
Twin-Width Heuristiken
Turbocharged mit SAT

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Damian Jäger, BSc
Matrikelnummer 11776843

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Mag.rer.nat. Dr.rer.nat. Stefan Szeider
Mitwirkung: Univ.Ass. Mathis Teva Rocton, MSc

Wien, 20. November 2024
Damian Jäger Stefan Szeider

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at





Turbocharging Twin-Width
Heuristics with SAT

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Damian Jäger, BSc
Registration Number 11776843

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Mag.rer.nat. Dr.rer.nat. Stefan Szeider
Assistance: Univ.Ass. Mathis Teva Rocton, MSc

Vienna, November 20, 2024
Damian Jäger Stefan Szeider

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at





Erklärung zur Verfassung der
Arbeit

Damian Jäger, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 20. November 2024
Damian Jäger

v





Kurzfassung

Twin-Width ist eine neuartige Graphinvariante, die in mancher Hinsicht Tree Width und
Rank Width ähnelt. Sie misst in gewisser Weise, wie weit ein Graph davon entfernt ist,
ein Cograph zu sein. Dafür werden iterativ zwei Knoten kontrahiert und die Differenz
ihrer Nachbarschaften wird mit roten Kanten aufgezeichnet. Liegt ein Zertifikat über
begrenzte Twin-Width eines Graphen vor, werden darauf viele NP-schwere Probleme
handhabbar. Das Finden solch eines Zertifikats ist jedoch auch NP-schwer.

In dieser Arbeit verbesseren wir Greedy-Heuristiken für Obergrenzen für Twin-Width
durch Turbocharging. Dabei wird ein exakter Algorithmus, der Turbocharging Algorith-
mus, auf ein Unterproblem angewendet, wodurch der Heuristik geholfen wird, wenn die
Qualität der Lösung zu niedrig wird. Wir entwickeln SAT-Encodings für den Turbochar-
ging Algorithmus und wenden diese auf zwei Greedy-Heuristiken an.

In unseren Experimenten ist unsere Methode in der Lage, die Obergrenzen der Grund-
heuristiken für Graphen verschiedenster Größen zu verbessern. Wir vergleichen sie auch
mit einer randomisierten Methode von Berthe et al., um einen Vergleich zum State of the
Art herzustellen. Unsere Heuristiken sind in der Lage, diesen randomisierten Algorithmus
besonders bei großen Graphen signifikant zu übertreffen. Auf kleinen Graphen liefert der
randomisierten Ansatz jedoch bessere Ergebnisse.

Heuristiken für Obergrenzen für Twin-Width sind wertvoll sowohl für exakte Algorithmen,
als auch zum Finden von Zertifikaten über begrenzte Twin-Width für Graphen, für die
exakte Algorithmen zu langsam sind. Besonders für den zweiten Fall eignet sich unser
Ansatz, da er Ergebnisse von Greedy-Heuristiken signifikant verbessern kann. Das ist
besonders für größere Graphen der Fall.

vii





Abstract

Twin-width is a novel graph invariant, in some ways similar to tree width and rank width.
In a way, it measures how far a graph is from being a cograph. This is done by iteratively
contracting two vertices and keeping track of the edges that separate them from having
the same neighborhood using red edges. Given a certificate for bounded twin-width of
a graph, many NP-hard problems become tractable on it. However, determining the
twin-width and obtaining a certificate is an NP-hard problem itself.

In this thesis we improve greedy upper bound heuristics for twin-width using turbocharg-
ing. This involves using an exact approach for a subproblem, the turbocharging algorithm,
to aid the heuristic if the solution quality gets too low at some point. We develop SAT
encodings for the turbocharging algorithm and apply them to two greedy heuristics.

In our experiments, our turbocharged approach was able to improve the upper bounds of
the base heuristics across different instance sizes. We further compare it to a randomized
approach by Berthe et al. Particularly for large instances, our turbocharged heuristic
outperformed this approach significantly, while the randomized algorithm delivered better
results on small instances.

Upper bound heuristics for twin-width are valuable for both exact algorithms and to
obtain certificates for bounded twin-width for graphs which are too large for exact
algorithm to handle. Especially for the second use case, our approach is well suited, as it
manages to improve upon solutions obtained by greedy heuristics significantly. This is
particularly the case for larger graphs.

ix





Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Aim of the Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 5
2.1 Twin-Width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Turbocharging Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 SAT Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 State of the Art 13
3.1 Exact Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Heuristic Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Turbocharging Treewidth Heuristics . . . . . . . . . . . . . . . . . . . 26

4 Design 29
4.1 IC-Twin-Width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Turbocharging Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4 Turbocharged Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Implementation 41
5.1 Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Decoding SAT Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.4 Anytime Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

xi



6 Experiments 45
6.1 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.3 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.4 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7 Conclusions 53

List of Figures 55

List of Tables 57

List of Algorithms 59

Acronyms 61

Bibliography 63



CHAPTER 1
Introduction

1.1 Motivation
Twin-width is a width parameter for graphs introduced by Bonnet et al. [15]. A graph has
bounded twin-width if it is possible to iteratively select two vertices such that the difference
of their neighborhood is bounded until only a singleton remains. During this process, the
errors are being tracked using red edges and it is required that the degree in red edges is
bounded throughout. Twin-width is an active research topic [10, 11, 12, 13, 14, 15, 24, 25]
and was the topic of the 8th Parameterized Algorithms and Computational Experiments
Challenge (PACE 2023) [6].

What makes twin-width an interesting property is that Bonnet et al. [15] show that given
a certificate that a graph has twin-width d, first-order model checking is FPT when
parameterized by d and the size of the formula. Using first-order model checking, many
NP-hard problems can be solved. They therefore can also be solved in FPT time given
a certificate for bounded twin-width. Other width measures, such as treewidth, have
similar properties. Twin-width, however, stands out by being bounded for many classes
of graphs. This is discussed in Section 2.1.3 in more detail.

Much like for treewidth, determining the twin-width of a graph is a hard problem. Since
twin-width is a novel problem, there exist limited knowledge on how to compute it. There
do, however, exist some exact and heuristic approaches. This thesis is concerned with
improving heuristics for computing upper bounds for twin-width.

1.2 Aim of the Work
The aim of this work is to design, implement and evaluate a turbocharged heuristic for
twin-width. Turbocharging combines a heuristic that incrementally builds a solution
with an exact approach, the turbocharging algorithm, that recomputes previous steps if a

1



1. Introduction

certain quality goal is not reached (see Section 3.3). For this, heuristics need be selected,
the algorithmic problem for turbocharging twin-width heuristics needs to be analyzed,
and an algorithm to compute it needs to be developed.

1.2.1 Heuristics
To implement a turbocharged heuristic, we need to select at least one heuristic to use.
The aim is to find heuristics that provide a reasonable trade-off between run time and
quality of results. This balance should be fitting for the context of the turbocharged
algorithm.

1.2.2 SAT Encodings
As a turbocharging algorithm we aim to find good SAT encodings. These should have
a reasonable size and be as efficient as possible. The encodings should yield exact and
correct solutions.

1.3 Methodology
To achieve the aim of the thesis, the following methods are used:

1. Literature review: The literature review covers relevant theoretical background
and the state of the art for computing twin-width. This includes exact and heuristic
approaches. Further, existing turbocharging approaches are covered.

2. Design: This entails selecting one or more heuristics to turbocharge as well
as finding SAT encodings for computing solutions for the problem involved in
turbocharging twin-width heuristics.

3. Analysis: The complexity of the encoding and the underlying algorithmic problem
is analyzed.

4. Implementation: The turbocharging algorithm and heuristics are implemented
and combined into a single heuristic.

5. Experiments: To evaluate the resulting heuristic, experiments are designed and
executed. The aim compare the quality of the turbocharged heuristic to the heuristic
without turbocharging in terms of running time and solution quality. For this, a
good set of test instances has to be selected.

1.4 Structure of the Thesis
Chapter 2 of this thesis covers the theoretical Background required for this thesis.
This entails the definition of twin-width and its properties as well as the concept of

2



1.4. Structure of the Thesis

turbocharging algorithms. The State of the Art of computing twin-width both exactly
heuristically is discussed in Chapter 3, together with a related turbocharging approach.
Next, in Chapter 4 the Design of our turbocharged twin-width heuristic is discussed.
This encompasses a theoretical analysis of the underlying algorithmic problem, choosing
heuristics, and designing SAT encodings. The Implementation of this heuristic is covered
in Chapter 5. In Chapter 6 we discuss the evaluation of our approach using Experiments.
Finally, the Conclusion in Chapter 7 gives a summary of the thesis and its results.

3





CHAPTER 2
Background

In this chapter, relevant theoretical background for this thesis is covered. First, Section 2.1
discusses the concept of twin-width and its relevancy. Then, turbocharging heuristic
algorithms is covered in Section 2.2. Finally, Section 2.3 discusses SAT solvers.

2.1 Twin-Width
Twin-width is a graph invariant recently introduced by Bonnet et al. [15]. In a way,
twin-width measures the distance of a graph to being a cograph. A cograph is a graph
where it is possible to iteratively select two vertices u and v with the same neighborhood
(excluding u and v), also called twins, and contracting them, i.e. deleting one of them,
until only a singleton remains. Intuitively, a general graph has bounded twin-width if
each contraction consists of near twins. To keep track of past errors, red edges are used.
The maximum red degree, which is the number of red edges incident to a vertex, needs to
stay bounded for twin-width to be bounded. An formal definition of twin-width is given
in Section 2.1.1.

Bounded twin-width generalizes several classes of graphs. Given a certificate for bounded
twin-width many hard problems become FPT. This is discussed in more detail in
Section 2.1.2 and 2.1.3.

2.1.1 Definitions
In the following, relevant definitions from Bonnet et al. [15] are given. For a graph
G we denote its set of vertices by V (G) and its set of edges by E(G). We denote the
neighborhood of a vertex v by NG(v). A trigraph G = (V, E, R) is a graph with two sets
of edges. It has vertices V (G), (black) edges E(G) and red edges R(G). The sets E(G)
and R(G) are disjoint. A trigraph G is a d-trigraph if the graph (V (G), R(G)) has degree
at most d.

5



2. Background

Figure 2.1: Contraction of two vertices u, v into w

Figure 2.2: A 2-sequence for the Wagner graph with vertices to be contracted highlighted
(after [24])

Given a trigraph G and two vertices u and v, a new trigraph G′ = (V ′, E′, R′) can be
obtained through a contraction as follows: The vertices u and v are contracted into a
new vertex w. Therefore, V ′ is defined as (V (G) \ {u, v}) ∪ {w}. The edge sets E′ and
R′ are obtained by removing edges incident to u or v from E(G) and R(G) respectively
and adding new edges incident to w. For every x ∈ V ′: if xu ∈ E(G) and xv ∈ E(G)
then xw ∈ E′. Else if xu ∈ E(G) ∪ R(G) or xv ∈ E(G) ∪ R(G) then xw ∈ R′. Otherwise
xw ̸∈ E′ and xw ̸∈ R′. Intuitively this means that red edges stay red throughout the
contraction and red edges are added for vertices incident to only one of u and v, tracking
the distance from them being twins. Note that u and v may be incident but are not
required to be. An example of a contraction can be seen in Figure 2.1. A contraction is
called a d-contraction if both G and G′ are d-trigraphs.

A contraction sequence of a graph G is a sequence of trigraphs Gn, Gn−1, ..., G1 where
each Gi can be obtained from Gi+1 through a contraction and Gn = (V (G), E(G), ∅).
Then, G1 consists of just a single vertex. Such a sequence is called a d-sequence if each
Gi is a d-trigraph. Figure 2.2 depicts a 2-sequence for the Wagner graph.

The twin-width tww(G) of a graph G is the minimum number d such that G admits a
d-sequence.

6



2.1. Twin-Width

2.1.2 Efficient Algorithms Given Bounded Twin-Width
Bonnet et al. [15] show that first-order model checking is FPT on graphs with bounded
twin-width when parameterized by twin-width and formula size given that a d-sequence is
provided as an input. More precisely, they prove that given a graph G with n vertices, a
d-sequence G = Gn, Gn−1, ..., G1 = K1 and a first-order formula ϕ, G |= ϕ can be decided
in time f(|ϕ|, d) × n for a computable function f . This general result is theoretically
interesting, in the runtime of the resulting algorithm, however, f contains a tower of
stacked exponents whose height depends on the size of ϕ.

In another paper, Bonnet et al. [11] present problem-specific algorithms with more
practical complexity. In particular, they present an algorithm that solves k-Independent
Set in O(k2d2kn) time given a d-sequence. It works by following the d-sequence. The
connected subgraphs of red graphs Ri = (V (Gi), R(Gi)) are solved to obtain partial
solutions. As Rn has no edges, this is trivial. After each contraction, the partial
solutions are updated by merging partial solutions of sets that were disconnected before.
Similar algorithms are possible for r-Scattered Set, k-Clique and k-Dominating Set
with runtime 2O(k)n, and for the weighted version of k-Independent Set, Subgraph
Isomorphism, and Induced Subgraph Isomorphism with runtime 2O(klogk)n given a
O(1)-sequence.

2.1.3 Graphs with Bounded Twin-Width
It turns out that a variety of classes of graphs have bounded twin-width. Bonnet et
al. [11] list the following such classes:

• Bounded clique-width/rank-width, and more generally, boolean-width graphs,

• every hereditary proper subclass of permutation graphs,

• posets of bounded antichain size (seen as digraphs), unit interval graphs,

• Kt-minor free graphs,

• map graphs,

• subgraphs of d-dimensional grids,

• Kt-free unit d-dimensional ball graphs,

• Ω(log n)-subdivisions of all the n-vertex graphs,

• cubic expanders defined by iterative random 2-lifts from K4,

• strong products of two bounded twin-width classes one of which has also bounded
degree,

• any subgraph closure of a Kt,t-free bounded twin-width class, and

7



2. Background

• any first-order interpretation of a bounded twin-width class. [11]

Bonnet et al. [15] note that clique-width and rank-width extend treewidth to dense
graphs. Twin-width, however, is additionally bounded for simple graphs such as unit
interval graphs. This large range of classes of graphs with bounded twin-width combined
with the simplicity of the concept makes twin-width a highly interesting invariant.

Further, Jacob and Pilipczuk [20] and Hliněný and Jedelský [19] prove bounded twin-width
and give bounds for the following classes:

• For a graph G with treewidth tw(G) the twin-width is bounded by tww(G) ≤
3 × 2tw(G)−1.

• For a planar graph G with branchwidth bw(G) ≥ 2 the twin-width is bounded by
tww(G) ≤ max(4 × bw(G), 9

2 × bw(G) − 3).

• For a universal bipartite graph (X, 2X , E) with |X| = n the twin-width is n −
log2(n) + O(1).

• For a planar graph G the twin-width is bounded by tww(G) ≤ 8.

• For a planar bipartite graph G the twin-width is bounded by tww(G) ≤ 6.

• For a map graph G the twin-width is bounded by tww(G) ≤ 38.

2.1.4 Complexity of Computing Twin-Width
Computing the twin-width d and a d-sequence of a graph is a hard problem. Bonnet
et al. [15] show that, for some classes of graphs, structural properties can be used to
achieve efficient algorithms. For example, for graphs of boolean-width at most k they
show that a (2k+1 − 1)-sequence can be computed in linear time. For a d-dimensional
grid of side-length n an algorithm to compute a 3d-sequence exists. Such algorithms,
however, are not generally applicable. In fact, Bergé et al. [7] show that deciding whether
a graph has twin-width at most 4 is NP-complete.

2.2 Turbocharging Heuristics
Turbocharging is a technique aimed at improving the quality of greedy heuristics. Generally,
the basic idea is the follows: For a given problem, an upper bound k for a relevant
property of the desired solution is selected. An example for such a property is the
twin-width of a graph. Then, a greedy heuristic computes a solution iteratively as long as
the intermediate solution does not violate the bound k. If k is exceeded at a certain step,
it is called the moment of regret. At this point, a turbocharging algorithm is applied. Its
goal is to recompute the last c steps in such a way that the newly computed intermediate

8



2.3. SAT Solvers

solution can be extended by one additional step without violating the bound k. Then,
the greedy heuristic continues generating a solution [16, 17].

This approach has been applied to various different problems. Examples include Downey
et al. [17], who use it on a dynamic version of Dominating Set, Gaspers et al [18] use
turbocharging for treewidth, and Abu-Khzam et al. [3] use it on Dominating Set. In
many cases, turbocharging lead to improved solutions without sacrificing an unreasonable
amount of runtime.

2.3 SAT Solvers

The Boolean satisfiability problem (SAT) is a well known NP-complete decision problem
in computer science. SAT solvers accept a propositional formula ϕ as an input and
attempt to evaluate whether there exists a variable assignment such that ϕ is satisfied.
ϕ is usually represented in conjunctive normal form (CNF) [23]. In practice, applications
can view SAT solvers as a black box. They submit a formula encoding the problem they
aim to solve and await the result without further interaction [4].

2.3.1 DPLL Algorithm

A commonly used algorithm in modern SAT solvers is the Davis-Putnam-Logemann-
Loveland (DPLL) algorithm. It is a sound and complete algorithm, and, therefore,
completes in finite time and finds a solution if and only if the input formula ϕ is
satisfiable [4].

DPLL attempts to find a variable assignment that satisfies ϕ using a branching search
with backtracking. It is outlined in Algorithm 2.1. The DPLL algorithm iteratively
selects an unassigned variable and assigns a value to it. This is done in first step of the
outer loop in decideNextBranch. If no unassigned variable exists, this means that a
variable assignment satisfying the formula has been found and the algorithm returns that
ϕ is satisfiable. If this is not the case, the algorithm deduces variable assignments based
on the decision made. This is done using Boolean Constraint Propagation (BCP). BCP
usually applies the unit clause rule repeatedly: If a clauses has an unassigned literal and
the remaining literals are false, the unassigned literal is implied to be true. However, if a
variable is implied to be both true and false at the same time, a conflict occurs. If no
conflict occurred, the outer loop continues and a new variable is assigned [23].

In the case of a conflict, backtracking is performed. Backtracking reverses decisions
and implications that lead to the conflict. If every single decision has to be undone,
blevel is 0 and the algorithm returns that the formula is unsatisfiable. Chronological
backtracking reverses the most recent decisions until a variable is reached for which the
opposite assignment as not been attempted. This approach was used in the original
DPLL algorithm [23].

9



2. Background

Algorithm 2.1: Basic structure of the DPLL algorithm (after Prasad et al. [23])
1 while True do
2 if decideNextBranch() == False then
3 return SAT;
4 else
5 while deduce() == CONFLICT do
6 blevel = analyzeConflict();
7 if blevel == 0 then
8 return UNSAT;
9 end

10 backtrack(blevel);
11 end
12 end
13 end

2.3.2 Implication Graphs

When solving a SAT instance, an implication graph, which is a directed acyclic graph,
holds the relationships of implications of variables assignments. Variable assignments
are represented by vertices, and edges incident to a vertex indicate the reasons for this
assignment. A vertex without incoming arcs is called a decision vertex. Positive and
negative variables are assigned 1 and 0, respectively. If a variable is assigned both 0
and 1, a conflict occurs and it is called a conflicting variable [26]. Figure 2.3 depicts an
implication graph with a conflict.

Figure 2.3: Implication graph with conflict after Prasad et al. [23]

10



2.3. SAT Solvers

2.3.3 Conflict-Driven Clause Learning
Modern SAT solvers use conflict learning, or Conflict-Driven Clause Learning (CDCL),
and conflict-driven backtracking instead of chronological backtracking. For this, conflict
analysis techniques are utilized. They aim to analyze the reason for a conflict [4, 23].

While chronological backtracking works well for random instances, instances of real world
problem can have structure that it can not exploit. For instances with some structure, it
can be valuable to analyze the root of conflicts in more detail, as the information learned
from this may be useful for other parts of the search space. For this, the implication
graph is used, enabling non-chronological backtracking, or conflict directed backjumping.
This way, multiple levels of decisions can be undone. Additionally, through conflict
analysis, new clauses are added, or learned. These clauses are conflict clauses and contain
information on the reason of the conflict. They prevent the search from making the same
mistake again [26].

When a conflict occurs, the implication graph can be partitioned into a conflict side
containing the conflicting variables, and the reason side. This bipartition, or cut, can
be used to obtain conflict clauses. To find a conflict clause given a cut, the vertices on
the reason side have to be examined. If they have at least one edge to the conflict side,
they are part of the reason of the conflict. The conflict clause is then constructed from
these decision variables. It is usually possible to select different cuts, leading to different
learning schemes [26].

11





CHAPTER 3
State of the Art

As twin-width is a novel concept, the number of approaches for computing it is still
limited. The first exact approach was introduced by Schidler and Szeider [24]. Recently,
computing twin-width was the subject of the 8th Parameterized Algorithms and Compu-
tational Experiments Challenge (PACE 2023). This attracted interest from the research
community and resulted in many of the approaches discussed in this chapter.

PACE 2023 featured an exact track in which submitted algorithms had a time budget of
30 minutes per instance to find optimal solutions. The heuristic track required algorithms
to complete within 5 minutes but did not require solutions to be optimal [6]. The time
constraints on the heuristic track forced participants to focus on speed. In fact, Bonnet
and Duron [9] note that a greedy heuristic that executes the contraction leading to the
minimum red degree in the next step in the given time frame likely would have won the
competition. Given the quadratic time complexity of this approach and the size of the
instances, this was practically not possible.

This chapter covers the state of the art of existing exact and heuristic approaches for
computing twin-width. Section 3.1 covers SAT encodings as well as the three best
performing exact approaches from PACE 2023 Hydra Prime, GUTHMI and Touiouidth.
In Section 3.2 the three best heuristic approaches from PACE 2023 are discussed,
namely GUTHM, Zygosity and Red Alert. Finally, Section 3.3 covers an example of a
turbocharging algorithm.

3.1 Exact Approaches

3.1.1 SAT
Schidler and Szeider [24] propose two SAT encodings to exactly compute twin-width.
The encodings give a CNF formula F (G, d) that is satisfiable for a graph G exactly if

13



3. State of the Art

G has twin-width at most d. By varying d, the exact twin-width can be obtained. To
reduce the search space for d, upper and lower bounds are computed.

Preprocessing

Schidler and Szeider [24] propose a graph decomposition that gives a collection prime(G)
of induced subgraphs of G such that tww(G) = maxH∈prime(G)tww(H). Depending on
the input graph, this can lead to smaller graphs to be encoded to SAT leading to less
computational effort.

A nonempty set of vertices M ⊆ V (G) is called a module if for every pair u, v ∈ M of
vertices the following holds: For any w ∈ V (G)\M either uw ∈ E(G) and vw ∈ E(G) or
uw ̸∈ E(G) and vw ̸∈ E(G). If M = V (G) or |M | = 1, M is trivial and M is maximal
if it is not strictly contained in any nontrivial module. In a prime graph all maximal
modules are trivial. The vertices of graph G can be partitioned into a unique Pmax of
maximal modules M1, ..., Ms. From this, the quotient graph G/Pmax can be constructed:
each Mi is a vertex and edges between two maximal modules Mi and Mj are inserted if
and only if for all pairs xi ∈ Mi, xj ∈ Mj it holds that xixj ∈ E(G). A graph isomorphic
to G/Pmax can be obtained by selecting a representative vertex xi ∈ Mi for each maximal
module Mi and taking the subgraph of G induced by the set {x1, ..., xs}.

prime(G) is then recursively defined as follows:

1. G is disconnected: prime(G) = {prime(C) | C ∈ connected components of G}
2. G is disconnected: prime(G) = {prime(C) | C ∈ connected components of G}
3. G and G are connected: prime(G) = {G/Pmax} ∪ {prime(G[M ]) | nontrivial M ∈

Pmax}

Elimination Sequences for Twin-Width

For better suitability for formulating SAT encodings, Schidler and Szeider [24] give an
alternative definition of twin-width using d-elimination sequences. For a graph G this
definition uses a contraction tree T such that V (G) = V (T ) with a root vertex rT . The
elimination ordering ≺ is a linear ordering such that u ≺ v if v is the parent of u in T for
u, v ∈ V (T ). The parent of a vertex vi in T is denoted as pi and per definition vi ≺ pi.
A twin-width tree decomposition (T, ≺) is a pair of a contraction tree and an elimination
ordering.

V (G) = {v1, ...., vn} with v1 ≺ ... ≺ vn gives a sequence of graphs H0, ...Hn−1 such that
V (Hi) = {vi, ..., vn}. E(H0) is the empty set and for subsequent Hi the edge set is
defined recursively:

14



3.1. Exact Approaches

E(Hi) = {uv ∈ E(Hi−1) | u, v ∈ V (Hi)} (3.1)

∪ {upi | viu ∈ E(Hi−1)} (3.2)

∪ {upi | viu ∈ E(G), piu ̸∈ E(G), u ∈ V (Hi)} (3.3)

∪ {upi | viu ̸∈ E(G), piu ∈ E(G), u ∈ V (Hi)} (3.4)

Figure 3.1: T and H0, ..., Hn−1 derived from a 2-elimination sequence for the Wagner
graph. The sequence is equivalent to the red graphs of the 2-sequence from Figure 2.2.
(after [24])

Intuitively, Subset (3.1) states that edges between unchanged vertices remain from Hi−1
to Hi for vertices which have not been eliminated. Subset (3.2) adds edges between the
parent pi of the newly eliminated vertex vi to the neighbors of vi in Hi−1, effectively
transferring edges from vi to pi. Subsets (3.3) and (3.4) ensure that the symmetric
difference NG(vi)△NG(pi) of the neighborhoods of vi and pi in G is connected to pi in Hi

as long as the vertices are still part of Hi. Here, NG(vi) denotes the neighborhood of vi.
Effectively, the sequence H0, ..., Hn−1 is equivalent to the red graphs (V (Gi), R(Gi)) in a
contraction sequence. In each step, vi and pi are equivalent to the pair that is contracted,
but instead of a contraction, an elimination is executed. An example for an elimination
sequence is depicted in Figure 3.1.

Such a sequence H0, ..., Hn−1 defined by (T, ≺) is called an elimination sequence for G
and a d-elimination sequence if for an integer d the maximum degree of all Hi is at most
d. The width of a twin-width tree decomposition (T, ≺) is defined as the smallest d for
which it admits a d-elimination sequence. Schidler and Szeider [24] show that a graph G
has twin-width ≤ d if and only if there exists a d-elimination sequence (T, ≺) with width
≤ d.

15



3. State of the Art

Name Range Meaning
ai,j 1 ≤ i < j ≤ n vivj ∈ Ek for some k
oi,j 1 ≤ i < j ≤ n vi ≺ vj

pi,j 1 ≤ i < j ≤ n pi = vj

ri,j,k 1 ≤ i, j ≤ n and j < k ≤ n vjvk ∈ E(Hϕ≺vi) after eliminating vi

Table 3.1: Variables of the relative encoding (after [24])

When converting a contraction sequence into an elimination sequence, for each contraction
of vertices i and j, either one could be selected to be eliminated. However, it is useful to
use the following rule: Eliminate vertex vj if i > j, else eliminate vi. The consequence of
this is that vertex vn is never eliminated and vn is the root rT of the contraction tree.

Relative Encoding

The relative encoding encodes the order of vertices in the elimination ordering relatively
for each pair of vertices. For this, the variable oi,j indicates that vi ≺ vj . Table 3.1 gives
a summary of all variables used in this encoding. To add transitivity, the clause

¬o∗
i,j ∨ ¬o∗

j,k ∨ o∗
i,k

is added for mutually distinct i, j and k. The notation o∗
i,j is an abbreviation for oi,j if

i < j and ¬oj,i if j > i.

To encode the elimination tree T , the variable pi,j is introduced which is true if and only
if pi = vj . To ensure that every node - except the root node vn, which is never eliminated
- has exactly one parent, for each i < n the at-least-one constraint

�
i<j pi,j

for all i < n and the at-most-one constraint

¬pi,j ∨ ¬pi,k

for all mutually distinct i, j, k are added. Finally, for each vertex vi and its parent vj ,
vi ≺ vj has to hold, which is encoded in the following clause for all i < j:

¬pi,j ∨ o∗
i,j .

This gives an encoding for T and ≺. The encoding of the sequence of graphs H0, ..., Hn−1
remains. For this, the variables ri,j,k with j < k and the auxiliary variables ai,j with
i < j are used. ri,j,k is true if and only if vjvk ∈ E(Hϕ≺(vi)) after vi has been eliminated.

16



3.1. Exact Approaches

Here, the mapping ϕ≺(vi) is the index of vi in ≺. ai,j encodes whether the edge vivj

exists in any Hk, i.e. ai,j is true if and only if there exists a k such that vivj ∈ E(Hk).
To encode r, the definition of E(Hi) given in (3.1) - (3.4) is used. Subset (3.1) of E(Hi)
is enforced by the clause

¬o∗
i,j ∨ ¬o∗

j,k ∨ ¬o∗
j,m ∨ ¬r∗

i,k,m ∨ r∗
j,k,m

for mutually distinct i, j, k, m with k < m. Here, r∗ is defined analogously to o∗, the
same holds for a∗ later. Next, Subset (3.2) is encoded by the following clause for mutually
distinct i, j, k with i < j:

¬pi,j ∨ ¬o∗
i,k ∨ ¬a∗

i,k ∨ r∗
i,j,k.

To complete the semantics of r, Subsets (3.3) and (3.4) have to be encoded as well. For
this, for each vk ∈ (NG(vi)△NG(vj))\{vi, vj} with i < j, the following clause is added:

¬pi,j ∨ ¬o∗
i,k ∨ r∗

i,j,k.

Finally, the semantics of a are encoded for mutually distinct i, j and k in the clause

¬o∗
i,j ∨ ¬o∗

i,k ∨ ¬r∗
i,j,k ∨ a∗

j,k.

The only remaining part of the encoding is the upper bound d. This is achieved by
limiting the number of true occurrences of ri,j,k for each vertex vj in each graph Hi.
Therefore, { r∗

i,j,k | 1 ≤ j, k ≤ n } is limited to at most d true values for each 1 ≤ i ≤ n,
ensuring the number of neighbors of vj in each Hi is at most d. Schidler and Szeider [24]
use totalizer constraints for this.

The resulting formula F (G, d) contains O(n4) clauses due to the clauses required to
encode Subset (3.1). Due to its construction following the definition of elimination
sequences, F (G, d) is satisfiable if and only if G has twin-width at most d.

Absolute Encoding

The most significant difference of the absolute encoding to the relative encoding, is that
the position of vertices in the elimination ordering is encoded absolutely. For this, the
variable oi,j is replaced by o′

i,j which is true if and only if ϕ≺(vj) = i, i.e. when vertex
vj is on the ith position in the elimination ordering. Table 3.2 gives an overview of all
variables used in this encoding. This section uses the source code [1] to fill in parts of
the encoding not described in detail by Schidler and Szeider [24].

Further, the meaning of indices i, j and k change for the variables r and p. In the
absolute encoding, they refer to the position in the elimination ordering ϕ≺(vi), ϕ≺(vj)

17



3. State of the Art

Name Range Meaning
o′

i,j 1 ≤ i, j ≤ n ϕ≺(vj) = i

ei,j 1 ≤ i < j ≤ n ∃uv ∈ E(G) : i = ϕ≺(u) ∧ j = ϕ≺(v)
epi,k 1 ≤ i, k ≤ n ϕ≺(vj) = i ∧ jk ∈ E(G)
pi,j 1 ≤ i < j ≤ n − d pm = vn : i = ϕ≺(m) ∧ j = ϕ≺(n)
ri,j,k 1 ≤ i < j < k ≤ n − d ∃uv ∈ E(Hi) : j = ϕ≺(u) ∧ k = ϕ≺(v)

Table 3.2: Variables of the absolute encoding

and ϕ≺(vk) instead of the indices of the vertices vi, vj and vk, respectively. Thus, ri,j,k

is true if and only if there exists an edge uv ∈ E(Hi) with j = ϕ≺(u) and k = ϕ≺(v).

Since the value of ϕ≺(vi) is not known beforehand, it has to be encoded that an edge
between ϕ≺(vi) and ϕ≺(vj) exists if i and j are adjacent in G. For this, the variable
ei,j is used, where i and j represent the position in the ordering. For the encoding, an
additional variable epi,k is used, which is true exactly if the vertex at position i in the
elimination ordering is adjacent to vk in G. This is ensured with the following clauses for
i < k ≤ n and j ≤ n with j ̸= k:

¬o′
i,j ∨ epi,k if jk ∈ E(G)

¬o′
i,j ∨ ¬epi,k otherwise.

Additionally, the clauses

¬epi,j ∨ o′
i,x1 ∨ ... ∨ o′

i,xm
where x := NG(vj) and m := |x|

reduce the search space. Then, the semantics of ei,j can be encoded using the clauses

¬o′
i,j ∨ ¬epk,j ∨ ei,j

¬o′
i,j ∨ epk,j ∨ ¬ei,j .

The order of eliminations is encoded by the variable o′. Since vn is never eliminated, the
clause o′

n,n is added as a fact. To specify that there has to be exactly one vertex at each
position in the ordering, at-most one and at-least one constraints are added. For each i
at least one and at most one o′

i,j must be true.

Similarly to the relative encoding, the parent relationship is encoded using the variable
pi,j . Using at-least one and at-most one constraints it is ensured that for all 1 ≤ i ≤ n−d
exactly one pi,j is true.

Since the indices of ri,j,k refer the the position in the elimination ordering, Subset (3.1)
of E(Hi) for i > 1 can be succinctly encoded by the clauses

¬ri−1,j,k ∨ ri,j,k.

18



3.1. Exact Approaches

To encode Subset (3.2) of E(Hi), for all 1 < i ≤ n − d and j < k the clauses

¬pi,j ∨ ¬ri−1,i,k ∨ ri,j,k

¬pi,k ∨ ¬ri−1,i,j ∨ ri,j,k

are added. Subset (3.3) and Subset (3.4) of E(Hi) are encoded using the following clauses
for all i ≤ n − d and j < k:

¬pi,j ∨ ¬ei,k ∨ ej,k ∨ ri,j,k

¬pi,j ∨ ¬ej,k ∨ ei,k ∨ ri,j,k

¬pi,k ∨ ¬ei,j ∨ ej,k ∨ ri,j,k

¬pi,k ∨ ¬ej,k ∨ ei,k ∨ ri,j,k.

Lastly, the maximal red degree is encoding in the same way as in the relative encoding.

The main advantage of the absolute encoding is its smaller number of variables. The
succinct encoding of Subset (3.1) removes the need for O(n4) clauses, leaving the need for
just O(n3) clauses. Further, the range for i, j, k for ri,j,k is reduced to i < j < k. Lastly,
the last d trigraphs of the sequence H1, ..., Hn do not need to be taken into account, as
graphs with at most d vertices cannot have twin-width greater than d. These factors lead
to significantly less variables and clauses compared to the relative encoding.

A major disadvantage of this encoding, however, is that it is not possible to succinctly
encode the fact that the index of a vertex is always smaller than the index of its parent.
This leads to symmetries in the encoding. Therefore, the search space is increased.

Comparison

The difference in size of the encodings is expectedly significant. For example, Paley-73
is a graph with 73 vertices, 1314 edges and twin-width 36. The relative and absolute
encodings required 30 million and 2.5 million clauses, and 2.5 million and 0.3 million
variables, respectively. This is, however, not directly reflected in their performance.
When computing the exact twin-width by solving F (G, tww(G)) or the last unsatisfiable
case F (G, tww(G) − 1), the relative encoding outperforms the absolute encoding by an
order of magnitude.

However, Schidler and Szeider [24] find that the performance of the absolute encoding
quickly improves for with an increasing i = 1, 2, ... for solving F (G, tww(G)+i). Therefore,
they note that it could be useful to compute upper bounds for larger graphs, as its smaller
size allows it to be used for graphs the relative encoding can not handle.

19



3. State of the Art

3.1.2 Hydra Prime

Hydra Prime is an exact solver for twin-width proposed by Mizutani et al. [22]. It uses
modular decomposition for preprocessing based on the approach described in Section 3.1.1
and then processes each prime graph separately. Hydra Prime contains various algorithms.
The PrimeTreeSolver, a linear-time exact algorithm for trees without twins, is used
for prime graphs that are trees. Otherwise, various upper- and lower-bound algorithms
are employed. They are alternated until the bounds match and an optimal solution is
found. At first, faster algorithms are used, before progressively switching to slower ones.
The following algorithms are used:

Exact algorithms

• PrimeTreeSolver: Described above.

• BranchSolver: A brute-force solver with caching and reduction rules

• DirectSolver: Based on the relative encoding described in Section 3.1.1

Lower-bound algorithms

• LBGreedy: A greedy algorithm removing the vertex v of graph G such that the
value of |△(u, v)| is minimal at each step. Returns the maximum minimal value of
all steps.

• LBCore: Uses a SAT solver to find maxS⊆V (G)minu,v∈S,u ̸=v|△G[S](u, v)|.

• LBSample: Computes the exact twin-width or lower bound of a connected induced
subgraph G′ of G found using a random walk.

• LBSeparate: Works like LBSample but uses the hydra decomposition, a novel
approach introduced by Mizutani et al. [22], to find the induced subgraph.

Upper-bound algorithms

• UBGreedy: A greedy algorithm minimizing the red degree of the newly created
vertex at each step.

• UBLocalSearch: Makes small changes to an elimination order to find a better
solution.

• UBSeparate: Uses the hydra decomposition to refine the solution.

20



3.1. Exact Approaches

3.1.3 GUTHMI

Leonhardt et al. [21] proposed GUTHMI, a branch-and-bound algorithm for determining
twin-width. GUTHMI first contracts all twins. For determining branching, a similar
scoring method to GUTHM (see Section 3.2.1) is used. Lower bounds are obtained by
sampling subgraphs. This works, as the twin-width of a graph G can not be lower than
the twin-width of any induced subgraph G′ of G.

3.1.4 Touiouidth

Touiouidth is a branch-and-bound algorithm proposed by Berthe et al. [8]. It tracks
forbidden contractions to avoid contractions in branches rooted in sibling nodes that
would lead to symmetries. Further, Berthe et al. [8] use the reduction rule

Reduction Rule 1. If there exist two vertices u, v ∈ V (G) such that

• Nb(u) ⊆ Nb(v), and

• (Nr(v) ∪ Nb(v)) ⊆ (Nr(u) ∪ {u, v}),

then contract u and v.

at each search tree node. Here, Nb(v) and Nr(v) are the open black and red neighborhoods
of vertex v, respectively.

Lower bound Heuristics

Similarly to GUTHMI (see Section 3.1.3), induced subgraphs are used to obtain lower
bounds. Touiouidth constructs |V (G)| induced subgraphs Gi. At first, each Gi contains
a single distinct vertex. Then, new vertices are added to each Gi iteratively. A new
vertex v has to be connected to Gi and has to maximize the minimal the symmetric
difference of neighborhoods of v in G with vertices in Gi. Each time a vertex is added to
any Gi, the twin-width of the new induced subgraph is calculated and the lower bound
is updated if it is tighter than the best one found thus far.

Upper bound heuristics

Touiouidth uses two heuristics to computer upper bounds. Heuristic1 is a greedy
heuristic. It iteratively selects two vertices u, v such that △(u, v) is minimal and contracts
them. Heuristic2 relies on random contractions and can be used several time to find
better solutions. It takes a graph G and an upper bound T as input. It then constructs a
contraction sequence by contracting a random pair of vertices such that the red trigraph
does not exceed degree T − 1. If a complete contraction sequence is found, it can be used
as the upper bound for another iteration.

21



3. State of the Art

Figure 3.2: Heuristic strategies used by GUTHM (after [21])

3.2 Heuristic Approaches

3.2.1 GUTHM

GUTHM is a greedy heuristic proposed by Leonhardt et al. [21]. It consists of the three
strategies P, S and P+LSH. For disconnected graphs, each connected component is
handled in isolation. After obtaining trivial contraction sequences for each component
using P, the component with the highest bound for the twin-width is processed.

GUTHM starts by obtaining an initial upper bound for the twin-width using P. Depending
on the the expected twin-width, the strategy is changed. If it is expected to be high,
P+LSH is used repeatedly. If the twin-width is expected to be low or P+LSH has
found it to be low, S is used repeatedly until the heuristic terminates. Figure 3.2 depicts
the sequence of the strategies. The algorithm can only move from left to right.

P: Priority based solver

P, the priority based solver, selects a vertex u with minimal red degree and uses the
scoring function score(u, v) to select a vertex v from the 2-neighborhood of u. For
this, they propose an adjusted two-level BFS approach to speed up the calculation. In
score(u, v), the sets Rnew and Rrem represent the sets of red edges added and removed
by the contraction of u and v, respectively.

score(u, v) = �
(v,x)∈Rnew

(redDeg(x) + 1) − �
(v,y)∈Rrem

redDeg(y)

S: Sweeping based solver

The sweeping based solver S works by selecting a threshold for the twin-width and
executing contractions that do not lead to the threshold being exceeded. This is done in
multiple rounds. At the start of each round, the threshold is established and continuously
tweaked to balance execution speed and accuracy.

22



3.2. Heuristic Approaches

P+LSH: Priority with support for locality sensitive hashing

The final approach P+LSH attempts to improve the solution obtained by P for d-
sequences with high d. For this, global information is collected using MinHashing.
Additionally, local information is used in a similar way to P. This, however, does not
handle finding near-twins with high red degree. MinHashing enables finding near-twins
in large graphs.

3.2.2 Zygosity

Zygosity is a randomized greedy heuristic proposed by Arrighi et al. [5]. It uses two
preprocessing steps: At first, it contracts all twins. Then, trees are contracted in a
manner described by Bonnet et al. [15]: Either two leaves which share a parent, or a leaf
and its parent are contracted.

The contraction sequence is constructed by evaluating a number of random contractions
at each step. This number depends on the remaining time as well as how long it takes
to consider one contraction on average. The best contraction is then evaluated by two
measures:

• Red degree: When contracting two vertices, the red degree of some vertices may
increase. For the newly created node, the red degree is considered increased if it is
greater than both contracted vertices. The measure considered is the highest red
degree of any vertex with an increased red degree due to the contraction. This is
the intuitively most important measure to keep low to obtain a d-sequence with a
low value of d.

• Intersection size: The Intersection size refers to the number of shared neighbors
of the contracted vertices. If the contracted vertices are adjacent this contributes
one to the intersection size. The intersection size is also equal to the number of
edges removed by the contraction. Intuitively, removing more edges leads to fewer
problems later on.

The red degree is the primary measure used by Zygosity. The intersection size is only
used to break ties when multiple candidates have the same red degree. However, if
two contractions being compared do not increase the red degree of the current partial
contraction sequence, only the intersection size is considered.

Zygosity does not pick potential contraction pairs completely at random. Instead, a
single vertex is selected randomly. From there, a random walk of either one or two steps
is performed. The length of the walk is selected randomly but biased based on the density
of the input graph. On dense graphs longer walks are favored.

23



3. State of the Art

Figure 3.3: Overview of the Red Alert heuristic (after [9])

3.2.3 Red Alert
Red Alert is a heuristic presented by Bonnet and Duron [9] which works by sampling
candidates to contract. In each round, about 10000 pairs of vertices are sampled and at
least minPairs of them are contracted. If the remaining time is not sufficient to complete
this computation, the faster subroutines totDegAlert and balancedScheme are used
to obtain a solution in time. Figure 3.3 gives an overview of the entire Red Alert heuristic.
In the main loop minPairs is estimated and candidate pairs are sampled. Then at
least minPairs are selected from the candidate pairs based on a cost function and
the selected pairs are contracted. If the remaining time is too low, increasingly cruder
heuristics are used.

Computing minPairs

In each round of the main loop at least minPairs have to be chosen from the sampled
candidate pairs. The value of minPairs is chosen based on the time the last iteration
took t and the remaining time T . While iterations of the main loop do not all take the
same amount of time, T/t still gives a reasonable estimate for how many more iterations
are possible within the time budget. For a graph with k vertices in each iteration k

T/t pairs
should be contracted, therefore minPairs = tk/T . minPairs also affects sampling:
For a small minPairs the sampling size is increased to make more use of the time and
decreased if minPairs gets larger.

Sampling

The selection of candidates depends on whether the input graph is sparse or dense. For
sparse graphs, the candidate distribution is biased toward selecting vertices that are close

24



3.2. Heuristic Approaches

to each other. At first, a vertex v is picked uniformly at random. Then either a neighbor
of v in the input graph or a second neighbor of v in the input graph is chosen uniformly.
Either case is chosen with a probability 1/2. This way, half of the pairs have distance
of 2 which naturally leads to contractions decreasing the red degree. For dense graphs,
candidates are sampled uniformly as most pairs of vertices have a distance of 2.

Filtering candidates

To evaluate candidates, a cost function f(u, v) = (r, p, e) is used where u and v are
vertices of the current trigraph G. Let G′ be the trigraph obtained by contracting u
and v, and w be the newly created vertex. Then r, p and e are defined by Bonnet and
Duron [9] as follows:

• r ∈ {0, 1} is 0 iff the maximum red degree of G′ is smaller than that of G.

• p is the maximum red degree among vertices of G′ in the closed red neighborhood
of w.

• e is the total number of red edges in G′. [9]

When comparing two pairs of vertices, p is only considered if r is equal for both, and e
only if p is equal as well, giving r the highest priority followed by p and e, respectively.
The pair with a lower value is preferred. It is not possible to contract two pairs sharing a
vertex and the value f for each pair can change with each contraction. This is a problem
since minPairs candidate pairs need to contracted. Bonnet and Duron [9] solve this
problem by using a min-heap according to f to store candidate pairs. Contractions are
then executed as follows: First, the minimal candidate c is popped from the heap. If
one of its vertices does not exist anymore, the next candidate is selected. Then, f(c) is
computed and compared to the last time it was evaluated. If f(c) has not gotten worse,
c is contracted. Otherwise, c is inserted into the heap again, but with the updated value
f(c).

Fast subroutines

As Red Alert is designed for the format of PACE 2023, it includes the faster subroutines
totDegAlert and balancedScheme to finish within the given time budget if the
remaining time gets low or minPairs gets too large. It is possible that minPairs
increases steadily. This is usually caused by the trigraph getting increasingly more dense.
Given that the black degree of vertices can not get higher and the input graph was
rather sparse in comparison, the degree of a vertex is now a good approximation for the
red degree. totDegAlert builds on this observation and greedily contracts candidates
with the smallest total degree. If even totDegAlert is too slow to terminate in time,
balancedScheme is used to output a valid solution before the time budget is used up.
It splits the remaining vertices into buckets which are contracted into a single vertex
each. The remaining contraction sequence is arbitrary.

25



3. State of the Art

3.3 Turbocharging Treewidth Heuristics
Gaspers et al. [18] apply the approach of turbocharging heuristics to treewidth. Treewidth
is a graph invariant, much like twin-width. They use two different heuristics and show
that the turbocharging algorithm is FPT. Here, only one heuristic is described to illustrate
the approach.

3.3.1 Definitions
A tree decomposition τ = (T, χ) of a graph G = (V, E) consists of a tree T and a mapping
χ from each vertex t ∈ T to a bag χ(t) ⊆ V such that

1. each vertex v is in at least one bag, i.e. ∀v ∈ V : ∃t ∈ T : v ∈ χ(t)

2. for each edge uv there exists a bag that contains u and v, i.e. ∀uv ∈ E : ∃t ∈ T :
{u, v} ⊆ χ(t)

3. for each r, s, t ∈ T where there exists a path from r to t containing s: χ(r) ∩ χ(t) ⊆
χ(s).

The size of the largest bag of a tree decomposition minus one is its width. Then, the
treewidth tw(G) of a graph G is defined as the smallest possible width of any tree
decomposition of G.

Treewidth can also be defined by elimination orders. To avoid confusion with elimination
orderings for twin-width as defined in Section 3.1.1, elimination orders are going to be
referred to as treewidth elimination orders. An elimination in this context entails forming
a clique of all neighbors of a vertex v of a graph G and then removing v as well as all
edges incident to v. More formally, a new graph G′ = (V (G)\{v}, (E(G) ∪ E1)\E2) with
E1 = {uw | u, w ∈ NG(v)} and E2 = {e ∈ E(G) | v ∈ e} is created from G. Then, a
treewidth elimination order is a bijective function π : V −→ {1, ..., n} where n = |V (G)|.
From this, a sequence of graphs can be obtained by starting with G and eliminating
vertices in the order given by π. The maximum degree of all graphs in this sequence is the
width of π. A graph G has treewidth at most k if and only if here exists an elimination
order π of width at most k.

3.3.2 TurbochargedMinDegree
Gaspers et al. [18] propose the TurbochargedMinDegree algorithm shown in Al-
gorithm 3.1. It is based on the GreedyDegree heuristic. GreedyDegree works by
always adding the vertex with minimum degree to the treewidth elimination order.

To turbocharge a greedy treewidth heuristic, the incremental conservative (IC) treewidth
problem or IC-Treewidth has to be solved. As an input it receives a graph G, two
integers k and c, and a partial treewidth elimination order π with length l and width ≤ k.

26



3.3. Turbocharging Treewidth Heuristics

The problem is to determine whether there exists a partial treewidth elimination order π′

with length l + 1 and width ≤ k such that the first l − c items of π and π′ are the same.
Gaspers et al. [18] show that IC-Treewidth is FPT when parameterized by c and k.

Algorithm 3.1: TurbochargedMinDegree [18]
Data: Graph G = (V, E), integer k, integer c.
Result: Elimination order of width ≤ k or no if none was found.

1 H ← G;
2 π ← ();
3 for i ← 1 to |V | do
4 choose vertex v with minimum degree;
5 if d(v) ≤ k then
6 π ← π + (v);
7 H ← eliminate(H, v);
8 else
9 G′ ← eliminate(G, π[1], ..., π[i − c − 1]);

10 W ← {v ∈ V (G′) | d(v) ≤ k};
11 (H, π′) ← IC-Treewidth(G′, W , k, c + 1);
12 if π′ is empty then
13 return no;
14 else
15 π ← (π[1], ..., π[i − c − 1]) + π′;
16 end
17 end
18 end
19 return π

Finally, the TurbochargedMinDegree algorithm has to be embedded into a search
algorithm. This is due to the fact, that it only solves the decision problem of finding a
treewidth elimination order given the parameter k, which is unknown. For this, Gaspers
et al. [18] use a biased binary search approach. Based on their experimental evaluation,
they found an improvement of treewidth of 3-5%. Therefore, they typically used the
search range [0.94 × k′, k′ − 1] where k′ is the best treewidth heuristically found without
turbocharging. The authors conclude that the improvements yielded by their approach
are a reasonable trade-off for the increased running time.

27





CHAPTER 4
Design

This chapter discusses the design of a new turbocharged greedy heuristic for twin-width.
Section 4.1 presents the algorithmic problem involved in the turbocharging algorithm and
Section 4.2 proposes two SAT encodings to solve it. Section 4.3 covers the heuristics we
use in our algorithm. Finally, Section 4.4 develops a heuristic algorithm for twin-width
using these pieces.

4.1 IC-Twin-Width
To improve an existing greedy heuristic using local search, a subproblem has to be solved.
We call this problem the incremental conservative twin-width problem. It is concerned
with extending an elimination sequence without exceeding a maximal red degree. Before
giving a formal definition, some preliminaries are needed.

We first give a modified definition of d-elimination sequences by Schidler and Szeider [25].
For a graph G, instead of using a tree to represent the parent relationship, a rooted
forest T , in which each tree is a rooted tree, is used. The vertices of T are a subset
V (T ) ⊆ V (G) of the vertices of G. Further, the set of non-roots is denoted as N(T ) and
≺ is a linear ordering such that u ≺ v for any u, v ∈ N(T ) if v is the parent of u in T .
Schidler and Szeider [25] then refer to T as a contraction forest, ≺ as an elimination
ordering and define a twin-width decomposition of G as the pair (T, ≺).

Let V ′ be V (G)\N(T ) and k = |N(T )|. The ordering of vertices v1, ..., vk together with T
and G then define a sequences of trigraphs G0, ..., Gk such that V (Gi) = {vi+1, ..., vk}∪V ′.
pi refers to the parent of vi in T . G0 is defined as G and Gi is obtained from Gi−1 by
eliminating vi with its parent pi. An elimination sequence is now defined as the sequence
G0, ..., Gk of graphs. It is a d-elimination sequence if the maximal red degree of each Gi

is at most d.

29



4. Design

Figure 4.1: T and H0, ..., H3 derived from a twin-width decomposition of width 2 of the
Wagner graph consisting of 3 eliminations.

Note that ≺ in general only orders a subset of all vertices of G. If |V (G)| = k, (T, ≺)
is called a full twin-width decomposition consisting of a full contraction forest T and a
full elimination ordering ≺. Further, G0, ..., Gk then is a full elimination sequence. Note
that in this case, T is a tree with a single root vertex. Figure 4.1 depicts an example of a
twin-width decomposition that is not a full twin-width decomposition.

We define the sequence of graph H0, ..., Hk in the same way as in Section 3.1.1: Hi is the
red graph of Gi defined as Hi = (V (Gi), R(Gi)). The only difference is, that length of
the sequence does not have to contain |V (G)| graphs, as G does not have to be a full
elimination sequence.

We can then also define the set of edges of each Hi recursively in the exact same way
for elimination sequences, as they are for full elimination sequences for 1 ≤ i ≤ k and
E(H0) = ∅:

E(Hi) = {uv ∈ E(Hi−1) | u, v ∈ V (Hi)} (4.1)

∪ {upi | viu ∈ E(Hi−1)} (4.2)

∪ {upi | viu ∈ E(G), piu ̸∈ E(G), u ∈ V (Hi)} (4.3)

∪ {upi | viu ̸∈ E(G), piu ∈ E(G), u ∈ V (Hi)} (4.4)

IC-Twin-Width
Instance: Graph G, an elimination sequence G0, ..., Gi of width ≤ k defined

by (T, ≺), integer k and c.
Problem: Does there exist an elimination sequence G0, ..., Gi+c of width

≤ k for G?

30



4.2. Turbocharging Algorithm

It is easy to see that IC-Twin-Width is NP-complete. This is the case, since it can
be reduced to SAT (e.g. using one of the encodings described below) and twin-width
can be reduced to IC-Twin-Width: An instance (G, d) of twin-width can be solved by
passing it to an algorithm for IC-Twin-Width by providing G, an elimination sequence
consisting of just H0 = (V (G), ∅), d, and |V (G)|−1. Finally, (T, ≺) serves as a certificate,
which can be checked in polynomial time by executing the eliminations and computing
the red degree at each step.

Further, IC-Twin-Width is solvable in FPT time when parameterized by c. For each
elimination, O(|V (G)|2) pairs of vertices can be considered as candidates. Since only c
steps have to be computed, there are O(|V (G)|2c) possible sequences of eliminations to
be considered, which is polynomial for a fixed value of c. Just as for twin-width, checking
the width of such a sequence is also possible in polynomial time. Given the size of the
exponent, however, a naive algorithm would likely not be reasonably fast for any practical
value of c.

4.2 Turbocharging Algorithm
This section covers turbocharging algorithms for twin-width. As discussed in Section 3.3,
a turbocharging algorithm is used to exactly compute a number of steps of an iteratively
constructed solution. In the case of twin-width, this is an elimination sequence which
should be extended by a number of eliminations without exceeding the target twin-width
k. This is the problem of IC-Twin-Width defined above. For this, we use SAT encodings
based on the encodings proposed by Schidler and Szeider [24].

We therefore assume that a k-elimination sequence G′
0, ..., G′

i for a graph G′ is provided
as an input. In this section, we want to extend this sequence by c + 1 eliminations.
As the steps G′

0, ..., G′
i−1 are not required to be known for our implementation, we are

using the following definitions for simplicity: H ′
j = (V (G′

j), R(G′
j)) for all j, H0 = H ′

i,
and n = |V (G′)|. Instead of writing that the part of the sequence G′

i+1, ..., G′
i+c+2 is

being computed, we write that G1, ..., Gc+1 is being computed. Since Gi can be obtained
from Hi and G′, we are mostly concerned with computing H1, ..., Hc+1. The input for
generating the encodings then is the trigraph G = G′

i. We denote the vertices of G as
{v1, ..., vn}.

4.2.1 General Approach
To encode IC-Twin-Width such that it can be solved by a SAT solver, we closely follow
the definition of elimination sequences given above. They, therefore, need to encode the
following elements for the values k and c:

• H0: As E(H0) does not have to be empty, we need to encode the edges it contains.
This represents the state after reversing c steps after the moment of regret in the
turbocharged algorithm.

31



4. Design

Name Range Meaning
ai,j 0 ≤ i < j ≤ n vivj ∈ Ek for some k
oi,j 0 ≤ i < j ≤ n vi ≺ vj

pi,j 0 ≤ i < j ≤ n pi = vj

ri,j,k 0 ≤ i, j ≤ n and j < k ≤ n vjvk ∈ E(Hϕ≺vi) after eliminating vi

si 0 ≤ i ≤ n vi is eliminated in the elimination sequence

Table 4.1: Variables of the relative encoding

• Elimination ordering: When encoding the elimination ordering, we need to
encode c + 1 steps v1 ≺ .., ≺ vc+1. These can be appended to v′

1 ≺ ... ≺ v′
i ≺ v1 ≺

.., ≺ vc+1, yielding an elimination ordering.

• Contraction forest: Next, we need to encode the contraction forest. For this,
we encode the parents of the eliminated vertices v1, ..., vc+1. Since each eliminated
vertex has exactly one parent that has not been eliminated at that step, the parent
relationship is a rooted forest. Combining it with T leads to a contraction forest.

• Elimination sequence: Using the recursive definition of Hi and the definition
of H0, we encode H1, ..., Hc+1. Per definition, G1, ..., Gc+1 can the be constructed
from all Hi and G. The sequence G′

0, ..., G′
i, G1, ..., Gc+1 then is an elimination

sequence.

• Bounds: Finally, we have to ensure that the degree of each Hi is at most k.
Combined with the assertion that G′

0, ..., G′
i has width at most k, this ensures that

G′
0, ..., G′

i, G1, ..., Gc+1 has width at most k as well.

The encodings presented below both follow this approach, but encode it in different ways.

4.2.2 Relative Encoding
This encoding extends and modifies the relative encoding presented in Section 3.1.1. The
variables of this encoding are listed in Table 4.1. To suit the IC-Twin-Width problem,
we made two central modifications:

• New variables si are introduced. They are used to track vertices that are eliminated
in the elimination sequence.

• A new imaginary vertex v0 is introduced that has no adjacent edges and is always
eliminated first. This enables r0,j,k to carry information about red edges in the input
trigraph. The range of all variables is also extended down to 0 to accommodate
this vertex.

To produce an elimination ordering of length c + 1, exactly c + 2 vertices have to be
selected (since v0 is always selected). For this, at-most and at-least constraints are used

32



4.2. Turbocharging Algorithm

to enforce that si is true for exactly c + 1 vertices vi with i ≥ 1 and the clause s0 ensures
that v0 is selected. The following clauses for i ≥ 1 ensure that v0 is always eliminated
first and that it its parent is a selected vertex. This makes sure that the red edges in the
input trigraph are transferred to the first vertex in the elimination ordering (via clauses
transferring red edges discussed later):

o0,i

¬p0,i ∨ si.

If a vertex vi is not eliminated in the elimination sequence, it does not need to be part of
the order and parent relationships, nor do the red edges after eliminating it have to be
tracked (since it is never eliminated). Therefore, pi,j , oi,j and ri,j,k can be set to false for
all j and k. This is encoded using the following clauses for all i < j:

si ∨ ¬pi,j

si ∨ ¬oi,j

and for all i and j < k

si ∨ ¬ri,j,k.

For each i < j, the existence of a red edge ij ∈ R(G) or lack thereof is encoded by the
clauses r0,i,j and ¬r0,i,j , respectively.

Since vertices that are not selected do not need to have a parent, the at-least and at-most
one constraints on pi,j need to be modified. This is done such that for every i exactly
one pi,j or ¬si has to be true.

Next, the transfer and creation of red edges has to be adapted, since ri,j,k has been set
to false for vertices vi which are not selected. This is done by adding ¬si to all clauses
containing ri,j,k. The resulting clauses are

¬si ∨ ¬o∗
i,k ∨ ¬o∗

j,k ∨ ¬o∗
j,m ∨ ¬r∗

i,k,m ∨ rj,k,m

for mutually distinct i, j, k, m with k < m, encoding Subset (4.1) of E(Hi),

¬si ∨ ¬pi,j ∨ ¬o∗
i,k ∨ ¬a∗

i,k ∨ ri,j,k

for mutually distinct i, j, k with i < j encoding Subset (4.2) of E(Hi), and finally, subsets
Subset (4.3) and Subset (4.4) of E(Hi) for each i if vk ∈ (NG(vi)△NG(vj))\{vi, vj} are
encoded by the clauses

33



4. Design

¬si ∨ ¬pi,j ∨ ¬o∗
i,k ∨ ri,j,k.

The remaining encoding follows the relative encoding covered in Section 3.1.1 closely.
The only differences are that indices down to 0 are used to ensure {ri,j,k | 0 ≤ n} as well
as when encoding ¬pi,j ∨ o∗

i,j and the semantics of a∗
i,j .

A major disadvantage of this encoding is its size. There are O(n3) variables ri,j,k and
encoding their semantics requires O(n4) clauses. For any assignment of all si, however,
the search space is greatly reduced by in particular the clauses si ∨ ¬ri,j,k, leaving just
O(n2c) variables without an immediately forced assignment.

4.2.3 Absolute Encoding
Like the absolute encoding presented in Section 3.1.1, this encoding assigns an absolute
position to each vertex in the sequence. This is encoded in the variables oi,j where i is
the position and can not exceed c + 1, as IC-Twin-Width only requires an elimination
sequence of length c + 1 to be computed. The same goes for the variables pi,j , which
denotes that vj is the parent of the vertex eliminated a the ith position, and for ri,j,k

where, again, i represents the position and j and k represent vj and vk. An overview of
all variables of this encoding is given in Table 4.2.

Name Range Meaning
oi,j 1 ≤ i ≤ c + 1, 1 ≤ j ≤ n ϕ≺(vj) = i
eli,j 1 ≤ i ≤ c + 1, 1 ≤ j ≤ n ϕ≺(vj) ≤ i
pi,j 1 ≤ i ≤ c + 1, 1 ≤ j ≤ n pm = vn : i = ϕ≺(m) ∧ j = ϕ≺(n)
ri,j,k 0 ≤ i ≤ c + 1, 1 ≤ j < k ≤ n ∃vjvk ∈ E(Hi)
a1i,j 1 ≤ i ≤ c + 1, 1 ≤ j ≤ n ∃vm : ϕ≺(vm) = i ∧ vjvm ∈ E(Hi)
a2i,j 1 ≤ i ≤ c + 1, 1 ≤ j ≤ n ∃vm : ϕ≺(vm) = i ∧ vjvm ∈ E(G)

Table 4.2: Variables of the absolute encoding

To make sure oi,j is assigned exactly once for each i, at-most one and at-least one
constraints are used. Further, for each j, at most one oi,j must be true, which is ensured
using at-most one constraints.

Each vertex eliminated in the elimination sequence needs to have exactly one parent.
This is again achieved by using at-most one and at-least one constraints for pi,j for each
i. Additionally, the following clauses ensure that no vertex that has been eliminated
already can be the parent of a vertex eliminated later for i ≤ m:

oi,j ∨ ¬pm,j .

Just like in the relative encoding discussed above, the red edges of the input trigraph
have to be encoded. For each i < j, the existence of a red edge ij ∈ R(G) or lack thereof
is encoded by the clauses r0,i,j and ¬r0,i,j , respectively.

34



4.2. Turbocharging Algorithm

Next, the creation and transfer of red edges has to be encoded. For this, the auxiliary
variable eli,j represents that vj ̸∈ V (Hi), i.e. that vj has already been eliminated at step
i. Let r∗

i,j,k be ri,j,k if j < k and ri,k,j otherwise. The naive way to encode red edges the
is as follows:

Subset (4.1) of E(Hi) can be encoded for mutually distinct j, k and i ≥ 1 by the clauses

eli,j ∨ eli,k ∨ ¬r∗
i−1,j,k ∨ r∗

i,j,k.

Note that there is no constraint of i > 1 so that red edges from H0 are transferred to H1.
Subset (4.2) can be encoded by the following clauses for mutually distinct j, k, m and
i ≥ 1:

¬oi,m ∨ ¬pi,j ∨ ¬r∗
i−1,m,k ∨ r∗

i,j,k.

Subset (4.3) and Subset (4.4) can be encoded by adding the following clauses if vk ∈
(NG(vj)△NG(vm))\{vj , vm}

eli,k ∨ ¬oi,m ∨ ¬pi,j ∨ r∗
i,j,k.

However, this approach requires O(n3c) clauses. This can be reduced by introducing
additional auxiliary variables: a1i,k is true if there exists an i, m, k with m ̸= k such that
ϕ(vm) = i, there exists a red edge mk ∈ Hi−1, and k is still part of Hi. It is encoded
using the following clauses;

eli,k ∨ ¬oi,m ∨ ¬r∗
i−1,m,k ∨ a1i,k.

Subset (4.2) can then be encoded more succinctly for all i, j, k with j < k by the clauses

¬a1i,k ∨ ¬pi,j ∨ r∗
i,j,k.

Next, a2i,k is true if and only if there exists an edge mk ∈ G and ϕ(vm) = i. This is
encoded in the following clauses if mk ∈ G and mk ̸∈ G, respectively:

¬oi,m ∨ a2i,k,
¬oi,m ∨ ¬a2i,k.

Now Subset (4.3) and Subset (4.4) can be encoded for all vk ∈ (NG(vj)△NG(vm))\{vj , vm}:

eli,k ∨ ¬a2i,k ∨ ¬pi,j ∨ r∗
i,j,k.

35



4. Design

Finally, it has to be ensured that the degree of all Hi is at most k. This is encoded using
at-most constraints on ri,j,k for all i and j.

This encoding requires O(n2c) variables and oi,j , eli,j and pi,j require only O(nc) variables
each. Black edges do not have to be encoded explicitly at all. By using the auxiliary
variables a1i,j and a2i,j to encode red edges, the number of clauses is reduced from O(n3c)
to O(n2c).

4.3 Heuristics
For the greedy heuristic of our turbocharged algorithm, we select two heuristics: MinIn-
tersectionSize and MinRedDegree.

4.3.1 MinIntersectionSize
MinIntersectionSize greedily selects the pair of vertices u, v such that △(u, v) is
minimized. This is equivalent to Heuristic1 of Touiouidth by Berthe et al. [8]. Since
we are using eliminations instead of contractions, we eliminate the vertex of u, v with the
lower index and select the other one as its parent.

4.3.2 MinRedDegree
MinRedDegree is inspired by Zygosity by Arrighi et al. [5]. It uses two measures to
select the next vertex vi to eliminate and its parent pi:

• Red Degree: The red degree here refers to the red degree of the entire graph after
eliminating vi. This is the primary measure.

• Intersection size: If multiple candidate eliminations lead to the same red degree,
the intersection size is used as a tie breaker. It refers to the size of the intersection
of the neighborhoods of vi and pi. It is increased by one if vi and pi are connected
by an edge.

Like in MinIntersectionSize, we define vi < pi for simplicity. Unlike Zygosity, we do
not sample candidates. Instead, all possible eliminations are evaluated. This is due to
the fact that Zygosity is geared more towards speed than MinRedDegree. The loss of
speed is expected to be overshadowed by the run time of the turbocharging algorithm in
most cases. Therefore, checking all candidates with the expectation of finding a better
sequence outweighs the cost in speed in our case.

4.4 Turbocharged Algorithm
We have presented SAT encodings which can be used to solve IC-TwinWidth as well as
greedy heuristics for twin-width. From these, we now construct a turbocharged heuristic.

36



4.4. Turbocharged Algorithm

Algorithm 4.1 shows the resulting algorithm using the MinRedDegree heuristic as an
example.

The elimination sequence is constructed iteratively by a greedy heuristic. If the desired
width of k is exceeded, a moment of regret is reached. The last c steps of the solution are
reversed and an exact algorithm for IC-TwinWidth using one of the SAT encodings
discussed before is used to compute the next c + 1 steps without exceeding width k. If
this fails, the algorithm returns no, as it cannot find an elimination sequence of width
≤ k. Otherwise, the heuristic continues construction a solution.

Contrary to the turbocharging approach for treewidth by Gaspers et al. [18], we limit
the number of steps that are reversed at the moment of regret to the number of steps
the greedy algorithm constructed since the last moment of regret (or the start of the
algorithm). This prevents the possibility of the heuristic repeatedly not being able to
find a single contraction within the constraints of k causing IC-TwinWidth being
called repeatedly and extending the sequence by just one contraction each time. This is
done because the run time of IC-TwinWidth tends to be much longer compared to
constructing a single step greedily.

Since the optimal value for k is not known beforehand, we need to wrap Turbocharged-
MinRedDegree into a search algorithm. We start by obtaining an upper bound for
the twin-width by running the heuristic without turbocharging. Then k is decremented
by one and TurbochargedMinRedDegree constructs a new elimination sequence
s of width ≤ k. k is set to the width of s minus one and the process is repeated until
TurbochargedMinRedDegree fails to find an elimination sequence for the given
k. As a preprocessing step we merge all twins. Algorithm 4.2 outlines this approach
using MinRedDegree as the heuristic. TurbochargedMinIntersectionSize works
similarly, but uses MinIntersectionSize instead of MinRedDegree.

37



4. Design

Algorithm 4.1: TurbochargedMinRedDegree
Data: Graph G = (V, E), integer k, integer c.
Result: An elimination sequence of width ≤ k encoded as a list of pairs (vi, pi)

of eliminated vertices and their parents or no if none was found.
1 G′ ← G;
2 s ← ();
3 greedySteps ← 0;
4 for i ← 1 to |V | do
5 choose vertex v and parent p using MinRedDegree;
6 s ← s + (v, p);
7 G′ ← eliminate(H, (v, p));
8 greedySteps ← greedySteps + 1;
9 if redDegree(H) > k then

10 stepsBack ←min(c, greedySteps);
11 G′ ← eliminate(G, s[1], ..., s[i − stepsBack]);
12 s′ ← IC-TwinWidth(G′, k, c + 1);
13 if s′ is empty then
14 return no;
15 else
16 s ← (s[1], ..., s[i − stepsBack]) + s′;
17 G′ ← eliminate(G, s[1], ..., s[i]);
18 end
19 greedySteps ← 0;
20 end
21 end
22 return s;

38



4.4. Turbocharged Algorithm

Algorithm 4.2: Turbocharged Twin-Width Heuristic using MinRedDegree
Data: Graph G = (V, E), integer c.
Result: An elimination sequence encoded as a list of pairs (vi, pi) of eliminated

vertices and their parents.
1 s ← MinRedDegree(G);
2 k ← width(s) − 1;
3 while k > 0 do
4 s′ ← TurbochargedMinRedDegree(G, k, c);
5 if s′ == "no" then
6 return s;
7 end
8 s ← s′;
9 k ← width(s) − 1;

10 end
11 return s;

39





CHAPTER 5
Implementation

This chapter discusses the implementation of our turbocharged algorithm described in
Chapter 4. Section 5.1 lists technologies used. Then, Section 5.2 discusses how models
returned from a SAT solver are decoded. Section 5.3 covers implementation details
of the greedy heuristics. Finally, Section 5.4 discusses premature termination of our
turbocharged algorithm.

The source code is available on GitHub.1

5.1 Technologies
We implement our algorithm in Python 3.6.9 using PySat 1.82. To manage graphs we use
NetworkX3. For the SAT solver, we use Gluecard 4, as it performed well on our encoding
in preliminary experiments.

5.2 Decoding SAT Models
If the SAT solver can find a model for an encoding, we need to extract the solution from
it, i.e., we need to determine the contractions that the model represents. This process
differs slightly between the encodings.

5.2.1 Relative Encoding
To extract the order of vertices to eliminate from a model in the relative encoding, we
start with the sequence 1, ..., n. We then order them according to the assignments of

1https://github.com/DamianJaeger/turbocharged-twin-width
2https://pysathq.github.io/
3https://networkx.org/

41

https://github.com/DamianJaeger/turbocharged-twin-width
https://pysathq.github.io/
https://networkx.org/


5. Implementation

the variables oi,j : if oi,j is true, i has to be before j, otherwise j has to be before i. So
far, this is identical to the way models are decoded in the approach by Schidler and
Szeider [24]. The only difference is that for any selected vertex vi, and vertex vj that is
not selected, oi,j is true, leading vertices that have not been selected to be at the end
of the order. Therefore, the first c + 1 vertices in this order - excluding the imaginary
vertex v0 which is always first - are the ones that are eliminated. To find the parents of
the eliminated vertices, the assignment of pi,j is used: for each 1 ≤ i ≤ c + 1 exactly one
pi,j has to be true, meaning that vj is the parent of the ith vertex in the sequence.

5.2.2 Absolute Encoding

In the absolute encoding we can extract the sequence of eliminated vertices directly from
the variable assignment of oi,j : The vertex vj , for which o1,j is assigned to true is the
first one, the vertex vk for which o2,k is assigned to true is eliminated second, and so
on. The parents can be determined in the same way using the assignments of pi,j : The
vertex vi, for which p1,i is assigned to true is the parent of the vertex eliminated first
and so forth. As for each i exactly one oi,j and pi,j has to be assigned to true, we get a
sequence of vertices with their parent vertices.

5.3 Heuristics

To simplify maintaining additional data on the graph a heuristic is working on between
steps, the heuristics are not called for each step. Instead, they receive k as a parameter and
compute as many steps as they can until reaching a moment of regret. They then return
all the computed eliminations at once. Our implementation of MinIntersectionSize is
fairly straightforward and does not warrant closer discussion.

5.3.1 MinRedDegree

As discussed in Section 4.3.2, MinRedDegree selects the next vertex to be eliminated
and its parent based on the red degree and uses the intersection size as a tie-breaker. A
naive implementation would consider all pairs of vertices, calculate the intersection size,
carry out the elimination, and calculate the red degree of the resulting graph.

However, to lower the computational effort, we do not calculate the red degree after
each elimination from scratch. Instead we use the fact that edges in the definition of Hi

(which are red edges in the trigraph Gi) can only be removed relative to Hi−1 if one of
its incident vertices is eliminated. Further, one of the vertices incident to any new red
edge in Hi is always either adjacent to vi or its parent pi in Hi−1 or G. Therefore, the
degrees of all vertices in Hi that are not adjacent to vi or pi in Hi−1 or G are equal to
their degrees in Hi−1. For vertices vj (excluding vi), we therefore make the following
case distinction:

42



5.4. Anytime Algorithm

• vj ̸∈ NHi−1(vi) ∧ vj ∈ NG(vi) ∧ vj ̸∈ NG(pi): vj is adjacent to vi in G but not to pi

and is not connected to vi with a red edge. The red degree of vj is increased by
one relative to Hi−1, as a new red edge is created.

• vj ̸∈ NHi−1(pi) ∧ vj ∈ NG(pi) ∧ vj ̸∈ NG(vi): As above, but with vi and pi switching
places. The red degree of vj is again increased by one relative to Hi−1.

• vj ∈ NHi−1(vi) ∧ vj ∈ NHi−1(pi): vj is adjacent to pi and vi in Hi−1. Since vi is
eliminated, the red degree of vj is decreased by one.

• Otherwise, the red degree of vj remains unchanged.

Now, the red degrees of all vertices can be computed once and only the changes in red
degrees of vi and all neighbors of vi and pi in G and Hi−1 have to be computed and
added to their previous values.

5.4 Anytime Algorithm
Since our turbocharged algorithm continuously tries to improve the solution and since
it is not possible to accurately estimate its runtime for an instance in general, it makes
sense to implement it as an anytime algorithm. We therefore implement the possibility to
cancel the execution at any time. Before the first invocation of the base heuristic without
turbocharging has completed, the algorithm uses the upper bound |V (G)| − 1. Once a
heuristic solution is found, it continues attempting to find better solutions by lowering
the value of k and terminates once it fails to find a solution satisfying k. However, if it is
interrupted after computing the initial upper bound, it returns the best solution found
up until the moment of the interruption. This way, the algorithm can, e.g., be used to
compute upper bounds in the context of an exact algorithm for twin-width within a fixed
time budget.

43





CHAPTER 6
Experiments

This chapter covers the experimental evaluation of our turbocharged algorithm. Section 6.1
discusses the algorithms we use and evaluate against. Section 6.2 and Section 6.3 describe
the parameters and setup we choose as well as how our experiment is structured. The
dataset we use is described in Section 6.4. Finally, we cover the results of the experiment
in Section 6.5 and discuss them in Section 6.6.

6.1 Algorithms
We tested our algorithm with both MinRedDegree and MinIntersectionSize as
the base heuristic. In our preliminary testing, our absolute encoding outperformed our
relative encoding significantly in almost every scenario. Therefore, we excluded the
relative encoding from our experiments and used the absolute encoding exclusively.

To provide a better comparison to existing approaches, we implemented the randomized
anytime heuristic Heuristic2 from Touiouidth in Python as well. This prevents the
original implementation from having an advantage due to not being implemented in
Python, which tends to be slower at runtime.

6.2 Parameters
In our preliminary testing, the value of the parameter c had a high impact on run time,
while the impact on the quality of the solution was not proportional. We use the values
c = 2, c = 5 and c = 10 in our experiments. c = 2 is the minimum value to be able
improve on a step made by MinRedDegree. For c = 10 we saw a high impact on
runtime, and c = 5 intends to strike a balance between being able to resolve moments of
regret and needing an excessive amount of computational time.

45



6. Experiments

6.3 Setup
For each turbocharged run we assign a time budged tbudget. For each instance and
greedy heuristic, we start by merging twins and running the greedy heuristic without
turbocharging. This takes some time tgreedy. Then, the turbocharged algorithm is
executed for each value of c which takes some time tturbocharged for each c. Each of these
invocations has a time budget of tbudget − tgreedy. Finally, Heuristic2 is run with a time
budget equal to the maximal tturbocharged for all values of c for this instance.

For our experiments we used a server with two AMD EPYC 7402 CPUs with 24 cores
clocked at 2.80GHz. The operating system was Ubuntu 18.04. We used a memory limit
of 32GB. For tbudget we chose a value of 8 hours.

6.4 Dataset
To evaluate our algorithm, we use the dataset from the exact track of PACE 20231. It
contains a total of 200 instances of various sizes with different properties. The smallest
graph has 19 vertices with graphs ranging up to 20000 vertices. Similarly, the number of
edges ranges from 46 all the way to 35052. The average graph has 1550 vertices and 5596
edges. This dataset also contains different graph classes: about 12% of the instances
are bipartite, 9% planar and 1% chordal. Of these instances, 50 could be solved by the
approach by Schidler and Szeider [25] within 30 minutes, 50 within 8 hours and the
remaining 100 could not be solved within this time frame [2, 6].

6.5 Results
For the analysis of our results we at times divide the instances into categories: small
instances (instances 1 to 50 of the dataset), medium instances (instances 51 to 70 of the
dataset), large instances (instances 71 to 100 of the dataset), and very large instances
(instances 101 to 200 of the dataset).

6.5.1 MinRedDegree vs MinIntersectionSize
When comparing the quality of results of all instances for which both base heuristics
completed with in the time budget, MinRedDegree was able to find significantly lower
bounds for twin-width than MinIntersectionSize on average. The upper bounds
computed by both heuristics are shown in Figure 6.1. The difference is particularly
pronounced for large instances. On very large instances, however, MinIntersectionSize
was able to outperform MinRedDegree on solution quality for many instances. In
terms of speed, MinIntersectionSize was able to complete on average almost 6 times
faster, as can be seen in Table 6.3. In total, MinIntersectionSize completed within the
time budget on 156 instances, while MinRedDegree only completed on 114 instances.

1https://pacechallenge.org/2023/

46

https://pacechallenge.org/2023/


6.5. Results

00
1

00
6

01
1

01
6

02
1

02
6

03
1

03
6

04
1

04
6

05
1

05
6

06
1

06
6

07
1

07
6

08
1

08
6

09
1

09
6

10
6

14
1

19
7

Instances

0

20

40

60

80

100

120

140

tw
w
(u
pp

er
b
ou
nd

)

MinIntersectionSize

MinRedDegree

Figure 6.1: Upper bounds for tww obtained by MinRedDegree and MinIntersec-
tionSize on the 112 instances for which both completed within the time limit

6.5.2 MinRedDegree
Relative to the results obtained by MinRedDegree, none of the improvement algorithms
we tested was able to improve the solution by more than 1 for any instance. As shown
in Table 6.1, for small and medium instances Heuristic2 significantly outperformed
the turbocharged heuristics, but it failed to find any improved solution for large and
very large instances. For the turbocharged heuristic, larger values for k lead to better
solutions (with the exception of k = 10 for large instances).

Algorithm small medium large very large total
k = 2 4 0 2 1 7
k = 5 7 1 5 3 16
k = 10 15 2 1 3 21

Heuristic2 21 6 0 0 27

Table 6.1: Comparison of the number of improved instances over MinRedDegree
obtained by all tested algorithms for the 114 instances with results for MinRedDegree
grouped by instance category

6.5.3 MinIntersectionSize
Given the worse initial solutions obtained by MinIntersectionSize, the improvement
algorithms were able to improve the solution considerably. Table 6.2 gives an overview

47



6. Experiments

of the number of instances improved and the sum of by how much the initial solution
was improved for all algorithms. Here, Heuristic2 was only able to outperform the
turbocharged heuristics regarding solution quality on small instances. Particularly on
the larger instances, TurbochargedMinIntersectionSize with k = 2 outperformed
the remaining algorithms. Unlike for TurbochargedMinRedDegree, higher values
for k had no or next to no benefit on any category of instances.

Algorithm small medium large very large total
k = 2 35 (47) 14 (30) 29 (589) 38 (158) 116 (824)
k = 5 35 (46) 16 (29) 28 (444) 30 (117) 109 (636)
k = 10 33 (46) 15 (19) 27 (208) 22 (60) 97 (333)

Heuristic2 41 (64) 11 (24) 23 (257) 0 (0) 75 (345)

Table 6.2: Comparison of the improvement over MinIntersectionSize obtained by all
tested algorithms for the 156 instances with results for MinIntersectionSize grouped
by instance category. Values are the numbers of instances improved and in parenthesis
are the sums of improvement of the upper bound through turbocharging.

6.5.4 Improvement Speed
When using MinIntersectionSize, on average, a lower value for k lead to an increased
rate of improvement over time. Figure 6.2 shows an example of the rate of improvement
for all algorithms on a large instance. Note that MinIntersectionSize completes sig-
nificantly before MinRedDegree. Therefore, TurbochargedMinIntersectionSize
is able to make multiple improvement steps before MinRedDegree even terminates. In
this example, TurbochargedMinIntersectionSize managed to find a better solution
than TurbochargedMinRedDegree just after MinRedDegree terminated and none
of the improvement algorithms were able to improve upon the solution by MinRedDe-
gree. The rate of improvement of TurbochargedMinIntersectionSize tends to
slow down continuously as the bound of twin-width decreases. Heuristic2, on the other
hand, has a close to linear rate of improvement that only flattens out towards the end.
This trend is observable on many instances.

Next, we look at the amount of time it took the improvement algorithms to find the
best solution they obtained within the time budget. For this, we only consider the
112 instances that both base heuristics completed on within the time budget for a fair
comparison. Note that a high amount of time taken does not necessarily reflect negatively
on an algorithm, as it means that it is able to utilize the available time. Given that two
algorithms have achieved the same solution quality, however, less time taken is preferable.
Therefore, we also show the quality of the result with each time.

Table 6.3 gives an overview over the average upper bound for twin-width and the average
amount of time taken to obtain it for all algorithms grouped into small to medium and
large to very large instances. For small to medium instances, Heuristic2 stands out by
utilizing the available time and finding the best solutions. For this, the base heuristic

48



6.5. Results

102 103 104

time (s)

32

34

36

38

40

42

44

46

tw
w
(u
pp

er
b
ou
nd

)
TurbochargedMinRedDegree, k = 2

TurbochargedMinRedDegree, k = 5

TurbochargedMinRedDegree, k = 10

MinRedDegree, Heuristic2

TurbochargedMinIntersectionSize, k = 2

TurbochargedMinIntersectionSize, k = 5

TurbochargedMinIntersectionSize, k = 10

MinIntersectionSize, Heuristic2

Figure 6.2: Upper bounds for twin-width obtained by TurbochargedMinRedDegree,
TurbochargedMinIntersectionSize, and MinRedDegree with Heuristic2 over
time on a large instance. Repeated values for tww indicate that the heuristic failed to
find a better solution or a timeout has been reached.

does not have a significant impact, as they achieve similar outcomes, as discussed in
Section 6.5.1. For TurbochargedMinRedDegree, better solutions naturally lead to
more time spent. On the other hand, TurbochargedMinIntersectionSize with k = 2
is noteworthy as it achieves the lowest bounds for twin-width among all turbocharged
algorithms while also requiring the least amount of time on average.

Base heuristic
MinRedDegree MinIntersectionSize

small - medium large - very large small - medium large - very large
Algorithm tww time (s) tww time (s) tww time (s) tww time (s)

Base heuristic 5.27 11.06 32.74 8642 6.11 1.62 47.19 1481
k = 2 5.21 11.07 32.68 8645 5.01 10.64 32.45 7114
k = 5 5.16 11.21 32.55 8890 5.04 109.77 36 13438
k = 10 5.03 127.98 32.64 8808 5.19 73.61 41.83 10296

Heuristic2 4.89 392.92 32.74 8642 4.86 415.65 41.07 11930

Table 6.3: Average upper bound for twin-width and average amount of time taken to
obtain it over all 112 instances on which both base heuristics completed successfully for
all tested algorithms grouped by instance categories.

For the larger instances, TurbochargedMinIntersectionSize with k = 2 also stands

49



6. Experiments

out. It finds the best solutions among all tested algorithms while taking the least amount
of time (excluding MinIntersectionSize of course) on average. For higher values
of k, the time required increases quickly, especially when taking the relative loss of
solution quality into account. The average time values of improvement algorithms using
MinRedDegree as the base heuristics are not very meaningful, as they are dragged
down by the fact that hardly any improvements have been made.

6.5.5 Comparison of Best Performing Heuristics
Finally, we compare the two overall best performing improvement algorithms evaluated:
TurbochargedMinIntersectionSize with k = 2 and MinRedDegree with Heuris-
tic2. Figure 6.3 gives an overview of the twin-width bounds obtained by both algorithms
for instances where both base heuristics completed. On small instances, MinRedDegree
with Heuristic2 manages to find better solutions on average, reducing the bound by one
on multiple instances compared to TurbochargedMinIntersectionSize with k = 2.
On medium instances, TurbochargedMinIntersectionSize with k = 2 manages to
find slightly better solutions than MinRedDegree with Heuristic2, the difference does,
however, not exceed 2 for any instance. On large instances, both algorithms perform very
similarly on average with a difference of about 0.5%. The differences for single instances,
however are much greater, with the highest difference in bounds being 9. On very large
instances, TurbochargedMinIntersectionSize with k = 2 performs significantly
better. The average bound for twin-width was about 10% lower than those obtained by
MinRedDegree with Heuristic2. Additionally, the base heuristic MinIntersection-
Size completed on 56 very large instances, while MinRedDegree only completed on 14
instances.

6.6 Discussion
Overall, Heuristic2 turned out to be very effective on small and medium instances in
our experiments. On larger instances, however, it fell behind our turbocharged approach.
This is likely due to the larger search space of possible eliminations sequences. Our
turbocharging algorithms still managed to make improvements on these instances and
therefore largely managed to outperform Heuristic2. Using MinIntersectionSize as
the base heuristic has the advantage of finding an initial solution much sooner while still
delivering good results after more time.

6.6.1 Selection of k

For TurbochargedMinRedDegree, increasing the value for k tended to yield better
solutions in our experiments. This makes intuitive sense, as it allows resolving problems
that occurred further back. However, this was not the case for TurbochargedMin-
IntersectionSize. Here, increasing k had next to no effect or a negative effect. The
negative effect can be largely attributed to larger values of k leading a lower rate of
improvement, resulting in more timeouts and termination at a higher upper bound once

50



6.6. Discussion

00
1

00
6

01
1

01
6

02
1

02
6

03
1

03
6

04
1

04
6

05
1

05
6

06
1

06
6

07
1

07
6

08
1

08
6

09
1

09
6

10
6

14
1

19
7

Instances

0

20

40

60

80

tw
w
(u
pp

er
b
ou
nd

)

TurbochargedMinIntersectionSize, k = 2

MinRedDegree, Heuristic2

Figure 6.3: Upper bounds for twin-width obtained by MinRedDegree with Heuristic2
and TurbochargedMinIntersectionSize with k = 2 on the 112 instances for which
both base heuristics completed within the time limit.

the time budget is exhausted. For some instances, however, TurbochargedMinInter-
sectionSize with higher values of k simply failed to find better solutions than with
lower values of k. It is not clear why higher values for k did not have a positive impact
on solution quality on small and medium instances. Based on this, it appears to be
beneficial to select higher values for k when using TurbochargedMinRedDegree and
to stick to low values for k when using TurbochargedMinIntersectionSize.

6.6.2 Efficacy of Turbocharging
When using MinIntersectionSize as the base heuristic, turbocharging yielded im-
provements on a majority of instances. These were particularly significant on the larger
instances. The same was not the case for MinRedDegree. Especially for large instances,
this could be explained by the fact that MinRedDegree already found lower bounds
than MinIntersectionSize. However, this is not the case for very large instances,
where turbocharging lead to significantly more improvement over MinIntersectionSize
compared to MinRedDegree. A possible reason for this could be that the turbocharging
algorithm is concerned with the red degree, much like MinRedDegree, and just looks
at multiple steps at once instead of only one. MinIntersectionSize, on the other hand,
optimizes toward the intersection size, which is fundamentally different. It is possible
that the resulting alternation of priorities at the moments of regret improves results.

51





CHAPTER 7
Conclusions

In this thesis, we developed the two turbocharged heuristics TurbochargedMinRed-
Degree and TurbochargedMinIntersectionSize which compute upper bounds
for twin-width on graphs. They use the base heuristics MinRedDegree and MinIn-
tersectionSize, respectively. As the turbocharging algorithm we developed two SAT
encodings, one of which significantly outperformed the other. To compare our algorithms
to the state of the art, we benchmarked them with different parameters against the
upper bound heuristic Heuristic2 from Touiouidth, one of the best performing exact
submissions to PACE 2023.

In our experiments, the turbocharged heuristics performed well, particularly Tur-
bochargedMinIntersectionSize with the parameter k set to 2. While it was narrowly
outperformed by MinRedDegree with Heuristic2 on small instances, they performed
similarly on medium and large instances. On very large instances, our approach signifi-
cantly outperformed Heuristic2.

We believe that turbocharging twin-width heuristics is a viable strategy for obtaining
upper bounds for twin widths, especially on larger graphs. On smaller graphs, however,
randomized approaches such as Heuristic2 are still preferable. TurbochargedMin-
IntersectionSize in particular could be used in exact algorithms for twin-width in
large graphs to obtain tighter upper bounds. It is also suited for obtaining better upper
bounds for larger graphs in general.

53





List of Figures

2.1 Contraction of two vertices u, v into w . . . . . . . . . . . . . . . . . . . . 6
2.2 A 2-sequence for the Wagner graph with vertices to be contracted highlighted

(after [24]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Implication graph with conflict after Prasad et al. [23] . . . . . . . . . . . 10

3.1 T and H0, ..., Hn−1 derived from a 2-elimination sequence for the Wagner
graph. The sequence is equivalent to the red graphs of the 2-sequence from
Figure 2.2. (after [24]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Heuristic strategies used by GUTHM (after [21]) . . . . . . . . . . . . . . 22
3.3 Overview of the Red Alert heuristic (after [9]) . . . . . . . . . . . . . . . . 24

4.1 T and H0, ..., H3 derived from a twin-width decomposition of width 2 of the
Wagner graph consisting of 3 eliminations. . . . . . . . . . . . . . . . . . . 30

6.1 Upper bounds for tww obtained by MinRedDegree and MinIntersec-
tionSize on the 112 instances for which both completed within the time
limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.2 Upper bounds for twin-width obtained by TurbochargedMinRedDegree,
TurbochargedMinIntersectionSize, and MinRedDegree with Heuris-
tic2 over time on a large instance. Repeated values for tww indicate that the
heuristic failed to find a better solution or a timeout has been reached. . . 49

6.3 Upper bounds for twin-width obtained by MinRedDegree with Heuristic2
and TurbochargedMinIntersectionSize with k = 2 on the 112 instances
for which both base heuristics completed within the time limit. . . . . . . 51

55





List of Tables

3.1 Variables of the relative encoding (after [24]) . . . . . . . . . . . . . . . . 16
3.2 Variables of the absolute encoding . . . . . . . . . . . . . . . . . . . . . . 18

4.1 Variables of the relative encoding . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Variables of the absolute encoding . . . . . . . . . . . . . . . . . . . . . . 34

6.1 Comparison of the number of improved instances over MinRedDegree ob-
tained by all tested algorithms for the 114 instances with results for MinRed-
Degree grouped by instance category . . . . . . . . . . . . . . . . . . . . 47

6.2 Comparison of the improvement over MinIntersectionSize obtained by all
tested algorithms for the 156 instances with results for MinIntersectionSize
grouped by instance category. Values are the numbers of instances improved
and in parenthesis are the sums of improvement of the upper bound through
turbocharging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.3 Average upper bound for twin-width and average amount of time taken to
obtain it over all 112 instances on which both base heuristics completed
successfully for all tested algorithms grouped by instance categories. . . . 49

57





List of Algorithms

2.1 Basic structure of the DPLL algorithm (after Prasad et al. [23]) . . . . 10

3.1 TurbochargedMinDegree [18] . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 TurbochargedMinRedDegree . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Turbocharged Twin-Width Heuristic using MinRedDegree . . . . . . 39

59





Acronyms

BCP Boolean Constraint Propagation. 9

CDCL Conflict-Driven Clause Learning. 11

CNF conjunctive normal form. 9

DPLL Davis-Putnam-Logemann-Loveland. 9

IC incremental conservative. 26

PACE 2023 8th Parameterized Algorithms and Computational Experiments Challenge.
1, 13, 25, 46, 53

61





Bibliography

[1] https://github.com/ASchidler/twin_width/blob/main/encoding2.
py. Accessed: 2024-07-06.

[2] https://pacechallenge.org/2023/properties/. Accessed: 2024-09-01.

[3] F. N. Abu-Khzam, S. Cai, J. Egan, P. Shaw, and K. Wang. Turbo-charging
dominating set with an fpt subroutine: Further improvements and experimental
analysis. In Theory and Applications of Models of Computation: 14th Annual
Conference, TAMC 2017, Bern, Switzerland, April 20-22, 2017, Proceedings 14,
pages 59–70. Springer, 2017.

[4] S. Alouneh, S. Abed, M. H. Al Shayeji, and R. Mesleh. A comprehensive study and
analysis on sat-solvers: advances, usages and achievements. Artificial Intelligence
Review, 52:2575–2601, 2019.

[5] E. Arrighi, P. G. Drange, K. Langedal, F. Vadiee, M. Vatshelle, and P. Wolf. Pace
solver description: Zygosity. In 18th International Symposium on Parameterized and
Exact Computation (IPEC 2023). Schloss-Dagstuhl-Leibniz Zentrum für Informatik,
2023.

[6] M. Bannach and S. Berndt. Pace solver description: The pace 2023 parameter-
ized algorithms and computational experiments challenge: Twinwidth. In 18th
International Symposium on Parameterized and Exact Computation (IPEC 2023).
Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2023.

[7] P. Bergé, E. Bonnet, and H. Déprés. Deciding Twin-Width at Most 4 Is NP-Complete.
In M. Bojańczyk, E. Merelli, and D. P. Woodruff, editors, 49th International
Colloquium on Automata, Languages, and Programming (ICALP 2022), volume
229 of Leibniz International Proceedings in Informatics (LIPIcs), pages 18:1–18:20,
Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[8] G. Berthe, Y. Coudert-Osmont, A. Dobler, L. Morelle, A. Reinald, and M. Rocton.
Pace solver description: Touiouidth. In IPEC 2023-18th International Symposium
on Parameterized and Exact Computation, volume 285, page 4, 2023.

63

https://github.com/ASchidler/twin_width/blob/main/encoding2.py
https://github.com/ASchidler/twin_width/blob/main/encoding2.py
https://pacechallenge.org/2023/properties/


[9] É. Bonnet and J. Duron. Pace solver description: Redalert-heuristic track. In 18th
International Symposium on Parameterized and Exact Computation (IPEC 2023).
Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2023.

[10] É. Bonnet, C. Geniet, E. J. Kim, S. Thomassé, and R. Watrigant. Twin-width
ii: small classes. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1977–1996. SIAM, 2021.

[11] E. Bonnet, C. Geniet, E. J. Kim, S. Thomassé, and R. Watrigant. Twin-width III:
Max Independent Set, Min Dominating Set, and Coloring. In N. Bansal, E. Merelli,
and J. Worrell, editors, 48th International Colloquium on Automata, Languages,
and Programming (ICALP 2021), volume 198 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 35:1–35:20, Dagstuhl, Germany, 2021. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik.

[12] É. Bonnet, C. Geniet, R. Tessera, and S. Thomassé. Twin-width vii: groups. arXiv
preprint arXiv:2204.12330, 2022.

[13] É. Bonnet, U. Giocanti, P. O. de Mendez, P. Simon, S. Thomassé, and S. Toruńczyk.
Twin-width iv: ordered graphs and matrices. Journal of the ACM, 71(3):1–45, 2024.

[14] É. Bonnet, E. J. Kim, A. Reinald, and S. Thomassé. Twin-width vi: the lens of
contraction sequences. In Proceedings of the 2022 Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1036–1056. SIAM, 2022.

[15] É. Bonnet, E. J. Kim, S. Thomassé, and R. Watrigant. Twin-width i: tractable fo
model checking. ACM Journal of the ACM (JACM), 69(1):1–46, 2021.

[16] A. Dobler, M. Sorge, and A. Villedieu. Turbocharging heuristics for weak coloring
numbers. arXiv preprint arXiv:2203.03358, 2022.

[17] R. G. Downey, J. Egan, M. R. Fellows, F. A. Rosamond, and P. Shaw. Dynamic dom-
inating set and turbo-charging greedy heuristics. Tsinghua Science and Technology,
19(4):329–337, 2014.

[18] S. Gaspers, J. Gudmundsson, M. Jones, J. Mestre, and S. Rümmele. Turbocharging
treewidth heuristics. Algorithmica, 81:439–475, 2019.

[19] P. Hliněnỳ and J. Jedelskỳ. Twin-width of planar graphs is at most 8, and at most
6 when bipartite planar. arXiv preprint arXiv:2210.08620, 2022.

[20] H. Jacob and M. Pilipczuk. Bounding twin-width for bounded-treewidth graphs,
planar graphs, and bipartite graphs. In International Workshop on Graph-Theoretic
Concepts in Computer Science, pages 287–299. Springer, 2022.

[21] A. Leonhardt, H. Dell, A. Haak, F. Kammer, J. Meintrup, U. Meyer, and M. Pen-
schuck. Pace solver description: Exact (guthmi) and heuristic (guthm). In 18th
International Symposium on Parameterized and Exact Computation (IPEC 2023).
Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2023.

64



[22] Y. Mizutani, D. Dursteler, and B. D. Sullivan. Pace solver description: Hydra prime.
In 18th International Symposium on Parameterized and Exact Computation (IPEC
2023). Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2023.

[23] M. R. Prasad, A. Biere, and A. Gupta. A survey of recent advances in sat-based
formal verification. International Journal on Software Tools for Technology Transfer,
7:156–173, 2005.

[24] A. Schidler and S. Szeider. A sat approach to twin-width. In 2022 Proceedings of the
Symposium on Algorithm Engineering and Experiments (ALENEX), pages 67–77.
SIAM, 2022.

[25] A. Schidler and S. Szeider. Computing twin-width with sat and branch & bound.
In IJCAI, pages 2013–2021, 2023.

[26] L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik. Efficient conflict driven
learning in a boolean satisfiability solver. In IEEE/ACM International Conference
on Computer Aided Design. ICCAD 2001. IEEE/ACM Digest of Technical Papers
(Cat. No. 01CH37281), pages 279–285. IEEE, 2001.

65


	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Aim of the Work
	Methodology
	Structure of the Thesis

	Background
	Twin-Width
	Turbocharging Heuristics
	SAT Solvers

	State of the Art
	Exact Approaches
	Heuristic Approaches
	Turbocharging Treewidth Heuristics

	Design
	IC-Twin-Width
	Turbocharging Algorithm
	Heuristics
	Turbocharged Algorithm

	Implementation
	Technologies
	Decoding SAT Models
	Heuristics
	Anytime Algorithm

	Experiments
	Algorithms
	Parameters
	Setup
	Dataset
	Results
	Discussion

	Conclusions
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Bibliography

