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Kurzfassung

Im Kontext numerischer Methoden für symmetrische lineare elliptische PDEs ermöglicht die
adaptive Finite-Elemente-Methode (AFEM) eine effiziente Diskretisierung des Problems, was
zu optimalen Konvergenzraten in Bezug auf die Größe des Finite-Elemente-Raums führt. Um
jedoch auch optimale Konvergenzraten in Bezug auf den Gesamtrechenaufwand zu erreichen,
ist ein iteratives Verfahren erforderlich, das zur Lösung der auftretenden diskreten Probleme
eingesetzt wird. In dieser Arbeit betrachten wir ein geometrisches Mehrgitterverfahren als
iterativen Löser für AFEM, dessen Kontraktion pro Schritt unabhängig von den Ebenen der
inhärenten Netzhierarchie und dem Polynomgrad p der FEM-Basisfunktionen ist. Obwohl
er hp-robust ist, hängt der Kontraktionsfaktor von dem globalen Diffusionskontrast der
gegebenen PDE ab. Ziel dieser Arbeit ist es, die Abhängigkeit des Kontraktionsfaktors so
zu verbessern, dass er nur noch vom lokalen Kontrast des Diffusionskoeffizienten abhängt.

Zuerst wird die Analyse des Mehrgitterlösers von [Innerberger, Miraçi, Praetorius, Streit-
berger; ESAIM Math. Model. Numer. Anal. 58 (2024)] untersucht und festgestellt, dass
die wichtigsten Werkzeuge für den Nachweis der hp-robusten Kontraktion des Lösers eine
hp-robuste stabile Zerlegung und eine verschärfte Cauchy-Schwarz-Ungleichung sind. Beide
Ergebnisse sind für die H1-Seminorm formuliert, die eine Abhängigkeit vom globalen Diffu-
sionskontrast einführt. Daher konzentrieren wir uns auf die Ableitung analoger Ergebnisse
für die diffusionsgewichtete Energienorm, die sich aus der schwachen Formulierung der
PDE ergibt. Die größte Herausforderung besteht darin, eine h-robuste stabile Zerlegung
in diesem neuen Rahmen zu beweisen. Um dies zu erreichen, werden zusätzliche Konzepte
wie das sogenannte K-Funktional, gewichtete L2-Normen und Fortsetzungsoperatoren für
Sobolev-Räume eingeführt. Unter Verwendung dieser Werkzeuge sowie durch Anpassung
der Analyse der p-robusten stabilen Zerlegung im zweidimensionalen Fall können wir nach-
weisen, dass der Kontraktionsfaktor tatsächlich (zusätzlich zur hp-Robustheit) nur lokal
vom Diffusionskontrast abhängig ist.

Schließlich werden die theoretischen Erkenntnisse durch entsprechende numerische Expe-
rimente validiert.



Abstract

In the context of numerical methods for symmetric linear elliptic PDEs, the adaptive finite
element method (AFEM) enables an efficient discretization of the problem, leading to
optimal convergence rates with respect to the size of the finite element space. However, to
achieve optimal convergence rates with respect to the total computational cost, an iterative
method is required to solve the arising discrete problems. In this work, we consider a
geometric multigrid method as an iterative solver for AFEM, whose contraction per step
is independent of the number of levels in the inherent mesh hierarchy and the polynomial
degree p of the FEM basis functions. Though it is hp-robust, the contraction factor depends
on the global diffusion-contrast of the inherent PDE. This thesis aims to improve the
dependence of the contraction factor so that it depends only on the local contrast of the
diffusion coefficient.

First, the analysis of the multigrid solver of [Innerberger, Miraçi, Praetorius, Streitberger;
ESAIM Math. Model. Numer. Anal. 58 (2024)] is examined, establishing that the
key ingredients for proving hp-robust contraction of the solver are an hp-robust stable
decomposition and a strengthened Cauchy–Schwarz inequality. Both results are formulated
for the H1-seminorm, which leads to the dependence on the global diffusion-contrast.
Therefore, we focus on deriving analogous results for the diffusion-weighted energy norm
arising from the weak formulation of the PDE. The main challenge lies in proving an h-robust
stable decomposition in this new setting. To address this, additional concepts such as the
so-called K-functional, weighted L2-norms, and extension operators for Sobolev spaces
are introduced. Using these tools as well as adapting the analysis of the p-robust stable
decomposition in the two-dimensional case, we are able to prove, that, indeed, the contraction
factor is (in addition to hp-robust) only locally dependent on the diffusion-contrast.

Finally, the theoretical findings are validated through appropriate numerical experiments.
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1 Introduction

A large variety of scientific and technological advances rely on numerical simulations of
partial differential equations (PDEs). A versatile discretization method is the finite element
method (FEM), which solves the weak formulation of the PDE with exact solution u∗ ∈ X
on a finite dimensional subspace XH ⊂ X . However, standard FEM relies on computational
meshes TH where all elements have comparable sizes and convergence rates can only be
shown under additional regularity assumptions on the exact weak solution, see, e.g. [EG21b].
The pursuit of optimal convergence rates with respect to the size of the finite element space
without additional assumptions is one reason to consider adaptive finite element methods
(AFEMs). The adaptive algorithm consists of four modules. In the SOLVE module, the
discrete solution u∗H ∈ XH on a given mesh TH is calculated. Afterwards, a-posteriori error
indicators for every element of the mesh are computed in the ESTIMATE module. These
are then used in the MARK module to decide which elements require refinement. For this, a
marking strategy and adaptivity parameter θ, which is given as an input to the algorithm,
are needed. In the REFINE module, a new mesh, where at least every marked element is
refined, is calculated: AFEM thus takes the following feedback loop structure

SOLVE
u∗H ∈ XH

ESTIMATE
{ηT (u∗H)}T∈TH

MARK (θ)
MH ⊆ TH REFINE(TH ,MH)

solution accurate enough?

and allows to obtain a sequence of meshes and corresponding discrete solutions. Under
reasonable assumptions on every module, it can be shown that AFEM even for minimal
regularity of the exact solution yields optimal convergence rates with respect to the number
of elements in the mesh, see, e.g. [CFP+14]. Although this result is a significant improvement
compared to standard FEM, one can even obtain optimal convergence rates with respect to
the overall computational cost and thus time, provided the algorithm is slightly modified.
This leads to the introduction of iterative solvers. The adaptive loop is modified so that
the SOLVE and ESTIMATE modules are combined and the discrete solution is not solved via
direct solve anymore, but an iterative solver is utilized until the estimated algebraic error is
sufficiently reduced compared to the estimated discretization error. This is implemented
via a stopping criterion balancing the error components, which uses a solver-stopping
parameter λ. Hence, the structure becomes

ITERATIVELY SOLVE AND ESTIMATE (λ)
uH ≈ u∗H , {ηT (uH)}T∈TH

MARK (θ)
MH ⊆ TH REFINE(TH ,MH)

solution accurate enough?

1



1 Introduction

In order for the adaptive algorithm to be optimal with respect to the overall cost, i.e., of
optimal complexity, the solver must be chosen suitably. More precisely, we require that the
solver satisfies the following two properties:

(i) linear complexity,

(ii) uniform contraction.

Let us denote by uH ∈ XH a given approximation to the discrete solution u∗H ∈ XH and by
ΦH : XH → XH the iteration operator of the solver on the finite element space XH . Then,
we say that the solver contracts uniformly if there exists a constant qctr ∈ (0, 1) independent
of XH such that

|||u∗H − ΦH(uH)||| ≤ qctr |||u∗H − uH |||.
The contraction factor needs to be uniform, in particular, it is independent of the refinement
level, and hence the mesh size h. Furthermore, qctr should even be independent of the
polynomial degree p used in the FEM discretization. Then, we say that the multigrid solver
is hp-robust. The motivation behind considering higher polynomial degrees is that they
yield better convergence rates for AFEM; see, e.g. [BDD04; CKN+08]. In this thesis, we
consider a specific geometric multigrid solver, which satisfies the required properties (i)–(ii)
and was introduced in [IMP+24].
We will study the symmetric linear elliptic diffusion problem

− div(K∇u∗) = f in Ω,

u∗ = 0 on ∂Ω,

with K being symmetric, bounded, and uniformly elliptic. The analysis in [IMP+24] yields
that the contraction factor depends on the ratio of the biggest to smallest eigenvalue of the
diffusion coefficient K over the whole domain. However, numerical experiments gave the
indication that qctr actually depends only on local variations of the diffusion coefficient. The
main objective and contribution of this thesis is to prove that the dependency is indeed local.

We conclude this introduction with a short overview on the structure of the work. The
preliminary Chapters 2 and 3 introduce the underlying concepts of AFEM and geometric
multigrid methods. Furthermore, the actual setting for the main results is described and the
geometric multigrid solver is proposed. Afterwards, the existence of an hp-robust contraction
factor qctr is shown in Chapter 4. For this, the proofs from [IMP+24] are presented, but
more details are added so that we can improve specific results accordingly in the following
chapter. Finally, in Chapter 5 we show the main result of the thesis: the contraction factor
qctr indeed depends only on local variations of the diffusion coefficient K for d ∈ {2, 3}, see
Theorem 5.1. Moreover, for d = 2 we also prove that the main result holds p-robustly. The
original proof of algebraic error contraction in Theorem 4.13 requires two main ingredients
namely an hp-robust stable decomposition and a strengthened Cauchy–Schwarz inequality.
In order to improve the dependency on the diffusion coefficient, we had to revisit both
components. In Chapter 5, we first show that indeed the constant in the strengthened
Cauchy–Schwarz inequality is influenced only by local diffusion-contrasts. Subsequently, we

2



1 Introduction

turn to the hp-stable decomposition, where we first prove an h-robust stable decomposition
for both d = 2 and d = 3 with the desired local dependency. Moreover, for d = 2 we are
also able to show a p-robust stable decomposition with constants depending only locally on
the diffusion. Analogously to the original proofs from [IMP+24], these two decompositions
can be combined to obtain an hp-robust stable decomposition with the improvement that
the stability constant now depends only on the local variations of the diffusion coefficient.
Since the purpose of establishing a uniformly contractive solver was to use it in AFEM, we
discuss how the proposed multigrid solver fits into the AFEM framework from [GHP+21] in
Chapter 6. Furthermore, the theory in [GHP+21] immediately implies optimal complexity of
AFEM with the proposed geometric multigrid solver. Lastly, Chapter 7 presents numerical
experiments that corroborate the analysis developed in Chapter 5.

3



2 Model problem and adaptive algorithm

In this chapter, we first define some essential properties of meshes. Afterwards, we present
the model problem, for which we will prove the analytical results. Subsequently, a short
introduction to the finite element method (FEM) is given and it is used in the discretization
of the model problem. Lastly, we describe the adaptive finite element method (AFEM) in
Algorithm 2.11.

2.1 Mesh properties

First, we give some definitions concerning simplicial triangulations.

Definition 2.1. For a bounded domain Ω ⊂ Rd, a finite set T is called a mesh of Ω if

• every T ∈ T is a compact subset of Ω with |T | > 0,

• the elements cover the closure of Ω, i.e.,
S

T∈T T = Ω,

• the intersection of two elements T, T 0 ∈ T with T 6= T 0 has measure zero, i.e.,
|T ∩ T 0| = 0.

Definition 2.2. A set T ⊂ Rd is called a non-degenerate simplex if there exists z0, . . . , zd ∈
Rd such that T = conv(z0, . . . , zd) and |T | > 0. We denote by VT := {z0, . . . , zd} the set of
vertices of T .

Definition 2.3. Let Ω ⊂ Rd be a bounded Lipschitz domain with polytopal boundary ∂Ω.
A set T is a conforming simplicial triangulation of Ω if it fulfills

• T is a finite set of simplices,

• the simplices cover the closure of Ω, meaning
S

T∈T T = Ω,

• the intersection of two elements T, T 0 ∈ T is either empty or there exists a set
M ∈ VT ∩ VT 0 with T ∩ T 0 = conv(M). In the last case, we call conv(M) a joint
k-dimensional hyperface of T and T 0 with k := #M − 1.

We denote by

V :=
[
T∈T

VT

the set of vertices of T .

4



2 Model problem and adaptive algorithm

Definition 2.4. Let T be a conforming simplicial triangulation of Ω ⊂ Rd with d ≥ 2.
Define the shape regularity constant of T by

σ(T ) := max
T∈T

diam(T )

|T |1/d > 0 (2.1)

If there exists γ > 0 such that σ(T ) ≤ γ < ∞, we say that T is γ-shape regular.

Shape-regular triangulations have the following important property.

Proposition 2.5 (γ-comparable neighbor diameters). Let T be a conforming simplicial
triangulation of Ω ⊂ Rd with d ≥ 2, which is γ-shape regular for γ > 0. Then, there exists
C > 0 depending only on γ and the dimension d such that

max
T∈T

max
T 0∈T

T∩T 0 6=∅

diam(T )

diam(T 0)
≤ C. (2.2)

Proof. We start with the case that T ∩ T 0 contains a 1-dimensional hyperface, which we call
E. Such a hyperface is a shared edge between the two simplices and we denote its length
by |E|. For the volume, it holds

|T | ≤ diam(T )d−1|E| ≤ diam(T )d−1 diam(T 0).

The γ-shape regularity (2.1) implies diam(T ) ≤ γ|T |1/d for every T ∈ T . Hence, we get

|T | ≤ diam(T )d−1 diam(T 0) ≤ γd|T |(d−1)/d|T 0|1/d

and therefore |T |1/d ≤ γd|T 0|1/d. Moreover, for every simplex, we have |T | ≤ diam(T )d.
Combining this with γ-shape regularity (2.1) and the above estimate, we see

diam(T ) ≤ γ|T |1/d ≤ γd+1|T 0|1/d ≤ γd+1 diam(T 0). (2.3)

The case where T and T 0 only share a vertex still needs to be discussed. Because T is
γ-shape regular, the number of simplices that share a vertex is bounded by an integer n
that depends only on γ. Therefore, we can find n simplices {Ti}ni=1 with T = T1, T

0 = Tn

such that the dimension of the hyperface Ti ∩ Ti+1 is at least one for all i = 1, . . . , n− 1.
Iterating the established estimate (2.3) for the first case, we get

diam(T ) ≤ γn(d+1) diam(T 0).

Dividing by diam(T 0) and taking the maximum gives the result (2.2).

Remark 2.6. We want to emphasize that for d = 1 the estimate (2.2) needs to be enforced
by the refinement algorithm. We will discuss this in more detail in Section 2.4.1.

5



2 Model problem and adaptive algorithm

2.2 Model problem

Let d ∈ {1, 2, 3} and Ω ⊂ Rd be a bounded Lipschitz domain with polytopal boundary ∂Ω.
We consider the second-order symmetric linear elliptic diffusion problem

− div(K∇u∗) = f in Ω,

u∗ = 0 on ∂Ω,
(2.4)

where f ∈ L2(Ω) and K ∈ [L∞(Ω)]d×d
sym is symmetric and uniformly positive definite. Let

T0 be an initial conforming simplicial triangulation of Ω. We actually require the stronger
regularity K|T ∈ [W 1,∞(T )]d×d for all T ∈ T0. More precisely, this is needed in Lemma 4.11
and for the residual error estimator (2.17). For x ∈ Ω, the expressions λmax(K(x)) and
λmin(K(x)) denote the maximal and minimal eigenvalue of K(x) ∈ Rd×d respectively.
Furthermore, it is useful to define

0 < Λmin := ess inf
x∈Ω

λmin(K(x)) ≤ Λmax := ess sup
x∈Ω

λmax(K(x)) < ∞

by assumption on K. For any measurable set ω ⊆ Ω, we denote the L2(ω)-scalar product
with h·, ·iω. The weak formulation of (2.4) is given by: Find u∗ ∈ X := H1

0 (Ω) that solves

hhu∗, viiΩ := hK∇u∗,∇viΩ = hf, viΩ =: F (v) for all v ∈ X . (2.5)

From here on, we omit the index ω for ω = Ω.

Proposition 2.7 (Equivalent energy norm). The bilinear form hh·, ·ii is a scalar product on
X and the induced semi-norm |||u|||2 := hhu, uii is an equivalent norm on X . More precisely,
there holds

Λ
1/2
mink∇uk ≤ |||u||| ≤ Λ1/2

maxk∇uk for all u ∈ X (2.6)

Proof. The bilinearity and symmetry of hh·, ·ii are clear as K is symmetric. Next, we show
that ||| · ||| is equivalent to k∇ · k. For a symmetric matrix A ∈ Rd×d,it holds

λmin(A) = min
v∈Rd

v 6=0

vTAv

|v|2 and λmax(A) = max
v∈Rd

v 6=0

vTAv

|v|2 . (2.7)

Applying this property to K(x) for every x ∈ Ω yields

|||u|||2 =
Z
Ω
K∇u · ∇u dx ≤

Z
Ω
λmax(K(x))∇u · ∇u dx ≤ Λmaxk∇uk2,

k∇uk2 =
Z
Ω
∇u · ∇u dx ≤

Z
Ω

1

λmin(K(x))
K∇u · ∇u dx ≤ 1

Λmin
|||u|||2.

Finally, we note that k∇ · k is a norm on H1
0 (Ω) so that hh·, ·ii is positive definite and hence

a scalar product. This concludes the proof of (2.6).

Proposition 2.7 allows us to apply the Lax–Milgram theorem, therefore yielding the
existence of a unique solution u∗ ∈ X to the problem (2.5).

6



2 Model problem and adaptive algorithm

2.3 Finite element method and discrete problem

In this section, we give a short introduction to the finite element/Galerkin method in an
abstract framework. Afterwards, we formulate the discretization of the model problem.

2.3.1 Galerkin method

Let X be a Hilbert space and hh·, ·iiX a scalar product on X such that the induced norm
|||v|||2X := hhv, viiX admits constants C1, C2 > 0 that satisfy

C1kvkX ≤ |||v|||X ≤ C2kvkX for all v ∈ X. (2.8)

For any L ∈ X∗, the Riesz theorem provides a unique solution u ∈ X of

hhu, viiX = L(v) for all v ∈ X. (2.9)

The Galerkin method considers the problem (2.9) on a finite dimensional subspace Xh ⊆ X.
Again, the Riesz theorem proves the existence and uniqueness of the solution uh ∈ Xh to

hhuh, vhiiX = L(vh) for all vh ∈ Xh. (2.10)

We call uh the Galerkin solution. This gives rise to the definition of the Galerkin projection
Gh : X → Xh, where

hhGhu, ·iiX = hhu, ·iiX ∈ X∗
h.

The defining characteristic of the projection is the Galerkin orthogonality

hhu−Ghu, vhiiX = 0 for all vh ∈ Xh. (2.11)

This implies the Pythagorean identity

|||u− vh|||2X = |||u−Ghu+Ghu− vh|||2X
= |||u−Ghu|||2X + |||Ghu− vh|||2X + 2hhu−Ghu,Ghu− vhii

(2.11)
= |||u−Ghu|||2X + |||Ghu− vh|||2X for all vh ∈ Xh.

(2.12)

Ultimately, we want to state two well-known properties of the Galerkin method. The proofs
can be found, e.g., in [Pra17].

Lemma 2.8 (Céa lemma). The Galerkin error is quasi-optimal, i.e., there holds

ku−GhukX ≤ C1

C2
min

vh∈Xh

ku− vhkX for all u ∈ X,

with C1 and C2 from (2.8). Furthermore, for the energy norm, we have that

|||u−Ghu|||X = min
vh∈Xh

|||u− vh|||X for all u ∈ X. (2.13)

Lemma 2.9 (Galerkin approximation property). For all h > 0, we assume Xh to be a
finite dimensional subspace of X. Let D ⊆ X be a dense subspace of X, such that the
approximation property

lim
h→0

min
vh∈Xh

ku− vhkX = 0 for all u ∈ D

is satisfied. Then, for every u ∈ X it holds that

lim
h→0

ku−GhukX = 0.

7



2 Model problem and adaptive algorithm

2.3.2 Discretization of the model problem

Next, we define the finite element spaces for the discretization of the model problem (2.5).

Definition 2.10. Let Th be a conforming simplicial triangulation, p ∈ N a fixed polynomial
degree, and T ∈ Th a simplex. We denote by Pp(T ) the space of all polynomials on T , whose
degree is at most p. The discrete space Sp(Th) is defined as

Sp(Th) := {vh ∈ C(Ω) : vh|T ∈ Pp(T ) for all T ∈ Th}.
Furthermore, we write X p

h := Sp0(Th) := Sp(Th) ∩H1
0 (Ω).

The finite element method for the model problem is just the Galerkin method with the
Hilbert space X = H1

0 (Ω) and the discrete spaces X p
h . It is important to note, that the

finite element spaces X p
h rely on two parameters: The subscript h represents the inherent

mesh Th used in the discretization, while p gives the maximal polynomial degree of discrete
functions aiming to approximate the solution u∗ of (2.5) in the space X p

h . The discrete
problem reads as follows: Find the solution u∗h ∈ X p

h to

hhu∗h, vhii = hK∇u∗h,∇vhi = hf, vhi = F (vh) for all vh ∈ X p
h . (2.14)

If we choose a basis of X p
h , the discrete problem (2.14) can be rewritten as a linear system

with a symmetric and positive definite matrix. Therefore, the solution u∗h can be computed
provided that computational resources suffice.

2.4 Adaptive algorithm

We first state the adaptive finite element algorithm. Subsequently, we explain the steps in
the adaptive loop in more detail.

Algorithm 2.11 (Adaptive finite element method). Input: An initial mesh T0.
Adaptive loop: repeat the following steps (i)–(iv) for all ` = 0, 1, . . . :

(i) SOLVE: Compute the discrete solution u∗` associated to the mesh T`.
(ii) ESTIMATE: Compute local contributions η`(T, u

∗
` ) of an error estimator

η`(u
∗
` )

2 :=
X
T∈T`

η`(T, u
∗
` )

2

for all T ∈ T`.
(iii) MARK: Depending on (η`(T, u

∗
`))T∈T`, choose a set M` ⊆ T` via a suitable criterion,

where the estimated error dominates.

(iv) REFINE: Generate T`+1 := REFINE(T`,M`) so that all marked elements are refined.

Output: A sequence of conforming simplicial triangulations T`, discrete solutions u∗` , and
error estimators η`(u

∗
` ).

In the following, we will describe the setting of each module of the adaptive loop, as it is
used in the remainder of this work.

8



2 Model problem and adaptive algorithm

2.4.1 Newest vertex bisection

The module REFINE uses newest vertex bisection (NVB). In the adaptive algorithm, a
sequence of successively refined meshes {T`}L`=0 is generated from an initial conforming
simplicial triangulation T0. It is useful to define the set T := T(T0) of all refinements of
T0 obtained by finitely many steps of NVB. We need to define the refinement strategy
REFINE so that for a given triangulation T`−1, ` ∈ {1, . . . , L}, and a set of marked elements
M`−1 ⊂ T`−1 the refined mesh can be obtained by T` = REFINE(T`−1,M`−1). Such a
strategy should have the following properties:

(A) All marked elements are refined and

T =
[

{T 0 ∈ T` | T 0 ⊆ T} for all T ∈ T`−1.

(B) The new triangulation is conforming.

(C) The created sequence is uniformly γ-shape regular, i.e.,

max
`=0,...,L

max
T∈T`

diam(T )

|T |1/d ≤ γ < ∞, (2.15)

where γ depends only on T0. For d ≥ 2, Proposition 2.5 additionally implies

max
`=0,...,L

max
T∈T`

max
T 0∈T`

T∩T 0 6=∅

diam(T )

diam(T 0)
≤ γn(d+1) < ∞. (2.16)

(D) The least amount of elements T ∈ T`−1\M`−1 are refined to achieve (B) and (C).

One refinement strategy that satisfies these properties is NVB. We will first introduce
newest vertex bisection in 2D and then give some remarks for d ∈ {1, 3}. The first step in
the 2D algorithm is to assign a reference edge for every triangle in T0. For that, an arbitrary
newest vertex is chosen in each triangle. The reference edge lies opposite to the newest
vertex. An element is refined by halving the reference edge so that the midpoint becomes
the newest vertex of the two new triangles. We can now formulate the algorithm:

(i) For every marked element T ∈ M`−1, we mark the reference edge.

(ii) Repeat recursively: If any non-reference edge of a triangle is marked, we additionally
mark its reference edge.

The second step (ii) is repeated recursively to ensure that the resulting mesh will be
conforming. Note that (ii) terminates as there are only finitely many edges in a triangulation.
Following this procedure, we end up with four different cases for a triangle T ∈ T`−1 (see
also Figure 2.1):

(iii) Apply the refinement pattern:

• If no edges are marked, the element remains unchanged i.e., T ∈ T`.

9



2 Model problem and adaptive algorithm

Figure 2.1: The four different cases of newest vertex bisection in 2D. Above: Edges with a
violet dot are marked for refinement and the reference edge is always indicated
with a violet line. Below: Refined element with new reference edges.

Figure 2.2: Refinement by NVB leads only to 4 similarity classes of triangles. We can see
this by iterating NVB until no more new classes of triangles appear.

• If one edge is marked, it has to be the reference edge. Consequently, we halve
the triangle as described above.

• If two edges are marked, one bisection is done for the reference edge. The other
marked edge is the reference edge of one of the new triangles. We also bisect this
triangle.

• If all edges are marked, the triangle is halved once as in the second case. Afterward,
both reference edges of the new triangles are still marked. Hence, we also bisect
these triangles.

When applying NVB repeatedly to a single element, we discover that just 4 similarity
classes of triangles arise. Thus, in a sequence of meshes generated by NVB, only finitely
many types of triangles appear; see Figure 2.2. Henceforth, such a sequence {T`}L`=0 is
uniformly γ-shape regular. Because we solely mark necessary triangles T ∈ T`−1\M`−1 in
the recursive step and since all new nodes are edge midpoints, the described strategy also
satisfies properties (B) and (D).
Generalizing NVB for d ≥ 3 is not a trivial task. We will outline the algorithm given

in [Ste08] and comment on the challenges that arise. Following the structure from the 2D
algorithm, one needs to define a bisection rule. For a simplex T , denote the reference edge
by ET . Let T = conv(z0, . . . , zd) be a simplex and assume ET = conv(z0, zd), then the
children of T are given by C1(T ) := conv(z0, . . . , zd−1, y) and C2(T ) := conv(y, z1, . . . , zd),
where y = (z0 + zd)/2. The last step of a bisection rule is the assignment of the reference
edges of the children C1(T ) and C2(T ). A complete bisection rule can be found in [Ste08].
It is important to note that, if the assignment of reference edges is not well-thought, it
is impossible to guarantee uniformly γ-shape regular triangulations using said bisection
rule. However, the bisection rule proposed in [Ste08] only generates finitely many types of
simplices, hence the created sequence of meshes is uniformly γ-shape regular, i.e., property
(C) is fulfilled. This statement was proven in [Tra97]. We need to introduce some more
notation, before we can formulate NVB for higher dimensions. Consider a simplicial mesh T .

10



2 Model problem and adaptive algorithm

For a simplex T = conv(z0, . . . , zd) ∈ T , we define its edges E(T ) := {conv(zi, zj) : i 6= j}.
Furthermore, E(T ) :=

S
T∈T E(T ) denotes the set of all edges of T . Lastly, we define the

refinement patch R(T ) = {T 0 ∈ T : ET ⊂ T 0} and say it is compatibly bisectable if and
only if R(T ) = R∗(T ) := {T 0 ∈ T : ET 0 = ET }. The following algorithm is a loop-based
variation from Schön [Sch17] of the recursive algorithm proposed in [Ste08].

Algorithm 2.12 (Newest vertex bisection for d ≥ 3). Input: A triangulation T and a set
of marked elements M ⊆ T .
Repeat the following steps (i)–(v), until M = ∅:
(i) Define E∗ := {ET ∈ E(T ) : T ∈ M}.
(ii) Repeat step (a)–(b):

(a) Define U := {ET ∈ E(T )\E∗ : T ∈ T with E(T ) ∩ E∗ 6= ∅}.
(b) Update E∗ 7→E∗ ∪ U .
until U = ∅.

(iii) Define the set of simplices to be bisected R := {T ∈ T : ET ∈ E∗ and R(T ) = R∗(T )}.
(iv) Refine the triangulation by updating T 7→T \R ∪ {C1(T ), C2(T ) : T ∈ R}.
(v) Update the marked elements M 7→M\R.

Output: Refined triangulation T , where all marked simplices have been bisected.

So far, it is unclear whether Algorithm 2.12 terminates. Leaving this problem aside for
now, the above algorithm only refines compatibly bisectable refinement patches, therefore
maintaining the conformity of T . In step (ii), we add reference edges ET 0 of elements
T 0 to the set E∗, if the reference edge of a marked element T ∈ M is an edge of T 0, i.e.,
ET ∈ E(T 0). This process is repeated until no more new edges are added to E∗. This
recursion terminates since T consists only of finitely many simplices. Moreover, we add
only reference edges of elements to E∗ that need to be bisected for T to stay conforming.
Hence, if the algorithm terminates, it satisfies properties (A), (B), and (D). Thus, it is only
left to discuss if Algorithm 2.12 terminates. In [Ste08], a so-called admissibility condition
for the initial triangulation T0 is given, which indeed ensures termination. This condition
depends on a local numbering of the vertices. For d = 3 and a given triangulation T0, a
local numbering that makes T0 an admissible mesh does not always exist. However, one
can construct a finer triangulation from T0 that is conforming and fulfills an even stronger
condition; see [Ste08]. The downside is that in 3D every tetrahedron is split into 12 new
elements. Having said that, the recent work [DGS24] introduces a novel initialization
algorithm such that newest vertex bisection terminates for arbitrary T0 in any dimension.

Remark 2.13 (NVB for d = 1). We can make some simple observations for d = 1. Starting
with an initial conforming mesh T0, bisecting any subset of elements always results in a
conforming triangulation. Since diam(T ) = |T |, every triangulation is γ-shape regular with
γ = 1. As stated in Proposition 2.5, γ-shape regularity for d ≥ 2 implies that the diameters
of neighboring elements are comparable. This does not apply to d = 1. For that reason,

11
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newest vertex bisection in 1D has a new requirement, namely that the generated sequence of
meshes {T`}L`=0 satisfies (2.16). As for d = 2, the algorithm must bisect the least amount of
extra elements T ∈ T`−1\M`−1 to achieve this. An algorithm with this property is proposed
and analyzed in [AFF+13].

For any mesh TH of Ω, we denote by REFINE(TH) the set of all meshes that can be created
by finitely many steps of refinement of TH .

Proposition 2.14. Let T0 be an initial mesh. Then, newest vertex bisection satisfies:

(R1) splitting property: Each refined element is split into at least two and at most
Cchild ≥ 2 new elements, i.e., for all TH ∈ REFINE(T0) and MH ⊆ TH , the mesh
Th = REFINE(TH ,MH) fulfills

#(TH\Th) + #TH ≤ #Th ≤ Cchild #(TH\Th) + #(TH ∩ Th).

(R2) overlay estimate: For all meshes TH , Th ∈ REFINE(T0), there exists a common
refinement TH ⊕ Th ∈ REFINE(TH) ∩ REFINE(Th) ⊆ REFINE(T0) such that

#(TH ⊕ Th) ≤ #TH +#Th −#T0.

(R3) mesh-closure estimate: For any sequence (T`)`∈N0 with T`+1 = REFINE(T`,M`)
and M` ⊆ T` for all ` ∈ N0, it holds

#T` −#T0 ≤ Cmesh

`−1X
j=0

#Mj ,

where Cmesh depends only on T0.
We refer to [BDD04; Ste07; Ste08; CKN+08; KPP13; GSS14] for proofs of the above

statement. The properties (R1)–(R3) are crucial to show optimality of Algorithm 2.11;
see [CFP+14].

2.4.2 Residual error estimator

The module ESTIMATE relies on the standard residual error estimator. First, let us introduce
some useful notation. Let Th be a conforming simplicial triangulation. The size of a triangle
T ∈ Th is given by hT := |T |1/d. If the intersection E := T ∩ T 0 of two elements T, T 0 ∈ Th
is a (d − 1)-dimensional hyperface, we define the jump of a function v ∈ C(T ) := {v ∈
L2(Ω) : v|T ∈ C(T ) for all T ∈ T } on E by

[[v]] := v|T − v|T 0 .

Let vh ∈ X p
h and consider ηh(T, vh) for T ∈ Th, the elementwise estimator. For the model

problem (2.5), this is given by

ηh(T, vh) := h2T kf + div(K∇vh)k2T + hT k[[K∇vh]] · nk2∂T∩Ω, (2.17a)

12
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where n is the outer normal vector of the element T . Define

ηh(Uh, vh) :=
⇣X
T∈Uh

ηh(T, vh)
2
⌘1/2

for all Uh ⊆ Th and all vh ∈ X p
h . (2.17b)

For Uh = Th we shall use the shorter notation ηh(vh) := ηh(Th, vh). The standard residual
error estimator (2.17) has some useful properties, that we summarize in the following
proposition.

Proposition 2.15 (Axioms of adaptivity). Let T0 be an initial mesh, TH ∈ REFINE(T0)
and Th ∈ REFINE(TH). Then, the standard residual error estimator fulfills:

(A1) stability: |ηh(UH , vh)− ηH(UH , vH)| ≤ Cstab |||vh − vH ||| for all vh ∈ X p
h , vH ∈ X p

H

and all UH ⊆ TH ∩ Th.
(A2) reduction: ηh(Th\TH , vH) ≤ qred ηH(TH\Th, vH) for all vH ∈ X p

H .

(A3) reliability: |||u∗ − u∗H ||| ≤ Crel ηH(u∗H) for the exact discrete solution.

(A4) discrete reliability: |||u∗h − u∗H ||| ≤ Cdrel ηH(TH\Th, u∗H) for the exact discrete
solutions.

The constant Crel depends only on γ-shape regularity, Cstab and Cdrel depend additionally
on the polynomial degree p, and, for NVB, it holds qred = 2−1/(2d).

The properties (A1)–(A4) are called axioms of adaptivity and were introduced in [CFP+14].

Remark 2.16. Another assumption on the error estimator that can be found in the literature
is quasi-monotonicity; see, e.g., [CFP+14]. An error estimator is quasi-monotone if there
exists a constant Cmon > 0 such that

(QM) quasi-monotonicity: ηh(u
∗
h) ≤ Cmon ηH(u∗H) for all TH ∈ REFINE(T0) and

all Th ∈ REFINE(TH).

Moreover, the axioms (A1)–(A4) already imply quasi-monotonicity (QM) as shown in the
following corollary.

Corollary 2.17. Suppose the error estimator ηH satisfies stability (A1), reduction (A2),
and discrete reliability (A4). Then, the error estimator ηH is also quasi-monotone.

Proof. Stability (A1), reduction (A2), and discrete reliability (A4) yield

ηh(u
∗
h)

2
(A1)

≤ 2ηh(u
∗
H)2 + 2C2

stab|||u∗h − u∗H |||2
= 2ηh(Th\TH , u∗H)2 + 2ηh(Th ∩ TH , u∗H)2 + 2C2

stab|||u∗h − u∗H |||2
(A2)

≤ 2qredηH(TH\Th, u∗H)2 + 2ηH(Th ∩ TH , u∗H)2 + 2C2
stab|||u∗h − u∗H |||2

(A4)

≤ 2qredηH(TH\Th, u∗H)2 + 2ηH(Th ∩ TH , u∗H)2 + 2C2
stabC

2
drelηH(TH\Th, u∗H)2

≤ (2 + 2C2
stabC

2
drel)ηH(u∗H)2.

This concludes the proof with C2
mon = 2 + 2C2

stabC
2
drel.
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2.4.3 Dörfler marking

The module MARK in Algorithm 2.11 employs Dörfler marking [Dör96]. For a given parameter
0 < θ ≤ 1, we say that a set M` ⊆ T` fulfills the Dörfler criterion with respect to η`(u

∗
` ), if

θη`(u
∗
` )

2 ≤
X

T∈M`

η`(T, u
∗
` )

2 =: η`(M`, u
∗
` )

2. (2.18)

This can be understood as selecting a set M` of elements, whose associated estimator
contribution is bigger than a θ-portion of the total error. To be able to have optimal
convergence rates, we have to select a subset M` with quasi-minimal cardinality. The set
M(T`, θ, u∗`) := {U` ⊂ T` | θη`(u∗`)2 ≤ η`(U`, u

∗
`)

2} contains all subsets of T` that satisfy the
Dörfler criterion (2.18) for η`(u

∗
`). Given a constant Cmark ≥ 1 we shall choose a set that

fulfills
M` ∈ M(T`, θ, u∗` ) with #M` ≤ Cmark min

U`∈M(T`,θ,u∗
` )
#U`.

Furthermore, we want the MARK module to have linear cost. However, it is not immediately
clear if this is possible, since the naive algorithm to obtain a set M` with minimal cardinality
includes sorting of the local contributions {η`(T, u∗`)}T∈T` . An algorithm with linear cost
guaranteeing Cmark = 2 can be found in [Ste07]. Linear cost is even possible for Cmark = 1
as shown in [PP20]. The choice of Dörfler marking is not arbitrary, as it is the optimal
marking criterion, where optimality is to be understood in the following sense.

Proposition 2.18 (Optimality of Dörfler marking [CFP+14, Proposition 4.12]). Suppose
stability (A1) and discrete reliability (A3). For all 0 < θ0 < θopt := (1 + C2

relC
2
stab)

−1, there
exists 0 < κ < 1 such that for all 0 < θ ≤ θ0, all triangulations TH ∈ REFINE(T0), and all
refinements Th ∈ REFINE(TH), it holds

ηh(u
∗
h)

2 ≤ κηH(u∗H)2 =⇒ θηH(u∗H)2 ≤ ηH(RHh, u
∗
H)2.

The set RHh ⊆ TH from (A4) satisfies TH\Th ⊆ RHh and #RHh ≤ C 0
rel(#Th − #TH).

Furthermore, discrete reliability (A4) yields |||u∗h − u∗H ||| ≤ Cdrel ηH(RHh, u
∗
H).

The proposition states that if the error estimator is reduced, then Dörfler marking holds on
RHh, which is essentially the set of refined elements. We refer to [CFP+14, Proposition 4.12]
for a proof of this statement.

2.4.4 Iterative solver

The module SOLVE was already mentioned in Section 2.3.2. There, we stated that the
discrete solution u∗` can be computed using an exact solver. This is not advisable if we want
the module SOLVE to have cost proportional to O(#T`) operations. Hence, the idea is to use
a suitable iterative solver. In the next chapter, we will introduce such an iterative solver,
namely a geometric multigrid method. Then, the exact FEM solution u∗` in Algorithm 2.11
will be replaced with an approximation uk` obtained by k steps of the iterative algebraic
solver.
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3 Multigrid solver

The goal of this chapter is to formulate an iterative solver, that works well in the adaptive
finite element algorithm. In our case, this will be a geometric multigrid solver. Therefore,
we will first talk about the core ideas of multigrid methods.

3.1 Core properties

In this section, we give a brief introduction to geometric multigrid methods based on [BHM00;
Gil07]. We will explain the algorithm and its motivation through an easy one-dimensional
model problem discretized via finite differences.

3.1.1 Model problem and Jacobi method

We look at the second-order boundary value problem

−(u∗)00 = f on (0, 1),

u∗(0) = u∗(1) = 0.
(3.1)

Then, the canonical finite difference discretization reads

−uj+1 − 2uj + uj−1

h2
= f(xj) for all 1 ≤ j ≤ n− 1,

u0 = un = 0,

where n ∈ 2N is even and n+ 1 is the number of discretization points, h = 1/n is the mesh
size, xj = jh are the grid points in [0, 1], and the unkown uj ∈ R is an approximation of
u∗(xj) for all j = 1, . . . , n− 1. We denote by Gh the grid with width h. The problem can
be rewritten as a linear equation

1

h2

�����
2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

     

�����
u1
u2
...

un−2

un−1

      =

�����
f1
f2
...

fn−2

fn−1

      , (3.2)

with fj := f(xj). One can use direct methods such as Gaussian elimination to solve for
the exact solution u ∈ Rn−1. For such a particular 1D case, this may still yield linear
performance (due to the band structure of the matrix in (3.2)) but becomes rather expensive
in practical applications. A different approach is to use iterative methods, which start from
an initial guess and try to improve it with every iteration. Such an iterative method is
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the geometric multigrid method, developed to have certain interesting properties that we
discuss subsequently.
Let us first discuss a simple iterative procedure, namely the Jacobi iteration. The

equation (3.2) is of the form Au = f , i.e., a diagonally dominant and irreducible system of
linear equations. Let A = D + L+ U , where D is the diagonal of A, and L and U are the
strictly lower and upper triangular parts of A. The equation can be transformed via

Au = f ⇐⇒ (D + L+ U)u = f

⇐⇒ Du = −(L+ U)u+ f

⇐⇒ u = −D−1(L+ U)u+D−1f.

One step of the so-called Jacobi method is defined by u(i+1) := −D−1(L+ U)u(i) +D−1f .
Let us examine the behavior of the Jacobi method. Consider the homogeneous problem
Au = 0, thus u = 0, and for an approximation v, the error is e = −v. We apply the Jacobi
method to different initial guesses

vmj := sin

✓
jmπ

n

◆
, 0 ≤ j ≤ n, 1 ≤ m ≤ n− 1,

where the vectors vm are named Fourier modes, and the parameter m is called wavenumber
or frequency. Small values of m give long and smooth waves, while large values correspond
to highly oscillatory waves. Numerical experiments show that the Jacobi method eliminates
oscillatory modes rather quickly as opposed to low-frequency modes, which are eliminated
much slower. Therefore, applying such an iterative step is sometimes called smoothing,
and the step itself can be called smoother. The limitations of the Jacobi method for low
oscillatory modes stem from the smoothing only being able to treat error components
associated with the fixed mesh size. Hence, a remedy is to introduce a mesh hierarchy as
proposed by multigrid methods.

3.1.2 Multigrid algorithm in one dimension

One can observe that the projection of a smooth mode onto a coarser grid yields a more
oscillatory mode. An example is shown in Figure 3.1. A natural question is how fine-
grid vectors vh are projected onto a coarser mesh G2h with mesh size 2h. The first
choice would be to take the values from the finer grid directly, i.e., v2hj := vh2j . However,
since loss of information occurs this way, another alternative is the weighting operator
I2hh : Rn−1 → Rn/2−1, which is defined by

I2hh vh = v2h with v2hj :=
1

4

⇣
vh2j−1 + 2vhj + vh2j+1

⌘
.

We will also need a way to interpolate vectors v2h from the coarse grid to the fine grid Gh.
To this end, we define the interpolation operator Ih2h : Rn/2−1 → Rn−1, Ih2hv

2h = vh, where

vh2j := v2hj ,

vh2j+1 :=
1

2

⇣
v2hj + v2hj+1

⌘
, 0 ≤ j ≤ n

2
− 1.
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0 1 2 3 4 5 6 7 8 9 10 11 12
Gh

0 1 2 3 4 5 6
G2h

Figure 3.1: The low-frequency Fourier mode with wavenumber m = 4 on a grid of size
n = 12 and its nodal projection onto a coarser grid with n = 6 grid points.

One idea of multigrid methods is to approximate the exact solution u of Au = f on the
fine grid using some iterations of a chosen iterative method (pre-smoothing), which provides
an approximation v. Afterwards, the residual r := f −Av is projected onto a coarser grid,
where the leftover low-frequency components appear more oscillatory. On the coarse grid,
we solve the residual equation Ae = f−Av = r of reduced size exactly (coarse solve). Lastly,
the solution e is interpolated back onto the fine grid, where we update our approximation
to v + Ih2he and may iterate again (post-smoothing). The described procedure is called the
two-grid correction scheme. The algorithm for this scheme reads as follows:

Algorithm 3.1 (Two-grid correction scheme). Input: A matrix Ah, a vector fh, an initial
guess vh, parameters α1 and α2, and an iterative method (SMOOTHER).

(i) Pre-smoothing: Iterate the SMOOTHER α1 times on Ahuh = fh with initial guess vh

and compute the residual rh = fh −Ahvh.

(ii) Restrict the residual to the coarse grid r2h = I2hh rh.

(iii) Coarse solve: Solve A2he2h = r2h on G2h.

(iv) Interpolate the error back to Gh, i.e., eh = Ih2he
2h and correct the approximation

vh 7→vh + eh.

(v) Post-smoothing: Iterate the SMOOTHER α2 times on Ahuh = fh with initial guess vh.

Output: The improved approximation vh.

We overwrite the approximation vh in the algorithm whenever we iterate on it. Note that
the matrix A2h is not yet defined. Looking at the initial idea, we find that A2h should be the
result of the discretization of the model problem (3.1) on the grid G2h. However, calculating
this matrix is not practical, so instead we use our projection and interpolation operators and
define A2h := I2hh AhIh2h. Since step (iii) is still expensive if G2h is too fine, it is a good idea
to iterate the two-step scheme until the coarsest grid yields a linear system small enough to
be solved directly. This leads to the so-called V-cycle scheme. Let {G2`h}L`=0 be a sequence
of nested grids.
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Algorithm 3.2 (V-cycle). Input: A matrix Ah, a vector fh, an initial guess vh, parameters
α1 and α2, and an iterative method (SMOOTHER).

(i) Pre-smoothing: Iterate the SMOOTHER α1 times on Ahuh = fh with initial guess vh.

(ii) If Gh is the coarsest grid, then go to step (iv).
Else, restrict to a coarser grid:

f2h = I2hh (fh −Ahvh), A2h = I2hh AhIh2h, v2h = V-cycle(A2h, f2h, 0).

(iii) Correct the approximation vh 7→vh + Ih2hv
2h.

(iv) Post-smoothing: Iterate the SMOOTHER α2 times on Ahuh = fh with initial guess vh.

Output: The improved approximation vh.

For simplicity, we denote the residual as just another right-hand side f2h and the
approximation of the solution of the residual equation as v2h. Coarse grids can also be
used to calculate a better initial guess. Moreover, smoothing steps on coarser levels are
cheaper. This idea leads to the full multigrid (FMG) algorithm. We start on the coarsest
grid, where we approximate the solution to Au = f . Then, we use the interpolation of this
approximation as an initial vector for the next finer grid. Now we do a V-cycle between the
two grids to improve the approximation. This gives a good initial guess for the next finer
grid and a V-cycle on the three grids, we have already visited, improves the approximation
again. The described process is repeated until a final V-cycle is performed on the finest
grid. Let’s summarize this procedure.

Algorithm 3.3 (FMG). Input: A matrix Ah, a vector fh, and a parameter α0.

(i) If Gh is the coarsest grid, then set vh = 0 and go to step (iii).
Else, restrict to a coarser grid:

f2h = I2hh fh, A2h = I2hh AhIh2h, v2h = FMG(A2h, f2h).

(ii) Use the approximation as an initial guess on the finer grid vh = Ih2hv
2h.

(iii) Perform α0 V-cycles, i.e., vh 7→V-cycle(Ah, fh, vh)

Output: The approximation vh.

It is not immediately clear how to choose the parameters α1 and α2 in Algorithm 3.2 and
the parameter α0 in Algorithm 3.3, since the user wants to balance accuracy with cost. An
option to treat this problem for solvers designed for AFEM will be given in Chapter 6. For
a better understanding, the scheme of grids for the V-cycle and full multigrid algorithm are
shown in Figure 3.2.
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8h

4h

2h

h

Figure 3.2: The structures of a V-cycle and full multigrid with α0 = 1.

Remark 3.4 (Cost of FMG). It may seem that the full multigrid would be far more expensive
than a V-cycle on the same sequence of grids of L levels. However, the number of operations
is multiplied by a constant depending only on α0. We observe that the number of grid points
and therefore the cost is divided by 2 whenever we move to a coarser grid. This yields the
estimate

cost(FMG)L = α0

⇣ LX
j=0

1

2j

⌘
cost(V-cycle)L ≤ 2α0 cost(V-cycle)L.

Lastly, convergence of standard multigrid algorithms has been proven in the literature.
For completion, we present the following result from [Hac85, Theorem 7.2.5].

Theorem 3.5 (Convergence of V-cycle). Suppose the following properties:

• The matrix Ah is symmetric and positive definite (SPD).

• The projection and interpolation operators satisfy I2hh = (Ih2h)
T in the sense of matrices.

• For the coarse-grid matrix, it holds A2h = I2hh AhIh2h.

• The smoothing iterations {u(i)}i∈N are given by u(i+1) = Shu(i) + T hf for matrices Sh

and T h associated to the grid of size h so that Sh = I − (W h)−1Ah, W h = (W h)T

and W h −Ah is positive definite.

• There exists a constant CA > 0 such that the approximation property

k(Ah)−1 − Ih2h(A
2h)−1I2hh k ≤ CAh

2m

holds, where 2m is the order of the differential operator.

If at least one smoothing step is done, i.e., α1 + α2 > 0, then the V-cycle yields convergence
of the iterates to the true algebraic solution.

After gaining the core understanding of geometric multigrid methods, we move on to
discuss a multigrid method suitable as an iterative solver in Algorithm 2.11.

19



3 Multigrid solver

z

degrees of freedom

z patch vertex in VL

· · · patch TL(z)
— patch subdomain ωL(z)

Figure 3.3: Degrees of freedom for the space X 2
L,z associated to the patch TL(z).

3.2 Multigrid solver for adaptively refined meshes

The idea of using iterative methods for AFEM is rather natural since the SOLVE module
in Algorithm 2.11 generates a linear equation. Furthermore, the adaptive loop provides a
sequence of successively refined, and thus nested, meshes {T`}L`=0, which can be handled the
same way as the grids {G2`h}L`=0 in Algorithm 3.2 and 3.7. Since the discretization stems
from a symmetric linear elliptic PDE, the arising matrix of the linear system is SPD and
fits the previously discussed multigrid framework. Moreover, the interpolation operator is
just the natural inclusion, because the finite element spaces associated to the triangulations
T` are nested

X 1
0 ⊆ X 1

1 ⊆ · · · ⊆ X 1
L−1 ⊆ X p

L,

where p ≥ 1 is a fixed polynomial degree. In this section, we will use the functional
description of the discrete problems (2.14) in order to avoid basis-dependent formulations
induced by the matrices involved in solving these problems.
Let us introduce some useful notation. From now on, we consider {T`}L`=0 ⊂ T = T(T0)

to be a sequence of successively refined simplicial triangulations, where NVB is used for the
refinement. For a mesh T`, we recall that V` denotes the set of vertices.

Definition 3.6. For all vertices z ∈ V`, we define the n-patch T n
` (z) inductively by

T`(z) := T 1
` (z) := {T ∈ T` : z ∈ T}, T n+1

` (z) :=
[

w∈T∩V`
T∈T n

` (z)

T`(w).

Moreover, we denote the corresponding n-patch subdomains by

ωn
` (z) := interior

⇣ [
T∈T n

` (z)

T
⌘
.

Lastly, the size of a patch subdomain is given by h`,z := max
T∈T`(z)

hT = max
T∈T`(z)

|T |1/d.

Furthermore, we define

V+
0 := V0 and V+

` := V`\V`−1 ∪ {V` ∩ V`−1 : ω`(z) 6= ω`−1(z)} for ` ≥ 1.
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In other words, V+
` is the set of new vertices in T` as well as pre-existing vertices of T`−1,

whose associated patch area was shrunk by the refinement. Lastly, we define the local spaces

X q
`,z := Sq0(T`(z)) for all z ∈ V` and polynomial degrees q ≥ 1.

For q = 1 and z ∈ V` ∩ ∂Ω, we get X 1
`,z = ∅ by definition.

Recall from (2.14) that u∗L is the exact FEM solution in the space X p
L. An iterative

solver may be mathematically described by its iteration-step operator ΦL : X p
L → X p

L,
where ΦL(uL) is an improvement of the approximation uL ∈ X p

L to u∗L. Then, the algebraic
residual functional RL : X p

L → R is given by

vL ∈ X p
L 7→ RL(vL) := F (vL)− hhuL, vLii = hhu∗L − uL, vLii ∈ R. (3.3)

Another motivation for the construction of the solver is the levelwise orthogonal decomposi-
tion of the algebraic error e∗L := u∗L − uL. We define ρ∗` ∈ X 1

` for ` = 0, . . . , L− 1 to be the
solution of

hhρ∗` , v`ii = RL(v`)−
`−1X
k=0

hhρ∗k, v`ii for all v` ∈ X 1
` .

Moreover, ρ∗L ∈ X p
L solves

hhρ∗L, vLii = RL(vL)−
L−1X
k=0

hhρ∗k, vLii for all vL ∈ X p
L.

Hence, by construction, it follows

u∗L = uL + e∗L = uL +

LX
`=0

ρ∗` .

Furthermore, we observe hhρ∗` , ρ∗kii = 0 for all 0 ≤ `, k ≤ L with ` 6= k, which follows from
the Galerkin orthogonality by induction. Hence, we get

|||u∗L − uL|||2 = |||e∗L|||2 =
LX

`=0

|||ρ∗` |||2.

Since the components ρ∗` are pairwise orthogonal, it is a good idea to treat each error
component on its respective level. We had a very similar observation in Section 3.1.2, where
we saw that certain components of the error are more effectively eliminated on coarser
grids. Although the described process constructs the exact algebraic error, it is not useful
in practice since solving global problems on every level is very expensive. Therefore, the
proposed multigrid method only solves one inexpensive global problem on the coarsest mesh.
On the intermediate levels ` = 1, . . . , L− 1, local lowest-order problems on all patches T`(z)
for z ∈ V+

` are solved. When p = 1, the same applies for ` = L. If p > 1, then all patches of
the finest mesh TL are considered, i.e., the higher polynomial degree p is only taken into
account on the final level ` = L. The following algorithm calculates levelwise approximations
of the algebraic error components/residual liftings ρ∗` . Furthermore, these approximations
are also used to define an a-posteriori error estimator ζL(uL) for the algebraic error.
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Algorithm 3.7 (V-cycle of optimal local multigrid solver). Input: Current approximation
uL ∈ X p

L, triangulations {T`}L`=0 and polynomial degree p ≥ 1.
Solver step: Follow the steps (i)–(iii):

(i) Global residual problem on the coarsest mesh:

• Compute the lowest-order residual lifting ρ0 ∈ X 1
0 of

hhρ0, v0ii = RL(v0) for all v0 ∈ X 1
0 . (3.4)

• Define the step-size λ0 := 1.

• Initialize the error correction σ0 := λ0ρ0 and the a-posteriori estimator ζ20 :=
|||λ0ρ0|||2.

(ii) Lowest-order local residual-updates: For ` = 1, . . . , L − 1 and also ` = L if
p = 1, perform the following calculations:

• For all z ∈ V+
` , compute ρ`,z ∈ X 1

`,z by solving

hhρ`,z, v`,zii = RL(v`,z)− hhσ`−1, v`,zii for all v`,z ∈ X 1
`,z (3.5)

and define the levelwise residual lifting ρ` :=
P

z∈V+
`
ρ`,z.

• Calculate

s` :=
RL(ρ`)− hhσ`−1, ρ`ii

|||ρ`|||2 (3.6)

with the convention 0/0 := 0 in case of ρ` = 0. Define the step-size

λ` :=

(
s` if s` ≤ d+ 1

(d+ 1)−1 otherwise.

• Define σ` := σ`−1 + λ`ρ` and ζ2` := ζ2`−1 + λ`
P

z∈V+
`
|||ρ`,z|||2.

(iii) High-order local residual-updates: If p > 1, do the following steps:

• For all z ∈ VL, compute ρL,z ∈ X p
L,z by solving

hhρL,z, vL,zii = RL(vL,z)− hhσL−1, vL,zii for all vL,z ∈ X p
L,z (3.7)

and define ρL :=
P

z∈VL
ρL,z.

• Define the step-size

λL := sL :=
RL(ρL)− hhσL−1, ρLii

|||ρL|||2 (3.8)

with the convention 0/0 := 0 in case of ρL = 0.

• Define σL := σL−1 + λLρL and ζ2L := ζ2L−1 + λL
P

z∈VL
|||ρL,z|||2.
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Output: Improved approximation ΦL(uL) := uL + σL ∈ X p
L and a-posteriori estimator

ζL(uL) := ζL of the algebraic error.

We note that the necessity of the case distinction of λ` will become more apparent later
on in the analysis (see the proof of Lemma 4.2 on page 22), but in all practical applications
we observed s` ≤ d+ 1 and hence λ` = s` (see the experiments in Chapter 7). For now, we
will just prove optimality of the choice of the step-size s`.

Lemma 3.8. Let uL + σ ∈ X p
L be an approximation of u∗L and ρ ∈ X p

L a correction. Then,
the optimal step-size is given by

argmin
λ∈R

|||u∗L − (uL + σ + λρ) ||| = hhu∗L − (uL + σ), ρii
|||ρ|||2 .

Proof. We want to determine the minimum of the function

G(λ) := |||u∗L − (uL + σ + λρ)|||2 = |||u∗L − (uL + σ)|||2 − 2λhhu∗L − (uL + σ), ρii+ λ2|||ρ|||2.

The minimum translates to the best choice of the step-size λ in the error correction direction
ρ so that after the update, the new iterate has the lowest algebraic error. Therefore, we
calculate the derivative

G0(λ) = −2hhu∗L − (uL + σ), ρii+ 2λ|||ρ|||2

and note that G0(λ) = 0 if and only if

λ =
hhu∗L − (uL + σ), ρii

|||ρ|||2
(3.3)
=

RL(ρ)− hhσ, ρii
|||ρ|||2 .

Since G is convex, it attains its global minimum at this point.

In case of Algorithm 3.7, we have σ = σ`−1 and ρ = ρ` on the levels 0 < ` ≤ L. Thus,
definitions (3.6) and (3.8) yield optimality of s`.

Remark 3.9. Comparing Algorithm 3.7 to Algorithm 3.2, we see that the multigrid solver
is just one iteration of a V-cycle with no pre- and one post-smoothing step. Furthermore, an
optimal step-size is applied at the error correction stage. The solver uses additive Schwarz
associated to patch subdomains as the smoother, which is equivalent to diagonal Jacobi
smoothing for p = 1 and block-Jacobi smoothing for p > 1. For more details on this
connection, we refer to [DJN15, Chapter 1].

Remark 3.10 (Computational effort). We also want to comment on the computational effort
of the proposed algorithm, since this was the initial motivation for using an iterative solver.
The matrices for the local problems (3.7) have dimensions O(pd), where the notationally
hidden constant depends only on γ-shape regularity. In the implementation, the Cholesky
factorization is applied to every patch on the finest level. Therefore, the computational effort
on the finest mesh TL is of order O(p3d#TL). The effort on the initial mesh depends only
on #T0 since lowest-order polynomials are employed. Moreover, let us discuss the effort on
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the intermediate levels. Because dim(X 1
`,z) = 1, the effort for a patch solve associated to a

vertex z ∈ V+
` is constant and hence the combined effort on the levels ` = 1, . . . , L− 1 is

L−1X
`=1

X
z∈V+

`

O(1).

By definition the set V+
` consists of new vertices and old vertices whose patch shrunk in the

refinement step. Since in the second case the node patch changed, the vertex is contained
in the patch of a new vertex. We already know that the number of vertices contained in a
patch is uniformly bounded by γ-shape regularity. This implies

L−1X
`=1

#V+
` .

L−1X
`=1

#(V`\V`−1) =

L−1X
`=1

(#V` −#V`−1) = #VL−1 −#V0 ≤ #VL ' #TL.

Hence, the overall effort is given by O(#TL), where the notationally hidden constant depends
only on the initial mesh T0, the polynomial degree p, the dimension d, and γ-shape regularity.
In particular, the overall effort does not depend on the number of triangulations L.
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4 Analysis of the multigrid solver

The objective of this chapter is to prove robust contraction of the algebraic error for the
multigrid solver of Algorithm 3.7 which can be phrased as follows: for any vL ∈ X p

L, let
ΦL(vL) be the improved approximation of u∗L from (2.14) via one step of multigrid (MG).
Then, there exists a contraction constant 0 < qctr < 1 such that

|||u∗L − ΦL(vL)||| ≤ qctr |||u∗L − vL|||. (4.1)

Furthermore, we will show efficiency and reliability of the built-in a-posteriori estimator

ζL(vL) ≤ |||u∗L − vL||| ≤ C 0
rel ζL(vL). (4.2)

The constants qctr and C 0
rel are independent of the number of levels L and the polynomial

degree p. In this sense, we say that the solver is h- and p-robust.
In order to achieve this goal, we first prove some auxiliary results. Afterwards, we show

the existence of a hp-robust local multilevel decomposition for functions vL ∈ X p
L. This

decomposition relies on the one-level p-robust decomposition from [SMP+08] and provides
the p-robustness. The second building block is the strengthened Cauchy-Schwarz inequality,
which together with a lower-order multilevel decomposition in the spirit of [WZ17] will give us
h-robustness. Ultimately, we also prove equivalence of contraction (4.1) and reliability (4.2).

4.1 Auxiliary results

In this section, we first show that the number of overlapping patches is uniformly bounded,
more precisely, each simplex in the mesh belongs to at most d+ 1 node patches.

Lemma 4.1. For all simplices T ∈ T`, we have

#(V` ∩ T ) = d+ 1. (4.3)

This implies$$$$$$$$$ X
z∈V`

v`,z

$$$$$$$$$2 ≤ (d+ 1)
X
z∈V`

|||v`,z|||2 for all v`,z ∈ X q
`,z and all q ∈ N. (4.4)

Furthermore, it also holds that###∇⇣X
z∈V`

v`,z

⌘###2 ≤ (d+ 1)
X
z∈V`

k∇v`,zk2 for all v`,z ∈ X q
`,z and all q ∈ N. (4.5)
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Proof. The first statement follows directly from Definition 2.2 and Definition 2.3, since
T = conv(z0, . . . , zd), where {z0, . . . , zd} ⊆ V` with #{z0, . . . , zd} = d + 1, and there
are no hanging nodes in conforming triangulations. Because the squared energy norm
||| · |||2 is additive with respect to the simplex domains and v`,z ∈ X q

`,z are conforming with

supp v`,z ⊆ ω`(z), we can rewrite the left-hand side of (4.4) as$$$$$$$$$ X
z∈V`

v`,z

$$$$$$$$$2 = X
T∈T`

$$$$$$$$$ X
z∈V`∩T

v`,z

$$$$$$$$$2
T
.

Applying the triangle inequality for ||| · ||| and the Cauchy-Schwarz inequality for Rd+1 yields$$$$$$$$$ X
z∈V`

v`,z

$$$$$$$$$2 ≤ X
T∈T`

⇣ X
z∈V`∩T

|||v`,z|||T
⌘2 ≤ X

T∈T`
#(V` ∩ T )

X
z∈V`∩T

|||v`,z|||2T

(4.3)
= (d+ 1)

X
T∈T`

X
z∈V`∩T

|||v`,z|||2T = (d+ 1)
X
z∈V`

|||v`,z|||2.

The estimate (4.5) follows analogously as the differential operator is linear, which concludes
the proof.

Other simple observations are the following bounds on the step-size and estimates for the
levelwise solver updates.

Lemma 4.2. Let ` ∈ {1, . . . , L− 1} and also ` = L if p = 1. Then, it holds

|||λ`ρ`|||2 ≤ λ`

X
z∈V+

`

|||ρ`,z|||2, (4.6)

where λ`, ρ` and ρ`,z are defined in Algorithm 3.7. Whenever p > 1, we get

|||λLρL|||2 = λL

X
z∈VL

|||ρL,z|||2. (4.7)

Moreover, the step-size satisfies the upper and lower bounds

λ` ≤ d+ 1 for ` = 1, . . . , L− 1 in general and for ` = 1, . . . , L if p = 1, (4.8)

1

d+ 1
≤ λ` for ` = 1, . . . , L. (4.9)

Proof. We need to consider the case distinction in the construction of λ` in Algorithm 3.7.
Step 1: First, we prove (4.6) with equality if s` ≤ d+ 1. Under this assumption, it holds
that λ` = s` =

�
RL(ρ`)− hhσ`−1, ρ`ii

�
/|||ρ`|||2 and therefore

|||λ`ρ`|||2 = λ2
` |||ρ`|||2 = λ`

RL(ρ`)− hhσ`−1, ρ`ii
|||ρ`|||2 |||ρ`|||2 = λ`

X
z∈V+

`

�
RL(ρ`,z)− hhσ`−1, ρ`,zii

�
(3.5)
= λ`

X
z∈V+

`

|||ρ`,z|||2.
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Step 2: Let us show (4.6) for the remaining cases, i.e., when s` > d+1 and λ` = 1/(d+1).
Using estimate (4.4) from Lemma 4.1, gives

|||λ`ρ`|||2 = λ`

d+ 1
|||ρ`|||2

(4.4)

≤ λ`

d+ 1
(d+ 1)

X
z∈V+

`

|||ρ`,z|||2 = λ`

X
z∈V+

`

|||ρ`,z|||2.

Step 3: The equality (4.7) follows analogously to step 1, if one exchanges V+
L with VL.

Step 4: It remains to show the bounds for the step-size. The upper bound (4.8) follows by
definition of λ`. Whenever λ` = 1/(d+ 1), the lower bound (4.9) holds with equality. In
the other case, we apply Lemma 4.1 to obtain

λ` =
RL(ρ`)− hhσ`−1, ρ`ii

|||ρ`|||2
(3.5)
=

P
z∈V+

`
|||ρ`,z|||2

|||ρ`|||2
(4.4)

≥ 1

d+ 1

and analogously, if p > 1,

λL =
RL(ρL)− hhσL−1, ρLii

|||ρL|||2
(3.7)
=

P
z∈VL

|||ρL,z|||2
|||ρL|||2

(4.4)

≥ 1

d+ 1
.

This concludes the proof.

4.2 Multilevel hp-robust stable decomposition

This section aims to prove a multilevel hp-robust stable decomposition on NVB-generated
simplicial triangulations. We will combine two known results: the one-level p-robust
decomposition from [SMP+08] and the local multilevel decomposition for lowest-order
functions from [WZ17]. We provide a proof of the second result, which requires the
definition of certain averaging operators.

Definition 4.3. Let S10(T`) = X 1
` ⊂ X be the lowest-order FEM space associated to the

mesh T`. We denote by ϕ`,z the S1(T`) hat-function associated with the vertex z ∈ V`. For
every element T ∈ T`, we define the local L2-projection P`,T : L2(Ω) → X 1

` |T = P1(T ) by

hP`,T v, wiT = hv, wiT for all w ∈ X 1
` |T and all v ∈ L2(Ω).

Furthermore, the averaging operator Π` : L
2(Ω) → X 1

` is defined through its values at the
nodes

(Π`v)(z) :=

P
T∈T`(z) |T |(P`,T v)(z)P

T∈T`(z) |T |
for all z ∈ V`.

Lemma 4.4 (h-robust local multilevel decomposition for piecewise affine functions). For
every function v1L ∈ X 1

L, there exists a decomposition

v1L =

LX
`=0

X
z∈V+

`

v1`,z with v1`,z ∈ X 1
`,z, (4.10)
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which is stable in the sense of

LX
`=0

X
z∈V+

`

k∇v1`,zk2 ≤ C2
MLk∇v1Lk2. (4.11)

The constant CML depends only on the space dimension d, the γ-shape regularity (2.15),
and diam(Ω)/h0.

Proof. Let v1L ∈ X 1
L. We define the levelwise contributions w1

` of v1L using the operators Π`

from Definition 4.3
w1
` := (Π` −Π`−1)v

1
L for ` = 0, . . . , L, (4.12)

with the exception of Π−1 := 0. In [WZ17, Lemma 3.1], it is shown that w1
` ∈ span{ϕ`,z : z ∈

V+
` }. Hence, we get w1

` =
P

z∈V+
`
v1`,z with v1`,z := w1

` (z)ϕ`,z ∈ X 1
`,z. With the telescoping

sum and Π−1 = 0, we see

v1L =

LX
`=0

(Π` −Π`−1)v
1
L

(4.12)
=

LX
`=0

w1
` =

LX
`=0

X
z∈V+

L

v1`,z. (4.13)

Hence, we have shown the decomposition (4.10). It remains to prove its stability (4.11).
Any two norms on a finite-dimensional space are equivalent. Thus, for the reference simplex
Tref we obtain

kvkL∞(Tref) ' kvkTref
for all v ∈ P1(Tref).

A scaling argument provides the estimate

|T |1/2kvkL∞(T ) . kvkT ≤ |T |1/2kvkL∞(T ) for all T ∈ T` and all v ∈ P1(T ), (4.14)

where the hidden constant depends only on the dimension d. The hat functions satisfy
kϕ`,zkL∞(Ω) = 1, which together with (4.14) applied to w1

` |T ∈ P1(T ) yields

kv1`,zkω`(z) ≤
X

T∈T`(z)
kw1

` (z)ϕ`,zkT ≤
X

T∈T`(z)
kw1

`kL∞(T )|T |1/2
(4.14)

.
X

T∈T`(z)
kw1

`kT . (4.15)

The discrete Cauchy-Schwarz inequality and γ-shape regularity guarantee⇣ X
T∈T`(z)

kw1
`kT
⌘2 ≤ #T`(z)

X
T∈T`(z)

kw1
`k2T . kw1

`k2ω`(z)
.

Along with (4.15), this implies

kv1`,zkω`(z) . kw1
`kω`(z) for all ` = 0, . . . , L and z ∈ V+

` . (4.16)

We refer to [BS08, Lemma 4.5.3] for the inverse inequality

k∇v`,zkT . h−1
T kv`,zkT for all T ∈ T`(z) and all v ∈ X 1

`,z, (4.17)
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where the hidden constant depends only on γ-shape regularity. However, we can apply this
inequality to patches, since the squared L2-norm is additive and the sizes of elements in a
patch are comparable via γ-shape regularity (2.16). Additionally, exploiting the stability of
the operator Π` shown in [WZ17, Lemma 3.7], we are led to

LX
`=0

X
z∈V+

`

k∇v1`,zk2
(4.17)

.
LX

`=0

X
z∈V+

`

h−2
`,zkv1`,zk2ω`(z)

(4.16)

.
LX

`=0

X
z∈V+

`

h−2
`,zkw1

`k2ω`(z)

(4.12)
=

LX
`=0

X
z∈V+

`

h−2
`,zk(Π` −Π`−1)v

1
Lk2ω`(z)

[WZ17]

.
X
z∈V0

h−2
0,zkΠ0v

1
Lk2ω0(z)

+ k∇v1Lk2.
(4.18)

For the initial mesh, a different argument is needed. Using the local L2-stability of Π0 and
that all elements in the initial mesh have comparable size, leads toX

z∈V0

h−2
0,zkΠ0v

1
Lk2ω0(z)

. h−2
0

X
z∈V0

kv1Lk2ω2
0(z)

.

With finite patch overlap and the Poincaré inequality we obtain

h−2
0

X
z∈V0

kv1Lk2ω2
0(z)

. h−2
0 kv1Lk2 . k∇v1Lk2.

This concludes the proof.

Next, we formulate the p-robust decomposition from [SMP+08] but refer to the literature
for the proof.

Lemma 4.5 (p-robust one-level decomposition). Let vL ∈ X p
L. Then, there exist functions

v1L ∈ X 1
L and {vpL,z}z∈VL

∈ X p
L,z such that

vL = v1L +
X
z∈VL

vpL,z. (4.19)

The decomposition is stable in the sense of

k∇v1Lk2 +
X
z∈VL

k∇vpL,zk2 ≤ C2
OLk∇vLk2, (4.20)

where the constant COL ≥ 1 depends only on the space dimension d and the γ-shape
regularity (2.15).

Ultimately, we can prove the desired hp-robust stable decomposition.

Proposition 4.6 (hp-robust local multilevel decomposition). Every vL ∈ X p
L can be

decomposed into v0 ∈ X 1
0 , {v`,z}z∈V+

`
∈ X 1

`,z, and {vL,z}z∈VL
∈ X p

L,z such that

vL = v0 +
L−1X
`=1

X
z∈V+

`

v`,z +
X
z∈VL

vL,z. (4.21)
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4 Analysis of the multigrid solver

The decomposition is stable in the sense of

|||v0|||2 +
L−1X
`=1

X
z∈V+

`

|||v`,z|||2 +
X
z∈VL

|||vL,z|||2 ≤ C2
SD|||vL|||2, (4.22)

where the constant CSD ≥ 1 depends only on the space dimension d, γ-shape regularity (2.15),
diam(Ω)/h0, and Λmax/Λmin.

Proof. Let vL ∈ X p
L. We can apply Lemma 4.5 to obtain a decomposition on the finest level

L. Furthermore, the lowest-order contribution v1L from (4.19) can be decomposed as shown
in Lemma 4.4. Thus, we get

vL
(4.19)
= v1L +

X
z∈VL

vpL,z
(4.10)
=

LX
`=0

X
z∈V+

L

v1`,z +
X
z∈VL

vpL,z

=
X
z∈V0

v10,z +
L−1X
`=1

X
z∈V+

`

v1`,z +
X
z∈V+

L

v1L,z +
X
z∈VL

vpL,z.

Defining the contributions v0 :=
P

z∈V0
v10,z, v`,z := v1`,z ∈ X 1

`,z for z ∈ V+
` and ` =

1, . . . , L − 1, and vL,z := v1L,z + vpL,z ∈ X p
L,z for z ∈ V+

L and vL,z := vpL,z ∈ X p
L,z for

z ∈ VL\V+
L yields the decomposition (4.21). Next, we show stability of the decomposition.

For ` = 0, applying the estimate (4.5) leads to

k∇v0k2 ≤ (d+ 1)
X
z∈V0

k∇v10,zk2.

The Young inequality establishesX
z∈VL

k∇vL,zk2 ≤
X

z∈VL\V+
L

k∇vp`,zk2 + 2
X
z∈V+

L

�k∇v1L,zk2 + k∇vpL,zk2
�

≤ 2
⇣X
z∈V+

L

k∇v1L,zk2 +
X
z∈VL

k∇vpL,zk2
⌘

on the finest level. We combine the last two estimates with d ≥ 1 to obtain

k∇v0k2 +
L−1X
`=1

X
z∈V+

`

k∇v`,zk2 +
X
z∈VL

k∇vL,zk2

≤ (d+ 1)
⇣X
z∈V0

k∇v10,zk2 +
L−1X
`=1

X
z∈V+

`

k∇v1`,zk2 +
X
z∈V+

L

k∇v1L,zk2 +
X
z∈VL

k∇vpL,zk2
⌘

= (d+ 1)
⇣ LX
`=0

X
z∈V+

`

k∇v1`,zk2 +
X
z∈VL

k∇vpL,zk2
⌘
.
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Moreover, combining the results (4.11) and (4.20) yield stability in the H1(Ω)-seminorm

k∇v0k2 +
L−1X
`=1

X
z∈V+

`

k∇v`,zk2 +
X
z∈VL

k∇vL,zk2
(4.11)

≤ (d+ 1)
⇣
C2
MLk∇v1Lk2 +

X
z∈VL

k∇vpL,zk2
⌘

(4.20)

≤ max{1, C2
ML}C2

OL(d+ 1)k∇vLk2.

The norm equivalence (2.6) from Proposition 2.7 yields the estimate (4.22) with C2
SD :=

max{1, C2
ML}C2

OL(d+ 1)Λmax/Λmin.

4.3 Strengthened Cauchy–Schwarz inequality

The goal of this section is to prove a strengthened Cauchy–Schwarz inequality on NVB-
generated adaptive meshes. To this end, we first show a strengthened Cauchy–Schwarz
inequality on nested uniform meshes. Let us introduce some useful notation.

Definition 4.7. Let T0 be an initial triangulation of Ω, T ∈ T a refinement of T0, and
T ∈ T . Furthermore, we consider the unique ancestor element T0 ∈ T0 of T , i.e., T ⊆ T0.
We define the element level by

level(T ) := log2(|T0|/|T |).

Since bisection halves the area of an element, the element level just denotes the number of
times T0 has been bisected to generate T , i.e., |T | = 2− level(T )|T0|.
Lemma 4.8. Let T0 be an initial triangulation and T ∈ T a refinement of T0. For T, T 0 ∈ T
with T ∩ T 0 6= ∅ it holds that

| level(T )− level(T 0)| ≤ Clevel,

where the constant Clevel depends only on the initial mesh T0 and γ-shape regularity (2.15).

Proof. Due to (2.16), the size of elements with non-empty intersection are comparable, in
particular, |T | ' |T 0|. Thus, we have |T0|/|T | ' |T 0

0|/|T 0| and the hidden constants C ≥ 1
depend only on γ-shape regularity, the dimension d, and the initial triangulation T0. The
monotonicity of the logarithm implies

level(T ) = log2

⇣ |T0|
|T |
⌘
≤ log2

⇣
C
|T 0

0|
|T 0|

⌘
= log2(C) + level(T 0)

and the same holds with the roles of T and T 0 exchanged. Hence, we have the desired result
with Clevel = log2(C).

Let M = maxT∈TL level(T ). We denote by {bTj}Mj=0 a sequence of uniformly refined

triangulations that satisfy bTj+1 := REFINE(bTj , bTj) and bT0 := T0. From now on we assume

T0 to be admissible since this ensures that every element T ∈ bTj satisfies level(T ) = j
and hence is only bisected once during uniform refinement; see [Ste08, Theorem 4.3]. For
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4 Analysis of the multigrid solver

d = 2 and an initial triangulation, a local numbering exists such that T0 is admissible. As
mentioned in Section 2.4.1 this is not true for d > 2. However, instructions for constructing
an admissible initial mesh T0 from any given triangulation are provided in [Ste08]. Moreover,
denote by bhj := max

T∈bTj |T |1/d the mesh-size of the uniform triangulation bTj . With the

quasi-uniformity constant

Cqu := min{hT /hT 0 : T, T 0 ∈ bT0 = T0} ∈ (0, 1], (4.23)

it follows that bhj ' hT for all T ∈ bTj and all j ∈ N0 and the hidden constants depend only

on Cqu. Every object associated with uniform meshes will be indicated with a hat, e.g., bX 1
j

is the lowest-order FEM space induced by bTj . In order to facilitate working with adaptively
refined meshes via properties of uniformly refined ones, we introduce the notion of local
generations.

Definition 4.9. Let ` ∈ {0, . . . , L} and z ∈ V`. The generation g`,z of a patch T`(z) is
defined by

g`,z := max
T∈T`(z)

level(T ) ∈ N0 (4.24)

and gives the maximal element level in the patch T`(z).
We can show that the patch subdomain of any vertex z ∈ V` lies in an n-patch subdomain

of the uniform mesh bTj with g`,z = j.

Lemma 4.10. There exists an index n ∈ N0 that depends only on the initial triangulation
T0 and γ-shape regularity (2.15), such that ω`(z) ⊆ bωn

g`,z
(z) for all ` ∈ {0, . . . , L} and all

z ∈ V`.

Proof. Let ` ∈ {0, . . . , L} and z ∈ V`. We define r`,z := minT∈T`(z) level(T ).
Step 1: We first show the existence of a constant C1 ∈ N such that g`,z ≤ r`,z + C1. By
definition, there exists triangles T, T 0 ∈ T`(z) that fulfill g`,z = level(T ) and r`,z = level(T 0).
From Lemma 4.8 we already know that level(T ) ≤ level(T 0) + Clevel. This concludes the
first step with C1 := dClevele.
Step 2: Let T ∈ T`(z). By definition, there exists an element T 0 ∈ bTr`,z with T ⊆ T 0 and
T 0 ⊆ bωr`,z(z). As the uniform meshes are obtained by bisecting every element once, we can

decompose T 0 into elements T 0
k ∈ bTr`,z+C1 with k = 1, . . . , 2C1 , i.e., T 0 =

S2C1

k=1 T
0
k. Thus,

there exists an index n ∈ N with n ≤ 2C1 and T 0 ⊆ bωn
r`,z+C1

(z). From the first step, we

know g`,z ≤ r`,z + C1 and consequently bωn
r`,z+C1

(z) ⊆ bωn
g`,z

(z). Hence, T ⊆ T 0 ⊆ bωn
g`,z

(z)

which implies ω`(z) ⊆ bωn
g`,z

(z) and therefore concludes the proof.

We will need the last lemma to prove the strengthened Cauchy–Schwarz inequality on
adaptive meshes. First, we prove a strengthened Cauchy–Schwarz inequality on uniform
meshes in the following lemma.

Lemma 4.11 (Strengthened Cauchy–Schwarz inequality on nested uniform meshes). Let

0 ≤ i ≤ j, bui ∈ bX 1
i , and bvj ∈ bX 1

j . Consider a subset cMi ⊆ bTi and denote bωi :=

interior
⇣S

T∈cMi
T
⌘
. Then, it holds that

hhbui, bvjiibωi
≤ bCSCS δj−ibh−1

j k∇buikbωi
kbvjkbωi

, (4.25)
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where δ = 2−1/d. The constant bCSCS > 0 depends only on the domain Ω, the space dimen-
sion d, the initial triangulation T0, Λmax, max

T∈bT0 k div(K)kL∞(T ), the γ-shape regularity
from (2.15), and the quasi-uniformity constant Cqu from (4.23).

Proof. Let us start from the left-hand side of (4.25) and split the integral over bωi into its

elementwise components. Moreover, we apply integration by parts on every element T ∈ cMi

to obtain

hhbui, bvjiibωi
=
X

T∈cMi

Z
T
K∇bui · ∇buj dx

=
X

T∈cMi

⇣
−
Z
T
div(K∇bui)bvj dx+

Z
∂T

K∇bui · n bvj dx⌘.
Furthermore, the product rule implies div(Au) = div(A) · u + tr(A∂u

∂x ), where A is a

matrix-valued function, u is a vector-valued function, and ∂u
∂x denotes the Jacobian of u.

As bui|T is an affine function on every element T ∈ cMi, the second derivatives vanish and
we get

hhbui, bvjiibωi
=
X

T∈cMi

⇣
−
Z
T
div(K) · ∇bui bvj dx+

Z
∂T

K∇bui · n bvj dx⌘.
Moreover, the Cauchy–Schwarz inequality and the assumption K|T ∈ [W 1,∞(T )]d×d

sym for all

T ∈ bT0 yield

hhbui, bvjiibωi
≤
X

T∈cMi

⇣
k div(K) · ∇buikL2(T )kbvjkL2(T ) + Λmaxk∇buikL2(∂T )kbvjkL2(∂T )

⌘
.
X

T∈cMi

⇣
k∇buikL2(T )kbvjkL2(T ) + k∇buikL2(∂T )kbvjkL2(∂T )

⌘
,

where the hidden constant is just the maximum of max
T∈bT0 k div(K)kL∞(T ) and Λmax. For

further calculations, we need a discrete trace inequality; see, e.g., [EG21a, Lemma 12.8].
Let F = conv(z1, . . . , zd) be a face of a simplex T = conv(z0, . . . , zd). Then, it holds that

kvkL2(F ) . h
−1/2
T kvkL2(T ) for all v ∈ P1(T ), (4.26)

where the hidden constant depends only on γ-shape regularity. Since every simplex has
d+ 1 faces we can extend this inequality to ∂T . The function bvj is only piecewise linear on

the finer mesh bTj , however, we can decompose every element T ∈ bTi into elements of bTj as

kbvjk∂T =
X
T 0∈bTj

T 0⊆T

kbvjk∂T∩T 0
(4.26)

.
X
T 0∈bTj

T 0⊆T

bh−1/2
j kbvjkT∩T 0 = bh−1/2

j kbvjkT . (4.27)
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Ultimately, the uniform mesh size leads to

hhbui, bvjiibωi

(4.27)

.
X

T∈cMi

⇣
k∇buikL2(T )kbvjkL2(T ) +

�bh−1/2
i k∇buikL2(T )

��bh−1/2
j kbvjkL2(T )

�⌘
=
X

T∈cMi

(1 + bh−1/2
i

bh−1/2
j )k∇buikL2(T )kbvjkL2(T ).

Moreover, the identity bhj ,bhi ≤ diam(Ω) implies bh−1/2
i

bh−1/2
j & 1. Since the volume of

each element is halved by uniform refinement, it holds bhj/bhi = 2−(j−i)/d and hence δj−i =

(2−1/(2d))j−i = (bhj/bhi)1/2. We thus obtain

hhbui, bujiibωi
.
X

T∈cMi

bh−1/2
i

bh−1/2
j k∇buikL2(T )kbvjkL2(T )

=
X

T∈cMi

⇣bhjbhi
⌘1/2bh−1

j k∇buikL2(T )kbvjkL2(T )

=
X

T∈cMi

δj−ibh−1
j k∇buikL2(T )kbvjkL2(T ).

Lastly, we apply the discrete Cauchy–Schwarz inequality to see

hhbui, bujiibωi
.
X

T∈cMi

δj−ibh−1
j k∇buikL2(T )kbvjkL2(T ) . δj−ibh−1

j k∇buikbωi
kbvjkbωi

.

This concludes the proof.

We use the strengthened Cauchy–Schwarz inequality on uniform meshes to generalize the
result for adaptive meshes.

Proposition 4.12 (Strengthened Cauchy–Schwarz inequality on nested adaptive meshes).
For all ` ∈ {1, . . . , L − 1} and k ∈ {1, . . . , ` − 1}, consider levelwise functions v` =P

z∈V+
`
v1`,z ∈ X 1

` and uk =
P

w∈V+
k
u1k,w ∈ X 1

k with v1`,z ∈ X 1
`,z and u1k,w ∈ X 1

k,w. Then, it

holds that

L−1X
`=1

`−1X
k=1

hhuk, v`ii ≤ CSCS

⇣L−2X
k=1

X
w∈V+

k

|||u1k,w|||2
⌘1/2⇣L−1X

`=1

X
z∈V+

`

|||v1`,z|||2
⌘1/2

, (4.28)

where the constant CSCS > 0 depends only on Ω, the initial triangulation T0, Λmax/Λmin,
maxT∈T0 k div(K)kL∞(T )/Λmin, γ-shape regularity (2.15), and the quasi-uniformity constant
Cqu from (4.23).

Proof. Let M = maxz∈VL
gL,z be the maximal generation. We split the proof into seven

steps.

Step 1: First, we show a general estimate not directly connected to the statement at
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4 Analysis of the multigrid solver

hand. However, it will turn out to be very useful. For all 0 < δ < 1 and xi, yj ≥ 0 with
0 ≤ i ≤ j ≤ M , there holds

MX
i=0

MX
j=i

δj−ixiyj ≤ 1

1− δ

⇣ MX
i=0

x2i

⌘1/2⇣ MX
j=0

y2j

⌘1/2
. (4.29)

We set m := j − i and change the summation order of i and m to obtain

MX
i=0

MX
j=i

δj−ixiyj =

MX
i=0

M−iX
m=0

δmxiym+i =

MX
m=0

δm
M−mX
i=0

xiym+i.

The Cauchy–Schwarz inequality and the geometric series yield

MX
m=0

δm
M−mX
i=0

xiym+i ≤
MX

m=0

δm
h⇣M−mX

i=0

x2i

⌘1/2⇣M−mX
i=0

y2m+i

⌘1/2i
≤
⇣ MX
m=0

δm
⌘⇣ MX

i=0

x2i

⌘1/2⇣ MX
j=0

y2j

⌘1/2 ≤ 1

1− δ

⇣ MX
i=0

x2i

⌘1/2⇣ MX
j=0

y2j

⌘1/2
.

Hence, we proved the claim (4.29).

Step 2: For any z ∈ VL and 0 ≤ j ≤ M , we recall the patch generation g`,z from (4.24)
and define

L
(1)

`,`
(z, j) := {` ∈ {`, . . . , `} : z ∈ V+

` and g`,z = j} for all 0 ≤ ` ≤ ` ≤ L. (4.30)

We recall that V+
` contains the new vertices and their immediate neighbors. Hence, the set

L
(1)

`,`
(z, j) keeps track of the levels, where the patch associated to the vertex z has been

modified in the refinement and remains of generation j. For any z ∈ VL and 0 ≤ j ≤ M , we
define a second set

L
(2)

`,`
(z, j) := {(`, w) : ` ∈ {`, . . . , `}, w ∈ V+

` , g`,w = j and z ∈ ω`(w)}. (4.31)

In the set L
(2)

`,`
(z, j), we collect all levels and vertices whose patch is of generation j and

contains the vertex z. Again the condition w ∈ V+
` imposes to consider only new vertices

or their immediate neighbors. Critically, there exist constants C
(1)
lev , C

(2)
lev > 0 depending

only on γ-shape regularity such that the cardinalities of both types of sets are uniformly
bounded, i.e.,

max
z∈VL

0≤j≤M

#(L
(1)
0,L(z, j)) ≤ C

(1)
lev < ∞ (4.32)

and
max
z∈VL

0≤j≤M

#(L
(2)
0,L(z, j)) ≤ C

(2)
lev < ∞. (4.33)
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The preceding statements are shown in [WC06, Lemma 3.1] for d = 2. However, the
arguments can be transferred to three dimensions.

Step 3: In order to use the estimates from the last step, we reorder the contributions that
fulfill a given patch constraint. To this end, we observe that for 0 ≤ ` ≤ ` ≤ L and a fixed
generation j ∈ {0, . . . ,M}, it holds that


(`, z) ∈ N0 × VL : ` ∈ {`, . . . , `}, z ∈ V+
` with g`,z = j

 
=


(`, z) ∈ N0 × VL : z ∈ bVj , ` ∈ L

(1)

`,`
(z, j)

 (4.34)

The two sets represent different perspectives. Whenever we fix a generation j, we can
either: sum over all levels and find associated new vertices or direct neighbors satisfying
the generation constraint; or sum over all the uniform-mesh vertices bVj and find the levels
where the generation constraint is satisfied.

Step 4: Consider k ∈ {0, . . . , L}, w ∈ V+
k , i ∈ {0, . . . ,M} such that gk,w = i. This yields

that there exists at least one element T ∈ Tk(w) that satisfies T ∈ bTi. We recall bhi ' hT
and that the sizes of any two elements contained in a patch are comparable via γ-shape
regularity (2.15), i.e., bhi ' hT ' hk,w. Therefore, there exists a constant Ceq such that

bh−1
i ≤ Ceqh

−1
k,w. (4.35)

Step 5: We can now prove the desired inequality (4.28). The main idea is to introduce
new sums over the generations with generation constraints. For ` ∈ {1, . . . , L − 1} and
k ∈ {1, . . . , `− 1}, this leads to

hhuk, v`ii =
X
z∈V+

`

X
w∈V+

k

hhu1k,w, v1`,zii =
MX
i=0

MX
j=0

X
z∈V+

`
g`,z=j

X
w∈V+

k
gk,w=i

hhu1k,w, v1`,zii.

We aim to use the strengthened Cauchy–Schwarz inequality on uniform meshes (4.25) from
Lemma 4.11. However, it can only be applied to piecewise affine functions on domains that
can be decomposed into triangles of the coarser triangulation. Therefore, we split the inner
sum over the generation at j = i and obtain

hhuk, v`ii =
MX
i=0

iX
j=0

X
z∈V+

`
g`,z=j

X
w∈V+

k
gk,w=i

hhu1k,w, v1`,zii+
MX
i=0

MX
j=i+1

X
z∈V+

`
g`,z=j

X
w∈V+

k
gk,w=i

hhu1k,w, v1`,zii. (4.36)

In the first term, we change the summation order of i and j. Moreover, we include the sums
over ` and k like in (4.28), split the individual summands according to (4.36), and change
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the order of summation of ` and k in the second term. This procedure warrants

L−1X
`=1

`−1X
k=1

hhuk, v`ii =
MX
j=0

MX
i=j

L−1X
`=1

`−1X
k=1

X
z∈V+

`
g`,z=j

X
w∈V+

k
gk,w=i

hhu1k,w, v1`,zii

+
MX
i=0

MX
j=i+1

L−2X
k=1

L−1X
`=k+1

X
z∈V+

`
g`,z=j

X
w∈V+

k
gk,w=i

hhu1k,w, v1`,zii

We abbreviate the last two terms as S1 and S2 respectively. Since they are both treated in
the same way, we proceed with the proof for S1.

Step 6: Using (4.34) for the sums over k and w and recalling supp v1`,z ⊆ w`(z) we get

S1 =

MX
j=0

MX
i=j

L−1X
`=1

X
z∈V+

`
g`,z=j

DD X
w∈bVi

X
k∈L

(1)
1,`−1(w,i)

u1k,w, v
1
`,z

EE

=

MX
j=0

MX
i=j

L−1X
`=1

X
z∈V+

`
g`,z=j

DD X
w∈bVi

X
k∈L

(1)
1,`−1(w,i)

u1k,w, v
1
`,z

EE
ω`(z)

.

(4.37)

Note that the generation constraints yield
P

w∈bVi

P
k∈L

(1)
1,`−1(w,i)

u1k,w ∈ bX 1
i and v1`,z ∈ bX 1

j

for g`,z = j. We observe that g`,z = j implies that the vertex patch T`(z) can be decomposed

into elements of the uniform mesh bTj . Because j ≤ i, we can use the strengthened Cauchy–
Schwarz inequality on uniform meshes (4.25) to obtain

S1 ≤ bCSCS

MX
j=0

MX
i=j

δi−j
L−1X
`=1

X
z∈V+

`
g`,z=j

bh−1
i

### X
w∈bVi

X
k∈L

(1)
1,`−1(w,i)

u1k,w

###
ω`(z)

k∇v1`,zkω`(z). (4.38)

Before we can continue to estimate S1, we focus on the term
###Pw∈bVi

P
k∈L

(1)
1,`−1(w,i)

u1k,w

###2
ω

for a given domain ω ⊆ Ω. We split the L2-norm into its contributions on the triangles
T ∈ bTi. Note that for a given triangle T ∈ bTi only functions u1k,w, that satisfy z ∈ ωk(w)

for all z ∈ bVi ∩ T , have support on T . Using the identity #(bVi ∩ T ) = d+ 1, the triangle
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inequality, and the discrete Cauchy–Schwarz inequality leads to### X
w∈bVi

X
k∈L

(1)
1,`−1(w,i)

u1k,w

###2
ω
=
X
T∈bTi

### X
z∈bVi∩T

X
(k,w)∈L

(2)
1,`−1(z,i)

u1k,w

###2
T∩ω

≤
X
T∈bTi

⇣ X
z∈bVi∩T

X
(k,w)∈L

(2)
1,`−1(z,i)

ku1k,wkT∩ω
⌘2

(4.33)

≤ (d+ 1)C
(2)
lev

X
T∈bTi

X
z∈bVi∩T

X
(k,w)∈L

(2)
1,`−1(z,i)

ku1k,wk2T∩ω

Due to the generation constraint gk,w = i, the support ωk(w) of u1k,w appearing in the above

sum can be decomposed into elements of bTi. For an element T ∈ bTi and vertex z ∈ T ∩ bVi,

we only need to consider z ∈ ωk(w), which exactly means (k,w) ∈ L
(2)
1,`−1(z, i). Let us fix a

tuple (k,w), then we can collect the contributions ku1k,wk2T∩ω over the triangulation bTi to
obtain the full norm ku1k,wk2ω. Since the generation constraint still holds, we getX

T∈bTi
X

z∈bVi∩T

X
(k,w)∈L

(2)
1,`−1(z,i)

ku1k,wk2T∩ω =
X
w∈bVi

X
k∈L

(1)
1,`−1(w,i)

ku1k,wk2ω.

Therefore, we have### X
w∈bVi

X
k∈L

(1)
1,`−1(w,i)

u1k,w

###2
ω
≤ (d+ 1)C

(2)
lev

X
w∈bVi

X
k∈L

(1)
1,`−1(w,i)

ku1k,wk2ω

(4.34)
= (d+ 1)C

(2)
lev

`−1X
k=1

X
w∈V+

k
gk,w=i

ku1k,wk2ω

≤ (d+ 1)C
(2)
lev

L−2X
k=1

X
w∈V+

k
gk,w=i

ku1k.wk2ω. (4.39)

By applying this estimate to (4.38) for ω = ω`(z) and employing the discrete Cauchy–Schwarz
inequality, we get

S1 .
MX
j=0

MX
i=j

δi−j
L−1X
`=1

X
z∈V+

`
g`,z=j

bh−1
i

⇣L−2X
k=1

X
w∈V+

k
gk,w=i

ku1k,wk2ω`(z)

⌘1/2k∇v1`,zkω`(z)

.
MX
j=0

MX
i=j

δi−j
⇣L−1X
`=1

X
z∈V+

`
g`,z=j

k∇v1`,zk2ω`(z)

⌘1/2⇣bh−2
i

L−1X
`=1

X
z∈V+

`
g`,z=j

L−2X
k=1

X
w∈V+

k
gk,w=i

ku1k,wk2ω`(z)

⌘1/2
.
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Note that k∇v1`,zkω`(z) = k∇v1`,zk. Let us simplify the term containing four sums. We
recognize that we can change the order of summation such that the sums over ` and z
are the inner two sums. From Lemma 4.10 we know that an index n exists such that
ω`(z) ⊆ bωn

j (z) for all ` = 1, . . . L− 1 and all z ∈ V+
` with g`,z = j. There exists a constant

Cpatch > 0 depending only on γ-shape regularity (2.15), the dimension d and the patch
layer n that gives an upper limit for the patch overlap of n-patches, i.e., for any m ∈ N,
0 ≤ j ≤ M and T ∈ bTj there holds

#{z ∈ bVj : T ⊆ bωn
j (z)} ≤ Cpatch. (4.40)

Thus, we have

L−1X
`=1

X
z∈V+

`
g`,z=j

ku1k,wk2ω`(z)
≤

L−1X
`=1

X
z∈V+

`
g`,z=j

ku1k,wk2bωn
j (z)

=
X
z∈bVj

X
`∈L

(1)
1,L−1(z,j)

ku1k,wk2bωn
j (z)

(4.32)

≤ C
(1)
lev

X
z∈bVj

ku1k,wk2bωn
j (z)

(4.40)

≤ CpatchC
(1)
levku1k,wk2.

(4.41)

Moreover, we use the equivalence of mesh sizes from (4.35) and a Poincaré-inequality to
prove

L−2X
k=1

X
w∈V+

k
gk,w=i

bh−2
i ku1k,wk2

(4.35)

≤ C2
eq

L−2X
k=1

X
w∈V+

k
gk,w=i

h−2
k,wku1k,wk2 ≤ C2

eqC
2
P

L−2X
k=1

X
w∈V+

k
gk,w=i

k∇u1k,wk2.

Combining the last estimates with the geometric series bound (4.29) finally yields

S1 .
MX
j=0

MX
i=j

δi−j
⇣L−1X
`=1

X
z∈V+

`
g`,z=j

k∇v1`,zk2
⌘1/2⇣L−2X

k=1

X
w∈V+

k
gk,w=i

k∇u1k,wk2
⌘1/2

(4.29)

.
⇣ MX
j=1

L−1X
`=1

X
z∈V+

`
g`,z=j

k∇v1`,zk2
⌘1/2⇣ MX

i=1

L−2X
k=1

X
w∈V+

k
gk,w=i

k∇u1k,wk2
⌘1/2

=
⇣L−1X
`=1

X
z∈V+

`

k∇v1`,zk2
⌘1/2⇣L−2X

k=1

X
w∈V+

k

k∇u1k,wk2
⌘1/2

.

Ultimately, we use the norm equivalence (2.6) to bound S1 by the right-hand side of (4.28).
Tracking the constants in the above estimates, it follows that

S1 ≤ eCSCS

⇣L−1X
`=1

X
z∈V+

`

|||v1`,z|||2
⌘1/2⇣L−2X

k=1

X
w∈V+

k

|||u1k,w|||2
⌘1/2

,
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where eCSCS := bCSCSCeqCPΛ
−1
min(1− δ)−1

⇥
(d+ 1)C

(2)
levCpatchC

(1)
lev

⇤1/2
.

Step 7: Checking the argument in Step 6, we reveal that the same argument bounds S2

even with the same constant eCSCS. Overall, we thus prove (4.28) with CSCS = 2 eCSCS. This
concludes the proof.

4.4 hp-robust contraction of the solver

Finally, we have gathered all the tools to prove the main result.

Theorem 4.13. Consider the exact FEM solution u∗L ∈ X p
L of (2.14), an abitrary function

uL ∈ X p
L, and the solver iterate ΦL(uL) ∈ X p

L and the associated a-posteriori estimator
ζL(uL) as output of Algorithm 3.7. Then, there holds the following link between solver
iterates and estimator

|||u∗L − ΦL(uL)|||2 ≤ |||u∗L − uL|||2 − ζL(uL)
2. (4.42)

Furthermore, the error estimator is efficient and reliable, i.e., there exists a constant C 0
rel > 1

such that
ζL(uL) ≤ |||u∗L − uL||| ≤ C 0

relζL(uL). (4.43)

Finally, the reliability of the estimator is equivalent to the contraction of the algebraic error.
Hence, there exists a constant 0 < qctr < 1 such that

|||u∗L − ΦL(uL)||| ≤ qctr|||u∗L − uL|||. (4.44)

This also yields that
|||u∗L − ΦL(uL)||| ≤ qctrC

0
relζL(uL). (4.45)

The constants qctr and C 0
rel depend only on the space dimension d, the γ-shape regular-

ity (2.15), the quasi-uniformity constant Cqu from (4.23), maxT∈T0 k div(K)kL∞(T )/Λmin,
diam(Ω)/h0, and Λmax/Λmin. Therefore, the constants are h- and p-robust.

Note that the efficiency of the a-posteriori estimator for the algebraic error, i.e., the lower
bound in (4.43), is guaranteed. This means no constants arise in the estimate. To avoid a
case distinction, we present the proof only for p > 1. Moreover, we split up the proof into
the different statements from the above theorem.

Proof of the connection of the solver and estimator (4.42). The proof consists of two steps.
Step 1: First, we show the identity

$$$$$$$$$ L−1X
`=0

λ`ρ`

$$$$$$$$$2 − 2
DD
u∗L − uL,

L−1X
`=0

λ`ρ`

EE
= −|||ρ0|||2 +

L−1X
`=1

|||λ`ρ`|||2 − 2

L−1X
`=1

λ`

X
z∈V+

`

|||ρ`,z|||2.
(4.46)
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We recall σ` =
P`

k=0 λkρk, ρ` =
P

z∈V+
`
ρ`,z, the definition of the residual (3.3), the global

residual problem (3.4), and the local lowest-order problems (3.5) to develop

DD
u∗L − uL,

L−1X
`=0

λ`ρ`

EE
(3.3)
= RL

⇣L−1X
`=0

λ`ρ`

⌘
λ0=1
= RL(ρ0) +

L−1X
`=1

λ`

X
z∈V+

`

RL(ρ`,z)

(3.4)
= |||ρ0|||2 +

L−1X
`=1

λ`

X
z∈V+

`

RL(ρ`,z)

(3.5)
= |||ρ0|||2 +

L−1X
`=1

λ`

X
z∈V+

`

⇣
|||ρ`,z|||2 + hhσ`−1, ρ`,zii

⌘

= |||ρ0|||2 +
L−1X
`=1

λ`

X
z∈V+

`

⇣
|||ρ`,z|||2 +

`−1X
k=0

hhλkρk, ρ`,zii
⌘

= |||ρ0|||2 +
L−1X
`=1

λ`

X
z∈V+

`

|||ρ`,z|||2 +
L−1X
`=1

`−1X
k=0

hhλkρk, λ`ρ`ii.

Expanding the square and applying the last result yields the desired identity (4.46):

$$$$$$$$$ L−1X
`=0

λ`ρ`

$$$$$$$$$2 − 2
DD
u∗L − uL,

L−1X
`=0

λ`ρ`

EE
=

L−1X
`=0

|||λ`ρ`|||2 + 2
L−1X
`=1

`−1X
k=0

hhλkρk, λ`ρ`ii − 2
DD
u∗L − uL,

L−1X
`=0

λ`ρ`

EE
= −|||ρ0|||2 +

L−1X
`=1

|||λ`ρ`|||2 − 2

L−1X
`=1

λ`

X
zV+

`

|||ρ`,z|||2.

Step 2: Recall that Φ(uL) = uL + σL = uL + σL−1 + λLρL. Moreover, from the definition
of the residual (3.3), the identity (4.7), and the local problems (3.7), we get

|||u∗L − Φ(uL)|||2 = |||u∗L − (uL + σL−1)− λLρL|||2
= |||u∗L − (uL + σL−1)|||2 − 2λLhhu∗L − (uL + σL−1), ρLii+ |||λLρL|||2

(3.3)
(4.7)
= |||u∗L − (uL + σL−1)|||2 − 2λL

�
RL(ρL)− hhσL−1, ρLii

�
+ λL

X
z∈VL

|||ρL,z|||2

(3.7)
=
$$$$$$$$$u∗L −

⇣
uL +

L−1X
`=0

λ`ρ`

⌘$$$$$$$$$2 − λL

X
z∈VL

|||ρL,z|||2.

(4.47)
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Focusing on the first term and expanding its square leads to$$$$$$$$$u∗L −
⇣
uL +

L−1X
`=0

λ`ρ`

⌘$$$$$$$$$2 = |||u∗L − uL|||2 +
$$$$$$$$$ L−1X

`=0

λ`ρ`

$$$$$$$$$2 − 2
DD
u∗L − uL,

L−1X
`=0

λ`ρ`

EE
(4.46)
= |||u∗L − uL|||2 − |||ρ0|||2 +

L−1X
`=1

|||λ`ρ`|||2 − 2

L−1X
`=1

λ`

X
z∈V+

`

|||ρ`,z|||2

(4.6)

≤ |||u∗L − uL|||2 − |||ρ0|||2 −
L−1X
`=1

λ`

X
z∈V+

`

|||ρ`,z|||2.

We use this and the definition of the error estimator ζL in Algorithm 3.7 to obtain

|||u∗L − Φ(uL)|||2 ≤ |||u∗L − uL|||2 − |||ρ0|||2 −
L−1X
`=1

λ`

X
z∈V+

`

|||ρ`,z|||2 − λL

X
z∈VL

|||ρL,z|||2

= |||u∗L − uL|||2 − ζL(uL)
2

This concludes the proof of (4.42).

Proof of the equivalence of (4.43) and (4.44). Let us prove the equivalence of the upper
bound in (4.43) and the error contraction (4.44).

Suppose reliability, i.e., the upper bound in (4.43) holds for a constant C 0
rel > 1. Then, it

follows from (4.42) that

|||u∗L − Φ(uL)|||2
(4.42)

≤ |||u∗L − uL|||2 − ζL(uL)
2
(4.43)

≤ |||u∗L − uL|||2 − (C 0
rel)

−2|||u∗L − uL|||2.
Thus, we have proven contraction of the error (4.44) with q2ctr := 1− (C 0

rel)
−2 ∈ (0, 1).

For the converse, suppose the error is contracted by some constant 0 < qctr < 1.
With (4.47), we have

|||u∗L − Φ(uL)|||2 = |||u∗L − (uL + σL−1 + λLρL)|||2

(4.47)
=
$$$$$$$$$u∗L −

⇣
uL +

L−1X
`=0

λ`ρ`

⌘$$$$$$$$$2 − λL

X
z∈VL

|||ρL,z|||2

= |||u∗L − uL|||2 +
$$$$$$$$$ L−1X

`=0

λ`ρ`

$$$$$$$$$2 − 2
DD
u∗L − uL,

L−1X
`=0

λ`ρ`

EE
− λL

X
z∈VL

|||ρL,z|||2.

This and the identity (4.46) yield

|||u∗L − uL|||2

= |||u∗L − Φ(uL)|||2 + |||ρ0|||2 −
L−1X
`=1

|||λ`ρ`|||2 + 2

L−1X
`=1

λ`

X
z∈V+

`

|||ρ`,z|||2 + λL

X
z∈VL

|||ρL,z|||2

≤ |||u∗L − Φ(uL)|||2 + 2|||ρ0|||2 + 2

L−1X
`=1

λ`

X
z∈V+

`

|||ρ`,z|||2 + 2λL

X
z∈VL

|||ρL,z|||2.
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Hence, solver contraction (4.44) gives us

|||u∗L − uL|||2
(4.44)

≤ q2ctr|||u∗L − uL|||2 + 2
⇣
|||ρ0|||2 +

L−1X
`=1

λ`

X
z∈V+

`

|||ρ`,z|||2 + λL

X
z∈VL

|||ρL,z|||2
⌘

= q2ctr|||u∗L − uL|||2 + 2ζL(uL)
2.

Gathering the terms containing the algebraic error on the left-hand side and dividing by
1− q2ctr > 0 gives the upper bound in (4.43) with (C 0

rel)
2 = 2/(1− q2ctr) > 1.

Proof of efficiency and reliability (4.43). The efficiency, i.e., the lower bound of (4.43) fol-
lows directly from (4.42).
The reliability, i.e., the upper bound in (4.43) requires two main ingredients that were

developed in Sections 4.2–4.3, namely a suitable stable decomposition and strengthened
Cauchy–Schwarz estimate. Begin by applying the local multilevel decomposition from
Proposition 4.6 to the algebraic error u∗L − uL ∈ X p

L. We obtain functions v0 ∈ X 1
0 ,

{v`,z}z∈V+
`
∈ X 1

`,z and {vL,z}z∈VL
∈ X p

L,z such that

u∗L − uL = v0 +

L−1X
`=1

X
z∈V+

`

v`,z +
X
z∈VL

vL,z and (4.48)

|||v0|||2 +
L−1X
`=1

X
z∈V+

`

|||v`,z|||2 +
X
z∈VL

|||vL,z|||2 ≤ C2
SD|||u∗L − uL|||2. (4.49)

We use the definition of the residual (3.3), the global coarse residual problem (3.4), and the
local problems (3.5) and (3.7) to obtain

|||u∗L − uL|||2(4.48)=
DD
u∗L − uL, v0 +

L−1X
`=1

X
z∈V+

`

v`,z +
X
z∈VL

vL,z

EE
(3.3)
(3.4)
= hhρ0, v0ii+

L−1X
`=1

X
z∈V+

`

RL(v`,z) +
X
z∈VL

RL(vL,z)

(3.5)
(3.7)
= hhρ0, v0ii+

L−1X
`=1

X
z∈V+

`

⇣
hhρ`,z, v`,zii+ hhσ`−1, v`,zii

⌘
+
X
z∈VL

⇣
hhρL,z, vL,zii+ hhσL−1, vL,zii

⌘
.
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Plugging in σ` = ρ0 +
P`

k=1 λkρk and gathering the terms containing ρ0, we see

|||u∗L − uL|||2 =
DD
ρ0, v0 +

L−1X
`=1

X
z∈V+

`

v`,z +
X
z∈VL

vL,z

EE
+

L−1X
`=1

X
z∈V+

`

hhρ`,z, v`,zii

+
X
z∈VL

hhρL,z, vL,zii+
L−1X
`=1

`−1X
k=1

DD
λkρk,

X
z∈V+

`

v`,z

EE
+

L−1X
k=1

DD
λkρk,

X
z∈VL

vL,z

EE
.

(4.50)

We estimate the five terms constituting the algebraic error separately. However, we will use
the Young inequality

ab ≤ (α/2)a2 + (2α)−1b2 for all a, b ≥ 0 and all α > 0 (4.51)

multiple times. We recall the decomposition of the error (4.48) and use the Cauchy–Schwarz
inequality for hh·, ·ii as well as the Young inequality (4.51) with α = 1 to estimate the first
termDD

ρ0, v0 +

L−1X
`=1

X
z∈V+

`

v`,z +
X
z∈VL

vL,z

EE
(4.48)
= hhρ0, u∗L − uLii ≤ 1

2
kρ0k2 + 1

2
|||u∗L − uL|||2.

For the second term, the Cauchy–Schwarz inequality for hh·, ·ii, the Young inequality (4.51)
with α = 4C2

SD and the estimate (4.9) yield

L−1X
`=1

X
z∈V+

`

hhρ`,z, v`,zii ≤ 2C2
SD

L−1X
`=1

X
z∈V+

`

|||ρ`,z|||2 + 1

8C2
SD

L−1X
`=1

X
z∈V+

`

|||v`,z|||2

(4.9)

≤ 2C2
SD(d+ 1)

L−1X
`=1

λ`

X
z∈V+

`

|||ρ`,z|||2 + 1

8C2
SD

L−1X
`=1

X
z∈V+

`

|||v`,z|||2.

For the third term, the same arguments showX
z∈VL

hhρL,z, vL,zii ≤ 2C2
SD(d+ 1)λL

X
z∈VL

|||ρL,z|||2 + 1

8C2
SD

X
z∈VL

|||vL,z|||2.

Since ρk =
P

w∈V+
k
ρk,w, the strengthened Cauchy–Schwarz inequality (4.28) from Proposi-

tion 4.12 can be applied to the fourth term. Moreover, the Young inequality and the upper
bound of the step-size (4.8) lead to

L−1X
`=1

`−1X
k=1

DD
λkρk,

X
z∈V+

`

v`,z

EE (4.28)

≤ CSCS

⇣L−2X
k=1

X
w∈V+

k

|||λkρk,w|||2
⌘1/2⇣L−1X

`=1

X
z∈V+

`

|||v`,z|||2
⌘1/2
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2
SD
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w∈V+

k

|||λkρk,w|||2 + 1

8C2
SD
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`=1

X
z∈V+

`

|||v`,z|||2

(4.8)

≤ 2C2
SCSC

2
SD(d+ 1)

L−2X
k=1

λk
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w∈V+

k

|||ρk,w|||2 + 1

8C2
SD

L−1X
`=1

X
z∈V+

`
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Ultimately, the last term consists of higher-order functions as well as a sum over the levels.
Similar to [CNX12, Proof of Theorem 4.8], we want to exploit the finite overlap of patches.
Therefore, we use the Cauchy–Schwarz and Young inequality to obtain

L−1X
k=1

DD
λkρk,

X
z∈VL

vL,z

EE
=
X
z∈VL

DD L−1X
k=1

λkρk, vL,z

EE

≤ 2C2
SD

X
z∈VL

$$$$$$$$$ L−1X
k=1

λkρk

$$$$$$$$$2
ωL(z)

+
1

8C2
SD

X
z∈VL

|||vL,z|||2.

As every simplex is contained in d + 1 patches, the first term can be further estimated
using the strengthened Cauchy–Schwarz inequality (4.28), the identity (4.6), and the upper
bound of the step-size (4.8)

X
z∈VL

$$$$$$$$$ L−1X
k=1

λkρk

$$$$$$$$$2
ωL(z)

≤ (d+ 1)
$$$$$$$$$ L−1X

k=1

λkρk

$$$$$$$$$2
= (d+ 1)

h L−1X
k=1

|||λkρk|||2 + 2

L−1X
`=1

`−1X
k=1

hhλkρk, λ`ρ`ii
i

(4.28)

≤ (d+ 1)
h L−1X
k=1

|||λkρk|||2 + 2CSCS

⇣L−2X
k=1

X
w∈V+

k

|||λkρk,w|||2
⌘1/2⇣L−1X

`=1

X
z∈V+

`

|||λ`ρ`,z|||2
⌘1/2i

(4.6)
(4.8)

≤ (d+ 1)[1 + 2CSCS(d+ 1)]
⇣L−1X
`=1

λ`

X
z∈V+

`

|||ρ`,z|||2
⌘
.

Altogether, we have that

L−1X
k=1

DD
λkρk,

X
z∈VL

vL,z

EE

≤ 2C2
SD(d+ 1)[1 + 2CSCS(d+ 1)]

⇣L−1X
`=1

λ`

X
z∈V+

`

|||ρ`,z|||2
⌘
+

1

8C2
SD

X
z∈VL

|||vL,z|||2.

Combining the bounds of the five terms that make up the algebraic error (4.50), defining
the constant (C 0

rel)
2 := 4max{1/2, 2C2

SD(d+ 1)[2 + 2CSCS(d+ 1) + C2
SCS]}, and exploiting
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4 Analysis of the multigrid solver

the stability of the decomposition (4.49) gives the estimate

|||u∗L − uL|||2 ≤ 1

2
|||ρ0|||2 + 1

2
|||u∗L − uL|||2 + 1

4
(C 0

rel)
2
⇣L−1X
`=1

λ`

X
z∈V+

`

|||ρ`,z|||2 + λL

X
z∈VL

|||ρL,z|||2
⌘

+
1

4C2
SD

⇣L−1X
`=1

X
z∈V+

`

|||v`,z|||2 +
X
z∈VL

|||vL,z|||2
⌘

(4.49)

≤ 3

4
|||u∗L − uL|||2 + 1

4
(C 0

rel)
2
⇣
|||ρ0|||2 +

L−1X
`=1

λ`

X
z∈V+

`

|||ρ`,z|||2 + λL

X
z∈VL

|||ρL,z|||2
⌘

=
3

4
|||u∗L − uL|||2 + 1

4
(C 0

rel)
2ζL(uL)

2.

Rearranging the terms leads to the reliability of the error estimator

|||u∗L − uL|||2 ≤ (C 0
rel)

2ζL(uL)
2.

This concludes the proof of Theorem 4.13.
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5 Improved analysis of multigrid contraction:
local dependence on the diffusion
coefficient

In this chapter, we present new results improving the analysis of [IMP+24] by means of re-
working the proofs of stable decompositions of Section 4.2 and strengthened Cauchy-Schwarz
inequality of Section 4.3 in such a way that the inherent constants depend only on local
variations of the diffusion coefficient. As a consequence, we can improve Theorem 4.13 so that
the contraction factor and reliability constant depend only on the local diffusion-contrast.
The chapter is organized as follows: In Section 5.1, we state the main result in Theo-

rem 5.1 and prove several auxiliary results. Section 5.2 then presents the strengthened
Cauchy–Schwarz inequality with improved dependence on the diffusion-contrast. In Sec-
tion 5.3, we establish an h-robust stable multilevel decomposition in the energy norm.
For the case d = 2, Section 5.4 introduces a p-robust stable decomposition, which is then
extended to an hp-robust stable decomposition in Section 5.5, where the stability constant
depends only on local variations of the diffusion coefficient. Finally, the proof of Theorem 5.1
is provided in Section 5.6.

5.1 Main result

First, we present the improved version of Theorem 4.13 and provide explicit formulas for
the new constants.

Theorem 5.1. Let d = 2 and p ≥ 1 or d = 3 and p = 1. Consider the exact FEM solution
u∗L ∈ X p

L of (2.14), an abitrary function uL ∈ X p
L, and the solver iterate ΦL(uL) ∈ X p

L and
associated a-posteriori estimator ζL(uL) as output from Algorithm 3.7. Then, there holds
the following link between solver iterates and estimator

|||u∗L − ΦL(uL)|||2 ≤ |||u∗L − uL|||2 − ζL(uL)
2. (5.1)

Furthermore, the error estimator is efficient and reliable, i.e., there exists a constant eCrel > 1
such that

ζL(uL) ≤ |||u∗L − uL||| ≤ eCrelζL(uL). (5.2)

Moreover, the reliability of the estimator is equivalent to the contraction of the algebraic
error, i.e., there exists a constant 0 < qctr < 1 such that

|||u∗L − ΦL(uL)||| ≤ qctr|||u∗L − uL|||. (5.3)

This also yields that
|||u∗L − ΦL(uL)||| ≤ qctr eCrelζL(uL). (5.4)
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5 Improved analysis of multigrid contraction: local dependence on the diffusion coefficient

The constants qctr and eCrel depend only on the space dimension d, the γ-shape regular-
ity (2.15), the quasi-uniformity constant Cqu from (4.23), the initial mesh T0 and the local

constants C
(1)
loc and C

(2)
loc , which are defined as

C
(1)
loc := max

(
sup
z∈V0

max
T⊆ω2

0(z)
k div(K)kL∞(T )

infy∈ω2
0(z)

λmin(K(y))
, sup
z∈V0

supy∈ω2
0(z)

λmax(K(y))

infy∈ω2
0(z)

λmin(K(y))

)
(5.5)

and

C
(2)
loc := sup

z∈V0

supy∈ω3
0(z)

λmax(K(y))

infy∈ω3
0(z)

λmin(K(y))
. (5.6)

Therefore, the constants depend only on local variations of the diffusion coefficient. There
exist constants eCSD, eCML, and C 0

SCS independent of the diffusion coefficient K, explicitly
given in Lemma 5.26, Proposition 5.19, and Proposition 5.9, respectively, such that the
reliability constant eCrel is given by

( eCrel)
2 := 4max

n
1/2, 2CD(C

(2)
loc )

2(d+ 1)
⇥
2 + 2C 0

SCSC
(1)
loc (d+ 1) + (C 0

SCSC
(1)
loc )

2
⇤o

, (5.7)

where CD = eCSD for d = 2 and CD = eCML for d = 3.

The proof is postponed to Section 5.6.

5.1.1 Auxiliary results

In this section, we present some useful properties of the interaction of patches of different
levels. These will provide the technical geometric tools needed to prove the main results
of this chapter. Our first goal is to show that patches, whose intersection has a positive
measure, are contained in a two-layer patch of the initial mesh T0, recall Definition 3.6. For
this, we need the following two lemmas.

Lemma 5.2 (Neighboring patches). Let ` ∈ {0, . . . , L}, z, w ∈ V` and consider vertices
z, w ∈ V` with |ω`(z) ∩ ω`(w)| > 0. Then, it follows that ω`(z) ∪ ω`(w) ⊆ ω2

` (z) ∩ ω2
` (w).

Proof. The assumption |ω`(z) ∩ ω`(w)| > 0 and the patch domains being open imply the
existence of a simplex T such that T ⊆ ω`(z) ∩ ω`(w) and therefore z, w ∈ V` ∩ T . The
Definition 3.6 of n-patches yields ω`(z) ⊆ ω2

` (w) and ω`(w) ⊆ ω2
` (z), which concludes the

proof.

Lemma 5.3 (Patch ancestor). Let ` ∈ {0, . . . , L} and z ∈ V`. Then, there exists a vertex
z0 ∈ V0 such that ω`(z) ⊆ ω0(z0).

Proof. We will treat d = 2 and d = 3 separately.
Step 1: Let d = 2. Every T ∈ T`(z) has a unique ancestor T 0 ∈ T0 such that T ⊆ T 0. We
distinguish between three cases:
Case 1: All elements in the patch have the same ancestors, i.e., ω`(z) ⊆ T 0. We can choose
any vertex of T 0 as z0.
Case 2: Suppose there are exactly two distinct ancestor simplices T 0

1 and T 0
2 such that
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5 Improved analysis of multigrid contraction: local dependence on the diffusion coefficient

z

T

Figure 5.1: Illustration of the two-patch of z and the element-patch of T colored in pink.

ω`(z) ⊆ T 0
1 ∪ T 0

2. Then, there exists two elements T1, T2 ∈ T`(z) with T1 ⊆ T 0
1 and T2 ⊆ T 0

2

such that T1 ∩ T2 is an edge. Hence, T 0
1 and T 0

2 also share an edge. Both vertices of this
coarse edge can be picked as z0.
Case 3: Assume there are n ≥ 3 ancestors T 0

1, . . . , T
0
n for the patch. Then, there exists

T1, . . . , Tn ∈ T`(z) with T1 ⊆ T 0
1, . . . , Tn ⊆ T 0

n. Because a triangulation is a partition and
n ≥ 3, the intersection T 0

1 ∩ · · · ∩ T 0
n can at most contain one vertex. Thus, the observation

z ∈ T1 ∩ · · · ∩ Tn ⊆ T 0
1 ∩ · · · ∩ T 0

n

implies z ∈ V0 and ω`(z) ⊆ ω0(z).
Step 2: Let us consider d = 3. The first two cases follow analogously if we exchange edges
with faces. However, the third case needs to be treated differently. It can happen that
T 0
1 ∩ · · · ∩ T 0

n is an edge. In that case, we can choose any of the two vertices contained in
the edges as z0. Lastly, if T

0
1 ∩ · · · ∩ T 0

n is not an edge, we continue as in Case 3 of Step 1.
This concludes the proof.

Combining Lemma 5.2 and Lemma 5.3 gives us the desired result.

Corollary 5.4 (Ancestor of level-overlapping patches). Let `, k ∈ {0, . . . , L}, z ∈ V`

and w ∈ Vk with |ω`(z) ∩ ωk(w)| > 0. Then, there exists a vertex w0 ∈ T0 such that
ω`(z) ∪ ωk(w) ⊆ ω2

0(w0).

Proof. From Lemma 5.3 we get z0, w0 ∈ V0 such that ω`(z) ⊆ ω0(z0) and ωk(w) ⊆ ω0(w0).
Since |ω0(z0)∩ω0(w0)| > 0 according to ω`(z)∩ω`(w) ⊆ ω0(z0)∩ω0(w0), Lemma 5.2 yields
ω`(z) ∪ ωk(w) ⊆ ω2

0(z0) ∩ ω2
0(w0). This concludes the proof.

Moreover, we introduce the so-called element-patches.

Definition 5.5. Let ` ∈ N and T ∈ T`. Then, we define the element-patch by

ω`(T ) := interior
⇣ [
T 0∈T`(z)
z∈T∩V`

T 0
⌘
.

For z ∈ T , it follows directly from the definition that ω`(T ) ⊆ ω2
` (z). In the next lemma,

we show that any vertex patch is contained in a vertex patch of the previous level.
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5 Improved analysis of multigrid contraction: local dependence on the diffusion coefficient

Lemma 5.6. Let ` ∈ {1, . . . , L}. For every z ∈ V`, there exists a vertex z0 ∈ V`−1 such that
ω`(z) ⊆ ω`−1(z

0) and consequently ω2
` (z) ⊆ ω2

`−1(z
0). Furthermore, there exists an element

T ∈ T`−1 such that z, z0 ∈ T .

Proof. We need to distinguish between two cases.
Case 1: Suppose z ∈ V`−1. Then, it immediately follows that ω`(z) ⊆ ω`−1(z) and z ∈ T
for all T ∈ T`−1(z).
Case 2: Assume z /∈ V`−1. Due to the used NVB refinement, z has to be the midpoint of an
edge of the mesh T`−1, i.e., z ∈ E := conv{z1, z2} with z1, z2 ∈ T`−1. We can choose z0 as
either vertex z1 or z2. Moreover, there is at least one element T ∈ T`−1 with E ⊂ T and
hence z, z0 ∈ T . This concludes the proof.

For the following result, we define er`,z := minT∈T 2
` (z) level(T ).

Lemma 5.7. Let ` ∈ {1, . . . , L}, z ∈ V`, and z0 ∈ V`−1 given by Lemma 5.6 yielding
ω2
` (z) ⊆ ω2

`−1(z
0). Then, there exists C1, k ∈ N depending only on the initial mesh T0 and

uniform γ-shape regularity such that g`,z ≤ er`−1,z0 + C1 and ω2
`−1(z

0) ⊆ bωk
g`,z

(z), with g`,z
defined in (4.24).

Proof. Step 1: Let z ∈ V` and the associated z0 ∈ V`−1. Then, there exists an element
T ∈ T`(z) such that g`,z = level(T ). Furthermore, there is an element T 0 ∈ T 2

`−1(z
0) so thater`−1,z0 = level(T 0). Since we can find a triangle T 00 ∈ T`−1(z

0) with T ⊆ T 00 and |T | ' |T 00|
and since all triangles in T 2

`−1(z
0) have comparable size, we have |T | ' |T 0| with hidden

constants that depend only on γ-shape regularity. Let T0, T
0
0 ∈ T0 denote the ancestors of T

and T 0 respectively. Then, there exists a constant C > 0 that depends only on the initial
mesh and γ-shape regularity such that

level(T ) = log2

⇣ |T0|
|T |
⌘
≤ log2

⇣
C
|T 0

0|
|T 0|

⌘
= log2(C) + level(T 0).

For C1 := dlog2(C)e, we get g`,z ≤ er`−1,z0 + C1.
Step 2: From Lemma 5.6, we know that z and z0 lie in a shared element T ∈ T`−1(z

0),
i.e., z, z0 ∈ T . Moreover, there is a triangle eT ∈ bTer`−1,z0 with z, z0 ∈ T ⊆ eT . Thus, it holds
that z0 ∈ eT and by the definition of er`−1,z0 also ω2

`−1(z
0) ⊆ bω2er`−1,z0

( eT ). Furthermore, we

can decompose any element T 0 ∈ bTer`−1,z0 into elements T 0
j ∈ bTer`−1,z0+C1

with j = 1, . . . , 2C1 ,

i.e., T 0 =
S2C1

j=1 T
0
j . In particular, this holds for eT . Since z ∈ eT , we get eT ⊆ bω2C1er`−1,z0+C1

(z).

Hence, there exists an integer k ∈ N with k ≤ 2C1+2 such that bω2er`−1,z0
( eT ) ⊆ bωker`−1,z0+C1

(z).

Finally, Step 1 yields

ω2
`−1(z

0) ⊆ bω2er`−1,z0
( eT ) ⊆ bωker`−1,z0+C1

(z) ⊆ bωk
g`,z

(z).

This concludes the proof.
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5 Improved analysis of multigrid contraction: local dependence on the diffusion coefficient

5.2 Strengthened Cauchy–Schwarz inequality

With the results from the previous section, we can improve the constant bCSCS in Lemma 4.11
and subsequently also the constant CSCS in Proposition 4.12. Let T ∈ T be a refinement of
the initial mesh T0 and M ⊆ T . For ω := interior

�S
T∈M T

�
, we define

C[ω] := max{max
T∈M

k div(K)kL∞(T ), sup
y∈ω

λmax(K(y))}. (5.8)

Lemma 5.8 (Strengthened Cauchy–Schwarz inequality on nested uniform meshes with
a local diffusion-contrast dependence). Let 0 ≤ i ≤ j, bui ∈ bX 1

i , and bvj ∈ bX 1
j . Consider a

subset cMi ⊆ bTi and denote bωi := interior
�S

T∈cMi
T
�
. Then, it holds that

hhbui, bvjiibωi
≤ bC 0

SCSC[bωi] δ
j−ibh−1

j k∇buikbωi
kbvjkbωi

, (5.9)

where δ = 2−1/(2d). The constant bC 0
SCS > 0 depends only on the domain Ω, the space

dimension d, the initial triangulation T0, the γ-shape regularity from (2.15), and the quasi-
uniformity constant Cqu from (4.23).

Proof. Let us start from the left-hand side of (5.9) and split the integral over bωi into its
elementwise components. Moreover, we use integration by parts, the product rule, and thatbui|T is an affine function on every element T ∈ cMi to obtain

hhbui, bvjiibωi
=
X

T∈cMi

⇣
−
Z
T
div(K) · ∇bui bvj dx+

Z
∂T

K∇bui · n bvj dx⌘.
We use the eigenvalue identity (2.7) to estimate the boundary integral. Moreover, the
Cauchy–Schwarz inequality and the assumption K|T ∈ [W 1,∞(T )]d×d for all T ∈ bT0 yield

hhbui, bvjiibωi
≤
X

T∈cMi

max
T⊆bωi

k divKkL∞(T )k∇buikL2(T )kbvjkL2(T )

+
X

T∈cMi

sup
y∈bωi

λmax(K(y))k∇buikL2(∂T )kbvjkL2(∂T )

≤ C[bωi]
X

T∈cMi

⇣
k∇buikL2(T )kbvjkL2(T ) + k∇buikL2(∂T )kbvjkL2(∂T )

⌘
.

Following the steps from the proof of Lemma 4.11, we conclude the proof.

Proposition 5.9 (Strengthened Cauchy–Schwarz inequality on nested adaptive meshes
with a local diffusion-contrast dependence). For all ` ∈ {1, . . . , L−1} and k ∈ {1, . . . , `−1},
consider levelwise functions v` =

P
z∈V+

`
v1`,z ∈ X 1

` and uk =
P

w∈V+
k
u1k,w ∈ X 1

k with

v1`,z ∈ X 1
`,z and u1k,w ∈ X 1

k,w. Then, it holds that

L−1X
`=1

`−1X
k=1

hhuk, v`ii ≤ C 0
SCSC

(1)
loc

⇣L−2X
k=1

X
w∈V+

k

|||u1k,w|||2
⌘1/2⇣L−1X

`=1

X
z∈V+

`

|||v1`,z|||2
⌘1/2

, (5.10)
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5 Improved analysis of multigrid contraction: local dependence on the diffusion coefficient

where the constant C
(1)
loc is defined in (5.5) and the constant C 0

SCS > 0 depends only on Ω,
the initial triangulation T0, γ-shape regularity (2.15), and the quasi-uniformity constant Cqu

from (4.23).

Proof. LetM = maxz∈VL
gL,z be the maximal generation. We recall the representation (4.37)

of S1 in Step 5 of the proof of Proposition 4.12, namely

S1 =
MX
j=0

MX
i=j

L−1X
`=1

X
z∈V+

`
g`,z=j

DD X
w∈bVi

X
k∈L

(1)
1,`−1(w,i)

u1k,w, v
1
`,z

EE
ω`(z)

.

Because j ≤ i, we can use the strengthened Cauchy–Schwarz inequality on uniform
meshes (5.9) to obtain

S1 ≤ bCSCS

MX
j=0

MX
i=j

δi−j
L−1X
`=1

X
z∈V+

`
g`,z=j

C[ω`(z)] bh−1
i

### X
w∈bVi

X
k∈L

(1)
1,`−1(w,i)

u1k,w

###
ω`(z)

k∇v1`,zkω`(z).

By applying (4.39) for ω = ω`(z) and employing the discrete Cauchy–Schwarz inequality,
we get

S1 .
MX
j=0

MX
i=j

δi−j
L−1X
`=1

X
z∈V+

`
g`,z=j

bh−1
i C[ω`(z)]

1/2
⇣L−2X
k=1

X
w∈V+

k
gk,w=i

ku1k,wk2ω`(z)

⌘1/2
C[ω`(z)]

1/2k∇v1`,zkω`(z)

.
MX
j=0

MX
i=j

δi−j
⇣L−1X
`=1

X
z∈V+

`
g`,z=j

C[ω`(z)]k∇v1`,zk2ω`(z)

⌘1/2

×
⇣bh−2

i

L−1X
`=1

X
z∈V+

`
g`,z=j

L−2X
k=1

X
w∈V+

k
gk,w=i

C[ω`(z)]ku1k,wk2ω`(z)

⌘1/2
.

Let us focus on the term C[ω`(z)]ku1k,wk2ω`(z)
. Since u1k,w ∈ X 1

k,w, the norm ku1k,wk2ω`(z)
only

has a positive value if |ω`(z)∩ ωk(w)| > 0. Therefore, Corollary 5.4 yields the existence of a
vertex w0 ∈ V0 independent of ` and z such that ω`(z) ∪ ωk(w) ⊆ ω2

0(w0). Thus, we have

C[ω`(z)]ku1k,wk2ω`(z)
≤ max

n
max

T⊆ω2
0(w0)

k divKkL∞(T ), sup
y∈ω2

0(w0)

λmax(K(y))
o
ku1k,wk2ω`(z)

.

As previously established in (4.41), there holds

L−1X
`=1

X
z∈V+

`
g`,z=j

C[ω`(z)]ku1k,wk2ω`(z)

≤ CpatchC
(1)
lev max

n
max

T⊆ω2
0(w0)

k divKkL∞(T ), sup
y∈ω2

0(w0)

λmax(K(y))
o
ku1k,wk2.
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5 Improved analysis of multigrid contraction: local dependence on the diffusion coefficient

Moreover, we use the equivalence of mesh sizes from (4.35), a Poincaré inequality on the
patch ωk(w), and the norm equivalence (2.6) to prove

C[ω2
0(w0)]bh−2

i ku1k,wk2
(4.35)

≤ C[ω2
0(w0)]C

2
eqh

−2
k,wku1k,wk2 ≤ C[ω2

0(w0)]C
2
eqC

2
Pk∇u1k,wk2

(2.6)

≤ C[ω2
0(w0)]C

2
eqC

2
P

1

infy∈ωk(w) λmin(K(y))
|||u1k,w|||2

≤ C[ω2
0(w0)]C

2
eqC

2
P

1

infy∈ω2
0(w0) λmin(K(y))

|||u1k,w|||2

= C2
eqC

2
Pmax

(
max

T⊆ω2
0(w0)

k divKkL∞(T )

infy∈ω2
0(w0) λmin(K(y))

,
supy∈ω2

0(w0) λmax(K(y))

infy∈ω2
0(w0) λmin(K(y))

)
|||u1k,w|||2

For every ` ∈ {1, . . . , L − 1} and z ∈ V`, Lemma 5.3 yields a vertex z0 ∈ V0 such that
ω`(z) ⊆ ω0(z0) ⊆ ω2

0(z0). We use this and the norm equivalence (2.6) to obtain

C[ω`(z)]k∇v1`,zk2ω`(z)

(2.6)

≤ C[ω`(z)]
1

infy∈ω`(z) λmin(K(y))
|||v1`,z|||2

≤ max

(
max

T⊆ω2
0(z0)

k divKkL∞(T )

infy∈ω2
0(z0)

λmin(K(y))
,
supy∈ω2

0(z0)
λmax(K(y))

infy∈ω2
0(z0)

λmin(K(y))

)
|||v1`,z|||2.

Taking the supremum over all vertices of the initial mesh and applying the geometric series
bound (4.29) finally yields

S1 . C
(1)
loc

MX
j=0

MX
i=j

δi−j
⇣L−1X
`=1

X
z∈V+

`
g`,z=j

|||v1`,z|||2
⌘1/2⇣L−2X

k=1

X
w∈V+

k
gk,w=i

|||u1k,w|||2
⌘1/2

(4.29)

. C
(1)
loc

⇣ MX
j=1

L−1X
`=1

X
z∈V+

`
g`,z=j

|||v1`,z|||2
⌘1/2⇣ MX

i=1

L−2X
k=1

X
w∈V+

k
gk,w=i

|||u1k,w|||2
⌘1/2

= CSCSC
(1)
loc

⇣L−1X
`=1

X
z∈V+

`

|||v1`,z|||2
⌘1/2⇣L−2X

k=1

X
w∈V+

k

|||u1k,w|||2
⌘1/2

.

This concludes the proof with

CSCS := bC 0
SCSCeqCP(1− δ)−1

�
(d+ 1)C

(2)
levCpatchC

(1)
lev

�1/2
.

5.3 Multilevel h-robust decomposition

The goal of this section is to show stability of the decomposition (4.10) from Lemma 4.4 in
the energy norm such that the constant CML in (4.11) with k∇ · k being replaced by ||| · |||
depends only locally on the contrast factor of the diffusion coefficient.
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5 Improved analysis of multigrid contraction: local dependence on the diffusion coefficient

5.3.1 Challenges

The proof of Lemma 4.4 relies on [WZ17, Lemma 3.7] which in turn uses H1-stability of
the L2-projection. Therefore, we present the proof of [WZ17, Lemma 3.7] to explain the
challenges of extending the result to the energy norm with only local dependence on the
diffusion coefficient.

Proposition 5.10 ([WZ17, Lemma 3.7]). Let Π` be the averaging operator from Defini-
tion 4.3. Then, it holds that

LX
`=1

X
z∈V+

`

h−2
`,zk(Π` −Π`−1)vk2ω`(z)

≤ C2
SAk∇vk2 for all v ∈ H1

0 (Ω), (5.11)

where the constant CSA > 0 depends only on the space dimension d and γ-shape regular-
ity (2.15).

In [WZ17, Lemma 3.4], local L2-stability of Π` is shown. However, note that (5.11) leads
us to estimate terms of the type kΠ`−1vk2T for triangles T ∈ T` and any function v ∈ H1

0 (Ω).
Thus, we first introduce an auxiliary result.

Lemma 5.11 (Estimates on different levels). For ` ∈ {1, . . . , L} and z ∈ V` let z
0 ∈ V`−1

be the vertex provided by Lemma 5.6. Then, it holds that

kΠ`−1vk2ω`(z)
. kvk2ω2

`−1(z
0). (5.12)

Proof. Let T ∈ T`,z and let T 0 ∈ T`−1 denote its ancestor. We get

kΠ`−1vk2T ≤ kΠ`−1vk2T 0 . kvk2ω`−1(T 0).

The vertex z0 ∈ V`−1 allows to satisfy ω`(z) ⊆ ω`−1(z
0). Thus, we can use finite patch

overlap to obtain

kΠ`−1vk2ω`(z)
=

X
T∈T`(z)

kΠ`−1vk2T ≤
X

T 0∈T`−1(z0)

kΠ`−1vk2T 0

.
X

T 0∈T`−1(z0)

kvkω`−1(T 0) . kvk2ω2
`−1(z

0)

This concludes the proof.

Proof of Proposition 5.10. We present the proof for completeness. Let v ∈ H1
0 (Ω). For

m ∈ N, we denote by bQm the L2(Ω)-projection onto bX 1
m. Let bQm := bQ0 for m < 0. Let

` ∈ {1, . . . , L}, z ∈ V+
` , and z0 = z0[z] from Lemma 5.6. From Lemma 5.7, we get

bQg`,z−C1v ∈ bX 1er`−1,z0

and therefore that ( bQg`,z−C1v)|T is linear for every T ∈ T 2
`−1(z

0). Moreover, Lemma 5.6 also

yields that ( bQg`,z−C1v)|T is linear for every T ∈ T 2
` (z). This implies

( bQg`,z−C1v)|ω`(z) = (Π`
bQg`,z−C1v)|ω`(z) = (Π`−1

bQg`,z−C1v)|ω`(z). (5.13)
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5 Improved analysis of multigrid contraction: local dependence on the diffusion coefficient

We use Lemma 5.11 to obtain

LX
`=1

X
z∈V+

`

h−2
`,zk(Π` −Π`−1)vk2ω`(z)

(5.13)
=

LX
`=1

X
z∈V+

`

h−2
`,zkΠ`(v − bQg`,z−C1v)−Π`−1(v − bQg`,z−C1v)k2ω`(z)

.
LX

`=1

X
z∈V+

`

h−2
`,z

�kΠ`(v − bQg`,z−C1v)k2ω`(z)
+ kΠ`−1(v − bQg`,z−C1v)k2ω`(z)

�
(5.12)

.
LX

`=1

X
z∈V+

`

h−2
`,zkv − bQg`,z−C1vk2ω2

`−1(z
0[z]).

Changing the summation order using the generations and applying Lemma 5.7, we see

LX
`=1

X
z∈V+

`

h−2
`,zk(Π` −Π`−1)vk2ω`(z)

.
LX

`=1

X
z∈V+

`

h−2
`,zkv − bQg`,z−C1vk2ω2

`−1(z
0[z])

bhm'h`,z'
∞X

m=0

LX
`=1

X
z∈V+

`
g`,z=m

bh−2
m kv − bQm−C1vk2ω2

`−1(z
0[z])

≤
∞X

m=0

LX
`=1

X
z∈V+

`
g`,z=m

bh−2
m kv − bQm−C1vk2bωk

m(z).

We rewrite the sums using (4.30), exploit the uniform bound (4.32), and apply finite patch
overlap to establish

LX
`=1

X
z∈V+

`

h−2
`,zk(Π` −Π`−1)vk2ω`(z)

.
∞X

m=0

X
z∈bVm

X
`∈L

(1)
1,L(z,m)

bh−2
m kv − bQm−C1vk2bωk

m(z)

(4.32)

.
∞X

m=0

X
z∈bVm

bh−2
m kv − bQm−C1vk2bωk

m(z)

.
∞X

m=0

bh−2
m kv − bQm−C1vk2.
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5 Improved analysis of multigrid contraction: local dependence on the diffusion coefficient

Recalling 2N/dbhm+N = bhm for any N ≥ 0 and bQm = bQ0 for m < 0 leads to

∞X
m=0

bh−2
m kv − bQm−C1vk2 = kv − bQ0vk2

C1−1X
m=0

bh−2
m +

∞X
m=0

bh−2
m+C1

kv − bQmvk2

≤ bh−2
0 kv − bQ0vk2

∞X
m=0

2−2m/d + 4C1/d
∞X

m=0

bh−2
m kv − bQmvk2

≤
⇣
(1− 4−1/d)−1 + 4C1/d

⌘ ∞X
m=0

bh−2
m kv − bQmvk2.

(5.14)

Finally, the stability of the multilevel decomposition for the L2-projection gives

LX
`=1

X
z∈V+

`

h−2
`,zk(Π` −Π`−1)vk2ω`(z)

.
∞X

m=0

bh−2
m kv − bQmvk2 . k∇uk2

A proof for the last estimate can be found in [Xu97, Theorem 4.31].

Remark 5.12 (Energy norm estimates). The challenge with the approach of Proposition 5.10
is that the result does not transfer immediately to the energy norm. To keep local dependencies
on the diffusion coefficient, we need to change to the energy norm while the estimates are
still local (on patches). Doing so would result in the sought stability

LX
`=0

X
z∈V+

`

|||v`,z|||2 .
∞X

m=0

|||v1L − bQmv1L|||2, (5.15)

with a constant that depends only locally on the diffusion. Moreover, we have not been able
to estimate the right-hand side of (5.15) (given in the energy norm) with |||v1L|||2.
Remark 5.13 (Different choices of averaging operators). In [FFP+17] the same strategy as
in the proof of Proposition 5.10 is used to show stability of a multilevel decomposition. The
biggest difference is that the Scott–Zhang projection J` is utilized instead of the operator Π`.
We want to underline that the estimate

∞X
m=0

bh−2
m kv − bQmvk2 . k∇vk2 for all v ∈ H1

0 (Ω) (5.16)

is the crucial step in both [WZ17] and [FFP+17]. Furthermore, a similar estimate

∞X
m=0

bh−2
m k( bQm − bQm−1)vk2 . k∇vk2 for all v ∈ H1

0 (Ω)

is used in [CNX12] to show a localized stable lowest-order multilevel decomposition.
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5 Improved analysis of multigrid contraction: local dependence on the diffusion coefficient

5.3.2 Useful concepts

To overcome the challenges mentioned in the previous section, we introduce some useful
concepts, namely the so-called K-functional, a weighted L2(Ω)-scalar product, and extension
operators on Sobolev spaces.

Definition 5.14 (K-functional). For any Lipschitz domain ω ⊆ Rd, u ∈ L2(ω) and t > 0
we define the K-functional by

K(t, u, ω) := inf
v∈H2(ω)

�ku− vk2ω + t2|v|2H2(ω)

�1/2
.

Definition 5.15 (Weighted L2-norm). Let the diffusion coefficient K be given. For every
T0 ∈ T0, we define the weights

kT0 := min
y∈ω0(T0)

λmin(K(y)). (5.17)

The weighted L2(Ω)-scalar product is given by

hu, viK :=
X
T0∈T0

kT0

Z
T0

uv dx for all u, v ∈ L2(Ω).

Furthermore, the corresponding norm is

kuk2K :=
X
T0∈T0

kT0 kuk2T0
for all u ∈ L2(Ω). (5.18)

For m ≥ 0, let us denote by bQm,K : L2(Ω) → bX 1
m the projections for the weighted scalar

product, i.e., it holds that

h bQm,Ku, viK = hu, viK for all v ∈ bX 1
m. (5.19)

The following observations will be useful for the main theorem.

Lemma 5.16 (K-functional for extended functions). Let ω2 ⊆ ω1 ⊆ Rd be two nested and
bounded Lipschitz domains. Then, it holds that

inf
v∈H2(ω1)

�ku− vk2ω2
+ t2|v|2H2(ω2)

�
= K(t, u, ω2)

2. (5.20)

Moreover, for a Lipschitz domain ω ⊆ Rd and any extension operator R : L2(ω) → L2(Rd)
we have

K(t, u, ω) ≤ K(t, Ru,Rd). (5.21)

Proof. Step 1: Since H2(ω1) ⊆ H2(ω2), the first inequality follows directly

inf
v∈H2(ω1)

�ku− vk2ω2
+ t2|v|2H2(ω2)

� ≥ K(t, u, ω2)
2.

To show equality, we introduce an extension operator eR : H2(ω2) → H2(Rd), see, e.g., [AF03,
Theorem 5.24]. Thus, for every v ∈ H2(ω2) there exists a function eRv =: ev ∈ H2(Rd), and
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5 Improved analysis of multigrid contraction: local dependence on the diffusion coefficient

in particular ev ∈ H2(ω1) such that ev|ω2 = v. Hence, we obtain the equality (5.20).
Step 2: The restriction v|ω of a function v ∈ H2(R2) lies in H2(ω) and it holds

ku− v|ωk2ω + t2|v|ω|2H2(ω) ≤ kRu− vk2R2 + t2|v|2H2(R2).

Therefore, we get

inf
v∈H2(ω)

�ku− vk2ω + t2|v|2H2(ω)

� ≤ inf
v∈H2(R2)

�kRu− vk2R2 + t2|v|2H2(R2)

�
.

This concludes the proof.

Lemma 5.17. Let ω ⊆ Rd be a bounded Lipschitz domain. Then, there exists an extension
operator Eω : H1(ω) → H1(Rd) and a constant Cω ≥ 1 depending only on ω that fulfill

(Eωv)|ω = v and k∇EωvkRd ≤ Cωk∇vkω for all v ∈ H1(ω). (5.22)

We refer to [Bur99, Theorem 2.2] and [Leo09, Theorem 12.3] for further details.

5.3.3 Improved proofs

We can now present our improved result. With the tools from the last section, stability of
the multilevel decomposition for the weighted L2-projection in the energy norm is shown.
Lastly, to obtain the desired stability of the decomposition, we follow the structure of the
proof of Proposition 5.10 while keeping the dependency on the diffusion coefficient local.

Proposition 5.18. For all u ∈ H1
0 (Ω), it holds that

∞X
m=0

bh−2
m ku− bQm,Kuk2K ≤ C2

WP|||u|||2, (5.23)

where the constant constant CWP > 0 depends only on the initial mesh T0, the space
dimension d, and the γ-shape regularity (2.15)

Proof. Step 1 (Elementwise stability estimates): Let u ∈ H1
0 (Ω). By the definition ofbQm,K (5.19), it follows that

ku− bQm,Kuk2K = hu− bQm,Ku, u− bQm,KuiK (5.19)
= hu− bQm,Ku, u− vmiK

≤ ku− bQm,KukKku− vmkK for all vm ∈ bX 1
m.

(5.24)

Let us denote by bPm : L2(Ω) → bX 1
m the Scott–Zhang projection, which among others

possesses the following property: There exists a constant C > 0 depending only on the
γ-shape regularity such that

kv − bPmvkT ≤ Ch2T |v|H2(bωm(T )) for all T ∈ bTm and all v ∈ H2(Ω). (5.25)

Further details can be found in [BS08, Section 4.8]. We apply (5.24) to vm = bPmv for any
v ∈ H2(Ω). This leads to

ku− bQm,Kuk2K ≤ ku− bPmvk2K . ku− vk2K + kv − bPmvk2K.
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5 Improved analysis of multigrid contraction: local dependence on the diffusion coefficient

We use (5.25) and finite patch overlap to obtain

ku− bQm,Kuk2K .
X
T0∈T0

kT0

X
T∈bTm
T⊆T0

�ku− vk2T + kv − bPmvk2T
�

(5.25)

.
X
T0∈T0

kT0

X
T∈bTm
T⊆T0

⇣
ku− vk2bωm(T ) +

bh4m|v|2H2(bωm(T ))

⌘

.
X
T0∈T0

kT0

⇣
ku− vk2ω0(T0)

+ bh4m|v|2H2(ω0(T0))

⌘
.

Step 2 (Weighted, extended estimates): Since v ∈ H2(Ω) was arbitrary, Lemma 5.16
yields

ku− bQm,Kuk2K
(5.20)

.
X
T0∈T0

kT0K(bh2m, u, ω0(T0))
2.

Summing over the generations, utilizing the extension operators Eω0(T0), and applying
Lemma 5.16 gives us

∞X
m=0

bh−2
m ku− bQm,Kuk2K .

∞X
m=0

bh−2
m

X
T0∈T0

kT0K(bh2m, u, ω0(T0))
2

(5.21)

≤
∞X

m=0

bh−2
m

X
T0∈T0

kT0K(bh2m, Eω0(T0)u,R
d)2

=
X
T0∈T0

kT0

∞X
m=0

bh−2
m K(bh2m, Eω0(T0)u,R

d)2.

(5.26)

Step 3 (Summability of K-functional): For d = 2 and d = 3, it is shown in [BY93,
Lemma 7.3] and [HWZ12, Lemma 4.3] respectively that

∞X
m=0

bh−2
m K(bh2m, v,Rd)2 . k∇vk2Rd for all v ∈ H1(Rd). (5.27)

Step 4 (Stability of the extensions): Applying (5.27) to Eω0(T0)u, using the stability of
the extension (5.22) and exploiting the norm equivalence (2.6) and the definition (5.17) of
kT0 , we are led to

∞X
m=0

bh−2
m ku− bQm,Kuk2K

(5.26)
(5.27)

.
X
T0∈T0

kT0k∇Eω0(T0)uk2Rd

(5.22)

≤
X
T0∈T0

kT0Cω0(T0)k∇uk2ω0(T0)

(2.6)

≤ �
max
T0∈T0

Cω0(T0)

� X
T0∈T0

kT0

1

infy∈ω0(T0) λmin(K(y))
|||u|||2ω0(T0)

(5.18)
=
�
max
T0∈T0

Cω0(T0)

� X
T0∈T0

|||u|||2ω0(T0)
.
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Due to finite patch overlap, we finally obtain

∞X
m=0

bh−2
m ku− bQm,Kuk2K . max

T0∈T0
Cω0(T0)

X
T0∈T0

|||u|||2ω0(T0)
. max

T0∈T0
Cω0(T0)|||u|||2.

This concludes the proof.

Proposition 5.19. Let v1L ∈ X 1
L. Then, there exists functions v

1
0 ∈ X 1

0 and {v1`,z}z∈V+
`
∈ X 1

`,z

for ` = 1, . . . , L such that

v1L = v10 +
LX

`=1

X
z∈V+

`

v1`,z. (5.28)

Furthermore, it holds that

|||v10|||2 +
LX

`=1

X
z∈V+

`

|||v1`,z|||2 ≤ eCMLC
(2)
loc |||v1L|||2, (5.29)

where the constant C
(2)
loc > 0 is defined in (5.6) and the constant eCML > 0 depends only on

the initial mesh T0, the space dimension d, and γ-shape regularity (2.15).

Remark 5.20. Compared to the decomposition in Lemma 4.4 the component v10 for the
initial mesh is global now. This eliminates the dependency on diam(Ω)/h0.

Proof of Proposition 5.19. We use the same decomposition as in the proof of Lemma 4.4.
With v10 := Π0v

1
L it follows that

v1L =

LX
`=0

(Π` −Π`−1)v
1
L = v10 +

LX
`=1

X
z∈V+

`

v1`,z.

We want to show that this decomposition is stable.
Step 1 (` = 0): First, we show stability of v10. For this we use the local stability of Π0

in the H1-seminorm as shown in [WZ17, Lemma 3.4]. With the norm equivalence (2.6) it
follows that

|||v10|||2 =
X
T∈T0

|||v10|||2T ≤
X
T∈T0

sup
y∈T

λmax(K(y))k∇v10k2T
[WZ17]

.
X
T∈T0

sup
y∈T

λmax(K(y))k∇v1Lk2ω0(T )

≤
X
T∈T0

supy∈T λmax(K(y))

infy∈ω0(T ) λmin(K(y))
|||v1L|||2ω0(T ) ≤ C

(2)
loc

X
T∈T0

|||v1L|||2ω0(T ).

Using finite patch overlap, we obtain the desired estimate

|||v10|||2 . C
(2)
loc |||v1L|||2.
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Step 2 (L2-projections estimates): It is left to estimate the sum in (5.28). The norm
equivalence (2.6) leads to

LX
`=1

X
z∈V+

`

|||v1`,z|||2ω`(z)
≤

LX
`=1

X
z∈V+

`

sup
y∈ω`(z)

λmax(K(y))k∇v1`,zk2ω`(z)
.

Analogously to Lemma 4.4, the inverse inequality (4.17), and the estimate (4.16) establish

LX
`=1

X
z∈V+

`

|||v1`,z|||2ω`(z)
.

LX
`=1

X
z∈V+

`

sup
y∈ω`(z)

λmax(K(y))h−2
`,z k(Π` −Π`−1)v

1
Lk2ω`(z)

.

For ` ∈ {1, . . . , L} and z ∈ V+
` , Lemma 5.6 yields a vertex z0 = z0[z] ∈ V`−1 such that

ω2
` (z) ⊆ ω2

`−1(z
0). Let bQm,K := bQ0,K for m < 0. Then, Lemma 5.7 implies

bQg`,z−C1,Kv1L ∈ bX 1er`−1,z0

and hence that ( bQg`,z−C1,Kv1L)|T is linear for every T ∈ T 2
`−1(z

0) and hence also for every
T ∈ T 2

` (z). Thus, we have

( bQg`,z−C1,Kv1L)|ω`(z) = (Π`
bQg`,z−C1,Kv1L)|ω`(z) = (Π`−1

bQg`,z−C1,Kv1L)|ω`(z). (5.30)

With Lemma 5.11 we can estimate the local L2-norms for ` ∈ {1, . . . , L}

k(Π` −Π`−1)v
1
Lk2ω`(z)

(5.30)
= kΠ`(v

1
L − bQg`,z−C1,Kv1L)−Π`−1(v

1
L − bQg`,z−C1,Kv1L)k2ω`(z)

. kΠ`(v
1
L − bQg`,z−C1,Kv1L)k2ω`(z)

+ kΠ`−1(v
1
L − bQg`,z−C1,Kv1L)k2ω`(z)

(5.12)

. kv1L − bQg`,z−C1,Kv1Lk2ω2
` (z)

+ kv1L − bQg`,z−C1,Kv1Lk2ω2
`−1(z

0)

. kv1L − bQg`,z−C1,Kv1Lk2ω2
`−1(z

0).

Step 3 (Weighted estimates): Let ` ∈ {1, . . . , L}, T ∈ T`, and T0 ∈ T0 be the unique
ancestor of T . For a more concise notation, we define

kT := inf
y∈ω0(T0)

λmin(K(y)).

We use this to obtain

LX
`=1

X
z∈V+

`

|||v1`,z|||2 .
LX

`=1

X
z∈V+

`

sup
y∈ω`(z)

λmax(K(y)) h−2
`,z

X
T∈T 2

`−1(z
0[z])

kv1L − bQg`,z−C1,Kv1Lk2T

≤
LX

`=1

X
z∈V+

`

supy∈ω`(z)
λmax(K(y))

infT∈T 2
`−1(z

0[z]) kT
h−2
`,z

X
T∈T 2

`−1(z
0[z])

kT kv1L − bQg`,z−C1,Kv1Lk2T .
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From Lemma 5.3, we know that there exists a vertex z0 = z0[z] ∈ V0 with ω`−1(z
0[z]) ⊆

ω0(z0[z]). Thus, it also holds that ω2
` (z) ⊆ ω2

`−1(z
0[z]) ⊆ ω2

0(z0[z]). This implies

inf
T∈T 2

`−1(z
0[z])

kT = inf
T∈T 2

`−1(z
0[z])

inf
y∈ω0(T0)

λmin(K(y)) ≥ inf
T0∈T 2

0 (z0[z])
inf

y∈ω0(T0)
λmin(K(y))

= inf
y∈ω3

0(z0[z])
λmin(K(y))

and supy∈ω`(z)
λmax(K(y)) ≤ supy∈ω3

0(z0[z])
λmax(K(y)). Therefore, we have shown that

LX
`=1

X
z∈V+

`

|||v1`,z|||2 . C
(2)
loc

LX
`=1

X
z∈V+

`

h−2
`,z

X
T∈T 2

`−1(z
0[z])

kT kv1L − bQg`,z−C1,Kv1Lk2T (5.31)

Step 4 (Level-generation estimates): We want to change from a patch of level `− 1
to a patch of the generation g`,z. Recall that there exists an index k ∈ N such that

ω2
`−1(z

0) ⊆ bωk
g`,z

(z). We distinguish two cases: First, we assume that T1, . . . , Tj ∈ bT k
g`,z

(z)

with T =
Sj

i=1 Ti and T ∈ T 2
`−1(z

0). Then, the ancestor T0 ∈ T0 of T is also the ancestor of
T1, . . . , Tj and we can rewrite

kT kv1L − bQg`,z−C1,Kv1Lk2T =

jX
i=1

kTikv1L − bQg`,z−C1,Kv1Lk2Ti
.

Second, we assume that T1, . . . , Tj ∈ T 2
`−1(z

0) with T =
Sj

i=1 Ti and T ∈ bT k
g`,z

(z). This
implies that all T1, . . . , Tj and T have the same ancestor T0 ∈ T0. Hence, it holds that

jX
i=1

kTikv1L − bQg`,z−C1,Kv1Lk2Ti
= kT kv1L − bQg`,z−C1,Kv1Lk2T .

Using these observations we obtainX
T∈T 2

`−1(z
0[z])

kT kv1L − bQg`,z−C1,Kv1Lk2T ≤
X

T∈bT k
g`,z

(z)

kT kv1L − bQg`,z−C1,Kv1Lk2T . (5.32)

Step 5 (Sum over generations estimates): With (5.32), we can estimate the right-
hand side of (5.31). Afterwards, we rewrite the expression by introducing a sum over the
generations

LX
`=1

X
z∈V+

`

h−2
`,z

X
T∈bT k

g`,z
(z)

kT kv1L − bQg`,z−C1,Kv1Lk2T

'
∞X

m=0

bh−2
m

LX
`=1

X
z∈V+

`
g`,z=m

X
T∈bT k

m(z)

kT kv1L − bQm−C1,Kv1Lk2T

(4.34)
=

∞X
m=0

bh−2
m

X
z∈bVm

X
`∈L

(1)
1,L(z,m)

X
T∈bT k

m(z)

kT kv1L − bQm−C1,Kv1Lk2T .
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5 Improved analysis of multigrid contraction: local dependence on the diffusion coefficient

From (4.32) we know that the set L
(1)
1,L(z,m) is uniformly bounded. Thus, we obtain

LX
`=1

X
z∈V+

`

h−2
`,z

X
T∈bT k

g`,z
(z)

kT kv1L − bQg`,z−C1,Kv1Lk2T

.
∞X

m=0

bh−2
m

X
z∈bVm

X
T∈bT k

m(z)

kT kv1L − bQm−C1,Kv1Lk2T

'
∞X

m=0

bh−2
m

X
T∈T0

kT kv1L − bQm−C1,Kv1Lk2T .

(5.33)

Step 6 (Stability of the decomposition): We combine (5.31) and (5.33) to derive

LX
`=1

X
z∈V+

`

|||v1`,z|||2ω`(z)
. C

(2)
loc

∞X
m=0

bh−2
m

X
T∈T0

kT kv1L − bQm−C1,Kv1Lk2T

= C
(2)
loc

∞X
m=0

bh−2
m kv1L − bQm−C1,Kv1Lk2K.

Furthermore, analogously to (5.14) we get for M = maxz∈VL
gL,z

∞X
m=0

bh−2
m kv1L − bQm−C1,Kv1Lk2K ≤

⇣
(1− 4−1/d)−1 + 4C1/d

⌘ MX
m=0

bh−2
m kv1L − bQm,Kv1Lk2K.

Finally, we can use Proposition 5.18 and Step 1 to obtain the desired result

|||v0|||2 +
LX

`=1

X
z∈V+

`

|||v1`,z|||2 . C
(2)
loc

⇣
|||v1L|||2 +

MX
m=0

bh−2
m |||v1L − bQm,Kv1L|||2K

⌘ (5.23)

. C
(2)
loc |||v1L|||2

This concludes the proof.

Remark 5.21 (Alternative constant of stability). It is possible to obtain the following
estimate

LX
`=1

X
z∈V+

`

|||v1`,z|||2 .
 
sup
z∈V0

supy∈ω2
0(z)

λmax(K(y))

infy∈ω2
0(z)

λmin(K(y))

!2

|||v1L|||2,

where the hidden constant depends only on the initial mesh T0, the space dimension d, and
the γ-shape regularity (2.15). Note that, in this case, the local diffusion-contrast appears on
the smaller patch ω2

0(z) but with a power of two. Depending on the diffusion coefficient this
estimate could be more useful than the estimate (5.29) in Proposition 5.19.

Remark 5.22 (Choice of initial mesh). In order to exploit the local constant C
(2)
loc , the

initial mesh T0 should be chosen such that the patches ω3
0(z) for all z ∈ V0 only lie across at

most two regions, where the diffusion is changing rapidly.
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5 Improved analysis of multigrid contraction: local dependence on the diffusion coefficient

5.4 Extension to p-robustness for d = 2

The goal of this section is to construct a p-robust one-level decomposition that is stable in
the energy norm with a constant that depends only locally on the contrast of the diffusion
coefficient. To this end, we will use the decomposition from [SMP+08]. Since most of the
estimates in [SMP+08] are already local, we only need to change the norm in the proofs
of [SMP+08]. However, we first define the edge patch.

Definition 5.23. Let ` ∈ N, z1, z2 ∈ V`, and E = conv{z1, z2}. Then, we define the edge
patch by

ω`(E) := ω`(z1) ∪ ω`(z2).

Lemma 5.24. Let d = 2 and vL ∈ X p
L. Then, there exists functions v1L ∈ X 1

L and
{vpL,z}z∈VL

∈ X p
L,z such that

vL = v1L +
X
z∈VL

vpL,z with v1L ∈ X 1
L and vpL,z ∈ X p

L,z for all z ∈ VL. (5.34)

Moreover, the decomposition is stable in the sense of

|||v1L|||2 +
X
z∈VL

|||vpL,z|||2 ≤ eCOLC
(2)
loc |||vL|||2, (5.35)

where C
(2)
loc > 0 is defined in (5.6) and the constant eCOL > 0 depends only on the space

dimension d and the γ-shape regularity (2.15).

Proof. Step 1 (Lowest-order component): For the construction of the decomposition,
the lowest-order Scott–Zhang projection PL : L2(Ω) → X 1

L is utilized. We will use the
following properties: Let T ∈ TL and v ∈ H1

0 (Ω). Then, it holds that

k∇PLvkT . k∇vkωL(T ) (5.36)

and
kv − PLvkT . hT k∇vkωL(T ) (5.37)

where the hidden constants depend only on γ-shape regularity. Let us define v1L := PLvL and

hence vL = v1L + v1 for some v1 = (1−PL)vL ∈ X p
L. First, we show that |||v1L|||2 . C

(2)
loc |||vL|||2.

The norm equivalence (2.6) and the local H1-stability of the Scott–Zhang projection (5.36)
prove

|||v1L|||2 .
X
z∈VL

|||PLvL|||2ωL(z)

(2.6)

≤
X
z∈VL

sup
y∈ωL(z)

λmax(K(y))k∇PLvLk2ωL(z)

(5.36)

.
X
z∈VL

sup
y∈ωL(z)

λmax(K(y))k∇vLk2ω2
L(z)

(2.6)

≤
X
z∈VL

supy∈ωL(z) λmax(K(y))

infy∈ω2
L(z)

λmin(K(y))
|||vL|||2ω2

L(z)
.

From Lemma 5.3 we know there exists a vertex z0 ∈ V0 such that ωL(z) ⊆ ω0(z0). Using
finite patch overlap, we obtain

|||v1L|||2 . C
(2)
loc |||vL|||2.
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5 Improved analysis of multigrid contraction: local dependence on the diffusion coefficient

Step 2 (Vertex contributions): We denote by Πz
0 the averaging operator introduced

in [SMP+08] corresponding to an interior vertex z ∈ VΩ
L := VL∩Ω. In [SMP+08, Lemma 3.2]

it is shown that Πz
0v ∈ X p

L,z for any v ∈ X p
L. Furthermore, the proof of [SMP+08, Theo-

rem 3.4] contains the local estimate

k∇Πz
0vk2 = k∇Πz

0vkωL(z) . k∇vk2ωL(z)
+ h−2

L,zkvk2ωL(z)
for all v ∈ X p

L, (5.38)

where the hidden constant depends only on γ-shape regularity. We further decompose v1
using these averaging operators such that

v1 = (1− PL)vL =
X
z∈VΩ

L

Πz
0v1 + v2

for some v2 ∈ X p
L. Recall that v1 = vL − PLvL. Applying the norm estimate (2.6) and the

local H1-stability and first-order approximation property of PL leads to

|||Πz
0v1|||2 = |||Πz

0v1|||2ωL(z)

(2.6)

≤ sup
y∈ωL(z)

λmax(K(y))k∇Πz
0v1k2

(5.38)

. sup
y∈ωL(z)

λmax(K(y))
�k∇v1k2ωL(z)

+ h−2
L,zkv1k2ωL(z)

�
(5.36)
(5.37)

. sup
y∈ωL(z)

λmax(K(y))k∇vLk2ω2
L(z)

(2.6)

≤ supy∈ωL(z) λmax(K(y))

infy∈ω2
L(z)

λmin(K(y))
k∇vLk2ω2

L(z)
.

Summing over the vertices yieldsX
z∈VΩ

L

|||Πz
0v1|||2 . C

(2)
loc |||vL|||2.

Step 3 (Edge contributions): Let us define the set of interior edges

EΩ
L := {E ∈ E : E = conv{z1, z2} and z1 ∈ VΩ

L or z2 ∈ VΩ
L }.

In [SMP+08, eq.8] following prior work of [BCM+91], averaging operators ΠE
0 corresponding

to edges E ∈ EL,in are defined. More precisely, we have

ΠE
0 : X p

L,0 := {v ∈ X p
L : v(z) = 0 for all z ∈ VL} → H1

0 (ωL(E)) ∩ X p
L.

For v ∈ X p
L,0 and ω ⊆ Ω, we can define the following norm

kvk2r,ω := k∇vk2ω + kr−1
VL

vk2ω, (5.39)

where rVL
(x) := minz∈VL

|x − z|. Then, the averaging operators are stable [SMP+08,
Lemma 3.6] in the following sense

k∇ΠE
0 vkωL(E) . kvkr,ωL(E) for all v ∈ X p

L,0, (5.40)
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5 Improved analysis of multigrid contraction: local dependence on the diffusion coefficient

where the hidden constant depends only on γ-shape regularity. We denote by ϕL,z the hat
function at vertex z on level L. The goal is further to decompose the function v2 from
the previous step. In [SMP+08], it is established that v2 ∈ X p

L,0. Hence, we can apply the

operators ΠE
0 and obtain

v2 =
X
E∈EΩ

L

ΠE
0 v2 + v3 (5.41)

for some v3 ∈ X p
L. From the norm equivalence (2.6) and the stability (5.40) it follows that

|||ΠE
0 v2|||2ωL(E)

(2.6)

≤ sup
y∈ωL(E)

λmax(K(y))k∇ΠE
0 v2k2ωL(E)

(5.40)

. sup
y∈ωL(E)

λmax(K(y))kv2k2r,ωL(E).

(5.42)

By definition we have v2 = v1 −
P

z∈VΩ
L
Πz

0v1. Utilizing the partition of unity provided by

the hat functions and considering their local support, we are led to

kv2k2r,ωL(E) =
###v1 − X

z∈VΩ
L

Πz
0v1

###2
r,ωL(E)

=
### X
z∈VL∩∂Ω

ϕL,zv1 +
X
z∈VΩ

L

�
ϕL,zv1 −Πz

0v1
�###2

r,ωL(E)

.
X

z∈VL∩∂Ω
kϕL,zv1k2r,ωL(E) +

X
z∈VΩ

L

kϕL,zv1 −Πz
0v1k2r,ωL(E)

≤
X

z∈ωL(E)∩VL∩∂Ω
kϕL,zv1k2r,ωL(z)

+
X

z∈ωL(E)∩VΩ
L

kϕL,zv1 −Πz
0v1k2r,ωL(z)

.

In [SMP+08, Theorem 3.4], it is shown that

kϕL,zv1k2r,ωL(z)
. k∇v1k2ωL(z)

for all z ∈ VL ∩ ∂Ω, (5.43)

where the hidden constant depends only on γ-shape regularity. Moreover, from [SMP+08,
Lemma 3.3], we have

kϕL,zv1 −Πz
0v1k2r,ωL(z)

. k∇v1k2ωL(z)
for all z ∈ VL,in, (5.44)

where the hidden constant depends only on γ-shape regularity. The estimates (5.43)
and (5.44) provide

kv2k2r,ωL(E) .
X

z∈ωL(E)∩VL

k∇v1k2ωL(z)
.

Let zE be one of the two vertices of E. The H1-stability (5.36) of the Scott-Zhang projection
for v1 = (1− PL)vL and the finite patch overlap imply

kv2k2r,ωL(E) .
X

z∈ωL(E)∩VL

k∇v1k2ωL(z)

(5.36)

.
X

z∈ωL(E)∩VL

k∇vLk2ω2
L(z)

. k∇vLk2ω3
L(zE). (5.45)
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Together with (5.42), we obtain

|||ΠE
0 v2|||2ωL(E)

(5.42)

. sup
y∈ωL(E)

λmax(K(y))k∇vLk2ω3
L(zE)

(2.6)

≤ supy∈ωL(E) λmax(K(y))

infy∈ω3
L(zE) λmin(K(y)

|||vL|||2ω3
L(zE)

and hence also X
E∈EΩ

L

|||ΠE
0 v2|||2 . C

(2)
loc |||vL|||2.

Step 4 (Element contributions): Due to the construction (5.41), it holds that v3 ∈ X p
L

and v3 = 0 on
S

E∈EL,in
E, see [SMP+08, Theorem 3.7]. Thus, we can define the element

contributions

v3,T (x) :=

(
v3(x) x ∈ T,

0 x ∈ Ω\T
for all T ∈ TL and it holds that v3,T ∈ X p

L. The definition (5.39), the stability of ΠE
0 (5.40),

and the estimate (5.45) lead to

|||v3,T |||2T
(5.41)
=

$$$$$$$$$v2 − X
E∈EΩ

L

ΠE
0 v2

$$$$$$$$$2
T

(2.6)

≤ sup
y∈T

λmax(K(y))
###∇�v2 − X

E∈EΩ
L

ΠE
0 v2
�###2

T

. sup
y∈T

λmax(K(y))
⇣
k∇v2k2T +

X
E∈EΩ

L
E⊆T

k∇ΠE
0 v2k2T

⌘
(5.39)
(5.40)

. sup
y∈T

λmax(K(y))
⇣ X
E∈EΩ

L
E⊆T

kv2k2r,ωL(E)

⌘
(5.45)

. sup
y∈T

λmax(K(y))
⇣ X
E∈EΩ

L
E⊆T

k∇vLk2ω3
L(zE)

⌘
.

Introducing the sum over the elements and using the norm equivalence (2.6) gives usX
T∈TL

|||v3,T |||2T .
X
T∈TL

X
E∈EΩ

L
E⊆T

sup
y∈T

λmax(K(y))k∇vLk2ω3
L(zE)

(2.6)

≤ C
(2)
loc

X
T∈TL

X
E∈EΩ

L
E⊆T

|||vL|||2ω3
L(zE) . C

(2)
loc |||vL|||2.

Step 5: Combining all the previous steps results in

vL = v1L +
X
zVΩ

L

Πz
0v1 +

X
E∈EΩ

L

ΠE
0 v2 +

X
T∈TL

v3,T
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and
|||v1L|||2 +

X
zVΩ

L

|||Πz
0v1|||2 +

X
E∈EΩ

L

|||ΠE
0 v2|||2 +

X
T∈TL

|||v3,T |||2 . C
(2)
loc |||vL|||2.

We can assign edge and element components to a vertex such that their support is contained
in the vertex patch. This concludes the proof.

Remark 5.25. For d = 3, a construction of a p-robust one-level decomposition that is stable
in the H1-seminorm is presented in [SMP+08]. However, this construction is more intricate
than the one in Lemma 5.24, as it also requires considering the faces of the simplices.
Further investigation is needed to extend the result to the energy norm, with a stability
constant that depends only on the local diffusion-contrast.

5.5 hp-robust decomposition for d = 2

In this section, we combine the results from Section 5.3 and Section 5.4 to obtain a hp-robust
decomposition in 2D, where the constant depends only on local variations of the diffusion
coefficient.

Lemma 5.26. For any vL ∈ X p
L, there exist functions v0 ∈ X 1

0 , {v`,z}z∈V+
`

∈ X 1
`,z, and

{vL,z}z∈VL
∈ X p

L,z such that

vL = v0 +
L−1X
`=1

X
z∈V+

`

v`,z +
X
z∈VL

vL,z. (5.46)

Furthermore, there holds the estimate

|||v0|||2 +
L−1X
`=1

X
z∈V+

`

|||v`,z|||2 +
X
z∈VL

|||vL,z|||2 ≤ eCSD(C
(2)
loc )

2|||vL|||2, (5.47)

where C
(2)
loc > 0 is defined in (5.6) and eCSD > 0 depends only on the initial mesh T0 and

γ-shape regularity (2.15).

Proof. Let vL ∈ X p
L. From Lemma 5.24, we obtain a decomposition on the finest level L.

Applying Proposition 5.19 to the lowest-order contribution v1L from (5.34), we are led to

vL
(5.34)
= v1L +

X
z∈VL

vpL,z
(5.28)
= v10 +

LX
`=1

X
z∈V+

L

v1`,z +
X
z∈VL

vpL,z

= v10 +

L−1X
`=1

X
z∈V+

`

v1`,z +
X
z∈V+

L

v1L,z +
X
z∈VL

vpL,z.

Defining the contributions v0 := v10, v`,z := v1`,z ∈ X 1
`,z for z ∈ V+

` and ` = 1, . . . , L − 1,

and vL,z := v1L,z + vpL,z ∈ X p
L,z for z ∈ V+

L and vL,z := vpL,z ∈ X p
L,z for z ∈ VL\V+

L gives the
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desired decomposition (5.46). Next, we show the estimate (5.47). On the finest level, the
Young inequality gives usX

z∈VL

|||vL,z|||2 ≤
X

z∈VL\V+
L

|||vpL,z|||2 + 2
X
z∈V+

L

⇣
|||v1L,z|||2 + |||vpL,z|||2

⌘
≤ 2
⇣X
z∈V+

L

|||v1L,z|||2 +
X
z∈VL

|||vpL,z|||2
⌘
.

With the estimate (5.29), stability (5.35), and C
(2)
loc ≥ 1, we therefore have

|||v0|||2 +
L−1X
`=1

X
z∈V+

`

|||v`,z|||2 +
X
z∈VL

|||vL,z|||2

≤ 2
⇣
|||v10|||2 +

L−1X
`=1

X
z∈V+

`

|||v1L,z|||2 +
X
z∈V+

L

|||v1L,z|||2 +
X
z∈VL

|||vpL,z|||2
⌘

= 2
⇣
|||v10|||2 +

LX
`=1

X
z∈V+

`

|||v1`,z|||2 +
X
z∈VL

|||vpL,z|||2
⌘

(5.29)

. C
(2)
loc |||v1L|||2 +

X
z∈VL

|||vpL,z|||2
(5.35)

. (C
(2)
loc )

2|||vL|||2.

This concludes the proof.

5.6 Proof of Theorem 5.1

We can use the improved results from this chapter to prove Theorem 5.1.

Proof of Theorem 5.1. We note that the properties (5.1) and (5.4) follow immediately from
Theorem 4.13 as well as the equivalence of reliability of the estimator (5.2) and contraction
of the solver (5.3). Lastly, the proof of reliability of the estimator ζL follows with the same
arguments as in the proof of Theorem 4.13. However, let us summarize the main arguments
for the case d = 2 and p ∈ N in order to highlight the improved constant. Decomposing the
algebraic error u∗L − uL ∈ X p

L with Lemma 5.26 yields functions v0 ∈ X 1
0 , {v`,z}z∈V+

`
∈ X 1

`,z

and {vL,z}z∈VL
∈ X p

L,z such that

u∗L − uL = v0 +

L−1X
`=1

X
z∈V+

`

v`,z +
X
z∈VL

vL,z and

|||v0|||2 +
L−1X
`=1

X
z∈V+

`

|||v`,z|||2 +
X
z∈VL

|||vL,z|||2 ≤ eCSD(C
(2)
loc )

2|||u∗L − uL|||2.
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Note that this improves (4.49) by the use of the local diffusion-contrast constant C
(2)
loc . The

above decomposition and the solver construction is then used to obtain

|||u∗L − uL|||2 =
DD
ρ0, v0 +

L−1X
`=1

X
z∈V+

`

v`,z +
X
z∈VL

vL,z

EE
+

L−1X
`=1

X
z∈V+

`

hhρ`,z, v`,zii

+
X
z∈VL

hhρL,z, vL,zii+
L−1X
`=1

`−1X
k=1

DD
λkρk,

X
z∈V+

`

v`,z

EE
+

L−1X
k=1

DD
λkρk,

X
z∈VL

vL,z

EE
.

As in Theorem 4.13, we use the Young inequality (4.51) to estimate the five terms consti-
tuting the algebraic error. Next, the strengthened Cauchy–Schwarz inequality with a local
diffusion-contrast dependence from Proposition 5.9 is used instead of the estimate from
Proposition 4.12. Rearranging the terms, this leads to

|||u∗L − uL|||2 ≤ 1

2
|||ρ0|||2 + 1

2
|||u∗L − uL|||2 + 1

4
( eCrel)

2
⇣L−1X
`=1

λ`

X
z∈V+

`

|||ρ`,z|||2 + λL

X
z∈VL

|||ρL,z|||2
⌘

+
1

4 eCSD(C
(2)
loc )

2

⇣L−1X
`=1

X
z∈V+

`

|||v`,z|||2 +
X
z∈VL

|||vL,z|||2
⌘
,

where the constant eCrel is defined in (5.7). Finally, the stability of the decomposition and
the definition of the estimator ζL(uL) give

|||u∗L − uL|||2 ≤ 3

4
|||u∗L − uL|||2 + 1

4
( eCrel)

2
⇣
|||ρ0|||2 +

L−1X
`=1

λ`

X
z∈V+

`

|||ρ`,z|||2 + λL

X
z∈VL

|||ρL,z|||2
⌘

=
3

4
|||u∗L − uL|||+ 1

4
( eCrel)

2ζL(uL)
2

and hence
|||u∗L − uL|||2 ≤ ( eCrel)

2ζL(uL)
2.

The proof for d = 3 and p = 1 is analogous (while d = 3 and p > 1 remains open; see
Remark 5.25). This concludes the proof.
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6 Multigrid as inexact solver for AFEM

The multigrid solver of Algorithm 3.7 can be used as an iterative solver in the module
SOLVE of the adaptive finite element method presented in Algorithm 2.11. Moreover, this
application fits into the framework of [GHP+21], which will allow us to prove optimal
complexity of the resulting adaptive algorithm.

6.1 AFEM with multigrid solver

In this section, we first introduce the algorithm for AFEM employing the multigrid solver
of Algorithm 3.7. Afterwards, the computational cost of the algorithm is discussed. We
will use the residual error estimator ηL from Section 2.4.2 in the stopping criterion of the
algebraic solver. Therefore, the modules SOLVE and ESTIMATE from Algorithm 2.11 are
combined in the following algorithm.

Algorithm 6.1 (AFEM with multigrid solver). Input: Initial mesh T0, polynomial degree
p ∈ N, adaptivity parameters 0 < θ ≤ 1, Cmark ≥ 1, and µ > 0, as well as the initial guess
u00 := 0.
Adaptive loop: Iterate the following steps (I)–(III) for all L = 0, 1, 2, . . . :

(I) SOLVE & ESTIMATE: For all k = 1, 2, 3, . . . repeat (i)–(ii):

(i) Do one step of the multigrid solver starting from uk−1
L ∈ X p

L to obtain the improved

approximation ukL = ΦL(u
k−1
L ) ∈ X p

L and the associated a-posteriori estimator

ζL(u
k−1
L ) of the algebraic error, i.e.,

{ukL, ζL(uk−1
L )} := SOLVE(uk−1

L , {T`}L`=0, p).

(ii) Compute local contributions ηL(T, u
k
L) of the residual error estimator for all

T ∈ TL and define

ηL(u
k
L) :=

⇣X
T∈TL

ηL(T, u
k
L)
⌘1/2

.

until
ζL(u

k−1
L ) ≤ µηL(u

k
L). (6.1)

Upon termination of the k-loop, define the index k[L] := k ∈ N and u
k
L := ukL.

(II) MARK: Employ Dörfler marking to determine a set ML ∈ M(TL, θ, ukL) := {UL ⊂ TL |
θηL(u

k
L)

2 ≤ ηL(UL, u
k
L)

2} that fulfills

#ML ≤ Cmark min
UL∈M[TL,θ,uk

L]

#UL.
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6 Multigrid as inexact solver for AFEM

(III) REFINE: Generate the new mesh TL+1 := REFINE(TL,ML) and use nested iteration

u0L+1 := u
k
L.

Output: Sequence of successively refined simplicial triangulations TL, discrete approxima-
tions u

k
L, and error estimators ηL(u

k
L) and ζL(u

k−1
L ).

Note that we omit the mesh level L in the notation k[L] if the dependency is clear from the

context, e.g., u
k
L = u

k[L]
L as defined in Algorithm 6.1. Moreover, we define the stopping index

for the outer loop of Algorithm 6.1 by L := sup{L ∈ N0 : u
0
L is defined in Algorithm 6.1}

with the typical case being L = ∞. Let us make some remarks concerning nested iterations
and the stopping criterion (6.1).

Remark 6.2 (Nested iterations). We use the last iteration u
k
L as the initial guess on the

newly-refined mesh TL+1. This ensures optimal computational cost of the algorithm. We can
also look at this from the algebraic solver perspective. Recalling the full multigrid algorithm
from Section 3.1.2, we see that Algorithm 6.1 is just a full multigrid method over the evolving
hierarchy of meshes. Moreover, the number of V-cycles on a mesh is determined by the
adaptive stopping criterion. Hence, the choice of the parameter α0 in Algorithm 3.3 is
inherently taken care of.

Remark 6.3. The core idea of Algorithm 6.1 is to balance different error components using
a-posteriori analysis; see, e.g., [EV13]. We have shown |||u∗L − ukL||| ≤ qctr C

0
rel ζL(u

k−1
L ) in

Theorem 4.13. Hence, the k-loop is stopped in (6.1) once the algebraic error is controlled by
the estimator ηL(u

k
L) associated to the discretization error |||u∗−u∗L|||, i.e., |||u∗L−ukL||| . ηL(u

k
L).

Thus, the termination criterion balances the algebraic and discretization error. Meaning,
that once the algebra is sufficiently resolved compared to the discretization, the solver is
stopped, and the next step in Algorithm 6.1 is the mesh refinement.

Lemma 6.4 (A-posteriori control of the overall error). Let L ∈ N0 and k = k[L] be the
termination index of the iterative solver in Algorithm 6.1. Then, it holds that

|||u∗ − u
k
L||| . ηL(u

k
L).

Proof. Due to reliability (A3) and stability (A1) of the residual error estimator ηL, the
discretization error satisfies

|||u∗ − u∗L|||
(A3)

. ηL(u
∗
L)

(A1)

. ηL(u
k
L) + |||u∗L − ukL|||. (6.2)

From Remark 6.3 we know that the stopping criterion (6.1) yields |||u∗L − u
k
L||| . ηL(u

k
L) and

therefore |||u∗ − u∗L||| . ηL(u
k
L). This concludes the proof.

Next, we compare the given stopping criterion (6.1) to the one employed in [GHP+21]
and [BFM+24]. Therein a contractive solver with iteration operator ΨL : X p

L → X p
L

guaranteeing |||u∗L − ΨL(uL)||| ≤ qctr |||u∗L − uL||| for all uL ∈ X p
L and an X p

L-independent
constant 0 < qctr < 1 is used. Moreover, the iterative solver is terminated within AFEM if

|||ukL − uk−1
L ||| ≤ ν ηL(u

k
L), (6.3)
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6 Multigrid as inexact solver for AFEM

where ν > 0 is a given adaptivity parameter. From now on, we will always denote by ν > 0
the parameter used in the termination criterion (6.3). Compared to (6.1) in Algorithm 6.1,
not all solvers have a built-in algebraic error estimator, hence, the computable quantity
|||ukL − uk−1

L ||| is utilized instead. Indeed, the triangle inequality and contraction lead to

|||u∗L − uk−1
L ||| ≤ |||u∗L − ukL|||+ |||ukL − uk−1

L ||| ≤ qctr |||u∗L − uk−1
L |||+ |||ukL − uk−1

L |||

and hence
|||u∗L − ukL||| ≤ qctr |||u∗L − uk−1

L ||| ≤ qctr
1− qctr

|||ukL − uk−1
L |||. (6.4)

Thus, the expression |||ukL − uk−1
L ||| is indeed an a-posteriori estimator of the algebraic error.

This means that the two criteria (6.1) and (6.3) differ only in the choice of the a-posteriori
estimator. Moreover, the observations from Remark 6.3 and Lemma 6.4 can also be applied
to the criterion (6.3). In summary, the solver in Algorithm 6.1 is stopped once |||u∗L − ukL||| ≤
qctrC

0
rel µ ηL(u

k
L), while the criterion (6.3) leads to |||u∗L − ukL||| ≤ (1 − qctr)

−1qctr ν ηL(u
k
L).

Hence, the two criteria are formally equivalent up to a constant.
Now, that AFEM incorporates MG as a solver in Algorithm 6.1, we want to discuss the

notion of computational cost. For this purpose, we define the countably infinite set

Q := {(L, k) ∈ N2
0 : u

k
L is defined in Algorithm 6.1}

The set Q can be equipped with the natural order

(L0, k0) ≤ (L, k) :⇐⇒ uk
0

L0 is computed earlier than or equal to ukL in Algorithm 6.1.

Furthermore, we define the total step counter by

|L, k| := #{(L0, k0) ∈ Q : (L0, k0) ≤ (L, k)} ∈ N0 for all (L, k) ∈ Q.

In order to discuss the computational cost of Algorithm 6.1, we first consider the cost of
steps (I)–(III) separately:

• SOLVE & ESTIMATE: The calculations of the error indicators ηL(T, u
k
L) for all T ∈ TL

can be performed in O(#TL) operations as these consist of element-wise operations.
Moreover, Remark 3.10 classifies that one solver step can be realized in linear com-
plexity O(#TL).

• MARK: We recall that the Dörfler marking can be implemented with linear cost O(#TL).
This was shown in [Ste07] for Cmark = 2 and in [PP20] for Cmark = 1.

• REFINE: Newest vertex bisection can be realized inO(#TL) operations; see, e.g., [BDD04;
Ste07].

Due to the cumulative structure of Algorithm 6.1 the total computational cost to compute
ukL is therefore proportional to

cost(L, k) :=
X

(L0,k0)∈Q
|L0,k0|≤|L,k|

#TL0 . (6.5)
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6 Multigrid as inexact solver for AFEM

Indeed, to reach a given step (L, k) of the Algorithm, one needs to consider all costs from
the coarse mesh and subsequently add costs taking place at each refined mesh prior to
reaching the given level L and iteration step k. For a fixed polynomial degree p, it also
holds that dimX p

L ' #TL, where the constants depend only on p and d. Thus, convergence
rates with respect to the degrees of freedom and with respect to the number of elements
are equivalent. In the next section, we go into more detail regarding convergence rates and
optimal complexity.

6.2 Optimal complexity of AFEM with multigrid solver

Let us first introduce the notion of optimal convergence rates. To this end, we define
nonlinear approximation classes following [BDD04; CKN+08]. The set of triangulations
with at most N additional elements compared to the initial mesh T0 is given by TN (T0) :=
{TH ∈ T(T0) : #TH −#T0 ≤ N}. For any rate s > 0, define the approximation class As as

ku∗kAs := sup
N∈N0

�
(N + 1)s min

Topt∈TN (T0)
ηopt(u

∗
opt)
�
.

The minimum ensures that we take some optimal triangulation in the set TN (T0) where the
error estimator is smallest. If ku∗kAs < ∞, then the error decreases with rate −s along the
sequence of unknown optimal meshes with respect to the additional number N of simplices.
Thus, s > 0 is an attainable convergence rate. However, up to this point, we have not
discussed whether any algorithm can actually achieve these rates.

Definition 6.5. We say that an adaptive algorithm is rate-optimal if the generated sequence
of successively refined triangulations {T`}`∈N0 satisfies

∀s > 0 :
�ku∗kAs < ∞ =⇒ sup

`∈N0

(#T`)sη`(u∗` ) < ∞�,
i.e., the adaptive algorithm attains indeed all possible rates.

Indeed, the standard adaptive Algorithm 2.11 is rate-optimal for sufficiently small 0 < θ ⌧
1; see, e.g., [CFP+14]. Note that rate-optimality refers to the quality of the approximation
per invested degree of freedom, without providing information on computational costs
invested in calculating the said approximation. Since the module SOLVE in Algorithm 2.11
is generally not of linear complexity O(#T`), we instead examine Algorithm 6.1 regarding
its optimal complexity, i.e., optimality with respect to the overall computational cost. In
the spirit of [BFM+24] this leads to the introduction of the following quasi-error

Hk
L := |||u∗L − ukL|||+ ηL(u

k
L)

(A1)' |||u∗L − ukL|||+ ηL(u
∗
L) for all (L, k) ∈ Q.

The proposed quasi-error Hk
L can hence be seen as a representation of the algebraic and

discretization error. Recall that (6.2) ensures that |||u∗L − ukL||| + |||u∗ − u∗L||| . Hk
L and,

therefore, the quasi-error controls the overall error |||u∗ − ukL|||. We say that the quasi-error
decays with rate −s with respect to the overall computational cost if

sup
(L,k)∈Q

cost(L, k)s Hk
L = sup

(L,k)∈Q

⇣ X
(L0,k0)∈Q

|L0,k0|≤|L,k|

#TL0
⌘s

Hk
L < ∞. (6.6)
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6 Multigrid as inexact solver for AFEM

Thus, an adaptive algorithm is of optimal complexity if all possible convergence rates s with
respect to the degrees of freedom are also achieved with respect to the overall computational
cost, i.e., ku∗kAs < ∞ ⇔ sup(L,k)∈Q cost(L, k)s Hk

L < ∞. Let us formulate the optimal
complexity result for Algorithm 6.1.

Theorem 6.6 (Full R-linear convergence). Let 0 < θ ≤ 1, Cmark ≥ 1 and µ > 0 be arbitrary.
Suppose that the sequence of meshes {TL}L∈N0 is generated by Algorithm 6.1. Then, there
holds full R-linear convergence of the quasi-error, i.e., there exist constants 0 < qlin < 1 and
Clin > 0 such that

Hk
L ≤ Clin q

|L,k|−|L0,k0|
lin Hk0

L0 for all (L0, k0), (L, k) ∈ Q with |L0, k0| ≤ |L, k|. (6.7)

For the proof of full R-linear convergence, we need the subsequent statement from [BFM+24].

Lemma 6.7 (Tail summability vs. R-linear convergence [BFM+24, Lemma 11]). For any
sequence (a`)`∈N0 in R≥0 and m > 0, the following two statements are equivalent:

(i) tail summability: There exists a constant Cm > 0 such that

∞X
`0=`+1

am`0 ≤ Cmam` for all ` ∈ N0.

(ii) R-linear convergence: There exists constants 0 < qlin < 1 and Clin such that

a`+n ≤ Clinq
n
lina` for all `, n ∈ N0.

To show full R-linear convergence (6.7), we follow the proof of [BFM+24, Theorem 7].

Proof of Theorem 6.6. The proof is split into three steps.
Step 1 (Estimator reduction): Let L ∈ N0. Using stability (A1) and reduction (A2),
we get

ηL+1(u
k
L)

2 = ηL+1(TL+1 ∩ TL, ukL)2 + ηL+1(TL+1\TL, ukL)2
(A1)
(A2)

≤ ηL(TL+1 ∩ TL, ukL)2 + q2red ηL(TL\TL+1, u
k
L)

2

= ηL(u
k
L)

2 − (1− q2red) ηL(TL\TL+1, u
k
L)

2.

Furthermore, Dörfler marking (2.18) and ML ⊆ TL\TL+1 give us

θηL(u
k
L)

2
(2.18)

≤ ηL(ML, u
k
L)

2 ≤ ηL(TL\TL+1, u
k
L)

2.

Since 0 < (1− q2red) θ < 1, it follows that

ηL+1(u
k
L) ≤ qθ ηL(u

k
L) with 0 < qθ := [1− (1− q2red) θ]

1/2 < 1. (6.8)

This and stability (A1) lead to the estimator reduction

ηL+1(u
k
L+1)

(A1)

≤ ηL+1(u
k
L) + Cstab|||ukL+1 − u

k
L|||

(6.8)

≤ qθηL(u
k
L) + Cstab|||ukL+1 − u

k
L|||. (6.9)
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Step 2 (Tail summability with respect to L): Let L ∈ N with (L+ 1, k) ∈ Q. Due to

nested iteration u0L+1 = u
k
L with k[L+ 1] ≥ 1 and contraction of the multigrid solver (4.1),

we obtain

|||u∗L+1 − u
k
L+1|||

(4.1)

≤ q
k[L+1]
ctr |||u∗L+1 − u

k
L||| ≤ qctr|||u∗L+1 − u

k
L|||. (6.10)

Combining this with the estimator reduction from Step 1 results in

ηL+1(u
k
L+1)

(6.9)

≤ qθ ηL(u
k
L) + Cstab|||ukL+1 − u

k
L|||

≤ qθηL(u
k
L) + Cstab

�|||u∗L+1 − u
k
L+1|||+ |||u∗L+1 − u

k
L|||
�

(6.10)

≤ qθηL(u
k
L) + (qctr + 1)Cstab|||u∗L+1 − u

k
L|||.

(6.11)

Let us define aL+1 := |||u∗L+1 − u
k
L+1|||+ γ ηL+1(u

k
L+1) for some γ > 0 and eq := max{qctr +

γ(qctr + 1)Cstab, qθ}. It follows immediately that aL ' H
k
L. Furthermore, with the triangle

inequality there holds

aL+1

(6.10)
(6.11)

≤ qctr |||u∗L+1 − u
k
L|||+ γ

⇥
qθ ηL(u

k
L) + (qctr + 1)Cstab|||u∗L+1 − u

k
L|||
⇤

≤ eq ⇥|||u∗L+1 − u
k
L|||+ γ ηL(u

k
L)
⇤

≤ eq ⇥|||u∗L − u
k
L|||+ γ ηL(u

k
L)
⇤
+ eq |||u∗L+1 − u∗L||| = eq aL + eq |||u∗L+1 − u∗L|||.

Finally, the Young inequality gives us

a2L+1 ≤ (1 + δ) eq2 a2L + (1 + δ−1) eq2 |||u∗L+1 − u∗L|||2 for all δ > 0.

We can choose 0 < γ ⌧ 1 and 0 < δ ⌧ 1 sufficiently small so that 0 < q := (1 + δ)eq2 < 1
and C := (1 + δ−1)eq2 > 0 yield

a2L+1 ≤ q a2L + C |||u∗L+1 − u∗L|||2. (6.12)

Summing over the levels and applying the Pythagorean identity (2.12) leads to

L−1X
L0=L+1

a2L0 =

L−2X
L0=L

a2L0+1

(6.12)

≤ q

L−2X
L0=L

a2L0 + C

L−2X
L0=L

|||u∗L0+1 − u∗L0 |||2

(2.12)
= q

L−2X
L0=L

a2L0 + C

L−2X
L0=L

�|||u∗ − u∗L0 |||2 − |||u∗ − u∗L0+1|||2
�
.

Exploiting that the second sum is a telescoping series, we use reliability (A3) of the error
estimator to obtain

L−1X
L0=L+1

a2L0 ≤ q

L−2X
L0=L

a2L0 + C(|||u∗ − u∗L|||2 − |||u∗ − u∗L−1|||2)

(A3)

≤ q

L−2X
L0=L

a2L0 + CC2
relηL(u

∗
L)

2.

(6.13)
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Owing to stability (A1), we also have

ηL(u
∗
L)

(A1)

≤ ηL(u
k
L) + Cstab|||u∗L − u

k
L||| ' H

k
L ' aL.

Due to 0 < q < 1, we can rearrange the terms in (6.13) so that

L−1X
L0=L+1

a2L0 ≤ (1− q)−1(q + CC2
stabC

2
relγ

−2) a2L for all 0 ≤ L < L.

Ultimatly, Lemma 6.7 yields tail summability of aL and thus also of H
k
L, i.e.,

L−1X
L0=L+1

H
k
L0 . H

k
L for all 0 ≤ L < L. (6.14)

Step 3 (Tail summability with respect to L and k): Let 0 ≤ k < k0 < k. Then, the
failure of the stopping criterion (6.1), efficiency (4.43) of the estimator ζL, and contraction
of the solver (4.1) provide us with

Hk0
L = |||u∗L − uk

0
L |||+ ηL(u

k0
L )

(6.1)

≤ |||u∗L − uk
0

L |||+ µ−1ζL(u
k0−1
L )

(4.43)

≤ |||u∗L − uk
0

L |||+ µ−1|||u∗L − uk
0−1

L |||
(4.1)

≤ (1 + (qctrµ)
−1)qk

0−k
ctr |||u∗L − ukL||| . qk

0−k
ctr Hk

L.

It is left to consider (L, k) ∈ Q. In this case, stability (A1), the triangle inequality, and the
contraction of the solver imply

H
k
L

(A1)

. |||u∗L − u
k
L|||+ ηL(u

k−1
L ) + |||uk−1

L − u
k
L||| ≤ H

k−1
L + 2|||u∗L − u

k
L||| ≤ (1 + 2qctr)H

k−1
L .

Hence, it follows that

Hk0
L . qk

0−k
ctr Hk

L for all 0 ≤ k ≤ k0 ≤ k. (6.15)

With quasi-monotonicity (QM), reliability (A3), and stability (A1), we prove

|||u∗L+1 − u∗L||| ≤ |||u∗L+1 − u∗|||+ |||u∗ − u∗L|||
(A3)

. ηL+1(u
∗
L+1) + ηL(u

∗
L)

(QM)

. ηL(u
∗
L)

(A1)

. ηL(u
k
L) + |||u∗L − u

k
L||| = H

k
L.

Due to nested iteration and the triangle inequality, it therefore holds that

H0
L+1 = |||u∗L+1 − u

k
L|||+ ηL+1(u

k
L) ≤ H

k
L + |||u∗L+1 − u∗L||| . H

k
L for all (L, k) ∈ Q. (6.16)
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Finally, we obtain tail summability using the geometric series

X
(L0,k0)∈Q

|L0,k0|>|L,k|

Hk0
L0 =

k[L]X
k0=k+1

Hk0
L +

LX
L0=L+1

k[L0]X
k0=0

Hk0
L0

(6.15)

. Hk
L

k[L]X
k0=k+1

qk
0−k

ctr +

LX
L0=L+1

H0
L0

k[L0]X
k0=0

qk
0

ctr

(6.16)

. Hk
L +

L−1X
L0=L

H
k
L0

(6.14)

. Hk
L +H

k
L

(6.15)

. Hk
L for all (L, k) ∈ Q.

Since Q is countable and linearly ordered, Lemma 6.7 concludes the proof of full R-linear
convergence.

Theorem 6.8 (Optimal complexity of AFEM with multigrid solver). With the assumptions
from Theorem 6.6 it follows that

sup
(L,k)∈Q

(#TL)s Hk
L ≤ sup

(L,k)∈Q
cost(L, k)s Hk

L ≤ Ccost sup
(L,k)∈Q

(#TL)s Hk
L for all s > 0,

(6.17)
where the constant Ccost depends only on Clin, qlin, and s. Moreover, for sufficiently small
adaptivity parameters, i.e.,

0 < µ < µ∗ :=
1− qctr

(1 + qctr)qctrCstabC
0
rel

(6.18)

and

0 <
(θ1/2 + µ/µ∗)2

(1− µ/µ∗)2
< θ∗ := (1 + C2

stabC
2
drel)

−1/2, (6.19)

Algorithm 6.1 guarantees, for all s > 0, that

coptku∗kAs ≤ sup
(L,k)∈Q

cost(L, k)s Hk
L ≤ Coptmax{ku∗kAs ,H

0
0}. (6.20)

The constants copt, Copt > 0 depend only on Cstab, qred, Crel, Cdrel, Cchild, Cmark, Clin, qlin,
the polynomial degree p, the initial triangulation T0, s, θ, µ, and qctr. Importantly, this
provides the equivalence

ku∗kAs < ∞ ⇐⇒ sup
(L,k)∈Q

cost(L, k)s Hk
L < ∞,

hence Algorithm 6.1 is of optimal complexity.

Remark 6.9. Since the constants copt and Copt depend on qctr, they also depend on
Λmax/Λmin and maxT∈T0 k div(K)kL∞(T )/Λmin; see in Theorem 4.13.

Remark 6.10. This section is based on the framework of [GHP+21], where optimal
complexity was achieved by combining AFEM with a contractive iterative solver. We also
refer to [BFM+24] for more recent and improved results. For the model problem (2.4),
both [GHP+21] and [BFM+24] ensure parameter-robust full R-linear convergence of the
quasi-error, i.e., (6.7) holds for all parameters 0 < θ ≤ 1 and ν > 0. Moreover, [BFM+24]
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extends this to inf-sup stable problems. Hence, we follow their approach here, too. Though,
at first glance, different quasi-errors are used in [GHP+21] and [BFM+24], they are actually
equivalent owing to reliability (A3), stability (A1), and Céa’s lemma (2.13). Note that the
so-called quasi-orthogonality plays an important role in [BFM+24]. However, for our model
problem, there holds the Pythagorean identity (2.12), which is even a stronger property.

Proof of Theorem 6.8. Step 1: Let us recall some properties of Algorithm 6.1. As discussed
in Section 2.4, we use the residual error estimator, which fulfills the assumptions (A1)–(A4).
Furthermore, since we employ NVB as the mesh refinement, also the assumptions (R1)–(R3)
are satisfied. Additionally, the multigrid solver is contractive (4.1), Dörfler marking of
Section 2.4.3 is used, and nested iterations are employed. Ultimately, we recall the stopping
criterion (6.1) balancing the algebraic and discretization errors.

Step 2: As a consequence of full R-linear convergence [BFM+24, Corollary 11] proves
the equivalence of convergence rates with respect to the degrees of freedom and to the
computational cost, i.e., the identity (6.17).

Step 3: To show optimal complexity, we follow the proof in [GHP+21, Theorem 7] and
rely on full R-linear convergence (6.7), assumptions (A1)–(A4), (R1)–(R3), contraction of
the inexact solver, Dörfler marking with a quasi-minimal set of marked elements, and the
fulfilled stopping criterion |||ukL−u

k−1
L ||| ≤ νηL(u

k
L). Then, from Step 1, we only need to show

that Algorithm 6.1 satisfies the last assumption. Using the triangle inequality, contraction
of the multigrid solver (4.44), reliability of the algebraic error estimator ζL (4.43) and the
stopping criterion (6.1) leads to

|||ukL − u
k−1
L ||| ≤ |||ukL − u∗L|||+ |||u∗L − u

k−1
L |||

(4.44)

≤ (1 + qctr)|||u∗L − u
k−1
L |||

(4.43)

≤ C 0
rel(1 + qctr)ζL(u

k−1
L )

(6.1)

≤ C 0
rel(1 + qctr)µ ηL(u

k
L).

Thus, we define ν := C 0
rel(1 + qctr)µ and recognize that Algorithm 6.1 guarantees

|||ukL − u
k−1
L ||| ≤ ν ηL(u

k
L).

Following the analysis of [BFM+24, Theorem 13], the parameters ν and θ are required to
fulfill

0 < ν <
1− qctr
qctrCstab

=: ν∗ and 0 <
(θ1/2 + ν/ν∗)2

(1− ν/ν∗)2
< (1 + C2

stabC
2
drel)

−1 = θ∗. (6.21)

So in order for Algorithm 6.1 to satisfy (6.21), there needs to hold

ν = C 0
rel(1 + qctr)µ < ν∗ = (1− qctr)/(qctrCstab)

and
(θ1/2 + ν2/ν

∗)2

(1− ν2/ν∗)
< θ∗.
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6 Multigrid as inexact solver for AFEM

Let us define µ∗ := ν∗/((1 + qctr)C
0
rel). Then, the conditions can be simplified to

µ < µ∗ and
(θ1/2 + µ/µ∗)2

(1− µ/µ∗)2
< θ∗.

This concludes the proof.

Remark 6.11. If Algorithm 6.1 is implemented in a way that ensures linear complexity for
each module as discussed in Section 6.1, one can also achieve optimal convergence rates
with respect to the cumulative time. An example of this is shown in Chapter 7 in Figure 7.7
and Figure 7.8.
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7 Numerical experiments

In this chapter, we investigate the numerical performance of the proposed multigrid solver
in Algorithm 3.7 and the adaptive Algorithm 6.1 employing this solver. First, we want
to explore the behavior of the multigrid solver. More precisely, the interest lies in the
dependence of the contraction factor qctr and subsequently also the reliability constant
C 0
rel on the local diffusion-contrast. Indeed, since the analysis was improved in Chapter 5

compared to [IMP+24], we aim to highlight numerically that the dependence of the solver
contraction on the diffusion-contrast is local instead of global. Afterwards, some experiments
concerning the optimality of the adaptive algorithm will be presented. The experiments are
done in Matlab using the implementation of the multigrid solver from [IMP+24] which is
embedded into the MooAFEM framework from [IP23].

7.1 Performance of the multigrid solver

The goal is to numerically confirm the main result from Theorem 5.1. To this end, we want
to design an experiment that can support that only the local variations of the diffusion
coefficient influence the contraction factor qctr. In the following, we will describe the chosen
setting and give insight into the choice of the parameters. The diffusion problem (2.4) is
considered on the unit square Ω = (0, 1)2 with the right-hand side f ≡ 1. Furthermore,
we opt for “striped” diffusion, i.e., we consider a piecewise constant diffusion tensor where
the value changes across four regions/stripes of the domain; see Figure 7.1. The idea is to
compare the following two test cases.

Experiment 7.1. The value of K on the first stripe is 100, on the second stripe 102, on
the third stripe 104, and on the last stripe 106. For an initial mesh T0 satisfying that any
three-layer patch lies at most across two different stripes, it follows that Λmax/Λmin = 106 as

well as C
(1)
loc = C

(2)
loc = 100 (i.e., local jumps of the diffusion ⌧ global jump); see Figure 7.1

(left).

Experiment 7.2. The value of K is 1 on the first and third stripe and 106 on the other

two. This leads to Λmax/Λmin = C
(1)
loc = C

(2)
loc = 106 (i.e., local jumps of the diffusion =

global jump); see Figure 7.1 (right).

The analysis from Chapter 5 implies that the contraction factor in the first case is smaller
than in the second case under the assumption that the same initial mesh is used. However,
conducting different experiments, it became clear that it is not easy to isolate the influence of
the diffusion coefficient alone. Indeed, many parameters enter (e.g., how the mesh hierarchy
is generated, i.e., which choice of θ is employed; how the discretization error influences the
mesh generation process, i.e., which choice of p is used; to which precision the solver is
iterating, i.e., for AFEM with certain µ in the stopping criterion). Since discretization and
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7 Numerical experiments

1 100 104 106 1 106 1 106

Figure 7.1: Striped diffusion. We display the diffusion coefficient from Experiment 7.1 (left)
and the diffusion coefficient from Experiment 7.2 (right).

algebra cross-influence each other, we opt to fix a pre-computed mesh hierarchy (of L = 10)
generated via Algorithm 6.1 and study therein the behavior of the solver of Algorithm 3.7.
Assuming the mesh hierarchy is given, the solver yields a new approximation uk+1

L after one
step on the current approximation ukL (after k iterations, k ≥ 0). Then, the experimental
contraction factor is given by

qctr,k =
|||u∗L − uk+1

L |||
|||u∗L − ukL|||

. (7.1)

This is iterated until the stopping criterion ζL(u
k
L) < tol is reached. We use tol = 10−13,

which results in the computation of enough iterations to be able to draw some insights from
the solver contraction.

7.1.1 Pre-computed meshes

Let us now explain how the mesh hierarchy {T`}10`=0 is generated utilizing Algorithm 6.1.
We expect to see the biggest influence of the diffusion-contrast on the contraction factor
when a mesh hierarchy is used, which is mostly refined along the lines where the diffusion
coefficient changes value. Hence, we choose appropriate input parameters of Algorithm 6.1:

• Initial mesh T0: The requirements of the initial mesh are rather clear from the analysis
of Chapter 5 as it needs to be fine enough such that its 3-patches are at most contained
in two stripes. In practice, this is achieved by initially considering a coarse mesh and
possibly performing a limited number of uniform refinements (in our case 3).

• Adaptivity parameter θ: Since the goal is to eventually use the solver within an
adaptive framework, the generated meshes should be rather locally refined in the
vicinity of singularities. Hence, we change to θ = 0.3 from the usual θ = 0.5.

• Solver stopping parameter µ: Since this section focuses on the solver, we use µ = 10−3,
thus oversolving the algebraic problem.

82



7 Numerical experiments

Figure 7.2: Adaptively-refined meshes. Left: The initial mesh T0 with #T0 = 1024 elements
which is fine enough so that any 3-patch only goes across two stripes at most but
coarse enough so that a direct solve is inexpensive. Right: The mesh T10 with
#T10 = 9854 elements that is obtained with Algorithm 6.1 using the described
parameters.

• Polynomial degree p: Since we need to decide a polynomial degree for the pre-computed
mesh-generation and since we later want to test the solver for different polynomial
degrees, we choose p = 2 here.

• Diffusion coefficient K: We also need to choose a diffusion coefficient for the generation
of the mesh hierarchy. Since we do not want to favor one of the two Experiments 7.1
or 7.2, but want nonetheless refinement along the stripes, we use another “striped”
diffusion: set K ≡ 1 on the first and third stripe and 103 on the rest.

In Figure 7.2, the initial and final meshes are displayed.
Utilizing the precomputed mesh hierarchy, we calculate the experimental contraction

factor (7.1) of Algorithm 3.7 for the diffusion coefficients from Experiment 7.1 and Ex-
periment 7.2 on the final level L = 10 until the proposed tolerance ζL(u

k
L) < 10−13 is

reached. The results for p = 1, 2, 5 are presented in Figure 7.3. These results corroborate the
analysis in Chapter 5 since the contraction factor is reduced when the jumps in the diffusion
coefficient are gradual as in Experiment 7.1, compared to the scenario of Experiment 7.2,
where the local jumps coincide with the global jump. To showcase the h-robustness of
the contraction factor, we also pre-compute a mesh hierarchy with 15 levels (i.e., L = 15)
and repeat the aforementioned experiment. To this end, we display the experimental
contraction factor (7.1) of Algorithm 3.7 for the diffusion coefficients from Experiment 7.1
and Experiment 7.2 on the final level L = 15 until the proposed tolerance ζL(u

k
L) < 10−13 is

reached for p = 5 in Figure 7.3. We observe that the experimental contraction factor is still

83
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of the same size as for L = 10, which confirms h-robustness. However, the difference between
the two diffusion coefficients from Experiment 7.1 and Experiment 7.1 is less noticable.

7.1.2 Other mesh hierarchies

Algorithm 3.7 requires a sequence of meshes as input, which is assumed to be available. In
the last section, we gave one reasonable example of how this could be done. However, other
options of meshes can be used and we now discuss how this influences the behavior of the
solver with respect to the diffusion coefficient.

Remark 7.3 (Studying the diffusion jumps). Though in the previous tests, we indeed see
better contraction factors for problems where the local jumps of the diffusion coefficient are
lower than the global jump, the improvements are rather mild. This by no means discourages
the analytical improvements, we set in place. It may well be that more sophisticated singular
problems (exhibiting e.g. cross points) need to be engineered to truly see a degradation of
contraction factors. However, it is not straightforward to construct comparable singular
test cases where the only difference is the locality of the jumps.

Remark 7.4. Another reason why the gap between Experiment 7.1 and Experiment 7.2
in Figure 7.3 is not as large as one might expect, may stem from the analysis being overly
pessimistic. Recall the norm equivalence (2.6), i.e.,

Λ
1/2
mink∇uk ≤ |||u||| ≤ Λ1/2

maxk∇uk for all u ∈ X .

The analysis in Chapter 4, using essentially this estimate to extend the framework from the
H1-seminorm analysis, yields that the contraction factor depends on Λmax/Λmin. However,
the above equivalence indicates that qctr possibly depends only on (Λmax/Λmin)

1/2 instead.

Remark 7.5 (Parameters for the pre-computed meshes). For the comparison of the diffusion
coefficient from Experiment 7.1 to the one from Experiment 7.2 on a pre-computed mesh
hierarchy, we explored different choices of the adaptivity parameter θ and polynomial degree
p. Whenever the generated meshes were rather uniform the history plots for the contraction
factor became almost identical for the two diffusion coefficients. We believe this happens
because the almost uniform meshes make it so that the geometry is resolved rather too well.
In Figure 7.4, we show an example of this phenomenon for θ = 0.5 and p = 1.

Remark 7.6 (Choice of meshes). It is curious to see that when running tests where the
algebra and the discretization mutually influence each other, the situation overall improves.
This is to say, in the typical AFEM setting with multigrid as the inexact solver, the mesh
becomes more tailored to the singularities stemming from the jumps in the diffusion coefficient.
As a result, the contraction factors improve even when the local jumps are the same as the
global jump. We want to give an example here. Let us consider the diffusion coefficient from
Experiment 7.2 and compare it to K ≡ 1. We construct the meshes with Algorithm 6.1 but
use the corresponding diffusion coefficients and polynomial degrees p = 2, 4, 6 already for
the generation of the mesh hierarchy. Furthermore, we set θ = 0.5 and µ = 10−5 in the
stopping criterion (6.1). In Figure 7.5, we can see that the contraction factors for the two
diffusion coefficients are not comparable. We believe this is due to the cross-influence of the
discretization and algebra since we are not pre-computing the meshes anymore.
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7.1.3 Step-sizes

In this section, we use an additional diffusion coefficient which is introduced in the following
experiment.

Experiment 7.7. The value of K on the first stripe is 1, on the second stripe 10, on the
third stripe 100, and on the last stripe 1000. For an initial mesh T0 satisfying that any
three-layer patch lies at most across two different stripes, it follows that Λmax/Λmin = 1000

as well as C
(1)
loc = C

(2)
loc = 10.

Our objective is to check the bounds of the step-size λ` as already promised in Chapter 4.
In the numerical experiments, the optimal step-size s` never crosses the limit d+ 1. Hence,
the case distinction in Algorithm 3.7 never takes place in practice. In order to observe this,
Algorithm 6.1 is used and set to terminate if 106 degrees of freedom are reached. Moreover,
we use θ = 0.5 and µ = 10−5 in the stopping criterion (6.1) thus oversolving the algebra.
Furthermore, the diffusion coefficient introduced in Experiment 7.7 is utilized. In Figure 7.6
(left), the maximal step-size on a level ` for the polynomial degrees p = 1, 2, 3, 4 is shown
as well as the upper bound d+ 1. Throughout, the values of λ` lie well below this bound.
In Figure 7.6 (right), the minimal step-size on a level and the lower bound (d+ 1)−1 are
displayed.

7.2 Optimality of AFEM with multigrid solver

The objective of this section is to confirm Theorem 6.8 of Chapter 6. As discussed in
Remark 6.9 the constants copt and Copt depend on qctr and hence Chapter 5 implies that
they depend on local variations of the diffusion coefficient. Therefore, we again use the
diffusion coefficients described in Experiment 7.1 and Experiment 7.2. We set µ = 0.1 in
Algorithm 6.1 and study the decrease of the discretization error estimator ηL(u

k
L) with

respect to the cumulative time and cumulative degrees of freedomX
(L0k0)∈Q

|L0,k0|≤|L,k|

dimXL0

which is equivalent to the overall computational cost (6.5). Theorem 6.8 guarantees optimal
rates for the quasi error Hk

L in terms of the overall computational cost. However, for the

final iterate, the error estimator is equivalent to the quasi-error, i.e., H
k
` ' η`(u

k
` ) as follows

directly from Lemma 6.4. Let us first consider the diffusion coefficient from Experiment 7.1.
Furthermore, we use θ = 0.5 and polynomial degrees p = 1, 2, 3, 4. After a pre-asymptotic
phase, one can observe the optimal convergence rates −p/2 in Figure 7.7 both with respect
to the cumulative degrees of freedom and with respect to the cumulative time.

We perform the same experiments for the diffusion coefficient described in Experiment 7.2
and also observe optimal convergence rates in Figure 7.8. This is not surprising since the
analysis in Chapter 6 ensures optimal complexity for all diffusion coefficients that satisfy
the assumptions in Section 2.2. Furthermore, the influence of copt and Copt is rather seen
in the longer pre-asymptotic regime in Figure 7.8 compared to Figure 7.7.
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7.2.1 Nested iterations

Finally, we repeat the experiments from this section but omit nested iteration, i.e., u0L+1 = u
k
L,

and instead set u0L := 0 for all levels L ∈ N. Furthermore, we use µ = 10−2 in the stopping
criterion (6.1). The results for the diffusion coefficient from Experiment 7.1 can be seen
in Figure 7.9 and for the diffusion coefficient described in Experiment 7.2 in Figure 7.10.
Since the analysis in Chapter 6 explicitly uses nested iteration, we observe suboptimal
rates with respect to the cumulative degrees of freedom, as well as a considerably worse
pre-asymptotic regime; see Figure 7.9 and Figure 7.10 (top left). Furthermore, as shown
in Figure 7.9 and Figure 7.10 (top right), the convergence rates with respect to time are
noticeably suboptimal starting at polynomial degree p = 3. Therefore, nested iteration is
not only needed for the analysis but also necessary in practice to achieve optimal complexity.
However, the convergence rates with respect to the degrees of freedom remain optimal, as
demonstrated in Figure 7.9 and Figure 7.10 (bottom left). Finally, the number of iterations
of the multigrid solver with respect to the degrees of freedom increases, as we always start
with the same initial guess u0L := 0. This is shown in Figure 7.9 and Figure 7.10 (bottom
right).
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Figure 7.3: Contraction factor of the multigrid solver. History plot of the experimen-
tal contraction factor for the diffusion coefficient from Experiment 7.1 in
green compared to the diffusion coefficient from Experiment 7.2 in grey calcu-
lated on the pre-computed mesh hierarchy introduced in Section 7.1.1, where
dim(S10(T10)) = 5078, dim(S20(T10)) = 20009 and dim(S50(T10)) = 123926.
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Figure 7.4: Contraction factor of the multigrid solver. History plot of the experimental
contraction factor for diffusion coefficient from Experiment 7.1 in green compared
to the diffusion coefficient from Experiment 7.2 in grey calculated on the pre-
computed mesh hierarchy described in Remark 7.5.
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Figure 7.5: Contraction factor of the multigrid solver. History plot of the experimental
contraction factor for the identity as diffusion coefficient in green and for the
diffusion coefficient from Experiment 7.2 in grey computed on the respective
adaptive meshes; see Remark 7.6.
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Figure 7.6: Step-size of the multigrid solver. History plot of the maximal step-size (left) and
the minimal step-size (right) compared to the corresponding bounds calculated
for the diffusion coefficient from Experiment 7.7 introduced in Section 7.1.3.
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Figure 7.7: Optimality of AFEM for the striped diffusion with local jumps from Experi-
ment 7.1. The convergence history plot of the discretization error ηL(u

k
L) with

respect to the cumulative degrees of freedom (left) and with respect to the
cumulative time (right); see Section 7.2.
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Figure 7.8: Optimality of AFEM for the striped diffusion with global jumps from Ex-
periement 7.2. The convergence history plot of the discretization error ηL(u

k
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with respect to the cumulative degrees of freedom (left) and with respect to the
cumulative time (right); see Section 7.2.
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Figure 7.9: AFEM without nested iteration for the striped diffusion with local jumps from
Experiment 7.1. The convergence history plot of the discretization error ηL(u

k
L)

with respect to the cumulative degrees of freedom (top left), with respect to the
cumulative time (top right), and with respect to the degrees of freedom (bottom
left), as well as the number of iterations of the algebraic solver with respect to
the degrees of freedom (bottom right); see Section 7.2.1.
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Figure 7.10: AFEM without nested iteration for the striped diffusion with global jumps from
Experiment 7.2. The convergence history plot of the discretization error ηL(u

k
L)

with respect to the cumulative degrees of freedom (top left), with respect to
the cumulative time (top right), and with respect to the degrees of freedom
(bottom left), as well as the number of iterations of the algebraic solver with
respect to the degrees of freedom (bottom right); see Section 7.2.1.
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[EV13] Alexandre Ern and Martin Vohraĺık. “Adaptive inexact Newton methods with
a posteriori stopping criteria for nonlinear diffusion PDEs”. In: SIAM J. Sci.
Comput. 35.4 (2013), A1761–A1791. doi: 10.1137/120896918.

[FFP+17] Michael Feischl, Thomas Führer, Dirk Praetorius, and Ernst P. Stephan. “Op-
timal additive Schwarz preconditioning for hypersingular integral equations
on locally refined triangulations”. In: Calcolo 54.1 (2017), pp. 367–399. issn:
0008-0624,1126-5434. doi: 10.1007/s10092-016-0190-3.

[GHP+21] Gregor Gantner, Alexander Haberl, Dirk Praetorius, and Stefan Schimanko.
“Rate optimality of adaptive finite element methods with respect to overall
computational costs”. In: Math. Comp. 90.331 (2021), pp. 2011–2040. issn:
0025-5718,1088-6842. doi: 10.1090/mcom/3654.

[Gil07] William Gilbert Strang. “Multigrid Methods”. MIT. Lecture Notes. 2007. url:
https://math.mit.edu/classes/18.086/2006/am63.pdf.

[GSS14] Dietmar Gallistl, Mira Schedensack, and Rob P. Stevenson. “A remark on
newest vertex bisection in any space dimension”. In: Comput. Methods Appl.
Math. 14.3 (2014), pp. 317–320. issn: 1609-4840,1609-9389. doi: 10.1515/cmam-
2014-0013.

95

https://doi.org/10.1137/07069047X
https://doi.org/10.1007/s00211-011-0401-4
https://arxiv.org/abs/2306.02674
https://doi.org/10.1137/1.9781611974065.ch1
https://doi.org/10.1137/0733054
https://doi.org/10.1007/978-3-030-56341-7
https://doi.org/10.1007/978-3-030-56341-7
https://doi.org/10.1007/978-3-030-56923-5
https://doi.org/10.1137/120896918
https://doi.org/10.1007/s10092-016-0190-3
https://doi.org/10.1090/mcom/3654
https://math.mit.edu/classes/18.086/2006/am63.pdf
https://doi.org/10.1515/cmam-2014-0013
https://doi.org/10.1515/cmam-2014-0013


References

[Hac85] Wolfgang Hackbusch. Multi-Grid Methods and Applications. Vol. 4. Jan. 1985.
isbn: 3-540-12761-5. doi: 10.1007/978-3-662-02427-0.

[HWZ12] Ralf Hiptmair, Haijun Wu, and Weiying Zheng. “Uniform convergence of
adaptive multigrid methods for elliptic problems and Maxwell’s equations”.
In: Numer. Math. Theory Methods Appl. 5.3 (2012), pp. 297–332. issn: 1004-
8979,2079-7338. doi: 10.4208/nmtma.2012.m1128.
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