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Kurzfassung

Im Kontext numerischer Methoden fiir symmetrische lineare elliptische PDEs erméglicht die
adaptive Finite-Elemente-Methode (AFEM) eine effiziente Diskretisierung des Problems, was
zu optimalen Konvergenzraten in Bezug auf die Gréfle des Finite-Elemente-Raums fiihrt. Um
jedoch auch optimale Konvergenzraten in Bezug auf den Gesamtrechenaufwand zu erreichen,
ist ein iteratives Verfahren erforderlich, das zur Losung der auftretenden diskreten Probleme
eingesetzt wird. In dieser Arbeit betrachten wir ein geometrisches Mehrgitterverfahren als
iterativen Loser fiir AFEM, dessen Kontraktion pro Schritt unabhéngig von den Ebenen der
inhérenten Netzhierarchie und dem Polynomgrad p der FEM-Basisfunktionen ist. Obwohl
er hp-robust ist, hingt der Kontraktionsfaktor von dem globalen Diffusionskontrast der
gegebenen PDE ab. Ziel dieser Arbeit ist es, die Abhingigkeit des Kontraktionsfaktors so
zu verbessern, dass er nur noch vom lokalen Kontrast des Diffusionskoeffizienten abhéngt.

Zuerst wird die Analyse des Mehrgitterlosers von [Innerberger, Miragi, Praetorius, Streit-
berger; ESAIM Math. Model. Numer. Anal. 58 (2024)] untersucht und festgestellt, dass
die wichtigsten Werkzeuge fiir den Nachweis der hp-robusten Kontraktion des Losers eine
hp-robuste stabile Zerlegung und eine verschéirfte Cauchy-Schwarz-Ungleichung sind. Beide
Ergebnisse sind fiir die H'-Seminorm formuliert, die eine Abhingigkeit vom globalen Diffu-
sionskontrast einfiithrt. Daher konzentrieren wir uns auf die Ableitung analoger Ergebnisse
fir die diffusionsgewichtete Energienorm, die sich aus der schwachen Formulierung der
PDE ergibt. Die grofite Herausforderung besteht darin, eine h-robuste stabile Zerlegung
in diesem neuen Rahmen zu beweisen. Um dies zu erreichen, werden zusétzliche Konzepte
wie das sogenannte K-Funktional, gewichtete L?-Normen und Fortsetzungsoperatoren fiir
Sobolev-Raume eingefiihrt. Unter Verwendung dieser Werkzeuge sowie durch Anpassung
der Analyse der p-robusten stabilen Zerlegung im zweidimensionalen Fall konnen wir nach-
weisen, dass der Kontraktionsfaktor tatséchlich (zusétzlich zur hp-Robustheit) nur lokal
vom Diffusionskontrast abhéingig ist.

Schliefllich werden die theoretischen Erkenntnisse durch entsprechende numerische Expe-
rimente validiert.
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Abstract

In the context of numerical methods for symmetric linear elliptic PDEs, the adaptive finite
element method (AFEM) enables an efficient discretization of the problem, leading to
optimal convergence rates with respect to the size of the finite element space. However, to
achieve optimal convergence rates with respect to the total computational cost, an iterative
method is required to solve the arising discrete problems. In this work, we consider a
geometric multigrid method as an iterative solver for AFEM, whose contraction per step
is independent of the number of levels in the inherent mesh hierarchy and the polynomial
degree p of the FEM basis functions. Though it is hp-robust, the contraction factor depends
on the global diffusion-contrast of the inherent PDE. This thesis aims to improve the
dependence of the contraction factor so that it depends only on the local contrast of the
diffusion coefficient.

First, the analysis of the multigrid solver of [Innerberger, Miragi, Praetorius, Streitberger;
ESAIM Math. Model. Numer. Anal. 58 (2024)] is examined, establishing that the
key ingredients for proving hp-robust contraction of the solver are an hp-robust stable
decomposition and a strengthened Cauchy—Schwarz inequality. Both results are formulated
for the H'-seminorm, which leads to the dependence on the global diffusion-contrast.
Therefore, we focus on deriving analogous results for the diffusion-weighted energy norm
arising from the weak formulation of the PDE. The main challenge lies in proving an h-robust
stable decomposition in this new setting. To address this, additional concepts such as the
so-called K-functional, weighted L?-norms, and extension operators for Sobolev spaces
are introduced. Using these tools as well as adapting the analysis of the p-robust stable
decomposition in the two-dimensional case, we are able to prove, that, indeed, the contraction
factor is (in addition to hp-robust) only locally dependent on the diffusion-contrast.

Finally, the theoretical findings are validated through appropriate numerical experiments.
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1 Introduction

A large variety of scientific and technological advances rely on numerical simulations of
partial differential equations (PDEs). A versatile discretization method is the finite element
method (FEM), which solves the weak formulation of the PDE with exact solution u* € X
on a finite dimensional subspace Xy C X. However, standard FEM relies on computational
meshes T where all elements have comparable sizes and convergence rates can only be
shown under additional regularity assumptions on the exact weak solution, see, e.g. [EG21Db].
The pursuit of optimal convergence rates with respect to the size of the finite element space
without additional assumptions is one reason to consider adaptive finite element methods
(AFEMs). The adaptive algorithm consists of four modules. In the SOLVE module, the
discrete solution u}; € Xz on a given mesh 7z is calculated. Afterwards, a-posteriori error
indicators for every element of the mesh are computed in the ESTIMATE module. These
are then used in the MARK module to decide which elements require refinement. For this, a
marking strategy and adaptivity parameter 6, which is given as an input to the algorithm,
are needed. In the REFINE module, a new mesh, where at least every marked element is
refined, is calculated: AFEM thus takes the following feedback loop structure

solution accurate enough?

SOLVE ESTIMATE MARK (6)
{ (e () brers My € T »{ REFINE(TH, Mg) J

and allows to obtain a sequence of meshes and corresponding discrete solutions. Under
reasonable assumptions on every module, it can be shown that AFEM even for minimal
regularity of the exact solution yields optimal convergence rates with respect to the number
of elements in the mesh, see, e.g. [CFPT14]. Although this result is a significant improvement
compared to standard FEM, one can even obtain optimal convergence rates with respect to
the overall computational cost and thus time, provided the algorithm is slightly modified.
This leads to the introduction of iterative solvers. The adaptive loop is modified so that
the SOLVE and ESTIMATE modules are combined and the discrete solution is not solved via
direct solve anymore, but an iterative solver is utilized until the estimated algebraic error is
sufficiently reduced compared to the estimated discretization error. This is implemented
via a stopping criterion balancing the error components, which uses a solver-stopping
parameter A. Hence, the structure becomes

£ solution accurate enough? ]

-
{ITERATIVELY SOLVE AND ESTIMATE (/\) | MARK (9) ‘( REFINE(T M ) }
H; H

ug = wip, {nr(vm) }reTy ) A My C T 'L
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1 Introduction

In order for the adaptive algorithm to be optimal with respect to the overall cost, i.e., of
optimal complexity, the solver must be chosen suitably. More precisely, we require that the
solver satisfies the following two properties:

(i) linear complexity,

(ii) uniform contraction.

Let us denote by uy € Xy a given approximation to the discrete solution uy; € Xy and by
®y : Xy — Xy the iteration operator of the solver on the finite element space Xz. Then,
we say that the solver contracts uniformly if there exists a constant gct,y € (0, 1) independent
of Xy such that

lur = @ (um)ll < gewr luzr — -

The contraction factor needs to be uniform, in particular, it is independent of the refinement
level, and hence the mesh size h. Furthermore, q. should even be independent of the
polynomial degree p used in the FEM discretization. Then, we say that the multigrid solver
is hp-robust. The motivation behind considering higher polynomial degrees is that they
yield better convergence rates for AFEM; see, e.g. [BDD04; CKNT08]. In this thesis, we
consider a specific geometric multigrid solver, which satisfies the required properties (i)—(ii)
and was introduced in [IMP124].
We will study the symmetric linear elliptic diffusion problem

—div(KVu*) = f in ,
u" =0 on 09,

with K being symmetric, bounded, and uniformly elliptic. The analysis in [IMP*24] yields
that the contraction factor depends on the ratio of the biggest to smallest eigenvalue of the
diffusion coefficient K over the whole domain. However, numerical experiments gave the
indication that gt actually depends only on local variations of the diffusion coefficient. The
main objective and contribution of this thesis is to prove that the dependency is indeed local.

We conclude this introduction with a short overview on the structure of the work. The
preliminary Chapters 2 and 3 introduce the underlying concepts of AFEM and geometric
multigrid methods. Furthermore, the actual setting for the main results is described and the
geometric multigrid solver is proposed. Afterwards, the existence of an hp-robust contraction
factor g, is shown in Chapter 4. For this, the proofs from [IMP*24] are presented, but
more details are added so that we can improve specific results accordingly in the following
chapter. Finally, in Chapter 5 we show the main result of the thesis: the contraction factor
ety indeed depends only on local variations of the diffusion coefficient K for d € {2, 3}, see
Theorem 5.1. Moreover, for d = 2 we also prove that the main result holds p-robustly. The
original proof of algebraic error contraction in Theorem 4.13 requires two main ingredients
namely an hp-robust stable decomposition and a strengthened Cauchy—Schwarz inequality.
In order to improve the dependency on the diffusion coefficient, we had to revisit both
components. In Chapter 5, we first show that indeed the constant in the strengthened
Cauchy—Schwarz inequality is influenced only by local diffusion-contrasts. Subsequently, we
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1 Introduction

turn to the hp-stable decomposition, where we first prove an h-robust stable decomposition
for both d = 2 and d = 3 with the desired local dependency. Moreover, for d = 2 we are
also able to show a p-robust stable decomposition with constants depending only locally on
the diffusion. Analogously to the original proofs from [IMP*24], these two decompositions
can be combined to obtain an hp-robust stable decomposition with the improvement that
the stability constant now depends only on the local variations of the diffusion coefficient.
Since the purpose of establishing a uniformly contractive solver was to use it in AFEM, we
discuss how the proposed multigrid solver fits into the AFEM framework from [GHP*21] in
Chapter 6. Furthermore, the theory in [GHP'21] immediately implies optimal complexity of
AFEM with the proposed geometric multigrid solver. Lastly, Chapter 7 presents numerical
experiments that corroborate the analysis developed in Chapter 5.
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2 Model problem and adaptive algorithm

In this chapter, we first define some essential properties of meshes. Afterwards, we present
the model problem, for which we will prove the analytical results. Subsequently, a short
introduction to the finite element method (FEM) is given and it is used in the discretization
of the model problem. Lastly, we describe the adaptive finite element method (AFEM) in
Algorithm 2.11.

2.1 Mesh properties

First, we give some definitions concerning simplicial triangulations.

Definition 2.1. For a bounded domain Q C R?, a finite set T is called a mesh of § if
e every T' € T is a compact subset of Q with |7 > 0,
e the elements cover the closure of €, i.e., Upcr T = Q,

e the intersection of two elements 7,7’ € T with T # T’ has measure zero, i.e.,
TNT'|=0.

Definition 2.2. A set T C R? is called a non-degenerate simplez if there exists z, ..., 24 €
R? such that 7' = conv(zg, ..., zq) and |T| > 0. We denote by Vr := {20, ..., 24} the set of
vertices of T'.

Definition 2.3. Let Q C R? be a bounded Lipschitz domain with polytopal boundary 5.
A set T is a conforming simplicial triangulation of Q if it fulfills

e 7 is a finite set of simplices,
e the simplices cover the closure of Q, meaning (Jpor T = Q,

e the intersection of two elements T,7” € T is either empty or there exists a set
M € Vr NV with TNT" = conv(M). In the last case, we call conv(M) a joint
k-dimensional hyperface of T" and 7" with k := #M — 1.

We denote by

V= UVT

TeT
the set of vertices of T.
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2 Model problem and adaptive algorithm

Definition 2.4. Let 7 be a conforming simplicial triangulation of Q ¢ R? with d > 2.
Define the shape reqularity constant of T by
diam(T")

o(T) := r%lea%(W >0 (2.1)

If there exists v > 0 such that o(7) <~ < oo, we say that T is y-shape regular.
Shape-regular triangulations have the following important property.

Proposition 2.5 (y-comparable neighbor diameters). Let T be a conforming simplicial
triangulation of @ C R® with d > 2, which is y-shape reqular for v > 0. Then, there exists
C > 0 depending only on v and the dimension d such that

diam(T")

— L < C. 2.2

TeT 1o diam(T7) (2:2)
TNT'#0

Proof. We start with the case that T'NT” contains a 1-dimensional hyperface, which we call
E. Such a hyperface is a shared edge between the two simplices and we denote its length
by |E|. For the volume, it holds

1T < diam(7)? 1 E| < diam(T)4 ! diam(T").
The ~-shape regularity (2.1) implies diam(T") < ~|T|*/? for every T € T. Hence, we get
7| < diam(T)% " diam(T") < ~4|1|@=D/|77)1/d

and therefore |T|/? < ~|T"|'/4. Moreover, for every simplex, we have |T| < diam(7)%.

Combining this with ~-shape regularity (2.1) and the above estimate, we see
diam(T) < »|T|"4 < 71|V < A4+ diam(T7). (2.3)

The case where T' and T” only share a vertex still needs to be discussed. Because T is
~v-shape regular, the number of simplices that share a vertex is bounded by an integer n
that depends only on . Therefore, we can find n simplices {T;}!' | with T =T, T" =T,
such that the dimension of the hyperface T; N T;41 is at least one for all i =1,...,n — 1.
Iterating the established estimate (2.3) for the first case, we get

diam(7T") < 4™V diam (7).
Dividing by diam(7”) and taking the maximum gives the result (2.2). O

Remark 2.6. We want to emphasize that for d =1 the estimate (2.2) needs to be enforced
by the refinement algorithm. We will discuss this in more detail in Section 2.4.1.
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2 Model problem and adaptive algorithm

2.2 Model problem

Let d € {1,2,3} and Q C R be a bounded Lipschitz domain with polytopal boundary 9<.
We consider the second-order symmetric linear elliptic diffusion problem

—div(KVu*) = f in Q, (2.4)
u" =0 on 09,

where f € L*(Q) and K € [LOO(Q)]‘Si;Ig is symmetric and uniformly positive definite. Let
To be an initial conforming simplicial triangulation of 2. We actually require the stronger
regularity K| € [Whe(T)]?*? for all T' € To. More precisely, this is needed in Lemma 4.11
and for the residual error estimator (2.17). For x € Q, the expressions A\pax(K(x)) and
Amin(K(2)) denote the maximal and minimal eigenvalue of K(z) € R9*? respectively.

Furthermore, it is useful to define

0 < Apin = ess inf A\pin (K(2)) < Apax := esssup Apax (K(2)) < oo
zefd e

by assumption on K. For any measurable set w C 2, we denote the L?(w)-scalar product
with (-, -),. The weak formulation of (2.4) is given by: Find u* € X := H} () that solves

(u*,v)q = (KVu*,Vv)qg = (f,v)q =: F(v) forallveX. (2.5)
From here on, we omit the index w for w = €.

Proposition 2.7 (Equivalent energy norm). The bilinear form ((-,-)) is a scalar product on
X and the induced semi-norm ||ul|? := (u,u)) is an equivalent norm on X. More precisely,

there holds

1/2

A2 Vul < Jull < AYZ IVl for allue X (2.6)
Proof. The bilinearity and symmetry of ((,-)) are clear as K is symmetric. Next, we show

that || - || is equivalent to ||V - ||. For a symmetric matrix A € R?*? it holds

T T
vt Av vt Av
Amin(4) = min ———  and Apax(A) = max ———. 2.7
( ) ’UGRd |’U|2 a( ) vGRd "U’Q ( )
v#0 v#£0

Applying this property to K(z) for every x € Q yields

llull® = / KVu - Vudr < / Amax(K(2))Vu - Vu dz < Apay || Vul)?,
Q Q

1 1
2: . < 71{ M < 2.
V| /QVu Vu d:c_/ﬂ)\min(K(gC)) Vi Vudz < o]

min

Finally, we note that ||V - || is a norm on Hg(Q2) so that ((,-)) is positive definite and hence
a scalar product. This concludes the proof of (2.6). O

Proposition 2.7 allows us to apply the Lax—Milgram theorem, therefore yielding the
existence of a unique solution u* € X to the problem (2.5).
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2 Model problem and adaptive algorithm

2.3 Finite element method and discrete problem

In this section, we give a short introduction to the finite element/Galerkin method in an
abstract framework. Afterwards, we formulate the discretization of the model problem.

2.3.1 Galerkin method

Let X be a Hilbert space and ((,)) x a scalar product on X such that the induced norm
vl = (v, v))x admits constants Cy,Cs > 0 that satisfy

Cilv]|x < |vllx < Caljv||x for all v € X. (2.8)
For any L € X*, the Riesz theorem provides a unique solution u € X of
(u,v)) x = L(v) forallve X. (2.9)

The Galerkin method considers the problem (2.9) on a finite dimensional subspace X}, C X.
Again, the Riesz theorem proves the existence and uniqueness of the solution u, € X}, to

<<uh,vh>>X = L('Uh) for all vy, € Xj,. (2.10)

We call uy, the Galerkin solution. This gives rise to the definition of the Galerkin projection
Gy : X — Xp, where

(Ghu, hx = (u, ) x € X,
The defining characteristic of the projection is the Galerkin orthogonality

((u — Ghu,vh>>x =0 for all v, € X}, (2.11)
This implies the Pythagorean identity
lw = vnli = lu = Gru+ Gru — vnll%
= Jlu = Gpullk + IGhu — vnllk + 2{u — Gpu, Gru —vp)) (2.12)
(2.11

= Ghullk + 1Ghu — vnl%  for all v, € X

Ultimately, we want to state two well-known properties of the Galerkin method. The proofs
can be found, e.g., in [Pral7].

Lemma 2.8 (Céa lemma). The Galerkin error is quasi-optimal, i.e., there holds

Cq
U — Gpul|lx < = min |[u—v or all u € X,
| nullx < o, S | nllx f
with Cy and Cy from (2.8). Furthermore, for the energy norm, we have that

lu — Gprul|lx = min ||lu—wvy||x for allu e X. O (2.13)
v EXp

Lemma 2.9 (Galerkin approximation property). For all h > 0, we assume X}, to be a
finite dimensional subspace of X. Let D C X be a dense subspace of X, such that the
approximation property

lim min ||lu—wv|lx =0 forallue D
h—0v,eXy

is satisfied. Then, for every u € X it holds that

i -G =0. ]
Jim |u — Gpullx
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2 Model problem and adaptive algorithm

2.3.2 Discretization of the model problem
Next, we define the finite element spaces for the discretization of the model problem (2.5).

Definition 2.10. Let 7, be a conforming simplicial triangulation, p € N a fixed polynomial
degree, and T' € Tj, a simplex. We denote by PP(T') the space of all polynomials on 7', whose
degree is at most p. The discrete space SP(7}) is defined as

SP(Tn) :={vn, € C(Q) : vp|p € PP(T) for all T € Tp}.
Furthermore, we write X7 := SE(7}) := SP(T,) N H ().

The finite element method for the model problem is just the Galerkin method with the
Hilbert space X = H&(Q) and the discrete spaces Xf; . It is important to note, that the
finite element spaces X,I; rely on two parameters: The subscript h represents the inherent
mesh 7 used in the discretization, while p gives the maximal polynomial degree of discrete
functions aiming to approximate the solution u* of (2.5) in the space X}. The discrete
problem reads as follows: Find the solution u} € &} to

(up,vp)) = (KVup, Vop) = (f,on) = F(vp) for all vy, € X} (2.14)

If we choose a basis of X7, the discrete problem (2.14) can be rewritten as a linear system
with a symmetric and positive definite matrix. Therefore, the solution uj can be computed
provided that computational resources suffice.

2.4 Adaptive algorithm

We first state the adaptive finite element algorithm. Subsequently, we explain the steps in
the adaptive loop in more detail.

Algorithm 2.11 (Adaptive finite element method). Input: An initial mesh To.
Adaptive loop: repeat the following steps (i)—(iv) for all £ =0,1,...:

(i) SOLVE: Compute the discrete solution u; associated to the mesh Ty.

(ii) ESTIMATE: Compute local contributions n,(T,u;) of an error estimator
ne(up)® ==Y ne(T,up)’
TeT,

for all T € Ty.

(iii) MARK: Depending on (n(T,u}))reT;, choose a set My C Ty via a suitable criterion,
where the estimated error dominates.

(iv) REFINE: Generate Ty4q := REFINE(7y, My) so that all marked elements are refined.

Output: A sequence of conforming simplicial triangulations Ty, discrete solutions uj, and
error estimators ny(u}).

In the following, we will describe the setting of each module of the adaptive loop, as it is
used in the remainder of this work.
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2 Model problem and adaptive algorithm

2.4.1 Newest vertex bisection

The module REFINE uses newest vertex bisection (NVB). In the adaptive algorithm, a
sequence of successively refined meshes {7}}%:0 is generated from an initial conforming
simplicial triangulation 7Ty. It is useful to define the set T := T(7p) of all refinements of
To obtained by finitely many steps of NVB. We need to define the refinement strategy
REFINE so that for a given triangulation 7,1, £ € {1,..., L}, and a set of marked elements
My_1 C Ty—1 the refined mesh can be obtained by 7, = REFINE(7;_1, M/_1). Such a
strategy should have the following properties:

(A) All marked elements are refined and

T=J{T'eT|T'CT} forall T € Tpy.

(B) The new triangulation is conforming.
(C) The created sequence is uniformly ~-shape regular, i.e.,

diam(7")
s, i <7< (215

where v depends only on 7. For d > 2, Proposition 2.5 additionally implies

diam(T")

dam{l) o nd+1) o o 2.16

(X, X 08X (T = = (210
TNT'#)

(D) The least amount of elements T € Ty_;\M,_; are refined to achieve (B) and (C).

One refinement strategy that satisfies these properties is NVB. We will first introduce
newest vertex bisection in 2D and then give some remarks for d € {1,3}. The first step in
the 2D algorithm is to assign a reference edge for every triangle in 7y. For that, an arbitrary
newest vertex is chosen in each triangle. The reference edge lies opposite to the newest
vertex. An element is refined by halving the reference edge so that the midpoint becomes
the newest vertex of the two new triangles. We can now formulate the algorithm:

(i) For every marked element 7" € M,_;, we mark the reference edge.

(ii) Repeat recursively: If any non-reference edge of a triangle is marked, we additionally
mark its reference edge.

The second step (ii) is repeated recursively to ensure that the resulting mesh will be
conforming. Note that (ii) terminates as there are only finitely many edges in a triangulation.
Following this procedure, we end up with four different cases for a triangle 7' € T;_1 (see
also Figure 2.1):

(iii) Apply the refinement pattern:

e If no edges are marked, the element remains unchanged i.e., T' € 7,.
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L L L
A~ A Lo, A

Figure 2.1: The four different cases of newest vertex bisection in 2D. Above: Edges with a
violet dot are marked for refinement and the reference edge is always indicated
with a violet line. Below: Refined element with new reference edges.

L. AW S

Figure 2.2: Refinement by NVB leads only to 4 similarity classes of triangles. We can see
this by iterating NVB until no more new classes of triangles appear.

e If one edge is marked, it has to be the reference edge. Consequently, we halve
the triangle as described above.

e If two edges are marked, one bisection is done for the reference edge. The other
marked edge is the reference edge of one of the new triangles. We also bisect this
triangle.

e If all edges are marked, the triangle is halved once as in the second case. Afterward,
both reference edges of the new triangles are still marked. Hence, we also bisect
these triangles.

When applying NVB repeatedly to a single element, we discover that just 4 similarity
classes of triangles arise. Thus, in a sequence of meshes generated by NVB, only finitely
many types of triangles appear; see Figure 2.2. Henceforth, such a sequence {72}%:0 is
uniformly ~-shape regular. Because we solely mark necessary triangles T' € T;_1\My_1 in
the recursive step and since all new nodes are edge midpoints, the described strategy also
satisfies properties (B) and (D).

Generalizing NVB for d > 3 is not a trivial task. We will outline the algorithm given
in [Ste08] and comment on the challenges that arise. Following the structure from the 2D
algorithm, one needs to define a bisection rule. For a simplex 7', denote the reference edge
by Ep. Let T = conv(zp,...,2q) be a simplex and assume Ep = conv(zp, z4), then the
children of T" are given by C1(T") := conv(zo, ..., 24-1,y) and Co(T) := conv(y, z1, ..., 24),
where y = (z0 + 24)/2. The last step of a bisection rule is the assignment of the reference
edges of the children C(T") and C(T"). A complete bisection rule can be found in [Ste08].
It is important to note that, if the assignment of reference edges is not well-thought, it
is impossible to guarantee uniformly ~y-shape regular triangulations using said bisection
rule. However, the bisection rule proposed in [Ste08] only generates finitely many types of
simplices, hence the created sequence of meshes is uniformly v-shape regular, i.e., property
(C) is fulfilled. This statement was proven in [Tra97]. We need to introduce some more
notation, before we can formulate NVB for higher dimensions. Consider a simplicial mesh 7T .

10



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

2 Model problem and adaptive algorithm

For a simplex T' = conv(z, ..., 2q) € T, we define its edges £(T') := {conv(z;,2;) : i # j}.
Furthermore, £(T) := e £(T) denotes the set of all edges of 7. Lastly, we define the
refinement patch R(T) = {1’ € T : Epr C T'} and say it is compatibly bisectable if and
only if R(T) = R*(T) :={T" € T : Ep» = Er}. The following algorithm is a loop-based
variation from Schon [Sch17] of the recursive algorithm proposed in [Ste08§].

Algorithm 2.12 (Newest vertex bisection for d > 3). Input: A triangulation T and a set
of marked elements M C T.
Repeat the following steps (1)—(v), until M = 0:

(i) Define & :={Ep € E(T) : T € M}.

(ii) Repeat step (a)—(b):
(a) DefineUd :={Ep € E(T)\E* : T € T with E(T) NE* # 0}
(b) Update E* <= E*UU.
until U = (.

(iii) Define the set of simplices to be bisected R :={T € T : Ep € £€* and R(T) = R*(T)}.
(iv) Refine the triangulation by updating T <= T\RU{C(T),C2(T) : T € R}.
(v) Update the marked elements M <+ M\R.

Output: Refined triangulation T, where all marked simplices have been bisected.

So far, it is unclear whether Algorithm 2.12 terminates. Leaving this problem aside for
now, the above algorithm only refines compatibly bisectable refinement patches, therefore
maintaining the conformity of 7. In step (ii), we add reference edges Eps of elements
T’ to the set £*, if the reference edge of a marked element 7' € M is an edge of 17, i.e.,
Ep € E(T"). This process is repeated until no more new edges are added to £*. This
recursion terminates since 7 consists only of finitely many simplices. Moreover, we add
only reference edges of elements to £* that need to be bisected for 7 to stay conforming.
Hence, if the algorithm terminates, it satisfies properties (A), (B), and (D). Thus, it is only
left to discuss if Algorithm 2.12 terminates. In [Ste08], a so-called admissibility condition
for the initial triangulation 7g is given, which indeed ensures termination. This condition
depends on a local numbering of the vertices. For d = 3 and a given triangulation 7Ty, a
local numbering that makes 75 an admissible mesh does not always exist. However, one
can construct a finer triangulation from 7y that is conforming and fulfills an even stronger
condition; see [Ste08]. The downside is that in 3D every tetrahedron is split into 12 new
elements. Having said that, the recent work [DGS24] introduces a novel initialization
algorithm such that newest vertex bisection terminates for arbitrary 7y in any dimension.

Remark 2.13 (NVB for d = 1). We can make some simple observations for d = 1. Starting
with an initial conforming mesh Ty, bisecting any subset of elements always results in a
conforming triangulation. Since diam(T') = |T'|, every triangulation is y-shape regular with
~v = 1. As stated in Proposition 2.5, ~v-shape regularity for d > 2 implies that the diameters
of neighboring elements are comparable. This does not apply to d = 1. For that reason,

11
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2 Model problem and adaptive algorithm

newest vertex bisection in 1D has a new requirement, namely that the generated sequence of
meshes {To}L_ satisfies (2.16). As for d = 2, the algorithm must bisect the least amount of
extra elements T € Ty_1\My_1 to achieve this. An algorithm with this property is proposed
and analyzed in [AFFT13].

For any mesh Tz of Q, we denote by REFINE(7) the set of all meshes that can be created
by finitely many steps of refinement of Ty.

Proposition 2.14. Let Ty be an initial mesh. Then, newest vertex bisection satisfies:

(R1) splitting property: Each refined element is split into at least two and at most
Cehild > 2 new elements, i.e., for all Ty € REFINE(7y) and My C Ty, the mesh
T, = REFINE(Ty, Mp) fulfills

#(Ta\Tn) + #Tu < #Th < Cenita #(Tu\Tn) + #(Tu 0 Th).

(R2) owverlay estimate: For all meshes Ty, Tn, € REFINE(7y), there exists a common
refinement Tg @ T, € REFINE(Ty) NREFINE(T;,) C REFINE(7y) such that

#(Ta © Tn) < #Tu +#Th — #7o-
(R3) mesh-closure estimate: For any sequence (Ty)sen, with Te41 = REFINE(Ty, My)
and My C Ty for all £ € Ny, it holds

/-1

#T0— #T0 < Cunesh Y, #M;,

3=0
where Cresh depends only on To.

We refer to [BDDO04; Ste07; Ste08; CKNT08; KPP13; GSS14] for proofs of the above
statement. The properties (R1)—(R3) are crucial to show optimality of Algorithm 2.11;
see [CFPT14].

2.4.2 Residual error estimator

The module ESTIMATE relies on the standard residual error estimator. First, let us introduce
some useful notation. Let 7T} be a conforming simplicial triangulation. The size of a triangle
T € 7Ty, is given by hp := |T|'/4. If the intersection E := T NT" of two elements T,T" € Ty,
is a (d — 1)-dimensional hyperface, we define the jump of a function v € C(T) := {v €
L3(Q) :v|p € C(T) for all T € T} on E by

[v] == v|r — vl

Let vy, € X}f and consider (T, vp,) for T' € T, the elementwise estimator. For the model
problem (2.5), this is given by

(T, vp) := hi|| f + div(KVus)|[F + brl|[[KVon] - 0l 3rn0, (2.17a)

12
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where n is the outer normal vector of the element 7. Define

1/2
Uy, vp) = ( Z (T, vh)Q) for all Uy, C Tp, and all v, € X7 (2.17b)
TeUy

For U}, = T, we shall use the shorter notation ny(vy) := np(Th, vp). The standard residual
error estimator (2.17) has some useful properties, that we summarize in the following
proposition.

Proposition 2.15 (Axioms of adaptivity). Let Ty be an initial mesh, Ty € REFINE(7y)
and Ty, € REFINE(Ty). Then, the standard residual error estimator fulfills:

(A1) stability: |n,(Un,vn) — naUn,vr)| < Csiab [|on — vl for all v, € X vg € X,
and allUUg C Tg N Ty

(A2) reduction: n,(Tp\Tu,vn) < qred N (Ta\Th, vi) for all vy € XE.
(A3) reliability: ||u* — uj;|| < Crel nu(ujy) for the exact discrete solution.

(A4) discrete reliability: |u; — uy|| < Carel 1 (Ta\Th,u};) for the exact discrete
solutions.

The constant Cie depends only on ~y-shape regularity, Csap and Cyrel depend additionally

on the polynomial degree p, and, for NVB, it holds qreq = 2—1/(2d)

The properties (A1)-(A4) are called axioms of adaptivity and were introduced in [CFP*14].

Remark 2.16. Another assumption on the error estimator that can be found in the literature
is quasi-monotonicity; see, e.g., [CFP*1}]. An error estimator is quasi-monotone if there
exists a constant Cpon > 0 such that

(QM) quasi-monotonicity: np(uy) < Cmon nu(uj;) for all Ty € REFINE(Ty) and
all Ty, € REFINE(Ty).

Moreover, the axioms (A1)—(A4) already imply quasi-monotonicity (QM) as shown in the
following corollary.

Corollary 2.17. Suppose the error estimator ng satisfies stability (A1), reduction (A2),
and discrete reliability (A4). Then, the error estimator ng is also quasi-monotone.

Proof. Stability (A1), reduction (A2), and discrete reliability (A4) yield

mn(ug)® < 2mp(ug)® + 2C25 lus — ui]l®

= 20 (Ti\ T, wiy)? + 20(Th O Tars wfy)® + 2C 2 lluh, — |

(A2)
< 2qrean (T \Ths wip)? + 20 (T O Ty ) + 2050l — wjy|l?

(A4)
< 2qreansr (Tu\Th, wip)? + 205 (Th 0 T, wiy)? + 202,00, O3 anm (Ta\Thy uwjy)?

< (2 + 2Cs2tabcgrel)77H(u*H)2‘
This concludes the proof with C2_ = =2+ QCS%:abCflrel. O

mon

13
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2.4.3 Dorfler marking

The module MARK in Algorithm 2.11 employs Dorfler marking [D6r96]. For a given parameter
0 <0 <1, we say that a set M, C 7, fulfills the Dérfler criterion with respect to n(u;), if

One(ui)® < D me(Tou)? = (Mo, up)?. (2.18)
TeM,

This can be understood as selecting a set My of elements, whose associated estimator
contribution is bigger than a #-portion of the total error. To be able to have optimal
convergence rates, we have to select a subset M, with quasi-minimal cardinality. The set
M(Te¢,0,u;) == {Uy C To | 0774(112‘)2 < ne(Up, uZ)Q} contains all subsets of 7, that satisfy the
Dorfler criterion (2.18) for n,(u;). Given a constant Cparc > 1 we shall choose a set that
fulfills
My e M(Ty,0,u;) with #My < Chpark min H#Ujy.
UpeM(Tg,0,u})

Furthermore, we want the MARK module to have linear cost. However, it is not immediately
clear if this is possible, since the naive algorithm to obtain a set M, with minimal cardinality
includes sorting of the local contributions {n(T,u})}re7,. An algorithm with linear cost
guaranteeing Chy,,x = 2 can be found in [Ste07]. Linear cost is even possible for Ciyax = 1
as shown in [PP20]. The choice of Dérfler marking is not arbitrary, as it is the optimal
marking criterion, where optimality is to be understood in the following sense.

Proposition 2.18 (Optimality of Dorfler marking [CFP*14, Proposition 4.12]). Suppose
stability (A1) and discrete reliability (A3). For all 0 < 0y < Oopt := (1 + C2,C2 )7L, there
exists 0 < k < 1 such that for all 0 < 0 < 0y, all triangulations Ty € REFINE(Ty), and all
refinements Ty, € REFINE(Trr), it holds

m(up)? < ena(up)? = O (uy)® < 0o (Rin,up)®.

The set Run C Tu from (A4) satisfies Tu\Tn € Run and #Run < Cl(#Th — #TH).
Furthermore, discrete reliability (A4) yields ||u}, — uj|| < Carel NH(RER, Uly)-

The proposition states that if the error estimator is reduced, then Dérfler marking holds on
R un, which is essentially the set of refined elements. We refer to [CFP*14, Proposition 4.12]
for a proof of this statement.

2.4.4 lterative solver

The module SOLVE was already mentioned in Section 2.3.2. There, we stated that the
discrete solution u; can be computed using an exact solver. This is not advisable if we want
the module SOLVE to have cost proportional to O(#7;) operations. Hence, the idea is to use
a suitable iterative solver. In the next chapter, we will introduce such an iterative solver,
namely a geometric multigrid method. Then, the exact FEM solution uj in Algorithm 2.11
will be replaced with an approximation ulg obtained by k steps of the iterative algebraic
solver.

14
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The goal of this chapter is to formulate an iterative solver, that works well in the adaptive
finite element algorithm. In our case, this will be a geometric multigrid solver. Therefore,
we will first talk about the core ideas of multigrid methods.

3.1 Core properties

In this section, we give a brief introduction to geometric multigrid methods based on [BHMOO;

Gil07]. We will explain the algorithm and its motivation through an easy one-dimensional

model problem discretized via finite differences.

3.1.1 Model problem and Jacobi method

We look at the second-order boundary value problem

—(u*)" = on (0,1),
= 0 o)
u*(0) =u*(1) = 0.
Then, the canonical finite difference discretization reads

Ui+l — 2uj + uj—1
h2

= f(z;) foralll<j<n-—1,

ug = Uy = 0,
where n € 2N is even and n + 1 is the number of discretization points, h = 1/n is the mesh
size, x; = jh are the grid points in [0, 1], and the unkown u; € R is an approximation of

u*(z;) for all j =1,...,n— 1. We denote by Gj, the grid with width h. The problem can
be rewritten as a linear equation

2 -1 uy i

1 —1 2 —1 u9 fg
S I (3.2

-1 2 -1 Up—2 fn—2

-1 2 Up_1 a1

with f; := f(x;). One can use direct methods such as Gaussian elimination to solve for
the exact solution u € R"!. For such a particular 1D case, this may still yield linear
performance (due to the band structure of the matrix in (3.2)) but becomes rather expensive
in practical applications. A different approach is to use iterative methods, which start from
an initial guess and try to improve it with every iteration. Such an iterative method is

15
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the geometric multigrid method, developed to have certain interesting properties that we
discuss subsequently.

Let us first discuss a simple iterative procedure, namely the Jacobi iteration. The
equation (3.2) is of the form Au = f, i.e., a diagonally dominant and irreducible system of
linear equations. Let A =D 4+ L + U, where D is the diagonal of A, and L and U are the
strictly lower and upper triangular parts of A. The equation can be transformed via

Au=f <<= (D+L+U)u=f
<~ Du=—(L+0)u+f
— wu=-DYL+Uu+D'f

One step of the so-called Jacobi method is defined by u(*1) := —D=NL + U)uld + D1 f.
Let us examine the behavior of the Jacobi method. Consider the homogeneous problem
Au = 0, thus v = 0, and for an approximation v, the error is e = —v. We apply the Jacobi
method to different initial guesses

v?:zsin(‘T), 0<j<n, 1<m<n-—1,
where the vectors v™ are named Fourier modes, and the parameter m is called wavenumber
or frequency. Small values of m give long and smooth waves, while large values correspond
to highly oscillatory waves. Numerical experiments show that the Jacobi method eliminates
oscillatory modes rather quickly as opposed to low-frequency modes, which are eliminated
much slower. Therefore, applying such an iterative step is sometimes called smoothing,
and the step itself can be called smoother. The limitations of the Jacobi method for low
oscillatory modes stem from the smoothing only being able to treat error components
associated with the fixed mesh size. Hence, a remedy is to introduce a mesh hierarchy as
proposed by multigrid methods.

3.1.2 Multigrid algorithm in one dimension

One can observe that the projection of a smooth mode onto a coarser grid yields a more
oscillatory mode. An example is shown in Figure 3.1. A natural question is how fine-
grid vectors v" are projected onto a coarser mesh Go, with mesh size 2h The first
choice would be to take the values from the finer grid directly, i.e. vjzh = UQJ However,
since loss of information occurs this way, another alternative is the weighting operator
I,%h :R"1 — R"/2-1 which is defined by

1
I,%hvh =0 with v]zh =7 (vgj,l + 21}}1 + Ungrl) .

We will also need a way to interpolate vectors v2" from the coarse grid to the fine grid Gj,.

To this end, we define the interpolation operator Ié’h :R/2-1 o R Ighv% = v", where
h 2h
vy =05
1
h 2h
Ugjt1 i< 5( +Uy+1) 0<J<§—1

16
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Figure 3.1: The low-frequency Fourier mode with wavenumber m = 4 on a grid of size
n = 12 and its nodal projection onto a coarser grid with n = 6 grid points.

One idea of multigrid methods is to approximate the exact solution u of Au = f on the
fine grid using some iterations of a chosen iterative method (pre-smoothing), which provides
an approximation v. Afterwards, the residual r := f — Av is projected onto a coarser grid,
where the leftover low-frequency components appear more oscillatory. On the coarse grid,
we solve the residual equation Ae = f — Av = r of reduced size exactly (coarse solve). Lastly,
the solution e is interpolated back onto the fine grid, where we update our approximation
to v+ Ié‘he and may iterate again (post-smoothing). The described procedure is called the
two-grid correction scheme. The algorithm for this scheme reads as follows:

Algorithm 3.1 (T'wo-grid correction scheme). Input: A matriz A", a vector f*, an initial

guess v", parameters oy and o, and an iterative method (SMOOTHER).

(i) Pre-smoothing: Iterate the SMOOTHER o times on AMuP = f* with initial guess v"
and compute the residual v = fh — Alyh,

(ii) Restrict the residual to the coarse grid r2h = I,fhrh.

(iii) Coarse solve: Solve A?Me?h = 12 on Goy,.

(iv) Interpolate the error back to Gy, i.e., el = Ighe% and correct the approximation

vl <—|vh+eh.

(v) Post-smoothing: Iterate the SMOOTHER «w times on AMul = f with initial guess v".

Output: The improved approximation v".

We overwrite the approximation v” in the algorithm whenever we iterate on it. Note that
the matrix A" is not yet defined. Looking at the initial idea, we find that A%"* should be the
result of the discretization of the model problem (3.1) on the grid Go,. However, calculating
this matrix is not practical, so instead we use our projection and interpolation operators and
define A% =1 }ZLhAhIQh. Since step (iii) is still expensive if Gy, is too fine, it is a good idea
to iterate the two-step scheme until the coarsest grid yields a linear system small enough to
be solved directly. This leads to the so-called V-cycle scheme. Let {Gyej, }1, be a sequence
of nested grids.
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Algorithm 3.2 (V-cycle). Input: A matriz A", a vector f*, an initial guess v", parameters
a1 and ag, and an iterative method (SMOOTHER).

(i) Pre-smoothing: Iterate the SMOOTHER o times on AMul = f with initial guess v".

(ii) If Gy is the coarsest grid, then go to step (iv).
Else, restrict to a coarser grid:

fo = (- ARy, A= ZRARTE o = Veeyele(A%", £21,0).

(iif) Correct the approzimation v <= v + 1%, v?".

(iv) Post-smoothing: Iterate the SMOOTHER oo times on AMu = fh with initial guess v".

Output: The improved approximation v".

For simplicity, we denote the residual as just another right-hand side f?"* and the
approximation of the solution of the residual equation as v2". Coarse grids can also be
used to calculate a better initial guess. Moreover, smoothing steps on coarser levels are
cheaper. This idea leads to the full multigrid (FMG) algorithm. We start on the coarsest
grid, where we approximate the solution to Au = f. Then, we use the interpolation of this
approximation as an initial vector for the next finer grid. Now we do a V-cycle between the
two grids to improve the approximation. This gives a good initial guess for the next finer
grid and a V-cycle on the three grids, we have already visited, improves the approximation
again. The described process is repeated until a final V-cycle is performed on the finest
grid. Let’s summarize this procedure.

Algorithm 3.3 (FMQ). Input: A matriz A*, a vector f*, and a parameter o.

(i) If Gy, is the coarsest grid, then set v =0 and go to step (iii).
Else, restrict to a coarser grid:

f2h _ I}%hfh, A2h _ I}%hAhIgh, th _ FMG(A2h, f2h)-

(ii) Use the approzimation as an initial guess on the finer grid v = Ié’hv%.
(iii) Perform ag V-cycles, i.e., v" <+ V-cycle(A", fP v")
Output: The approzimation v".

It is not immediately clear how to choose the parameters oy and ao in Algorithm 3.2 and
the parameter g in Algorithm 3.3, since the user wants to balance accuracy with cost. An
option to treat this problem for solvers designed for AFEM will be given in Chapter 6. For
a better understanding, the scheme of grids for the V-cycle and full multigrid algorithm are
shown in Figure 3.2.
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h
2h
4h
8h

Figure 3.2: The structures of a V-cycle and full multigrid with ag = 1.

Remark 3.4 (Cost of FMG). It may seem that the full multigrid would be far more expensive
than a V-cycle on the same sequence of grids of L levels. However, the number of operations
is multiplied by a constant depending only on ag. We observe that the number of grid points
and therefore the cost is divided by 2 whenever we move to a coarser grid. This yields the
estimate

L

1

cost(FMG) 1, = ag (Z 2—)) cost(V-cycle), < 2aq cost(V-cycle)r.
=0

Lastly, convergence of standard multigrid algorithms has been proven in the literature.
For completion, we present the following result from [Hac85, Theorem 7.2.5].

Theorem 3.5 (Convergence of V-cycle). Suppose the following properties:
e The matriz A" is symmetric and positive definite (SPD).
e The projection and interpolation operators satisfy I ,%h = (I;Lh)T in the sense of matrices.
e For the coarse-grid matriz, it holds A?" = IﬁhAhIQh.

e The smoothing iterations {u(i)}ieN are given by u(*Y = Sy L TMf for matrices S"
and T" associated to the grid of size h so that S" = I — (Wh)=1Ah Wh = (WMT
and Wh — A" is positive definite.

e There exists a constant C'4 > 0 such that the approzimation property
I(AM)™H = I3, (AP) T M| < Can®™
holds, where 2m is the order of the differential operator.

If at least one smoothing step is done, i.e., a1 + g > 0, then the V-cycle yields convergence
of the iterates to the true algebraic solution. 0

After gaining the core understanding of geometric multigrid methods, we move on to
discuss a multigrid method suitable as an iterative solver in Algorithm 2.11.
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® degrees of freedom
patch vertex in Vr,
patch Tr(2)

— patch subdomain wr,(z)

Figure 3.3: Degrees of freedom for the space X f . associated to the patch T7(2).

3.2 Multigrid solver for adaptively refined meshes

The idea of using iterative methods for AFEM is rather natural since the SOLVE module
in Algorithm 2.11 generates a linear equation. Furthermore, the adaptive loop provides a
sequence of successively refined, and thus nested, meshes {72}%20, which can be handled the
same way as the grids {Gye; }2, in Algorithm 3.2 and 3.7. Since the discretization stems
from a symmetric linear elliptic PDE, the arising matrix of the linear system is SPD and
fits the previously discussed multigrid framework. Moreover, the interpolation operator is
just the natural inclusion, because the finite element spaces associated to the triangulations
Ty are nested
Xocxlc...cxl  car,

where p > 1 is a fixed polynomial degree. In this section, we will use the functional
description of the discrete problems (2.14) in order to avoid basis-dependent formulations
induced by the matrices involved in solving these problems.

Let us introduce some useful notation. From now on, we consider {7}}%:0 C T ="T(To)
to be a sequence of successively refined simplicial triangulations, where NVB is used for the
refinement. For a mesh 7y, we recall that V, denotes the set of vertices.

Definition 3.6. For all vertices z € V;, we define the n-patch 7,"(z) inductively by

To(2) =THz) ={T€T:2€T}, T 2= ] Tw).
weTNV,
TeT(2)

Moreover, we denote the corresponding n-patch subdomains by

wy'(2) ::interior( U T).

TeT ()

Lastly, the size of a patch subdomain is given by hy, := max hy = max 7)1/,
TeTe(2) TeTe(2)

Furthermore, we define

Vo = Vo and VZ- =Ve\Vea UV N Vot we(z) # we—1(2)} for £ > 1.
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In other words, VZ’ is the set of new vertices in Ty as well as pre-existing vertices of Tp_1,
whose associated patch area was shrunk by the refinement. Lastly, we define the local spaces

X/, =8{(Tu(z)) for all z €V, and polynomial degrees g > 1.

For ¢ =1 and z € YV, N 0N, we get Xéz = () by definition.

Recall from (2.14) that uj is the exact FEM solution in the space X?. An iterative
solver may be mathematically described by its iteration-step operator ® : X7 — A7,
where ®,(ur,) is an improvement of the approximation uj, € X? to u}. Then, the algebraic
residual functional Ry, : X7 — R is given by

vy, € Xf — RL(’UL) = F(UL) — <<’U,L,UL>> = <<uz — uL,vL)) e R. (33)

Another motivation for the construction of the solver is the levelwise orthogonal decomposi-
tion of the algebraic error e} := u} — ur. We define p; € Xel for =0,...,L —1 to be the
solution of

~
[y

(03 ve) = Ro(v)) = 3 (pi,ve)  for all vy € XL

e
I
o

Moreover, pj € X7 solves

L—1
(oL o) = Re(ve) = ) (pk,ve) forall vp € X7,
k=0
Hence, by construction, it follows
L
uy, =ur + €}, :UL+Zpg
=0

Furthermore, we observe ((p;, pj)) = 0 for all 0 < ¢,k < L with £ # k, which follows from
the Galerkin orthogonality by induction. Hence, we get

L
lluf, —urll? = lel* = > oz I
=0

Since the components p; are pairwise orthogonal, it is a good idea to treat each error
component on its respective level. We had a very similar observation in Section 3.1.2, where
we saw that certain components of the error are more effectively eliminated on coarser
grids. Although the described process constructs the exact algebraic error, it is not useful
in practice since solving global problems on every level is very expensive. Therefore, the
proposed multigrid method only solves one inexpensive global problem on the coarsest mesh.
On the intermediate levels £ = 1,..., L — 1, local lowest-order problems on all patches 7;(2)
for z € VZ are solved. When p = 1, the same applies for £ = L. If p > 1, then all patches of
the finest mesh 77, are considered, i.e., the higher polynomial degree p is only taken into
account on the final level £ = L. The following algorithm calculates levelwise approximations
of the algebraic error components/residual liftings p;. Furthermore, these approximations
are also used to define an a-posteriori error estimator (r,(uy) for the algebraic error.
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Algorithm 3.7 (V-cycle of optimal local multigrid solver). Input: Current approzimation
ur, € X7, triangulations {7}}%:0 and polynomial degree p > 1.
Solver step: Follow the steps (i)—(iii):

(i) Global residual problem on the coarsest mesh:

e Compute the lowest-order residual lifting po € X3 of

{po,v0)) = Rr(vo) for all vy € Xj. (3.4)

e Define the step-size Ay := 1.

e Initialize the error correction og := \gpo and the a-posteriori estimator Cg =
IMopoll*-

(i) Lowest-order local residual-updates: For ¢ = 1,...,L — 1 and also ¢ = L if
p =1, perform the following calculations:

e Forall z € VZ“, compute py . € Xel,z by solving

«pf,zavé,z» = RL('UE,Z) - <<Ug,1,1}g7z» fO?" all Vg,» € Xel,z (35)

and define the levelwise residual lifting py := Zzevj e,z -

o Calculate

Ri(pe) — (oe-1, p0))
Sp = (3.6)
loell?
with the convention 0/0 := 0 in case of p; = 0. Define the step-size

L Sy ’if S < d+1
K' (d+ 1)1 otherwise.
e Define op:= 0y_1 + M\pe and ng = <€2—1 + Ay Zzevj ]Hpg7z|||2.
(iii) High-order local residual-updates: If p > 1, do the following steps:
e For all z € Vy,, compute pr, . € ng by solving

(pr,zsvrz) = Rr(vpz) — (op—1,vL2)  forall vy, € X}j?z (3.7)

and define py, =3 _cy PL.2-
e Define the step-size

Rp(pr) — {or—1,pL))
locll?

AL =S =

with the convention 0/0 := 0 in case of pr, = 0.

o Define oy, == o1+ Appr and (2 := (3 |+ A > ey, lpr.-I-
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Output: Improved approximation ®r(ur) := ur + or, € Xf and a-posteriori estimator
Cr(ur) := (g, of the algebraic error.

We note that the necessity of the case distinction of A\, will become more apparent later
on in the analysis (see the proof of Lemma 4.2 on page 22), but in all practical applications
we observed sy < d 4+ 1 and hence Ay = s; (see the experiments in Chapter 7). For now, we
will just prove optimality of the choice of the step-size sy.

Lemma 3.8. Let ug + o € X} be an approzimation of v} and p € X7 a correction. Then,
the optimal step-size is given by

(v = (ur + ), p)
lloll®

argmin ||u; — (ur + o+ Ap) || =
AER

Proof. We want to determine the minimum of the function
G = llug, = (ur + a + M) P = luf, — (ur + o)I> = 2A(u}, — (ur + 0), p) + A?|ll*.

The minimum translates to the best choice of the step-size A in the error correction direction
p so that after the update, the new iterate has the lowest algebraic error. Therefore, we
calculate the derivative

G'(N) = =2{(u], — (ur +0), p)) + 2A|Ip[|?
and note that G’(\) = 0 if and only if

(up — (up +0),p) 33) R(p) — (o, p))
lloll? loll>

Since G is convex, it attains its global minimum at this point. O

=

In case of Algorithm 3.7, we have ¢ = 0,1 and p = py on the levels 0 < ¢ < L. Thus,
definitions (3.6) and (3.8) yield optimality of s,.

Remark 3.9. Comparing Algorithm 3.7 to Algorithm 3.2, we see that the multigrid solver
is just one iteration of a V-cycle with no pre- and one post-smoothing step. Furthermore, an
optimal step-size is applied at the error correction stage. The solver uses additive Schwarz
associated to patch subdomains as the smoother, which is equivalent to diagonal Jacobi
smoothing for p = 1 and block-Jacobi smoothing for p > 1. For more details on this
connection, we refer to [DJN15, Chapter 1].

Remark 3.10 (Computational effort). We also want to comment on the computational effort
of the proposed algorithm, since this was the initial motivation for using an iterative solver.
The matrices for the local problems (3.7) have dimensions O(p?), where the notationally
hidden constant depends only on y-shape regularity. In the implementation, the Cholesky
factorization is applied to every patch on the finest level. Therefore, the computational effort
on the finest mesh Ty, is of order O(p*#7TL). The effort on the initial mesh depends only
on #7o since lowest-order polynomials are employed. Moreover, let us discuss the effort on
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the intermediate levels. Because dim(le’Z) =1, the effort for a patch solve associated to a

verter z € VZF s constant and hence the combined effort on the levels ¢ =1,..., L —1 is

L-1
>N o).

=1 zeVlZF

By definition the set VZ’ consists of new vertices and old vertices whose patch shrunk in the
refinement step. Since in the second case the node patch changed, the vertex is contained
in the patch of a new vertex. We already know that the number of vertices contained in a
patch is uniformly bounded by y-shape reqularity. This implies

L—1 L—1 L—1
#VE S H#VNV) =Y (Ve — #Vi1) = #V1 — #Vo < #VL ~ #T0
(=1 /=1 /=1

Hence, the overall effort is given by O(#7r), where the notationally hidden constant depends
only on the initial mesh Ty, the polynomial degree p, the dimension d, and ~y-shape reqularity.
In particular, the overall effort does not depend on the number of triangulations L.
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The objective of this chapter is to prove robust contraction of the algebraic error for the
multigrid solver of Algorithm 3.7 which can be phrased as follows: for any vy, € X7, let
®,(vr) be the improved approximation of uj from (2.14) via one step of multigrid (MG).
Then, there exists a contraction constant 0 < g.r < 1 such that

luz = LDl < getr [luz, — il (4.1)

Furthermore, we will show efficiency and reliability of the built-in a-posteriori estimator

Covr) < llug — oLl < Cl Culvr). (4.2)

The constants gctr and C!; are independent of the number of levels L and the polynomial
degree p. In this sense, we say that the solver is h- and p-robust.

In order to achieve this goal, we first prove some auxiliary results. Afterwards, we show
the existence of a hp-robust local multilevel decomposition for functions vy, € X7. This
decomposition relies on the one-level p-robust decomposition from [SMP*08] and provides
the p-robustness. The second building block is the strengthened Cauchy-Schwarz inequality,
which together with a lower-order multilevel decomposition in the spirit of [WZ17] will give us
h-robustness. Ultimately, we also prove equivalence of contraction (4.1) and reliability (4.2).

4.1 Auxiliary results

In this section, we first show that the number of overlapping patches is uniformly bounded,
more precisely, each simplex in the mesh belongs to at most d 4+ 1 node patches.

Lemma 4.1. For all simplices T € Ty, we have

#OWVyNT)=d+1. (4.3)
This implies
2 2
H‘ Z vezf| < (d+1) Z lveN* for all v, . € XZZ and all ¢ € N. (4.4)
z2€Vy 2€Vy

Furthermore, it also holds that

v (3 wes)

z2€Vy

2
‘ <(d+1) Z Vv ||? for all v, € ng and all ¢ € N. (4.5)
z€Vy

25



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

4 Analysis of the multigrid solver

Proof. The first statement follows directly from Definition 2.2 and Definition 2.3, since
T = conv(zo,...,z2q), where {29,...,2q4} € Vy with #{z0,...,24} = d + 1, and there
are no hanging nodes in conforming triangulations. Because the squared energy norm
Il - II? is additive with respect to the simplex domains and v, € Xg . are conforming with

supp vy, C we(z), we can rewrite the left-hand side of (4.4) as
| X e = X we
2E€Vy €Ty

2
TeT, zeVNT
Applying the triangle inequality for || - || and the Cauchy-Schwarz inequality for R*+! yields

IS v s S(X beake) < X #0401 Y loecliy
2€Vy

2
.

TET, zeV,NT TET, zeV,NT
(4.3)
=@+ > MoellF =@ +1) ) el
TET, 2eV,NT z2€Vy

The estimate (4.5) follows analogously as the differential operator is linear, which concludes
the proof. O

Other simple observations are the following bounds on the step-size and estimates for the
levelwise solver updates.

Lemma 4.2. Let £ € {1,...,L — 1} and also £ = L if p=1. Then, it holds
IAepel® < Xe > lloe I, (4.6)
zEV;

where Mg, pg and pg ., are defined in Algorithm 3.7. Whenever p > 1, we get
IAeprll? =2 Y lorslP. (4.7)
z€V,

Moreover, the step-size satisfies the upper and lower bounds
M<d+1 forl=1,...,L—1in general and for{ =1,...,L ifp=1, (4.8)

1
— <A {=1,...,L. 4.9
d+1— l fO’/’ ) ) ( )
Proof. We need to consider the case distinction in the construction of Ay in Algorithm 3.7.
Step 1: First, we prove (4.6) with equality if sy < d + 1. Under this assumption, it holds
that Ao = sp = (Rr(pe) — (001, pe))) /| pel* and therefore

Rp(pe) — {001, pe))
IAepell® = AZllpell® = Ao TR loel®> = Ae Z (Rr(pe,z) — (o001, pe.2)
ZEV;

(35)
=" A0 Y el

ZEV;
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Step 2: Let us show (4.6) for the remaining cases, i.e., when sy > d+1 and A\; = 1/(d+1).
Using estimate (4.4) from Lemma 4.1, gives

2

A (44) ),
Ixepell* = loell® < (d+1) Y Doesll? =2 Y lloes
d+1 d+1
zeV) zeV,

Step 3: The equality (4.7) follows analogously to step 1, if one exchanges VZ with Vr.
Step 4: It remains to show the bounds for the step-size. The upper bound (4.8) follows by
definition of A\;. Whenever \y = 1/(d + 1), the lower bound (4.9) holds with equality. In
the other case, we apply Lemma 4.1 to obtain

Ri(p0) — (001, pe)) 3.5) 2ozevy loeell® @) o

Ao = = >
llpell? llpell? d+1

and analogously, if p > 1,

AL = Rr(pr) — {or-1,pL)) (3.7 ZzEVL ”’Pszz (4;1) 1
e oo = d+1

This concludes the proof. ]

4.2 Multilevel hp-robust stable decomposition

This section aims to prove a multilevel Ap-robust stable decomposition on NVB-generated
simplicial triangulations. We will combine two known results: the one-level p-robust
decomposition from [SMPT08] and the local multilevel decomposition for lowest-order
functions from [WZ17]. We provide a proof of the second result, which requires the
definition of certain averaging operators.

Definition 4.3. Let S{(7;) = X} C X be the lowest-order FEM space associated to the
mesh 7,. We denote by ¢y . the S'(T;) hat-function associated with the vertex z € V,. For
every element T' € 7;, we define the local L:-projection Ppr : L*(Q) — X}|r = P1(T) by

(Porv,w)r = (v,w)r for all w € X}|r and all v € L*(9).

Furthermore, the averaging operator Il, : L?(Q) — Xél is defined through its values at the

nodes
_ Yrerie) I TI(Perv)(2)
2o reriz) 1T

Lemma 4.4 (h-robust local multilevel decomposition for piecewise affine functions). For
every function U%/ € XIII, there exists a decomposition

(ITpv)(2) : for all z € V.

L
vl = Z Z Ul},z with véz € XE{Z, (4.10)
£=0 zEV;
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which is stable in the sense of

L
D> IVeLLl? < CRu VoLl (4.11)
(=0 ZEVZ'

The constant Cypr, depends only on the space dimension d, the y-shape regularity (2.15),
and diam(2)/hg.

Proof. Let vi exX Ll We define the levelwise contributions wl} of vi using the operators 11,
from Definition 4.3
w) = (Iy — My_1)v} for £=0,...,L, (4.12)

with the exception of II_; := 0. In [WZ17, Lemma 3.1], it is shown that wl} e span{yy, : 2 €
V,}. Hence, we get w} = Zzevj vl{Z with v},z = w} (), € X}’Z. With the telescoping
sum and II_; = 0, we see

L L L
4.12
b =3 (0 =)o, S wp =S vl (4.13)

Hence, we have shown the decomposition (4.10). It remains to prove its stability (4.11).
Any two norms on a finite-dimensional space are equivalent. Thus, for the reference simplex
Trer we obtain

V]l ooty = 0llTe for all v € PY(Trep).

A scaling argument provides the estimate
T2 ||v]| ooy S 0l < |T1Y2 ([0l poory  for all T € T and all v € PHT),  (4.14)
where the hidden constant depends only on the dimension d. The hat functions satisfy

ezl oo () = 1, which together with (4.14) applied to wy|p € P'(T) yields

(4.14)
w0 Mwi@eezlr < Y0 Mwillpem T < Y0 willr. (4.15)
TeTi(2) TeTy(2) TeT(z)

lvg,.

The discrete Cauchy-Schwarz inequality and -shape regularity guarantee

2
(X lwdle) <#7) X2 bl < el .y

TeTe(2) TeTe(2)
Along with (4.15), this implies
||,Ul},z||wz(z) < ||wl}||w£(z) forall /=0,...,L and z € VZF. (4.16)
We refer to [BS08, Lemma 4.5.3] for the inverse inequality

Vel S hyptllvesllr for all T € To(z) and all v € Xéz, (4.17)
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where the hidden constant depends only on ~-shape regularity. However, we can apply this
inequality to patches, since the squared L?-norm is additive and the sizes of elements in a
patch are comparable via vy-shape regularity (2.16). Additionally, exploiting the stability of
the operator Iy shown in [WZ17, Lemma 3.7], we are led to

(4.16) _L
Z > HVvezH2 Z Dohlvle S D Z h 2wl )
I= OzEVJr = OZEVZ+ =0 zey (4 18)
4.12 12 i 12 |
= Z Yo h 2 = )vp |2,y S Z 2IMovp 12,2y + IV VL.
Vo

£=0 zEVZ'

For the initial mesh, a different argument is needed. Using the local L2-stability of IIy and
that all elements in the initial mesh have comparable size, leads to

S b2 Tovh 12y S 1o 3 b Pace,
zEVo zEVo
With finite patch overlap and the Poincaré inequality we obtain
ho D Ivil2acy S ho*IWLIP S V0L
2€V0o

This concludes the proof. O

Next, we formulate the p-robust decomposition from [SMP*08] but refer to the literature
for the proof.

Lemma 4.5 (p-robust one-level decomposition). Let vy, € Xf . Then, there exist functions
v} € X} and {vf }.ev, € XY such that
vy = vy + Z ng. (4.19)
zeVL

The decomposition is stable in the sense of

IVol® + > Vo] LII* < CELlVorl)?, (4.20)
zeVr

where the constant Cor, > 1 depends only on the space dimension d and the ~-shape
regularity (2.15).

Ultimately, we can prove the desired hp-robust stable decomposition.

Proposition 4.6 (hp-robust local multilevel decomposition). Every vy € Xf can be
decomposed into vy € X, {sz}zevj € Xg’z, and {vr, ;} ey, € ng such that

L—1
v, = vg + Z Z Ve + Z UL,z (4.21)

/=1 ZGV; zeVrL
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The decomposition is stable in the sense of
L-1
ool + >~ >~ Noeall® + Y llor:l? < Cépllocl?, (4.22)
fil ZEVZF ZGVL

where the constant Csp > 1 depends only on the space dimension d, ~y-shape reqularity (2.15),
diam(2)/ho, and Amax/Amin-

Proof. Let vy, € X f . We can apply Lemma 4.5 to obtain a decomposition on the finest level
L. Furthermore, the lowest-order contribution vi from (4.19) can be decomposed as shown
in Lemma 4.4. Thus, we get

L
vL, (4.19) vp + Z ”Z,Z%O)Z Z UI}’Z * Z Vi

zeVy, /=0 ZGVZ_ z€Vy,
L-1
= D Wty D vt Yy vt Y v
z€Vo =1 ZE\;Z’ ZEVZ_ z€Vr,
Defining the contributions vy := Zzevo véjz, Vg, = Uéz € X[{Z for z € V; and ¢ =
1,...,L —1, and vy, := Ui,z +op, € Xﬁz for = € V§ and vy, = vy, € Xﬁz for

z € VL \V; yields the decomposition (4.21). Next, we show stability of the decomposition.
For ¢ = 0, applying the estimate (4.5) leads to

Vool < (d+1) > [[Vug 1>
z€Vo

The Young inequality establishes

D oAver:P< D VeI +2 ) (IVup P+ Vo] 117

z€V, zEVL\VZ zEVz
<2 (3 IVoLLIP+ Y Ve Ll?)
zEVir zeVr,

on the finest level. We combine the last two estimates with d > 1 to obtain

L-1
IVool® + > D IVoeal® + D [IVors|?

=1 zevf Z€VL
L-1
S@+D(D IVl + 30 D Vel 2+ > IVek .2+ 3 Vel 1)
2€Vo =1 ZEV; ZEVZr z€VL
L
=@+ 1) (3 3 IVokl+ 3 IVeRIP).
=0 zEV; z€Vr,
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4 Analysis of the multigrid solver

Moreover, combining the results (4.11) and (4.20) yield stability in the H'(Q)-seminorm

L—1
(4.11)
IVeol2+ 32 3 Vel + D Vo )? < (d+ D) (CRulvobl? + 3 194 1)

(=1 zeVZ‘ z€V], zeVL

(4.20) 9 9 9
S HlaX{].,CML}COL(d+ 1)||VULH .

The norm equivalence (2.6) from Proposition 2.7 yields the estimate (4.22) with C3, =
max{l, CI%/[L}C%L (d + 1)Amax/Amin‘ =

4.3 Strengthened Cauchy—Schwarz inequality

The goal of this section is to prove a strengthened Cauchy—Schwarz inequality on NVB-
generated adaptive meshes. To this end, we first show a strengthened Cauchy—Schwarz
inequality on nested uniform meshes. Let us introduce some useful notation.

Definition 4.7. Let 7y be an initial triangulation of €2, 7 € T a refinement of 7y, and
T € 7. Furthermore, we consider the unique ancestor element Ty € 7o of T', i.e., T C Tp.
We define the element level by

level(T) := logy(|To|/|T)).

Since bisection halves the area of an element, the element level just denotes the number of
times Tp has been bisected to generate T, i.e., |T| = 2~ 1evel(T) |1y,

Lemma 4.8. Let Ty be an initial triangulation and T € T a refinement of To. For T,T' € T
with T NT" # 0 it holds that

|level(T) — level(T")| < Clevel,

where the constant Clevel depends only on the initial mesh To and ~y-shape regularity (2.15).

Proof. Due to (2.16), the size of elements with non-empty intersection are comparable, in
particular, |T'| ~ |T”|. Thus, we have |Ty|/|T| ~ |T{|/|T’| and the hidden constants C' > 1
depend only on y-shape regularity, the dimension d, and the initial triangulation 7. The
monotonicity of the logarithm implies

| To|

T/
level(T) = log, (m) < log, <C||T9||> = logy(C) + level(T")

and the same holds with the roles of T' and T” exchanged. Hence, we have the desired result
with Clevel = logz(C). ]

Let M = maxpe; level(T). We denote by {'7;}]]‘10 a sequence of uniformly refined

triangulations that satisfy ’7}“ = REFINE(’?}, 73) and ’7AB := To. From now on we assume
To to be admissible since this ensures that every element T € 7T satisfies level(T) = j
and hence is only bisected once during uniform refinement; see [Ste08, Theorem 4.3]. For
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4 Analysis of the multigrid solver

d =2 and an initial triangulation, a local numbering exists such that 7y is admissible. As
mentioned in Section 2.4.1 this is not true for d > 2. However, instructions for constructing
an admissible initial mesh 7y from any given triangulation are provided in [Ste08] Moreover,
denote by h] 1= max g |T'|'/4 the mesh-size of the uniform triangulation T With the

quasi-uniformity constant
Cqu := min{hp/hp : T,T' € To = To} € (0,1], (4.23)

it follows that ?Lj ~ hp for all T € 'f} and all 7 € Ny and the hidden constants depend only
on Cqy. Every object associated with uniform meshes will be indicated with a hat, e.g., /'?]1
is the lowest-order FEM space induced by 7A; In order to facilitate working with adaptively
refined meshes via properties of uniformly refined ones, we introduce the notion of local
generations.

Definition 4.9. Let ¢ € {0,...,L} and z € V. The generation gy . of a patch Ty(z) is
defined by

L= level(T) € N 4.24
gez 1= Iax, evel(T') € Ny (4.24)

and gives the maximal element level in the patch Ty(z).

We can show that the patch subdomain of any vertex z € V) lies in an n-patch subdomain
of the uniform mesh 7\; with gy, = j.
Lemma 4.10. There exists an index n € Ny that depends only on the initial triangulation
To and ~y-shape regularity (2.15), such that we(z) € Wy, (2) for all £ €{0,..., L} and all
z €Vy.
Proof. Let £ € {0,...,L} and z € V,. We define 7, := mingcy, () level(T).
Step 1: We first show the existence of a constant C; € N such that g, <r,, + Ci. By
definition, there exists triangles T, T" € T(z) that fulfill gy , = level(T) and r/, = level(T").
From Lemma 4.8 we already know that level(T') < level(T”) + Clevel. This concludes the
first step with Cy := [Cleyel |-
Step 2: Let T' € Ty(z). By definition, there exists an element 7" € 7\;&2 with T'C 7" and

T C Wr, (). As the uniform meshes are obtained by bisecting every element once, we can
~ C
decompose 1" into elements T}, € T, 1o, with k = 1,. 20 e, T = izll T;. Thus,
there exists an index n € N with n < 2¢1 and 7" C wn] 1, (2). From the first step, we
know gy, < ¢, + Ci and consequently @ oy, 1oy (2) € wy, (2). Hence, T C T C wg, (2)
which implies w(2) C Wy, (2) and therefore concludes the proof. O

We will need the last lemma to prove the strengthened Cauchy—Schwarz inequality on
adaptive meshes. First, we prove a strengthened Cauchy—Schwarz inequality on uniform
meshes in the following lemma.

Lemma 4.11 (Strengthened Cauchy Schwarz inequality on nested uniform meshes). Let
0<i<yj,u € Xil, and v; € Xl Consider a subset ./\/l C T and denote W; =

interior(UTeM\_ T>. Then, it holds that

(@, 8)a; < Cscs &0 IVl 1), (4.25)

32



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

4 Analysis of the multigrid solver

where § = 2714 The constant éscs > 0 depends only on the domain 2, the space dimen-
sion d, the initial triangulation To, Amax, max 7 | div(K)|| oo (1), the v-shape regularity
from (2.15), and the quasi-uniformity constant Cqy from (4.23).

Proof. Let us start from the left-hand side of (4.25) and split the integral over @; into its
elementwise components. Moreover, we apply integration by parts on every element 17" € M;
to obtain

(@.5)a = Y [ K@ Va do
— JT

TeM;
= Y (- [ av(kVa)G do+ [ K@ 0, do).
— T orT
TeM;

Furthermore, the product rule implies div(Au) = div(A) - u + tr(Ag—:), where A is a
matrix-valued function, u is a vector-valued function, and g—; denotes the Jacobian of u.
As u;|p is an affine function on every element T' € M, the second derivatives vanish and
we get
(@ o)a = 3 (_/ div(K) -V 8 de+ | KV -0, dr).
TeM; ’ or

Moreover, the Cauchy-Schwarz inequality and the assumption K|z € [W2(T)]2x! for all
T € Ty yield

G Ba < > (I iv(K) - Vil g 15 2cr) + Amaxl Vil 200m) 15 | 20m))

TGM\Z'
S Z <||VﬁiHL2(T)HﬁjHL2(T) + HVﬂz‘HLz(aT)H@HL?(@T)>,
TG.//\./t\i

where the hidden constant is just the maximum of max;._z || div(K)| 1 (7) and Amax. For
further calculations, we need a discrete trace inequality; see, e.g., [EG21a, Lemma 12.8].
Let F' = conv(zy,...,zq) be a face of a simplex T' = conv(zp, ..., z¢). Then, it holds that

lollz2(ry < hg*lloll2ery  for all v € PL(T), (4.26)

where the hidden constant depends only on 7-shape regularity. Since every simplex has
d + 1 faces we can extend this inequality to 97". The function v; is only piecewise linear on
the finer mesh 7;, however, we can decompose every element 7' € 7; into elements of 7; as

~ ~ (4.26) 12~ So1/2
Billor = > Willorea < > By V210 rerr = By 25117 (4.27)
T'eT; T'eT;
T'CT T'CT
33



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

4 Analysis of the multigrid solver

Ultimately, the uniform mesh size leads to

(4.27)

—~ —1/2 1/2
(e s > (IVGllem Il + (0 2 I9El ) (b V215 20r))
TGM,
T—1/27-1/2 —~ —~
= 5" @+ b PRSIV 2y 16 20y
TGM\i

each element is halved by uniform refinement, it holds hj / h; = 2-U=9/d and hence 6~ =
(271/2d))i=7 = (h; /h;)'/?. We thus obtain

Moreover, the identity Ej,ﬁi < diam(2) implies h 1 2h]_1/ 2 > 1. Since the volume of

~—1/27 —1 2
(e, < S by PPN o 195 2y

TeM;
N2 .
=Y (E—J) 2 V| L2 oy 105 | 2
TG./T/I\Z‘ ‘
= Y RNV ey 18] 2oy
TGM\i

Lastly, we apply the discrete Cauchy—Schwarz inequality to see

(@ a)e S Y B V@l 2wy 192y S &R IVE,195]s,
TE./T/I\Z'

This concludes the proof. O

We use the strengthened Cauchy—Schwarz inequality on uniform meshes to generalize the
result for adaptive meshes.

Proposition 4.12 (Strengthened Cauchy—Schwarz inequality on nested adaptive meshes).
For all ¢ € {1,...,L — 1} and k € {1,...,0 — 1}, consider levelwise functions v, =
Zzevj Uiz € X} and u, = Zwev,j u}“w € X! with ”e%,z € Xelyz and ullﬁ,w € Xkl’w. Then, it
holds that

L—-1/¢-1

L—1 1/2
({u, ve)) < Cscs (Z S k) (0 S k) a2

1 k=1 k=1 eVt =1 ey

~
Il

where the constant Cscg > 0 depends only on 2, the initial triangulation To, Amax/Amin,
maxreT, || div(K) || oo (1)/Amin, v-shape reqularity (2.15), and the quasi-uniformity constant
Cqu from (4.23).

Proof. Let M = max_.cy, gr,. be the maximal generation. We split the proof into seven
steps.

Step 1: First, we show a general estimate not directly connected to the statement at
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4 Analysis of the multigrid solver

hand. However, it will turn out to be very useful. For all 0 < 0 < 1 and z;,y; > 0 with
0<i<j <M, there holds

MM Mo 12 ML N2
DD 0wy < _5(293 (> (4.29)

1=0 j=i i=0 =0

We set m := j — i and change the summation order of 7 and m to obtain

M M M M—i M M—-m
E E (SJ_Zl'iyj = E E 5mxiym+i = E o E LiYm+i-
=0 j=1 i=0 m=0 m=0 =0

The Cauchy—Schwarz inequality and the geometric series yield

SRt - M N2 1/2
mzz:oém zz; TilYmti < mZ::O5mK Zz; ) (Z ym+z) }

<(L (S () s () ()

i=0 j=0

1/2

Hence, we proved the claim (4.29).

Step 2: For any z € Vi, and 0 < j < M, we recall the patch generation g, , from (4.24)
and define

.i”z(%)(z,j) ={le{l,....0}:zeV/and gy, =j} forall0<({<{<L. (4.30)

We recall that V; contains the new vertices and their immediate neighbors. Hence, the set

,,iﬂﬁ)(z j) keeps track of the levels, where the patch associated to the vertex z has been

modified in the refinement and remains of generation j. For any z € Vp and 0 < j < M, we
define a second set

%(%)(z,j) ={(w):Le{l,....0},weV,, gw=7jand z € w(w)}. (4.31)

In the set jfz(%) (z,7), we collect all levels and vertices whose patch is of generation j and

contains the vertex z. Again the condition w € Vﬁ imposes to consider only new vertices

or their immediate neighbors. Critically, there exist constants cW ¢ 5 g depending

lev? ~lev
only on ~-shape regularity such that the cardinalities of both types of sets are uniformly

bounded, i.e.,

max #(Z}(,)) < COff) < oo (432)
oégﬁ\/[
and
max #(.237(z,4)) < Clo) < o. (4.33)
025 %%
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4 Analysis of the multigrid solver

The preceding statements are shown in [WC06, Lemma 3.1] for d = 2. However, the
arguments can be transferred to three dimensions.

Step 3: In order to use the estimates from the last step, we reorder the contributions that
fulfill a given patch constraint. To this end, we observe that for 0 < £ < ¢ < L and a fixed
generation j € {0,..., M}, it holds that

{(Z,Z) GN()XVLZEE{E,...,Z},ZGVZ— Withg&z:j}

_ e D W, ; (4.34)
={(l,z) eNoxVy:z€V;,l e ’%,Z (z,5)}

The two sets represent different perspectives. Whenever we fix a generation j, we can
either: sum over all levels and find associated new vertices or direct neighbors satisfying
the generation constraint; or sum over all the uniform-mesh vertices 17j and find the levels
where the generation constraint is satisfied.

Step 4: Consider k € {0,...,L}, w € V", i € {0,..., M} such that gi,, = i. This yields
that there exists at least one element 7" € T (w) that satisfies T' € 73 We recall EZ ~ hr
and that the sizes of any two elements contained in a patch are comparable via v-shape
regularity (2.15), i.e., /HZ ~ hr =~ hy 4. Therefore, there exists a constant Ceq such that

Bt < Ceqhyly. (4.35)

Step 5: We can now prove the desired inequality (4.28). The main idea is to introduce
new sums over the generations with generation constraints. For ¢ € {1,...,L — 1} and
ke {l,...,£— 1}, this leads to

M M
1 1
fuwved = 3, D Qubw i) =23 D1 > Lk vi)

zeVH weV =0 j=0 zev} weV}
ge, 2=J 9k, w=t

We aim to use the strengthened Cauchy—Schwarz inequality on uniform meshes (4.25) from
Lemma 4.11. However, it can only be applied to piecewise affine functions on domains that
can be decomposed into triangles of the coarser triangulation. Therefore, we split the inner
sum over the generation at 7 = ¢ and obtain

(ug, ve)) ZZZ Z ukw, —1—22 Z Z ukw,vh (4.36)

=0 =0 eV wev;" =0 j=i+1 2ev) wev}t
ge, z_.] Ik, w_l 9ge, z—j Ik, w_l

In the first term, we change the summation order of ¢ and j. Moreover, we include the sums
over ¢ and k like in (4.28), split the individual summands according to (4.36), and change
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4 Analysis of the multigrid solver

the order of summation of ¢ and k in the second term. This procedure warrants

L—1/¢-1 M M L-1/¢-1
«uk7 1}@>> E E E E uk W Uf z
=1 k=1 J=0 =] £=1 k=1 2V weV,"
ge, z_.] 9k, w=1

1=0 j=i+1 k=1 {=k+ ZE);Z’ wEV,j_
gé,z:j gk,w:i

We abbreviate the last two terms as 51 and Ss respectively. Since they are both treated in
the same way, we proceed with the proof for Sj.

Step 6: Using (4.34) for the sums over k and w and recalling supp v} . C wy(z) we get

51=ZZZZ<<Z > ki)

=0 i=j (=1 ev+ weV; ke 2 (w,i)

ST (S Y ),

(4.37)

Note that the generation constraints yield > ¢ Zkeg(l) (wi) up, ., € /’/Y\Z.l and v} € )?jl
7 1,6—1 s ) 5

for g . = j. We observe that gy . = j implies that the vertex patch 7y(z) can be decomposed
into elements of the uniform mesh 7;. Because j < i, we can use the strengthened Cauchy—
Schwarz inequality on uniform meshes (4.25) to obtain

M M L-1
S1<0ss D0 0 SR X X kol IVl (439

Jj=0 i=j =1 zevf we; kegl( Y (wi)
gé,z:j

Before we can continue to estimate S, we focus on the term H Zweﬁi Zkeﬁf}},l(w,i) u,lg’wHw
for a given domain w C €. We split the L?>-norm into its contributions on the triangles
T € ﬁ Note that for a given triangle T" € ’7} only functions u}c,w, that satisfy z € wg(w)
for all z € V; N T, have support on T. Using the identity #(12 NT)=d+ 1, the triangle
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4 Analysis of the multigrid solver

inequality, and the discrete Cauchy—Schwarz inequality leads to

2

DI R £ 9] (D DD DR

weY; keﬂl(lg) L (w,) TeT, 2eViNT (kyw)e .fl o (z0)

(Y X whale)

TeTi 2eVinT (kw)e 2, (2.)

LY Y Y Jubuli

TET; 2eViNT (kw)eL )| (2,)

Due to the generation constraint gy, ,, = ¢, the support wy(w) of ullﬁ,w appearing in the above

sum can be decomposed into elements of 7\; For an element T € ’73 and vertex z € T'N ‘A/i,

we only need to consider z € wy(w), which exactly means (k,w) € 92”1(22_1(2, i). Let us fix a

tuple (k,w), then we can collect the contributions Hu,lngZme over the triangulation 7; to

obtain the full norm |u}. ||2. Since the generation constraint still holds, we get

> 2 Yo lkaltan =22 Y0 Il

TET; 2€ViNT (kw)e L) (2,0) weVi ke 2l (wi)

Therefore, we have

(DT SR e UESHC 1 DI R 1

weVi ke )| (wi) weV; ke 2’) | (w,i)

N

-1
(4.34) 2
- (d + 1)C(lev Z Hullﬁ,szJ

1 wEV,j
gk,w:i

L—2
2
< (d+1)02) Z > ka2

B
Il

(4.39)

By applying this estimate to (4.38) for w = wy(z) and employing the discrete Cauchy—Schwarz

inequality, we get

M M L1 e
5152252_32 Z h; <Z Z ||Ukw||w(z)) Vg 2w (2)

=0 i=j =1 zev; k=1 weyt
9¢,2=] 9k, w="1
M M — — — 1/2
3)Iia J(Z > Ivek o) (A Z z Z > lukul?,e)
Jj=0i=j =1 ey =1 zevi k=1 wevt
9e,2=) ge, z—.] 9k, w=1
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4 Analysis of the multigrid solver

Note that HVU%’ZHW(Z) = HVU%’ZH. Let us simplify the term containing four sums. We
recognize that we can change the order of summation such that the sums over ¢ and z
are the inner two sums. From Lemma 4.10 we know that an index n exists such that
we(2) Cwl(z) forall £=1,...L—1andall z € V5 with go. = j. There exists a constant
Chpateh > 0 depending only on v-shape regularity (2.15), the dimension d and the patch
layer n that gives an | upper limit for the patch overlap of n-patches, i.e., for any m € N,
0<j<Mand T € T there holds

#{z€V;: T Ca"(2)} < Cpaten- (4.40)

Thus, we have

L-1
Do lukwld e < D0 D0 luullEey = D2 D0 lukullZeg

=1 zeVZ+ =1 zeVlZF zeﬁj 4692”1(1271(2,])
gé,z:j 9e, =] ’ (441)
ek U2 el k1.
lev k2w patch“iey [ Yk w
zEVJ

Moreover, we use the equivalence of mesh sizes from (4.35) and a Poincaré-inequality to
prove

= T=21,.1 2 (4.35) 2 = —2 1 2 2
> > b lluul® <TG Y hhlluil* < C2 sz > IVl
k=1 wEV,j' k=1 wEV,': k=1 wGV,j

Ik, w="1 9k, w=1 Ghw =1

Combining the last estimates with the geometric series bound (4.29) finally yields

N J(Z > o) (Z > Ivad, )
j=0 i=j =1 2y k=1 wey;"
9¢,2=] Ik,w=1

L—2

/2 1t /
S vk ) (Y X Ivukal?)

=1 zevf i=1 k=1 weyt
9¢,2=J Gy =1

= (g ;Hw},zrﬁ)m(i 9 2)
&V

k=1 wev,j

L-1

(4.29)

5(%

Jj=1

~

Ultimately, we use the norm equivalence (2.6) to bound S; by the right-hand side of (4.28).
Tracking the constants in the above estimates, it follows that

L Lo\ 1/2 2 Lo\ 12
$1<Csos (D0 D i) (X2 X Mubul?)

1=1 ZGVZZF k=1 wEV,:'
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4 Analysis of the multigrid solver

where

—8) 7 (d+ 1)CP CpaenC 2.

lev lev

Cscs = CscsCeqCPA

mm(

Step 7: Checking the argument in Step 6, we reveal that the same argument bounds S2
even with the same constant CSCS Overall, we thus prove (4.28) with Cgcs = 2CSCS This
concludes the proof. O

4.4 hp-robust contraction of the solver

Finally, we have gathered all the tools to prove the main result.

Theorem 4.13. Consider the exzact FEM solution u} € X} of (2.14), an abitrary function
uy, € Xf, and the solver iterate ®p(up) € Xf and the associated a-posteriori estimator
Cr(ur) as output of Algorithm 3.7. Then, there holds the following link between solver
iterates and estimator

lluf, = ®p(up) I < fluf, — url® = Cour)®. (4.42)

Furthermore, the error estimator is efficient and reliable, i.e., there exists a constant C! > 1
such that
Colur) < flup —urll < Cralr(ur). (4.43)

Finally, the reliability of the estimator is equivalent to the contraction of the algebraic error.
Hence, there exists a constant 0 < qetr < 1 such that

lur, = @L(ur)ll < qewelluz, — uLll. (4.44)

This also yields that
luz — @r(un)ll < gennClaCr(ur). (4.45)
The constants qer and C!, depend only on the space dimension d, the ~y-shape regqular-

ity (2.15), the quasi-uniformity constant Cqu from (4.23), maxrer, || div(K)|| zoo (7)/ Amin,
diam(Q)/ho, and Amax/Amin. Therefore, the constants are h- and p-robust.

Note that the efficiency of the a-posteriori estimator for the algebraic error, i.e., the lower
bound in (4.43), is guaranteed. This means no constants arise in the estimate. To avoid a
case distinction, we present the proof only for p > 1. Moreover, we split up the proof into
the different statements from the above theorem.

Proof of the connection of the solver and estimator (4.42). The proof consists of two steps.
Step 1: First, we show the identity

L—1 9 L—1
‘H Z Aepzm - 2<<UE —ur, Z Aeﬂe>>
=0
= —|lpoll® + Z IAepell® — 2 Z Ae > llpelP

=1 Z€V+

(4.46)
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4 Analysis of the multigrid solver

We recall oy = Zi:o AePks Pt = Zzevj pe,z, the definition of the residual (3.3), the global
residual problem (3.4), and the local lowest-order problems (3.5) to develop

«Uz—ﬁunngﬁw>Q§Mh(§fAuw>Né /m-+§:Az§:-RLPu
=0 £=0

z€V+

(3:0)
llpoll® + EZAEE:JQ/MZ

/=1 ZEV+
(3.5)
looll® + Z A S (WoeslP + (o, o) )
=1 ZEV;
L-1 -1
= Mool + Y- A0 37 (Hoeall? + D" (hwows pv.))
(=1 ey k=0
L—1/¢-1
= |||/00|||2 + Z A¢ Z Z )\kpk, )\gpg
= zeVf =1 k=0

Expanding the square and applying the last result yields the desired identity (4.46):

L—1 ) L—1
DIRTY Ik CRSTOWTY)
=0 =0

L—1 L—1¢-1 L—1
:Zuwpguﬁ 237 S (wons Aepe) — 2w~ ur, D Aep )
(=1 k=0 =0
= —[looll® + Z IAepel® 2 Z A el
(=1 ZV+

Step 2: Recall that ®(ur) = up + o, = up +o0r—1 + Appr. Moreover, from the definition
of the residual (3.3), the identity (4.7), and the local problems (3.7), we get

luf, = ®(ur)|” = lluf, — (ur +or-1) = Avpell®
= llui = (ur + or-)|I* = 2A1{u} — (ur +or-1), pr) + IAeocl®
(3:3)
4.7
lui, = (ur + o D)I* = 220 (Relpr) — (o1, 1)) + AL D o=l (4.47)
zeVr,

L—-1

3.7) " 2

i = (ue+ D deme) || =20 D ol
£=0 z€Vy,
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4 Analysis of the multigrid solver

Focusing on the first term and expanding its square leads to

L—1 9 L—-1 9 L-1
e ool b Al e o)
=0

g, — usl? ~ Dooll® + Z IAepell® — 2 Z MY lloesll?

(=1 ZEVJr

< g, —urll® = lleol® = Y Ae D leesll®.

1=1 ZEVZ—

We use this and the definition of the error estimator (;, in Algorithm 3.7 to obtain

L—-1
lluf, = @Qur)l® < fluf, = url® = looll® = > Ac Y Moesll? =Ar D llor:l?

=1 zEVZ' zeVy
= fluf, — url® = ¢r(ur)?

This concludes the proof of (4.42). O

Proof of the equivalence of (4.43) and (4.44). Let us prove the equivalence of the upper
bound in (4.43) and the error contraction (4.44).

Suppose reliability, i.e., the upper bound in (4.43) holds for a constant C/; > 1. Then, it
follows from (4.42) that

*_ P 2(442 . 2 2(423) * 2 FN=21,,% 2
llur, = ®(ur)l] v = urll® = Co(ur)™ < llug —url” = (Cra) " llug, —urll”

Thus, we have proven contraction of the error (4.44) with ¢%, :== 1 — (C’,})~2 € (0,1).

rel
For the converse, suppose the error is contracted by some constant 0 < g, < 1.

With (4.47), we have
luz, = @(ur)l® = luj, — (uz +oz-1+ ALpr)

L—-1
L~ (o4 )| =20 X ol
(=0 z€V],
L—-1 9 L—-1
= B = wnl? + || 30 Aepe|| 2wt = wns D Aepe) = A Y Ul
=0 £=0

zZ€V],

I

This and the identity (4.46) yield

luf, — ur|?
= lluf, — @(ur)|* + Jooll* — Z [Xepell® + 2 Z A D loelP+ 2 ) ol
/=1 Z€V+ z€V,
L-1
< fluf, = @ur)I? + 2lpol* + 2 A 220 Y loesl®
=1 zeyf Z€VL
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4 Analysis of the multigrid solver

Hence, solver contraction (4.44) gives us

(4.44) . L-1
lug, —urll® < @2 llui —wrl? + 2<||\Po P+ "2 > Moe=lP+ AL Y o 2)
=1 zevf z€VL

= ullut — ur ) + 2¢r (ur)?.

Gathering the terms containing the algebraic error on the left-hand side and dividing by
1 — ¢, > 0 gives the upper bound in (4.43) with (C’)? =2/(1 — ¢3,) > 1. O

rel

Proof of efficiency and reliability (4.43). The efficiency, i.e., the lower bound of (4.43) fol-
lows directly from (4.42).

The reliability, i.e., the upper bound in (4.43) requires two main ingredients that were
developed in Sections 4.2-4.3, namely a suitable stable decomposition and strengthened
Cauchy—Schwarz estimate. Begin by applying the local multilevel decomposition from
Proposition 4.6 to the algebraic error u} — u;, € X7. We obtain functions vy € Xol,
{U&Z}zevj c XE{Z and {vr . }.ep, € Xf,z such that

L—1
uy —up = v+ Z Z vy, + Z vr,. and (4.48)

(=1 ZEVZE ZEVL
L—1

ool + - > Mvell® + D orel* < Cépllug, — urll®. (4.49)
/=1 ZEVZL z€Vr,

We use the definition of the residual (3.3), the global coarse residual problem (3.4), and the
local problems (3.5) and (3.7) to obtain

L—1
N 4.48) /)
R e R DD DR TR DR

=1 zevf zeVr,
G0 L
= <<p0,1)0>> + Z Z RL(UE,Z) + Z RL('UL,Z)
=1 zevf z€VL
57 =
= oo, vo) + D0 D (Gpeerveah + (-1, ve))
=1 ZEVZ_
+ 3 (Gore o) + Gor,0n2)).
z€V],
43



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

4 Analysis of the multigrid solver

Plugging in oy = pog + Zi:l Arpr and gathering the terms containing pg, we see

oz, = wel® = (o, vo +LZ_1 > veat D vre) +LZ_1 3" (oo ves)

/=1 Z€V+ ZGVL /=1 ZGVZF
o (4.50)
+ Z pL Z7ULZ + Z Z <<)\k/7k7 Z Uf,z>> + Z <<>\kpk7 Z 'UL,Z>>-
z€Vr, ZGVZ— k=1 z€eVr,

We estimate the five terms constituting the algebraic error separately. However, we will use
the Young inequality

ab < (a/2)a® + (20)71b* for all a,b >0 and all & > 0 (4.51)

multiple times. We recall the decomposition of the error (4.48) and use the Cauchy—Schwarz
inequality for ((-,-)) as well as the Young inequality (4.51) with a = 1 to estimate the first
term

L—1
(4.48) . 1 Loy
(Porvo+ D2 D veet 32 via ) "= (oo ui = ws) < Sllool? + Flhui — sl
/=1 ZGV; zEVy,

For the second term, the Cauchy—Schwarz inequality for (-, -)), the Young inequality (4.51)
with a = 4C%}, and the estimate (4.9) yield

z_: Z <<P€,z7W,z» >

+Ser S5

=1 Ze]}Z’ /=1 Z€V+ Z 1 €V+
(4.9)
< 208 (d+ 1) ZM S llpesl? + 802 Z > el
/=1 Z€V+ Z 1 €V+

For the third term, the same arguments show

> (preson) < 2C0(d+ A0 3 llovcl® + 5o
SD

z€VL z€VL

z€V

Since pg = Zwev,j Pkw, the strengthened Cauchy-Schwarz inequality (4.28) from Proposi-
tion 4.12 can be applied to the fourth term. Moreover, the Young inequality and the upper
bound of the step-size (4.8) lead to

101 (4.28) L1 /
T (e Y 0) " (X8 mal?) (2 X hel?)”
(=1 k=1 z€V+ k= 1w€V+ =1 Z€V+
< QCSCSCSDZ > Ikl + 802 Z > flve P
k=1 wev D=1 zeVf
)
< 2035 C3p(d +1) ZAk > lorwll? + 802 Z > flveslIP.

= weV D=1 zeV}
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4 Analysis of the multigrid solver

Ultimately, the last term consists of higher-order functions as well as a sum over the levels.
Similar to [CNX12, Proof of Theorem 4.8|, we want to exploit the finite overlap of patches.
Therefore, we use the Cauchy—Schwarz and Young inequality to obtain

> (o T o) = 5 S

=1 zeVL
1
<2t S| S unll, b g 3 henel®

2€Vy k=1 SD zevp,

As every simplex is contained in d + 1 patches, the first term can be further estimated
using the strengthened Cauchy—Schwarz inequality (4.28), the identity (4.6), and the upper
bound of the step-size (4.8)

L—1
S xn, <@+l Z ol
zeVr k=1 wr(z =1
L—10-1
= (d+1) Zumpkm2+22§j Mepis Aepe)|
(=1 k=1
(4.28) -L—l L—2 Jo L1 y
<@+ 1) 32 Pl +20s0s (3 3 Wworal?) (0 32 Maveal?) ]
k=1 k=1 wevt =1 zevf
(4.6)
4.8
< (d+1)[1+2Cscs(d+1 (Z)\g )
£=1 26V+
Altogether, we have that
L—1
Z<<)\kpk7 Z UL,Z>>
k=1 zeVy,

> Mol

zeVL

< 2CEp(d+1)[1 +2Cs0s(d + 1) (Z A Ioeal?) +

802
z€V+ 5D

Combining the bounds of the five terms that make up the algebraic error (4.50), defining
the constant (C! )% := 4max{1/2,2C3,(d + 1)[2 + 2Cscs(d + 1) + C3]}, and exploiting
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4 Analysis of the multigrid solver

the stability of the decomposition (4.49) gives the estimate

1
I, — sl < glool® + i, — uel® + 7(Cla) (ZA«Z|||pezm2+AL2mpLzm)

= z€V+ zeVr,

)3
< 2, — wl + 5(Cla) (!!!/)0!!!2+Z>\z > leesl?+ 20 > lor:I?)

= Z€V+ zeVrL,

b (Z S ol

SD "e=1 ey 2V,

(4 49

3. . 1
= Sl — wl? + (Cha)* o)
Rearranging the terms leads to the reliability of the error estimator

lur, = url® < (Cra)*Crlur)®.

This concludes the proof of Theorem 4.13.
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5 Improved analysis of multigrid contraction:
local dependence on the diffusion
coefficient

In this chapter, we present new results improving the analysis of [[MP*24] by means of re-
working the proofs of stable decompositions of Section 4.2 and strengthened Cauchy-Schwarz
inequality of Section 4.3 in such a way that the inherent constants depend only on local
variations of the diffusion coeflicient. As a consequence, we can improve Theorem 4.13 so that
the contraction factor and reliability constant depend only on the local diffusion-contrast.

The chapter is organized as follows: In Section 5.1, we state the main result in Theo-
rem 5.1 and prove several auxiliary results. Section 5.2 then presents the strengthened
Cauchy—Schwarz inequality with improved dependence on the diffusion-contrast. In Sec-
tion 5.3, we establish an h-robust stable multilevel decomposition in the energy norm.
For the case d = 2, Section 5.4 introduces a p-robust stable decomposition, which is then
extended to an hp-robust stable decomposition in Section 5.5, where the stability constant
depends only on local variations of the diffusion coefficient. Finally, the proof of Theorem 5.1
is provided in Section 5.6.

5.1 Main result

First, we present the improved version of Theorem 4.13 and provide explicit formulas for
the new constants.

Theorem 5.1. Letd =2 andp>1 ord=3 and p = 1. Consider the exact FEM solution
uy € Xf of (2.14), an abitrary function uy, € Xf, and the solver iterate ®r(ur) € Xf and
associated a-posteriori estimator (r,(ur) as output from Algorithm 3.7. Then, there holds
the following link between solver iterates and estimator

lluf, = @r(ur)l® < fluf, — urll® = Colus)®. (5.1)

Furthermore, the error estimator is efficient and reliable, i.e., there exists a constant C~'re1 > 1
such that N
Cr(ur) < Jlup — urll < CraCr(ur). (5.2)

Moreover, the reliability of the estimator is equivalent to the contraction of the algebraic
error, i.e., there exists a constant 0 < qety < 1 such that

luz, = @r(up)ll < geselluz, — urll- (5.3)
This also yields that B
luz — @r(ur)ll < getrCrerCr(ur). (5.4)
47



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

5 Improved analysis of multigrid contraction: local dependence on the diffusion coefficient

The constants qetr and 6rel depend only on the space dimension d, the y-shape regular-

ity (2.15), the quasi-uniformity constant Cqy from (4.23), the initial mesh To and the local

constants CY and Cl(fc),

loc which are defined as

max m ” le(K)HLoo T SUD,cw2(s )\max K y
Cl(olc) F= max 4 sup .ng 2 K : ), sup - fyE 2 (K( ) (5.5)
z&€Vo mn yEwd(z) )‘min( (y)) zeV, 1 yews (2) Amin( (y))

" D (K (1))
SUP w3 (2) Amax
CI(OQ(? = sup - yeup(z) ’ . (5.6)
2€Vp ll’lfyewg(z) )\mln(K(y))

Therefore, the constants depend only on local variations of the diffusion coefficient. There
exist constants Csp, Cur, and Céeg independent of the diffusion coefficient K, explicitly
giwen in Lemma 5.26, Proposition 5.19, and Proposition 5.9, respectively, such that the
reliability constant Cie is given by

loc

(Ceat)? := 4maX{1/2, 2CD(CI(022)2(d +1)[2+ 2ChgCA (d 4 1) + (Cécsq(olc)ﬂ }, (5.7)

where Cp = 5’513 ford=2 and Cp = éML for d = 3.

The proof is postponed to Section 5.6.

5.1.1 Auxiliary results

In this section, we present some useful properties of the interaction of patches of different
levels. These will provide the technical geometric tools needed to prove the main results
of this chapter. Our first goal is to show that patches, whose intersection has a positive
measure, are contained in a two-layer patch of the initial mesh 7y, recall Definition 3.6. For
this, we need the following two lemmas.

Lemma 5.2 (Neighboring patches). Let ¢ € {0,...,L}, z,w € Vy and consider vertices
z,w € Vy with |we(z) Nwe(w)| > 0. Then, it follows that we(z) Uwe(w) C w?(z) Nw?(w).

Proof. The assumption |wy(z) Nwy(w)| > 0 and the patch domains being open imply the
existence of a simplex T" such that 7" C wy(z) Nwy(w) and therefore z,w € V, NT. The
Definition 3.6 of n-patches yields wy(z) C w?(w) and we(w) C w?(z), which concludes the
proof. O

Lemma 5.3 (Patch ancestor). Let £ € {0,...,L} and z € Vy. Then, there exists a vertex
20 € Vo such that we(z) C wo(zo).

Proof. We will treat d = 2 and d = 3 separately.

Step 1: Let d = 2. Every T € Ty(z) has a unique ancestor 7" € Ty such that T C T'. We
distinguish between three cases:

Case 1: All elements in the patch have the same ancestors, i.e., wy(z) C T". We can choose
any vertex of T” as zg.

Case 2: Suppose there are exactly two distinct ancestor simplices 7] and T4 such that
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5 Improved analysis of multigrid contraction: local dependence on the diffusion coefficient

VAVAVAN

T

VAVAV

Figure 5.1: Illustration of the two-patch of z and the element-patch of T" colored in pink.

wy(z) € T{ U Ty. Then, there exists two elements 11,15 € Ty(z) with 71 C 7] and Ty C T}
such that 773 N 75 is an edge. Hence, 7] and T3 also share an edge. Both vertices of this
coarse edge can be picked as zg.

Case 3: Assume there are n > 3 ancestors T7,...,T), for the patch. Then, there exists
Ti,....,T, € Te(z) with Ty C T7,...,T,, C T). Because a triangulation is a partition and
n > 3, the intersection 77 N --- N7}, can at most contain one vertex. Thus, the observation

zeyn---NnT,CTiN---NT),

implies z € Vy and wy(z) C wp(z).

Step 2: Let us consider d = 3. The first two cases follow analogously if we exchange edges
with faces. However, the third case needs to be treated differently. It can happen that
T{N---NT) is an edge. In that case, we can choose any of the two vertices contained in
the edges as zp. Lastly, if T/ N--- N7} is not an edge, we continue as in Case 3 of Step 1.
This concludes the proof. ]

Combining Lemma 5.2 and Lemma 5.3 gives us the desired result.

Corollary 5.4 (Ancestor of level-overlapping patches). Let ¢,k € {0,...,L}, z € V,
and w € Vi with |wi(z) Nwi(w)| > 0. Then, there exists a vertex wy € Ty such that
we(2) Uwg(w) C wi(wo).

Proof. From Lemma 5.3 we get zg, wo € Vp such that wy(2z) C wp(z0) and wg(w) C wo(wo).
Since |wo(2z0) Nwo(wp)| > 0 according to we(z) Nwe(w) C wp(zp) Nwo(wp), Lemma 5.2 yields
we(2) Uwg(w) € wi(20) Nwd(wp). This concludes the proof. O

Moreover, we introduce the so-called element-patches.

Definition 5.5. Let £ € N and T € 7. Then, we define the element-patch by

we(T) = interior< U T').

T'€T0(2)
zeTNV,

For z € T, it follows directly from the definition that w,(7) C w?(z). In the next lemma,
we show that any vertex patch is contained in a vertex patch of the previous level.
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5 Improved analysis of multigrid contraction: local dependence on the diffusion coefficient

Lemma 5.6. Let ¢ € {1,...,L}. For every z € Vy, there exists a vertex 2’ € Vy_1 such that
we(z) C we—1(2") and consequently w}(z) C w? ,(z'). Furthermore, there exists an element
T € Ty—1 such that z,2' € T.

Proof. We need to distinguish between two cases.

Case 1: Suppose z € Vy_1. Then, it immediately follows that wy(z) C wy—1(z) and z € T
for all T € Ty—1(2).

Case 2: Assume z ¢ V;_1. Due to the used NVB refinement, z has to be the midpoint of an
edge of the mesh Ty_1, i.e., z € E := conv{zy, 22} with 21,29 € Ty_1. We can choose 2’ as
either vertex z1 or zo. Moreover, there is at least one element T' € T,_1 with £ C T and
hence z, 2’ € T. This concludes the proof. O

For the following result, we define 7, , := minper2(,) level(T).

Lemma 5 7. Let £ € {1,...,L}, z € Vg, and 2’ € Vy_1 given by Lemma 5.6 yielding
wi(z) Cw? (2). Then, there exists C1,k € N depending only on the initial mesh Ty and
uniform ~y-shape regularity such that go, < 7p_1. + C1 and w? | (2') C ZJ’;Z,Z (2), with ge .
defined in (4.24).

Proof. Step 1: Let z € V,; and the associated 2’ € Vy_;. Then, there exists an element
T € Ti(z) such that gy, = level(T). Furthermore, there is an element 7" € T2, (z’) so that
Ty—1» = level(T"). Since we can find a triangle 7" € Ty_1(2') with T C T” and |T'| ~ |T"|
and since all triangles in 7,2, (2’) have comparable size, we have |T| ~ |T”| with hidden
constants that depend only on «-shape regularity. Let Ty, 7)) € To denote the ancestors of T
and T" respectively. Then, there exists a constant C' > 0 that depends only on the initial
mesh and vy-shape regularity such that

T/

level(T) = 10g2<| O|) < log, <C| 0’) =logy(C) + level(T").
T "]

For Cy := [logy(C)1, we get go. < 7Tp—1, + Ch.

Step 2: From Lemma 5.6, we know that z_ and Z' lie in a shared element 1" € Ty 1(27),

i.e., 2,2’ € T. Moreover, there is a triangle T e 7;1Z - with 2,2/ € T C T. Thus, it holds

that 2/ € T and by the definition of 7, To—1. also w? (') C @2 (T). Furthermore, we

—1,2/

can decompose any element 7" € 7\7% Lot into elements T’ 7A%e ETe with j =1,...,2¢,
ie, T = U2 ! Tj. In particular, this holds for T. Since z € T, we get T C @ wre 11 oy (%)

Hence, there exists an integer k¥ € N with k& < 2¢1%2 such that & wn_l’zl (T) C wa} ) Zr+01( z).
Finally, Step 1 yields

~ ~k ~k
Fa)Cd (D) CBE 0 () Cah, (o).

This concludes the proof. O
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5 Improved analysis of multigrid contraction: local dependence on the diffusion coefficient

5.2 Strengthened Cauchy—Schwarz inequality

With the results from the previous section, we can improve the constant @SCS in Lemma 4.11
and subsequently also the constant Cgcg in Proposition 4.12. Let 7 € T be a refinement of
the initial mesh 7y and M C 7. For w := interior (e, T'), we define

] = manc{ e |05 () ), Sup A (K 1) (5.8)

Lemma 5.8 (Strengthened Cauchy—Schwarz mequahty on nested uniform meshes with
a local diffusion-contrast dependence). Let 0 <1i < j, u; € X and v; € Xl Consider a

subset .KA\Z C 7\; and denote wW; = interior(UTe/Q_ T). Then, it holds that
(@i, 5, < CosCl@i] A Vi, 151z, (5.9)

where § = 27V The constant 6§CS > 0 depends only on the domain §2, the space
dimension d, the initial triangulation Ty, the y-shape regularity from (2.15), and the quasi-
uniformity constant Cqy from (4.23).

Proof. Let us start from the left-hand side of (5.9) and split the integral over w; into its
elementwise components. Moreover, we use integgeition by parts, the product rule, and that
u;|7 is an affine function on every element 7' € M; to obtain
(@ o)e = 3 (_/ div(K) -V 0 de+ | KV 0, dr).
T

— oT
TeM;

We use the eigenvalue identity (2.7) to estimate the boundary integral. Moreover, the
Cauchy-Schwarz inequality and the assumption K|z € [W1°°(T)]9*? for all T € Ty yield

(@, 005, < Y max || divE| pooin IVl 1200 10| 2y

— w;
TeM; ~
+ sup Amax (KW VUil L2 (1) 10 | L2 (o7
— yewl
TeM;
<C@) Y (Hvai||L2(T)||5j||L2(T) + HV@'HB(aT)||@‘||L2(6T))-
TEM\-;
Following the steps from the proof of Lemma 4.11, we conclude the proof. O

Proposition 5.9 (Strengthened Cauchy—Schwarz inequality on nested adaptive meshes
with a local diffusion-contrast dependence). For all¢ € {1,...,L—1} andk € {1,...,0—1},
consider levelwise functions vy = Zzevj ”z},z € X! and u, = Zwev,j u,lcjw € X! with

v}z € XL}Z and u,i w € chlw Then, it holds that

L-1 /
o) < Clescl? (X3 kol?) (3 3 1), 610

1 k=1 wey," =1 zev}

L-1

~

-1

(=1

>
Il

o1
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5 Improved analysis of multigrid contraction: local dependence on the diffusion coefficient

where the constant C’l(olc) is defined in (5.5) and the constant Ciq > 0 depends only on Q,
the initial triangulation To, v-shape regularity (2.15), and the quasi-uniformity constant Cqy
from (4.23).

Proof. Let M = max_.cy, g1 . be the maximal generation. We recall the representation (4.37)
of S1 in Step 5 of the proof of Proposition 4.12, namely

M M L-1

P ID OIS “’1€7w’”ﬂ}72>>w(z)‘

]:0 ’L:] /=1 ZGVZ' w€91 keﬂgl(lg),l(wﬂ)
9e¢,2=]

Because j < i, we can use the strengthened Cauchy—Schwarz inequality on uniform
meshes (5.9) to obtain

M M L—-1
$1<0scs 3D 803 S Clae@ RN D 30w IV

§=0 i=j =1 zevf weVi ke 2 (w,i)
9e,2=])

we(z)-

By applying (4.39) for w = wy(z) and employing the discrete Cauchy—Schwarz inequality,
we get

M M ) 'Lfl R L—2 1/2
SISO TS S R A(X Y Iukul)  Clee @IV ey
j=0 i=j =1 zevS k=1 wev}
90,2=] Ik, w=1
M M Ll 12
SN Y ClaNvel 2,
J=01=j =1 eyt
9¢,2=])

g L1 L—2 . s
(YT Y Y il )
(=1 zeyf k=1 wev;

g(,z:j gk,w:i

Let us focus on the term C’[wg(z)]Hu}C’wHie(z). Since u}{’w € Xkl’w, the norm |]u,1€7w||ie(z)

has a positive value if |wy(z) Nwg(w)| > 0. Therefore, Corollary 5.4 yields the existence of a
vertex wo € Vy independent of ¢ and z such that wy(z) Uwg(w) C wd(wp). Thus, we have

only

Clor@llug w12,y < maX{Tc“f‘i‘)” AivKll=, sup )Amax(my))}uuz,wuiﬂz).
Cwi(wo yews(wo

As previously established in (4.41), there holds

L-1
> > Cloelug oz,

1=1 zGV;
gé,z:j

< CpatenClgg max{_masx || divK]pery, 0P Amax(KW)) }lluf o
Tgwg(wo) ?JGW(%(”LUO)
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5 Improved analysis of multigrid contraction: local dependence on the diffusion coefficient

Moreover, we use the equivalence of mesh sizes from (4.35), a Poincaré inequality on the
patch w(w), and the norm equivalence (2.6) to prove

~ (4.35) -
Clwg (wo)lh; 2[lup o 1* < Clasg(wo)]Cohy [t wl* < Clwd (wo)]Co,CR [ Vg, |12

(2:6) |
< Clwd(w 02 C3 U 1
[ 0( 0)] Plnnywk(w) Amln(K(y)) ||| k,
1
< Clwg(wo) C’2 C3 ur I
[ 0( ] Plnfyewg(wo) Amln(K@/))w k, ”’

i fyewo(wo) )\mln(K(y)) ’ i fyGwo(wo) )\mln(K(y))

For every ¢ € {1,...,L — 1} and z € V,, Lemma 5.3 yields a vertex zyp € V) such that
we(2) C wo(z0) € wd(20). We use this and the norm equivalence (2.6) to obtain

ma‘XTC 2 HdiVKHLOO(T) sup €w2 w )\maX(K(y))
C2 C2 max { yuwqg(wo) ko1

(26) 1
Clad@NIVelall ) < Clon—— gl 1P
YyEwyp(z) 7\min

max .- 2y | div K| zoo (1) sup w2(z0) dmax (K (y
< max J TR z0) ( | BUPyeut(z0) (K(y)) oL 12
mfyewg(zo) Amin (K (y)) mfyewg(zo) Amin (K(y))

Taking the supremum over all vertices of the initial mesh and applying the geometric series
bound (4.29) finally yields

@ M M y L—1 L2 L—2 12
S15 CRISN T Y k) (XN Y Mkl

j=0i=j =1 zeyt k=1 weyt
9¢,2=] Gk, =1
(4.29) M L-1 M L—2 1/2
1)
SN Y ) (Y S k)
J=LE=1 eyt i=1 k=1 wev}
ge,2=J Jke,w="1
L-1 L—2
1/2 1/2
2 1 2
= CsesChoe (D2 30 ko) (32 D2 kol
=1 zepf k=1 wevt

This concludes the proof with

Cscs = aéCSCeqCP(1 —8)"H((d+ 1)0( 'c atchc(l))1/2

lev lev

5.3 Multilevel h-robust decomposition

The goal of this section is to show stability of the decomposition (4.10) from Lemma 4.4 in
the energy norm such that the constant Cyyy, in (4.11) with ||V - || being replaced by || - ||
depends only locally on the contrast factor of the diffusion coefficient.
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5 Improved analysis of multigrid contraction: local dependence on the diffusion coefficient

5.3.1 Challenges

The proof of Lemma 4.4 relies on [WZ17, Lemma 3.7] which in turn uses H!-stability of
the L2-projection. Therefore, we present the proof of [WZ17, Lemma 3.7] to explain the
challenges of extending the result to the energy norm with only local dependence on the
diffusion coefficient.

Proposition 5.10 ([WZ17, Lemma 3.7]). Let Iy be the averaging operator from Defini-
tion 4.3. Then, it holds that

ZZh I = Ty )ol2, ) < CAlIVO[? for allv e HY(Q),  (5.11)
= 12:61/Jr

where the constant Cga > 0 depends only on the space dimension d and y-shape reqular-
ity (2.15).

In [WZ17, Lemma 3.4], local L?-stability of Il is shown. However, note that (5.11) leads
us to estimate terms of the type ||II,_1v[|% for triangles T € Ty and any function v € HE(€2).
Thus, we first introduce an auxiliary result.

Lemma 5.11 (Estimates on different levels). For £ € {1,...,L} and z € V; let 2’ € Vy_4
be the vertex provided by Lemma 5.6. Then, it holds that

102 (5.12)

we(z) ~

(=)
Proof. Let T € Ty, and let T” € T;_; denote its ancestor. We get

< ol

1L, 1UHT < ||, 1UHT’ S HUHW@ 1(T7)

The vertex 2/ € Vy_1 allows to satisfy we(z) C wy—1(2’). Thus, we can use finite patch
overlap to obtain

Mool = S Merlp< Y el

TET(2) T'€Tp-1(2')
2
<Y el Sl
T'€Te—1(2)
This concludes the proof. ]

Proof of Proposition 5.10. We present the proof for completeness Let v € H}(2). For
m € N, we denote by Qm the L2(Q)-projection onto Xl Let Qm = Qg for m < 0. Let
te{l,...,L},z € V), and 2/ = 2[z] from Lemma 5.6. From Lemma 5.7, we get

ng,z_clv € X

7”[1/

and therefore that (@g[’z_clv)];r is linear for every T € T/ ,(2'). Moreover, Lemma 5.6 also
yields that (Q\geﬁz_cl?))"f is linear for every T' € T(z). This implies

(Q\ge,z—(hv)‘w@(z) = (Hf@ge,z—(hv)‘w(z) - (Hfflége,z—clv)’wg(z)' (5-13)
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5 Improved analysis of multigrid contraction: local dependence on the diffusion coefficient

We use Lemma 5.11 to obtain

L
SO h 2 T2,

=1 zEV;

L
(5.13) _ ~ ~
SN b2 (0 = Qg —cyv) — Te—1 (v = Qgy .~y )12, o)

=1 ZEVZ'

L
S Z Z h[j(HHg(v - Qge,z—Clv)Hie(z) + [[TLg—1 (v — QQZ,Z_CIU)HE}Z(;;'))

(=1 ZEVEL

(5.12

)L ~
SN hZZQHU—Qge,z—clv\\ig_l(zf[z})'
/=1

ZEVZr

Changing the summation order using the generations and applying Lemma 5.7, we see

L
Z > he 2l (I~ Tey) > Z hi 2l = Qo =2 (o)
I= 1z€V+ =1 zep
Tlmzhgz

~ ZZ Z h 2”U_Qm CIUH 2 (Z[2])

m=0 /=1 Z€V+
g[,z:m

Z ho |l — Qm_cl””?}ﬁ%(z)

1 zeVZ’
ge,z=m

NE
M=

3
I
o
)

We rewrite the sums using (4.30), exploit the uniform bound (4.32), and apply finite patch
overlap to establish

Z D h 2N = Te)ol2,0) S D Z > o= QmocivliF
m=0 'm £

=1 zeyf Gfl(}L)(z,m)
(4.32) ., N ,
S Z Z Py |0 — Qm—&””@ﬁq(z)
m=0,¢cy,,
(o9}

S Y bl = Qo]
m=0
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5 Improved analysis of multigrid contraction: local dependence on the diffusion coefficient

Recalling 2/V/ dﬁm+ N = ?Lm for any N > 0 and @m = @0 for m < 0 leads to

Ci—-1

Z in2llo = Gy oll? = v — Qoo Z B2+ Z i el = Quoll?
=0

Rl — Qoo 3 272/ 4 40/ Z Fa2llo — Qv (5.14)

m=0

< <(1 - 4—1/d)—1 +4Cl/d> Z 71;?”” _ @mv||2~

m=0

Finally, the stability of the multilevel decomposition for the L?-projection gives

oo
S S R - Tl £ 32 o Gul? £ 9l
=1 z€V+ m=0
A proof for the last estimate can be found in [Xu97, Theorem 4.31]. O

Remark 5.12 (Energy norm estimates). The challenge with the approach of Proposition 5.10
is that the result does not transfer immediately to the energy norm. To keep local dependencies
on the diffusion coefficient, we need to change to the energy norm while the estimates are
still local (on patches). Doing so would result in the sought stability

Z D loesl? S Z lvg — Quuill?, (5.15)

(=0 z€V+

with a constant that depends only locally on the diffusion. Moreover, we have not been able
to estimate the right-hand side of (5.15) (given in the energy norm) with v} [?.

Remark 5.13 (Different choices of averaging operators). In [FFP*17] the same strategy as
in the proof of Proposition 5.10 is used to show stability of a multilevel decomposition. The
biggest difference is that the Scott—Zhang projection Jy is utilized instead of the operator 11.
We want to underline that the estimate

oo
> b2l = Quol* S IVol* for all v € H(Q) (5.16)
m=0
is the crucial step in both [WZ17] and [FFP*17]. Furthermore, a similar estimate

> 02 Qm = Qu1)vl* S IVU[? for all v € HY(Q)

is used in [CNX12] to show a localized stable lowest-order multilevel decomposition.
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5 Improved analysis of multigrid contraction: local dependence on the diffusion coefficient

5.3.2 Useful concepts

To overcome the challenges mentioned in the previous section, we introduce some useful
concepts, namely the so-called K-functional, a weighted L?(Q)-scalar product, and extension
operators on Sobolev spaces.

Definition 5.14 (K-functional). For any Lipschitz domain w C R, u € L?(w) and ¢ > 0
we define the K-functional by

_ 1/2
K(t,u,w) = Ue}?zf(w>(|’“ —ol2 + o)

Definition 5.15 (Weighted L?-norm). Let the diffusion coefficient K be given. For every
To € 7o, we define the weights

kr, == min  Apnin(K(y)). (5.17)
y€Ewo(10)

The weighted L?(2)-scalar product is given by
(u, V) := Z kr, / uv dz for all u,v € L*(Q).

Furthermore, the corresponding norm is

lullf = > kg lullf, for all u e L*(Q). (5.18)
ToE€To

For m > 0, let us denote by @mK (L2(Q) — /'/U}L the projections for the weighted scalar
product, i.e., it holds that

<©m7Ku,v>K = (u,v)g forallve X\, (5.19)
The following observations will be useful for the main theorem.

Lemma 5.16 (K-functional for extended functions). Let ws C wy C R be two nested and
bounded Lipschitz domains. Then, it holds that

soint (= vl + Plole,) = K ww) (5:20)

Moreover, for a Lipschitz domain w C R? and any extension operator R : L?(w) — L?(R%)

we have
K(t,u,w) < K(t, Ru, R%). (5.21)

Proof. Step 1: Since H?(w1) C H?(ws), the first inequality follows directly

. 2 21,12 2
veé%fwn(nu - UHwQ +t ’U|H2(w2)) Z K(t,U,UJQ) .

To show equality, we introduce an extension operator R : H2(ws) — H? (R?), see, e.g., [AF03,
Theorem 5.24]. Thus, for every v € H?(ws) there exists a function Rv =: v € H?(R?), and
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5 Improved analysis of multigrid contraction: local dependence on the diffusion coefficient

in particular v € H?(w;) such that 9|,, = v. Hence, we obtain the equality (5.20).
Step 2: The restriction v|, of a function v € H?(R?) lies in H?(w) and it holds

lu = vlollZ + 2 vlwlizew) < 1Ru—vlge + 20l ge).
Therefore, we get

et = vl + Ehln) < _tnfe, (1R = vl & el

This concludes the proof. O

Lemma 5.17. Let w C R? be a bounded Lipschitz domain. Then, there exists an extension
operator E,, : H'(w) — HY(R?) and a constant C,, > 1 depending only on w that fulfill

(Eyv)|lw=v and ||[VE,v|ge < Cu||Voll, for allv e H (w). (5.22)

We refer to [Bur99, Theorem 2.2] and [Leo09, Theorem 12.3] for further details.

5.3.3 Improved proofs

We can now present our improved result. With the tools from the last section, stability of
the multilevel decomposition for the weighted L?-projection in the energy norm is shown.
Lastly, to obtain the desired stability of the decomposition, we follow the structure of the
proof of Proposition 5.10 while keeping the dependency on the diffusion coefficient local.

Proposition 5.18. For all u € H}(Q), it holds that

oo
> I lu = Qmullk < Cipllull®, (5.23)

m=0

where the constant constant Cywp > 0 depends only on the initial mesh Ty, the space
dimension d, and the ~y-shape regularity (2.15)

Proof. Step 1 (Elementwise stability estimates): Let u € H}(2). By the definition of
Qmx (5.19), it follows that

N - ~ 5.19 ~
u— Qmxullk = (U — Qmxu, u — QmKu)K (.19 (U — Qm,KU, U — U)K (5.24)

<|lu — Qmkulk|v—vn|k forall v, € X,ln.

Let us denote by B, : L?(Q) — /'/U\,}l the Scott—Zhang projection, which among others
possesses the following property: There exists a constant C > 0 depending only on the
~v-shape regularity such that

v = Pl < Ch2T|U|H2(®m(T)) for all T € T,, and all v € H2(Q). (5.25)

Further details can be found in [BS08, Section 4.8]. We apply (5.24) to vy, = Ppo for any
v € H%(Q). This leads to

lu = Qmxculli < llu— Prvlli S llu—vli + llv = Provlk.
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5 Improved analysis of multigrid contraction: local dependence on the diffusion coefficient

We use (5.25) and finite patch overlap to obtain

lu— Qmiulik S D kr, > (lu—vlF + v = Pnoll7)
To€To TETm
TCT,

(5.25)

< Z k7, Z (Hu—vH% )+h4 ’v|H2(w (T))>

ToeTo  TeT,
TCTy

Z kTO(Hu vao (To) +h4 |U‘H2 wo(To))>
To€To

Step 2 (Weighted, extended estimates): Since v € H?({)) was arbitrary, Lemma 5.16

yields
(5.20)

Hu_QmKUHK 5 Z kTo , U wO(To)) .
To€To

Summing over the generations, utilizing the extension operators E, (1), and applying
Lemma 5.16 gives us

Z W2 — Qmxullk Z hol Y kg K (12, u,w0(Th))?

=0 ToeTo
(5.21)
< Zh . Z kr, K JEWQ(T())U?Rd)Q (5.26)
T0€76
Z kTO Z wO(TO)u,Rd)z.
ToeTo

Step 3 (Summability of K-functional): For d = 2 and d = 3, it is shown in [BY93,
Lemma 7.3] and [HWZ12, Lemma 4.3] respectively that

Z hy2K(h2,0,RY? < || Vol2. for all v e HY(RY). (5.27)

Step 4 (Stability of the extensions): Applying (5.27) to E,(z)u, using the stability of
the extension (5.22) and exploiting the norm equivalence (2.6) and the definition (5.17) of
kr,, we are led to

(5 26)
Z h;nQHU - Qm,KUH%{ ~ Z kToHVEwo(To uHRd < Z k7, C, wo (7o) ”quwo To)
m= To€To To€To
(2.6) 1
< (max Cuy (1 k- WU\HZ
(TOGTO o) T%B yEwo(To) Amin (K (¥)) 0(To)
(5.18)
= (%ng% Cuotre)) D NullZyizy)-
To€To
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5 Improved analysis of multigrid contraction: local dependence on the diffusion coefficient

Due to finite patch overlap, we finally obtain

Z by, 2”“’ - Qm KUHK N maX Cwo(To Z |||u’”w0 To) 5 max Cwo To)mqu
m=0 To€To

This concludes the proof. ]

Proposition 5.19. Let v} € X]. Then, there exists functions v} € X} and {U%,Z}ZEV; € X/,
fort=1,...,L such that

L
vl =l + Z Z Ul},z' (5.28)

{=1 zEVZ_

Furthermore, it holds that

L
~ 2
ool + > >~ Wkl < Cun Gl Ik 1P, (5.20)
£=1 zEV;
where the constant Cl(ozc) > 0 is defined in (5.6) and the constant Cur > 0 depends only on
the initial mesh Ty, the space dimension d, and ~y-shape reqularity (2.15).

Remark 5.20. Compared to the decomposition in Lemma 4.4 the component vé for the
initial mesh is global now. This eliminates the dependency on diam(§2)/hg.

Proof of Proposition 5.19. We use the same decomposition as in the proof of Lemma 4.4.
With v} := g} it follows that

L L
v =Y (Mg —Tey)vp =vh+ > Y v,

(=0 (=1 sep

We want to show that this decomposition is stable.

Step 1 (¢ = 0): First, we show stability of v}. For this we use the local stability of Tl
in the H'-seminorm as shown in [WZ17, Lemma 3.4]. With the norm equivalence (2.6) it
follows that

WZl7

lool® = > loolld < Y SUP Amax(K WIVeslE S Y sup Amax(K())IVoL 12,

T TeT Y TeTy YET

SUPyer Amax (K ( )) (2) 2
. ”’ vL H’w oc ”’ UL ”’w
TeTs mfyewo (T) >\m11’1( ( )) O(T) 1 7;6 o(T)

Using finite patch overlap, we obtain the desired estimate

2
loall? < ¢ ok )%
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5 Improved analysis of multigrid contraction: local dependence on the diffusion coefficient

Step 2 (L2-projections estimates): It is left to estimate the sum in (5.28). The norm
equivalence (2.6) leads to

L L
Do Moialie <D0 Y sup Amax(K(®)[ Vi
(=1

=1 ey sevy vEwe®

2
we(z)

Analogously to Lemma 4.4, the inverse inequality (4.17), and the estimate (4.16) establish

L L
DD vl S0 D sup Amax ()2 ([T = Te)vp |2, -

=1 zeV,) =1 zEVZ' yewe(2)

For ¢ € {1,...,L} and z € V,, Lemma 5.6 yields a vertex 2z’ = 2/[2] € V,_1 such that
wi(z) Cw? (7). Let Qi := Qo for m < 0. Then, Lemma 5.7 implies

A 1 r1
Qgp.—r KVL € X5,

and hence that (@ge,z—Cl,KUi”T is linear for every 7' € 72 ,(2') and hence also for every
T € T/2(z). Thus, we have

(ng,zfol,KUi)’we(z) = (Hnge,z*ChKvi)’wz(z) = (Hf—ngz,z*ChKUi)|wg(z)‘ (5'30)
With Lemma 5.11 we can estimate the local L?-norms for £ € {1,...,L}

(5.30) ~ ~
(e = Tea)vp )12, ) = IMe(v], = Qgp .y x0L) = Mot (v, = Q, .~ KVE) 12,2

5 ||HZ(’U%1 - QQZ,Z_CLK’U}/)HZ@(Z) + ”Hg_l(/l}i - le,z_cl,K,U%/)”?ug(z)

Step 3 (Weighted estimates): Let ¢ € {1,...,L}, T € Ty, and Ty € Ty be the unique
ancestor of T'. For a more concise notation, we define

kr:= inf Apn(K .
4 y€wo(To) (Ky)

We use this to obtain

L L
DD PS> Y suwp AW A2 Y vk~ Qu—cy kLl

=1 zev; (=1 ey} V&) TeTZ ,(='[2)

L

SUDy ey, (2) Amax(K(y)) ~

<N I Y kel — Qoo xeb [
leevy L TTRMEEDET e ()
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5 Improved analysis of multigrid contraction: local dependence on the diffusion coefficient

From Lemma 5.3, we know that there exists a vertex zo = zo[z] € Vo with wp_1(2[2]) C
wo(z0[z]). Thus, it also holds that w?(z) C w? ;(2[2]) C wd(zo[z]). This implies

inf kr = inf inf  Apin(K > inf inf  Apin(K
TeT  (2'[2]) ’ TeT}  (2'[2]) yewo(To) K) To€Tg (202]) y€wo(To) K)

= inf  Anin(K(y
yewd (20[2]) K)

and supye,, (») Amax(K(y)) < SUDy .3 (2[2)) Amax(K(y)). Therefore, we have shown that

Z DO VA Seers Z Yoz Y kellvp — Qg —cyxvilF (5.31)

=1 zevf =1 zev} Tenil(z’[z])
Step 4 (Level-generation estimates): We want to change from a patch of level £ — 1
to a patch of the generation g,.. Recall that there exists an index £ € N such that
wi (2 C @ge _(2). We distinguish two cases: First, we assume that T3,...,T; € Tglzz(z)
with T' = ngl T; and T € T2 | (2'). Then, the ancestor Ty € Ty of T is also the ancestor of
Ty,...,T; and we can rewrite
J
1A 12 1_A 12
krl[vf = Qq,.—cr kL7 = Y _knllvf — Qq,.—cy KVLIIT:-
i=1
Second, we assume that T1,...,T; € T2 (') with T = ULsz’ and T € t’zz(z). This
implies that all T1,...,T; and T have the same ancestor Ty € 7p. Hence, it holds that
J
1_A 12 1_A 12
Z kr, [lvg, — Qge,zfcl,KULHTi =krllvg — le,z*CI,KULHT'
i=1

Using these observations we obtain

> kel —Qg-cixvilz < Y krlvp - Qg.-cy kil (5.32)
TE’TZ{I(Z/[Z]) Teﬁk@z(z)

Step 5 (Sum over generations estimates): With (5.32), we can estimate the right-
hand side of (5.31). Afterwards, we rewrite the expression by introducing a sum over the
generations

L
Y>> 2 > kelvp - Qg—cixvilF

=1 zeyf TETS (2)
o0
SHEY Y Y kil @u et
m=0 =1 Z€V+ TGTk )
9e, z_m

(43”2 'Y Y Y el Guecikeb

2€Vm te2Y) (z,m) TET (2)

62



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

5 Improved analysis of multigrid contraction: local dependence on the diffusion coefficient

From (4.32) we know that the set ,2”1(12(2, m) is uniformly bounded. Thus, we obtain

L

> ml X kallvl — Quo—cuxvilh

=1 zeyf TeTE (2)

SS A>T S kelvl - Qmeocoxvil} (5.33)

0 2€Vm TETE (2)

00
~ >t Y krlvl — Qu-cy xvLllF-

m=0 TeTo
Step 6 (Stability of the decomposition): We combine (5.31) and (5.33) to derive

L ')

oS -

SN 2, S 2 S m2 S kellv) — Qu—cy kil
m=0

=1 2evf TeTo
o
_ (2 =211 A 12
= Cloc Z ho v — Qm—cy kv [k
m=0

Furthermore, analogously to (5.14) we get for M = max.cy, g1 -

o0 M
> halvh = Quecuxoblik < (1= 4747 4 497) ST R0}~ Qo Ik

m=0 m=0
Finally, we can use Proposition 5.18 and Step 1 to obtain the desired result
2 - 1 2 @) (1,112 MA21 A 2 ) P2 2)y1,,1 112
looll> + ) > loi.l? S G (IIIULIII + > hllvg - Qm,KvLIHK) S Cecllucll
(=1 zGVZ_ m=0
This concludes the proof. O

Remark 5.21 (Alternative constant of stability). It is possible to obtain the following
estimate

L Sup w2 z )\maX(K(y)) 2
SN P g (sup —veeo() lvi I,

/=1 zev)f z€Vo mfyew%(z) )‘min(K(y))

where the hidden constant depends only on the initial mesh Ty, the space dimension d, and
the ~v-shape reqularity (2.15). Note that, in this case, the local diffusion-contrast appears on
the smaller patch wi(z) but with a power of two. Depending on the diffusion coefficient this
estimate could be more useful than the estimate (5.29) in Proposition 5.19.

Remark 5.22 (Choice of initial mesh). In order to exploit the local constant C’l(fc), the
initial mesh To should be chosen such that the patches w3(z) for all z € Vo only lie across at
most two regions, where the diffusion is changing rapidly.
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5 Improved analysis of multigrid contraction: local dependence on the diffusion coefficient

5.4 Extension to p-robustness for d = 2

The goal of this section is to construct a p-robust one-level decomposition that is stable in
the energy norm with a constant that depends only locally on the contrast of the diffusion
coefficient. To this end, we will use the decomposition from [SMPT08]. Since most of the
estimates in [SMPT08] are already local, we only need to change the norm in the proofs
of [SMP*08]. However, we first define the edge patch.

Definition 5.23. Let £ € N, 21,29 € Vy, and E = conv{zi, 22}. Then, we define the edge
patch by
we(E) = wy(z1) Uwe(z2).

Lemma 5.24. Let d = 2 and v, € X7. Then, there exists functions vi € XLl and
{v] .}eev, € X7, such that
vr = v + Z of . withvy € XL and o} € XY for all z € V. (5.34)
z€Vy,
Moreover, the decomposition is stable in the sense of

oLl + > v,

z€V],

2 < CorCN e, (5.35)

loc

where C2 > 0 is defined in (5.6) and the constant CoL > 0 depends only on the space

loc

dimension d and the ~y-shape regularity (2.15).
Proof. Step 1 (Lowest-order component): For the construction of the decomposition,

the lowest-order Scott-Zhang projection P : L?(Q2) — X} is utilized. We will use the
following properties: Let T' € Tz, and v € H}(2). Then, it holds that

IVPLvllr S [IVollw, () (5.36)

and
o = Prollr S hrl|Vollo, () (5.37)
where the hidden constants depend only on ~y-shape regularity. Let us define vi = Prvr, and

hence vy, = v} + v, for some v = (1 — Pp)vy, € XP. First, we show that [Jl |2 < CJug |2

The norm equivalence (2.6) and the local H!-stability of the Scott-Zhang projection (5.36)
prove

(2.6)
b2 S ST IPocl, ) < S sup Amax(K)IVPLuLl,

zeVrL zeVL yewr (2)
(5.36) (2:6) SUPycwy, (2) Amax(K(y))
< sup Amax (K()) Vo[22 ) < e lorll2: (.-
ZGZVL yEwr,(2) () ZEZVL lnfyew%(z) Amin (K(y)) L)

From Lemma 5.3 we know there exists a vertex zp € Vy such that wr(z) C wp(zp). Using
finite patch overlap, we obtain
2
RLI® < GXNorl

loc
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5 Improved analysis of multigrid contraction: local dependence on the diffusion coefficient

Step 2 (Vertex contributions): We denote by II§ the averaging operator introduced
in [SMP*08] corresponding to an interior vertex z € V! := V;,NQ. In [SMP*08, Lemma 3.2
it is shown that IIfv € X7 _ for any v € X7. Furthermore, the proof of [SMP*08, Theo-
rem 3.4] contains the local estimate

VI3[ = VT30 ]y o) S (9012, ) + A2 00]2, o) forallve X7, (5.38)

where the hidden constant depends only on v-shape regularity. We further decompose vq
using these averaging operators such that

V1 = (1 — PL)UL = Z Hévl + v9
ZGV?

for some vy € X¥. Recall that v1 = vy, — Prvr. Applying the norm estimate (2.6) and the
local H'-stability and first-order approximation property of P;, leads to

(2.6)
ITenl? = ]2, ) S 5D (K () [V TTG0n |
yEwr,(2)
(5.38)
S, sup )\maX(K(y))(valHiL(z)+hz,2z||leiL(Z))
yewr (2)

(5.36)

(5.37) (2:6) SUPy e, (2) Amax (K (Y))

< sup Amax(K@)[VorlZs ) < infyE Z’L(())>‘ in(K(y))

yEw? (z) ~\min

VoLl .-
yewr, (2) 7(2)

Summing over the vertices yields

2
S ImEul? < O locl?.

zEV$
Step 3 (Edge contributions): Let us define the set of interior edges
EY.={FEe€&:E=conv{z, 2} and z; € V¥ or 25 € Vi}}.

In [SMP108, eq.8] following prior work of [BCM*91], averaging operators I1J corresponding
to edges F € &r i are defined. More precisely, we have

Y a7 :={ve A v(z) =0forall z € Vi.} — Hj(w(E)) N AL,
For v € X7, and w C , we can define the following norm
[oll7e == IV0IE + Iy, oll2, (5.39)

where ry, (z) := min.ecy, | — 2|. Then, the averaging operators are stable [SMP108,
Lemma 3.6] in the following sense

VI 0lluy () S 0]l iy () for all v € X7, (5.40)
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5 Improved analysis of multigrid contraction: local dependence on the diffusion coefficient

where the hidden constant depends only on v-shape regularity. We denote by ¢, . the hat
function at vertex z on level L. The goal is further to decompose the function v, from
the previous step. In [SMP108], it is established that vy € X 5 o- Hence, we can apply the

operators HOE and obtain
Vo = Z HDE’UQ + v3 (5.41)

for some vg € X7. From the norm equivalence (2.6) and the stability (5.40) it follows that

(2.6)
T val2, ) < SUD Amax(K() | VITF 02|12 5
yewr, (E)
(5.42)
(5.40) )
S osup Amax(K(W)llvz2ll;w, (m)-

yewr (E)

By definition we have vg = v1 — ) eV IT§vy. Utilizing the partition of unity provided by
the hat functions and considering their local support, we are led to

2
ezl ey = [[or = 32 i

zEVSL] rwr(E)
2
= H Z YrL2v1 + Z ¢r.-v1 — Hjur) p
2EVL N0 2€V2 rwr(E)
S D erevilll i+ D llenzv —Tul2,, g
2€VLNON ZEVS
2
< Z HSDL,Zvlur,wL(z) + Z H(PL7ZU1 H()Ulur wr, (2
szL( )NVLNOQ ZGUJL(E)QV?
In [SMPT08, Theorem 3.4], it is shown that
ler, zvlﬂer S ||Vv1\\iL(z) for all z € Vi, N 09, (5.43)

where the hidden constant depends only on ~-shape regularity. Moreover, from [SMPT08,
Lemma 3.3], we have

llor..v1 — er < HV1)1H2 for all z € Vp in, (5.44)

where the hidden constant depends only on 'y—shape regularity. The estimates (5.43)

and (5.44) provide
loolusmy S D0 IVuilld

zE€wr (E)NVL

Let zg be one of the two vertices of E. The H'-stability (5.36) of the Scott-Zhang projection
for v1 = (1 — Pr)vr, and the finite patch overlap imply

(5.36)
vl S Y. IVull,. < > IVoLllZs oy S IVULls .,y (545)

z€wr (E)NVL z€wr, (E)NVy,
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5 Improved analysis of multigrid contraction: local dependence on the diffusion coefficient

Together with (5.42), we obtain

(5.42) (2:6) SUPy ey, (1) Amax (K (y))
IFal?, 2 S sup Amax(K@)[Vorl2s (., <~
‘ 25 yEwr (E) i rer) lnnyW%(ZE) Amin (K (y)

2
borlly ..

and hence also @)
B 2
> I eel® S Clllvll®.
Eeg

Step 4 (Element contributions): Due to the construction (5.41), it holds that vz € X7
and v3 = 0 on Upee, . E, see [SMP*08, Theorem 3.7]. Thus, we can define the element

contributions
vi(x) x €T,
U3’T(:E) = 3( )
0 x e Q\T

for all T € Ty, and it holds that v3 € X?. The definition (5.39), the stability of ¥ (5.40),
and the estimate (5.45) lead to

llvs I3 (5:41) ‘HUQ — Z H(’)Evng < sup )\maX(K(y))HV(vg - Z Héjvg)HT
Bee ver Bee
< sup A (K () ([ V0l + 3 VT 0a]7)
el EcEP
ECT
(5.39)
(5.40)
< s Amax(K0) (X [0, )
yer EcER
ECT
(5.45)
< sup Amax(K (Z IVorll2s ZE)>
yer Ee&R
ECT

Introducing the sum over the elements and using the norm equivalence (2.6) gives us

Do losrlr s Do > SupAmax WIVULIZ; ..y

TeT, TeTL, Ece ye
ECT

(26)
<O Y Y Mol S Cllocl

TeTL Beed
ECT

Step 5: Combining all the previous steps results in

vL:vi+ZH§vl+ Z H0EU2+ Z v3,T

oy Beg? =
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5 Improved analysis of multigrid contraction: local dependence on the diffusion coefficient

and o)
2
1> < Colllvzll?.

E
oL I? + > IGonl? + D 10§ ell® + 3 llosr

2V Eegd TeTr

We can assign edge and element components to a vertex such that their support is contained
in the vertex patch. This concludes the proof. ]

Remark 5.25. For d = 3, a construction of a p-robust one-level decomposition that is stable
in the H-seminorm is presented in [SMP*08]. However, this construction is more intricate
than the one in Lemma 5.24, as it also requires considering the faces of the simplices.
Further investigation is needed to extend the result to the energy norm, with a stability
constant that depends only on the local diffusion-contrast.

5.5 hp-robust decomposition for d = 2

In this section, we combine the results from Section 5.3 and Section 5.4 to obtain a hp-robust
decomposition in 2D, where the constant depends only on local variations of the diffusion
coefficient.

Lemma 5.26. For any vy, € X7, there exist functions vy € X, {sz}zevj € X}, and
{vr:}zev, € X7 such that

L—-1
v, = Vg + Z Z (I Z UL,z (5.46)

=1 zeyf z€VL
Furthermore, there holds the estimate
L—1
=~ 2
looll2 + 3" S wel? + Y llvr:l? < Csp(CE)luzll?, (5.47)
/=1 zEV; z€Vr,

where Cl(fc) > 0 is defined in (5.6) and Csp > 0 depends only on the initial mesh Ty and
~v-shape regularity (2.15).

Proof. Let vy, € X ]’j . From Lemma 5.24, we obtain a decomposition on the finest level L.
Applying Proposition 5.19 to the lowest-order contribution vi from (5.34), we are led to

L
R D IR/ FELTEE S SRR DRt
z€V, /=1 zEVZr 2V
L-1
=ty D vty vl Y vh
=1 zeyf zeVf Z€VL
Defining the contributions vy := vé, Vg, 1= Ul},z € X&z for z € VZL and / =1,...,L — 1,

and vy, , := vi,z + v%z e ng for z € VZF and vy, , = vgz € Xf’z for z € VL\VZr gives the
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5 Improved analysis of multigrid contraction: local dependence on the diffusion coefficient

desired decomposition (5.46). Next, we show the estimate (5.47). On the finest level, the
Young inequality gives us
')

Sl < > Wb +2 Y (Mo U2+,

z€VL 2€VL\V) zeV}
<2( Y Wb+ Y IR,
zeVy Z€VL

With the estimate (5.29), stability (5.35), and C’l(fc) > 1, we therefore have

L-1
ool + > > loeall + D loz.:l?

=1 Zevlj' 2€VL,

L—-1
<2(WdIP+ 32 D MobalP+ D ok oIP+ D I IP)

=1 zev/f zeVy z€VL

L
=2(IdI2 + 30 D7 Ioka? + > b 12)

=1 zevf z€VL
(5:29) ., (5.35) )
S ORI+ ST S ()l
zeVL
This concludes the proof. O

5.6 Proof of Theorem 5.1

We can use the improved results from this chapter to prove Theorem 5.1.

Proof of Theorem 5.1. We note that the properties (5.1) and (5.4) follow immediately from
Theorem 4.13 as well as the equivalence of reliability of the estimator (5.2) and contraction
of the solver (5.3). Lastly, the proof of reliability of the estimator (;, follows with the same
arguments as in the proof of Theorem 4.13. However, let us summarize the main arguments
for the case d = 2 and p € N in order to highlight the improved constant. Decomposing the
algebraic error uj —uy, € X} with Lemma 5.26 yields functions vy € Xy, {W,Z}zevj € Xel,z

and {vr .}.evy, € sz such that

L—1
*
uL—uL:vo—i—g g U@}Z-i-g vr,. and

=1 zev} 2€VL
L—1
=~ 2
ool + 3" S weel? + Y llvr:l? < Csp(CE) 2, — urll®.
/=1 ZEV; z€Vy,
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5 Improved analysis of multigrid contraction: local dependence on the diffusion coefficient

Note that this improves (4.49) by the use of the local diffusion-contrast constant ng. The
above decomposition and the solver construction is then used to obtain

Mg, — ur = o, vo + LZ > veet D vr )+ LZ 3" (ot ves)

/=1 ZGVZ' ZEVL /=1 ZEVZ—
L-16-1 L-1
+ > {przvn) + <</\kpk, > W,z>> +> <</\kpk7 > vL,z>>-
z€Vy, =1 k=1 ZGV; k=1 z€Vy,

As in Theorem 4.13, we use the Young inequality (4.51) to estimate the five terms consti-
tuting the algebraic error. Next, the strengthened Cauchy—Schwarz inequality with a local
diffusion-contrast dependence from Proposition 5.9 is used instead of the estimate from
Proposition 4.12. Rearranging the terms, this leads to

1
lluf, = url* < S lleoll + *H!uL —ur® + 7 (Crar)? Az lpeN? +2 ) llpr.:lI?
2

= z€V+ zeVr,

)

where the constant 5re1 is defined in (5.7). Finally, the stability of the decomposition and
the definition of the estimator (1 (ur) give

(Z > el

4CSD(Cloc) (=1 Z€V+ z€V],

I, — el < 2lhug, —ue I+ 3 (Con) (wpow%ZAzZ\upgznﬁmgnmn)

zeVJr z€Vy,
3, . 1
= Z\H“L —ur| + 4( Cret)*Cr(ur)?

and hence
luj — ur)? < (Crer)*Cr(ur)>

The proof for d = 3 and p = 1 is analogous (while d = 3 and p > 1 remains open; see
Remark 5.25). This concludes the proof. O
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6 Multigrid as inexact solver for AFEM

The multigrid solver of Algorithm 3.7 can be used as an iterative solver in the module
SOLVE of the adaptive finite element method presented in Algorithm 2.11. Moreover, this
application fits into the framework of [GHP*21], which will allow us to prove optimal
complexity of the resulting adaptive algorithm.

6.1 AFEM with multigrid solver

In this section, we first introduce the algorithm for AFEM employing the multigrid solver
of Algorithm 3.7. Afterwards, the computational cost of the algorithm is discussed. We
will use the residual error estimator 77, from Section 2.4.2 in the stopping criterion of the
algebraic solver. Therefore, the modules SOLVE and ESTIMATE from Algorithm 2.11 are
combined in the following algorithm.

Algorithm 6.1 (AFEM with multigrid solver). Imput: Initial mesh Ty, polynomial degree
p € N, adaptivity parameters 0 < 0 <1, Cae > 1, and p > 0, as well as the initial guess
0
ug = 0.
Adaptive loop: Iterate the following steps (1)—(III) for all L =0,1,2,...:
(I) SOLVE & ESTIMATE: For all k =1,2,3,... repeat (i)-(ii):

(i) Do one step of the multigrid solver starting from ulz_l € X7 to obtain the improved
approximation ulz = @L(u’zfl) € X7 and the associated a-posteriori estimator
(L(ulz_l) of the algebraic error, i.e.,

{u, Co(up ™)} = SOLVE(uf ', {Te}ico, p)-

(ii) Compute local contributions nr (T, u’z) of the residual error estimator for all

T € T, and define
1/2
no(uf) = (Y m(Tf))
TeTr

until
Co(uf ™) < pmr(uf). (6.1)

Upon termination of the k-loop, define the index k[L] := k € N and u% = u’i

(IT) MARK: Employ Dorfler marking to determine a set My, € M(Ty, Q,U%) ={UL, CTL |
HnL(u%)2 < nL(UL,u%)2} that fulfills

#ML < C’malrk min & #UL
ULGM[TL,Q,UE]
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6 Multigrid as inexact solver for AFEM

(III) REFINE: Generate the new mesh Tr41 := REFINE(7., M) and use nested iteration
0o ._ .,k
UL41 = UL
Output: Sequence of successively refined simplicial triangulations T, discrete approrima-
tions uy, and error estimators nL(u%) and CL(U%_I).

Note that we omit the mesh level L in the notation k[L] if the dependency is clear from the
context, e.g., u% = u%[L] as defined in Algorithm 6.1. Moreover, we define the stopping index
for the outer loop of Algorithm 6.1 by L := sup{L € Ny : u? is defined in Algorithm 6.1}
with the typical case being L = co. Let us make some remarks concerning nested iterations

and the stopping criterion (6.1).

Remark 6.2 (Nested iterations). We use the last iteration u% as the initial guess on the
newly-refined mesh Tr11. This ensures optimal computational cost of the algorithm. We can
also look at this from the algebraic solver perspective. Recalling the full multigrid algorithm
from Section 3.1.2, we see that Algorithm 6.1 is just a full multigrid method over the evolving
hierarchy of meshes. Moreover, the number of V-cycles on a mesh is determined by the
adaptive stopping criterion. Hence, the choice of the parameter «g in Algorithm 5.3 is
inherently taken care of.

Remark 6.3. The core idea of Algorithm 6.1 is to balance different error components using
a-posteriori analysis; see, e.g., [EV13]. We have shown ||u} — u} || < gewr Cyy Cr(ub™Y) in
Theorem 4.13. Hence, the k-loop is stopped in (6.1) once the algebraic error is controlled by
the estimator nr,(uk ) associated to the discretization error ||u*—u} ||, i.e., [us —uk || < np(uk).
Thus, the termination criterion balances the algebraic and discretization error. Meaning,
that once the algebra is sufficiently resolved compared to the discretization, the solver is
stopped, and the next step in Algorithm 6.1 is the mesh refinement.

Lemma 6.4 (A-posteriori control of the overall error). Let L € Ny and k = k[L] be the
termination index of the iterative solver in Algorithm 6.1. Then, it holds that

k k
llu” = will 'S ne(ug).

Proof. Due to reliability (A3) and stability (A1) of the residual error estimator 7y, the
discretization error satisfies

(A3) (A1) A A
lo” —will < no(uz) < no(ur) + lluz — urll (6.2)

From Remark 6.3 we know that the stopping criterion (6.1) yields |Ju} — uy || < nr(uy) and
therefore ||u* —u} || < nr (u%) This concludes the proof. O

Next, we compare the given stopping criterion (6.1) to the one employed in [GHP*21]
and [BFM*24]. Therein a contractive solver with iteration operator ¥p : X7 — X7
guaranteeing ||u} — Ur(ur)| < gewr [uf — ug| for all uy, € X7 and an A7-independent
constant 0 < getr < 1 is used. Moreover, the iterative solver is terminated within AFEM if

lluf —up 0 < vone(uf), (6.3)
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6 Multigrid as inexact solver for AFEM

where v > 0 is a given adaptivity parameter. From now on, we will always denote by v > 0
the parameter used in the termination criterion (6.3). Compared to (6.1) in Algorithm 6.1,
not all solvers have a built-in algebraic error estimator, hence, the computable quantity
luk — ulz_l || is utilized instead. Indeed, the triangle inequality and contraction lead to

k-1 k ko k-1 k-1 ko k-1
oz, = up "I < Nup = will + o = w1 < gew lluz, —up " + lug, — w7l

and hence

I, — w50 < e g, — ™0 < 25 — 7Y (6.4)
— Qctr

Thus, the expression |Juf — u%~!|| is indeed an a-posteriori estimator of the algebraic error.
This means that the two criteria (6.1) and (6.3) differ only in the choice of the a-posteriori
estimator. Moreover, the observations from Remark 6.3 and Lemma 6.4 can also be applied
to the criterion (6.3). In summary, the solver in Algorithm 6.1 is stopped once [Juj —u¥ || <
qctrC’;el,u,nL(ulz), while the criterion (6.3) leads to |lu} — uf I < (1= getr) qetr l/nL(u’Z).
Hence, the two criteria are formally equivalent up to a constant.

Now, that AFEM incorporates MG as a solver in Algorithm 6.1, we want to discuss the

notion of computational cost. For this purpose, we define the countably infinite set
Q:={(L,k) € N2 : v} is defined in Algorithm 6.1}
The set Q can be equipped with the natural order
(L', k') < (L, k) <= u¥, is computed earlier than or equal to u¥ in Algorithm 6.1.
Furthermore, we define the total step counter by
|L k| :=#{(L',K)e Q: (L' k)< (L,k)} €Ny forall (L k)€ Q.

In order to discuss the computational cost of Algorithm 6.1, we first consider the cost of
steps (I)—(I1I) separately:

e SOLVE & ESTIMATE: The calculations of the error indicators (T, uk) for all T € 77,
can be performed in O(#71,) operations as these consist of element-wise operations.
Moreover, Remark 3.10 classifies that one solver step can be realized in linear com-

plexity O(#7L).

e MARK: We recall that the Dérfler marking can be implemented with linear cost O(#7L).
This was shown in [Ste07] for Cpak = 2 and in [PP20] for Cpak = 1.

e REFINE: Newest vertex bisection can be realized in O(#77,) operations; see, e.g., [BDD04;
Ste07].

Due to the cumulative structure of Algorithm 6.1 the total computational cost to compute
ulz is therefore proportional to

cost(L, k) = Z #Tr. (6.5)

(L' k)eQ
|L' k' |<|L,k|
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6 Multigrid as inexact solver for AFEM

Indeed, to reach a given step (L, k) of the Algorithm, one needs to consider all costs from
the coarse mesh and subsequently add costs taking place at each refined mesh prior to
reaching the given level L and iteration step k. For a fixed polynomial degree p, it also
holds that dim XIL” ~ #71,, where the constants depend only on p and d. Thus, convergence
rates with respect to the degrees of freedom and with respect to the number of elements
are equivalent. In the next section, we go into more detail regarding convergence rates and
optimal complexity.

6.2 Optimal complexity of AFEM with multigrid solver

Let us first introduce the notion of optimal convergence rates. To this end, we define
nonlinear approximation classes following [BDD04; CKNT08]. The set of triangulations
with at most N additional elements compared to the initial mesh 7y is given by Ty (7p) :=
{Ta € T(To) : #Tu — #7To < N}. For any rate s > 0, define the approximation class Ay as
*k e S . *
ol = sup (N 1" min o (0)-

The minimum ensures that we take some optimal triangulation in the set Tn (7o) where the
error estimator is smallest. If ||u*||4, < oo, then the error decreases with rate —s along the
sequence of unknown optimal meshes with respect to the additional number N of simplices.
Thus, s > 0 is an attainable convergence rate. However, up to this point, we have not
discussed whether any algorithm can actually achieve these rates.

Definition 6.5. We say that an adaptive algorithm is rate-optimal if the generated sequence
of successively refined triangulations {7 }sen, satisfies

Vs >0 (|[u*]la, < oo = gsuz\ll)(#ﬁ)SW(UZ) < 00),
€Ng

i.e., the adaptive algorithm attains indeed all possible rates.

Indeed, the standard adaptive Algorithm 2.11 is rate-optimal for sufficiently small 0 < § <
1; see, e.g., [CFP"14]. Note that rate-optimality refers to the quality of the approximation
per invested degree of freedom, without providing information on computational costs
invested in calculating the said approximation. Since the module SOLVE in Algorithm 2.11
is generally not of linear complexity O(#7;), we instead examine Algorithm 6.1 regarding
its optimal complexity, i.e., optimality with respect to the overall computational cost. In
the spirit of [BEM™24] this leads to the introduction of the following quasi-error

HE o b — o By Q) s — o 5) forall (L, k
L= llup =il +no(up) =" lup —will +ne(uy)  forall (L, k) € Q.

The proposed quasi-error HE can hence be seen as a representation of the algebraic and
discretization error. Recall that (6.2) ensures that [Juf — u¥|| + |u* — ui| < H and,
therefore, the quasi-error controls the overall error ||u* — u¥[|. We say that the quasi-error
decays with rate —s with respect to the overall computational cost if

sup cost(L,k)* HY = sup Z #Ty)Sle < 0. (6.6)
(L,k)eQ (L,k)eQ (L' k")eQ
L' k' |<|L K|
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6 Multigrid as inexact solver for AFEM

Thus, an adaptive algorithm is of optimal complexity if all possible convergence rates s with
respect to the degrees of freedom are also achieved with respect to the overall computational
cost, i.e., [[u*|la, < oo & sup(y pegq cost(L, k)* HY < oco. Let us formulate the optimal
complexity result for Algorithm 6.1.

Theorem 6.6 (Full R-linear convergence). Let 0 < 0 < 1, Cryar > 1 and p > 0 be arbitrary.
Suppose that the sequence of meshes {Tr}ren, is generated by Algorithm 6.1. Then, there
holds full R-linear convergence of the quasi-error, i.e., there exist constants 0 < qin < 1 and
Clin > 0 such that

HE < Cii oM VEFTHE, for all (I, K), (L, k) € Q with |L' K| < |L,k.  (6.7)

For the proof of full R-linear convergence, we need the subsequent statement from [BFM™24].

Lemma 6.7 (Tail summability vs. R-linear convergence [BEM ™24, Lemma 11]). For any
sequence (ag)en, in R>o and m > 0, the following two statements are equivalent:

(i) tail summability: There exists a constant Cp, > 0 such that
o0
Z ay’ < Cpay'  for all £ € Ny.
=041
(ii) R-linear convergence: There exists constants 0 < qun < 1 and Cyy, such that

apn < Cingliyae  for all £,n € Ny. ]

To show full R-linear convergence (6.7), we follow the proof of [BFM™24, Theorem 7].

Proof of Theorem 6.6. The proof is split into three steps.
Step 1 (Estimator reduction): Let L € Ny. Using stability (A1) and reduction (A2),
we get

77L+1(U%)2 =n5+1(Te+1 N Tr, U%)Z + 15+ (To+1\TL, U%)Z
(A1)
(A2) k\2 2 k\2
S 77L(7-L+1 N 7-L7 UZ) + Gred 77L(7-L\7-L+17 UZ)
= np(up)® = (1= qhg) no(To\ g, up)*.

Furthermore, Dorfler marking (2.18) and My, C T\ 7r+1 give us

kyo 228 LAV k2
Onr(up)” < npMrp,up)” <np(Te\Trg1,up)”
Since 0 < (1 —¢2%4) 0 < 1, it follows that
nra(up) < gonp(uf) with 0<gp:=[1—(1—qiq) 0] < 1. (6.8)
This and stability (A1) lead to the estimator reduction

(AL) 6.8)
k k k k k k k
77L+1(UZ+1) < 77L+1<uZ) + C’stab |”uf,+1 —ur ”’ < qenL (uZ) + C’stab |||uf,+1 - ’LLEW (69)
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6 Multigrid as inexact solver for AFEM

Step 2 (Tail summability with respect to L): Let L € N with (L + 1,k) € Q. Due to
nested iteration u) ,, = u% with k[L 4+ 1] > 1 and contraction of the multigrid solver (4.1),

we obtain
4.1

k L+1
lopen —uf ol < g et — il < geullug o — ol (6.10)

Combining this with the estimator reduction from Step 1 results in

k (6<9) k
77L+1(UL+1) qo UL(UL) + Cstab|||UL+1 “Lm
k . k
< qonz(uy) + Csan (luf 41 — wf oy |+ i — w7l (6.11)
(6.10)

* k
< qm?L(UL) + (getr + 1) Cstan ’”uL—i-l —uy, Il

Let us define apy1 := [Juj,, — U%+1m +7 77L+1(u%+1) for some v > 0 and ¢ := max{qct; +

Y(getr + 1)Cstab, go}- It follows immediately that ay, ~ H% Furthermore, with the triangle
inequality there holds

6.10)

<1 * k k * k
qctr |||UL+1 - uLlll =+ 'Y[QG UL(UL) + (Qetr + 1) Cstab|||UL+1 - uLlll]
s k k

< q [lufsq =gl +yne(up)]

<G [lug — il +vnme(p)] + @i —uill = Gar + qluie — uill

(6
(
ar+1

Finally, the Young inequality gives us
B 0 +0) @ ah+ (140 Jujey —uil? forall 6> 0.

We can choose 0 < v < 1 and 0 < 6§ < 1 sufficiently small so that 0 < ¢q := (1 + 0)¢?
and C := (1 +61)g? > 0 yield

a1 < qaf +Clluj iy — i) (6.12)

Summing over the levels and applying the Pythagorean identity (2.12) leads to

L-1 L2 (6.12) L—2 L—2
Yoa= Y < X O e - il
L'=L L'=L L'=L

L'—L+1
(2.12) E L2
=q Z aj, +C Z (llw* = wpo I =l =gy 1P).
=L =L

Exploiting that the second sum is a telescoping series, we use reliability (A3) of the error
estimator to obtain

L1 L2
>, ai<g Z aj, + C(Ju* = up ) = flu* = up_q[?)
L'=L+1 (6.13)
(a3 L2
< q Z aj, + CChymy (ug)?.
L=L
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6 Multigrid as inexact solver for AFEM

Owing to stability (A1), we also have

. (A1) k k
nL(UL) < UL(UL) =+ CstabmuL uf,”’ = HZ =ar.

Due to 0 < ¢ < 1, we can rearrange the terms in (6.13) so that

Z a2, <(1—q) Hg+CC%, ,C%2v Y a2 forall0< L < L.
=L+1

Ultimatly, Lemma 6.7 yields tail summability of ay and thus also of H%, ie.,

S ow}, <HE forall0<L<L. (6.14)
L'=L+1

Step 3 (Tail summability with respect to L and k): Let 0 < k < k¥’ < k. Then, the
failure of the stopping criterion (6.1), efficiency (4.43) of the estimator ¢z, and contraction
of the solver (4.1) provide us with

/ ! ! (6 1
k * k k
HY = flui —uf | +no(uf) < fup —of |+ p ol )
(4.43) ,
— K —
< g, = uf I+ g — b )
(4.1)

—1\ K —k k k' —kyrk
< (1 + (QCtI'/*L) 1)qctr ”’U’*L - “Lm S dety H

It is left to consider (L, k) € Q. In this case, stability (A1), the triangle inequality, and the
contraction of the solver imply

K k k-1 .k k1
HE < g, — upll +np(af )+l — bl <BE 420l — Bl < (1 + 2000 B

Hence, it follows that
HY < ¢F-FHE forall0 <k <k <k (6.15)

With quasi-monotonicity (QM), reliability (A3), and stability (A1), we prove

luz g1 — vzl < fluppr —wl + v —uzll S nee(uzn) +ne(uz) S nolurg)
(A1)
k k k
S noug) + lup —ugll = HE.
Due to nested iteration and the triangle inequality, it therefore holds that

. k k k . . k
Hp oy = lluisr —wpll +npa(up) < Hp +flujyg —upl SH;  forall (Lk) € Q. (6.16)
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6 Multigrid as inexact solver for AFEM

Finally, we obtain tail summability using the geometric series

/ L kL (6.15) E[L']
>, Hp Z Hps ) D Hp S Z e+ Z Hy D i
(L',k"eQ =k+1 =L+1k'= =k+1 =L+1 k'=
|L’k|>|Lk|
(6.16) (6.14)

(6.15)
< HE +ZH*, < H§+H% < HE forall (LK) € Q.

Since Q is countable and linearly ordered, Lemma 6.7 concludes the proof of full R-linear
convergence. 0

Theorem 6.8 (Optimal complexity of AFEM with multigrid solver). With the assumptions
from Theorem 6.6 it follows that

sup (#71)° HY < sup cost(L, k) HY < Ceoss sup (#72)° HE  for all s > 0,
(Lk)eQ (Lk)eQ (L,k)eQ
(6.17)

where the constant Ceost depends only on Chin, qin, and s. Moreover, for sufficiently small
adaptivity parameters, i.e.,

1 — getr
0< i<yt e 6.18
p=n (1 + QCtr)QCtrCstabC;el ( )

and

(012 + p/p)?
(1= p/p)?

Algorithm 6.1 guarantees, for all s > 0, that

0< < 0" ( CSQtangrel)_l/Qv (619)

Copt||u*||a, < sup cost(L,k)® HL < Copt max{|ju* ||Ag7H }. (6.20)
(L,k)eQ

The constants Copt» C1opt >0 depend 07lly on Cstab; Qred C’rel; Cdrel; C1child; Cmark; Clin; Qlin
the polynomial degree p, the initial triangulation Tg, s, 0, i, and qer- Importantly, this
provides the equivalence

|u|la, <00 <= sup cost(L,k)* HY < oo,
(L k)eQ

hence Algorithm 6.1 is of optimal complexity.

Remark 6.9. Since the constants copy and Copy depend on qer, they also depend on
Amax/Amin and maxper; || diV(K)HLoo(T)/Amin; see in Theorem 4.183.

Remark 6.10. This section is based on the framework of [GHP*21], where optimal
complezity was achieved by combining AFEM with a contractive iterative solver. We also
refer to [BEM™24] for more recent and improved results. For the model problem (2.4),
both [GHP™'21] and [BFM™ 2/] ensure parameter-robust full R-linear convergence of the
quasi-error, i.e., (6.7) holds for all parameters 0 < 6 <1 and v > 0. Moreover, [BFM™*2/]
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6 Multigrid as inexact solver for AFEM

extends this to inf-sup stable problems. Hence, we follow their approach here, too. Though,
at first glance, different quasi-errors are used in [GHP™ 21] and [BFM™ 2], they are actually
equivalent owing to reliability (A3), stability (A1), and Céa’s lemma (2.13). Note that the
so-called quasi-orthogonality plays an important role in [BFM™ 24]. However, for our model
problem, there holds the Pythagorean identity (2.12), which is even a stronger property.

Proof of Theorem 6.8. Step 1: Let us recall some properties of Algorithm 6.1. As discussed
in Section 2.4, we use the residual error estimator, which fulfills the assumptions (A1)—(A4).
Furthermore, since we employ NVB as the mesh refinement, also the assumptions (R1)-(R3)
are satisfied. Additionally, the multigrid solver is contractive (4.1), Dorfler marking of
Section 2.4.3 is used, and nested iterations are employed. Ultimately, we recall the stopping
criterion (6.1) balancing the algebraic and discretization errors.

Step 2: As a consequence of full R-linear convergence [BFM™24, Corollary 11] proves
the equivalence of convergence rates with respect to the degrees of freedom and to the
computational cost, i.e., the identity (6.17).

Step 3: To show optimal complexity, we follow the proof in [GHP*21, Theorem 7] and
rely on full R-linear convergence (6.7), assumptions (A1)—(A4), (R1)—(R3), contraction of
the inexact solver, Dorfler marking with a quasi-minimal set of marked elements, and the
fulfilled stopping criterion mu% - u%_lm < VUL(U%). Then, from Step 1, we only need to show
that Algorithm 6.1 satisfies the last assumption. Using the triangle inequality, contraction
of the multigrid solver (4.44), reliability of the algebraic error estimator (; (4.43) and the

stopping criterion (6.1) leads to

(4.44)
k k-1 k k=1 k-1
M — w0 < N =i+ e — e S (U gl — e

(4.43) (6.1)
<

1
k— k
1) > Céel(l + QCtr)N TIL(UE)-

C;el (1 + QCtr)CL (UE

Thus, we define v := C/_ (1 4 gctr) ¢ and recognize that Algorithm 6.1 guarantees

I
k k—1 k
luy, —up I < vnr(ug).

Following the analysis of [BFM ™24, Theorem 13], the parameters v and 6 are required to
fulfill

1= Getr 91/2 12
0<V<izzu* and0<w

QCtrCstab (1 - V/V*)Q

So in order for Algorithm 6.1 to satisfy (6.21), there needs to hold

< (1 + CSQtabC(%rel)_l =0 (621)

V= C;el(l + QCtr)H <V = (1 - QCtr)/(QCtrCstab)

and
(91/2 + Z/Q/V*)2 < g
(1 —w/v¥) '
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6 Multigrid as inexact solver for AFEM

Let us define p* := v*/((1 + getr)C?;). Then, the conditions can be simplified to

(012 + p/p)?
(1 —p/pr)?

This concludes the proof. O

p< p*  and < 6.

Remark 6.11. If Algorithm 6.1 is implemented in a way that ensures linear complexity for
each module as discussed in Section 6.1, one can also achieve optimal convergence rates
with respect to the cumulative time. An example of this is shown in Chapter 7 in Figure 7.7
and Figure 7.8.
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7 Numerical experiments

In this chapter, we investigate the numerical performance of the proposed multigrid solver
in Algorithm 3.7 and the adaptive Algorithm 6.1 employing this solver. First, we want
to explore the behavior of the multigrid solver. More precisely, the interest lies in the
dependence of the contraction factor g.;; and subsequently also the reliability constant
C!,, on the local diffusion-contrast. Indeed, since the analysis was improved in Chapter 5
compared to [[IMPT24], we aim to highlight numerically that the dependence of the solver
contraction on the diffusion-contrast is local instead of global. Afterwards, some experiments
concerning the optimality of the adaptive algorithm will be presented. The experiments are
done in MATLAB using the implementation of the multigrid solver from [IMP*24] which is

embedded into the MooAFEM framework from [IP23].

7.1 Performance of the multigrid solver

The goal is to numerically confirm the main result from Theorem 5.1. To this end, we want
to design an experiment that can support that only the local variations of the diffusion
coeflicient influence the contraction factor g.t,. In the following, we will describe the chosen
setting and give insight into the choice of the parameters. The diffusion problem (2.4) is
considered on the unit square = (0,1)? with the right-hand side f = 1. Furthermore,
we opt for “striped” diffusion, i.e., we consider a piecewise constant diffusion tensor where
the value changes across four regions/stripes of the domain; see Figure 7.1. The idea is to
compare the following two test cases.

Experiment 7.1. The value of K on the first stripe is 10°, on the second stripe 10%, on
the third stripe 10*, and on the last stripe 105. For an initial mesh To satisfying that any
three-layer patch lies at most across two different stripes, it follows that Amax/Amin = 108 as
well as Cl(olg = CI(OQC) =100 (i.e., local jumps of the diffusion < global jump); see Figure 7.1
(1eft).

Experiment 7.2. The value of K is 1 on the first and third stripe and 10° on the other
two. This leads to Apax/Amin = 1) _ 0@ _ 106 (i.e., local jumps of the diffusion =

loc loc

global jump); see Figure 7.1 (right).

The analysis from Chapter 5 implies that the contraction factor in the first case is smaller
than in the second case under the assumption that the same initial mesh is used. However,
conducting different experiments, it became clear that it is not easy to isolate the influence of
the diffusion coefficient alone. Indeed, many parameters enter (e.g., how the mesh hierarchy
is generated, i.e., which choice of 6 is employed; how the discretization error influences the
mesh generation process, i.e., which choice of p is used; to which precision the solver is
iterating, i.e., for AFEM with certain x in the stopping criterion). Since discretization and
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1 100 | 10* | 109 1 106 1 109

Figure 7.1: Striped diffusion. We display the diffusion coefficient from Experiment 7.1 (left)
and the diffusion coefficient from Experiment 7.2 (right).

algebra cross-influence each other, we opt to fix a pre-computed mesh hierarchy (of L = 10)
generated via Algorithm 6.1 and study therein the behavior of the solver of Algorithm 3.7.
Assuming the mesh hierarchy is given, the solver yields a new approximation u]z'H after one
step on the current approximation ulz (after k iterations, k > 0). Then, the experimental
contraction factor is given by

wt — yhtt
thr,k _ m L>|< Lk ||| (71)
luz, — w7l

This is iterated until the stopping criterion (r, (u’z) < tol is reached. We use tol = 10713,
which results in the computation of enough iterations to be able to draw some insights from
the solver contraction.

7.1.1 Pre-computed meshes

Let us now explain how the mesh hierarchy {7;}}2, is generated utilizing Algorithm 6.1.
We expect to see the biggest influence of the diffusion-contrast on the contraction factor
when a mesh hierarchy is used, which is mostly refined along the lines where the diffusion
coefficient changes value. Hence, we choose appropriate input parameters of Algorithm 6.1:

e Initial mesh 75: The requirements of the initial mesh are rather clear from the analysis
of Chapter 5 as it needs to be fine enough such that its 3-patches are at most contained
in two stripes. In practice, this is achieved by initially considering a coarse mesh and
possibly performing a limited number of uniform refinements (in our case 3).

e Adaptivity parameter §: Since the goal is to eventually use the solver within an
adaptive framework, the generated meshes should be rather locally refined in the
vicinity of singularities. Hence, we change to 8 = 0.3 from the usual § = 0.5.

e Solver stopping parameter : Since this section focuses on the solver, we use = 1073,
thus oversolving the algebraic problem.
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7 Numerical experiments

Figure 7.2: Adaptively-refined meshes. Left: The initial mesh Ty with #7y = 1024 elements
which is fine enough so that any 3-patch only goes across two stripes at most but
coarse enough so that a direct solve is inexpensive. Right: The mesh 779 with
#7T10 = 9854 elements that is obtained with Algorithm 6.1 using the described
parameters.

e Polynomial degree p: Since we need to decide a polynomial degree for the pre-computed
mesh-generation and since we later want to test the solver for different polynomial
degrees, we choose p = 2 here.

e Diffusion coefficient K: We also need to choose a diffusion coefficient for the generation
of the mesh hierarchy. Since we do not want to favor one of the two Experiments 7.1
or 7.2, but want nonetheless refinement along the stripes, we use another “striped”
diffusion: set K =1 on the first and third stripe and 103 on the rest.

In Figure 7.2, the initial and final meshes are displayed.

Utilizing the precomputed mesh hierarchy, we calculate the experimental contraction
factor (7.1) of Algorithm 3.7 for the diffusion coefficients from Experiment 7.1 and Ex-
periment 7.2 on the final level L = 10 until the proposed tolerance ( L(u’Z) < 1071 is
reached. The results for p = 1, 2,5 are presented in Figure 7.3. These results corroborate the
analysis in Chapter 5 since the contraction factor is reduced when the jumps in the diffusion
coefficient are gradual as in Experiment 7.1, compared to the scenario of Experiment 7.2,
where the local jumps coincide with the global jump. To showcase the h-robustness of
the contraction factor, we also pre-compute a mesh hierarchy with 15 levels (i.e., L = 15)
and repeat the aforementioned experiment. To this end, we display the experimental
contraction factor (7.1) of Algorithm 3.7 for the diffusion coefficients from Experiment 7.1
and Experiment 7.2 on the final level L = 15 until the proposed tolerance ¢ L(u’Z) < 10713 is
reached for p = 5 in Figure 7.3. We observe that the experimental contraction factor is still
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7 Numerical experiments

of the same size as for L = 10, which confirms h-robustness. However, the difference between
the two diffusion coefficients from Experiment 7.1 and Experiment 7.1 is less noticable.

7.1.2 Other mesh hierarchies

Algorithm 3.7 requires a sequence of meshes as input, which is assumed to be available. In
the last section, we gave one reasonable example of how this could be done. However, other
options of meshes can be used and we now discuss how this influences the behavior of the
solver with respect to the diffusion coeflicient.

Remark 7.3 (Studying the diffusion jumps). Though in the previous tests, we indeed see
better contraction factors for problems where the local jumps of the diffusion coefficient are
lower than the global jump, the improvements are rather mild. This by no means discourages
the analytical improvements, we set in place. It may well be that more sophisticated singular
problems (exhibiting e.g. cross points) need to be engineered to truly see a degradation of
contraction factors. Howewver, it is not straightforward to construct comparable singular
test cases where the only difference is the locality of the jumps.

Remark 7.4. Another reason why the gap between Experiment 7.1 and Ezxperiment 7.2
in Figure 7.3 is not as large as one might expect, may stem from the analysis being overly
pessimistic. Recall the norm equivalence (2.6), i.e.,

A2 IVul < Jull < AYZVu|  for aliu e X.

min max

The analysis in Chapter 4, using essentially this estimate to extend the framework from the
H'-seminorm analysis, yields that the contraction factor depends on Amax/Amin. However,
the above equivalence indicates that gty possibly depends only on (/\rm;,,m//\rml)1/2 instead.

Remark 7.5 (Parameters for the pre-computed meshes). For the comparison of the diffusion
coefficient from Experiment 7.1 to the one from FExperiment 7.2 on a pre-computed mesh
hierarchy, we explored different choices of the adaptivity parameter 6 and polynomial degree
p. Whenever the generated meshes were rather uniform the history plots for the contraction
factor became almost identical for the two diffusion coefficients. We believe this happens
because the almost uniform meshes make it so that the geometry is resolved rather too well.
In Figure 7.4, we show an example of this phenomenon for § = 0.5 and p = 1.

Remark 7.6 (Choice of meshes). It is curious to see that when running tests where the
algebra and the discretization mutually influence each other, the situation overall improves.
This is to say, in the typical AFEM setting with multigrid as the inezxact solver, the mesh
becomes more tailored to the singularities stemming from the jumps in the diffusion coefficient.
As a result, the contraction factors improve even when the local jumps are the same as the
global jump. We want to give an example here. Let us consider the diffusion coefficient from
Ezxperiment 7.2 and compare it to K = 1. We construct the meshes with Algorithm 6.1 but
use the corresponding diffusion coefficients and polynomial degrees p = 2,4,6 already for
the generation of the mesh hierarchy. Furthermore, we set § = 0.5 and p = 107> in the
stopping criterion (6.1). In Figure 7.5, we can see that the contraction factors for the two
diffusion coefficients are not comparable. We believe this is due to the cross-influence of the
discretization and algebra since we are not pre-computing the meshes anymore.
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7 Numerical experiments

7.1.3 Step-sizes

In this section, we use an additional diffusion coefficient which is introduced in the following
experiment.

Experiment 7.7. The value of K on the first stripe is 1, on the second stripe 10, on the
third stripe 100, and on the last stripe 1000. For an initial mesh Ty satisfying that any
three-layer patch lies at most across two different stripes, it follows that Amax/Amin = 1000

as well as C\Y) = ¢ = 10.

loc

Our objective is to check the bounds of the step-size \; as already promised in Chapter 4.
In the numerical experiments, the optimal step-size s, never crosses the limit d + 1. Hence,
the case distinction in Algorithm 3.7 never takes place in practice. In order to observe this,
Algorithm 6.1 is used and set to terminate if 106 degrees of freedom are reached. Moreover,
we use § = 0.5 and p = 107° in the stopping criterion (6.1) thus oversolving the algebra.
Furthermore, the diffusion coefficient introduced in Experiment 7.7 is utilized. In Figure 7.6
(left), the maximal step-size on a level ¢ for the polynomial degrees p = 1,2, 3,4 is shown
as well as the upper bound d + 1. Throughout, the values of Ay lie well below this bound.
In Figure 7.6 (right), the minimal step-size on a level and the lower bound (d + 1)~! are
displayed.

7.2 Optimality of AFEM with multigrid solver

The objective of this section is to confirm Theorem 6.8 of Chapter 6. As discussed in
Remark 6.9 the constants copy and Cypy depend on geir and hence Chapter 5 implies that
they depend on local variations of the diffusion coefficient. Therefore, we again use the
diffusion coefficients described in Experiment 7.1 and Experiment 7.2. We set ;4 = 0.1 in
Algorithm 6.1 and study the decrease of the discretization error estimator nL(u%) with
respect to the cumulative time and cumulative degrees of freedom

Z dim XL’

(L'k"eQ
|L' k' |<|L,k|

which is equivalent to the overall computational cost (6.5). Theorem 6.8 guarantees optimal
rates for the quasi error H’Z in terms of the overall computational cost. However, for the
final iterate, the error estimator is equivalent to the quasi-error, i.e., H% ~ m(u%) as follows
directly from Lemma 6.4. Let us first consider the diffusion coefficient from Experiment 7.1.
Furthermore, we use 8 = 0.5 and polynomial degrees p = 1,2,3,4. After a pre-asymptotic
phase, one can observe the optimal convergence rates —p/2 in Figure 7.7 both with respect
to the cumulative degrees of freedom and with respect to the cumulative time.

We perform the same experiments for the diffusion coefficient described in Experiment 7.2
and also observe optimal convergence rates in Figure 7.8. This is not surprising since the
analysis in Chapter 6 ensures optimal complexity for all diffusion coefficients that satisfy
the assumptions in Section 2.2. Furthermore, the influence of copy and Copy is rather seen
in the longer pre-asymptotic regime in Figure 7.8 compared to Figure 7.7.
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7 Numerical experiments

7.2.1 Nested iterations

Finally, we repeat the experiments from this section but omit nested iteration, i.e., u% 1= u%,

and instead set u% := 0 for all levels L € N. Furthermore, we use ;1 = 1072 in the stopping
criterion (6.1). The results for the diffusion coefficient from Experiment 7.1 can be seen
in Figure 7.9 and for the diffusion coefficient described in Experiment 7.2 in Figure 7.10.
Since the analysis in Chapter 6 explicitly uses nested iteration, we observe suboptimal
rates with respect to the cumulative degrees of freedom, as well as a considerably worse
pre-asymptotic regime; see Figure 7.9 and Figure 7.10 (top left). Furthermore, as shown
in Figure 7.9 and Figure 7.10 (top right), the convergence rates with respect to time are
noticeably suboptimal starting at polynomial degree p = 3. Therefore, nested iteration is
not only needed for the analysis but also necessary in practice to achieve optimal complexity.
However, the convergence rates with respect to the degrees of freedom remain optimal, as
demonstrated in Figure 7.9 and Figure 7.10 (bottom left). Finally, the number of iterations
of the multigrid solver with respect to the degrees of freedom increases, as we always start
with the same initial guess uOL := 0. This is shown in Figure 7.9 and Figure 7.10 (bottom
right).
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Figure 7.3: Contraction factor of the multigrid solver. History plot of the experimen-

tal contraction factor for the diffusion coefficient from Experiment 7.1 in
green compared to the diffusion coefficient from Experiment 7.2 in grey calcu-
lated on the pre-computed mesh hierarchy introduced in Section 7.1.1, where
dim(S§(T10)) = 5078, dim(S3(T10)) = 20009 and dim(S}(T10)) = 123926.
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cumulative time (right); see Section 7.2.
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Figure 7.9: AFEM without nested iteration for the striped diffusion with local jumps from
Experiment 7.1. The convergence history plot of the discretization error nL(u%)
with respect to the cumulative degrees of freedom (top left), with respect to the
cumulative time (top right), and with respect to the degrees of freedom (bottom
left), as well as the number of iterations of the algebraic solver with respect to
the degrees of freedom (bottom right); see Section 7.2.1.
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Figure 7.10: AFEM without nested iteration for the striped diffusion with global jumps from
Experiment 7.2. The convergence history plot of the discretization error nL(u%)
with respect to the cumulative degrees of freedom (top left), with respect to
the cumulative time (top right), and with respect to the degrees of freedom
(bottom left), as well as the number of iterations of the algebraic solver with
respect to the degrees of freedom (bottom right); see Section 7.2.1.
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