 cate-
gory report: Falsification with ubounded resources. EPiC Series in
Computing, 90:204–221, 2022.

[ECGN01] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David
Notkin. Dynamically discovering likely program invariants to support
program evolution. IEEE Transactions on Software Engineering,
27(2):99–123, 2001.

[EE06] Osman K Erol and Ibrahim Eksin. A new optimization method: big
bang–big crunch. Advances in engineering software, 37(2):106–111,
2006.

165

[EL17] Jonathan Ezekiel and Andrea Lomuscio. Combining fault injection
and model checking to verify fault tolerance, recoverability, and
diagnosability in multi-agent systems. Inf. Comput., 254:167–194,
2017.

[ESBH12] Hadi Eskandar, Ali Sadollah, Ardeshir Bahreininejad, and Mohd
Hamdi. Water cycle algorithm–a novel metaheuristic optimization
method for solving constrained engineering optimization problems.
Computers & Structures, 110:151–166, 2012.

[FA11] Gordon Fraser and Andrea Arcuri. Evosuite: automatic test suite
generation for object-oriented software. In Tibor Gyimóthy and
Andreas Zeller, editors, SIGSOFT/FSE’11 19th ACM SIGSOFT
Symposium on the Foundations of Software Engineering (FSE-19) and
ESEC’11: 13th European Software Engineering Conference (ESEC-
13), Szeged, Hungary, September 5-9, 2011, pages 416–419, USA,
2011. ACM.

[FCA22] Daniel Fortunato, Jose Campos, and Rui Abreu. Mutation testing of
quantum programs: A case study with qiskit. IEEE Transactions on
Quantum Engineering, 3:1–17, 2022.

[FFC91] Jing-Fan Fu, Robert G Fenton, and William L Cleghorn. A mixed
integer-discrete-continuous programming method and its applica-
tion to engineering design optimization. Engineering Optimization,
17(4):263–280, 1991.

[FGD+11] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton,
Rajarshi Ray, Olivier Lebeltel, Rodolfo Ripado, Antoine Girard, Thao
Dang, and Oded Maler. SpaceEx: Scalable verification of hybrid
systems. In International Conference on Computer Aided Verification,
pages 379–395. Springer, 2011.

[FKS+19] Andreas Fellner, Willibald Krenn, Rupert Schlick, Thorsten Tarrach,
and Georg Weissenbacher. Model-based, mutation-driven test-case
generation via heuristic-guided branching search. ACM Transactions
on Embedded Computing Systems (TECS), 18(1):1–28, 2019.

[FM24] Republic of Austria Federal Ministry. Austrian action programme on
automated mobility 2019–2022, 2024.

[FMMJ21] Tagir Fabarisov, Ilshat Mamaev, Andrey Morozov, and Klaus Jan-
schek. Model-based fault injection experiments for the safety analysis
of exoskeleton system. arXiv preprint arXiv:2101.01283, 2021.

[FMN15] Thomas Ferrère, Oded Maler, and Dejan Nickovic. Trace diagnostics
using temporal implicants. In Bernd Finkbeiner, Geguang Pu, and

166

Lijun Zhang, editors, Automated Technology for Verification and
Analysis - 13th International Symposium, ATVA 2015, Shanghai,
China, October 12-15, 2015, Proceedings, volume 9364 of Lecture
Notes in Computer Science, pages 241–258. Springer, 2015.

[FROC+20] Fernando Fausto, Adolfo Reyna-Orta, Erik Cuevas, Ángel G Andrade,
and Marco Perez-Cisneros. From ants to whales: metaheuristics for
all tastes. Artificial Intelligence Review, 53:753–810, 2020.

[FSDC10] Cláudia Natália Ferreira, Marinez de Oliveira Sousa, Luci
Maria Sant’Ana Dusse, and Maria das Graças Carvalho. A cell-
based model of coagulation and its implications. Revista brasileira de
Hematologia e Hemoterapia, 32:416–421, 2010.

[GA12] Amir Hossein Gandomi and Amir Hossein Alavi. Krill herd: a new
bio-inspired optimization algorithm. Communications in nonlinear
science and numerical simulation, 17(12):4831–4845, 2012.

[Gan14] Amir H Gandomi. Interior search algorithm (isa): a novel approach
for global optimization. ISA transactions, 53(4):1168–1183, 2014.

[Gar14] Harish Garg. Solving structural engineering design optimization
problems using an artificial bee colony algorithm. J Ind Manag
Optim, 10(3):777–794, 2014.

[GB14] Naser Ghorbani and Ebrahim Babaei. Exchange market algorithm.
Applied soft computing, 19:177–187, 2014.

[GBB20] Cyrus Garmo, Tanvir Bajwa, and Bracken Burns. Physiology, clotting
mechanism. Online, 2020.

[GC14] Jean Dickinson Gibbons and Subhabrata Chakraborti. Nonparametric
statistical inference. CRC press, 2014.

[GHJ07] Alex Groce, Gerard Holzmann, and Rajeev Joshi. Randomized differ-
ential testing as a prelude to formal verification. In 29th International
Conference on Software Engineering (ICSE’07), pages 621–631. IEEE,
2007.

[GJG17] Rahul Gopinath, Carlos Jensen, and Alex Groce. The theory of
composite faults. In 2017 IEEE International Conference on Software
Testing, Verification and Validation (ICST), pages 47–57, 2017.

[GKL01] Zong Woo Geem, Joong Hoon Kim, and Gobichettipalayam Vasude-
van Loganathan. A new heuristic optimization algorithm: harmony
search. simulation, 76(2):60–68, 2001.

167

[GM05] Jason Ghidella and Pieter Mosterman. Requirements-based test-
ing in aircraft control design. In AIAA Modeling and Simulation
Technologies Conference and Exhibit, page 5886, 2005.

[GRS+16] Gregory Gay, Ajitha Rajan, Matt Staats, Michael W. Whalen, and
Mats Per Erik Heimdahl. The effect of program and model structure
on the effectiveness of MC/DC test adequacy coverage. ACM Trans.
Softw. Eng. Methodol., 25(3):25:1–25:34, 2016.

[Gue16] Najeh Ben Guedria. Improved accelerated pso algorithm for me-
chanical engineering optimization problems. Applied Soft Computing,
40:455–467, 2016.

[GYA11] Amir Hossein Gandomi, Xin-She Yang, and Amir Hossein Alavi.
Mixed variable structural optimization using firefly algorithm. Com-
puters & Structures, 89(23-24):2325–2336, 2011.

[GYA13] Amir Hossein Gandomi, Xin-She Yang, and Amir Hossein Alavi.
Cuckoo search algorithm: a metaheuristic approach to solve structural
optimization problems. Engineering with computers, 29:17–35, 2013.

[GYYT13] Amir Hossein Gandomi, Gun Jin Yun, Xin-She Yang, and Siamak
Talatahari. Chaos-enhanced accelerated particle swarm optimization.
Communications in Nonlinear Science and Numerical Simulation,
18(2):327–340, 2013.

[HAF14] Bardh Hoxha, Houssam Abbas, and Georgios Fainekos. Benchmarks
for temporal logic requirements for automotive systems. In Goran
Frehse and Matthias Althoff, editors, 1st and 2nd International
Workshop on Applied veRification for Continuous and Hybrid Sys-
tems, ARCH@CPSWeek 2014, Berlin, Germany, April 14, 2014 /
ARCH@CPSWeek 2015, Seattle, WA, USA, April 13, 2015, volume 34
of EPiC Series in Computing, pages 25–30, USA, 2014. EasyChair.

[HAL+18] Ferhat Hamza, Hammoudi Abderazek, Smata Lakhdar, Djeddou
Ferhat, and Ali Rıza Yıldız. Optimum design of cam-roller follower
mechanism using a new evolutionary algorithm. The International
Journal of Advanced Manufacturing Technology, 99:1267–1282, 2018.

[Hat13] Abdolreza Hatamlou. Black hole: A new heuristic optimization
approach for data clustering. Information sciences, 222:175–184,
2013.

[Hev07] Alan R Hevner. A three cycle view of design science research. Scan-
dinavian journal of information systems, 19(2):4, 2007.

168

[HF06] Abdel-Rahman Hedar and Masao Fukushima. Derivative-free fil-
ter simulated annealing method for constrained continuous global
optimization. Journal of Global optimization, 35:521–549, 2006.

[HMF+19] Ali Asghar Heidari, Seyedali Mirjalili, Hossam Faris, Ibrahim Al-
jarah, Majdi Mafarja, and Huiling Chen. Harris hawks optimization:
Algorithm and applications. Future generation computer systems,
97:849–872, 2019.

[HMI01] Maureane Hoffman and Dougald M Monroe III. A cell-based model
of hemostasis. Thrombosis and haemostasis, 85(06):958–965, 2001.

[HNT14] Le Thi My Hanh, Thanh Binh Nguyen, and Khuat Thanh Tung.
Applying the meta-heuristic algorithms for mutation-based test data
generation for simulink models. In Nguyen Trong Giang, Huynh Quyet
Thang, Ismal Khalil, Son Hong Ngo, Yves Deville, and Marc Bui,
editors, Proceedings of the Fifth Symposium on Information and
Communication Technology, SoICT ’14, Hanoi, Vietnam, December
4-5, 2014, pages 102–109, USA, 2014. ACM.

[Hol92] John H Holland. Genetic algorithms. Scientific american, 267(1):66–
73, 1992.

[HPW04] Shan He, E Prempain, and QH Wu. An improved particle swarm
optimizer for mechanical design optimization problems. Engineering
optimization, 36(5):585–605, 2004.

[HRK11] Nannan He, Philipp Rümmer, and Daniel Kroening. Test-case genera-
tion for embedded simulink via formal concept analysis. In Proceedings
of the 48th Design Automation Conference, pages 224–229, 2011.

[HTI97] Mei-Chen Hsueh, Timothy K Tsai, and Ravishankar K Iyer. Fault
injection techniques and tools. Computer, 30(4):75–82, 1997.

[HW07a] Qie He and Ling Wang. An effective co-evolutionary particle swarm
optimization for constrained engineering design problems. Engineering
applications of artificial intelligence, 20(1):89–99, 2007.

[HW07b] Qie He and Ling Wang. A hybrid particle swarm optimization with
a feasibility-based rule for constrained optimization. Applied mathe-
matics and computation, 186(2):1407–1422, 2007.

[HWH07] Fu-zhuo Huang, Ling Wang, and Qie He. An effective co-evolutionary
differential evolution for constrained optimization. Applied Mathe-
matics and computation, 186(1):340–356, 2007.

169

[IH14] Laura Inozemtseva and Reid Holmes. Coverage is not strongly corre-
lated with test suite effectiveness. In Pankaj Jalote, Lionel C. Briand,
and André van der Hoek, editors, 36th International Conference on
Software Engineering, ICSE ’14, Hyderabad, India - May 31 - June
07, 2014, pages 435–445. ACM, 2014.

[IPJF19] Marko Ivankovic, Goran Petrovic, René Just, and Gordon Fraser.
Code coverage at google. In Marlon Dumas, Dietmar Pfahl, Sven Apel,
and Alessandra Russo, editors, Proceedings of the ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/SIGSOFT FSE 2019,
Tallinn, Estonia, August 26-30, 2019, pages 955–963, USA, 2019.
ACM.

[ISRO24a] Government of India Indian Space Research Organisation, Depart-
ment of Space. ADITYA-L1 Mission Details, 2024.

[ISRO24b] Government of India Indian Space Research Organisation, Depart-
ment of Space. Chandrayaan-3 details, 2024.

[JB05] Jolyon Jesty and Edward Beltrami. Positive feedbacks of coagulation:
their role in threshold regulation. Arteriosclerosis, thrombosis, and
vascular biology, 25(12):2463–2469, 2005.

[JCL11] Jeff C. Jensen, Danica H. Chang, and Edward A. Lee. A model-based
design methodology for cyber-physical systems. In Proceedings of the
7th International Wireless Communications and Mobile Computing
Conference, IWCMC 2011, Istanbul, Turkey, 4-8 July, 2011, pages
1666–1671. IEEE, 2011.

[JDK+14] Xiaoqing Jin, Jyotirmoy V Deshmukh, James Kapinski, Koichi Ueda,
and Ken Butts. Powertrain control verification benchmark. In Pro-
ceedings of the 17th international conference on Hybrid systems: com-
putation and control, pages 253–262, 2014.

[JH09] Yue Jia and Mark Harman. Higher order mutation testing. Informa-
tion and Software Technology, 51(10):1379–1393, 2009.

[JH11] Yue Jia and Mark Harman. An analysis and survey of the development
of mutation testing. IEEE Trans. Software Eng., 37(5):649–678, 2011.

[JJI+14] René Just, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst, Reid
Holmes, and Gordon Fraser. Are mutants a valid substitute for real
faults in software testing? In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering,
FSE 2014, page 654–665, New York, NY, USA, 2014. Association for
Computing Machinery.

170

[JSKW16] Nishtha Jatana, Bharti Suri, Prateek Kumar, and Bimlesh Wadhwa.
Test suite reduction by mutation testing mapped to set cover problem.
In Proceedings of the Second International Conference on Information
and Communication Technology for Competitive Strategies, pages 1–6,
2016.

[KA18] Mehak Kohli and Sankalap Arora. Chaotic grey wolf optimization
algorithm for constrained optimization problems. Journal of compu-
tational design and engineering, 5(4):458–472, 2018.

[KAC21] Nabeel Ali Khan, Sadiq Ali, and Kwonhue Choi. An instantaneous
frequency and group delay based feature for classifying eeg signals.
Biomedical Signal Processing and Control, 67:102562, 2021.

[KAO15] Bob Kurtz, Paul Ammann, and Jeff Offutt. Static analysis of mutant
subsumption. In 2015 IEEE Eighth International Conference on
Software Testing, Verification and Validation Workshops (ICSTW),
pages 1–10. IEEE, 2015.

[KB08] Dervis Karaboga and Bahriye Basturk. On the performance of artifi-
cial bee colony (abc) algorithm. Applied soft computing, 8(1):687–697,
2008.

[KBB+09] Barbara Kitchenham, O. Pearl Brereton, David Budgen, Mark Turner,
John Bailey, and Stephen Linkman. Systematic literature reviews in
software engineering – A systematic literature review. Information
and Software Technology, 51(1):7 – 15, 2009. Special Section - Most
Cited Articles in 2002 and Regular Research Papers.

[KBG+21] Meghdad Khazaee, Ahmad Banakar, Barat Ghobadian, Mostafa Agha
Mirsalim, and Saeid Minaei. Remaining useful life (RUL) prediction of
internal combustion engine timing belt based on vibration signals and
artificial neural network. Neural Comput. Appl., 33(13):7785–7801,
2021.

[KDN14] Maha Kooli and Giorgio Di Natale. A survey on simulation-based
fault injection tools for complex systems. In 2014 9th IEEE Interna-
tional Conference on Design & Technology of Integrated Systems in
Nanoscale Era (DTIS), pages 1–6. IEEE, 2014.

[KdSC06] Renato A Krohling and Leandro dos Santos Coelho. Coevolutionary
particle swarm optimization using gaussian distribution for solving
constrained optimization problems. IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics), 36(6):1407–1416, 2006.

171

[KE95] James Kennedy and Russell Eberhart. Particle swarm optimization. In
Proceedings of ICNN’95-international conference on neural networks,
volume 4, pages 1942–1948. ieee, 1995.

[KGJV83] Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vecchi. Opti-
mization by simulated annealing. science, 220(4598):671–680, 1983.

[KISH20] Deok-Jae Kwon, Jun-Hyuk Im, Mudassir Raza Siddiqi, and Jin Hur.
Detection technique for manufacturing imperefection of rare-earth
magnets on ipmsm. In 2020 IEEE Energy Conversion Congress and
Exposition (ECCE), pages 1407–1410, USA, 2020. IEEE.

[KK94] BK Kannan and Steven N Kramer. An augmented lagrange multiplier
based method for mixed integer discrete continuous optimization and
its applications to mechanical design. J. Mech. Des., 1994.

[KKS18] Meeta Kumar, Anand J Kulkarni, and Suresh Chandra Satapathy.
Socio evolution & learning optimization algorithm: A socio-inspired
optimization methodology. Future Generation Computer Systems,
81:252–272, 2018.

[Koz94] John R Koza. Genetic programming as a means for programming
computers by natural selection. Statistics and computing, 4:87–112,
1994.

[KS16] Willibald Krenn and Rupert Schlick. Mutation-driven test case
generation using short-lived concurrent mutants–first results. arXiv
preprint arXiv:1601.06974, 2016.

[KST+15] Willibald Krenn, Rupert Schlick, Stefan Tiran, Bernhard Aichernig,
Elisabeth Jobstl, and Harald Brandl. Momut:: Uml model-based
mutation testing for uml. In 2015 IEEE 8th International Conference
on Software Testing, Verification and Validation (ICST), pages 1–8.
IEEE, 2015.

[KT10a] A Kaveh and S Talatahari. An improved ant colony optimization for
constrained engineering design problems. Engineering Computations,
27(1):155–182, 2010.

[KT10b] Ali Kaveh and Siamak Talatahari. A novel heuristic optimization
method: charged system search. Acta mechanica, 213(3):267–289,
2010.

[LCW10] Hui Liu, Zixing Cai, and Yong Wang. Hybridizing particle swarm
optimization with differential evolution for constrained numerical and
engineering optimization. Applied Soft Computing, 10(2):629–640,
2010.

172

[Lee15] Edward A. Lee. The past, present and future of cyber-physical
systems: A focus on models. Sensors, 15(3):4837–4869, 2015.

[LG04] Kang Seok Lee and Zong Woo Geem. A new structural optimiza-
tion method based on the harmony search algorithm. Computers &
structures, 82(9-10):781–798, 2004.

[LG05] Kang Seok Lee and Zong Woo Geem. A new meta-heuristic algorithm
for continuous engineering optimization: harmony search theory and
practice. Computer methods in applied mechanics and engineering,
194(36-38):3902–3933, 2005.

[LG15] Liping Li and Honghao Gao. Test suite reduction for mutation testing
based on formal concept analysis. In 2015 IEEE/ACIS 16th Inter-
national Conference on Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing (SNPD), pages 1–5.
IEEE, 2015.

[LLN+16] Bing Liu, Lucia, Shiva Nejati, Lionel C Briand, and Thomas Bruck-
mann. Simulink fault localization: an iterative statistical debugging
approach. Software Testing, Verification and Reliability, 26(6):431–
459, 2016.

[LNB+16] Bing Liu, Shiva Nejati, Lionel Briand, Thomas Bruckmann, et al.
Localizing multiple faults in simulink models. In 2016 IEEE 23rd
International Conference on Software Analysis, Evolution, and Reengi-
neering (SANER), volume 1, pages 146–156. IEEE, 2016.

[LNB+17] Bing Liu, Shiva Nejati, Lionel C Briand, et al. Improving fault local-
ization for simulink models using search-based testing and prediction
models. In 2017 IEEE 24th International Conference on Software
Analysis, Evolution and Reengineering (SANER), pages 359–370.
IEEE, 2017.

[LNLB19] Bing Liu, Shiva Nejati, Lucia, and Lionel C. Briand. Effective fault
localization of automotive simulink models: achieving the trade-off
between test oracle effort and fault localization accuracy. Empir.
Softw. Eng., 24(1):444–490, 2019.

[LO16] Nan Li and Jeff Offutt. Test oracle strategies for model-based testing.
IEEE Transactions on Software Engineering, 43(4):372–395, 2016.

[LP91] Han Tong Loh and Panos Y Papalambros. A sequential linearization
approach for solving mixed-discrete nonlinear design optimization
problems. J. Mech. Des., 1991.

173

[LS04] J Lampinen and R Storn. New optimization techniques in engineering.
Studies in Fuzziness and Soft Computing. Springer-Verlag, 141:123–
166, 2004.

[LZ06] Edward A. Lee and Haiyang Zheng. Hyvisual: a hybrid system
modeling framework based on ptolemy II. In Christos G. Cassandras,
Alessandro Giua, Carla Seatzu, and Janan Zaytoon, editors, 2nd
IFAC Conference on Analysis and Design of Hybrid Systems, ADHS
2006, Alghero, Italy, June 7-9, 2006, volume 39 of IFAC Proceedings
Volumes, pages 270–271. Elsevier, 2006.

[Mac64] R. G. Macfarlane. An enzyme cascade in the blood clotting mechanism,
and its function as a biochemical amplifier. Nature, 202:498–499, 1964.

[Mat22a] Mathworks. Detect faults in aircraft elevator control system, 2022.

[Mat22b] Mathworks. Model-based systems engineering (mbse), 2022.

[Mat22c] Mathworks. Modeling a fault-tolerant fuel control system, 2022.

[Mat22d] Mathworks. Modeling an automatic transmission controller, 2022.

[Mat22e] Mathworks. Simulink — simulation and model-based design, 2022.

[Mat23a] Mathworks. Signal features, 2023.

[Mat23b] Mathworks. Structural coverage metrics, 2023.

[Mat24] Mathworks. Design narma-l2 neural controller in simulink, 2024.

[MGM+17] Seyedali Mirjalili, Amir H Gandomi, Seyedeh Zahra Mirjalili,
Shahrzad Saremi, Hossam Faris, and Seyed Mohammad Mirjalili.
Salp swarm algorithm: A bio-inspired optimizer for engineering de-
sign problems. Advances in engineering software, 114:163–191, 2017.

[Mir15] Seyedali Mirjalili. Moth-flame optimization algorithm: A novel nature-
inspired heuristic paradigm. Knowledge-based systems, 89:228–249,
2015.

[Mir16a] Seyedali Mirjalili. Dragonfly algorithm: a new meta-heuristic opti-
mization technique for solving single-objective, discrete, and multi-
objective problems. Neural computing and applications, 27:1053–1073,
2016.

[Mir16b] Seyedali Mirjalili. Sca: a sine cosine algorithm for solving optimization
problems. Knowledge-based systems, 96:120–133, 2016.

[ML16] Seyedali Mirjalili and Andrew Lewis. The whale optimization algo-
rithm. Advances in engineering software, 95:51–67, 2016.

174

[MMC05] Efrén Mezura-Montes and Carlos A Coello Coello. A simple multimem-
bered evolution strategy to solve constrained optimization problems.
IEEE Transactions on Evolutionary computation, 9(1):1–17, 2005.

[MMC08] Efrén Mezura-Montes and Carlos A Coello Coello. An empirical
study about the usefulness of evolution strategies to solve constrained
optimization problems. International Journal of General Systems,
37(4):443–473, 2008.

[MMCCVRMD07] Efrén Mezura-Montes, CA Coello Coello, Jesús Velázquez-Reyes, and
Lucıa Munoz-Dávila. Multiple trial vectors in differential evolution for
engineering design. Engineering Optimization, 39(5):567–589, 2007.

[MMH16] Seyedali Mirjalili, Seyed Mohammad Mirjalili, and Abdolreza Hatam-
lou. Multi-verse optimizer: a nature-inspired algorithm for global
optimization. Neural Computing and Applications, 27:495–513, 2016.

[MML14] Seyedali Mirjalili, Seyed Mohammad Mirjalili, and Andrew Lewis.
Grey wolf optimizer. Advances in engineering software, 69:46–61,
2014.

[MMVRC06] Efrén Mezura-Montes, Jesús Velázquez-Reyes, and CA Coello Coello.
Modified differential evolution for constrained optimization. In 2006
IEEE International Conference on Evolutionary Computation, pages
25–32. IEEE, 2006.

[MN04] Oded Maler and Dejan Nickovic. Monitoring temporal properties of
continuous signals. In Formal Techniques, Modelling and Analysis of
Timed and Fault-Tolerant Systems, pages 152–166. Springer, 2004.

[MN13] Oded Maler and Dejan Ničković. Monitoring properties of analog
and mixed-signal circuits. International Journal on Software Tools
for Technology Transfer, 15(3):247–268, 2013.

[MNBB15] Reza Matinnejad, Shiva Nejati, Lionel C. Briand, and Thomas Bruck-
mann. Effective test suites for mixed discrete-continuous stateflow
controllers. In Elisabetta Di Nitto, Mark Harman, and Patrick
Heymans, editors, Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2015, Bergamo,
Italy, August 30 - September 4, 2015, pages 84–95, USA, 2015. ACM.

[MNBB19] Reza Matinnejad, Shiva Nejati, Lionel C. Briand, and Thomas Bruck-
mann. Test generation and test prioritization for simulink models
with dynamic behavior. IEEE Trans. Software Eng., 45(9):919–944,
2019.

175

[MoHUAGoI24] Ministry of Housing and Urban Affairs Government of India. Smartc-
ities, 2024.

[MR14] Naser Moosavian and Babak Kasaee Roodsari. Soccer league competi-
tion algorithm: A novel meta-heuristic algorithm for optimal design of
water distribution networks. Swarm and Evolutionary Computation,
17:14–24, 2014.

[MS12] Ali Wagdy Mohamed and Hegazy Zaher Sabry. Constrained optimiza-
tion based on modified differential evolution algorithm. Information
Sciences, 194:171–208, 2012.

[MWR+15] Anitha Murugesan, Michael W. Whalen, Neha Rungta, Oksana
Tkachuk, Suzette Person, Mats Per Erik Heimdahl, and Dongjiang
You. Are we there yet? determining the adequacy of formalized re-
quirements and test suites. In Klaus Havelund, Gerard J. Holzmann,
and Rajeev Joshi, editors, NASA Formal Methods - 7th International
Symposium, NFM 2015, Pasadena, CA, USA, April 27-29, 2015, Pro-
ceedings, volume 9058 of Lecture Notes in Computer Science, pages
279–294, Cham, 2015. Springer.

[MYPF19] Logan Mathesen, Shakiba Yaghoubi, Giulia Pedrielli, and Georgios
Fainekos. Falsification of cyber-physical systems with robustness un-
certainty quantification through stochastic optimization with adaptive
restart. In 15th IEEE International Conference on Automation Sci-
ence and Engineering, CASE 2019, Vancouver, BC, Canada, August
22-26, 2019, pages 991–997, USA, 2019. IEEE.

[MZC+20] Chengying Mao, Xuzheng Zhan, Jinfu Chen, Jifu Chen, and Rubing
Huang. Adaptive random testing based on flexible partitioning. IET
Softw., 14(5):493–505, 2020.

[NA09] Akbar Siami Namin and James H. Andrews. The influence of size
and coverage on test suite effectiveness. In Gregg Rothermel and
Laura K. Dillon, editors, Proceedings of the Eighteenth International
Symposium on Software Testing and Analysis, ISSTA 2009, Chicago,
IL, USA, July 19-23, 2009, pages 57–68. ACM, 2009.

[NCM16] Roberto Natella, Domenico Cotroneo, and Henrique S Madeira. As-
sessing dependability with software fault injection: A survey. ACM
Computing Surveys (CSUR), 48(3):1–55, 2016.

[NGM+19] Shiva Nejati, Khouloud Gaaloul, Claudio Menghi, Lionel C. Briand,
Stephen Foster, and David Wolfe. Evaluating model testing and
model checking for finding requirements violations in simulink models.
In Marlon Dumas, Dietmar Pfahl, Sven Apel, and Alessandra Russo,

176

editors, Proceedings of the ACM Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia,
August 26-30, 2019, pages 1015–1025, USA, 2019. ACM.

[NKJ+17] Luan Viet Nguyen, James Kapinski, Xiaoqing Jin, Jyotirmoy V.
Deshmukh, and Taylor T. Johnson. Hyperproperties of real-valued
signals. In Jean-Pierre Talpin, Patricia Derler, and Klaus Schneider,
editors, Proceedings of the 15th ACM-IEEE International Conference
on Formal Methods and Models for System Design, MEMOCODE
2017, Vienna, Austria, September 29 - October 02, 2017, pages 104–
113, USA, 2017. ACM.

[NM18] Gabriela Nicolescu and Pieter J Mosterman. Model-based design for
embedded systems. Crc Press, 2018.

[NSF+10] Truong Nghiem, Sriram Sankaranarayanan, Georgios Fainekos, Franjo
Ivancic, Aarti Gupta, and George J. Pappas. Monte-carlo techniques
for falsification of temporal properties of non-linear hybrid systems. In
Karl Henrik Johansson and Wang Yi, editors, Proceedings of the 13th
ACM International Conference on Hybrid Systems: Computation and
Control, HSCC 2010, Stockholm, Sweden, April 12-15, 2010, pages
211–220. ACM, 2010.

[NY20] Dejan Nickovic and Tomoya Yamaguchi. RTAMT: online robust-
ness monitors from STL. In Automated Technology for Verification
and Analysis - 18th International Symposium, ATVA 2020, Hanoi,
Vietnam, October 19-23, 2020, Proceedings, pages 564–571, 2020.

[OHY11] Jungsup Oh, Mark Harman, and Shin Yoo. Transition coverage
testing for simulink/stateflow models using messy genetic algorithms.
In Natalio Krasnogor and Pier Luca Lanzi, editors, 13th Annual
Genetic and Evolutionary Computation Conference, GECCO 2011,
Proceedings, Dublin, Ireland, July 12-16, 2011, pages 1851–1858, USA,
2011. ACM.

[OJL+22] Sascha Julian Oks, Max Jalowski, Michael Lechner, Stefan
Mirschberger, Marion Merklein, Birgit Vogel-Heuser, and Kathrin M
Möslein. Cyber-physical systems in the context of industry 4.0: A
review, categorization and outlook. Information Systems Frontiers,
pages 1–42, 2022.

[OL11] Carol Oakley and Hannu Larjava. Hemostasis, coagulation, and
complications. Endodontic Topics, 24(1):4–25, 2011.

177

[OP97] A Jefferson Offutt and Jie Pan. Automatically detecting equivalent
mutants and infeasible paths. Software testing, verification and
reliability, 7(3):165–192, 1997.

[OPB21] Oscar Eduardo Cornejo Olivares, Fabrizio Pastore, and Lionel Briand.
Mutation analysis for cyber-physical systems: Scalable solutions
and results in the space domain. IEEE Transactions on Software
Engineering, 2021.

[oTG24] AIT Austrian Institute of Technology GMBH. Digibus Austria Auto-
mated Driving in local public transport, 2024.

[OU01] A Jefferson Offutt and Roland H Untch. Mutation 2000: Uniting the
orthogonal. Mutation testing for the new century, pages 34–44, 2001.

[PCJ+17] Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu,
Michael D Ernst, Deric Pang, and Benjamin Keller. Evaluating and
improving fault localization. In 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE), pages 609–620. IEEE,
2017.

[PFK+13] Ludovic Pintard, Jean-Charles Fabre, Karama Kanoun, Michel Lee-
man, and Matthieu Roy. Fault injection in the automotive standard
ISO 26262: An initial approach. In Marco Vieira and João Carlos
Cunha, editors, Dependable Computing - 14th European Workshop,
EWDC 2013, Coimbra, Portugal, May 15-16, 2013. Proceedings, vol-
ume 7869 of Lecture Notes in Computer Science, pages 126–133.
Springer, 2013.

[PGZ+23] Alexandre Parant, François Gellot, Damien Zander, Véronique Carré-
Ménétrier, and Alexandre Philippot. Model-based engineering for
designing cyber-physical systems from product specifications. Com-
puters in Industry, 145:103808, 2023.

[PIFJ21] Goran Petrovic, Marko Ivankovic, Gordon Fraser, and R. Just. Does
mutation testing improve testing practices? In Proceedings of the
International Conference on Software Engineering (ICSE), 2021.

[PKZ+19] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon,
and Mark Harman. Mutation testing advances: an analysis and survey.
In Advances in Computers, volume 112, pages 275–378. Elsevier, 2019.

[PLEBMBN18] Francisco Palomo-Lozano, Antonia Estero-Botaro, Inmaculada
Medina-Bulo, and Manuel Núñez. Test suite minimization for muta-
tion testing of ws-bpel compositions. In Proceedings of the Genetic
and Evolutionary Computation Conference, pages 1427–1434, 2018.

178

[PM11] Mike Papadakis and Nicos Malevris. Automatically performing weak
mutation with the aid of symbolic execution, concolic testing and
search-based testing. Software Quality Journal, 19(4):691–723, 2011.

[PM12] Mike Papadakis and Nicos Malevris. Mutation based test case gen-
eration via a path selection strategy. Information and Software
Technology, 54(9):915–932, 2012.

[PMGM22] Fabrizio Pastore, Daniela Micucci, Michell Guzman, and Leonardo
Mariani. TkT: Automatic inference of timed and extended pushdown
automata. IEEE Transactions on Software Engineering, 48(2):617–
636, 2022.

[PRWN16] Ingo Pill, Ivan Rubil, Franz Wotawa, and Mihai Nica. Simultate: A
toolset for fault injection and mutation testing of simulink models. In
2016 IEEE Ninth International Conference on Software Testing, Ver-
ification and Validation Workshops (ICSTW), pages 168–173. IEEE,
2016.

[PURMPL12] Macario Polo Usaola, Pedro Reales Mateo, and Beatriz Pérez Laman-
cha. Reduction of test suites using mutation. In International Con-
ference on Fundamental Approaches to Software Engineering, pages
425–438. Springer, 2012.

[PV05] Konstantinos E Parsopoulos and Michael N Vrahatis. Unified particle
swarm optimization for solving constrained engineering optimization
problems. In International conference on natural computation, pages
582–591. Springer, 2005.

[PZL12] Kyung-Joon Park, Rong Zheng, and Xue Liu. Cyber-physical sys-
tems: Milestones and research challenges. Computer Communications,
36(1):1–7, 2012.

[Res23] Zion Market Research. Cyber-physical systems (cps) market size,
share, trends & research 2030, 2023.

[RL03] Tapabrata Ray and Kim-Meow Liew. Society and civilization: an
optimization algorithm based on the simulation of social behavior.
IEEE Transactions on Evolutionary Computation, 7(4):386–396, 2003.

[RMP20] Kalaivani Rathakrishnan, Seung-Nam Min, and Se Jin Park. Evalua-
tion of ecg features for the classification of post-stroke survivors with
a diagnostic approach. Applied Sciences, 11(1):192, 2020.

[RNPS09] Esmat Rashedi, Hossein Nezamabadi-Pour, and Saeid Saryazdi. Gsa:
a gravitational search algorithm. Information sciences, 179(13):2232–
2248, 2009.

179

[RP76] KM Ragsdell and DT Phillips. Optimal design of a class of welded
structures using geometric programming. Journal of Engineering for
Industry, 1976.

[RR03] Manos Renieres and Steven P Reiss. Fault localization with nearest
neighbor queries. In 18th IEEE International Conference on Auto-
mated Software Engineering, 2003. Proceedings., pages 30–39. IEEE,
2003.

[RS01] Tapabrata Ray and Pankaj Saini. Engineering design optimization us-
ing a swarm with an intelligent information sharing among individuals.
Engineering Optimization, 33(6):735–748, 2001.

[RSV11] R Venkata Rao, Vimal J Savsani, and Dipakkumar P Vakharia.
Teaching–learning-based optimization: a novel method for constrained
mechanical design optimization problems. Computer-aided design,
43(3):303–315, 2011.

[RWK17] Rudolf Ramler, Thomas Wetzlmaier, and Claus Klammer. An empir-
ical study on the application of mutation testing for a safety-critical
industrial software system. In Proceedings of the Symposium on
Applied Computing, pages 1401–1408, 2017.

[San90] E Sandgren. Nonlinear integer and discrete programming in mechani-
cal design optimization. J. Mech. Des., 1990.

[SBEH13] Ali Sadollah, Ardeshir Bahreininejad, Hadi Eskandar, and Mohd
Hamdi. Mine blast algorithm: A new population based algorithm for
solving constrained engineering optimization problems. Applied Soft
Computing, 13(5):2592–2612, 2013.

[SdSdS17] Rodolfo Adamshuk Silva, Simone do Rocio Senger de Souza, and
Paulo Sérgio Lopes de Souza. A systematic review on search based
mutation testing. Information and Software Technology, 81:19–35,
2017.

[SF12] Sriram Sankaranarayanan and Georgios Fainekos. Falsification of
temporal properties of hybrid systems using the cross-entropy method.
In Proceedings of the 15th ACM international conference on Hybrid
Systems: Computation and Control, pages 125–134, 2012.

[SG23] Masume Saljuqi and Peyvand Ghaderyan. Combining homomorphic
filtering and recurrent neural network in gait signal analysis for
neurodegenerative diseases detection. Biocybernetics and Biomedical
Engineering, 43(2):476–493, 2023.

180

[Sim08] Dan Simon. Biogeography-based optimization. IEEE transactions on
evolutionary computation, 12(6):702–713, 2008.

[SML17] Shahrzad Saremi, Seyedali Mirjalili, and Andrew Lewis. Grasshop-
per optimisation algorithm: theory and application. Advances in
engineering software, 105:30–47, 2017.

[SMSJ17] Mustafa Saraoğlu, Andrey Morozov, Mehmet Turan Söylemez, and
Klaus Janschek. Errorsim: A tool for error propagation analysis of
simulink models. In International Conference on Computer Safety,
Reliability, and Security, pages 245–254. Springer, 2017.

[SP97] Rainer Storn and Kenneth Price. Differential evolution–a simple
and efficient heuristic for global optimization over continuous spaces.
Journal of global optimization, 11:341–359, 1997.

[SP10] Matt Staats and Corina S. Pasareanu. Parallel symbolic execution
for structural test generation. In Paolo Tonella and Alessandro Orso,
editors, Proceedings of the Nineteenth International Symposium on
Software Testing and Analysis, ISSTA 2010, Trento, Italy, July 12-16,
2010, pages 183–194, USA, 2010. ACM.

[SS20] Nikhil Kumar Singh and Indranil Saha. Specification-guided auto-
mated debugging of CPS models. IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst., 39(11):4142–4153, 2020.

[SS22] R Sharma and N Sharma. Applications of artificial intelligence
in cyber-physical systems. In Cyber-Physical Systems, pages 1–14.
Chapman and Hall/CRC, 2022.

[SSK22] Harpreet Singh, Birmohan Singh, and Manpreet Kaur. An improved
elephant herding optimization for global optimization problems. En-
gineering with Computers, pages 1–33, 2022.

[SVET10] Rickard Svenningsson, Jonny Vinter, Henrik Eriksson, and Martin
Törngren. Modifi: a model-implemented fault injection tool. In Er-
win Schoitsch, editor, International Conference on Computer Safety,
Reliability, and Security, pages 210–222, Berlin, Heidelberg, 2010.
Springer.

[SVS14] Daniel Skarin, Jonny Vinter, and Rickard Svenningsson. Visualization
of model-implemented fault injection experiments. In International
Conference on Computer Safety, Reliability, and Security, pages 219–
230. Springer, 2014.

[TAC+21] Quinn Thibeault, Jacob Anderson, Aniruddh Chandratre, Giulia
Pedrielli, and Georgios Fainekos. Psy-taliro: A python toolbox for

181

search-based test generation for cyber-physical systems. In Alberto
Lluch-Lafuente and Anastasia Mavridou, editors, Formal Methods for
Industrial Critical Systems - 26th International Conference, FMICS
2021, Paris, France, August 24-26, 2021, Proceedings, volume 12863
of Lecture Notes in Computer Science, pages 223–231, Cham, 2021.
Springer.

[TBAA15] Manel Tekaya, Mohamed Taha Bennani, Mohamed Abidi Alagui,
and Samir Ben Ahmed. Aspect-oriented test case generation from
matlab/simulink models. In Wojciech Zamojski, Jacek Mazurkiewicz,
Jaroslaw Sugier, Tomasz Walkowiak, and Janusz Kacprzyk, editors,
Theory and Engineering of Complex Systems and Dependability -
Proceedings of the Tenth International Conference on Dependability
and Complex Systems DepCoS-RELCOMEX, June 29 - July 3 2015,
Brunów, Poland, volume 365 of Advances in Intelligent Systems and
Computing, pages 495–504, Cham, 2015. Springer.

[TCPB+20] Thierry Titcheu Chekam, Mike Papadakis, Tegawendé F Bissyandé,
Yves Le Traon, and Koushik Sen. Selecting fault revealing mutants.
Empirical Software Engineering, 25(1):434–487, 2020.

[Tsa05] Jung-Fa Tsai. Global optimization of nonlinear fractional program-
ming problems in engineering design. Engineering Optimization,
37(4):399–409, 2005.

[TTT21] Walid M Taha, Abd-Elhamid M Taha, and Johan Thunberg. Cyber-
Physical Systems: A Model-Based Approach. Springer Nature, 2021.

[Um19] J Sup Um. Drones as cyber-physical systems. Springer, 10:978–981,
2019.

[VDB+22] Sten Vercammen, Serge Demeyer, Markus Borg, Niklas Pettersson,
and Görel Hedin. Mutation testing optimisations using the clang
front-end. arXiv preprint arXiv:2210.17215, 2022.

[VS05] Saša Vulinovic and Bernd-Holger Schlingloff. Model based depend-
ability evaluation for automotive control functions. In Invited Session:
Model-Based Design and Test, 9th World Multi-Conference on Sys-
temics, Cybernetics and Informatics, Florida, 2005.

[WC95] Shyue-Jian Wu and Pei-Tse Chow. Genetic algorithms for nonlinear
mixed discrete-integer optimization problems via meta-genetic param-
eter optimization. Engineering Optimization+ A35, 24(2):137–159,
1995.

[WCZF09] Yong Wang, Zixing Cai, Yuren Zhou, and Zhun Fan. Constrained
optimization based on hybrid evolutionary algorithm and adaptive

182

constraint-handling technique. Structural and Multidisciplinary Opti-
mization, 37:395–413, 2009.

[WGL+16] W Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. A
survey on software fault localization. IEEE Transactions on Software
Engineering, 42(8):707–740, 2016.

[Wil92] Frank Wilcoxon. Individual comparisons by ranking methods. In
Breakthroughs in statistics, pages 196–202. Springer, 1992.

[WL10] Ling Wang and Ling-po Li. An effective differential evolution with
level comparison for constrained engineering design. Structural and
Multidisciplinary Optimization, 41:947–963, 2010.

[WM97] David H Wolpert and William G Macready. No free lunch theorems
for optimization. IEEE transactions on evolutionary computation,
1(1):67–82, 1997.

[Y+19] Anupam Yadav et al. Aefa: Artificial electric field algorithm for global
optimization. Swarm and Evolutionary Computation, 48:93–108, 2019.

[Yad21] Drishti Yadav. Blood coagulation algorithm: A novel bio-inspired
meta-heuristic algorithm for global optimization. Mathematics,
9(23):3011, 2021.

[Yad24] Drishti Yadav. From fault injection to formal verification: A holistic
approach to fault diagnosis in cyber-physical systems. In Proceedings
of the 33rd ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2024, page 1896–1900, New York, NY,
USA, 2024. ACM.

[Yan10] Xin-She Yang. A new metaheuristic bat-inspired algorithm. In Nature
inspired cooperative strategies for optimization (NICSO 2010), pages
65–74. Springer, 2010.

[YD09] Xin-She Yang and Suash Deb. Cuckoo search via lévy flights. In 2009
World congress on nature & biologically inspired computing (NaBIC),
pages 210–214. Ieee, 2009.

[YET20] Orhan Yaman, Fatih Ertam, and Turker Tuncer. Automated parkin-
son’s disease recognition based on statistical pooling method using
acoustic features. Medical Hypotheses, 135:109483, 2020.

[YF19] Shakiba Yaghoubi and Georgios Fainekos. Gray-box adversarial
testing for control systems with machine learning components. In
Necmiye Ozay and Pavithra Prabhakar, editors, Proceedings of the
22nd ACM International Conference on Hybrid Systems: Computation

183

and Control, HSCC 2019, Montreal, QC, Canada, April 16-18, 2019,
pages 179–184, USA, 2019. ACM.

[YHG12] Xin-She Yang and Amir Hossein Gandomi. Bat algorithm: a novel ap-
proach for global engineering optimization. Engineering computations,
29(5):464–483, 2012.

[YKH14] Xin-She Yang, Mehmet Karamanoglu, and Xingshi He. Flower polli-
nation algorithm: a novel approach for multiobjective optimization.
Engineering optimization, 46(9):1222–1237, 2014.

[YLW06] Qian Yang, J. Jenny Li, and David M. Weiss. A survey of coverage
based testing tools. In Hong Zhu, Joseph R. Horgan, Shing-Chi Che-
ung, and J. Jenny Li, editors, Proceedings of the 2006 International
Workshop on Automation of Software Test, AST 2006, Shanghai,
China, May 23, 2006, pages 99–103, USA, 2006. ACM.

[YQ10] Quan Yuan and Feng Qian. A hybrid genetic algorithm for twice
continuously differentiable nlp problems. Computers & chemical
engineering, 34(1):36–41, 2010.

[YZH20] Bei Yu, Junlong Zhou, and Shiyan Hu. Cyber-physical systems: An
overview. Big data analytics for cyber-physical systems, pages 1–11,
2020.

[ZAV+04] Haissam Ziade, Rafic A Ayoubi, Raoul Velazco, et al. A survey on
fault injection techniques. Int. Arab J. Inf. Technol., 1(2):171–186,
2004.

[ZC05] Yuan Zhan and John A Clark. Search-based mutation testing for
simulink models. In Proceedings of the 7th annual conference on
Genetic and evolutionary computation, pages 1061–1068, 2005.

[ZC08] Yuan Zhan and John A. Clark. A search-based framework for auto-
matic testing of matlab/simulink models. J. Syst. Softw., 81(2):262–
285, 2008.

[ZHA19] Zhenya Zhang, Ichiro Hasuo, and Paolo Arcaini. Multi-armed bandits
for boolean connectives in hybrid system falsification. In Isil Dillig
and Serdar Tasiran, editors, Computer Aided Verification - 31st
International Conference, CAV 2019, New York City, NY, USA, July
15-18, 2019, Proceedings, Part I, volume 11561 of Lecture Notes in
Computer Science, pages 401–420. Springer, 2019.

[ZJP+14] Daniele Zuddas, Wei Jin, Fabrizio Pastore, Leonardo Mariani, and
Alessandro Orso. Mimic: locating and understanding bugs by ana-
lyzing mimicked executions. In Proceedings of the 29th ACM/IEEE

184

international conference on Automated software engineering, pages
815–826, 2014.

[ZK09] Erwie Zahara and Yi-Tung Kao. Hybrid nelder–mead simplex search
and particle swarm optimization for constrained engineering design
problems. Expert Systems with Applications, 36(2):3880–3886, 2009.

[ZKH03] Qianchuan Zhao, Bruce H Krogh, and Paul Hubbard. Generating
test inputs for embedded control systems. IEEE Control Systems
Magazine, 23(4):49–57, 2003.

[ZLA+21] Zhenya Zhang, Deyun Lyu, Paolo Arcaini, Lei Ma, Ichiro Hasuo,
and Jianjun Zhao. Effective hybrid system falsification using monte
carlo tree search guided by qb-robustness. In Alexandra Silva and
K. Rustan M. Leino, editors, Computer Aided Verification - 33rd
International Conference, CAV 2021, Virtual Event, July 20-23, 2021,
Proceedings, Part I, volume 12759 of Lecture Notes in Computer
Science, pages 595–618. Springer, 2021.

[ZLW08] Min Zhang, Wenjian Luo, and Xufa Wang. Differential evolution
with dynamic stochastic selection for constrained optimization. In-
formation Sciences, 178(15):3043–3074, 2008.

[ZN09] Justyna Zander-Nowicka. Model-based testing of real-time embedded
systems in the automotive domain. Technical University Berlin, Berlin,
Germany, 2009.

[ZSD+15] Aditya Zutshi, Sriram Sankaranarayanan, Jyotirmoy V Deshmukh,
James Kapinski, and Xiaoqing Jin. Falsification of safety properties for
closed loop control systems. In Proceedings of the 18th International
Conference on Hybrid Systems: Computation and Control, pages
299–300, 2015.

[ZW93] Chun Zhang and Hsu-Pin Wang. Mixed-discrete nonlinear optimiza-
tion with simulated annealing. Engineering Optimization, 21(4):277–
291, 1993.

185

	Abstract
	Kurzfassung
	Contents
	List of Publications
	Introduction
	Research Gaps and Problem Statement
	Scientific Goals and Objectives
	Methodology
	Thesis Contributions
	Thesis Organization

	Background
	Signal Temporal Logic (STL)
	CPS Simulink Models
	Mutation Testing
	Faults and Mutations in Simulink

	Fault Injection
	Introduction
	Architecture and Implementation of FIM
	Fault Injection Library
	Fault Injection
	Fault Configuration

	Tool Usage
	Tool Evaluation
	Related Work
	Conclusion

	Blood Coagulation Algorithm: A Global Optimizer
	Introduction
	Blood Coagulation Algorithm
	Inspiration
	Mathematical Model and Optimization Algorithm

	Optimization Testbed and Experimental Platform
	Benchmark Set
	Experimental Setup

	Experimental Results and Discussion
	Intensification and Diversification Capabilities of BCA
	Convergence Analysis
	Statistical Significance Analysis
	Influence of High Dimensionality

	BCA for Standard Engineering Problems
	BCA for Falsification of CPSs
	The Problem
	Simulation Results

	Conclusion

	Fault Localization
	Introduction
	STL-guided Fault Localization
	Testing
	Localizing faults

	Fault Localization with Equivalence Checking
	Empirical Evaluation
	CPSDebug
	Experimental Setup
	Results

	Related Work
	Conclusion

	Property-Based Mutation Testing
	Introduction
	Property-Based Mutation Testing
	Mutation Testing of CPS Simulink Models
	Search-Based Generation of Mutation Adequate Test Cases
	Test Suite Reduction

	Evaluation
	Research Questions
	Experimental Setup
	Results

	Threats to Validity
	Insights and Reflections
	Related Work
	Conclusion

	Signal Feature Coverage and Testing
	Introduction
	Signal Feature Coverage
	Signal Features
	Signal Feature Coverage
	Testing for Signal Feature Coverage

	Empirical Evaluation
	Experimental Setup
	Results and Discussion
	Threats to Validity

	Related Work
	Conclusion

	Summary and Future Work
	Summary
	Outlook and Future Research Directions

	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

