
The Computational Cost and
Benefit of Collective Attacks in

Abstract Argumentation

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der Technischen Wissenschaften

eingereicht von

Dipl.-Ing. Matthias König, BSc
Matrikelnummer 01425517

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dipl.-Ing. Dr.techn. Stefan Woltran
Zweitbetreuung: Dipl.-Ing. Dipl.-Ing. Dr.techn. Wolfgang Dvořák

Diese Dissertation haben begutachtet:

Jörg Rothe Simon Parsons

Wien, 11. November 2024
Matthias König

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

The Computational Cost and
Benefit of Collective Attacks in

Abstract Argumentation

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

Dipl.-Ing. Matthias König, BSc
Registration Number 01425517

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dipl.-Ing. Dr.techn. Stefan Woltran
Second advisor: Dipl.-Ing. Dipl.-Ing. Dr.techn. Wolfgang Dvořák

The dissertation has been reviewed by:

Jörg Rothe Simon Parsons

Vienna, November 11, 2024
Matthias König

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Declaration of Authorship

Dipl.-Ing. Matthias König, BSc

I hereby declare that I have written this Doctoral Thesis independently, that I have
completely specified the utilized sources and resources and that I have definitely marked
all parts of the work - including tables, maps and figures - which belong to other works
or to the internet, literally or extracted, by referencing the source as borrowed.
I further declare that I have used generative AI tools only as an aid, and that my own
intellectual and creative efforts predominate in this work. In the appendix “Overview of
Generative AI Tools Used” I have listed all generative AI tools that were used in the
creation of this work, and indicated where in the work they were used. If whole passages
of text were used without substantial changes, I have indicated the input (prompts) I
formulated and the IT application used with its product name and version number/date.

Vienna, November 11, 2024
Matthias König

v

Acknowledgements

I want to thank the many people who helped me to successfully complete my studies
and ultimately craft this doctoral thesis. First I want to thank my advisors, Stefan
Woltran and Wolfgang Dvořák, who helped me in all kinds of situations, ranging from
long whiteboard sessions and strategic decisions for academic success, to personal growth
in many aspects. I value your flexibility and understanding, and especially how you
supported me in balancing my work and family life.

Special thanks go to Michael Bernreiter and Anna Rapberger for being the best possible
office mates and personal confidants for all matters. Moreover, I am very thankful for my
“core” team of co-workers and friends, Giovanni Buraglio, Jan Maly, Oliviero Nardi, and
Markus Ulbricht, who not only proved themselves to be reliable and diligent colleagues
time and again, but who also made our work very fun and enjoyable. In addition, I am
grateful for the great collaboration with all my co-authors I have not mentioned so far,
Viktor Besin, Lydia Blümel, Martin Caminada, Yannis Dimopoulos, Markus Hecher,
Andre Schidler, Stefan Szeider, and Johannes P. Wallner.

I am very grateful to Juliane Auerböck for helping me in bureaucratic regards, organizing
trips and events, and basically running the show. I want to thank Markus Bartel and
Matthias Nitzschke for their support in all technical regards.

I also want to thank the reviewers of this thesis, Jörg Rothe and Simon Parsons, for
taking the time to give me valuable feedback.

I would not have been able to complete this work without the support of my family and
friends, who were always there to celebrate my victories and help me through setbacks.
Loving thanks go to my ever-supportive parents Alfred, Gerald, and Susanne, as well as
my siblings and their families, Becky, Tobi and Simon, as well as Philipp and Claudia.
Likewise, I want to thank Christoph, David, Giulio, Hanna, Julia, Kathi, Marcel, Pamina,
Sanja, Tamara, Thomas, and Tim. Your encouragement and the fruitful exchanges helped
me to set things into perspective.

Above all, I want to thank my wife, Franzi, for her unlimited support and love, and my
dear Caroline for her endless supply of smiles.

vii

Kurzfassung

Sinnvolle Schlussfolgerungen aus möglicherweise widersprüchlichen Informationen zu
ziehen ist von zentraler Bedeutung für verlässliche und nachvollziehbare Anwendungen von
Künstliche-Intelligenz (KI). Formalismen für derartige Schlussfolgerungen werden in der
formalen Argumentationstheorie erforscht; ein solcher Formalismus sind Argumentation
Frameworks (AFs). AFs zeichnen sich—belegt durch laufend neue Forschungsergebnisse
in den letzten Jahren—durch ihre Vielseitigkeit, einschließlich zahlreicher aufgezeigter
Verbindungen zu anderen nicht-monotonen Formalismen, aus. Sie gelten daher ob ihrer
einfachen Struktur als naheliegende Wahl, um Probleme in einem argumentativen Setting
darzustellen und zu lösen. Die Eleganz dieses Formalismus liegt in der einfachen Struktur
der AFs: Argumente werden als abstrakte Knoten eines Graphen modelliert, gerichtete
Kanten stellen Attacken zwischen Argumenten dar. Eine weiterführende Idee ist, dass
anstatt eines einzelnen Arguments eine Menge von Argumenten den Ursprung einer
Attacke bilden—und keine kleinere Teilmenge davon stark genug ist, das Ziel-Argument
anzugreifen. Diese Art der Attacke ist in AFs nicht ohne zusätzliche Argumente ohne
klare Bedeutung möglich. In SETAFs können derartige “kollektive Attacken” zusätzlich
zu den von AFs bekannten Attacken vorkommen; damit verallgemeinern SETAFs die
einfachen AFs auf natürliche Weise. SETAFs wurden erstmals 2006 von Nielsen und
Parsons formalisiert.

Obwohl gezeigt werden konnte, dass SETAFs eine größere Ausdrucksstärke bieten als
AFs, wurde die naheliegende Idee von kollektiven Attacken bisher verhältnismäßig wenig
erforscht. Oft muss man bei großer Ausdrucksstärke negative Auswirkungen in anderen
Aspekten in Kauf nehmen: etwa eine erhöhte Rechenkomplexität (und daher schlussendlich
auch längere Laufzeit) von Algorithmen, den Verlust wichtiger Eigenschaften, oder, dass
komplexere algorithmische Ansätze nicht anwendbar sind. In dieser Arbeit werden wir
allerdings sehen, dass derartige Befürchtungen im Falle der SETAFs nicht zutreffend sind:
bemerkenswerterweise gelten die wichtigsten Eigenschaften von AFs auch für SETAFs,
wie wir durch eine sogenannte “principle-based analysis” zeigen. Dieses Werkzeug bedient
sich vordefinierter Eigenschaften (der “principles”) um anhand ihrer Erfüllung oder
Nichterfüllung zu zeigen, welche Merkmale die Argumentationssemantiken aufweisen.

Darüber hinaus zeigen wir, dass auch komplexere algorithmische Ansätze, welche für
AFs bereits vielversprechende Ergebnisse zeigen, ebenfalls auf SETAFs anwendbar sind—
unter der Voraussetzung dass diese auf clevere Weise an das neue Setting angepasst

ix

werden. Wir untersuchen den backdoor-Ansatz und den treewidth-Ansatz. Eine backdoor
(“Hintertür”) kann man sich als den Teil eines Problems vorstellen, welcher für den
größten Berechnungsaufwand verantwortlich ist; wird dieser Teil entfernt, so ist die
Struktur des übrigen Teils simpel. Das nutzen wir um Teillösungen des komplizierten
Teils auf den simplen Teil auszuweiten, um dadurch schnellere Laufzeiten zu erzielen.
Der Parameter treewidth (“Baumweite”) bestimmt wie ähnlich der Argumentationsgraph
zu einem Baum ist. Da die von uns untersuchten Probleme auf baumförmigen SETAFs
leicht lösbar sind, verspricht dieser Parameter ebenfalls verbesserte Laufzeiten. In der
Tat zeigen wir durch auf dynamischer Programmierung basierenden Algorithmen, dass
diese Ideen ebenfalls auf SETAFs anwendbar sind, und beweisen auch hier verbesserte
Laufzeitschranken. In AFs sind durch ihre einfache Struktur viele interessante Phänomene
nicht sichtbar, welche bei SETAFs einen deutlicheren Effekt zeigen. Wir können ebendiese
Phänomene oft ausnutzen, um bessere Ergebnisse zu erzielen—und diese sind sogar
ebenfalls auf AFs anwendbar. Das kommt daher, dass ein AF als Spezialfall eines SETAF
gesehen werden kann, wo jede Attacke von einer genau ein-elementigen Menge ausgeht.
Wir beweisen also nicht nur, dass SETAFs mit den genannten strukturellen Eigenschaften
effizienter verarbeitet werden können, sondern zeigen auch Verbesserungen für AFs auf.

Abstract

Resolving conflicts and reasoning in an argumentative setting is a discipline that is
essential for reliable and explainable artificial intelligence (AI). In the last decades,
argumentation frameworks (AFs) by Dung have stood out in the research community as
a well-investigated simple formalism for these tasks. The elegant structure of arguments
as nodes and attacks as edges of a directed graph not only served well for modeling
argumentation scenarios, but proved quite versatile with many connections to other
non-monotonic reasoning formalisms. However, the seemingly basic notion of collective
attacks, i.e., the scenario where a set of arguments rather than a single one is needed
to defeat another, cannot natively be modeled in AFs without additional arguments.
Hence, Nielsen and Parsons introduced a conservative generalization of AFs in 2006
incorporating this basic feature—the resulting frameworks are referred to as SETAFs.

While it was shown that SETAFs are strictly more expressive than AFs, comparatively
little research was performed on them. Oftentimes increased expressive power goes hand
in hand with undesirable side effects—like high computational cost, the loss of essential
properties, or the impossibility of applying popular algorithmic ideas to reason even more
efficiently on non-random data. We will see in this thesis that these worries are mostly
groundless in the context of SETAFs: remarkably, even facing all apparent advantages of
SETAFs over AFs, most desirable properties generalize to SETAFs—as captured by a
principle-based analysis. In this prominent approach, the semantics of the frameworks are
investigated and categorized by the satisfaction or violation of principles—i.e., properties
that succinctly capture key features and behaviors in common argumentative scenarios.

Moreover, we show that when carefully generalized, advanced algorithmic ideas that are
promising on AFs in general also work for SETAFs. In particular, we investigate the
backdoor- and treewidth-approaches. In a nutshell, a backdoor is a part of a SETAF, such
that its removal renders the remaining framework structurally simple. We apply this idea
to the hypergraph structure of SETAFs by means of efficient propagation algorithms.
The parameter treewidth describes how tree-like a graph is. Since many problems become
efficiently solvable in tree-shaped SETAFs, we exploit a tree-like structure via dynamic
programming algorithms. Interesting phenomena that can be exploited in several ways
are hidden or trivialized by the simple structure of AFs—we utilize these phenomena
for computational improvements. By means of our thorough analysis of the structure
of SETAFs we not only deepen our understanding of collective attacks and their effects,

xi

but also shine a new light on AFs. This is because AFs can be seen as a special case of
SETAFs, where for each attack the attacking set is of size 1. Our close look pays off
measurably: our algorithms for backdoor- and treewidth-techniques not only establish
for the first time that SETAFs can be efficiently treated in the aforementioned scenarios,
but also show improvements in the AF case.

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation . 1
1.2 State of the Art & Related Work . 2
1.3 Contributions and Overview . 3
1.4 Publications . 5

2 Background 9
2.1 Abstract Argumentation and Collective Attacks 9
2.2 Complexity of Reasoning in Abstract Argumentation 15

3 Principle-Based Analysis 21
3.1 Basic Principles . 22
3.2 Reduct and Modularization . 32
3.3 Directionality and Non-Interference . 38
3.4 SCC-Recursiveness . 42
3.5 Incremental Computation . 61
3.6 Discussion . 68

4 Backdoor-Based Evaluation 71
4.1 Towards SETAF Backdoors . 73
4.2 Backdoor Evaluation . 75
4.3 Conditional Lower Bounds for Backdoor Evaluation 89
4.4 Discussion . 90

5 Treewidth-Based Evaluation 93
5.1 Towards SETAF Treewidth . 95
5.2 Dynamic Programming on SETAFs . 100
5.3 Characterizing Stable Extensions . 102

xiii

5.4 Characterizing Admissible Sets . 119
5.5 Characterizing Complete Extensions 137
5.6 Discussion . 152

6 Conclusion 153
6.1 Summary & Insights . 154
6.2 Future Work & Outlook . 157

Overview of Generative AI Tools Used 159

List of Figures 161

List of Tables 163

Bibliography 165

CHAPTER 1
Introduction

Scientific research in artificial intelligence (AI) has shed a light on the pressing need
for reliable, explainable, and furthermost correct decision making [RS09, LAD+24]. At
the same time, we expect the systems we use everyday to be fast—we often expect
real-time results. This is especially the case in sensitive areas like deciding on financial
issues, making diagnoses in a medical setting, or when a seemingly overwhelming flood
of information and fake news clouds the judgment that is the foundation of a democratic
society. Hence, we want to reason both reliably correct and fast. While sub-symbolic AI
systems like neuronal networks that form the basis e.g. for modern large language models at
its current stage struggle with the former property, symbolic AI-approaches based on logic
oftentimes provide disappointing runtimes. This problem of slow computation is largely
due to the large solution space that has to be exhaustively explored to guarantee correct
outputs. Also in the field of formal argumentation—which is a branch of symbolic AI that
is concerned with reasoning with conflicting arguments—one has to deal with in general
intractable problems. To mitigate this issue, in this thesis, we discuss argumentation
frameworks with collective attacks (SETAFs), classify them via a principle-based approach,
and ultimately use the gained insights to provide fast reasoning algorithms in this setting.
In the following, we discuss in more detail the motivation for this work (Section 1.1),
the current state-of-the-art which we build our results upon as well as related work
(Section 1.2), the contributions of this thesis in broad strokes (Section 1.3), and finally
list the publications that comprise this thesis, as well as other related publications of the
author (Section 1.4).

1.1 Motivation
To make educated and deliberate decisions, while being aware of possibly conflicting view-
points and possible counter-arguments to our own standpoint, in a systematic manner, the
field of formal argumentation emerged and has since Dung’s seminal paper in 1995 [Dun95]

1

1. Introduction

become an active research area within the field of AI [RS09, BGGvdT18, GGST21].
Dung’s Abstract argumentation is concerned with what can be seen as the last step of
an argumentation pipeline: we face arguments as abstract entities, and draw conclu-
sions based only on their relation to each other, while ignoring their internal structure.
We focus on the conflicts between arguments; this is formally captured by abstract
argumentation frameworks (AFs), as introduced by Dung. An AF can be seen as a
directed graph, with the arguments as its nodes, and attacks as its directed edges. A
coherent world-view, called an extension, is then a set of arguments that follows certain
requirements (given by a semantics). Despite the elegance of this light-weigh formal-
ism, AFs have been proven to be a versatile alternative in the world of non-monotonic
reasoning with crosslinks to many other formalisms, such as logic programming (stable
and well-founded semantics) and n-person-games [Dun95], defeasible logic [GMAB04],
or logic programming (3-valued stable model semantics) [WCG09]. The simplicity of
AFs however comes at a cost: many real-world scenarios require additional modeling
effort in AFs including the addition of artificial, technical arguments without an in-
tuitive real-world meaning. For this reason, many generalizations of AFs have been
proposed, accounting for e.g. argument support [CGGS15], recursion (e.g., attacks on
attacks) [CGGS15], weights [DHM+11], preferences [Mod09], intricate acceptance con-
ditions [BW10], incomplete information [BJN+21], or time and probabilities [BDST23].
While these generalizations extend the syntax of AFs to account for their respective
domains, this oftentimes comes at the cost of additional computational effort or additional
syntactic entities. In this thesis, we study argumentation frameworks with collective
attacks (referred to as SETAFs due to their “set”-attacks) [NP06b, BCD+21]. SETAFs
generalize Dung-style AFs in the sense that some arguments can only be effectively
defeated by a collection of attackers, yielding a natural representation as a directed
hypergraph. Hence, SETAFs only slightly extend the syntax of AFs with no entirely
new syntactic entities while at the same time providing most advantages of AFs (as
we will illustrate in this thesis), as well as extended modeling power. While many
fundamental properties for SETAFs have already been shown by Nielsen and Parsons
as they introduced SETAFs [NP06b], a thorough analysis of SETAFs with a focus on
advanced algorithmic ideas has not yet been performed—in this thesis we close this gap.

1.2 State of the Art & Related Work
In his seminal paper from 1995, Dung introduced Abstract Argumentation Frameworks
(AFs) as a simple approach to model various argumentative scenarios [Dun95]. In
2006, Nielsen and Parsons introduced SETAFs to account for collective attacks [NP06b].
They showed that desirable properties like the fundamental lemma of Dung’s AFs
carry over to SETAFs (cf. Lemma 2.7), as well as many other key semantic properties.
Moreover, it has been shown that the addition of collective attacks offers strictly more
expressive power [DFW19] while retaining the advantageous computational properties of
AFs [DGW18]. Subsequently, labelings have been applied to SETAFs as an alternative
way to extensions to characterize semantics, as well as a generalization of additional

2

1.3. Contributions and Overview

popular argumentation semantics [FB19]. Furthermore, translations from SETAFs to
AFs have been investigated [Pol17, FB19] (translating AFs to SETAFs is trivial, as AFs
can be seen as a special case of SETAFs).

SETAFs have proven useful to model various sorts of situations. Recent investigations
have shown that collective attacks are especially well suited as a target formalisms for
instantiations from structured argumentation [KRU22, CKRU24, DDK+24, BDKU24,
BKU24]. This is because a SETAF instantiation in general yields fewer arguments which
can easily be mapped back to the original assumptions. Furthermore, collective attacks
have been considered in the context of “higher level attacks” (i.e., attacks are possible onto
arguments or attacks of any “order”) [Gab09], evidence-based reasoning in connection
with collective support [ON08], or in the context of forming coalitions (inspired by
political models) [AS17]. As a target formalism for modeling various scenarios, SETAFs
have e.g. been used in the context of preferences [BB20], inconsistent Datalog knowledge
bases [YVC20], and choice logics [BK23].

The main goal of this thesis is to analyze the structure of SETAFs in order to ob-
tain efficient methods for solving reasoning problems. It is known for AFs that com-
putational advantages can be obtained in several ways, such as via the backdoor-
approach [DOS12], the treewidth-approach [DPW12], or following the strongly-connected-
components (SCCs) of the graph structure [Bau11, LJK11, BGL14, CGVZ14]. The
backdoor-approach has also recently been applied in the context of structured argu-
mentation [AU24]. SCC-recursiveness has also been considered for Abstract Dialectical
Frameworks (ADFs) [GRS21]. Support-free ADFs can be modeled as SETAFs [DKW23],
the relation between our approach towards SCC-recursiveness and the respective results
for ADFs is discussed in Chapter 3.

Despite the apparent advantages of SETAFs over AFs, a thorough investigation of the
computational cost and benefit of collective attacks is not yet available. In this thesis,
we will close this gap by investigating properties that are shared by AFs and SETAFs,
and discover intricate differences that shed a light also on implicit properties of AFs that
are hidden by their simplistic structure. The focus of this work lies on the computational
properties of SETAFs, where we establish that most of the “shortcuts” one can take for
AFs generalize to SETAFs—given that one knows the important differentiating details,
which we will discuss in the following.

1.3 Contributions and Overview
We are interested in computational “shortcuts” for SETAFs, i.e., ways to avoid enumer-
ating the exponentially large search space for reasoning problems. We achieve this by
exploiting properties of typical data, which usually is not entirely random but rather
admits some sort of structure [DBC01, CMDM05, Dun07]. While in arbitrary data the ex-
ponential worst-case runtime of the best known approaches for solving NP-hard problems
cannot be avoided—even in state-of-the-art systems, problems on structured data can
oftentimes be solved much faster. To this end, we identify parameters that characterize

3

1. Introduction

the structure and quantify the achievable speedup utilizing these parameter values. This
can be seen as a response to Paul Dunne’s plea at the COMMA 2022 conference, where
he presented his “personal view of complexity in argumentation after 20 years” [Dun22].
In a nutshell, Dunne finds that proving intractability for argumentation problems should
not be the end of the investigation of their computational complexity, but the start of
finding and characterizing those cases where we can indeed reason efficiently.

We start with the analysis of principles for SETAF semantics. The principle-guided
approach is the “traditional” way in the argumentation community of comparing the
features and shortcomings of different semantics in order to guide the choice of the
right semantics for any given purpose [vdTV17]. In Chapter 3 we generalize known
AF-principles to be applicable in the context of collective attacks, and analyze which
ones still hold. We will show that with the notable exception of tightness1 all established
principles hold—which we can count as a major benefit of SETAFs, as one would expect
the richer syntax (compared to AFs) to come at the cost of losing many desirable
properties. In the context of principles we transition into the main focus of this thesis,
namely computational speedup via structural exploits. We first analyze the principles
directionality and SCC-recursiveness for SETAFs, which ultimately yield fast reasoning
algorithms based on incremental computation of extensions. We generalize the concepts
to the rich structure of SETAFs and establish techniques to perform the computation
along strongly connected components (SCCs) of the directed hypergraph. Finally, we
enrich this approach by showing how traditional graph-properties of directed graphs can
help to obtain an even faster theoretical runtime bounds.

Chapter 4 continues the investigation of advantageous structure for SETAF reasoning;
we provide a thorough analysis of backdoors. The backdoor-concept is used in different
contexts such as constraint satisfaction problems (CSP), satisfiability checking (SAT),
answer set programming (ASP) (see e.g. [GMO+14, FS15, GOS17, OSS21] for recent
work), and has also been investigated in the context of AFs [DOS12]. Intuitively, a
backdoor is one part of an instance that “makes it hard to solve”. We focus on deletion-
backdoors, i.e. if this backdoor is removed from the instance, the remaining (sub-)
instance is computationally easy. In the context of formal argumentation this means
that a framework belongs to a tractable class (such as acyclicity) after removing certain
arguments. Hence, we can utilize the tractability results of these easy classes for general
frameworks without restrictions, as arbitrary distances to the tractable fragments are
allowed. If this distance is small (constant), we can reason in polynomial time [DOS12],
as the exponential factor is only in the size of the backdoor. We show that the backdoor-
approach for AFs generalizes to SETAFs, and provide algorithms for fast reasoning. In
fact, we show that, even though our approach is tailored to SETAFs with their rich

1Intuitively, tightness (cf. Principle 3.27) means that whenever an argument a is not acceptable
in addition to an extension E, there has to be an argument b ∈ E which is “responsible” for this
non-acceptability—in that a and b are never jointly accepted. While some AF semantics satisfy tightness,
due to their increased expressive power the only SETAF semantics under our consideration satisfying
tightness are the ones admitting only a single extension.

4

1.4. Publications

structure, our algorithms improve on the runtime of existing approaches in the special
case of AFs.

In Chapter 5 we analyze the parameter treewidth. A low treewidth indicates a certain
“tree-likeness” of a graph, and as problems often become easy on trees, adapted ver-
sions of these easy algorithms can often be applied to instances with low treewidth.
In AFs, it has been shown that reasoning is indeed fixed-parameter tractable w.r.t.
treewidth [DPW12, DSW12]. Also in the field of structured argumentation, the parame-
ter treewidth has recently been investigated w.r.t. assumption-based argumentation by
Popescu and Wallner [PW23], who show fixed-parameter tractability for several reasoning
problems via monadic second-order logic and tailored algorithms, similarly to the work
we present in this thesis. We investigate how this notion of treewidth is applicable to the
directed hypergraph-structure of SETAFs and show that certain generalizations admit
parameterized-tractable algorithms (FPT), while other natural attempts do not.

In a nutshell, we show that SETAFs admit almost all advantages of AFs, whereas the few
exceptions prove interesting behavior (for example, the non-satisfaction of the tightness
principle is due to the improved expressiveness of SETAFs over AFs). At the same time
we introduce algorithms to efficiently reason on SETAFs. By providing algorithms with
runtimes that improve even over known AF approaches with their simpler structure we
show that it pays off to dive deep into the idea of collective attacks, since due to the
deeper understanding of the underlying concepts by investigating the rich structure of
SETAFs improvements over the state-of-the-art can be achieved. This can be interpreted
as an invitation to other researchers to consider collective attacks as a modeling formalism
when it becomes apparent that the AF syntax is too restrictive, but one does not want
to add too much additional formal machinery.

1.4 Publications
This thesis is based on the following publications:

Chapter 3:

• Wolfgang Dvořák, Matthias König, Markus Ulbricht, and Stefan Woltran. A reduct-
driven study of argumentation frameworks with collective attacks. In Proceedings
of the 19th International Workshop on Non-Monotonic Reasoning, NMR 2021,
pages 285–294, 2021.

• Wolfgang Dvořák, Matthias König, and Stefan Woltran. Graph-classes of argumen-
tation frameworks with collective attacks. In Proceedings of the 17th European
Conference on Logics in Artificial Intelligence, JELIA 2021, pages 3–17, 2021.

• Wolfgang Dvořák, Matthias König, Markus Ulbricht, and Stefan Woltran. Redis-
covering argumentation principles utilizing collective attacks. In Proceedings of

5

1. Introduction

the 19th International Conference on Principles of Knowledge Representation and
Reasoning, KR 2022, pages 122–131, 2022.

• Wolfgang Dvořák, Matthias König, Markus Ulbricht, and Stefan Woltran. Principles
and their computational consequences for argumentation frameworks with collective
attacks. J. Artif. Intell. Res., 79:69–136, 2024.

Chapter 4:

• Wolfgang Dvořák, Matthias König, and Stefan Woltran. Deletion-backdoors for
argumentation frameworks with collective attacks. In Proceedings of the 4th
International Workshop on Systems and Algorithms for Formal Argumentation,
SAFA 2022, pages 98–110, 2022.

• Wolfgang Dvořák, Matthias König, and Stefan Woltran. Parameterized Complexity
of Abstract Argumentation with Collective Attacks. Under review at Argument &
Computation

Chapter 5:

• Wolfgang Dvořák, Matthias König, and Stefan Woltran. Treewidth for argumen-
tation frameworks with collective attacks. In Proceedings the 9th International
Conference on Computational Models of Argument, COMMA 2022, pages 140–151,
2022.

• Wolfgang Dvořák, Matthias König, and Stefan Woltran. Parameterized Complexity
of Abstract Argumentation with Collective Attacks. Under review at Argument &
Computation

Additional Publications of the Author:

• Wolfgang Dvořák, Matthias König, and Stefan Woltran. On the complexity
of preferred semantics in argumentation frameworks with bounded cycle length.
In Proceedings of the 17th International Conference on Principles of Knowledge
Representation and Reasoning, KR 2021, pages 671–675, 2021.

• Wolfgang Dvořák, Matthias König, Johannes P. Wallner, Stefan Woltran. ASPARTIX-
V21. In Fourth International Competition on Computational Models of Argumenta-
tion, ICCMA 2021, 2021

• Wolfgang Dvořák, Markus Hecher, Matthias König, André Schidler, Stefan Szeider,
and Stefan Woltran. Tractable abstract argumentation via backdoor-treewidth. In
Proceedings of the 36th AAAI Conference on Artificial Intelligence, AAAI 2022,
pages 5608–5615, 2022.

6

1.4. Publications

• Matthias König, Anna Rapberger, and Markus Ulbricht. Just a matter of per-
spective – Intertranslating Expressive Argumentation Formalisms. In Proceedings
the 9th International Conference on Computational Models of Argument, COMMA
2022, pages 212–223, 2022.

• Michael Bernreiter and Matthias König. From qualitative choice logic to abstract
argumentation. In Proceedings of the 20th International Conference on Principles
of Knowledge Representation and Reasoning, KR 2023, pages 737–741, 2023.

• Yannis Dimopoulos, Wolfgang Dvořák, Matthias König, Anna Rapberger, Markus
Ulbricht, and Stefan Woltran. Sets attacking sets in abstract argumentation. In
Proceedings of the 21st International Workshop on Non-Monotonic Reasoning, NMR
2023, pages 22–31, 2023.

• Yannis Dimopoulos, Wolfgang Dvořák, Matthias König, Anna Rapberger, Markus
Ulbricht, and Stefan Woltran. Redefining ABA+ semantics via abstract set-to-set
attacks. In Proceedings of the 38th AAAI Conference on Artificial Intelligence,
AAAI 2024, pages 10493–10500, 2024.

• Yannis Dimopoulos, Wolfgang Dvořák, Matthias König. Connecting Abstract
Argumentation and Boolean Networks. In Proceedings the 10th International
Conference on Computational Models of Argument, COMMA 2024, pages 85-96,
2024.

• Giovanni Buraglio, Wolfgang Dvořák, Matthias König, Markus Ulbricht. Justifying
Argument Acceptance with Collective Attacks: Discussions and Disputes. In
Proceedings of the 33rd International Joint Conference on Artificial Intelligence,
IJCAI 2024, pages 3281–3288, 2024.

• Martin Caminada, Matthias König, Anna Rapberger, and Markus Ulbricht. Attack
semantics and collective attacks revisited. Argument and Computation, 2024.
Pre-press.

• Lydia Blümel, Matthias König, and Markus Ulbricht. Weak admissibility for ABA
via abstract set attacks. In Proceedings of the 21st International Conference on
Principles of Knowledge Representation and Reasoning, KR 2024, pages 178–188,
2024.

• Giovanni Buraglio, Wolfgang Dvořák, Matthias König, Stefan Woltran. Splitting
Argumentation Frameworks with Collective Attacks. In Proceedings of the 5th
International Workshop on Systems and Algorithms for Formal Argumentation,
SAFA 2024, pages 41–55, 2024.

7

CHAPTER 2
Background

In this chapter, we recall the definitions of abstract argumentation frameworks with
collective attacks (argumentation frameworks with set-attacks, a.k.a. SETAFs) which
serve as the basis for the rest of this thesis. These frameworks due to Nielsen and
Parsons [NP06b] are a generalization of Dung’s popular abstract argumentation frame-
works (AFs) [Dun95]. Both formalisms are based on a set of arguments, which in the
corresponding graphical representation comprise the nodes of a (hyper-)graph. Directed
conflicts between these arguments form the attacks of the framework: while in AFs,
attacks are from a single argument to another argument, a SETAF attack stems from a
non-empty set of arguments, and again targets a single argument2. The relevant formal
definitions for the syntax and semantics of SETAFs are listed in Section 2.1.

Moreover, we give a brief overview of the computational complexity of reasoning and
verification problems for SETAFs in Section 2.2. Finally, we also list the known tractable
fragments for SETAFs, i.e., graph classes which allow for efficient reasoning. In the later
chapters we will utilize these results for refined methods for efficient reasoning, be it
with incremental computation where parts of the framework belong to a graph class
(Chapter 3), backdoors where the removal of a set of arguments renders the remaining
framework in a graph class (Chapter 4), or treewidth where we exploit the structural
advantages of a tree’s acyclicity in a decomposition-based setting (Chapter 5).

2.1 Abstract Argumentation and Collective Attacks
We recall the definitions of SETAFs and their semantics [NP06b], see, e.g. [BCD+21] for
an overview. Throughout the thesis, we assume a countably infinite domain A of possible
arguments.

2Also attacks towards sets of arguments have been considered [Ver96, Boc03, DDK+23, DDK+24].

9

2. Background

Definition 2.1. A SETAF is a pair SF = (A, R) where A ⊆ A is a finite3 set of
arguments, and R ⊆ (2A \ {∅}) × A is the attack relation. For an attack (T, h) ∈ R we
call T the tail and h the head of the attack.

If the tail T of an attack (T, h) is a single argument, we usually write (t, h) to denote
the set-attack ({t}, h). The class of SETAFs where all attacks are of this form amounts
to (standard Dung) AFs. Hence, the structure of an AF is a directed graph, while the
structure of a SETAF is a directed hypergraph.

If the tail T of an attack (T, h) also contains its head h (i.e., h ∈ T), we call (T, h) a
“self-attack”. This generalizes the special case of self-attacks in AFs, which due to the
syntactic restrictions only allow for self-attacks of the form (t, t).

Note that attacks can only stem from a non-empty tail. This is in line with the original
definition due to Nielsen and Parsons [NP06b]. However, it was shown in [CKRU24] that
one can allow for attacks from the empty set while faithfully generalizing the semantics
without changing the key properties of the well-known semantics. Intuitively, an attack
(∅, a) can be dealt with in a “pre-processing” step, where the argument a as well as all
outgoing attacks (T, h) with a ∈ T are removed from the SETAF. This is due to the fact
that a is automatically defeated, and each argument h that is the head of an outgoing
attack of a is defended against this attack. One then obtains a SETAF in accordance
with Definition 2.1 which admits the same extensions.

Given a SETAF SF = (A, R) and S, S� ⊆ A, we write S �→R a if there is a set T ⊆ S
with (T, a) ∈ R. Furthermore, we write S� �→R S if S� �→R a for some a ∈ S. For S ⊆ A,
we use S+

R to denote the set {a ∈ A | S �→R a} and define the range of S (w.r.t. R),
denoted S⊕

R , as the set S ∪ S+
R . Moreover, we use A(SF) and R(SF) to identify its

arguments A and its attack relation R, respectively.

Example 2.2. Consider the following SETAF SF = (A, R) with arguments A =
{a, b, c, d, e, f, g, h} and the attack relation

R = {(a, b), ({b, d}, c), (b, d), (d, b), (d, e), (e, d),
({d, f}, h), (f, g), (g, f), (g, h), (h, g)};

the collective attacks ({b, d}, c), ({d, f}, h) are highlighted.

aSF :

b

c

d

e

f

h

g

3While in theory it is not unreasonable to consider infinite frameworks (see e.g. [Dun24] for recent
work on infinite AFs), since our focus lies on computational properties we only consider finite sets of
arguments (as otherwise the complexity classes we consider trivialize or become inapplicable.)

10

2.1. Abstract Argumentation and Collective Attacks

For example, the arguments {d, f} are only effectively attacking h (through the violet
attack) if both d and f are accepted. {d, f} is the tail of the attack ({d, f}, h) and h
is its head. For the set S = {d, f} we have S+

R = {b, e, g, h} and S⊕
R = {b, d, e, f, g, h}.

Even though d is part of an attack ({b, d}, c) towards c we have c /∈ S+
R , since b /∈ S.

While Definition 2.1 covers the syntax of SETAFs as an extension of Dung AFs, in the
following we discuss the semantics of SETAFs and the meaning of “set-attacks”, i.e.,
attacks with sets of attacking arguments. Assume three arguments a, b, and c, where
the acceptance of a as well as b counter the acceptance of c. Note that there is some
ambiguity in this statement: (1) is the acceptance of one of a and b sufficient to counter
the acceptance of c or (2) do we have to accept both a and b to counter c? Intuitively, in
an AF with its 1-to-1 attack structure we can consider the attacks (a, c) and (b, c) as a
starting point, which turns out to capture case (1). Furthermore, in order to accept c
both a and b have to be countered. However, case (2) cannot be expressed with these
three arguments and AF-attacks alone. SETAFs on the other hand offer the possibility
to model both cases, as Example 2.3 illustrates.

Example 2.3. Left we have an AF (and, hence, also a SETAF) with two attacks
R1 = {(a, c), (b, c)}. On the right we have a SETAF with one collective attack R2 =
{({a, b}, c)}.

a b

c

a b

c

In the left framework, accepting one of a or b renders c defeated, as {a}+
R1

= {b}+
R1

= {c}.
Conversely, to accept c both a and b have to be countered. In the framework on the right
however, neither a nor b on their own attack c, as {a}+

R2
= {b}+

R2
= ∅. Accepting both a

and b effectively attacks c: {a, b}+
R2

= {c}. In order to accept c, it suffices to counter a or
b (or both). In the following, we formally recall these concepts of conflicts and defense.

The well-known notions of conflict and defense from classical Dung-style AFs naturally
generalize to SETAFs. Note that in a SETAF, a set of arguments S is conflicting only
if for some attack (T, h) both the full tail T and the head h are in S, i.e., T ∪ {h} ⊆ S.
Consequently, this means in particular that it is possible to have T � ∪{h} in a conflict-free
set, where T � ⊂ T (this concept of “partial conflicts” will be investigated in more detail
in Chapter 3).

Definition 2.4. Given a SETAF SF = (A, R), a set S ⊆ A is conflicting in SF if
S �→R a for some a ∈ S. A set S ⊆ A is conflict-free in SF , if S is not conflicting in
SF , i.e. if T ∪ {h} !⊆ S for each (T, h) ∈ R. cf (SF) denotes the set of all conflict-free
sets in SF .

11

2. Background

Defense is a central concept in abstract argumentation: the idea of countering every
incoming attack. For SETAFs, to be defended against an incoming attack (T, h) it suffices
to counter-attack a single argument t ∈ T—as this means that the set T is attacked.

Definition 2.5. Given a SETAF SF = (A, R), an argument a∈A is defended (in SF)
by a set S ⊆ A if for each B ⊆ A, such that B �→R a, also S �→R B. A set T ⊆ A is
defended (in SF) by S if each a ∈ T is defended by S (in SF).

Moreover, we make use of the characteristic function ΓSF of a SETAF SF = (A, R),
defined as ΓSF (S) = {a ∈ A | S defends a in SF} for S ⊆ A.

The semantics we study in this work are admissible, complete, grounded, preferred, stable,
naive, stage, semi-stable, ideal, and eager semantics, which we will abbreviate by adm,
com, grd pref, stb, naive, stage, sem, ideal, and eager respectively (see e.g. [BCD+21]).
We denote the set of semantics under our consideration by Σ.

Definition 2.6. Given a SETAF SF = (A, R) and a conflict-free set S ∈ cf (SF). Then,

• S ∈ adm(SF), if S defends itself in SF ,

• S ∈ com(SF), if S ∈ adm(SF) and a ∈ S for all a ∈ A defended by S,

• S ∈ grd(SF), if S = �
T ∈com(SF) T ,

• S ∈ pref(SF), if S ∈ adm(SF) and �T ∈ adm(SF) s.t. T ⊃ S,

• S ∈ stb(SF), if S �→R a for all a ∈ A \ S,

• S ∈ naive(SF), if �T ∈ cf (SF) with T ⊃ S,

• S ∈ stage(SF), if �T ∈ cf (SF) with T ⊕
R ⊃ S⊕

R ,

• S ∈ sem(SF), if S ∈ adm(SF) and �T ∈ adm(SF) s.t. T ⊕
R ⊃ S⊕

R ,

• S ∈ ideal(SF), if S ∈ com(SF), S ⊆ �
E∈pref(SF) E and �T ∈ com(SF) s.t.

T ⊆ �
E∈pref(SF) E and T ⊃ S, and

• S ∈ eager(SF), if S ∈ com(SF), S ⊆ �
E∈sem(SF) E and �T ∈ com(SF) s.t.

T ⊆ �
E∈sem(SF) E and T ⊃ S.

The relationship between the semantics has been clarified in [NP06b, DGW18, FB19]
and matches with the relations between the semantics for AFs, i.e., for any SETAF SF :

stb(SF) ⊆ sem(SF) ⊆ pref(SF) ⊆ com(SF) ⊆ adm(SF)
stb(SF) ⊆ stage(SF) ⊆ naive(SF) ⊆ cf (SF)

It has been shown by Nielsen and Parsons that Dung’s Fundamental Lemma [Dun95]
also holds for SETAFs [NP06b]: intuitively, this means for an admissible set S and two

12

2.1. Abstract Argumentation and Collective Attacks

arguments a, b which are defended by S that adding either argument again yields an
admissible set. Moreover, the other argument will again be defended by the resulting set.
This “compatibility” result forms the base for many more advanced properties of AFs
and SETAFs.

Lemma 2.7 (Fundamental Lemma [NP06b]). Let SF = (A, R) be a SETAF and S ⊆ A
be admissible in SF . Let a, b ∈ A be two arguments that are defended by S in SF , then

1. S� = S ∪ {a} is admissible in SF , and

2. b is defended by S�.

Next, we introduce the notion of the projection, which we will revisit and redefine in
Chapter 3. The idea is to focus only on a part of the framework, indicated by a set of
arguments S. Since the directed hypergraph-structure of SETAFs allows for the case
where the head and part of the tail are inside the set S while a non-empty part of the
tail is outside S, a special modification is necessary. In this case, we straightforwardly
“split” the attack such that for an attack (T, h) in the projection w.r.t. S the remaining
attack is (T ∩ S, h). Note that the projection is purely syntactical and should not be
confused with the reduct that we will introduce in Chapter 3.

Definition 2.8. Let SF = (A, R) be a SETAF and S ⊆ A. We define the projection
SF↓S of SF on S as

SF↓S = (S, {(T �, h) | (T, h) ∈ R, h ∈ S, T � = T ∩ S, T � != ∅}).

We illustrate the semantics and the concept of projection in the following example.

Example 2.9. Consider again the SETAF SF from Example 2.2 (left) and its extensions
w.r.t. some semantics σ ∈ Σ (right).

a

b

c

d

e

f

h

g

com(SF) = {{a, c}, {a, c, e}, {a, c, d}, {a, c, g},
{a, c, e, g}, {a, c, d, g}, {a, c, f},
{a, c, d, f}, {a, c, e, f, h}}

pref(SF) = {{a, c, e, g}, {a, c, d, g}, {a, c, d, f},
{a, c, e, f, h}}

grd(SF) = {{a, c}}

Intuitively, the projection “hides” parts of the SETAF while we only concentrate on some
remaining arguments. Note however, that the extensions do not in general carry over
from the “full” SETAF to its part. We project SF to the arguments {b, c, d, h} (left) and
see that the extensions are incomparable to the original framework.

13

2. Background

b

c

d

h

SF↓{b,c,d,h} :
com(SF) = {∅, {b, c, h}, {c, d}}
pref(SF) = {{b, c, h}, {c, d}}
grd(SF) = {∅}

After the projection, the argument b becomes acceptable, and c is no longer in every
complete extension. Among others, these issues are formally captured and ultimately fixed
in different ways in the next sections.

To investigate the structure of a SETAF, we use the notion of the primal graph: a directed
graph that resembles the structure of the SETAF’s directed hypergraph. We will use
this extension of our graph-related terminology to the directed hypergraph structure of
SETAFs several times in the remaining part of this thesis as a starting point for structural
properties. Intuitively, collective attacks are “split up” in order to obtain a directed
graph with a similar structure as the original SETAF.

Definition 2.10 (Primal Graph). Let SF = (A, R) be a SETAF. Its primal graph is
defined as primal(SF) = (A, R�) with R� = {(t, h) | (T, h) ∈ R, t ∈ T}.

We illustrate the primal graph with the following example.

Example 2.11. Recall the SETAF SF . Its primal graph primal(SF) looks as follows.

a

b

cSF :

d

e

f

h

g a

b

cprimal(SF) :

d

e

f

h

g

Another technical notion we make use of is the incidence graph. As with the primal graph
the main idea is to implement the hypergraph structure of a SETAF via a directed graph.
However, the incidence graph has both the arguments and the attacks as nodes. Hence,
the incidence graph is bipartite by construction, as the argument-nodes only have edges
with attack-nodes and vice versa. An edge from an argument-node to an attack node
indicates that the argument is in the tail of the attack, an edge from an attack-node to
an argument-node indicates that the argument is the head of the attack. While several
SETAFs can map to the same primal graph, the incidence graph uniquely characterizes a
SETAF.

Definition 2.12. Let SF = (A, R) be a SETAF. We define the incidence graph of SF as
Inc(SF) = (V, E) with V = A ∪ R and E = {(t, (T, h)), ((T, h), h) | (T, h) ∈ R, t ∈ T}.

We illustrate the incidence graph with the following example.

14

2.2. Complexity of Reasoning in Abstract Argumentation

Example 2.13. The incidence graph Inc(SF) for SF looks as follows.

a

b

c

d

e

f

h

g

(a, b)

(b, d)

(d, b)

({b, d}, c)
(d, e)

(e, d)
({d, f}, h)

(f, g)

(g, f)

(h, g)

(g, h)

2.2 Complexity of Reasoning in Abstract Argumentation
We assume the reader to have basic knowledge in computational complexity theory4, in
particular we make use of the complexity classes L (logarithmic space), P (polynomial
time), NP (non-deterministic polynomial time), coNP, DP (L1 ∩ L2 for L1 ∈ NP, L2 ∈
coNP), ΘP

2 (PNP[log(n)]), ΣP
2 (NPNP), and ΠP

2 (coNPNP).

For a more fine-grained complexity analysis we make use of the complexity class FPT
(fixed-parameter tractability): a problem is fixed-parameter tractable w.r.t. a parameter
if there is an algorithm with runtime O(f(p) · poly(n)), where n is the size of the input, p
is an integer describing the instance called the parameter value, and f(·) is an arbitrary
computable function independent of n (typically at least exponential in p). We also make
use of the class XP. A problem is in XP w.r.t. a parameter if there is an algorithm with
runtime O(nO(p)), where again n is the size of the input and p is the parameter value.

We have the following relationships between these classes (an arrow from class C to C�

means C ⊆ C�, we omit some arrows that are immediate due to transitivity):

L P

NP

coNP

DP ΘP
2

ΣP
2

ΠP
2

P FPT XP

4For a gentle introduction to complexity theory in the context of formal argumentation, see [DD18].

15

2. Background

For a given SETAF SF = (A, R) and an argument a ∈ A, we consider the following
decision problems (under semantics σ):

• Credulous acceptance Credσ: Given SF = (A, R) and a ∈ A, is it true that a ∈ E
for some E ∈ σ(SF)?

• Skeptical acceptance Skeptσ: Given SF = (A, R) and a ∈ A, is it true that a ∈ E
for each E ∈ σ(SF)?

• Verification Verσ: Given SF = (A, R) and E ⊆ A, is it true that E ∈ σ(SF)?

In this thesis, we investigate the computational complexity of these problems for SETAFs
that are structured in some way. As a starting point for our structural analyses we
take the graph classes that were investigated for SETAFs [DKW21a]. The graph classes
we focus on are acyclicity, even-cycle-freeness, self-attack-free full-symmetry, primal-
bipartiteness, and odd-cycle-freeness. We denote the set of SETAFs that belong to these
graph classes by ACYC, NOEVEN, SYM, BIP, and NOODD, respectively. These graph
classes generalize the respective counterparts on directed graphs, which form tractable
graph-fragments for AFs [Dun07, DD18].

As a fundamental concept towards the graph classes we first define cycles for SETAFs.

Definition 2.14. Let SF = (A, R) be a SETAF. A cycle C of length n is a sequence
(a1, . . . , an, a1) s.t. for 1 ≤ i ≤ n the arguments ai ∈ A are pairwise distinct, and there
exists attacks (Ti, ai+1) ∈ R with ai ∈ Ti , and (Tn, a1) ∈ R.

Clearly, the cycles of a SETAF correspond to directed cycles in its primal graph.

Definition 2.15. Let SF = (A, R) be a SETAF. SF is acyclic if it contains no cycle,
even-cycle-free if it contains no cycle of even length, and odd-cycle-free if it contains no
cycle of odd length.

Example 2.16. Recall the SETAF SF , we highlight its only odd length cycle (f, g, h, f).

a

b

cSF :

d

e

f

h

g

We continue with the notion of full-symmetry, which in our context is only relevant for
self-attack-free SETAFs5, i.e., there is no attack (T, h) with h ∈ T .

5While this definition goes back to the author’s master thesis [Kön20], note that an equivalent
definition called ‘strong symmetry’ was published only few weeks later by Bienvenu and Bourgaux [BB20],
who also showed that this class of SETAFs are coherent (i.e., preferred and stable extensions coincide).

16

2.2. Complexity of Reasoning in Abstract Argumentation

Definition 2.17. Let SF = (A, R) be a self-attack-free SETAF. SF is fully-symmetric
if for each (T, h) ∈ R there are attacks

(T \ {t}) ∪ {h}, t

� ∈ R for each t ∈ T .

In words, a SETAF is fully-symmetric if for each attack all involved arguments attack
every single involved argument. This is illustrated in the following example.

Example 2.18. The following SETAF is fully-symmetric. Note how e.g. the attacks
involving S = {a, b, c} are for each x ∈ S s.t. (S \ {x}, x). Moreover, also “classical”
symmetry as in the case of the arguments c and d is covered by this definition.

a

b c

d

As a final graph-class we consider primal-bipartiteness. A SETAF is primal-bipartite if
its primal graph is bipartite. This means that within the two partitions, no (parts of)
attacks occur.

Definition 2.19. Let SF = (A, R) be a SETAF. SF is primal-bipartite if there is a
partitioning of A into two sets (Y, Z) s.t.

• Y ∪ Z = A, Y ∩ Z = ∅, and

• for every (T, h) ∈ R either (1) T ⊆ Y and h ∈ Z, or (2) T ⊆ Z and h ∈ Y .

The complexity landscape of SETAFs coincides with that of Dung AFs and is de-
picted in Table 2.1 (“General”). As SETAFs generalize Dung AFs the hardness re-
sults for Dung AFs [CMDM05, DT96, DBC02, Dvo12, DW10, DW11, Dun09, CCD12]
(for a survey see [DD18]) carry over to SETAFs. Also the same upper bounds hold for
SETAFs [DGW18].

In addition to the computational complexity for reasoning in arbitrary SETAFs, Table 2.1
also depicts the known tractable fragments of reasoning problems for SETAFs [DKUW24].
If these properties are satisfied for the underlying hypergraph of a SETAF the reasoning
problems become (mostly) computationally easy (i.e., polynomial-time). These fragments
are acyclicity, even-cycle-freeness, self-attack-free full-symmetry, and primal-bipartiteness.
Moreover, while odd-cycle-freeness is not considered a tractable fragment due to the
(co)NP-hardness results, a drop to the first level of the polynomial hierarchy can be
observed in this class. Moreover, the verification of preferred extensions is tractable for
odd-cycle-free SETAFs.

While for acyclicity, even-cycle-freeness, and primal-bipartiteness it was shown that the
respective restriction on the primal graph suffices for computational ease, the same is not
the case for symmetry: in [DKW21a] it was shown that primal-symmetry only admits a

17

2. Background

cf grd adm com stb pref naive sem stage ideal eager
Credσ in P P-c NP-c NP-c NP-c NP-c in P ΣP

2 -c ΣP
2 -c in ΘP

2 ΠP
2 -c

General Verσ in P P-c in L in L in L coNP-c in P coNP-c coNP-c in ΘP
2 DP-c

Skeptσ in P P-c triv. P-c coNP-c ΠP
2 -c in P ΠP

2 -c ΠP
2 -c in ΘP

2 ΠP
2 -c

Credσ in P P-c P-c P-c P-c P-c in P P-c P-c in P in P
ACYC Verσ in P in P in L in L in L in L in P in L in L in P in P

Skeptσ in P P-c triv. P-c P-c P-c in P P-c P-c in P in P
Credσ in P P-c P-c P-c P-c P-c in P P-c ΣP

2 -c in P in P
NOEVEN Verσ in P in P in L in P in P in P in P in P in coNP in P in P

Skeptσ in P P-c triv. P-c P-c P-c in P P-c ΠP
2 -c in P in P

Credσ triv. P-c NP-c NP-c NP-c NP-c in P NP-c NP-c coNP-c coNP-c
NOODD Verσ in P in P in L in P in P in P in P in P in P coNP-c coNP-c

Skeptσ in P P-c triv. P-c coNP-c coNP-c in P coNP-c coNP-c coNP-c coNP-c
Credσ triv. in L triv. triv. triv. triv. triv. triv. triv. in P in P

SYM Verσ in P in P in L in L in P in P in P in P in P in P in P
Skeptσ in P in L triv. in L in L in L in L in L in L in P in P
Credσ triv. P-c P-c P-c P-c P-c in P P-c P-c in ΘP

2 in ΠP
2

BIP Verσ in P in P in L in L in L in L in P in L in L in ΘP
2 in DP

Skeptσ in P P-c triv. P-c P-c P-c in P P-c P-c in ΘP
2 in ΠP

2

Table 2.1: Graph fragments in SETAFs. C-c denotes completeness for class C; “triv.”
denotes a trivial problem (either all instances are positive or all instances are negative).

shortcut for determining whether an argument is in the grounded extension, but otherwise
the hardness-results for each semantics σ ∈ Σ still applies.

Many of the above mentioned hardness-results are based on (variations of) the so-called
standard reduction, see e.g. [DD18, Reduction 3.6]. The idea is to express the complexity
of the boolean satisfiability problem in an AF. As we will base some of our complexity
results for SETAFs on the standard reduction, we briefly recall the construction and
some known results.

Reduction 2.20 (Standard Reduction). Let ϕ be a formula in CNF (conjunctive normal
form) with clauses C over atoms Y . We construct the AF Fϕ as follows:

A ={ϕ} ∪ C ∪ Y ∪ {ȳ | y ∈ Y },

R ={(c, ϕ), | c ∈ C} ∪ {(y, ȳ), (ȳ, y) | y ∈ Y } ∪
{(y, c) | y ∈ c, c ∈ C} ∪ {(ȳ, c) | ȳ ∈ c, c ∈ C}

An example of the standard reduction is depicted in Figure 2.1.

Some of the main results from the literature regarding the semantics under our consider-
ation can be summarized as follows [DD18].

18

2.2. Complexity of Reasoning in Abstract Argumentation

ϕ

c1 c2 c3

y1 ȳ1 y2 ȳ2 y3 ȳ3 y4 ȳ4

ϕ̄

Figure 2.1: The standard reduction applied to ϕ with atoms Y = {y1, y2, y3, y4}, and
clauses C = {{y1, y2, y3}, {ȳ1, ȳ2, ȳ4)}, {ȳ2, ȳ3, y4}}.

Theorem 2.21. Let ϕ be a propositional formula in CNF and Fϕ the corresponding AF
from the standard reduction. The following statements are equivalent:

1. the formula ϕ is satisfiable,

2. the argument ϕ is credulously accepted in Fϕ w.r.t. the semantics σ ∈ {adm, com, stb,
pref, sem, stage},

3. the argument ϕ̄ is not skeptically accepted in Fϕ w.r.t. the semantics σ ∈ {stb, pref,
sem, stage}, and

4. the set {ϕ̄} is not the unique ideal/eager extension.

Based on the notions from this chapter, we will in the following investigate principles and
advanced algorithmic techniques for SETAFs. Note that to improve readability we recall
the AF-pendants of our techniques in the respective chapters. E.g., the state-of-the-art
for SCC-recursiveness, backdoors, and treewidth on AFs (which are the basis for our
considerations) are discussed before we introduce our corresponding SETAF notions.

19

CHAPTER 3
Principle-Based Analysis

In an argumentation process, the selection of consistent sets of arguments (so called
extensions) is the final step on the abstract level. Naturally, different approaches for this
selection are relevant for different problems, which is why a variety of semantics has been
proposed. To classify and distinguish the various semantics the principle-based analysis
is an established method in formal argumentation research [BG07]. Principle-based
investigations have recently been performed e.g. for AFs [vdTV17], ranking seman-
tics [BDKM17], preference-based argumentation frameworks [KvdTV18], quantitative
bipolar argumentation frameworks [BRT19], and abstract agent argumentation frame-
works [YCQ+21].

In this chapter we consider the principle-based approach for argumentation frameworks
with collective attacks (SETAFs). Although we will see that in many cases the behavior
generalizes from AFs to the setting with collective attacks, our study also reveals situations
where caution is required and thus emphasizes properties we deem natural for AFs. In
fact, many AF principles like SCC-recursiveness [BGG05] or the recently introduced
modularization property [BBU20a] are concerned with partial evaluation of the given
graph and step-wise computation of extensions. We will pay special attention to these
kind of principles since (a) they require to establish novel technical foundations when
generalizing the underlying structure from simple graphs to hypergraphs and (b) have
immediate implications for the design of solvers. Along the way, we will also introduce a
SETAF version for the reduct of an AF [BBU20b] which has proven to be a handy tool
when investigating argumentation semantics.

Finally, we will utilize prior work regarding graph-classes6, which in conjunction with the
formerly established principles provide a framework for efficient computation. We will

6While Chapter 3 of this thesis largely comprises of results from [DKUW24], we list the work on
graph classes which appeared in the same article as a prior contribution in the background, as these
results were obtained during work on the author’s master thesis [Kön20]. However, we extend and utilize
these results: in Section 3.5.2 we show that the classes remain easy in the presence of mitigated attacks

21

3. Principle-Based Analysis

apply these results in the context of SCC-recursiveness to establish the computational
speedup, providing novel algorithms for the evaluation of frameworks along the way.

The main takeaway of this chapter is that our natural extensions of the AF principles
are well-behaving for SETAFs and can be utilized for efficient computation. We show
that basic properties are preserved, as well as their implications in terms of the structure
of extensions. More specifically, this chapter is structured as follows.

• First, we generalize and analyze basic principles of abstract argumentation for
SETAFs in Section 3.1. Moreover we introduce novel principles that are trivial for
standard AFs, but provide additional insights in the case of SETAFs.

• We propose the E-reduct SF E for a SETAF SF and a set E of arguments and
investigate its core properties, including the modularization property (Section 3.2).
Moreover, we use the reduct to provide alternative characterizations of SETAF
semantics.

• We introduce uninfluenced sets of arguments in SETAFs as the counterpart of
unattacked sets in AFs. We then propose and investigate a SETAF version of the
directionality and non-interference principles (Section 3.3) and SCC-recursiveness
(Section 3.4).

• We discuss the computational implications of modularization, directionality and
SCC-recursiveness in Section 3.5. In particular we illustrate the potential for
incremental algorithms. We then refine these results in order to be applicable in
even more cases. We introduce and analyze graph classes for SETAFs and exemplify
their use for efficient computation using the SCC-recursive scheme, generalizing
known (parameterized) tractability results from the literature.

• Finally, in Section 3.6 we discuss the results of this chapter.

This chapter is based on the paper [DKUW24], which in turn contains content of the
papers [DKUW21], [DKW21a], and [DKUW22].

3.1 Basic Principles
We start our principle-based analysis of SETAF semantics by generalizing basic principles
from AFs. Satisfaction (or non-satisfaction) of principles allows us to distinguish semantics
with respect to fundamental properties that are crucial in certain applications.

The principles we consider have natural counterparts for Dung-style AFs, simply by
applying them to SETAFs where |T | = 1 for each tail. Hence, if the AF counterpart
of a principle is violated by a semantics, this carries over to the SETAF principle. We
therefore formalize the following observation:
(see Definition 3.87) and (with the notable exception of full-symmetry) are applicable in the context of
SCC-recursiveness.

22

3.1. Basic Principles

cf grd adm com stb pref naive sem stage ideal eager
Conflict-freeness ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Defense ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓

Admissibility ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓

Reinstatement ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓

CF-reinstatement ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Weak reinstatement ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓

Naivety ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗

I-maximality ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Allowing abstention ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓

Crash resistance ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓

Tightness ∗✗∗ ✓ ✗ ✗ ∗✗∗ ✗ ∗✗∗ ✗ ∗✗∗ ✓ ✓

Modularization ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓

Directionality ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✗

Semi-directionality ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✗

Weak-directionality ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗

Non-interference ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓

SCC-recursiveness ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

Allowing partial conflicts I ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Allowing partial conflicts II ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗

Allowing partial conflicts III ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗

Tail strengthening ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Attack weakening ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 3.1: An overview of our results regarding SETAF principles. Differences from the
respective results for AFs are highlighted (∗✗∗).

Observation 3.1. Let P be a SETAF-principle that properly generalizes an AF-principle
P AF in the sense that for SETAFs SF with |T | = 1 for each (T, h) ∈ R(SF), every
semantics σ satisfies P iff it satisfies P AF . In this case, if a semantics σ does not satisfy
P AF , then σ does not satisfy P .

As all of our principles properly generalize the respective AF-principles, whenever a
principle is not satisfied for AFs, this translates to the corresponding SETAF principle as
well.

An overview of the results of the principle-based analysis is given in Table 3.1. Note that
the SETAF-specific principles Allowing Partial Conflicts I–III, Tail Strengthening, and
Attack Weakening trivialize or are not applicable to AFs.

23

3. Principle-Based Analysis

3.1.1 Basic Properties
Now we follow [vdTV17] and introduce analogous principles for SETAFs. Our first set of
principles is concerned with basic properties of semantics.

Principle 3.2 (Conflict-freeness [Dun95, NP06b]). A semantics σ satisfies conflict-
freeness if and only if for all SETAFs SF , every E ∈ σ(SF) is conflict-free.

As conflict-freeness is a basic principle that underlies most semantics by definition, it is
not surprising that all semantics under our consideration satisfy this principle.

Proposition 3.3. Each σ ∈ Σ satisfies conflict-freeness.

The concept of defense is central to most classical semantics of abstract argumentation.
This central notion is the core of Dung’s framework [Dun95] and has been adapted by
Nielsen and Parsons [NP06b] for SETAFs to take collective attacks into account.

Principle 3.4 (Defense [Dun95, NP06b]). A semantics σ satisfies defense if and only if
for all SETAFs SF , we have that E ∈ σ(SF) implies E ⊆ ΓSF (E).

Most semantics that satisfy defense are refinements of adm. Thus satisfaction of defense
is encoded explicitly within their definition. For stable semantics we recall the well-
known relation stb(SF) ⊆ pref(SF) for any SETAF SF . The semantics based only on
conflict-freeness but not defense do not satisfy admissibility (as it is the case in AFs), as
can be easily seen in the following Example 3.5.

Example 3.5. Consider the following SETAF SF . We have {a, c} ∈ cf (SF), as well as
{a, c} ∈ naive(SF), and {a, c} ∈ stage(SF), but a is not defended by {a, c}, which means
that {a, c} is not an extension in any of the admissibility-based semantics.

a

b c

Proposition 3.6. The principle defense is satisfied by grd, adm, com, stb, pref, sem,
ideal, and eager, and violated by cf , naive, and stage.

The admissibility principle combines the former two, defense and conflict-freeness.

Principle 3.7 (Admissibility [Dun95, NP06b]). A semantics σ satisfies admissibility if
and only if for all SETAFs SF , every E ∈ σ(SF) is admissible.

Since our semantics σ ∈ Σ all satisfy conflict-freeness by Proposition 3.3, we have that
these semantics satisfy the admissibility principle if and only if they satisfy defense.
Hence, the results from Proposition 3.6 carry over.

24

3.1. Basic Principles

Proposition 3.8. The principle admissibility is satisfied by grd, adm, com, stb, pref,
sem, ideal, and eager, and violated by cf , naive, and stage.

In the following, we generalize different versions of reinstatement. This principle is
concerned the question whether or not all defended arguments are indeed included in
a given σ-extension E. The principle is thus inspired by the definition of completeness
which requires a ∈ E whenever E defends a. Speaking in terms of the characteristic
function, admissible sets satisfy E ⊆ ΓSF (E) whereas complete extensions refine this to
E = ΓSF (E). The reinstatement principle formalizes the “⊇”-direction.

Principle 3.9 (Reinstatement [BG07]). A semantics σ satisfies reinstatement if and
only if for all SETAFs SF , we have that E ∈ σ(SF) implies E ⊇ ΓSF (E).

Example 3.10. Recall the SETAF SF from Example 2.2. It is easy to check that {a} is
admissible in SF . Since {a} defends c, we have ΓSF ({a}) = {a, c} � {a}, which means
that admissible semantics violates reinstatement.

aSF :

b

c

d

e

f

h

g

Complete semantics satisfies reinstatement by definition, the other results follow from
the known relations stb(SF) ⊆ sem(SF) ⊆ pref(SF) ⊆ com(SF), as well as ideal(SF) ⊆
com(SF), and eager(SF) ⊆ com(SF).

Proposition 3.11. The principle reinstatement is satisfied by grd, com, stb, pref, sem,
ideal, and eager, and violated by cf , adm, naive, and stage.

For admissibility-based semantics, the fundamental lemma (originally due to [Dun95],
for SETAFs in [NP06b]) ensures conflict-freeness for additional defended arguments.
Formally, if E ∈ adm(SF) and a ∈ ΓSF (E), then E ∪ {a} ∈ cf (SF). For semantics based
on conflict-freeness such as naive or stage, it might happen that some extension E is
in conflict with some argument a, although a ∈ ΓSF (E). However, if E ∪ {a} /∈ cf (SF)
is the case, then we do not expect it to be a σ-extension anymore (if σ is cf-based).
Therefore, the following refinement of reinstatement has been proposed, which explicitly
requires E ∪ {a} to be conflict-free.

Principle 3.12 (CF-Reinstatement [BG07]). A semantics σ satisfies CF-reinstatement
if and only if for all SETAFs SF , we have that E ∈ σ(SF), a ∈ ΓSF (E), and E ∪ {a} ∈
cf (SF) imply a ∈ E.

Due to the fundamental lemma, for admissibility-based semantics this notion simply
coincides with reinstatement. However, also naive and stage satisfy CF-reinstatement,

25

3. Principle-Based Analysis

which can be inferred from their respective maximality requirements: assume for a /∈ E
it holds E ∪ {a} ∈ cf (SF), then E cannot be a naive extension as E ∪ {a} ⊃ E. Finally,
recall that stage(SF) ⊆ naive(SF) for every SETAF SF .

Proposition 3.13. The principle CF-reinstatement is satisfied by grd, com, stb, pref,
naive, sem, stage, ideal, and eager, and violated by cf and adm.

Another possible way to refine reinstatement is by restricting our attention to so-called
strongly defended arguments. Strong defense was initially defined as the underlying defense
notion for strong admissibility [BG07, Cam14]. So instead of imposing E ∪ {a} ∈ cf (SF)
as a premise, we take fewer candidates a into consideration: effectively, a strongly
defended argument does not play a role in its own defense. Strong defense for SETAFs is
defined as follows7.

Definition 3.14. Given a SETAF SF = (A, R), an argument a ∈ A is strongly defended
(in SF) by a set S ⊆ A if for each (B, a) ∈ R there is an argument b ∈ B and a set
S� ⊆ S such that (S�, b) ∈ R, and each s ∈ S� is strongly defended by S \ {a}.

Naturally, the induced weakening of reinstatement is given as follows.

Principle 3.15 (Weak reinstatement [BG07]). A semantics σ satisfies weak reinstate-
ment if and only if for all SETAFs SF , if E ∈ σ(SF) and E strongly defends a ∈ A,
then a ∈ E.

As in the AF case, if a set strongly defends an argument, then it also (classically) defends
said argument. Hence, if a semantics satisfies reinstatement, also weak reinstatement is
satisfied. The positive results in Table 3.1 are due to this property. The negative cases
follow from Observation 3.1 and the respective counter-examples from AFs.

Proposition 3.16. The principle weak reinstatement is satisfied by grd, com, stb, pref,
sem, ideal, and eager, and violated by cf , adm, naive, and stage.

The final two principles we consider in this subsection are concerned with the structure of
the σ-extensions. First, naivety checks whether each E ∈ σ(SF) is maximal conflict-free.

Principle 3.17 (Naivety [vdTV17]). A semantics σ satisfies naivety if and only if for
all SETAFs SF , E ∈ σ(SF) implies that E is ⊆-maximal in cf (SF).

Again, the negative results are due to Observation 3.1; the positive ones follow from the
relation stb(SF) ⊆ stage(SF) ⊆ naive(SF).

7Strong admissibility has been generalized to Abstract Dialectical Frameworks (ADFs) [KVV22] and
SETAFs can be interpreted as special kind of ADF [Pol16, LPS16]. In fact, our definition of strong
defense is compatible with the respective notions on ADFs.

26

3.1. Basic Principles

Proposition 3.18. The principle naivety is satisfied by stb, naive, and stage and violated
by cf , grd, adm, com, pref, sem, ideal, and eager.

Second, I-maximality is satisfied iff σ(F) forms an anti-chain, i.e. no two extensions are
in proper subset relation to each other. Here, I-maximality is due to [BG07].

Principle 3.19 (I-maximality [BG07]). A semantics σ satisfies I-maximality if and only
if for all SETAFs SF , if E, E� ∈ σ(SF) and E ⊆ E�, then E = E�.

Oftentimes, I-maximality is directly implemented in the definition of the σ-extensions
(most famously grd and pref). Further results for SETAFs have been shown in [DFW19].

Proposition 3.20. The principle I-maximality is satisfied by grd, stb, pref, naive, sem,
stage, ideal, and eager, and violated by cf , adm, and com.

3.1.2 Advanced Principles
The next principle we discuss is called allowing abstention [BCG11]. As the name suggests,
it allows the underlying semantics to be indecisive in certain scenarios. Formally, suppose
we have some target argument a and two extensions E ∈ σ(SF) as well as E� ∈ σ(SF)
where a ∈ E, but a ∈ (E�)+; that is, E accepts a, but E� rejects it. In this case, since
the status of a is not determined, one might argue that σ should also admit an extension
where a is neither accepted nor rejected. This idea is formalized by the allowing abstention
principle.

Principle 3.21 (Allowing abstention [BCG11]). A semantics σ satisfies allowing absten-
tion if and only if for all SETAFs SF = (A, R), for all a ∈ A, if there exist E, E� ∈ σ(SF)
with a ∈ E and a ∈ (E�)+, then there also exists some E�� ∈ σ(SF) such that a !∈ (E��)⊕.

As grd, ideal, and eager always admit a single extension, the principle is trivially satisfied
by these semantics. Moreover, allowing abstention is satisfied by complete semantics,
since—as in AFs—if there exist E, E� ∈ com(SF) with a ∈ E and a ∈ E�+, this means
a /∈ G⊕ where G ∈ grd(SF). For σ ∈ {cf , adm}, this follows from ∅ ∈ σ(SF) for all
SETAFs SF .

Proposition 3.22. The principle allowing abstention is satisfied by cf , grd, adm, com,
ideal, and eager, and violated by stb, pref, naive, sem, and stage.

The next principle we discuss is called crash resistance [CCD12]. It formalizes that it
should not be possible to render certain parts of an argumentation framework completely
meaningless by adding a particular set of (disjoint) arguments. This idea is formalized in
the definition of a contaminating SETAF.

Definition 3.23. We call a SETAF SF � = (A�, R�) contaminating for a semantics σ
if for every SETAF SF = (A, R) with A ∩ A� = ∅, it holds that σ(SF ∪ SF �) = σ(SF �),
where SF ∪ SF � is the SETAF (A ∪ A�, R ∪ R�).

27

3. Principle-Based Analysis

That is, the semantics of the given SETAF SF = (A, R) are entirely overwritten due to
the presence of SF �. Observe that SF � has this influence on every conceivable SETAF
SF . The crash resistance principle forbids the existence of such a contaminating SETAF.

Principle 3.24 (Crash resistance). A semantics σ satisfies crash resistance if there is
no contaminating SETAF for σ.

As in the case for AFs, stb is the only semantics considered in this thesis which is not
crash-resistant. The reason is that one can choose SF � to be an isolated odd cycle,
yielding stb(SF ∪ SF �) = ∅ for any SETAF SF . The other semantics are more robust
in this regard and yield σ(SF ∪ SF �) = {E ∪ E� | E ∈ σ(SF), E� ∈ σ(SF �)} whenever
A ∩ A� = ∅.

Proposition 3.25. The principle crash resistance is satisfied by cf , grd, adm, com, pref,
naive, sem, stage, ideal, and eager, and violated by stb.

The last principle we consider in this subsection is inspired by research on expressiveness
in abstract argumentation [DDLW15, DRW20]. In this context, the notion of tightness
has been introduced. It formalizes that if E is a σ-extension and a /∈ E, then some b ∈ E
must be the culprit for a not being acceptable. Towards formalizing this, we need the
notion of pairs, i.e. jointly acceptable arguments.

Definition 3.26. Let SF be a SETAF and σ some semantics. We define the set of pairs
as Pairsσ(SF) = {(a, b) | ∃E ∈ σ(SF) s.t. {a, b} ⊆ E}.

A semantics σ satisfies the tightness principle if for an argument a that does not belong
to an extension E ∈ σ(SF) there is some b ∈ E such that {a, b} is not part of any
σ-extension, i.e. there is a single argument b in E which can be considered responsible
for excluding a.

Principle 3.27 (Tightness). A semantics σ is tight if for all SETAFs SF = (A, R), for
all E ∈ σ(SF) and all credulously accepted a ∈ A, the following implication holds: if
E ∪ {a} /∈ σ(SF), then there is some b ∈ E such that (a, b) /∈ Pairsσ(SF).

Clearly, any unique status semantics σ, i.e. |σ(SF)| = 1 for each SF , is tight. However,
while Dunne et al. showed that on AFs tightness holds also for conflict-freeness, naive,
stable, and stage semantics, this is not the case for SETAFs, as the following example
illustrates (see also [DFW19]).

Example 3.28. Consider the following SETAF SF .

a

b c

28

3.1. Basic Principles

We have naive(SF)=stb(SF)=stage(SF)={{a, b}, {b, c}, {a, c}}. Consider for example
c /∈ {a, b}. Tightness would require (a, c) /∈ Pairsσ(SF) or (b, c) /∈ Pairsσ(SF), but both
{a, c} and {b, c} are σ-extensions. Likewise, the same counter-example illustrates that
conflict-free sets are not tight.

Thus, we end up with only the unique status semantics grd, ideal, and eager being tight.

Proposition 3.29. The principle tightness is satisfied by grd, ideal, and eager, and
violated by cf , adm, com, pref, naive, sem, stage, and stb.

3.1.3 SETAF-Specific Principles
The principles we discussed up until this point were inspired by known AF principles and
have been suitably adjusted to SETAFs. In this section we want to introduce genuine
SETAF principles, i.e., we discuss properties which are not applicable to or trivialize for
standard Dung-AFs.

Towards our first SETAF principle, observe that a conflict within some set E of arguments
requires the whole tail of a corresponding attack to be contained in E; that is, there
has to be some (T, a) ∈ R with a ∈ E and T ⊆ E. The underlying intuition is that
attacks are only “active” if the whole tail is accepted. Semantics which adhere to this
intuition should be able to distinguish between attacks that are fully active, i.e., T ⊆ E
and attacks which are only partially active, i.e., T ∩ E != ∅, but T � E. We therefore
consider the following notion of a partial conflict.

Definition 3.30. Let SF = (A, R) be a SETAF and E ⊆ A. We say E contains a
partial conflict whenever there is some (T, a) ∈ R with a ∈ E and T ∩ E != ∅ as well as
T � E.

We illustrate this notion with the following Example 3.31.

Example 3.31. Consider the following SETAF. The set {a, c} contains a partial conflict,
but is acceptable w.r.t. the conflict-free based semantics, as it is not conflicting. Moreover,
in the admissibility-based semantics {a, c} is accepted, since a is unattacked and c is
defended by a.

a

b

c

The way SETAF semantics are designed, semantics should usually allow partial conflicts
(which we will abbreviate by “APC”).

29

3. Principle-Based Analysis

Principle 3.32 (Allowing Partial Conflicts I). A semantics σ satisfies the principle
allowing partial conflicts I if there is some SETAF SF and some extension E ∈ σ(SF)
s.t. E contains some partial conflict.

Observe that for Dung-AFs partial conflicts never exist, since the conditions T ∩ E != ∅
as well as T � E can never be met simultaneously for a singleton T . Hence this principle
is trivially violated for AFs. For SETAFs, it is also easy to see that all semantics under
our consideration satisfy APC I.

Proposition 3.33. Each σ ∈ Σ satisfies allowing partial conflicts I.

We can strengthen this requirement as follows. Intuitively, we say for a given extension
E we can add a new attack (T, h) and still have E as an extension in the remaining
framework if at least one argument in T is already attacked by E.

Example 3.34. We continue with the SETAF from Example 3.31. Assume the attack
({a, b}, c) is originally not part of the framework, but added later. Consider the set
E = {a, c}: we have a ∈ E and b ∈ E+. If the principle APC II is satisfied, adding the
attack ({a, b}, c) will not render E unacceptable (if it was acceptable before).

a

b

c

Principle 3.35 (Allowing Partial Conflicts II). A semantics σ satisfies the principle
allowing partial conflicts II if for every SETAF SF = (A, R) and every E ∈ σ(SF) it holds
for all h ∈ E, T1 ⊆ E, ∅ � T2 ⊆ E+ also E ∈ σ(SF �) where SF � = (A, R∪{(T1 ∪T2, h)}).

Since in admissibility-based semantics this added attack has no effect (as the tail is
attacked), these semantics satisfy the principle. The exception to this rule is semi-stable
semantics, as the introduction of the new attack might lead to a different preferred
extension with a larger range. Finally, since no conflict is introduced, also cf and
naive satisfy APC II. The counterexamples for sem, stage, and eager are illustrated in
Example 3.39.

Proposition 3.36. The principle allowing partial conflicts II is satisfied by cf , grd, adm,
com, stb, pref, naive, and ideal, and violated by sem, stage, and eager.

In APC II we require that for the introduced attack (T1 ∪ T2, h) there is at least one
argument in T2, i.e., there is at least one argument in T1 ∪ T2 that is attacked by E.
However, if we only require an argument that is not in E (instead of attacked by E), we
end up with a stronger requirement, as illustrated in Example 3.37.

30

3.1. Basic Principles

Example 3.37. As in Example 3.34 assume the attack ({a, b}, c) is originally not part
of the framework, but added later. Consider again the set E = {a, c}: we have a ∈ E and
b /∈ E (but also b /∈ E+). If the principle APC III is satisfied, adding the attack ({a, b}, c)
will not render E unacceptable (if it was acceptable before).

a

b

c

Principle 3.38 (Allowing Partial Conflicts III). A semantics σ satisfies the principle
allowing partial conflicts III if for every SETAF SF = (A, R) and every E ∈ σ(SF) it
holds for all h ∈ E, T1 ⊆ E, ∅ � T2 ⊆ A \ E also E ∈ σ(SF �) where SF � = (A, R ∪ {(T1 ∪
T2, h)}).

First note that for stable semantics APC II and APC III coincide, as for any E ∈ stb(SF)
it holds E+ = A \ E by definition. Similarly, for the conflict-freeness based semantics cf
and naive it plays no role whether an argument is attacked or not, hence, APC III is still
satisfied for these semantics. Most admissibility-based semantics under our consideration
violate APC III, as the introduction of an attack (T, h) might lead to a situation where
h is not defended, as Example 3.37 illustrates: while c was originally trivially acceptable
w.r.t. the admissibility-based semantics grounded, admissible, complete, preferred, and
ideal (as c was unattacked), after adding the attack ({a, b}, c) the argument c cannot be
defended. Clearly, we have that if σ satisfies APC III then σ satisfies APC II, and if
σ satisfies APC II then σ satisfies APC I. The reverse does not hold, as the results in
Table 3.1 illustrate.

Example 3.39. Consider the SETAF SF (first without the attack ({a, b}, c)). It is easy
to check that {a, c, f} is a semi-stable, stage, and eager extension. However, if we add
the attack ({a, b}, c) the set {a, b, d} becomes a stable extension, and is in fact the only
stable extension of the resulting SETAF. Hence, {a, b, d} is also the only semi-stable,
stage, and eager extension, i.e., {a, c, f} is no longer an extension. This violates APC II
(and, hence, APC III) for sem, stage, and eager.

a b

c d e

f

Combining these considerations, we get the following results for APC III.

Proposition 3.40. The principle allowing partial conflicts III is satisfied by cf , stb, and
naive, and violated by grd, adm, com, pref, sem, stage, ideal, and eager.

31

3. Principle-Based Analysis

The underlying idea of a collective attack (T, a) is that all arguments in T are required
in order to defeat a. Hence, an attack (T �, a) is in a certain sense stronger than (T, a)
if T � ⊆ T . In the same spirit, if T ⊆ E for some extension E ∈ σ(F), then we make E
stronger if (T, a) is replaced by some stronger attack.

Principle 3.41 (Tail Strengthening). A semantics σ satisfies tail strengthening if for
all SETAFs SF = (A, R) and for all E ∈ σ(SF) the following implication holds: if
(T, a) ∈ R with T ⊆ E, then we also have E ∈ σ(SF �) where SF � = (A, R�) with
R� = (R \ {(T, a)}) ∪ {(T �, a)} for some T � ⊆ T .

Vice versa, suppose we have an argument a ∈ E and some incoming attack (T, a) ∈ R. If
we make this attack weaker, we expect E still to be represent a jointly acceptable point
of view. Formally:

Principle 3.42 (Attack Weakening). A semantics σ satisfies attack weakening if for
all SETAFs SF = (A, R) and for all E ∈ σ(SF) the following implication holds: if
(T, a) ∈ R with a ∈ E, then we also have E ∈ σ(SF �) where SF � = (A, R�) with
R� = (R \ {(T, a)}) ∪ {(T �, a)} for some T ⊆ T �.

For the semantics considered in this thesis, it follows by definition that both properties
are satisfied.

Proposition 3.43. Each σ ∈ Σ satisfies tail strengthening and attack weakening.

3.2 Reduct and Modularization
In the remainder of this chapter (as well as Chapters 4 and 5), our analysis will put
strong emphasis on computational aspects and the partial evaluation of SETAFs. In
this section, we will provide the first steps into this direction. First we will introduce
the so-called SETAF reduct which corresponds to the resulting SETAF after the status
of a certain subset of the arguments is decided. Based on this, we will generalize the
modularization property [BBU20a], which formalizes how to compute extensions step-
wise by means of the reduct. As an aside, the modularization property yields concise
alternative characterizations for the classical semantics.

3.2.1 The SETAF Reduct
For many of our subsequent results, the reduct of a SETAF w.r.t. a given set E of
arguments will play a central role. Intuitively, the reduct w.r.t. E represents the SETAF
that result from “accepting” E and rejecting what is defeated by E, while not deciding
on the remaining arguments. To illustrate the idea, consider the following example:

Example 3.44. Recall the following SETAF SF from Example 2.2.

32

3.2. Reduct and Modularization

aSF :

b

c

d

e

f

h

g

Consider the singleton {a}. If we view a as accepted, then b is rejected. This means that
the attack from b to d can be disregarded. However, we also observe that c cannot be
attacked anymore since attacking it requires both b and d, but b is rejected. Now consider
{f}. Interpreting f as accepted renders g rejected. In order to attack h, only d is still
required. Thus, if we let E = {a, f}, then we expect the SETAF reduct SF E –with the
intuitive meaning that a and f are set to true– to look as follows.

aSF E :

b

c

d

e

f

h

g

That is, in the reduct SF E , we only need to consider arguments that are still undecided,
i.e. all arguments neither in E nor attacked by E. In contrast to the AF-reduct [BBU20a],
it might happen that some attacks are preserved that involve deleted arguments, i.e. the
attack is only partially evaluated. In particular, if the arguments in the tail of an attack
are “accepted” (i.e. in E), the attack can still play a role in attacking or defending. If
the tail of an attack (T, h) is already attacked by E, we can disregard (T, h). By this, we
get the following formal definition of the SETAF reduct.

Definition 3.45. Given a SETAF SF = (A, R) and E ⊆ A, the E-reduct of SF is the
SETAF SF E = (A�, R�), with

A� = A \ E⊕
R

R� = {(T \ E, h) | (T, h) ∈ R, T ∩ E+
R = ∅, T !⊆ E, h ∈ A�}

Thereby, the condition T ∩ E+
R = ∅ captures cases like the attack ({b, d}, c) from our

example: b is attacked by E, and thus, the whole attack gets removed. The reason why
we take (T \ E, h) as our novel attacks is the partial evaluation as in the attack ({d, f}, h)
after setting f to true: when additionally accepting d, we “activate” the attack against h.

Example 3.46. Given the SETAF SF from Example 3.44 as well as E = {a, f} as before,
the reduct SF E is the SETAF depicted above, i.e. SF E = {A�, R�} with A� = {c, d, e, h}
and R� = {(d, e), (e, d), (d, h)}.

We start our formal investigation of the reduct with a technical lemma to settle some
basic properties.

33

3. Principle-Based Analysis

Lemma 3.47. Given a SETAF SF = (A, R) and two disjoint sets E, E� ⊆ A. Let
SF E = (A�, R�).

1. If there is no S ⊆ A s.t. S �→R E�, then the same is true in SF E.

2. Assume E does not attack E� ∈ cf (SF). Then, E defends E� in SF iff there is no
S� ⊆ A� s.t. S� �→R� E�.

3. Let E ∈ cf (SF). If E ∪ E� does not attack E in SF and E� ⊆ A�, with E� ∈
cf

	
SF E

�
then E ∪ E� ∈ cf (SF).

4. Let E ∪ E� ∈ cf (SF). If E� �→R� a, then E ∪ E� �→R a.

5. If E ∪ E� ∈ cf (SF), then SF E∪E� =
	
SF E

�E�
.

Proof.

1. This is clear since SF E contains (strictly) less attacks than SF .

2. (⇒) Assume E defends E� in SF . Now suppose there is some attacker in the
reduct, i.e. S� �→R� e� for some e� ∈ E�. By definition, there is some T � ⊆ A \ E⊕

with (T �, e�) ∈ R�. By the definition of SF E , T � = T ∩ A� for some (T, e�) ∈ R.
Now consider an arbitrary (T, e�) ∈ R. Since E defends E�, E �→R T . Again by
definition of SF E , (T, e�) is removed since T ∩ E+

R != ∅. Hence in R� there is no
attack of the form (T �, e�) with T � ⊆ T , contradiction.
(⇐) Now suppose E does not defend E�. There is thus some (T, e�) ∈ R and E does
not attack T , i.e. T ∩ E+

R = ∅. Suppose T \ E = ∅. Then T ⊆ E contradicting that
E does not attack E�. Thus, T \ E != ∅. Since E does not attack E� and E ∩ E� = ∅,
we have e� ∈ A� for each e� ∈ E�. Therefore, in R� we find the attack (T �, e�) with
T � = T ∩ A� != ∅, e� ∈ A�, and T ∩ E+

R = ∅.

3. We have to show that E ∪ E� does not attack E�. Suppose the contrary, i.e. let
T ⊆ E ∪ E� with (T, e�) ∈ R for some e� ∈ E�. Since E does not attack E or E�,
T ∩ E+

R = ∅. The case T ⊆ E is impossible. Thus, (T, e�) induces some attack
(T \ E, e�) in SF E . We infer T \ E ⊆ E� implying E� /∈ cf

	
SF E

�
, contradiction.

4. If E� �→R� a, then (T �, a) ∈ R� for some T � ⊆ E�. Hence (T, a) ∈ R for some T with
T \ E = T �. The claim follows due to T ⊆ T � ∪ E ⊆ E� ∪ E.

5. We first show that A(SF E∪E� = A

(SF E)E��.

(⊆) Let a ∈ SF E∪E� . Then a /∈ E ∪ E� and E ∪ E� does not attack a. We
infer a ∈ A

	
SF E

�
. Now if E� �→R� a, then E ∪ E� �→R a by item 4. Thus

a ∈ A

(SF E)E��.

34

3.2. Reduct and Modularization

(⊇) Let a ∈ A

(SF E)E��. Hence a /∈ E ∪ E� and E� does not attack a in SF E .

Assume (T, a) ∈ R with T ⊆ E ∪ E�. Since E� does not attack a in SF E , there
cannot be an attack of the form (T \E, a) ∈ R� satisfying T \E != ∅ and T ∩E+

R = ∅.
However, T satisfies T ∩ E+

R = ∅ since E ∪ E� ∈ cf (SF). We thus infer T \ E = ∅.
This yields E �→R a contradicting a ∈ A

(SF E)E��.

It remains to show that R(SF E∪E�) = R

(SF E)E��. Let (T �, h) ∈ R(SF E∪E�),

this means T � = T \ (E ∪ E�) for some (T, h) ∈ R and T ∩ (E ∪ E�)+
R = ∅. From

T ∩ (E ∪ E�)+
R = ∅ follows T ∩ E+

R = ∅, which means (T \ E, h) ∈ R(SF E). From 4.
and the fact that E ∪ E� !�→R h follows that E� !�→R� h. Likewise, since E ∪ E� !�→R t
for each t ∈ T \ E we get E�+

R� ∩ T \ E = ∅, which means (T �, h) ∈ R

(SF E)E��.

Now let (T �, h) ∈ R

(SF E)E��. Again there is (T, h) ∈ R s.t. T � = T \ (E ∪ E�).

Clearly E ∪ E� !�→R t for each t ∈ T , and E ∪ E� !�→R h. Hence, we get (T �, h) ∈
R(SF E∪E�).

3.2.2 The Modularization Property
Having established the basic properties of the SETAF reduct, we are now ready to
introduce the modularization property [BBU20a].

Principle 3.48 (Modularization). A semantics σ satisfies modularization if for all
SETAFs SF , for every E ∈ σ(SF) and E� ∈ σ(SF E), we have E ∪ E� ∈ σ(SF).

Modularization allows us to build extensions iteratively. After finding such a set E ⊆ A
we can efficiently compute its reduct SF E and pause before computing an extension E�

for the reduct in order to obtain a larger extension E ∪ E� for SF . Hence, this first step
can be seen as an intermediate result that enables us to reduce the computational effort
of finding extensions in SF , as the arguments whose status is already determined by
accepting E do not have to be considered again. Instead, we can reason on the reduct
SF E (see Section 3.5). In the following, we establish the modularization property for
admissible and complete semantics.

Theorem 3.49. Let SF be a SETAF, σ ∈ {adm, com} and E ∈ σ(SF).

1. If E� ∈ σ(SF E), then E ∪ E� ∈ σ(SF).

2. If E ∩ E� = ∅ and E ∪ E� ∈ σ(SF), then E� ∈ σ(SF E).

Proof. (for σ = adm) Let SF E = (A�, R�).

1) Since E is admissible and E� ⊆ A�, E� does not attack E. By Lemma 3.47, item 3,
E ∪ E� ∈ cf (SF). Now assume S �→R E ∪ E�. If S �→R E, then E �→R S by admissibility
of E. If S �→R E�, there is T ⊆ S s.t. (T, e�) ∈ R for some e� ∈ E�. In case E �→R T , we
are done. Otherwise, (T \ E, e�) ∈ R� and by admissibility of E� in SF E , E� �→R� T \ E.
By Lemma 3.47, item 4, E ∪ E� �→R T \ E.

35

3. Principle-Based Analysis

2) Now assume E ∪ E� ∈ adm (SF). We see E� ∈ cf
	
SF E

�
as follows: If (T �, e�) ∈ R� for

T � ⊆ E� and e� ∈ E�, then there is some (T, e�) ∈ R with T � = T \E. Hence E ∪E� �→R E�,
contradiction. Now assume E� is not admissible in SF E , i.e. there is (T �, e�) ∈ R� with
e� ∈ E� and E� does not counterattack T � in SF E . Then there is some (T, e�) ∈ R with
T � = T \ E and T ∩ E+

R = ∅. By admissibility of E ∪ E�, E ∪ E� �→R T , say (T ∗, t) ∈ R,
T ∗ ⊆ E ∪ E� and t ∈ T . Since E ∪ E� is conflict-free, T ∗ ∩ E+

R = ∅ and thus we either
have a) T ∗ ⊆ E, contradicting T ∩ E+

R = ∅, or b) (T ∗ \ E, t) ∈ R� and t ∈ T �, i.e. E�

counterattacks T � in SF E contradicting the above assumption.

For com semantics we utilize the results for adm:

1) We have E ∪ E� ∈ adm(SF). Moreover, E� is complete, i.e. (SF E)E� does not
contain unattacked arguments in the reduct SF E (see Proposition 3.50). Lemma 3.47,
item 5, implies that SF E∪E� does not contain unattacked arguments, either. Hence
E ∪ E� ∈ com(SF).

2) Given E ∪ E� ∈ com(SF) we have E� ∈ adm

SF E

�
, as established. Regarding

completeness, we again use the fact that SF E∪E� = (SF E)E� does not contain unattacked
arguments.

Note that the modularization property also holds for stb, pref, and sem semantics.
However, the only admissible set in the reduct w.r.t. a stable/preferred/semi-stable
extension is the empty set, rendering the property trivial. The exact relation is captured
by the following alternative characterizations of the semantics under our consideration.

Proposition 3.50. Let SF = (A, R) be a SETAF, E ∈ cf (SF) and SF E = (A�, R�).

1. E ∈stb(SF) iff SF E = (∅, ∅),

2. E ∈adm(SF) iff S �→R E implies S \ E !⊆ A�,

3. E ∈pref(SF) iff E ∈ adm(SF) and adm(SF E) = {∅},

4. E ∈com(SF) iff E ∈ adm(SF) and grd(SF E) = {∅},

5. E ∈ sem(SF) iff E ∈ pref(SF) and there is no E� ∈ pref(SF) s.t. A(SF E�) �
A(SF E).

Proof. The characterizations for stb and adm are straightforward and pref is due to the
modularization property of adm. For com(SF) we apply Lemma 3.47, item 2, to each
singleton E� occurring in SF E : assume towards contradiction E is complete in SF and
there is some a ∈ A� such that a is unattacked in SF � (and, hence, a is in the grounded
extension of SF E). As a ∈ A� we know E !�→R {a}. But then we can apply Lemma 3.47,
item 2, and get that E defends {a} in SF , contradicting E ∈ com(SF). For sem recall
that range-maximal preferred extensions are semi-stable.

36

3.2. Reduct and Modularization

From the characterization of complete semantics provided in Proposition 3.50 we infer
that for any SETAF SF the complete extensions E ∈ com(SF) satisfy grd(SF E) = {∅}
implying modularization for grd. Moreover, as the grounded extension G is the least
complete extension, we can utilize modularization of adm and obtain G by the following
procedure: (1) add the set of unattacked arguments U into G, (2) repeat step (1) on
SF U until there are no unattacked arguments.

We have two cases left to discuss, namely eager and ideal semantics. Both satisfy the
modularization property, because they only admit the empty set as admissible extension
in their corresponding reduct SF E (as in the case of e.g. sem semantics). Since this is
however not as easy to see, we will give the necessary proofs in detail here. We follow the
proof technique of the AF case [FU21]. First we show that the property formalized in
Theorem 3.49 also holds for semi-stable semantics. This will be useful later since eager
semantics build upon semi-stable extensions.

Proposition 3.51. Let SF be a SETAF and let E ∈ sem(SF). Suppose E = E� ∪ E��

with E� ∩ E�� = ∅ for some E� ∈ adm(SF). Then E�� ∈ sem(SF E�).

Proof. We already know E�� ∈ adm(SF E�) since sem(SF) ⊆ adm(SF). Now assume
E�� is not semi-stable in F E� . Then there is some admissible S ∈ adm

	
SF E�� with

(E��)⊕ � S⊕. Since E�� and S occur in SF E� , this immediately yields E⊕ = (E� ∪ E��)⊕ �
(E� ∪ S)⊕. Since by modularization we have E� ∪ S ∈ adm(SF), we infer E /∈ sem(SF),
a contradiction.

Next we show that the reduct w.r.t. some eager extension admits only ∅ as admissible set.

Proposition 3.52. If E ∈ eager(SF), then eager
	
SF E

�
= {∅}.

Proof. Let SF = (A, R) be a SETAF and let E ∈ eager(SF). Consider the reduct
SF E and assume E� ∈ eager(SF E) is not empty. Let S be a semi-stable extension
of SF . By definition of eager, we have that E ⊆ S. Our goal is to show E� ⊆ S
as well, yielding a contradiction since E ∪ E� ∈ com(SF) by modularization of com;
since S is arbitrary, the eager extension of SF must then contain E ∪ E�. To this end
note that S = E ∪ S� for E ∈ adm(SF) and some set S� of arguments. By the above
Proposition 3.51, S� ∈ sem

	
SF E

�
and hence E� ⊆ S� ⊆ S and we are done.

Since ∅ is thus the only candidate extension in the reduct SF E , we immediately get
satisfaction of the modularization property.

Corollary 3.53. The eager semantics satisfies modularization.

In order to lift the above proof technique to ideal as well it suffices to note the following
adjustment to Proposition 3.51.

37

3. Principle-Based Analysis

Proposition 3.54. Let SF be a SETAF and let E ∈ pref(SF). Suppose E = E� ∪ E��

with E� ∩ E�� = ∅ for some E� ∈ adm(SF). Then E�� ∈ pref(SF E�).

Proof. According to Proposition 3.50, we have that E ∈ pref(SF) if and only if E ∈
adm(SF) and SF E does not possess any admissible argument. We already know ad-
missibility of E�� in SF E� . Moreover, SF E = (SF E�)E�� does not contain admissible
arguments; thus we are done.

This yields the same behavior for ideal as well. First, we again infer that the reduct does
not tolerate any non-empty extension.

Proposition 3.55. If E ∈ ideal(F), then ideal
	
F E

�
= {∅}.

Proof. We reason as in the proof of Proposition 3.52 with S ∈ pref(SF) instead of
S ∈ sem(SF).

Corollary 3.56. The ideal semantics satisfies modularization.

3.3 Directionality and Non-Interference
In this section we discuss the principles of directionality and non-interference. Intuitively,
these principles give information about the behavior of separate parts of a framework.
Beside being informative regarding the behavior of semantics, this principles also have
computational implications. In order to formalize this separation-property, we start of
with the notion of unattacked sets of arguments8. For directionality [BG07] we have
to carefully consider this notion in order to obtain a natural generalization of the AF
case preserving the intended meaning. A naive definition of unattacked sets will lead to
nonsensical results: assume a set S is unattacked in a SETAF SF = (A, R) whenever it
is not attacked from “outside”, i.e. if the condition A \ S !�→R S holds.

Example 3.57. Consider now the following SETAF (a) and its projections (b), (c) w.r.t.
the “unattacked” set S = {a, c}.

c

ba

(a) (b) (c)
c

ba

c

ba

8While in the previous section we used “unattacked arguments”, i.e. arguments that are not the head
of any attack, unattacked sets of arguments allow for attacks within the set.

38

3.3. Directionality and Non-Interference

Note that {a, c} is stable in (a). If we now consider the projection SF↓S—see (b)—we find
that {a, c} is not stable, falsifying directionality. However, one might argue that this is due
to the credulous nature of our projection-notion. We could easily consider a different proper
generalization of the projection, namely SF↓∗

S = (S, {(T, h) | (T, h) ∈ R, T ∪ {h} ⊆ S}).
In this more skeptical version we delete attacks if any of the arguments in the tail are
not in the projected set—see (c). However, we still cannot obtain the desired results:
in (a) we find {a} to be the unique grounded extension, while in (c) {a, c} is grounded,
again falsifying directionality. As for the directionality principle we do not want to
add additional arguments or attacks and we exhausted all possible reasonable projection
notions for this small example, we conclude that the underlying definition of unattacked
sets was improper. We therefore suggest a different definition—and at the same time
suggest to think of these sets rather as “uninfluenced” than “unattacked”. In AFs, clearly
both notions coincide. However, we still argue that the concept of “influence” captures
the true nature of directionality in a more intuitive and precise manner. Moreover, note
that in the case of uninfluenced sets both notions of projection coincide, as well as the
notion of restriction (see Definition 3.72) for arbitrary sets D ⊆ A \ S.

Towards the formal definition of influence, we utilize the notion of the primal graph of a
SETAF [DKW21a], cf. Definition 2.10.

Definition 3.58 (Influence). Let SF = (A, R) be a SETAF. An argument a ∈ A
influences b ∈ A if there is a directed path from a to b in primal(SF). A set U ⊆ A
is uninfluenced in SF if no a ∈ A \ U influences any b ∈ U . We denote the set of
uninfluenced sets by US(SF).

Utilizing this notion, we can properly generalize directionality [BG07].

Principle 3.59 (Directionality). A semantics σ satisfies directionality if for all SETAFs
SF and every U ∈ US(SF) it holds σ(SF↓U) = {E ∩ U | E ∈ σ(SF)}.

Moreover, weaker versions of directionality have been proposed which require only a
subset relation [vdTV17]:

Principle 3.60 (Semi Directionality). A semantics σ satisfies semi directionality if for
all SETAFs SF and every U ∈ US(SF) it holds σ(SF↓U) ⊆ {E ∩ U | E ∈ σ(SF)}.

Principle 3.61 (Weak Directionality). A semantics σ satisfies weak directionality if for
all SETAFs SF and every U ∈ US(SF) it holds σ(SF↓U) ⊇ {E ∩ U | E ∈ σ(SF)}.

We will revisit directionality at the end of the next section, as we can utilize SCC-
recursiveness to show that grd, com, and pref satisfy directionality. In contrast, this is
not possible for eager and ideal semantics, so we investigate these two cases directly.

Let us start with eager semantics. As the following examples show, eager satisfies neither
semi directionality nor weak directionality.

39

3. Principle-Based Analysis

Example 3.62. Let F = (A, R) be the following AF [vdTV17, Figure 3]:

a

b c

de

Let U = {a, b}. We have sem(F) = {{a, c}} and thus eager(F) = {{a, c}} as well. Thus
{E ∩ U | E ∈ eager(F)} = {{a}}. On the other hand, sem(SF↓U) = {{a}, {b}} and thus,
eager(SF↓U) = {∅}, i.e. weak directionality is violated.

Example 3.63. Now let Let F = (A, R) be the following AF [vdTV17, Figure 8]:

a

d

b

e

c

f

Let U = {d, e, f}. We have sem(F) = {{a, e}, {d, b}} and thus eager(F) = {∅}. On
the other hand, sem(SF↓U) = {{e}} and thus, eager(SF↓U) = {{e}}. Hence semi
directionality is violated.

Now let us turn to ideal semantics. We show that directionality is satisfied. Our proof
follows the technique from the AF case [BG07]. The required structural properties also
hold for SETAFs. Therefore, we only require minor adjustments to reason analogously in
our setting.

Lemma 3.64. Let SF = (A, R) be a SETAF. The the unique ideal extension S satisfies

S =
�

E∈adm(SF):∀P ∈pref(SF):E⊆P

E

Proof. We let

adm⊆pref(SF) = {E ∈ adm(SF) | ∀P ∈ pref(SF) : E ⊆ P}.

We need to show that (a) S is conflict-free in SF , (b) every argument a ∈ S is acceptable
w.r.t. S, and (c) there is no larger set S� ⊃ S that satisfies (a) and (b) and is a subset of
every preferred extensions of SF . (a) is clear, because if there was a conflict caused by
an attack (T, h) ∈ R with T ∪ {h} ⊆ S, this would mean two sets E, E� ∈ adm⊆pref(SF)
attacked each other, which would mean a preferred extension is conflicting, a contradiction.
(b) follows from the fact that for all a ∈ S there is an E ⊆ S with a ∈ E, E ∈ adm(SF).
(c) is clear since (a) and (b) characterize admissibility—if there was such a larger
admissible set S� ⊃ S with S� ∈ adm⊆pref(SF) by definition we would have S� ⊆ S, a
contradiction.

40

3.3. Directionality and Non-Interference

This auxiliary lemma is a convenient characterization of ideal in order to infer directionality
as follows.

Proposition 3.65. The semantics ideal satisfies directionality.

Proof. Let SF = (A, R) be a SETAF and suppose U ∈ US(SF). We have to show
ideal(SF↓U) = {E ∩ U | E ∈ ideal(SF)}. Due to Lemma 3.64 it suffices to show�

E∈adm(SF):∀P ∈pref(SF):E⊆P

E ∩ U =
�

E∈adm(SF ↓U):∀P ∈pref(SF ↓U):E⊆P

E

(⊆) Let E be an arbitrary set in adm(SF). We show the claim for this particular set
and thus, the same holds for the union over all extensions in adm(SF) as well. Due to
directionality of adm semantics, E ∈ adm(SF) implies E ∩ U ∈ adm(SF↓U). Therefore,
we have to show that E ∩ U is a subset of each preferred extension in SF↓U and thus,
E ∩ U is part of the union of the right-hand side.

Now, for each P ∈ pref(SF) we have E ∩ U ⊆ P ∩ U , i.e.

∀P ∈ pref(SF) : E ∩ U ⊆ P ∩ U.

By directionality of pref semantics, {P ∩U | P ∈ pref(SF)} = pref(SF↓U). This is means
∀P ∈ pref(SF↓U) : E ∩ U ⊆ P which we had to show.

(⊇) Now let E ∈ adm(SF↓U). By definition of admissibility, it is clear that E ∈ adm(SF)
follows. For each P ∈ pref(SF↓U) it follows that E ⊆ P , i.e.

∀P ∈ pref(SF↓U) : E ⊆ P.

Again by directionality, we turn this into ∀P ∈ pref(SF) : E ⊆ P ∩ U ⊆ P which proves
the claim.

Similarly, we generalize non-interference [CCD12], which has an even stronger requirement.
U ⊆ A is isolated in SF = (A, R), if U is uninfluenced and A \ U is uninfluenced, i.e.
there are no edges in primal(SF) between U and A \ U .

Principle 3.66 (Non-interference). A semantics σ satisfies non-interference iff for all
SETAFs SF and all isolated S ⊆ A(SF), it holds σ(SF↓U) = {E ∩ U | E ∈ σ(SF)}.

Clearly, directionality implies non-interference. It is easy to see from the respective
definitions that also naive, semi-stable, ideal, eager, and stage semantics satisfy non-
interference.

41

3. Principle-Based Analysis

3.4 SCC-Recursiveness
In graph theory, the notion of a strongly connected component (SCC) is a widely known
concept. An SCC consists of a set S of nodes s.t. for any a, b ∈ S there is a directed
path from a to b within the given graph. SCC-recursiveness [BGG05] formalizes the
intuition that the acceptance status of an argument depends only on its ancestors—i.e.,
the arguments that feature a directed path to the argument in question. If some semantics
satisfies SCC-recursiveness, one can construct all SCCs of a given graph and then compute
resp. verify extensions step-wise, by working along the SCCs. This provides theoretical
insights as it formalizes the independence of arguments of their child SCCs, but also
provides us with computational advantages as we will see in Section 3.5.

In Section 3.3 we considered the concept of influence. In a nutshell, an argument a
“influences” an argument b in a SETAF SF if there is a directed path from a to b in
primal(SF). It is therefore reasonable to investigate SCCs with this idea in mind. In
particular, our definition of SCCs captures the equivalence classes w.r.t. the influence
relation.

Definition 3.67 (SCCs). Let SF be a SETAF. By SCCs(SF) we denote the set of
strongly connected components of SF , which we define as the sets of arguments contained
in the strongly connected components of primal(SF).

Example 3.68. Recall our SETAF from before.

a

b

c

d

e

f

h

g

In this SETAF, we have the four SCCs {a}, {b, d, e}, {c}, and {f, g, h}, as depicted in
dashed lines.

Analogously to [BGG05], we partition the arguments into defeated, provisionally defeated
and undefeated ones. Intuitively, accepting a defeated argument would lead to a conflict,
the provisionally defeated cannot be defended and will therefore be rejected (while not
being irrelevant for defense of other arguments), and the undefeated form the candidates
for extensions. We obtain the following formal definition of the sets we just described.

Definition 3.69. Let SF = (A, R) be a SETAF. Moreover, let E ⊆ A be a set of argu-
ments and S ∈ SCCs(SF) be an SCC. We define the set of defeated arguments DSF (S, E),
provisionally defeated arguments PSF (S, E), and undefeated arguments USF (S, E) w.r.t.

42

3.4. SCC-Recursiveness

S, E as

DSF (S, E) = {a ∈ S | E \ S �→R a},

PSF (S, E) = {a ∈ S | A \ (S ∪ E+) �→R a}\DSF (S, E),
USF (S, E) = S \ (DSF (S, E) ∪ PSF (S, E)).

Moreover, we set UPSF (S, E) = USF (S, E) ∪ PSF (S, E).

It is important to note that all these sets are calculated w.r.t. a given set candidate E,
i.e. the purpose is to verify whether E is some σ-extension.

Example 3.70. Recall the SETAF from above. Let S = {b,d,e} be the SCC under
consideration.

Take the admissible extension E = {a, e}. We have that DSF (S, E) = {b} since the
argument a from the parent SCC {a} defeats b; observe that d /∈ DSF (S, E) since d is
only defeated by e which is part of the given SCC S. Moreover, PSF (S, E) = ∅ and hence
USF (S, E) = {d, e}.

Consider now E� = {d}. Then DSF (S, E�) = ∅ because no argument within S is defeated
from an argument in E� occurring in a parent SCC. However, PSF (S, E�) = {b} reflecting
that b cannot be defended (for this we would have to defeat a, but from within the given
SCC S this is impossible). Therefore, USF (S, E�) = {b, d, e} = S.

In order to formalize SCC-recursiveness, we need the notion of the restriction. It will be
convenient in order to evaluate our given extension SCC-wise, since in each step we can
remove the defeated arguments DSF (S, E) and thus restrict our attention to USF (S, E).
For classical Dung-AFs, the restriction coincides with the projection from Definition 2.8.
However, in the following we will argue that the projection does not capture the intricacies
of this process. Ultimately, we will see that for a reasonable restriction we need semantic
tools that are similar to the reduct SF E . For that, we revisit Example 3.57.

Example 3.71. Consider the following SETAFs SF and SF �.

c

baSF :

c

dbSF � :

a e

Assume we accept the argument a in SF . Now for the remaining SCC {b, c} the projection
SF↓{b,c} contains the attacks (b, c) and (c, b), as one might expect.

Regarding SF �, assume we accept a and therefore reject b. The projection SF �↓{c,d,e} yields
an odd cycle where none of the remaining arguments c, d, e can be accepted. However, as
b is defeated, the attack ({b, d}, c) is counter-attacked and thus, c is defended. Hence we
would expect c to be acceptable in the restriction w.r.t. a.

43

3. Principle-Based Analysis

One might argue that this notion of projection is therefore too credulous, i.e., attacks
survive that should be discarded. Recall Example 3.57 where we defined the alternative
projection

SF↓∗
S = (S, {(T, h) | (T, h) ∈ R, T ∪ {h} ⊆ S}).

Now, one can check that we get the expected results in SF �. However, SF↓∗
{b,c} only

features the attack (c, b), which incorrectly suggests that we cannot accept b.

We solve this problem by adapting the notion of a restriction such that both cases are
handled appropriately. We keep track of a set of rejected arguments and discard attacks
once an argument in its tail is discarded—these attacks are irrelevant to the further
evaluation of the SETAF. This leads to the following notion,

Definition 3.72 (Restriction). Let SF = (A, R) be a SETAF and let S, D ⊆ A. We
define the restriction of SF w.r.t. S and D as the SETAF SF⇓D

S = (S�, R�) where

S� = (A ∩ S) \ D

R� = {(T ∩ S�, h) | (T, h) ∈ R, h ∈ S�, T ∩ D = ∅, T ∩ S� != ∅}.

Let us work through the conditions:

• D will be DSF (S, E) later on, i.e. the set of defeated arguments; thus S =� A∩S \D
is the set of non-defeated arguments in the current SCC S.

• The set R� of attacks reduces the tail T of a given attack to the set S� of consideration,
i.e. (T, h) is reduced to (T ∩ S�, h), but only if:

– the attacked argument h belongs to S�,
– none of the arguments in the tail are defeated, T ∩ D = ∅, and
– at least one argument in the tail belongs to the current set S�, T ∩ S� != ∅.

Example 3.73. The restriction handles both cases of Example 3.71 according to our
intuition.

• The SETAF SF⇓{a}
{b,c} contains b and c, and as we accepted a, i.e. the part tail of

({a, b}, c) outside {b, c}, the attack (b, c) is kept.

• The restriction SF �⇓{b}
{c,d,e} contains the attacks (c, e), (e, d), and (e, e); as b ∈ D =

{b} the tail of ({b, d}, c) is already defeated and we therefore do not include (d, c).

We want to emphasize that this example illustrates how the notion of projection is akin
to the SETAF-reduct: indeed, constructing SF⇓D

S consists in projecting to a certain set
of arguments and then i) removing attacks where defeated arguments are involved as well
as ii) partially evaluating the remaining tails. Formally, the connection is as follows.

44

3.4. SCC-Recursiveness

Lemma 3.74. Let SF = (A, R) be a SETAF and let E, S ⊆ A. Then SF⇓(E\S)+

S =
SF (E\S)↓S.

Proof. We have A(SF⇓(E\S)+

S) = A(SF (E\S)↓S) because

(A ∩ S) \ (E \ S)+ = (A \ (E \ S)+) ∩ S

= (A \ ((E \ S)+ ∪ (E \ S))) ∩ S

= (A \ (E \ S)⊕) ∩ S.

Then it holds that R(SF⇓(E\S)+

S) = R(SF (E\S)↓S), as for some (T, h) ∈ R(SF⇓(E\S)+

S)
with h ∈ A� and T ∩ (E \ S)+ = ∅ we have T ∩ A� = ∅ if and only if T !⊆ (E \ S). The
claim follows then from (T ∩ A�, h) = (T \ (E \ S), h).

Let us now formally introduce SCC-recursiveness [BGG05] as a SETAF principle. Exten-
sions satisfying this property can be recursively characterized as follows: if the SETAF
SF consists of a single SCC, the base function BF of the semantics yields the extensions.
For SETAFs that consist of more SCCs, we apply the generic selection function GF ,
where SF is evaluated separately on each SCC by means of our restriction, taking into
account arguments that are defeated by previous SCCs.

Principle 3.75 (SCC-recursiveness). A semantics σ satisfies SCC-recursiveness if for all
SETAFs SF = (A, R), it holds that σ(SF) = GF(SF), where GF(SF) ⊆ 2A is defined
as follows: E ⊆ A ∈ GF(SF) if and only if

• if |SCCs(SF)| = 1, then E ∈ BF(SF);

• otherwise, ∀S ∈ SCCs(SF) it holds that E ∩ S ∈ GF
	
SF⇓(E\S)+

UPSF (S,E)

�
,

where BF is a function that maps a SETAF SF = (A, R) with |SCCs(SF)| = 1 to a
subset of 2A.

In the following subsections we will investigate and refine SCC-recursiveness for the
different semantics under our consideration. For the proofs we loosely follow the structure
of [BGG05], incorporating our SETAF-specific notions.

3.4.1 Stable Semantics
We start with stable semantics, as this is the easiest case.

Example 3.76. Recall Example 3.68.

45

3. Principle-Based Analysis

a

b

c

d

e

f

h

g

We use the base function
BF(SF) = stb(SF).

Consider the stable extension E = {a, c, d, f} of SF . Let S = {b, d, e}. The projected
SETAF SF⇓(E\S)+

S is given as

SF⇓(E\S)+

S = SF⇓{b}
S = ({d, e}, {(d, e), (e, d)}).

This projected SETAF consists of one SCC only, and we apply the base case of GF , i.e.

GF
	
SF⇓(E\S)+

UPSF (S,E)

�
= BF

	
SF⇓(E\S)+

UPSF (S,E)

�
= stb

	
SF⇓(E\S)+

UPSF (S,E)

�
.

Since E ∩ S = {d} is indeed a stable extension of SF⇓(E\S)+

UPSF (S,E), the required condition
w.r.t. the SCC S is met.

In this section we will show that this is no coincidence, i.e. stb satisfies SCC-recursiveness
(with the base function stb). For the investigation of SCC-recursiveness in stable semantics
we use the fact that there are no undecided arguments. Thus, in each step we do not
have to keep track of as much information from previous SCCs. Formally, we obtain the
following auxiliary lemma.

Lemma 3.77. Let SF be a SETAF and E ∈stb(SF), then for all S ∈SCCs(SF) it holds
PSF (S, E)=∅.

Proof. Assume towards contradiction that for some SCC S there is an argument a ∈
PSF (S, E). Then, by definition there is an attack (T, a) ∈ R(SF) such that T ⊆ A(SF)\S
and T ∩ E+ = ∅. Moreover, a /∈ DSF (S, E) by definition, i.e. T !⊆ E. But then there
is some t ∈ T such that neither t ∈ E+ nor t ∈ E, which is a contradiction to the
assumption that E is stable.

We continue with the main technical underpinning for the SCC-recursive characterization
of stable semantics. Intuitively, Proposition 3.78 states that an extension E is “globally”
stable in SF if and only if for each of its SCCs S it is “locally” stable in SF⇓(E\S)+

UPSF (S,E).

Proposition 3.78. Let SF = (A, R) be a SETAF and let E ⊆ A, then E ∈ stb(SF) if
and only if ∀S ∈ SCCs(SF) it holds (E ∩ S) ∈ stb

	
SF⇓(E\S)+

UPSF (S,E)

�
.

46

3.4. SCC-Recursiveness

Proof. Let SF � = SF⇓(E\S)+

UPSF (S,E) for an arbitrary SCC S. We start by assuming E ∈
stb(SF). We need to show that (E ∩ S) ∈ stb(SF �), i.e.:

1. (E ∩ S) ⊆ UPSF (S, E),

2. (E ∩ S) is conflict-free in SF �, and

3. ∀a ∈ UPSF (S, E) if a /∈ (E ∩ S) then (E ∩ S) attacks a in SF �.

For condition 1. note that (E ∩ X) ∩ DSF (X, E) = ∅ holds for any X ⊆ A, as otherwise
E would not be conflict-free in SF . For condition 2., assume towards contradiction that
there is some (T, h) ∈ R(SF �) such that T ∪ {h} ⊆ (E ∩ S). This means there is some
(T �, h) ∈ R with T � ⊇ T . But by construction we would have T � \ T ⊆ E, and therefore
T � ∪ {h} ⊆ E, a contradiction to conflict-freeness of E. For condition 3. we consider an
arbitrary argument a ∈ UPSF (S, E) \ (E ∩ S). Since a /∈ E and E is stable, there is an
attack (T, a) ∈ R with T ⊆ E. Moreover, as a ∈ UPSF (S, E), it holds a /∈ DSF (S, E),
i.e. in particular T !⊆ (E \ S), or in other words T ∩ S != ∅. This means by the definition
of the restriction and since T ∩ E+

R = ∅ (otherwise E would not be conflict-free in SF)
there is an attack (T ∩ S, a) ∈ R(SF �) with (T ∩ S) ⊆ E.

Now assume ∀S ∈ SCCs(SF) it holds (E ∩ S) ∈ stb(SF⇓(E\S)+

UPSF (S,E)). We need to show
E ∈ stb(SF), i.e.

1. E is conflict-free in SF , and

2. E attacks all a ∈ A \ E in SF .

For 1. assume towards contradiction there is some (T, a) ∈ R such that T ∪ {a} ⊆ E.
Let S be the SCC containing a. Clearly T ∪ {a} !⊆ S, as this violates our assumed
conflict-freeness in UPSF (S, E). Moreover, we do not have T ⊆ (A \ S), as this would
mean a ∈ DSF (S, E). Hence, there is an attack (T ∩ S, a) ∈ R

	
SF⇓(E\S)+

UPSF (S,E)

�
such

that (T ∩ S) ∪ {a} ⊆ E ∩ S, a contradiction. For condition 2. let us consider an arbitrary
argument a ∈ A \ E and let S be the SCC containing a. Then either (i) a ∈ DSF (S, E)
or (ii) a ∈ UPSF (S, E). In case (i) we immediately get E attacks a. For case (ii),
we have a /∈ (E ∩ S), and by assumption a is attacked in S, i.e. there is an attack
(T, a) ∈ R

	
SF⇓(E\S)+

UPSF (S,E)

�
. By construction of the restriction, this means there is an

attack (T �, a) ∈ R s.t. T � ⊇ T and T � \ T ⊆ E. Hence, T ⊆ E, i.e. E attacks a in SF .

This leads us to the characterization of stable extensions. As the base function is stb(SF),
the base case is immediate. The composite case follows from Proposition 3.78.

Theorem 3.79. Stable semantics is SCC-recursive.

47

3. Principle-Based Analysis

3.4.2 Admissible Sets
As already mentioned, when investigating stable semantics we can use the observation
that each argument is either in E or defeated by E, i.e. stable extensions correspond
to two-valued models of the AF. For admissibility-based semantics, we might also have
“undecided” arguments, i.e. arguments which are not in the range E⊕ of the given
extension. These arguments make handling the SCC-recursive procedure more involved.

To this end we add a second component to GF which intuitively collects all arguments C
that can still be defended within the current SCC S. On the other hand, arguments which
occur in the restriction SF⇓(E\S)+

UPSF (S,E) but not in C cannot be accepted anymore; however,
we have to defend our extension against them. We account for this in Definition 3.88 by
maintaining a set of candidate arguments C.

While this is all similar in spirit to the AF case, there is however another crucial
observation we make. That is, the particular case of SETAFs gives rise to a novel scenario,
where certain attacks are present in an SCC, but not applicable.

Example 3.80. Recall our SETAF from before.

a

b

c

d

e

f

h

g

This time, consider S = {f, g, h} with given extension E = ∅. Then

DSF (S, E) = ∅ SF⇓(E\S)+

UPSF (S,E) = SF⇓∅
S = (A�, R�)

PSF (S, E) = ∅ A� = {f, g, h}
USF (S, E) = {f, g, h} R� = {(f, h), (g, h), (h, g), (f, g), (g, f)}

We now observe that although there is an attack from f to h in SF⇓∅
S, the argument

h can actually not be defeated by f , because this would require d to be present in our
extension. Note however that we cannot delete the attack (f, h), as this would mean we
could accept h—without defending h against the attack from {d, f}.

Consequently, we will keep track of these attacks that have to be considered for defense,
but cannot themselves be used to defeat an argument. We will call these attacks mitigated.

Definition 3.81 (Mitigated Attacks). Let SF = (A, R) be a SETAF. Moreover, let
E ⊆ A and S ∈ SCCs(SF). The set MSF (S, E) of mitigated attacks is given as

MSF (S, E) = {(T, h) ∈ R
	
SF⇓(E\S)+

UPSF (S,E)

�
| ∀(T �, h) ∈ R : T � ⊇ T ⇒ (T � \ T) !⊆ E}.

48

3.4. SCC-Recursiveness

One can check that with this definition, for Example 3.80 indeed the attack towards h is
identified in the SCC S = {f, g, h}, and the resulting attack (f, h) in SF⇓∅

S is mitigated
(in particular, we have MSF (S, ∅) = {(f, h)}). The intuition behind the condition

∀(T �, h) ∈ R : T � ⊇ T ⇒ (T � \ T) !⊆ E

is that (T, h) might stem from some modified attack (T �, h) in the SETAF with T ⊆ T �:
the attack (T �, h) is suitably modified when computing the restriction SF⇓(E\S)+

UPSF (S,E) and
yields (T, h). Then, T � \ T !⊆ E ensures that the attack is not active in E, independent of
the choice of arguments within the SCC S. Intuitively, this accounts for a scenario where
an attack (T, h) that appears in a sub-framework generated from projecting to an SCC
has two or more possible origins: at least one attack (T �, h) ∈ R with T � ⊇ T where some
argument t ∈ T � \ T is not in E⊕ (i.e., causing the resulting (T, h) to be mitigated), and
at least one attack (T ��, h) ∈ R with T �� ⊇ T where T �� \ T ⊆ E (i.e., causing the resulting
(T, h) to be non-mitigated). In this case the non-mitigated interpretation “overrides” the
mitigated interpretation, as this attack can clearly be used to defend other arguments.

To account for the novel scenarios arising from the context of mitigated attacks we adapt
the notion of acceptance. We have to assure that the “counter-attacks” used for defense
are not mitigated. Recall that in addition our generic selection function also stores some
set C of acceptable arguments, with the consequences mentioned above. Putting all of
this together yields the following notions:

• If M is the set of mitigated attacks, then some extension E defends a ∈ A if
for each arbitrary attacker (T, a) ∈ R there is some non-mitigated counter-attack
(X, t) ∈ R \ M with X ⊆ E and t ∈ T , i.e. E counters the attack without relying
on any mitigated attack;

• Each extension E must be a subset of the set C of acceptable arguments.

Formally, we obtain the following semantics considering C, M .

Definition 3.82 (Semantics Considering C, M). Let SF = (A, R) be a SETAF, and let
E, C ⊆ A and M ⊆ R. We say that

• E is conflict-free in C considering M , denoted by E ∈ cf (SF, C, M), if E ⊆ C and
there is no (T, h) ∈ R \ M s.t. T ∪ {h} ⊆ E;

• an argument a ∈ A \ C is acceptable considering M w.r.t. E if for all (T, a) ∈ R
there is (X, t)∈R \ M s.t. X ⊆E and t ∈ T ;

• E is admissible in C considering M , denoted by E ∈ adm(SF, C, M), if E ⊆ C,
E ∈ cf (SF, C, M), and each a ∈ E is acceptable considering M w.r.t. E;

49

3. Principle-Based Analysis

• E is complete in C considering M , denoted by E ∈ com(SF, C, M), if it holds
E ∈ adm(SF, C, M) and E contains all a ∈ C acceptable considering M w.r.t. E;

• E is preferred in C considering M , denoted by E ∈ pref(SF, C, M), if it holds
E ∈ adm(SF, C, M) and there is no E� ∈ adm(SF, C, M) with E � E�.

The characteristic function F M
SF,C of SF in C considering M is the mapping F M

SF,C :2C →2C

where F M
SF,C(E) = {a∈C | a is acceptable considering M w.r.t. E}.

• E is grounded in C considering M , denoted by E ∈ grd(SF, C, M), if E is the least
fixed point of F M

SF,C .

Setting C = A and M = ∅ recovers the original semantics, in these cases we will omit
writing the respective parameter. Let us discuss some properties of the semantics in
C considering M . First, if we deal with admissibility-based semantics, we can actually
restrict our attention to the usual notion of conflict-freeness.

Proposition 3.83. Let SF = (A, R) be a SETAF, and let E, C ⊆ A and M ⊆ R. Let
E ⊆ C be a set of arguments s.t. each a ∈ E is acceptable considering M w.r.t. E. Then
E ∈ cf (SF, C, M) if and only if E ∈ cf (SF).

Proof. The (⇐) direction is clear since E ∈ cf (SF) is a stricter notion. For (⇒) suppose
E ∈ cf (SF, C, M). We have to show that even for mitigated attacks (T, h) ∈ M it holds
that T ∪ {h} � E. Striving for a contradicting suppose otherwise. Then we have in
particular that h ∈ E. Since h is acceptable w.r.t. E by assumption, there is some
non-mitigated attack (X, t) ∈ R \ M with X ⊆ E and t ∈ T . Since T ⊆ E, it follows
t ∈ E. Hence, the attack (X, t) causes a conflict (not making use of mitigated attacks),
contradiction.

Since we restrict our attention to admissibility-based semantics, we will for ease of
notation in the following assume that E ∈ cf (SF) instead of E ∈ cf (SF, C, M). Next
we establish that important basic properties of the characteristic function also hold in
this generalized setting.

Theorem 3.84. Let SF be a SETAF, and let C ⊆ A and M ⊆ R. Then,

1. F M
SF,C is monotonic,

2. the fundamental lemma holds, i.e. if E ∈ adm(SF, C, M) and a ∈ A∩C is acceptable
w.r.t. E considering M , then E ∪ {a} ∈ adm(SF, C, M),

3. E ∈ grd(SF, C, M) is the least set in com(SF, C, M) w.r.t. ⊆, and

4. E ∈ pref(SF, C, M) are the maximal sets in com(SF, C, M) w.r.t. ⊆.

50

3.4. SCC-Recursiveness

Proof.

1. Monotonicity of the mapping

F M
SF,C(E) = {a ∈ C | a is acceptable considering M w.r.t. E}

holds by definition of defense.

2. Let a ∈ A \ C be acceptable w.r.t. E ∈ adm(SF, C, M) considering M . By
monotonicity of defense, each argument in E ∪ {a} is acceptable w.r.t. E ∪ {a}
considering M . As our notion of defense w.r.t. M implies the usual defense,
we can apply the standard fundamental lemma for SETAFs [NP06b] and obtain
E ∪ {a} ∈ cf (SF). Therefore, the conditions for applying Proposition 3.83 are met
and we deduce E ∪ {a} ∈ cf (SF, C, M). Hence E ∪ {a} ∈ adm(SF, C, M) follows.

3. Setting G = �
i≥1(F M

SF,C)i(∅) we claim that G is the least set in com(SF, C, M).
Due to the fundamental lemma (see 2.) admissibility of ∅ implies inductively

∀n ∈ N :
�

1≤i≤n

	
F M

SF,C

�i
(∅) ∈ adm(SF, C, M).

Since SF is finite and by monotonicity, there is some n s.t.�
1≤i≤n

	
F M

SF,C

�i
(∅) =

�
1≤i

	
F M

SF,C

�i
(∅) = G

Thus, G is complete. Now let E ∈ com(SF, C, M). By monotonicity of F M
SF,C we

get F M
SF,C(∅) ⊆ F M

SF,C(E). By induction, (F M
SF,C)i(∅) ⊆ (F M

SF,C)i(E) therefore also
holds for any integer i ≥ 1. Since E is complete, E = (F M

SF,C)i(E) holds for each
integer i, i.e. the right-hand side is actually constant. We conclude for each n

G =
�
1≤i

	
F M

SF,C

�i
(∅) =

�
1≤i≤n

	
F M

SF,C

�i
(∅) ⊆

�
1≤i≤n

	
F M

SF,C

�i
(E) = E,

thus it follows that G ⊆ E.

4. By definition E ∈ pref(SF, C, M) is maximal in adm(SF, C, M). So we show E is
maximal in adm(SF, C, M) iff E is maximal in com(SF, C, M).
(⇒) Suppose E ∈ pref(SF, C, M) is not maximal in com(SF, C, M). Then there is
a proper complete superset E� of E; since E� is in particular admissible, E is not
maximal in adm(SF, C, M).
(⇐) Now suppose E is not maximal in adm(SF, C, M). Take E� ∈ adm(SF, C, M)
with E � E�. By the fundamental lemma and monotonicity of F M

SF,C , we find that�
1≤i(F M

SF,C)i(E�) is a complete proper superset of E (analogous to 2.). Hence E is
not maximal in com(SF, C, M).

51

3. Principle-Based Analysis

To adequately characterize the defeated, provisionally defeated, and undefeated arguments
in this setting we now also have to consider mitigated attacks. We illustrate this using
the following example.

Example 3.85. Consider the following SETAF SF (the dashed lines indicate the SCCs).

SF :

a

b

c

d e

fg

SF⇓{f}
{a,b,c,e}:

a

b

c

e

The set {a, e, g} is not admissible, and should therefore not be characterized by our (yet
to be formally defined) notion of SCC-recursiveness. Intuitively, the singleton SCCs
{g}, {f}, {d} are unsurprisingly evaluated w.r.t. {a, e, g} in the sense that g is accepted,
f is defeated, and d is undecided. To characterize the remaining SCC {a, b, c, e} we have
to take the defeated arguments into account (namely, f), resulting in SF⇓{f}

{a,b,c,e}. As f
is defeated, we delete the attack towards e and as a result “split” the SCC into two SCCs
{a, b, c}, {e}. It is important to see that the remaining attack (e, c) is mitigated, but in
contrast to the situation illustrated in Example 3.80 the mitigated attack did not origin in
the current recursion step—because we split the original SCC, we will invoke the general
function of the SCC-recursive scheme on the sub-framework SF⇓{f}

{a,b,c,e}. Consequently,
the attack (e, c) is not indicated as mitigated by the set MSF (E, S); to still have this
relevant information we generalize this set to also take the mitigated attacks from earlier
recursion steps into account. Otherwise, the attack (e, c) is not marked as mitigated.
Moreover, for the same reason we have to take the mitigated attacks into account when
we calculate the set of defeated arguments: e is not sufficient to defeat c—if we would not
account for this “inherited” mitigated attack (e, c), we would conclude that c is defeated
and therefore a is acceptable, mistakenly characterizing {a, e, g} as admissible.

Formally, we capture this in the following slightly adapted version of Definition 3.69.
Note that the only difference to the former definition is that arguments that are only
attacked by E via mitigated attacks do not count as defeated, but provisionally defeated.

Definition 3.86. Let SF = (A, R) be a SETAF. Moreover, let E ⊆ A be a set of
arguments, M ⊆ R a set of attacks, and S ∈ SCCs(SF) be an SCC. We define the set of
defeated arguments DSF (S, E, M), provisionally defeated arguments PSF (S, E, M), and

52

3.4. SCC-Recursiveness

undefeated arguments USF (S, E, M) w.r.t. S, E, M as

DSF (S, E, M) = {a ∈ S | ∃(T, a) ∈ R \ M s.t. T ⊆ E \ S},

PSF (S, E, M) = {a ∈ S | A \ (S ∪ E+) �→R a}\DSF (S, E, M),
USF (S, E, M) = S \ (DSF (S, E, M) ∪ PSF (S, E, M)).

Moreover, we set UPSF (S, E, M) = USF (S, E, M) ∪ PSF (S, E, M).

We have to make similar adjustments to the notion of mitigated attacks. Due to
Definition 3.81, for the computation of mitigated attacks only the ancestor SCCs are
relevant. In particular, the set (T � \ T) is contained in ancestor SCCs of S for each
attack (T �, h) ∈ R. However, when we apply the concept of mitigated attacks to
characterize SCC-recursiveness in admissibility-based semantics, we will face situations
where we already know for the original SETAF that some attacks are mitigated. To
account for this set of given mitigated attacks M , we slightly modify the condition for
mitigated attacks, s.t. only the non-mitigated attacks (T �, h) ∈ R can “override” the
status of a mitigated attack as non-mitigated.

Definition 3.87 (Mitigated Attacks, refined). Let SF = (A, R) be a SETAF. Moreover,
let E ⊆ A and S ∈ SCCs(SF). The set MSF (S, E, M) of mitigated attacks is given as

{(T, h)∈R
	
SF⇓(E\S)+

UPSF (S,E,M)

�
| ∀(T �, h)∈R \ M : T � ⊇ T ⇒ (T � \ T) !⊆ E}.

Indeed, for Example 3.85 we get that the attack (e, c) is mitigated in SF⇓{f}
{a,b,c,e}. Next

we redefine Definition 3.75 in order to capture the admissibility-based semantics. For
this, we need to take into account that in each recursive call of the generic selection
function GF we will also have to pass the current set M of mitigated attacks.

Principle 3.88 (SCC-recursiveness, refined). A semantics σ satisfies SCC-recursiveness
if and only if for all SETAFs SF = (A, R) it holds σ(SF) = GF(SF, A, ∅), where the
generic selection function GF(SF, C, M) ⊆ 2A is defined as: E ⊆ A ∈ GF(SF, C, M) if
and only if

• if |SCCs(SF)| = 1, then E ∈ BF(SF, C, M),

• otherwise, ∀S ∈ SCCs(SF) it holds that

E ∩ S ∈ GF
	
SF⇓(E\S)+

UPSF (S,E,M), USF (S, E, M) ∩ C, MSF (S, E, M)
�

,

where BF maps SF =(A, R) with |SCCs(SF)|=1 and sets C ⊆A, M ⊆R to a subset of
2A.

Towards an SCC-recursive characterization of admissible sets we discuss the following
auxiliary results. Lemma 3.89 shows that global acceptability implies local acceptability,
Lemma 3.90 shows the converse direction.

53

3. Principle-Based Analysis

Lemma 3.89. Let SF = (A, R) be a SETAF, let M ⊆ R, C ⊆ A, and let E ∈
adm(SF, C, M) be an admissible set of arguments and let a ∈ A ∩ C be acceptable w.r.t.
E considering M in SF , where a ∈ S for some SCC S. Then

1. we have a ∈ USF (S, E, M) and a is acceptable w.r.t. (E ∩ S) in SF⇓(E\S)+

UPSF (S,E,M)
considering MSF (S, E, M);

2. it holds that (E ∩ S) is conflict-free in SF⇓(E\S)+

UPSF (S,E,M).

Proof. Set SF⇓(E\S)+

UPSF (S,E,M) = SF � = (A�, R�).

1. By Theorem 3.84, item 2, we get that E ∪ {a} ∈ adm(SF, C, M), i.e. a /∈
DSF (S, E, M) by conflict-freeness of E and a /∈ PSF (S, E, M) by defense. Conse-
quently, we infer a∈USF (S, E, M). Likewise, we get (E ∩ S)⊆USF (S, E, M), and
therefore (E ∩ S)⊆A�.
To show that a is acceptable in this context we have to consider attacks towards
a, i.e. (T, a) ∈ R�, and establish T !⊆ E (conflict-freeness) and (E ∩ A�) attacks T
in SF � via non-mitigated attacks (defense). As E is admissible in SF , there is a
(non-mitigated) counter-attack (X, t) ∈ R\M with t ∈ T and X ⊆ E. In particular,
this means that t /∈ E, as (X, t) would otherwise contradict the conflict-freeness of
E. Hence, T !⊆ E. Moreover, because (T, a) ∈ R�, it must be that X ∩ S != ∅, as
otherwise the attack (T, a) would be deleted when we construct the appropriate
restriction to the SCC S. Let X � = X ∩ S, i.e. there is an attack (X �, t) ∈ R�.
In other words, E ∩ S defends a in SF �. Finally, X ⊆ E and (X, t) /∈ M implies
(X �, t) /∈ MSF (S, E, M).

2. Towards contradiction assume there is an attack (T, h) ∈ R� with T ∪{h} ⊆ (E ∩S).
This means there is an attack (T �, h) ∈ R with T ⊆ T �. As E is admissible in SF
there is a counter-attack (X, t) ∈ R \ M with X ⊆ E for some t ∈ T �. If t /∈ S then
(T, h) /∈ R�, a contradiction. Therefore t ∈ S and by assumption t ∈ E. However,
this means X ∪ {t} ⊆ E, a contradiction to the conflict-freeness of E in SF .

Lemma 3.90. Let SF = (A, R) be a SETAF, let M ⊆ R, let E ⊆ A such that

(E ∩ S) ∈ adm
	
SF⇓(E\S)+

UPSF (S,E,M), USF (S, E, M), MSF (S, E, M)
�

for all S ∈ SCCs(SF). Moreover, let S� ∈ SCCs(SF) and let a ∈ USF (S�, E, M) be
acceptable w.r.t. (E ∩ S�) in SF⇓(E\S�)+

UPSF (S�,E,M) considering MSF (S�, E, M). Then a is
acceptable w.r.t. E in SF considering M .

Proof. We have to show for each (T, a) ∈ R that E attacks T in SF with non-mitigated
attacks. As before we set SF⇓(E\S�)+

UPSF (S�,E,M) = SF � = (A�, R�). We distinguish the
following three cases:

54

3.4. SCC-Recursiveness

1. (T ⊆ S�) If T ∩DSF (S�, E, M) != ∅ we are done, because this means by Definition 3.86
there is an attack in R\M with T ⊆ E. Otherwise, all t ∈ T are in UPSF (S�, E, M).
Then, (T, a) ∈ R� and there must be a (not mitigated) counter-attack (X, t) with
t ∈ T and X ⊆ E ∩ S� within SF �, as we assumed a is acceptable w.r.t. E ∩ S� in
SF � considering MSF (S�, E, M). This means there is an attack (X �, t) ∈ R \ M
with X ⊆ X �, and as (X, t) is not mitigated in SF � we know X � ⊆ E. In summary,
a is acceptable w.r.t. E in SF considering M .

2. (T ⊆ A \ S�) Then T ∩ E+ != ∅ by a ∈ USF (S�, E, M) (otherwise, if E would not
attack T in SF , if (T, a) ∈ M then a ∈ PSF (S�, E, M), and if (T, a) /∈ M then
a ∈ DSF (S�, E, M)).

3. (T ∩ S� != ∅ and T ∩ (A \ S�) != ∅) Assume towards contradiction there is no
non-mitigated attack from E to T in SF . Then there is an attack (T �, a) ∈ R� with
T � ⊆ T and (T �, a) /∈ MSF (S�, E, M). Now the reasoning proceeds as in case (1).

As we established that there are counter-attacks in all cases (1)-(3), the desired property
holds.

Combining these two results we obtain the SCC-recursive characterization of admissible
sets.

Proposition 3.91. Let SF = (A, R) be a SETAF and let E ⊆ A be a set of arguments.
Then for each C ⊆ A and M ⊆ R it holds E ∈ adm(SF, C, M) if and only if ∀S ∈
SCCs(SF) it holds (E ∩ S) ∈ adm(SF⇓(E\S)+

UPSF (S,E,M), USF (S, E, M) ∩ C, MSF (S, E, M)).

Proof. Let SF � = SF⇓(E\S)+

UPSF (S,E,M).

(⇒) Since E ⊆ C and all a ∈ E are acceptable w.r.t. E in SF considering M , we can
apply Lemma 3.89 and get that every a ∈ (E ∩ S) are in USF (S, E, M) ∩ C for any
given SCC S. Moreover, we get that a is acceptable w.r.t. (E ∩ S) in SF � considering
MSF (S, E, M) and that (E ∩ S) is conflict-free in SF �. Hence, (E ∩ S) is admissible in
SF � considering MSF (E, S, M).

(⇐) As for all SCCs S we assume (E ∩ S) ⊆ (S ∩ C) we know E ⊆ C, i.e. we only need
to show admissibility in SF considering M . Towards contradiction assume E is not
conflict-free in SF , i.e. there is an attack (T, h) ∈ R with T ∪ {h} ⊆ E. Let S� be the
SCC containing h.

1. We cannot have (1) T ⊆ S�, as this would contradict the assumption that E ∩ S�

is conflict-free in SF⇓(E\S�)+

UPSF (S�,E) (note that in this case the attack (T, h) is also
necessarily in SF �).

2. Moreover, it cannot be that (2) T ⊆ A \ S�, because then h ∈ DSF (S�, E, M) (or
h ∈ PSF (S�, E, M) if (T, h) ∈ M) while we assumed h ∈ USF (S�, E, M).

55

3. Principle-Based Analysis

3. Finally, consider the case (3) where T ∩ S� != ∅ and T ∩ (A \ S�) != ∅. Then
there is a non-mitigated attack from (E \ S�) to T , as otherwise there would
be (T ∩ S�, h) ∈ SF⇓(E\S�)+

UPSF (S�,E,M), contradicting our assumption of local conflict-
freeness. Call this attack (X, t) ∈ R \ M with X ⊆ (E \ S�) and t ∈ T \ S�. Let S��

be the SCC t is in. As before, we cannot have (1) X ⊆ S�� or (2) X ⊆ A \ S��. The
only remaining case is again (3) X ∩ S�� != ∅ and X ∩ (A \ S��) != ∅—as this step (3)
always takes us to a prior SCC and we assume SF finite, eventually this recursion
will stop in case (1) or (2). Now, by induction we get a contradiction for the initial
case.

It remains to show that every a ∈ E is acceptable w.r.t. E in SF considering M .
Let S∗ be the SCC a is in and let SF ∗ = SF⇓(E\S∗)+

UPSF (S∗,E,M). By assumption, (E ∩
S∗) ∈ adm(SF ∗, USF (S∗, E, M), MSF (S∗, E, M)), i.e. a is acceptable w.r.t. E ∩ S in
SF ∗ considering MSF (S∗, E, M). Since we also have a ∈ USF (S∗, E, M), we can apply
Lemma 3.90 and get that a is acceptable w.r.t. E in SF considering M .

The base function for admissible sets is adm(SF, C, M). We will utilize this result to
obtain the characterizations of the other (admissibility-based) semantics.

Theorem 3.92. Admissible semantics is SCC-recursive.

Proof. The base function BF(SF) is adm(SF, C, M). The case for |SCCs(SF)| = 1 is
immediate, the composite case follows from Proposition 3.91.

Example 3.93. Recall our example with the (not admissible) set E = {a, e, g}.

SF :

a

b

c

d e

fg

SF⇓{f}
{a,b,c,e}:

a

b

c

e

Indeed, in SF⇓{f}
{a,b,c,e} we have that (e, c) is a mitigated attack. Therefore, in the next

recursive step, in the SCC {a, b, c} the argument c is detected as provisionally defeated.
Hence a is not admissible in the corresponding sub-framework and thus, E is rightfully
detected as non-admissible.

Let us now consider SF � the same SETAF as SF , but without the self-attacker d.

56

3.4. SCC-Recursiveness

SF �:

a

b

c

e

fg

SF �⇓{f}
{a,b,c,e}:

a

b

c

e

Let E be as above. Then, the attack (e, c) is not mitigated in SF �⇓{f}
{a,b,c,e} and hence, c

is detected as defeated. Hence in order to evaluate {a, b, c} we require another recursive
step and find acceptance of {a} in a sub-SCC consisting only of the single undefeated
argument a. Therefore, it is rightfully detected that E ∈ adm(SF �).

3.4.3 Complete Semantics
We already have the tools to characterize complete extensions: Proposition 3.91 proves
the desired properties for admissible sets, in addition we can apply Lemma 3.89 and
Lemma 3.90 to show that complete extensions contain all arguments they defend (i.e., for
an SCC S�, an extension E, and a set of mitigated attacks M , exactly those arguments
from USF (S�, E, M) that are acceptable w.r.t. (E ∩ S�) in SF⇓(E\S�)+

UPSF (S�,E,M) considering
MSF (S�, E, M)).

Proposition 3.94. Let SF = (A, R) be a SETAF, let M ⊆ R, and let E ⊆ A be a set
of arguments. Then ∀C ⊆ A it holds E ∈ com(SF, C, M) if and only if ∀S ∈ SCCs(SF)
it holds (E ∩ S) ∈ com(SF⇓(E\S)+

UPSF (S,E,M), USF (S, E, M) ∩ C, MSF (S, E, M)).

Proof. (⇒) If E ∈ com(SF, C, M), then in particular E ∈ adm(SF, C, M). Hence by
Proposition 3.91 we get

∀S ∈ SCCs(SF) : (E∩S) ∈ adm(SF⇓(E\S)+

UPSF (S,E,M), UPSF (S, E, M)∩C, MSF (S, E, M)).

For an arbitrary SCC S� ∈ SCCs(SF), let a ∈ USF (S�, E, M) be an argument acceptable
w.r.t. (E ∩ S�) in SF⇓(E\S�)+

UPSF (S�,E,M) considering MSF (S�, E, M). By Lemma 3.90, a

is acceptable w.r.t. E in SF considering M , and, hence, a ∈ E and a ∈ E ∩ S� by
completeness.
(⇐) We get E ∈ adm(SF, C, M) by Proposition 3.91. For an arbitrary a ∈ C, let S� be
the SCC a is in. If a is acceptable w.r.t. E in SF considering M , by Lemma 3.89 we get
that a is acceptable w.r.t. (E ∩ S�) in SF⇓(E\S�)+

UPSF (S�,E,M) considering MSF (S�, E, M). As
(E ∩ S�) is locally complete, we get a ∈ E.

From this we get the desired result regarding complete extensions. The base function is
com(SF, C, M).

Theorem 3.95. Complete semantics is SCC-recursive.

57

3. Principle-Based Analysis

3.4.4 Preferred Semantics
The next lemma illustrates that if we already found a globally admissible set E and find
a (larger) locally admissible set E� � E ∩ S in an SCC S, then we can find a globally
admissible set incorporating this set E�. This idea underlies the incremental computation
of extensions (see Section 3.5).

Lemma 3.96. Let SF = (A, R), let M ⊆ R, and let E ∈ adm(SF, A, M), let S ∈
SCCs(SF) be an SCC. Moreover, let E� ⊆ A be a set of arguments such that (E ∩ S) ⊆
E� ⊆ USF (S, E, M), and E� ∈ adm(SF⇓(E\S)+

UPSF (S,E,M), USF (S, E, M), MSF (S, E, M)).
Then E ∪ E� is admissible in SF considering M .

Proof. We first show that (E∪E�) is conflict-free in SF . Again, let SF � = SF⇓(E\S)+

UPSF (S,E,M).
Assume towards contradiction there is (T, h) ∈ R with T ∪ {h} ⊆ (E ∪ E�). Then we
have either (1) h ∈ E or (2) h ∈ E� \ E.

(1) Since E ∈ adm(SF, A, M) in (1) we have E �→R T via a non-mitigated attack. We
have E ∈ cf (SF), this means E �→R T � where T � = T \ E = T ∩ E� != ∅. But this
means E� ∩ DSF (S, E, M) != ∅, contradicting our assumption E� ⊆ USF (S, E, M).

(2) Regarding (2), if T ⊆ E, then if (T, h) /∈ M we have h ∈ DSF (S, E, M) (or
h ∈ PSF (S, E, M) if (T, h) ∈ M), a contradiction. Hence, T ∩ (E� \ E) != ∅. It
follows there is (T �, h) ∈ R(SF �) with T � ⊆ T . However, since we assume E� is
conflict-free in SF � it holds T � ∪ {h} !⊆ E�, a contradiction because E ∩ S ⊆ E�.

As both possibilities lead to contradictions, we conclude (E ∪ E�) ∈ cf (SF).

It remains to show defense in SF considering M , i.e. for all (T, h) ∈ R with h ∈ E ∪ E�

we show E ∪ E� �→R T via non-mitigated attacks. If h ∈ E, this follows from E ∈
adm(SF, A, M). For h ∈ E� \ E, we distinguish 4 cases:

(1) E attacks T via non-mitigated attacks, then we are done.

(2) T ⊆ A \ S. But then either E �→R T via non-mitigated attacks—see (1)—or all
attacks from E to T are mitigated, or E !�→R T , and therefore h ∈ PSF (S, E, M), a
contradiction to h ∈ E� ⊆ USF (S, E, M).

(3) T ⊆ A(SF �). But this means (T, h) ∈ R(SF �) and therefore since E� is admissible
in this context there is a non-mitigated counter-attack (X, t) ∈ R(SF �) with X ⊆ E�

and t ∈ T . As (X, t) is not mitigated, there is a non-mitigated “original” attack
(X �, t) ∈ R with X � ⊇ X and X � \ X ⊆ E, i.e. X � ⊆ (E ∪ E�), contradicting the
earlier established conflict-freeness.

(4) T ∩ A(SF �) != ∅ and T ∩ (A \ A(SF �)) != ∅. If we assume we are not in case (1) then
there is an attack (T �, h) ∈ R(SF �), and we proceed as in (3). In any case, there is
a defense against the attack (T, h), therefore, (E ∪ E�) ∈ adm(SF, A, M).

58

3.4. SCC-Recursiveness

Given this lemma, we are ready to show SCC-recursiveness for preferred semantics.

Proposition 3.97. Let SF = (A, R) be a SETAF, let M ⊆ R and let E ⊆ A be a set of
arguments. Then ∀C ⊆ A it holds E ∈ pref(SF, C, M) if and only if ∀S ∈ SCCs(SF) it
holds (E ∩ S) ∈ pref(SF⇓(E\S)+

UPSF (S,E,M), USF (S, E, M) ∩ C, MSF (S, E, M)).

Proof. (⇒) We assume E ∈ pref(SF, C, M), and can apply Proposition 3.91 and obtain
that

∀S ∈ SCCs(SF) : (E ∩S) ∈ adm(SF⇓(E\S)+

UPSF (S,E,M), USF (S, E, M)∩C, MSF (S, E, M)).

Assume towards contradiction that for some S� ∈ SCCs(SF) there is a set

E� ∈ adm(SF⇓(E\S�)+

UPSF (S�,E,M), USF (S�, E, M) ∩ C, MSF (S�, E, M))

with E∩S� � E�. However, by Lemma 3.96 this means the set E∪E� is in adm(SF, C, M),
but since E � E ∪ E� this contradicts our assumption E ∈ pref(SF, C, M).

(⇐) From Proposition 3.91 we get E ∈ adm(SF, C, M). Towards contradiction assume
there is an E� ∈ adm(SF, C; M) with E� � E. This means there is some SCC S ∈
SCCs(SF) such that (E ∩ S) � (E� ∩ S). W.l.o.g. we choose S such that no ancestor
SCC of S has this property. This means that USF (S, E, M) = USF (S, E�, M) and
PSF (S, E, M) = PSF (S, E�, M) for S and all of its ancestor SCCs. Consequently, (E� ∩
S) ⊆ USF (S, E, M) = USF (S, E�, M), and by another application of Proposition 3.91
we get E� ∈ adm(SF⇓(E\S)+

UPSF (S,E,M), USF (S, E, M) ∩ C, MSF (S, E, M)). However, this
contradicts our assumption E ∈ pref(SF⇓(E\S)+

UPSF (S,E,M), USF (S, E, M)∩C, MSF (S, E, M)).

From this we get the desired result regarding preferred extensions. The base function is
pref(SF, C, M).

Theorem 3.98. Preferred semantics is SCC-recursive.

3.4.5 Grounded Semantics
For the characterization of grounded semantics we exploit the fact that also in our setting
the grounded is the unique minimal complete extension (see Theorem 3.84). Hence,
we can apply Proposition 3.94 and utilize the fact that that for the unique grounded
extension minimality has to hold for each SCC to prove minimality of the whole extension.

Proposition 3.99. Let SF = (A, R) be a SETAF, M ⊆ R, and let E ⊆ A be a set of
arguments. Then ∀C ⊆ A it holds E ∈ grd(SF, C, M) if and only if ∀S ∈ SCCs(SF) it
holds (E ∩ S) ∈ grd(SF⇓(E\S)+

UPSF (S,E,M), USF (S, E, M) ∩ C, MSF (S, E, M)).

59

3. Principle-Based Analysis

Proof. (⇒) We assume E ∈ grd(SF, C), and can apply Proposition 3.94 and obtain that

∀S ∈ SCCs(SF) : (E ∩S) ∈ com(SF⇓(E\S)+

UPSF (S,E,M), USF (S, E, M)∩C, MSF (S, E, M)).

Assume towards contradiction that for some SCC S� the set (E ∩ S�) is not minimal
among the locally complete extensions. W.l.o.g. we choose S� such that no ancestor SCC
of S� has this property. Let E� ∈ grd(SF⇓(E\S)+

UPSF (S,E,M), USF (S, E, M)∩C, MSF (S, E, M)).
We can construct E�� such that for the ancestor SCCs of S� the new set E�� coincides
with E, for S� it coincides with E�, and for the remaining SCCs S is determined by
grd(SF⇓(E�\S)+

USF (S,E�,M), UPSF (S, E�, M) ∩ C, MSF (S, E�, M)) (see Section 3.5 for details).
But then E�� ∈ com(SF, C, M) by Proposition 3.94 and E !⊆ E��, a contradiction to our
assumption E ∈ grd(SF, C, M).

(⇐) We get E ∈ com(SF, C, M) by Proposition 3.94. Towards contradiction assume
there is some E� � E with E� ∈ grd(SF, C, M). This means there is an SCC S where
(E�∩S) � (E∩S). W.l.o.g., we choose S such that no ancestor SCC of S has this property.
This means that USF (S, E, M) = USF (S, E�, M) and PSF (S, E, M) = PSF (S, E�, M) for
S and its ancestor SCCs. Consequently,

(E� ∩ S) ∈ com(SF⇓(E\S)+

UPSF (S,E,M), UPSF (S, E, M) ∩ C, MSF (S, E, M)).

However, this contradicts our assumption

E ∈ grd(SF⇓(E\S)+

UPSF (S,E,M), UPSF (S, E, M) ∩ C, MSF (S, E, M)),

since (E� ∩ S) � (E ∩ S).

Theorem 3.100. Grounded semantics is SCC-recursive.

3.4.6 Connection to Directionality
As it is the case in AFs, we can obtain results regarding directionality using SCC-
recursiveness if the base function always admits at least one extension [BG07]. First note
that for an uninfluenced set U any SCC S with S ∩ U != ∅ has to be contained in U , as
well as all ancestor SCCs of S. Then, by the SCC-recursive characterization we get the
following general result, subsuming the semantics under our consideration.

Proposition 3.101. Let σ be a semantics such that for all SETAFs SF and all C ⊆
A(SF), M ⊆ R(SF) it holds BF(SF, C, M) != ∅. If σ satisfies SCC-recursiveness then
it satisfies directionality.

Proof. We use the fact that for an uninfluenced set U any SCC S with S ∩ U != ∅ has
to be contained in U , as well as all ancestor SCCs of S. Let S be the set of SCCs S
with S ⊆ U . Considering the SCC-recursive characterization, this yields σ(SF⇓∅

U) =

60

3.5. Incremental Computation

{E ⊆ U | ∀S ∈ S : (E ∩ S) ∈ GF(SF⇓∅
UPSF (S,E,M), USF (S, E, M), MSF (S, E, M))}. We

have to show that σ(SF⇓∅
U) = {E ∩ U | E ∈ σ(SF)}.

We get the “⊆” direction from the fact that USF (S, E, M) = USF (S, E ∩ U, M) and
PSF (S, E, M) = PSF (S, E ∩ U, M) for all S ∈ S. The “⊇” direction is immediate: as we
assume that BF(SF, C, M) always yields at least one extension, we can extend any set
(E ∩ U) according to the SCC-recursive scheme (see Section 3.5 for details).

3.5 Incremental Computation

In this section we discuss the computational implications of a semantics satisfying direc-
tionality, modularization, or SCC-recursiveness, and how we can improve the asymptotic
runtime of the resulting algorithms by utilizing structures in the graph of the SETAFs.
To this end, we establish the basic idea of our algorithms exploiting structural properties
(Section 3.5.1) and analyze the graph classes acyclicity, even-cycle-freeness, bipartiteness,
and full-symmetry in the setting of incremental computation to further refine the rele-
vant structures. These classes form tractable fragments for SETAFs [DKUW24]—recall
Definitions 2.15–2.19 from the background chapter of this thesis. It is known that the
presence of these properties leads to computational ease [DKUW24], we generalize this
result to be applicable in the general case in the context of SCCs (Section 3.5.2).

3.5.1 Basic Computational Speedup

First, for a semantics σ satisfying directionality an argument a is in some extension (in
all extensions) if and only if it is in some extension (in all extensions) of the framework
that is restricted to the arguments that influence a. That is, when deciding credulous
or skeptical acceptance of an argument, in a preprocessing step, we can shrink the
framework to the relevant part. The property of modularization is closely related to
CEGAR style algorithms for preferred semantics that can be implemented via iterative
SAT-solving [DJWW14]. In order to compute a preferred extension we can iteratively
compute a non-empty admissible set of the current framework, build the reduct w.r.t.
this admissible set, and repeat this procedure on the reduct until the empty set is the
only admissible set. The preferred extension is then given by the union of the admissible
sets.

Finally, for SCC-recursive semantics we can iteratively compute extensions along the
SCCs of a given framework (see [Bau11, LJK11, BGL14, CGVZ14] for such approaches
for AFs). It is well known that the SCCs of any directed graph form a partial order w.r.t.
reachability: in Example 3.102 (b) the SCC S1 is an initial SCC and precedes S2 and S3,
and S2 precedes S3. In (one of) the initial SCCs we simply compute the extensions and
then for each of these extensions we proceed on the preceding SCCs. We then iteratively
continue this process on SCCs in their order. To evaluate an SCC that is influenced by
other ones we have to take the attacks from earlier SCCs into account and, as we have

61

3. Principle-Based Analysis

already fixed our extension there, we can simply follow the SCC-recursive schema. We
next illustrate this for stable semantics.

Example 3.102. Consider (a) the SETAF SF and (b) the order of its SCCs.

S1

S2

S3a

b d

e

f

h

(a) (b)
S1

S2
S3

We can iteratively compute the stable extensions of SF as follows: in the first SCC
S1 = {a} we simple compute all the stable extensions, i.e., stb(SF⇓∅

S1) = {{a}}. We
then proceed with {a} as extension E for the part of the SETAF considered so far.
Next we consider S2 and adapt it to take E into account. As (E \ S2)+ = {b} we only
have to delete the argument b from S2 before evaluating the SCC and thus we obtain
SF⇓{b}

S2
= ({d, e}, {(d, e), (e, d)}). Combining these with E we obtain two stable extensions

E1 = {a, d}, E2 = {a, e} for SF⇓∅
S1∪S2. We proceed with S3 and first consider E1. As

(E1 \ S3)+ = {b, e} we do not remove arguments from S3. However, as d ∈ E1 we cannot
delete the attack ({d, f}, h) but have to replace it by the attack (f, h). We then have
stb(SF⇓{b,e}

S3
) = {{f}} and thus obtain the first stable extensions of SF {a, d, f}. Now

consider E2. We have that E2 attacks h, i.e., (E2 \ S3)+ = {b, d, h}, and thus we have
to remove h before evaluating S3 and thus obtain SF⇓{b,d,h}

S3
=({f}, ∅). We end up with

{a, e, f} as the second stable extension of SF .

The computational advantage of the incremental computation is that certain computations
are performed over single SCCs instead of the whole framework. This is in particular
significant for preferred semantics where the ⊆-maximality check can be done within
the SCCs. Notice that verifying a preferred extension is in general coNP-complete
[DT96, DGW18]. However, given our results regarding the SCC-recursive scheme, the
following parameterized tractability result is easy to obtain: it is well known that
computing the SCCs of a directed graph can be done efficiently. It then suffices to verify
a given extension along the SCCs of the framework, whereby we only need to consider
one SCC at the time.

Theorem 3.103. Let SF be a SETAF where |S| ≤ k for all S ∈ SCCs(SF). Then we
can verify a given preferred extensions in O

	
2k · poly(|SF |)

�
for some polynomial poly.

Next, we will build on prior work regarding graph classes for SETAFs and illustrate how
we can exploit them to reason more efficiently. These classes generalize situations that
are known to yield computationally easy fragments in the special case of AFs. Moreover

62

3.5. Incremental Computation

we will show how we can utilize these graph classes in the context of SCC-recursiveness
to achieve a computational speedup even if the framework is heterogeneous, i.e., does
not as a whole belong to one of these tractable fragments. Instead, in the spirit of
Theorem 3.103 we follow the SCC-recursive scheme and pose the respective restrictions
only on the strongly connected components, resulting in a more flexible setting.

3.5.2 Utilizing Tractable Fragments for Efficient Computation Along
SCCs

In this section we will show which of our tractable fragments we can exploit in the
context of SCC-recursiveness to speed up computation. In particular, we exemplify the
speedup with the Verpref problem. We will show for acyclicity, even-cycle-freeness, and
primal-bipartiteness, that we obtain a speedup when every SCC of a SETAF belongs to
one of these tractable fragments.

On the other hand, we show that for symmetry this is not the case. Deleting (parts of)
attacks from a fully-symmetric SETAF might lead to a situation where the remaining
framework is no longer fully symmetric. We will show that therefore this fragment does
not allow a speedup in the SCC-recursive scheme. The key idea is that prior SCCs can
“disable” arbitrary attacks in a given SCC. In the reduction from the general verification
problem we use to prove this (illustrated in Example 3.105) we have at least 3 SCCs: the
one containing x, the one containing y, and the ones containing our original framework
(if the original framework is not connected, we obtain more than one). Each SCC is
fully-symmetric, but the symmetric counter-attacks in the SCCs corresponding to the
original framework are irrelevant, as the argument y in the tail is always defeated.9

Proposition 3.104. The problem Verpref remains coNP-complete even for self-attack-free
SETAFs SF where all SCCs S ∈ SCCs(SF) are fully-symmetric, i.e., SF↓S is fully
symmetric.

Proof. Let SF = (A, R) be an arbitrary self-attack-free SETAF and let x, y /∈ A be new
arguments. We define SF � = (A ∪ {x, y}, R�), with

R� = R ∪ {
{y, h} ∪ T \ {t}, t
� | (T, h) ∈ R,

{h} ∪ T \ {t}, t
�

/∈ R}.

In the resulting framework SF � clearly all SCCs are fully-symmetric (note that {x}, {y}
are SCCs of SF �, as well as all loosely connected components of SF). Clearly x ∈ G
and y ∈ G+ for G ∈ grd(SF �), and hence, x ∈ E and y ∈ E+ for all E ∈ pref(SF �).
By construction we can apply the reduct on {x} and obtain SF �{x} = SF , and by
modularization we hence get pref(SF �) = {E ∪ {x} | E ∈ pref(SF)}, which means
E ∈ pref(SF) if and only if E ∪ {x} ∈ pref(SF �).

9Note that in the journal version [DKUW24] of this result we erroneously provide a reduction for
primal-symmetric SCCs (i.e., the primal graph is symmetric) instead of fully-symmetric SCCs. However,
the very same idea of “disabling” the attack via the defeated argument y applies in both cases.

63

3. Principle-Based Analysis

Example 3.105. Consider the SETAF in (a) with preferred extensions {{a, c}, {b}}.
By adding the arguments x, y we make every SCC fully-symmetric (under projection),
while preserving the preferred extensions under projection (i.e., the added arguments
and attacks have no practical effect, in particular, if we construct the reduct w.r.t. {x}
we recover the original framework): (b) has preferred extensions {{x, a, c}, {x, b}}. For
example, for the original attack ({a, c}, b) we add the attacks ({y, a, b}, c) and ({y, b, c}, a),
which means when we project to the SCC {a, b, c, d} of the constructed SETAF, we obtain
fully-symmetric attacks between a, b, and c. Finally, note that for our construction
it is irrelevant that the SCC structure is altered—while in the original framework, the
SCCs are {a, b, c} and {d}, the SETAF from the reduction contains SCCs {x}, {y}, and
{a, b, c, d}.

a b

c d

(a)

a b

c d

x y

(b)

In contrast to the negative result regarding full-symmetry, it is indeed possible to verify
preferred extensions efficiently in primal-bipartite SCCs (under projection). To establish
this result, we generalize our notion of the reduct and modularization to the semantics
considering a candidate set C ⊆ A and a set of mitigated attacks M ⊆ R (see SCC-
recursiveness, Definition 3.88).

Definition 3.106. Given a SETAF SF = (A, R), M ⊆ R, and E ⊆ A, the E-reduct of
SF considering M is the SETAF SF E

M = (A�, R�), with

A� = A \ E⊕
R\M

R� = {(T \ E, h) | (T, h) ∈ R, T ∩ E+
R\M = ∅, T !⊆ E, h ∈ A�}

Note the parallels to the definition of the restricted frameworks in the SCC-recursive
scheme. We now show that the modularization property also holds in this context. The
idea is similar to the special case of C = A, M = ∅ that we discussed in Theorem 3.49.
What we have left to consider is that an admissible set E could attack an argument x in
its reduct via mitigated attacks. As in the SCC-recursive scheme, we cannot accept x in
the reduct. Hence, we add such arguments to the set C.

Proposition 3.107. Let SF = (A, R) be a SETAF and C ⊆ A, M ⊆ R, and E ∈
adm(SF, C, M). Let SF � = SF E

M = (A�, R�).

64

3.5. Incremental Computation

1. If E� ∈ adm(SF �, C �, M �) with

C � = C ∩ {a ∈ A | �(T, a) ∈ R ∩ M : (T ⊆ E)}
M � = {(T, h) ∈ R� | ∀(T �, h) ∈ R \ M : T � ⊇ T ⇒ (T � \ T) !⊆ E}

then E ∪ E� ∈ adm(SF, C, M).

2. If E ∩ E� != ∅ and E ∪ E� ∈ adm(SF, C, M), then E� ∈ adm(SF �, C �, M �).

Proof. 1. Since E is admissible in SF considering M , E� does not attack E via non-
mitigated attacks in SF . By construction of SF �, E does not attack E� via non-mitigated
attacks either. Since E� ⊆ C � we know E also does not attack E� via mitigated attacks.
Towards contradiction assume E� attacks E via a mitigated attack. By admissibility, then
E attacks E� in SF which is not the case (as just established). Hence, E ∪ E� ∈ cf (SF).

Now assume S �→R E ∪ E�. If S �→R E, then S �→R\M by admissibility. If S �→R E�, then
there is T ⊆ S s.t. (T, e�) ∈ R with e� ∈ E�. If now E �→R\M T we are done. Otherwise,
there is (T \ E, e�) ∈ R�, and E� �→R�\M � T \ E. This means there is (X �, t) ∈ R� \ M �

with t ∈ T and X � ⊆ E�, and consequently (X, t) ∈ R \ M with X \ E = X �. Since
X �→R\M S and E ∪ E� ⊇ X, it also holds E ∪ E� �→R\M S, i.e., E ∪ E� defends itself
against S in SF considering M . Hence, we have E ∪ E� ∈ adm(SF, C, M).

2. Assume E ∪ E� ∈ adm(SF, C, M). We see E� ∈ cf (SF �) as follows: if (T �, e�) ∈ R� with
T � ⊆ E�, e� ∈ E�, then there is some (T, e�) ∈ R with T � = T \ E. Hence, E ∪ E� �→R E�,
a contradiction.

Now assume E� /∈ adm(SF �, C �, M �). This means there is (T �, e�) ∈ R� with e� ∈ E�, but
there is no non-mitigated counter-attack from E� towards T �. Then there is (T, e�) ∈ R
with T � = T \ E and T ∩ E+

R\M = ∅. By admissibility we know E ∪ E� �→R\M T , say
(T ∗, t) ∈ R \M with T ∗ ⊆ E ∪E�, t ∈ T . Since E ∪E� is conflict-free in SF , T ∗ ∩E+

R = ∅,
and thus we either have a) T ∗ ⊆ E, contradicting T ∩E+

R\M = ∅, or b) (T ∗\E, t) ∈ R�\M �,
contradicting the assumption that there is no counter-attack. Finally, note that E� ⊆ C �,
as otherwise there is (T, e�) ∈ R ∩ M with T ⊆ E, e� ∈ E�, contradicting conflict-freeness.
In summary, we conclude E� ∈ adm(SF �, C �, M �).

It remains to show that we can find non-empty admissible sets in this context in polynomial
time. To this end, we slightly adapt Algorithm 1 from [DKUW24] to also account for
a candidate set C and mitigated attacks M , see Algorithm 1. The only differences
to the original algorithm are in step 2, where we consider C, and in step 6, where for
possible counter-attacks from our constructed admissible set to attackers we only take non-
admissible attacks into account. We get that the set of credulously accepted arguments
considering C and M (i.e., the arguments that are in an admissible set considering C
and M) of one part of the partition are exactly the arguments that are returned by the
algorithm. The proof of the correctness and completeness is analogous to [DKUW24,
Lemma 7.20].

65

3. Principle-Based Analysis

Algorithm 1: Compute the set of credulously accepted arguments w.r.t. pref
semantics considering a candidate set and mitigated attacks.

Input : A primal-bipartite SETAF SF = (A, R) with a partitioning (Y, Z), sets
C ⊆ A, M ⊆ R

Output : The admissible set Yi (considering M) of credulously accepted
arguments in Y ∩ C

1 i := 0
2 Y0 := Y ∩ C
3 R0 := R
4 repeat
5 i := i + 1
6 Yi := Yi−1 \ {y | y ∈ Yi−1, there is some (Z �, y) ∈ Ri−1 with Z � ⊆

Z such that ∀z ∈ Z � |{(Y �, z) | (Y �, z) ∈ Ri−1 \ M}| = 0}
7 Ri := Ri−1 \ {(Y �, z) | Y � ⊆ Y, z ∈ Z, Y � !⊆ Yi}
8 until Yi = Yi−1;

Proposition 3.108. Let SF = (A, R) be a primal-bipartite SETAF with a partitioning
(Y, Z), and let C ⊆ A be a set of arguments and M ⊆ R a set of mitigated attacks. An
argument a ∈ Y ∩ C is in � adm(SF, C, M) iff it is in the set returned by Algorithm 1.

Proof. “⇒”: We show by induction over the iterations of the loop in the algorithm that
every argument that is removed in step 6 cannot be defended and the attacks that are
removed in step 7 cannot be part of a defending attack. For the first iteration this is
the case, as we construct Y1 by only removing those arguments y ∈ Y from Y that are
attacked by an attack (Z �, y) on which no non-mitigated counter-attack exists. Moreover
we remove all attacks (Y �, z) towards arguments z ∈ Z such that for one of the arguments
y� ∈ Y � we already showed it is not defensible, as they cannot defend any argument in
an admissible set. Likewise, assuming this property holds for the i − 1-th iteration, in
the i-th iteration we only remove arguments that are not defensible via non-mitigated
attacks and attacks that cannot play a role for defense in admissible sets.

Assume towards contradiction an argument y ∈ Y ∩ C is credulously accepted, but not in
the set that is returned by the algorithm. This means at some iteration i the argument y
is removed, but, as established, this means it is not defensible, which is a contradiction
to the assumption is it credulously accepted.

“⇐”: Let S be the set that is returned by the algorithm. We show that S ∈ adm(SF, C, M).
As we have S ⊆ Y , we know S is conflict-free in SF . Moreover we know that S defends
every x ∈ S: towards contradiction assume otherwise, i.e. there is an attack (Z �, x)
towards x such that S does not attack Z � via non-mitigated attacks. But then x would
be removed in step 6, which is a contradiction to the assumption that x ∈ S.

If we apply the algorithm both for the partition (Y, Z) and conversely for (Z, Y), in the

66

3.5. Incremental Computation

union of the outputs we get the set of all credulously accepted arguments. Moreover,
note that the set that is returned by the algorithm is admissible (considering C and M)
in SF , as we show in the “⇐” direction of the proof of Proposition 3.108.

This allows us immediately to obtain the following tractability result for preferred
semantics.

Proposition 3.109. Let SF = (A, R) be a primal-bipartite SETAF and C, E ⊆ A,
M ⊆ R. We can decide whether E ∈ pref(SF, C, M) in polynomial time.

Proof. We can check in polynomial time whether E ∈ adm(SF, C, M), and compute
SF E

M . By Proposition 3.107 it suffices to check whether there is a non-empty set
E� ∈ adm(SF �, C �, M �), which we can find out by running Algorithm 1 for both partitions
(as per Proposition 3.108).

Finally, we can see that this result generalizes to odd-cycle-freeness if we restrict ourselves
to the case where we only have a single SCC.

Proposition 3.110. Let SF = (A, R) be an odd-cycle-free SETAF with |SCCs(SF)| = 1.
Then SF is primal-bipartite.

Proof. Let x be an arbitrary argument from SF , we say x reaches argument y ∈ A in
n steps if there are attacks (X1, x2), (X2, x3), . . . , (Xn, y) ∈ R with x ∈ X1, xi ∈ Xi

for 1 ≤ i ≤ n. Let S = {a ∈ A | a can be reached from x in an even number of steps }.
Then (S, A \ S) is a partitioning for SF : Clearly, A \ S is the set of arguments that can
be reached from x in an odd number of steps, and because SF is strongly connected at
the same time the set of argument from which x can be reached in a odd number of
steps. Assume towards contradiction there are two arguments a, b ∈ (A \ S) s.t. a reaches
b in 1 step. However, this introduces an odd-length primal-cycle, as x reaches a in an
odd number of steps, a reaches b in 1 step, and b reaches x in an odd number of steps, a
contradiction. Likewise, there can be no pair a, b of arguments in S where a reaches b in
1 step.

Clearly, this implies that if |SCCs(SF)| = 1 in an odd-cycle-free SETAF we can also
verify preferred extensions in polynomial time. Note also that by removing (parts of)
attacks from SF we cannot introduce an odd-cycle.

In the following we argue that we can efficiently compute the (unique) preferred extension
if the SETAF in question is even-cycle-free. We utilize the fact that an even-cycle-free
SETAF has only one preferred extension, namely the grounded—this also holds true
considering the candidate set C and mitigated attack M .

Proposition 3.111 (cf. [Dvo12]). Let SF = (A, R) be an even-cycle-free SETAF and
C, E ⊆ A, M ⊆ R. We can decide whether E ∈ pref(SF, C, M) in polynomial time.

67

3. Principle-Based Analysis

Proof. An even-cycle-free SETAF admits only one complete extension (see [DKUW24,
Proposition 7.7]). By making some of the attacks mitigated, there can be no additional
complete extensions. Moreover, by considering the candidate set C there can be no
additional complete extensions. Then by Theorem 3.84 item 4 this means that there is
only one preferred extension, which by Theorem 3.84 item 3 is the grounded extension,
which we can compute in polynomial time.

Taking these results together, we obtain the following characterization. This generalizes
the FPT-result from Theorem 3.103 and illustrates that we can utilize various different
graph properties of SCCs at once.

Theorem 3.112. Let SF be a SETAF where for all SCCs S ∈ SCCs(SF) it holds either

• S is acyclic,

• S is even-cycle-free,

• S is primal-bipartite,

• S odd-cycle-free, or

• the size of S is bounded by a parameter k, i.e., |S| ≤ k.

Then we can verify a given preferred extensions in O
	
2k · poly(|SF |)

�
for some polynomial

function poly.

Proof. Follows from Proposition 3.109, Proposition 3.110, and Proposition 3.111 and the
fact that acyclic SETAFs are also even- and odd-cycle-free.

3.6 Discussion
In this chapter, we systematically analyzed semantics for SETAFs using a principle-based
approach (see Table 3.1 for an overview of the investigated properties). Moreover, we
introduced and investigated novel principles like allowing partial conflicts (APC) I–III,
tail strengthening, and attack weakening, that are trivial on AFs, but desirable non-
trivial properties of SETAF semantics. We pointed out interesting concepts that help us
to understand the principles more deeply: edge cases that for AFs are hidden behind
simple syntactic notions have to be considered explicitly for SETAFs, revealing semantic
peculiarities that are already there in the special case. For example, the rich syntax
of SETAFs allows us to differentiate between unattacked and uninfluenced sets—these
notions trivially coincide in AFs. This distinction allows us to meaningfully generalize
directionality to SETAFs and discuss the accompanying phenomena more accurately.
We highlight the usefulness of the reduct in this context—many seemingly unrelated
notions from various concepts boil down to formalizations closely related to the reduct

68

3.6. Discussion

(recall the modifications we applied for the SCC-recursive scheme). We particularly
focused on computational properties like modularization and SCC-recursiveness. The
emphasis on the computation of argumentation tasks lead us to our investigations of
graph properties in the context of SCCs, during which we introduced and analyzed
the computational complexity of reasoning tasks for these restricted cases. Finally, we
applied these findings in the context of SCC-recursiveness, which allowed us to push the
boundaries of tractability for argumentation tasks even further.

SCC-recursiveness has recently been investigated for Abstract Dialectical Frameworks
(ADFs) in a different context by Gaggl et al. [GRS21]. In that work, the acceptance
conditions of the statements in an ADFs (that encode the attacks in case the ADF
recasts a SETAF) are modified. Note that SETAFs can be seen as a special case of
ADFs, where each acceptance condition is a formula in conjunctive normal form with
only negative literals [DKZLW20]. The modification of this formula in the approach of
Gaggl et al. [GRS21] is indeed closely related to our idea of the SETAF-reduct: attacks
(T, h) where in a prior SCC we learn that one argument t ∈ T is attacked (defeated) in
an extension effectively become redundant and are removed. In case an argument t ∈ T
is in an extension, the acceptance condition is modified, in SETAF terms this would
correspond to an attack (T \ {t}, h). However, while we treat the undecided state of an
argument that is neither in nor attacked by an extension via mitigated attacks, in the
approach of Gaggl et al. self-attacks are introduced to model the resulting effects (akin to
the idea of splitting [Bau11, Lin14, BDKW24]). While both approaches effectively yield
the same results, we expect the introduction of new (self-)attacks to be computationally
disadvantageous compared to our approach of labeling an attack as mitigated.

An interesting direction for future works is investigating semantics cf2 [BGG05] and
stage2 [DG16] for SETAFs. While recently the family of semantics based on weak
admissibility (cf. [BBU20b]) has been investigated for SETAFs [BKU24], there is still
much work left on a principle-based analysis, as well as computational properties.

69

CHAPTER 4
Backdoor-Based Evaluation

In this chapter we continue our focus on computational aspects of reasoning in SETAFs.
We use the tools of parameterized complexity analysis and focus on the parameter of
deletion-backdoors (in the following just “backdoors”). The idea of backdoors is used in
different contexts such as constraint satisfaction problems (CSP), satisfiability checking
(SAT), answer set programming (ASP) (see e.g. [GOS17, FS15, OSS21, GMO+14] for
recent work), and has also been investigated for AFs [DOS12], which serves as a starting
point for our investigation on SETAFs. In our context, a backdoor is a set of arguments,
which is “in the way” of tractable computation. Hence, the removal of these arguments
(together with an accompanying change of the attack structure) ensures that the remaining
framework is easy to solve. To account for the removed arguments, the general idea
is to enumerate all possible evaluations on the backdoor-arguments, and apply the
remaining (efficient) computation for the remaining framework for each such possibility.
Consequently, instead of enumerating the whole state-space which is exponential in the
number of all arguments, we obtain a runtime which is exponential only in the number
of backdoor-arguments—i.e., in the size of the backdoor.

As mentioned, the notion of the backdoor relies on the fact that the remaining framework
after the removal of the backdoor arguments is easy to solve. We ensure this fact by
defining different kinds of backdoors, depending on which easy-to-solve property they
rely on. In this regard we focus on graph-properties like acyclicity (ACYC), which already
served us well when we refined the SCC-recursive approach in the end of Chapter 3. A
major advantage of this approach is that we can build upon a solid foundation of research
regarding the problem of finding appropriate backdoors—as we will show, the problem of
finding an acyclicity-backdoor coincides with the (directed) feedback-vertex-set problem,
as originally investigated by Karp in 1972 [Kar72]. More recently, an FPT-algorithm has
been presented which for a graph of size n either returns a feedback vertex set of size ≤ p
or correctly returns that such a set does not exist in runtime O(4p · p! · n4 · p3) [CLL+08].
Another backdoor-type we heavily make use of in this chapter is backdoors to even-

71

4. Backdoor-Based Evaluation

cycle-freeness (NOEVEN). While for finding NOEVEN backdoors no FPT algorithm is
known, there exists an obvious XP algorithm: since we can check in polynomial time
whether a directed graph is even-cycle-free [RST99], we can check for each subset of
arguments of size ≤ p whether the remaining graph after removing the potential backdoor
is even-cycle-free. For other classes we use in this thesis like bipartiteness and symmetry it
was already shown for AFs that the standard problems remain NP-hard even for constant
backdoor-sizes [DOS12].

Building on this research to find suitable backdoors, we will establish algorithms to
efficiently exploit a given backdoor in the context of abstract argumentation. To this
end we present an algorithm to characterize preferred, stable, and semi-stable extensions
in time O(2p · nO(1)), where again p is the size of the backdoor, and n is the size of
the SETAF. This holds also in the special case of AFs, where the state-of-the art is a
O(3p · nO(1)) algorithm. For complete extensions, we provide an algorithm to enumerate
all extensions in time O(3p · nO(1))—in this case, the number of extensions might exceed
2p, as we will show, which makes an algorithm in O(2p · nO(1)) impossible. To answer the
respective reasoning problems, we show how the characterization via our algorithm can
be exploited, and prove that for all problems under our consideration we either improve
or match the asymptotic runtime of the known AF approach. Finally, we show that our
approach is optimal unless the Strong Exponential Time Hypothesis (cf. [IP99, IPZ98])
is false.

This chapter is organized as follows.

• In Section 4.1 we introduce the concept of deletion-backdoors for SETAFs for
the fragments ACYC and NOEVEN, and discuss why we focus on these fragments.
For this we provide arguments illustrating that reasoning for the other tractable
fragments we consider remains hard, even when a backdoor of constant size is given.
We then investigate how to find a suitable backdoor to these fragments.

• Section 4.2 introduces the basis of our backdoor algorithm. We formally establish its
correctness, and prove that we can indeed utilize the algorithm to reason efficiently
on SETAFs. We show how our algorithm improves the runtime over the state-of-the
art in AFs.

• In Section 4.2.2 we show how our novel algorithm can be sped up for the computation
of stable extensions by utilizing that stable extensions do not omit undecided
arguments. That is, every argument is either in a stable extension or attacked by it,
which means we do not have to apply any computational efforts towards arguments
that we cannot label as in the extension or attacked by the extension.

• In Section 4.2.3 we generalize the approach of [DOS12] for complete extensions to
SETAFs. Note that due to the potential maximal number of complete extensions it
is not possible to obtain the same runtime of O(2p · poly(n)) in this case, instead
we provide an O(3p · poly(n)) time algorithm.

72

4.1. Towards SETAF Backdoors

a b c

d e f g

i jh

(a)

a b c

d e f g

i jh

(b)

Figure 4.1: (a) The SETAF SF and (b) its primal graph primal(SF). Collective attacks
and their corresponding edges in the primal graph are highlighted.

• Finally, we show in Section 4.3 that our approach that depends in O(2p) on the
backdoor size p is optimal, assuming the strong exponential time hypothesis holds.

This chapter is based on [DKW24] (which is currently under review), which in turn
contains and extends the content of [DKW22a].

4.1 Towards SETAF Backdoors
The underlying structure of SETAFs is a directed hypergraph, which makes it hard
to apply certain notions of graph properties. We can avoid these issues by utilizing
“standard” directed graphs to describe SETAFs, and analyze graph properties (such as
SCC-recursiveness in Chapter 3, backdoors in this chapter, or treewidth in Chapter 5).
We investigate both the primal graph and the incidence graph; we focus on the primal
graph, as it arguably is the most intuitive way to embed SETAFs into directed graphs
and fits our purposes best. In the end of this chapter we circle back to the incidence
graph, and establish that it yields the same type of backdoors, albeit via a detour. We
recall the primal graph (as per Definition 2.10) in Figure 4.1; the corresponding SETAF
will serve as a running example for this chapter. We then utilize the primal graph to
define primal-backdoors.

Recall the tractable fragments ACYC, NOEVEN, SYM, and BIP, as per Definition 2.15,
Definition 2.17, and Definition 2.19, respectively. Note that in the special case of
AFs these classes coincide with the standard definitions, i.e., they properly generalize
the standard case. For AFs, also the classes of bipartite and symmetric frameworks
have been investigated. However, while finding suitable backdoors to these classes was
shown to be parameterized-tractable, reasoning in AFs with constant backdoor-size
to these frameworks remains hard [DOS12]. Even though there are generalizations of
symmetry and bipartiteness for SETAFs where reasoning also becomes tractable (cf.
Table 2.1), as these classes generalize the respective properties of AFs, the hardness-
results for backdoor evaluation carry over to the general SETAFs. Hence, we focus on
the fragments ACYC and NOEVEN, i.e., acyclic SETAFs and even-cycle-free SETAFs.
On AFs, all of these classes are considered as the tractable fragments of argumentation,

73

4. Backdoor-Based Evaluation

a b c

d e f g

i jh

(a)

c

d e f g

i jh

(b)

Figure 4.2: (a) The SETAF SF = (A, R) with the highlighted NOEVEN-backdoor
B = {a, b} and (b) the “remaining” framework SF↓A\B after the deletion of B.

as for many semantics there are efficient algorithms to reason in AFs that belong to
one of these classes [CMDM05, Dun07, DBC01]. However, these fragments restrict the
possible structure of an AF. In order to exploit the speedup while still keeping the full
expressiveness, the requirements have been weakened to allow for arbitrary distance to
these fragments. We generalize this so-called backdoor-approach by Dvořák et al. [DOS12]
to SETAFs and their hypergraph structure.

For this, we recall the notion of the projection as per Definition 2.8. Intuitively, a SETAF
SF = (A, R) projected to a set of arguments S ⊆ A (we write SF↓S) can be seen as the
result of removing the arguments outside of S while retaining as much of the original
structure as possible. This means, for projecting on S (i.e., computing SF↓S), we remove
all arguments A \ S and only keep the arguments in S. Consequently, we also remove
all attacks (T, h) where the head h is not in S, and where the tail T consists only of
arguments outside of S (i.e., where the tail would be empty in SF↓S which is not possible
for a SETAF). Moreover, for the remaining attacks we remove from the tail the arguments
outside of S, and retain the attack (T ∩ S, h). In the context of backdoor sets B ⊆ A, we
project to the set S = A \ B, as we are interested in the remaining framework SF↓A\B

after removing the backdoor arguments. Formally:

Definition 4.1. Let SF = (A, R) be a SETAF and let C be a class of SETAFs. We call
a set B ⊆ A a C-backdoor if SF↓A\B belongs to C, where

SF↓A\B= (A \ B, {(T \ B, h) | (T, h) ∈ R, T \ B != ∅, h ∈ A \ B}).

We denote the size of a smallest C-backdoor by bdC(SF).

Figure 4.2 illustrates the idea of backdoors: the set B = {a, b} is a NOEVEN-backdoor
of size 2 for the SETAF SF = (A, R). It is easy to see in Figure 4.2(b) that in the
SETAF SF projected to A \ B, i.e., the remaining framework SF↓A\B after removing the
backdoor, has no directed cycles of even length in its primal graph. We want to highlight
that in SF↓A\B the attack ({b, g}, c) from SF is not deleted as a whole, but “reduced” to
the attack (g, c). It can easily be verified that indeed, B is a smallest NOEVEN-backdoor.
For any ACYC-backdoor, furthermore the argument h has to be included (in general,

74

4.2. Backdoor Evaluation

every ACYC-backdoor is a NOEVEN-backdoor but not vice versa). Hence, for our example
we have bdACYC(SF) = 3 and bdNOEVEN(SF) = 2.

It was shown that reasoning in AFs w.r.t. stable, complete, and preferred semantics
is tractable for the fragments C ∈ {ACYC, NOEVEN} if bdC(SF) is fixed [DOS12], we
generalize these results in Section 4.2. We can efficiently recognize these classes for
AFs [DOS12] and find backdoors of bounded size. As we defined the fragments for
SETAFs on the primal graph, the respective results from AFs immediately carry over
to our setting. For ACYC-backdoor this boils down to the directed feedback vertex set
problem, which has been shown to be in FPT [CLL+08]. Finding a NOEVEN-backdoor
is in XP, as checking if a directed graph is even-cycle-free can be done in polynomial
time [RST99], and we can check for each subset of arguments up to the size of the
backdoor parameter.

Corollary 4.2. Let SF be a SETAF.

1. We can recognize whether SF belongs to ACYC or NOEVEN in polynomial time.

2. We can find a NOEVEN-backdoor of size at most p in time |SF |O(p) (or if no such
backdoor exists correctly detect so).

3. We can find an ACYC-backdoor of size at most p in time f(p) · poly(|SF |) (or if no
such backdoor exists correctly detect so).

This means, that the fragment ACYC is in principle suitable for FPT algorithms, while
for NOEVEN we aim for XP algorithms. Note however that it is principally possible that
faster algorithms for finding NOEVEN-backdoors exist.

4.2 Backdoor Evaluation
In this section we tackle the evaluation of backdoors of constant size, i.e., assume we are
given a backdoor, how can we efficiently compute the extensions. We adapt the results
from [DOS12] and generalize the therein mentioned notions such as partial labelings
and propagation algorithms to SETAFs. Our approach however differs from the one
in [DOS12] as it is tailored to the fragments ACYC and NOEVEN. This allows us to
give a tighter upper bound for the runtime: O(2p · poly(n)) instead of O(3p · poly(n))
where p is the size of the given backdoor and n is the size of the instance. Our improved
algorithm is applicable to SETAFs as well as AFs, as the latter is just a special case of
the former.

The basic idea of the backdoor evaluation algorithm is to guess parts of an extension on
the arguments in the backdoor, and then cleverly propagate this guess to the rest of the
instance. As the remaining instance is even-cycle-free, there are no supportive cycles to
consider in the propagation step.

75

4. Backdoor-Based Evaluation

Algorithm 2: Computation of pref ∗(SF, B)
1 pref ∗(SF, B) ← ∅;
2 foreach I ⊆ B do
3 let λ be a partial labeling on B;
4 set λ(a) = ina for a ∈ I;
5 set λ(a) = outa for a ∈ B \ I;
6 λ∗ ← propagateIO(SF, λ);
7 set λ∗(a) = unda for a ∈ A \ DEF(λ∗);
8 λ† ← propagateU(SF, λ∗);
9 if IN (λ†) ∩ B = I then

10 pref ∗(SF, B) ← pref ∗(SF, B) ∪ {IN (λ†)};

Algorithm 2 captures the whole process to characterize preferred extensions; in the
following we will verify its correctness and give an intuition for each step. If we provide
for a SETAF SF a NOEVEN-backdoor B, Algorithm 2 returns a set of admissible
candidates pref ∗(SF, B) for preferred extensions.

4.2.1 Characterizing Preferred Extensions
We start with an algorithm to characterize preferred extensions, to which end we first
introduce the following technical notions. In a nutshell, the algorithm takes as input a
SETAF SF = (A, R) and a backdoor set B of arguments to the fragment NOEVEN (i.e.,
SF projected to A\B contains no even length cycles). We proceed by iterating over every
subset of B, representing the arguments of B which we will label as in the extensions
candidate. Consequently, the other arguments are not part of the extension candidate.
The algorithm proceeds by propagating these guessed labels, and ultimately fixing wrong
guesses to ensure admissibility. We discuss the steps in detail in the following, starting
with some technical notions. We capture the concept of the partial guess by partial
labelings (cf. [DOS12]).

Definition 4.3. Let SF = (A, R) be a SETAF and let X ⊆ A be a set of arguments.
A partial labeling is a function λ : X → {ina, outa, unda}. By IN (λ) we denote the set
{a ∈ X | λ(a) = ina} (similarly, OUT (λ), UND(λ)). We write DEF(λ) to identify the
set X. For a set S ⊆ X we fix the corresponding partial labeling on X as

λS(a) =

����
ina if a ∈ S,

outa if a ∈ S+
R ,

unda else, i.e. a ∈ X \ S⊕
R .

A labeling λ is compatible with a set S ⊆ A if ∀a ∈ DEF(λ) it holds λ(a) = λS(a).

We consider two “phases” of propagation. First, we propagate the ina/outa labels of the
guess as far as possible by utilizing the function propagateIO.

76

4.2. Backdoor Evaluation

Definition 4.4. Let SF = (A, R) be a SETAF and λ be a partial labeling on X ⊆ A.
Consider the following propagation rules for λ:

1. set λ∗(a) = outa if ∃(T, a) ∈ R with T ⊆ IN (λ∗),

2. set λ∗(a) = ina if ∀(T, a) ∈ R there is a t ∈ T with λ∗(t) = outa.

We define propagateIO(SF, λ) as the result of initializing λ∗ with λ on DEF(λ), and then
exhaustively applying the rules (1) and (2) to each argument a ∈ A \ DEF(λ).

The second phase fixes incorrectly labeled arguments and assures admissibility in the gen-
erated labeling by effectively propagating the unda label utilizing the function propagateU
(see Definition 4.5). We will show that with this approach we can capture all preferred
extensions. Following Algorithm 2 we initially label these arguments by unda that did
not get any label during the first phase of applying propagateIO.

Definition 4.5. Let SF = (A, R) be a SETAF and λ be a partial labeling on X ⊆ A.
Consider the following propagation rules for λ:

(3) set λ†(a) = unda if λ†(a) = ina and there is (T, a) ∈ R s.t. � t ∈ T : λ†(t) = outa,

(4) set λ†(a) = unda if λ†(a) = outa and there is no (T, a) ∈ R s.t. T ⊆ IN (λ†).

We define propagateU(SF, λ) as the result of initializing λ† with λ on DEF(λ), and then
exhaustively applying the rules (3) and (4) to each argument a ∈ IN (λ) ∪ OUT (λ).

In the following Lemma 4.6 we formalize the intuition of propagateIO in the context of
Algorithm 2. By applying the function propagateIO in step 6 we propagate the labels we
guessed on B (steps 3–5) and treat them at this stage as if they are “confirmed”, i.e.,
whenever an argument is defended according to the current partial labeling, we add it
(by labeling it ina), whenever an argument is defeated by the partial labeling, we keep
track of this fact (by labeling it outa). In this stage, no argument will be labeled unda.
We revisit our running example from Figure 4.2. Assume we guess λ1(a) = λ1(b) = outa
for the backdoor {a, b}. The labeling λ∗

1 after exhaustively applying rules (1) and (2) is
depicted in Figure 4.3(a). In general, we will incorrectly label arguments: as can be seen,
the argument a is labeled outa, but there is no attack towards a that verifies this label.
Now assume we guess λ2(a) = λ2(b) = ina. One can see in Figure 4.3(b) that there is a
problem with the propagated labeling λ∗

2: the arguments d and a are both labeled ina,
effectively causing a conflict. Though we will correct this problem in the second step
of the propagation algorithm, we will have to change the label of a from ina to unda.
We will see that we can actually already stop at this point, as we will then compute (a
subset of) the extension we get from the guess λ3(a) = outa, λ3(b) = ina. In the following
lemma we establish that for a “correct” guess on the backdoor arguments (i.e., a guess
that actually corresponds to a preferred extension E) we label all arguments a ∈ E⊕

R

correctly (i.e., ina and outa, resp.).

77

4. Backdoor-Based Evaluation

a
outa

b
outa

c
ina

d
outa

e
ina

f
ina

g
outa

i j
ina

h

(a)

a
ina

b
ina

c
outa

d
ina

e
outa

f
outa

g
ina

i
ina

j
ina

h

(b)

Figure 4.3: The first propagation propagateIO (a) λ∗
1, (b) λ∗

2, on the guessed labels for
the backdoor arguments a and b (highlighted).

Lemma 4.6. Let SF = (A, R) be a SETAF, let E ∈ pref(SF), and B ⊆ A a NOEVEN-
backdoor for SF . For the input (SF, B) to Algorithm 2, assume in step 2 we choose
I = E ∩ B, let λ be the corresponding partial labeling from steps 4 and 5. Set λ∗ =
propagateIO(SF, λ). Then for each a ∈ A:

(a) if λ∗(a) = ina then a /∈ E+
R ,

(b) if λ∗(a) = outa then a /∈ E,

(c) if a /∈ DEF(λ∗) then a /∈ E⊕
R ,

(d) E ⊆ IN (λ∗), and

(e) E+
R ⊆ OUT (λ∗).

Proof. We show (a) and (b) by induction on the number of labeled arguments in the
construction of λ∗. For the base case λ∗ = λ it is easy to see that all conditions (a) and
(b) hold (by assumption we have OUT (λ) = B \ IN (λ) = (A ∩ B) \ E). For the step we
consider the rules (1) and (2):

Assume a is labeled via rule (1), i.e. we set λ∗(a) = outa for some a ∈ A \ DEF(λ).
Clearly, (a) is not violated by labeling a as outa, for (b) we show a /∈ E. Since we invoked
rule (1), there is an attack (T, a) ∈ R with T ⊆ IN (λ∗). By our induction hypothesis we
know that (a) holds for each t ∈ T , i.e. T ∩ E+

R = ∅. This means E does not defend a
against the attack (T, a), and since E ∈ pref(SF), we get a /∈ E.

Now assume a is labeled via rule (2), i.e. we set λ∗(a) = ina for some a ∈ A \ DEF(λ).
Clearly, (b) is not violated by labeling a as ina, for (a) we show a /∈ E+

R . Since we
invoked rule (2), for all attacks (T, a) ∈ R there is some t ∈ T with λ∗(t) = outa. By our
induction hypothesis we know that (b) holds for each such t, i.e. t /∈ E. Hence, there can
be no attack (T, a) with T ⊆ E, i.e., a /∈ E+

R .

78

4.2. Backdoor Evaluation

For (c) assume towards contradiction there is an argument a1 ∈ E such that a1 /∈ DEF(λ∗).
If there is no attack (T, a1) ∈ R towards a1, we would have λ∗(a1) = ina, hence, there is
such an attack. Moreover, there is a (T, a1) ∈ R s.t. for no t ∈ T we have λ∗(t) = outa,
otherwise we would have λ∗(a1) = ina. However, by admissibility of E there is at least
one t1 ∈ T ∩E+

R . For this t1 we have t1 ∈ A\DEF(λ∗), i.e. t1 is unlabeled (the only other
option, the label ina, violates (b)). Since t1 ∈ E+

R , there is an attack (S, t1) ∈ R, but
since t1 is unlabeled, S !⊆ IN (λ∗), i.e., there is an a2 ∈ S such that a2 is unlabeled. We
have a1 != a2, as this would imply an even-length cycle (a2, t1). As for a2 we can reason
in the same way as for a1, we obtain another unlabeled argument t2 ∈ E+

R , and eventually
a sequence a1, t1, a2, t2, . . . of arguments. However, as SF is finite and all ai are different,
eventually there is either (i) an unlabeled argument ak where no attack (Tk, ak) towards
ak has an unlabeled tk ∈ Tk, but then λ∗(ak) = ina, a contradiction, or (ii) an unlabeled
argument tk where there is no counter-attack (Sk, tk) with an unlabeled ak+1 ∈ Sk, but
then λ∗(tk) = outa, a contradiction. Hence, no such a1 can exist. Assuming there is an
unlabeled argument t1 ∈ E+

R analogously leads to a contradiction.

Finally, from (a) and (c) follows (d) and from (b) and (c) follows (e).

Next we illustrate illustrates the idea of the function propagateU(SF, λ). In particular, it
is easy to see that any partial labeling λ∗ with DEF(λ∗) = A that we give as input to
propagateU will give us an admissible set (rule (3) removes conflicts and both rules (3)
and (4) resolve undefended arguments).

Lemma 4.7. Let SF = (A, R) be a SETAF, and let λ∗ be an arbitrary labeling s.t
DEF(λ∗) = A. Set λ† = propagateU(SF, λ∗). Then E = IN (λ†) is admissible in SF .

Proof. We first show that E ∈ cf (SF): assume towards contradiction that for some
(T, h) ∈ R it holds T ∪ h ⊆ E. This means λ†(h) = ina and λ†(t) = ina for each t ∈ T .
However, by rule (3) this means that we set λ†(h) = unda, a contradiction. Hence, E is
conflict-free in SF . Again towards contradiction assume there is an undefended a ∈ E,
i.e., there is an attack (T, a) ∈ R s.t. T ∩ E+ = ∅. Since a ∈ E we know λ†(a) = ina,
and since we exhaustively applied rule (3) we know for each (T, a) ∈ R it holds that
∃t ∈ T : λ†(t) = outa. However, since we also applied rule (4) exhaustively, this means
for each such t that there is some (T �, t) ∈ R with T � ⊆ IN (λ†). Hence, E attacks each
{t} and therefore E also attacks each T that attacks a, which in turn means that a is
indeed defended by E, a contradiction. Since E is conflict-free and defends every a ∈ E
in SF it is admissible.

Finally, we show in Lemma 4.8 that by applying both functions propagateIO and propagateU
consecutively, we indeed obtain a preferred extension that corresponds to the guess on
B. An argument is incorrectly labeled ina if it is not defended against each attack; it is
incorrectly labeled outa if it is not attacked from within the set IN (λ). By exhaustively
applying the propagation rules (3) and (4) we fix these incorrect labels. To illustrate this,
we revisit our running example. In Figure 4.3 we see the resulting labelings λ∗

1, λ∗
2 for the

79

4. Backdoor-Based Evaluation

a
unda

b
outa

c
ina

d
unda

e
unda

f
ina

g
outa

i
unda

j
ina

h
unda

(a)

a
unda

b
ina

c
outa

d
unda

e
unda

f
outa

g
ina

i
unda

j
ina

h
unda

(b)

Figure 4.4: The second propagation propagateU (a) λ†
1, (b) λ†

2, computed on the labels
from Figure 4.3(a) and (b), respectively.

backdoor B = {a, b} for the guesses (a) λ1(a) = λ1(b) = outa, and (b) λ2(a) = λ2(b) = ina.
Following Algorithm 2, in step 7 we set the arguments without a label to unda and
compute propagateU for both labelings. In Figure 4.4 we see the resulting labelings λ†

1, λ†
2.

Our algorithm outputs the sets {c, f, j}, {b, g, j} respectively, and it can be indeed verified
that these sets are preferred in SF . Now consider the guess λ3(a) = outa, λ3(b) = ina. It
turns out that λ†

3 = λ†
2: the fact that both labelings result in the same propagation means

in particular that there is no preferred extension E where {a, b} ⊆ E, as by trying to
construct such an extension in (b) we had to correct the label of a. In general, whenever
we re-label one of the guessed ina-labels, we can abort the run of the algorithm on this
guess and proceed with a different guess, as we will always compute (a superset of) the
thereby “missed” set when we start with the corresponding “correct” labeling on the
backdoor arguments.

We show in the following Lemma 4.8 that for every argument a where we fix the label
unda, a is indeed neither in the corresponding extension nor attacked by it, i.e. a /∈ E⊕

R .
This together with the results of Lemma 4.6 suffices to show that if we guess correctly,
the algorithm computes every preferred extension.

Lemma 4.8. Let SF = (A, R) be a SETAF, let E ∈ pref(SF), and B ⊆ A a NOEVEN-
backdoor for SF . For the input (SF, B) to Algorithm 2, assume in step 2 we choose
I = E ∩ B, let λ∗ be the corresponding propagated partial labeling from step 7 with unda

labels. Set λ† = propagateU(SF, λ∗). Then E = IN (λ†).

Proof. We first show by induction on the number of re-labeled arguments (i.e., arguments
that are labeled unda during the construction of λ†) that for each a ∈ A it holds if
λ†(a) = unda then a ∈ A \ E⊕

R . The base case where λ† = λ∗ is covered by Lemma 4.6(c).
For the inductive step consider the rules (3) and (4):

Assume a is re-labeled by rule (3), i.e. we set λ†(a) = unda for some a ∈ IN (λ∗). By
Lemma 4.6(a) we know a /∈ E+

R , we show a /∈ E. Since we invoked rule (3), there is
(T, a) ∈ R s.t. � t ∈ T with λ†(t) = outa. By induction hypothesis and Lemma 4.6(a) and

80

4.2. Backdoor Evaluation

(c), this means E+
R ∩ T = ∅, i.e. a is not defended by E against (T, a). By admissibility

this means a /∈ E.

Assume a is re-labeled by rule (4), i.e. we set λ†(a) = unda for some a ∈ OUT (λ∗). By
Lemma 4.6(b) we know a /∈ E, we show a /∈ E+

R . Since we invoked rule (4), there is
no (T, a) ∈ R s.t. T ⊆ IN (λ∗). By induction hypothesis and Lemma 4.6(c), this means
T !⊆ E, i.e. a is not attacked by E.

Next, we show IN (λ†) ∈ adm(SF). By E� we identify the set IN (λ†). Assume towards
contradiction there is a conflicting attack (T, h) ∈ R with T ∪ {h} ⊆ E�. However,
this means we would re-label h by rule (3), as there is no t ∈ T with λ†(t) = outa,
a contradiction. Hence, E� ∈ cf (SF). Now assume towards contradiction there is an
undefended argument a ∈ E�, i.e., there is an attack (T, a) ∈ R s.t. for no t ∈ T there
is an attack (S, t) ∈ R with S ⊆ E�. As a ∈ E�, there is some t ∈ T where either
(i) we set λ∗(t) = outa during the computation of λ∗ and did not change the label later,
in which case we did not invoke propagation rule (4), and there is indeed an attack
(S, t) ∈ R towards t with S ⊆ E� and a is defended, or (ii) we set λ∗(t) = outa during
the computation of λ∗ and during the computation of λ† update it to λ†(t) = unda, but
then if no t� ∈ T with λ†(t�) = outa is left, we would have invoked propagation rule (3)
for a and set it to unda, and if such a t� exists where we did not change the label, then a
is also defended as in case (i). In all cases we see that indeed a is defended by E� and
can conclude E� ∈ adm(SF).

Finally, by Lemma 4.6(d) and the formerly established fact that for each a ∈ A it holds
if λ†(a) = unda then a ∈ A \ E⊕

R we know also E ⊆ E�. Since E� ∈ adm(SF) and we
assumed E is preferred, we get E = E�.

These correctness results for the propagation procedures are the basis for the main result
of this section, namely the efficient computation of preferred extensions if a suitable
backdoor is given.

Theorem 4.9. Let C ∈ {NOEVEN, ACYC} be a SETAF class, let SF = (A, R) be a
SETAF, and B ⊆ A a C-backdoor for SF with |B| ≤ p. With Algorithm 2 we can
characterize all σ-extensions in time 2p · poly(|SF |) for σ ∈ {pref, stb, sem} on input
(SF, B).

Proof. Let E ∈ pref(SF), we show that E is in the output of Algorithm 2, i.e., E ∈
pref ∗(SF, B). Since in step 2 we try all subsets of B, we will try I = E ∩ B. Lemma 4.8
ensures E ∈ pref ∗(SF, B). It remains to show that all steps 3–10 can be done in
polynomial time w.r.t. |SF |. It is easy to see that (assuming we use reasonable data
structures) this is the case for steps 3–5, 7, 9, and 10. For step 6 and 8 note that each
argument is (re)-labeled at most once, and the check for each propagation rule can
clearly be carried out in polynomial time. Hence, the overall runtime is 2p · poly(|SF |).
Since stb(SF) ⊆ sem(SF) ⊆ pref(SF), we indeed characterize all stable, semi-stable, and
preferred extensions.

81

4. Backdoor-Based Evaluation

Finally, we can then check whether the extensions are (range)-subset-maximal or attack
every argument not in them, as all candidates are available. Hence, we can remove
those sets that are not preferred/stable/semi-stable. “Filtering out” the stable extensions
amounts to checking for each candidate whether the range covers all arguments, which can
be done in polynomial time. To actually enumerate all preferred and semi-stable extensions
and decide skeptical acceptance, we still have to filter out the solution candidates that
are not (range-)subset-maximal. To this end, we can pairwise compare the solution
candidates in quadratic runtime w.r.t. the number of solution candidates, which for
enumerating and skeptical acceptance gives us a worst-case runtime of O(4p · poly(|SF |)).
That is, from the fact that we can compute the candidate set in FPT we immediately
get that also preferred and semi-stable extensions can be enumerated in FPT. A similar
observation has been made in the AF-case [DOS12]. However, no details for the exact
runtime bounds are provided. We next provide details on how to enumerate preferred
extensions in O(3p · poly(|SF |)), which is a significant improvement over the above
O(4p · poly(|SF |)) bound and the O(9p · poly(|SF |)) bound one would get with the naive
approach in the AF setting [DOS12]. The key observation here is that when comparing
candidate labelings in order to decide whether one induces a superset of the other it
suffices to consider the corresponding partial labelings on the backdoor set B. That is, a
labeling λ1 is a subset of λ2 if the corresponding partial labelings λ�

1, λ�
2 over B satisfy

the following:

• there is no a ∈ B s.t. λ�
1(a) ∈ {ina, outa}, λ�

2(a) ∈ {ina, outa}, and λ�
1(a) != λ�

2(a),

• there is some a ∈ B s.t. λ�
1(a) = unda and λ�

2(a) ∈ {ina, outa}, and

• there is no a ∈ B s.t. λ�
2(a) = unda and λ�

1(a) ∈ {ina, outa}.

That is, if one of the candidate labelings sets an argument of the backdoor to outa
and a different candidate labeling sets it to ina then these two labelings correspond to
incomparable sets. We can use this observation to enumerate preferred extensions as
follows. First of all, we keep track over all 3-valued labelings over the backdoor and
indicate its status of whether it is (1) a preferred extension, (2) admissible but a subset
of a larger admissible set, (3) no admissible set at all, or (4) not yet considered. Starting
with the labelings with no undecided labels, we then iterate over them, test whether
they induce a complete extension, and update the corresponding status of the processed
candidate, as well as the candidates which have one additional undecided argument and
are compatible with the processed candidate (w.r.t. the conditions stated above). If the
labeling is complete it is indeed also preferred (case 1) and we add it to the solution set
and mark all the successors as superseded by it (case 2). If the set is not admissible at
all we simply proceed with the next one (case 3). When done with the labelings with no
undecided labels, we apply the same procedure to labelings with one undecided label and
then continue by increasing the number of undecided arguments until we end up with
the labeling that labels the whole backdoor undecided. The only difference is that we

82

4.2. Backdoor Evaluation

additionally have to check whether the current labeling is already superseded by some
other labeling and if so we propagate this status to its successors. Notice that we have
O(3p) such labelings in total, and each solution candidate has at most p successors. That
is, the above procedure is in O(3p · poly(|SF |)).
Regarding semi-stable extensions, notice that the above approach does not work correctly,
as it does not suffice to compare the partial labelings on B to compare the ranges of the
corresponding extensions. So far, we do not see a way to overcome this even in the AF
case, and hence, we only obtain the bound of O(4p · poly(|SF |)) from the naive approach.

As we can efficiently characterize all preferred extensions, credulous reasoning also
becomes efficient in this case. This result also carries over to admissible and complete
semantics, as the respective credulous acceptance problems coincide with preferred
semantics, Skeptcom is already possible in polynomial time and Skeptadm is trivial. We
want to highlight that even if we have a NOEVEN-backdoor of size p, there can be up to
O(3p) complete extensions. Clearly we cannot enumerate them with our approach, which
is why we capture the preferred extensions (in contrast to the AF approach [DOS12]).

Corollary 4.10. Let C ∈ {NOEVEN, ACYC} be a SETAF class, let SF = (A, R) be a
SETAF, and B ⊆ A a C-backdoor for SF with |B| ≤ p. Then we can decide the problems
Skeptstb and Credσ in time 2p · poly(|SF |) for σ ∈ {adm, com, pref, stb}. Moreover, we
can decide the problems Credsem and Skeptσ in time 4p · poly(|SF |) for σ ∈ {pref, sem}.

Combining Corollary 4.2 and Corollary 4.10, we immediately obtain the following result
that captures finding and exploiting minimal backdoors for SETAFs.

Theorem 4.11. Let SF be a SETAF and let σ ∈{adm, com, pref, stb, sem} be a semantics.

1. If bdACYC(SF) ≤ p, we can solve Credσ and Skeptσ in FPT w.r.t. parameter p.

2. If bdNOEVEN(SF) ≤ p, we can solve Credσ and Skeptσ in XP w.r.t. parameter p.

In fact, our algorithm for exploiting a small backdoor that is already given is only in 2p for
the parameter value p, which is an improvement over the existing 3p approach [DOS12].
This also has implications in practice, as it turns out that finding the minimal backdoor-
size often comes with high computational cost: for example, one known FPT algorithm
for the computation of minimal NOEVEN-backdoors of size p for directed graphs G
has runtime 4p · p! · poly(|G|) [CLL+08], which is often impractical even for rather
small parameter values. Instead, recent implementations focus on finding backdoors
heuristically, cf. [DHK+22]. Note that since our algorithm is directly applicable for AFs
and dominates the state-of-the art 3p approach for AFs, our results are also relevant for
the development of fast algorithms for AFs.

83

4. Backdoor-Based Evaluation

Algorithm 3: Computation of stb(SF) given B

1 stb(SF) ← ∅;
2 foreach I ⊆ B do
3 let λ be a partial labeling on B;
4 set λ(a) = ina for a ∈ I;
5 set λ(a) = outa for a ∈ B \ I;
6 λ∗ ← propagateIO(SF, λ);
7 if DEF(λ∗) = A then
8 λ† ← propagate∗

U(SF, λ∗);
9 if UND(λ†) = ∅ then

10 stb(SF) ← stb(SF) ∪ {IN (λ†)};

4.2.2 Speedup for Stable Semantics
If our goal is to compute the stable extensions or reason in stable semantics, we can in
fact apply a shortcut to the computation. Algorithm 3 depicts the steps we perform to
compute the stable extensions given a backdoor set B. Since for a stable extension E
each argument is either in E or attacked by E, we do not need to compute undecided
arguments. While we still need to call a function propagateU to detect conflicts or
undefended arguments, we can stop as soon as we have to assign the label unda for the
first time. For this reason we can use the updated function propagate∗

U which we define
as follows:

Definition 4.12. Consider the following propagation rules for λ:

(3) set λ†(a) = unda if λ†(a) = ina and there is (T, a) ∈ R s.t. � t ∈ T : λ†(t) = outa,

(4) set λ†(a) = unda if λ†(a) = outa and there is no (T, a) ∈ R s.t. T ⊆ IN (λ†).

We define propagate∗
U(SF, λ) as the result of initializing λ† with λ on DEF(λ), and if rule

(3) or (4) is applicable to any argument, we apply the rule once and return the resulting
labeling.

One can see that this function propagate∗
U in Definition 4.12 differs from the propagateU

of Definition 4.5 only in that the application of rules (3) and (4) happens at most once.

Theorem 4.13. Let C ∈ {NOEVEN, ACYC} be a SETAF class, let SF = (A, R) be
a SETAF, and B ⊆ A a C-backdoor for SF with |B| ≤ p. With Algorithm 3 we can
enumerate all stb-extensions in time 2p · poly(|SF |).

Effectively, Algorithm 3 will compute all sets that Algorithm 2 also computes that contain
no undecided arguments. While the asymptotic runtime of this improved version is still

84

4.2. Backdoor Evaluation

a1

a2

a3

a4

. . .

an−1

an

Figure 4.5: SETAF with n arguments and a minimal ACYC/NOEVEN-backdoor of size
p = n/2. For each of the p pairs of mutually attacking arguments a2k, a2k+1 a complete
extension can contain either a2k or a2k+1 or neither of the two, resulting in 3p complete
extensions.

O(2p ·poly(|SF |)), we obtain a speedup for the function propagate∗
U (the runtime of which

is hidden in the term poly(|SF |)).

4.2.3 Enumerating Complete Extensions

In the following we present an algorithm to enumerate the complete extensions of a SETAF.
Note that we cannot hope to enumerate the complete extensions in time 2p · poly(|SF |)
w.r.t. the NOEVEN- or ACYC backdoor of size p, as the example in Figure 4.5 illustrates:
while the smallest backdoor is of size p = n/2, there are 3p complete extensions. Intuitively,
this is due to the fact that in contrast to preferred extensions, in a “choice” like the
even-length cycles in Figure 4.5 complete extensions have the three possible outcomes
for arguments that correspond to the argument being in, out, or undecided. Crucially,
the arguments can be undecided even though via the efficient backdoor algorithm for
preferred extensions it would be possible to find supersets of admissible arguments.

Hence, we generalize the “standard” backdoor evaluation approach of AFs by Dvořák
et al. [DOS12] with a three valued guess on the backdoor arguments. The revised
Algorithm 4 contains the same basic steps as the algorithm for preferred extensions. This
means we can use similar strategies to show the correctness and completeness of the
algorithm. To this end, we use com(SF, B) to compute the complete extensions of a
SETAF SF via backdoor B.

Again, we show that the two propagation algorithms propagateIO and propagateU perform
as expected. First, for the application of propagateIO note that no unda label will be
propagated (these labels will effectively be ignored). The only effect of these labels is
“blocking” the application of a propagation rule that would “fire” in the algorithm for
preferred semantics: in the example from Figure 4.5 if a1 is a backdoor argument and is
set to outa, the argument a2 is labeled as ina via propagateIO. If on the other hand we set
a1 to unda, no label will be assigned to a2 via the exhaustive application of propagateIO.
An example of the execution of algorithm 4 is shown in Figure 4.6.

85

4. Backdoor-Based Evaluation

Algorithm 4: Computation of com(SF, B)
1 com(SF, B) ← ∅;
2 foreach partition (I, O, U) of B do
3 let λ be a partial labeling on B;
4 set λ(a) = ina for a ∈ I;
5 set λ(a) = outa for a ∈ O;
6 set λ(a) = unda for a ∈ U ;
7 λ∗ ← propagateIO(SF, λ);
8 set λ∗(a) = unda for a ∈ A \ DEF(λ∗);
9 λ† ← propagateU(SF, λ∗);

10 if IN (λ†) ∩ B = I and OUT (λ†) ∩ B = O then
11 com(SF, B) ← com(SF, B) ∪ {IN (λ†)};

Lemma 4.14. Let SF = (A, R) be a SETAF, let E ∈ com(SF), and B ⊆ A a NOEVEN-
backdoor for SF . For the input (SF, B) to Algorithm 4, assume in step 2 we choose
I = E ∩ B, O = E+

R ∩ B, and U = (E ∩ B) \ (I ∪ O). Let λ be the corresponding partial
labeling from steps 4, 5 and 6. Set λ∗ = propagateIO(SF, λ). Then for each a ∈ A:

(a) if λ∗(a) = ina then a /∈ E+
R ,

(b) if λ∗(a) = outa then a /∈ E,

(c) if a /∈ DEF(λ∗) then a /∈ E⊕
R ,

(d) E ⊆ IN (λ∗), and

(e) E+
R ⊆ OUT (λ∗).

Proof. We show (a) and (b) by induction on the number of labeled arguments in the
construction of λ∗. For the base case λ∗ = λ it is easy to see that all conditions (a) and
(b) hold (by assumption we have IN (λ) = E ∩ B and OUT (λ) = E+

R ∩ B). For the step
we consider the rules (1) and (2):

Assume a is labeled via rule (1), i.e. we set λ∗(a) = outa for some a ∈ A \ DEF(λ).
Clearly, (a) is not violated by labeling a as outa, for (b) we show a /∈ E. Since we invoked
rule (1), there is an attack (T, a) ∈ R with T ⊆ IN (λ∗). By our induction hypothesis we
know that (a) holds for each t ∈ T , i.e. T ∩ E+

R = ∅. This means E does not defend a
against the attack (T, a), and since E ∈ com(SF), we get a /∈ E.

Now assume a is labeled via rule (2), i.e. we set λ∗(a) = ina for some a ∈ A \ DEF(λ).
Clearly, (b) is not violated by labeling a as ina, for (a) we show a /∈ E+

R . Since we
invoked rule (2), for all attacks (T, a) ∈ R there is some t ∈ T with λ∗(t) = outa. By our

86

4.2. Backdoor Evaluation

a
outa

b
unda

c

d
outa

e
ina

f g

i jh

(a)

a
unda

b
unda

c
unda

d
unda

e
unda

f
unda

g
unda

i
unda

j
unda

h
unda

(b)

Figure 4.6: Example for the backdoor-algorithm for complete extensions. The backdoor
B = {a, b} and the guessed partition on B are highlighted. (a) shows the outcome of the
application of propagateIO, (b) shows the outcome of the application of propagateU and
the characterized complete extension ∅.

induction hypothesis we know that (b) holds for each such t, i.e. t /∈ E. Hence, there can
be no attack (T, a) with T ⊆ E, i.e., a /∈ E+

R .

For (c) assume towards contradiction there is an argument a1 ∈ E such that a1 /∈ DEF(λ∗).
If there is no attack (T, a1) ∈ R towards a1, we would have λ∗(a1) = ina, hence, there is
such an attack. Moreover, there is a (T, a1) ∈ R s.t. for no t ∈ T we have λ∗(t) = outa,
otherwise we would have λ∗(a1) = ina. However, by admissibility of E there is at least
one t1 ∈ T ∩ E+

R . For this t1 we have t1 ∈ (A \ DEF(λ∗)) ∪ UND(λ∗), i.e. t1 is unlabeled
or labeled unda (the only other option, the label ina, violates (b)). Since t1 ∈ E+

R , there
is an attack (S, t1) ∈ R, but since t1 is unlabeled or labeled unda, S !⊆ IN (λ∗), i.e.,
there is an a2 ∈ S such that a2 is unlabeled or labeled unda. We have a1 != a2, as this
would imply an even-length cycle (a2, t1): if a1 = a2 then either a2 or t1 are in B and
by assumption we have that these arguments are labeled in accordance to E (and are
not re-labeled by propagateIO), a contradiction. As for a2 we can reason in the same
way as for a1, we obtain another unlabeled or unda-labeled argument t2 ∈ E+

R , and
eventually a sequence a1, t1, a2, t2, . . . of arguments. However, as SF is finite and all
ai are different, eventually there is either (i) an unlabeled or unda-labeled argument ak

where no attack (Tk, ak) towards ak has an unlabeled (or unda-labeled) tk ∈ Tk, but then
λ∗(ak) = ina, a contradiction, or (ii) an unlabeled argument tk where there is no counter-
attack (Sk, tk) with an unlabeled or unda-labeled ak+1 ∈ Sk, but then λ∗(tk) = outa, a
contradiction. Hence, no such a1 can exist. Assuming there is an unlabeled argument
t1 ∈ E+

R analogously leads to a contradiction.

Finally, from (a) and (c) follows (d) and from (b) and (c) follows (e) (recall that the only
arguments that are labeled unda at this point are arguments in B, which are labeled in
accordance with E by assumption).

Note that after step 8 the only arguments with an unda label are the ones in B we

87

4. Backdoor-Based Evaluation

initially labeled this way due to our three valued guess. In step 9 we apply the unda

label to the remaining (unlabeled) arguments and again fix the mislabeled arguments.

Lemma 4.15. Let SF = (A, R) be a SETAF, let E ∈ com(SF), and B ⊆ A a NOEVEN-
backdoor for SF . For the input (SF, B) to Algorithm 4, assume in step 2 we choose
I = E ∩ B, O = E+

R ∩ B, and U = (E ∩ B) \ (I ∪ O). Let λ∗ be the corresponding
propagated partial labeling from step 8 with unda labels. Set λ† = propagateU(SF, λ∗).
Then E = IN (λ†).

Proof. We first show by induction on the number of re-labeled arguments (i.e., arguments
that are labeled unda during the construction of λ†) that for each a ∈ A it holds if
λ†(a) = unda then a ∈ A\E⊕

R . The base case where λ† = λ∗ is covered by Lemma 4.14(c)
and our assumption that U = (E ∩ B) \ (I ∪ O), i.e., the backdoor arguments that are
undecided w.r.t. E are labeled correctly (note that these are never relabeled). For the
inductive step consider the rules (3) and (4):

Assume a is re-labeled by rule (3), i.e. we set λ†(a) = unda for some a ∈ IN (λ∗). By
Lemma 4.14(a) we know a /∈ E+

R , we show a /∈ E. Since we invoked rule (3), there is
(T, a) ∈ R s.t. � t ∈ T with λ†(t) = outa. By induction hypothesis and Lemma 4.14(a) and
(c), this means E+

R ∩ T = ∅, i.e. a is not defended by E against (T, a). By admissibility
this means a /∈ E.

Assume a is re-labeled by rule (4), i.e. we set λ†(a) = unda for some a ∈ OUT (λ∗). By
Lemma 4.14(b) we know a /∈ E, we show a /∈ E+

R . Since we invoked rule (4), there is
no (T, a) ∈ R s.t. T ⊆ IN (λ∗). By induction hypothesis and Lemma 4.14(c), this means
T !⊆ E, i.e. a is not attacked by E.

Next, we show IN (λ†) ∈ adm(SF). By E� we identify the set IN (λ†). Assume towards
contradiction there is a conflicting attack (T, h) ∈ R with T ∪ {h} ⊆ E�. However,
this means we would re-label h by rule (3), as there is no t ∈ T with λ†(t) = outa,
a contradiction. Hence, E� ∈ cf (SF). Now assume towards contradiction there is an
undefended argument a ∈ E�, i.e., there is an attack (T, a) ∈ R s.t. for no t ∈ T there
is an attack (S, t) ∈ R with S ⊆ E�. As a ∈ E�, there is some t ∈ T where either
(i) we set λ∗(t) = outa during the computation of λ∗ and did not change the label later,
in which case we did not invoke propagation rule (4), and there is indeed an attack
(S, t) ∈ R towards t with S ⊆ E� and a is defended, or (ii) we set λ∗(t) = outa during
the computation of λ∗ and during the computation of λ† update it to λ†(t) = unda, but
then if no t� ∈ T with λ†(t�) = outa is left, we would have invoked propagation rule (3)
for a and set it to unda, and if such a t� exists where we did not change the label, then a
is also defended as in case (i). In all cases we see that indeed a is defended by E� and
can conclude E� ∈ adm(SF).

Finally, by Lemma 4.14(d) and (e) and since we do not falsely relabel these arguments
the formerly established fact that for each a ∈ A it holds if λ†(a) = unda then a ∈ A \ E⊕

R

we get (1) E ⊆ IN (λ†) = E�, (2) E+ ⊆ OUT (λ†), and (3) A \ E⊕ ⊇ UND(λ†). From
this we obtain E = E�.

88

4.3. Conditional Lower Bounds for Backdoor Evaluation

Finally, combining Lemma 4.14 and Lemma 4.15 we obtain similar to Theorem 4.9
the following enumeration result for complete extensions. The final check in step 11
ensures that we only keep the complete extensions that correspond to the initially guessed
partition of B. Note that due to the 3-valued guess we obtain the factor 3p.

Theorem 4.16. Let C ∈ {NOEVEN, ACYC} be a SETAF class, let SF = (A, R) be
a SETAF, and B ⊆ A a C-backdoor for SF with |B| ≤ p. With Algorithm 4 we can
enumerate all com-extensions in time 3p · poly(|SF |) on input (SF, B).

Proof. Let E ∈ com(SF), we show that E is in the output of Algorithm 4, i.e., E ∈
com(SF, B). Since in step 2 we try all partitions of B, we will try I = E ∩B, O = E+ ∩B,
U = B \ (I ∪ O). Lemma 4.15 ensures E ∈ com(SF, B). It remains to show that all
steps 3–11 can be done in polynomial time w.r.t. |SF |. It is easy to see that (assuming
we use reasonable data structures) this is the case for steps 3–6, 8, 10, and 11. For
step 7 and 9 note that each argument is (re)-labeled at most once, and the check for
each propagation rule can clearly be carried out in polynomial time. Finally, checking
whether E ∈ com(SF, B) is complete can be done in polynomial time. Hence, the overall
runtime is 3p · poly(|SF |).

4.3 Conditional Lower Bounds for Backdoor Evaluation
In this section we show a so-called conditional lower bound [AW14] for NOEVEN/ACYC-
backdoor evaluation, i.e. we show that our algorithm is basically optimal based on some
well-known conjecture. The conjecture we are going to use is the Strong exponential-time
hypothesis (SETH) [IP99, IPZ98]. We show this for AFs; the result carries over to
SETAFs.

Conjecture 4.17 (Strong Exponential Time Hypothesis (SETH)). For each � > 0
there is a k such that k-CNF-SAT on n variables and m clauses cannot be solved in
O(2(1−�)n · poly(n + m)) time.

Let p be the parameter for the backdoor size. We will show that any NOEVEN-backdoor
evaluation that runs in time O(2(1−�)p · poly(|F |)) for AFs F would violate SETH and
thus imply a major break-through in the development of SAT algorithms.

Theorem 4.18. Let F = (A, R) be an AF and let C ∈ {NOEVEN, ACYC} and let p
the size of the given backdoor. There is no O(2(1−�)p · poly(|A|)) C-backdoor evaluation
algorithm for Credσ for σ ∈ {adm, com, pref, stb, sem} unless SETH is false.

Proof. Given an instance from SETH, i.e. a CNF formula ϕ with n variables and m
clauses. Let X = {x1, . . . , xn} be the set of variables and C = {c1, . . . , cm} be the set of
clauses appearing in ϕ. Consider the standard translation [DD18] from a CNF formula
ϕ to an AF Fϕ = (A, R) (cf. Reduction 2.20). We know that the formula ϕ is satisfiable

89

4. Backdoor-Based Evaluation

iff the argument ϕ is credulously accepted w.r.t. σ [DD18]. Moreover, we have that the
set X is a C-backdoor of Fϕ and has size n.

Towards, a contradiction let us assume we have a O(2(1−�)p · poly(|A|)) C-backdoor
evaluation algorithm. Then we can decide whether a CNF formula ϕ is satisfiable as
follows: We first construct the AF Fϕ (which is polynomial in n + m) and then run the
C-backdoor evaluation with backdoor X and return the answer for the credulous decision
problem as answer to the satisfiability problem. By assumption the latter step has a
running time of O(2(1−�)n · poly(n + m)). That is, we have a O(2(1−�)n · poly(n + m))
algorithm for k-CNF-SAT for arbitrary k > 1, which contradicts SETH.

4.4 Discussion
In this chapter we studied the applicability of the backdoor concept for SETAFs. We
investigated this on the primal-graph of a SETAF, which is arguably the most natural
starting place for such investigations. However, in this thesis we also investigate the
incidence-graph (cf. Definition 2.12), and in the following we will briefly argue why it
suffices to analyze the primal graph. First note that the incidence graph is trivially
bipartite by construction, and symmetric edges in the incidence graph correspond to self-
attacks, which means backdoors to these classes on the incidence graph are nonsensical.
Moreover, every (even-length) cycle in a SETAF SF corresponds to an equivalent cycle
in its incidence graph Inc(SF) with the same arguments and (parts of) attacks involved.
Finally, note that for backdoors to ACYC and NOEVEN on the incidence-graph we do not
need to consider removing nodes corresponding to attacks: it is always at least as good to
remove e.g. the head of an attack. This means, given a backdoor on the incidence-graph
that contains a node that corresponds to an attack (T, h), clearly instead having the
node corresponding to the argument h in the backdoor “breaks” all cycles the original
backdoor does, as well as potentially more. Hence, it suffices even on the incidence-graph
to focus on backdoors containing only arguments. But then we know that (since the
cycles in SF and Inc(SF) coincide) the backdoors coincide as well. Hence, if we allow
our notation of bd() to be applicable for arbitrary directed (hyper-)graphs, we obtain
the following result.

Proposition 4.19. Let SF be a SETAF. It holds bdC(SF) = bdC(Inc(SF)) with
C ∈ {NOEVEN, ACYC}.

Given this result, it is clear that it suffices to focus on backdoors in the primal graph.

In this chapter, we established a new approach for enumerating the extensions and for
reasoning on a SETAF, which improves the runtime of the best known approaches for
AFs. Moreover, unless the Strong Exponential Time Hypothesis is false, our approach is
optimal in this regard. In the case of enumerating complete extensions we match the
runtime of the state-of-the-art for AFs and argue why a similar speedup as for the other
semantics is impossible. We focus in this chapter on ways to exploit the structure of

90

4.4. Discussion

the primal graph, as this boils down to finding backdoors in a directed graph. Since for
directed hypergraphs much less literature on this topic is available, this approach seems
most promising regarding implementations. For example, finding an ACYC-backdoor
boils down to the directed feedback vertex set problem, which has been studied in great
detail since it was first shown to be NP-complete by Karp in 1972 [Kar72].

In summary, we have shown that the idea of backdoors is indeed applicable to SETAFs
in all cases that are known to work for AFs. Moreover, we have found another instance
where the closer look on the more detailed structure of a SETAF (compared to an AF)
payed off, as our new algorithm improves the state-of-the-art, in that with our novel
technique preferred extensions can be characterized in time O(2p · poly(|SF |)) instead of
O(3p · poly(|SF |)) (as in the approach of Dvořák et al. [DOS12]) for a backdoor of size p
in a SETAF SF .

91

CHAPTER 5
Treewidth-Based Evaluation

In this chapter we discuss another approach for efficient reasoning on SETAFs. Here,
our focus lies on the parameter treewidth. Intuitively, low treewidth indicates a certain
“tree-likeness” of a graph, and since many problems become easy on trees we can exploit
this tree-like structure. The key idea is to compute sub-problems for a given task, and
carry out the sub-problems iteratively. The sub-problems correspond to evaluating a
part of the SETAF and are organized in a tree-structure, the so called tree-decomposition.
This way, we do not have a solution space that is exponential in the size of the whole
framework, but only in the size of the largest sub-problem (note also that the number
of sub-problems, i.e., bags of the tree-decomposition, is at most linear in the size of the
SETAF). Finally, we can efficiently combine the solutions of all sub-problems and obtain
answers for the original task on the whole SETAF.

In AFs, it has been shown that reasoning is fixed-parameter tractable w.r.t. the parameter
treewidth [Dun07, DPW12, DSW12]. Also in the field of structured argumentation, the
parameter treewidth has recently been investigated w.r.t. assumption-based argumenta-
tion by Popescu and Wallner [PW23], who show fixed-parameter tractability for several
reasoning problems via monadic second-order logic and tailored algorithms, similarly
to the work we present in Section 5.1.2. We investigate how this notion of treewidth is
applicable to the directed hypergraph-structure of SETAFs and show that certain general-
izations admit FPT algorithms, while other reasonable attempts do not. In particular,
we show that the approach via the primal-graph that served as a starting point for
SCC-recursiveness as well as our backdoor algorithms does not work for treewidth, i.e.,
we still obtain NP-hardness for a constant primal-treewidth. However, based on the
incidence-graph of a SETAF we can indeed apply the treewidth approach to obtain FPT-
algorithms for reasoning. The incidence-graph is the bipartite graph with all arguments
and all attacks as nodes, and edges that indicate an argument’s involvement in an attack
(be it as the head or an argument of the tail of the attack). While several SETAFs can
map to the same primal-graph, the incidence-graph fully captures the structure of the

93

5. Treewidth-Based Evaluation

SETAF, which is why it should not come as a surprise that for this task the primal-graph
is insufficient.

In this chapter, we establish that low (incidence-)treewidth can indeed be exploited to
reason in FPT first via generic results. We then provide detailed algorithms tailored
to stable, admissible, and complete semantics which provide an improved runtime over
the generic results. These cases exemplify the concepts we face also for other semantics
and can be seen as a showcase for the remaining cases, which comprise of the same
concepts. During this analysis we show that our tailor-made algorithms in fact yield a
theoretical runtime improvement over the state-of-the-art in AFs, once again pointing
out how beneficial it can be to take a close look at the structure of the frameworks by
investigating the syntactically richer SETAFs (compared to AFs).

This chapter is organized as follows.

• We start in Section 5.1 by introducing our notions of treewidth for SETAFs, based
on the primal-graph and the incidence-graph, respectively. We proceed by first
presenting negative results regarding primal-treewidth, namely that reasoning
remains intractable even for small parameter values (Section 5.1.1). Section 5.1.2
establishes FPT results for incidence-treewidth via a generic argument utilizing
Monadic Second Order logic; this theoretical result gets refined and improved in
Section 5.2 where we discuss a dynamic programming algorithm tailored to SETAFs.

• In Section 5.2 we present the foundation for our tailor-made algorithms for stable,
admissible, and complete semantics.

• In Section 5.3 we illustrate how to characterize stable extensions via dynamic
programming, and illustrate corner cases and interesting novel ideas with extended
examples and detailed proofs.

• Section 5.4 extends the ideas we use for stable extensions by considering undecid-
edness to provide an algorithm to characterize admissible extensions. Moreover, we
discuss how our DP algorithms can be used for counting extensions.

• Finally, in Section 5.5 we combine the ideas of the approach for stable and admissible
extensions to characterize complete extensions. We achieve this by incorporating
the concept of provisional colors for undecidedness as well, and ultimately provide
a DP algorithm for complete semantics.

• In Section 5.6 we discuss our findings regarding the concept of treewidth for SETAFs.

This chapter is based on [DKW24] (which is currently under review), which in turn
contains and extends the content of [DKW22b].

94

5.1. Towards SETAF Treewidth

5.1 Towards SETAF Treewidth
In this section we discuss approaches to apply the notion of treewidth [RS86] to SETAFs.
Intuitively, the treewidth of a graph measures the “tree-likeness” of a graph. Since
most reasoning problems remain tractable on trees, we can exploit this structure to
construct efficient algorithms—given the graph is sufficiently “tree-like”, i.e., has a low
treewidth. On AFs, it has been shown that treewidth is indeed a parameter that allows
for FPT-algorithms for reasoning [DPW12], i.e., the runtime is exponential only in the
parameter value, but polynomial in the size of the framework. We will show that these
results carry over to SETAFs, when we apply treewidth to the “right” underlying graph
that adequately captures the intricate structure of SETAFs.

Definition 5.1 (Treewidth). Let G = (V, E) be an undirected graph. A tree decomposi-
tion (TD) of G is a pair (T , X), where T = (VT , ET) is a tree and X = (Xn)n∈VT is a
set of bags (a bag is a subset of V) s.t.

1. �
n∈VT Xn = V ;

2. for each v ∈ V , the subgraph induced by v in T is connected; and

3. for each {v, w} ∈ E, {v, w} ⊆ Xn for some n ∈ VT .

The width of a TD is max{|Xn| | n ∈ VT } − 1, the treewidth of G is the minimum width
of all TDs for G.

In words, a tree decomposition captures the structure of a given graph G = (V, E) by
constructing a tree T = (VT , ET). To each node n ∈ VT we assign a bag Xn containing
vertices of the original graph s.t.

1. all original vertices are in at least one bag;

2. whenever a vertex v ∈ V appears in two bags Xn and Xn� , the corresponding nodes
n, n�� ∈ VT are connected in T via ET such that all nodes in between also have v
in their corresponding bags; and

3. for each edge (v, w) ∈ E of the original graph, for at least one node n ∈ VT its
corresponding bag Xn contains both v and w.

As the treewidth is the smallest size of the largest bag minus 1 over all possible tree
decompositions, trivially each graph G = (V, E) has treewidth of at most |V | − 1 (since
it is always possible to put all vertices in a single bag of a tree decomposition). However,
the lower the treewidth, the more tree-like a graph is by this measure. In particular, for
trees we obtain a treewidth of 1.

For fixed k it can be decided in linear time whether a graph has treewidth at most k;
moreover an according tree decomposition can be computed in linear time [Bod96]. For

95

5. Treewidth-Based Evaluation

practical applications there are heuristic approaches available that will return decom-
positions of reasonable width very efficiently [AMW17]. However, as the underlying
structure of SETAFs is a directed hypergraph, this notion is not directly applicable in our
context. We can use “standard” directed graphs to describe SETAFs, and apply treewidth
by simply ignoring the direction of the involved arcs. For SETAFs there is the primal
graph and the incidence graph as such notions, each of which leads to its own treewidth
notion for SETAFs. First, we utilize the primal graph to define primal-treewidth (recall
Definition 2.10).

Definition 5.2 (Primal Treewidth). Let SF be a SETAF and primal(SF) its primal
graph. The primal-treewidth ptw(SF) is defined as the treewidth of primal(SF).

As mentioned earlier, several SETAFs can map to the same primal graph. However,
restrictions on the primal graph are often useful to obtain computational speedups for
otherwise hard problems [DKW21a, DKW21b]. In contrast, the incidence graph uniquely
describes a SETAF, as attacks are explicitly modeled in this notion. Again, we utilize
the incidence graph to define incidence-treewidth.

Definition 5.3 (Incidence Treewidth). Let SF be a SETAF and Inc(SF) its incidence-
graph. The incidence-treewidth itw(SF) is defined as the treewidth of Inc(SF).

We want to highlight that (a) both of these notions properly generalize the classical
notion of treewidth commonly applied to Dung-style AFs, and (b) these measures coincide
on AFs. Formally:

Proposition 5.4. The “standard” treewidth of AFs F coincides with ptw(F) and itw(F).

Proof. The case of primal-treewidth is immediate, as primal(F) = F . For incidence-
treewidth note that we can construct Inc(F) from F by substituting each edge r =
(a, b) ∈ R by a fresh vertex r and two edges (a, r), (r, b). It is well known that this
operation preserves treewidth.

We will first show that reasoning on SETAFs with fixed primal-treewidth remains hard
(Section 5.1.1). Incidence-treewidth on the other hand admits FPT algorithms—we
will initially establish this by characterizing the SETAF semantics via Monadic Second
Order logic (MSO) [Dun07, DSW12] (Section 5.1.2). We utilize this characterization
to obtain the desired upper bounds, as in this context we can apply a meta-theorem
due to Courcelle [Cou87, Cou90]. In a nutshell, it states that every graph property that
can be characterized in MSO can be checked in polynomial time. However, this generic
method typically produces infeasible constants in practice, which is why in Section 5.2 we
will refine these results and provide a prototypical algorithm with feasible constants for
stable semantics, later we refine our methods for admissible sets and complete extensions.
(cf. [DPW12]).

96

5.1. Towards SETAF Treewidth

ϕ

x1

x̄1

x2 x̄2

x3

x̄3

ϕ

x1

x̄1

x2 x̄2

x3

x̄3
2: ϕ, x2, x̄2

1: ϕ, x1, x̄1

3: ϕ, x3, x̄3

(a) (b) (c)

Figure 5.1: (a) The framework SFϕ from the proof of Theorem 5.5 for ϕ = (x1 ∨ x̄2 ∨
x̄3) ∧ (x̄1 ∨ x2) ∧ (x2 ∨ x3), (b) primal(SFϕ), and (c) a tree-decomposition of primal(SFϕ)
of width 2.

5.1.1 Decomposing the Primal Graph
We start with an investigation of the treewidth of the primal graph. It has been shown
that various restrictions on the primal graph can lead to computational ease [DKW21a,
DKW21b]. However, we will see that reasoning remains hard for SETAFs with constant
primal-treewidth (in contrast to the AF-case, where we observe FPT results). We establish
this via reductions from (QBF-)SAT, illustrated in Figures 5.1 and 5.2. Intuitively, the
attacks between the dual literals x and x̄ represent the choice between assigning x to
true or false. The collective attack ({x, x̄}, ϕ) ensures that we take at least one of x
and x̄ into any extension in order to defend ϕ, making sure we only construct proper
truth assignments. Finally, the remaining attacks towards ϕ correspond to the clauses
and make sure that we cannot defend ϕ if for any clause we set all duals of its literals
true—as this means the clause is not satisfied.

Theorem 5.5. The problems Credσ for σ ∈ {adm, com, stb, pref} are NP-complete, and
Skeptstb is coNP-complete for SETAFs SF with ptw(SF) ≥ 2.

Proof. The membership coincides with the general case. For the respective hardness
results, consider the following reduction from SAT (see Figure 5.1). Let X be the set of
atoms and C be the set of clauses of a boolean formula ϕ (given in CNF). We denote a
clause c ∈ C as the set of literals in the clause, e.g. the clause x1 ∨ x̄2 ∨ x̄3 correspond to
the set of literals (arguments, resp.) {x1, x̄2, x̄3}. By xd we denote the dual of a literal
(e.g. xd = x̄ and x̄d = x). Let SFϕ = (A, R), where A = {x, x̄ | x ∈ X} ∪ {ϕ}, and

R = {({xd | x ∈ c}, ϕ) | c ∈ C} ∪ {({x, x̄}, ϕ), (x, x̄), (x̄, x) | x ∈ X}

Now it holds that ϕ is in at least one σ extension for σ ∈ {adm, com, stb, pref} if and only
if ϕ is satisfiable.

(⇒) An admissible set E containing ϕ contains exactly one of each pair x, x̄, as otherwise
ϕ would not be defended against the attack ({x, x̄}, ϕ). Moreover, as c̄ !⊆ E for each
attack (c̄, ϕ)—c̄ consists of the duals of the literals in c—this means at least one argument

97

5. Treewidth-Based Evaluation

ϕ

y1

ȳ1

z2 z̄2

z3

z̄3

ϕ̄

2: ϕ, ϕ̄, z2, z̄2

1: ϕ, ϕ̄, y1, ȳ1

3: ϕ, ϕ̄, z3, z̄3

(a) (b)

Figure 5.2: (a) SFΦ from the proof of Theorem 5.6 for Φ = ∀{y1}∃{z2, z3}(y1 ∨ z̄2 ∨ z̄3) ∧
(ȳ1 ∨ z2) ∧ (z2 ∨ z3), and (b) a tree-decomposition of primal(SFΦ) of width 3.

corresponding to a literal of each clause c ∈ C is in E. Hence, E corresponds to a
satisfying assignment of ϕ.

(⇐) Every satisfying assignment of ϕ corresponds to a stable extension of SFϕ: let I be
the interpretation satisfying ϕ, the corresponding set E = {ϕ} ∪ {x | I(x) = true} ∪ {x̄ |
I(x) = false} is then stable (admissible, complete, preferred): As I satisfies ϕ, for each
attack corresponding to a clause not all tail-arguments are in E, and hence ϕ is defended.

For the coNP completeness result, we add an argument ϕ̄ and an attack (ϕ, ϕ̄). If ϕ is
unsatisfiable, ϕ will be attacked and ϕ̄ will be contained in every stable extension. The
constant primal-treewidth is immediate, as illustrated in the example of Figure 5.1(c).

Also for preferred semantics reasoning remains intractable for SETAFs with fixed primal-
treewidth. For this result, we extend the construction from Theorem 5.5 by an additional
argument ϕ̄ that attacks the existentially quantified variables (see Figure 5.2).

Theorem 5.6. Skeptpref is ΠP
2 -complete for SETAFs SF with ptw(SF) ≥ 3.

Proof. We show this by a reduction from the ΠP
2 -complete QBF2

∀ problem. Let Φ =
∀Y ∃Zϕ be a QBF2

∀-formula with ϕ in CNF. We construct the SETAF SFΦ by extending
Fϕ from Theorem 5.5 in the following way (for an example see Figure 5.2): First, we
set X = Y ∪ Z and add all arguments and attacks according to the construction of
Fϕ. Moreover we add an argument ϕ̄ and attacks (ϕ̄, ϕ̄), (ϕ, ϕ̄). The last step is to add
attacks (ϕ̄, z), (ϕ̄, z̄) for each z ∈ Z. Now ϕ is in every preferred extension of SFΦ if
and only if Φ is valid. We start with some general observations: ϕ̄ cannot be in any
admissible set, and ϕ can only be in an admissible set S if for each x ∈ Y ∪ Z exactly
one of x and x̄ is in S. Moreover, in order to have S ∩ (Z ∪ Z̄) != ∅, the argument ϕ̄ has
to be attacked by S, and consequently ϕ ∈ S. This means for every admissible set S that
S ∩ (Y ∪ Ȳ ∪ Z ∪ Z̄) corresponds to a satisfying assignment of the formula ϕ. In summary,
every assignment on the variables Y corresponds to an admissible set, and every other
admissible set in SFΦ contains ϕ and represents a satisfying assignment for ϕ.

98

5.1. Towards SETAF Treewidth

(⇒) Assume ϕ is in every preferred extension. Since every set S ⊆ 2Y is admissible and
in order to accept ϕ for each x ∈ Y ∪ Z either x or x̄ have to be accepted, we know that
for every assignment of Y variables there is an assignment satisfying ϕ.

(⇐) Now assume Φ is valid, i.e. for each assignment IY on the variables Y , there is an
assignment IZ on Z such that IY ∪ IZ satisfies ϕ. From this and our observations above
it follows that ϕ is in every preferred extensions.

It is easy to see that the primal-treewidth of FΦ is bounded by 3 (see Figure 5.2(b)).

Hence, under standard complexity-theoretical assumptions, these problems do not become
tractable when parameterized by the primal-treewidth.

5.1.2 Parameterized Tractability via Incidence-Treewidth
In this section, we establish tractability for reasoning in SETAFs with constant incidence
treewidth by utilizing a meta-theorem due to Courcelle [Cou87, Cou90]. In particular,
we use the tools of Monadic Second Order logic (MSO) to characterize the semantics
of SETAFs (similarly, this has been done for AFs [Dun07, DSW12]). MSO generalizes
first-order logic in the sense that it is also allowed to quantify over sets. Domain elements
in our settings are vertices of an (incidence)-graph, i.e., arguments or attacks. MSO in
our context consists of variables corresponding to domain elements (indicated by lower
case letters), and set-variables corresponding to sets of domain elements (indicated by
uppercase letters). Moreover, we use the standard logical connectives ¬, ∧, ∨, →, ↔, as
well as quantifiers ∃, ∀ for both types of variables. Hence, given a graph G = (V, E), an
MSO formula depends on open variables in the form of vertices x1, . . . , xm ∈ V , and sets
of vertices X1, . . . , Xn ⊆ V (while we could also have open variables in the form of edges
and sets of edges, we do not make use of this in the following characterizations). We
recall Courcelle’s theorem in the style of [DSW12].

Theorem 5.7. For every fixed MSO formula φ(x1, . . . , xm, X1, . . . , Xn) and fixed in-
teger c there is a linear-time algorithm that, given a graph G = (V, E) of treewidth
≤ c, decides whether given G = (V, E), v1, . . . , vm ∈ V , B1, . . . , Bn ⊆ V satisfy
φ(v1, . . . , vm, B1, . . . , Bn).

We use the unary predicates A(·) and R(·) to indicate an element being an argument or
an attack of our SETAF, respectively. Moreover, we use the binary predicate E(x, y) to
indicate an edge in the incidence graph between incidence-vertices x and y. Alternatively,
we write a ∈ A, r ∈ R, (x, y) ∈ E for A(a), R(r), E(x, y), respectively. Based on these
basic definitions, we define notational shortcuts to conveniently characterize SETAF-
properties. Let SF=(A, R) be a SETAF and Inc(SF)=(V, E) its incidence graph. We
define the following notion for T ⊆ V and h ∈ V : let (T, h) ∈ R be short-hand notation
for ∃r (r ∈ R ∧ (r, h) ∈ E ∧ ∀t(t ∈ T ↔ (t, r) ∈ E)). This notion consists of four parts:
(1) vertex r corresponds to an attack, (2) h is the head of the attack r, (3) the arguments
in T constitute the tail of r. We utilize this to avoid dealing with the attack-vertices

99

5. Treewidth-Based Evaluation

of the incidence graph in our semantics characterizations. We borrow the following
“building blocks” from [DSW12] (slightly adapted for our setting).

X ⊆ Y = ∀x (x ∈ X → x ∈ Y) X !⊂ Y = ¬(X ⊂ Y)
X ⊂ Y = X ⊆ Y ∧ ¬(Y ⊆ X) x /∈ X = ¬(x ∈ X)
X !⊆ Y = ¬(X ⊆ Y) x ∈ X⊕

R = x ∈ X ∨ ∃Y (Y ⊆ X ∧ (Y, x) ∈ R)
X ⊆⊕

R Y = ∀x (x ∈ X⊕
R → x ∈ Y ⊕

R) X ⊂⊕
R Y = X ⊆⊕

R Y ∧ ¬(Y ⊆⊕
R X)

We can express (subset-)maximality and -minimality for any expressible property P (·) as
follows [DSW12]:

max A,P (.),⊆(X) = P (X) ∧ ¬∃Y (Y ⊆ A ∧ P (Y) ∧ X ⊂ Y)
min A,P (.),⊆(X) = max A,P (.),⊇(X)

Having these tools at hand, we can characterize the SETAF semantics in an intu-
itive way. It is easy to verify that these exactly correspond to the respective notions
from Definition 2.6. Utilizing these building blocks, we can encode the semantics
cf , adm, com, grd, stb, pref, naive, stage, and sem exactly as in AFs [Dun07, DSW12].

Definition 5.8. Let SF = (A, R) be a SETAF and let Inc(SF) = (V, E) be its incidence
graph. For a set X ⊆ V where ∀x ∈ X(x ∈ A):

cf (X) = ∀T, h ((T, h) ∈ R → (T !⊆ X ∨ h /∈ X))
adm(X) = cf (X) ∧ ∀T, h(((T, h) ∈ R ∧ h ∈ X) → ∃S, t(S ⊆ X ∧ t ∈ T ∧ (S, t) ∈ R))
com(X) = adm(X) ∧ ∀x((x ∈ A ∧ x /∈ X) →

∃S((S, x) ∈ R ∧ ¬∃T (T ⊆ X ∧ (X, s) ∈ R ∧ s ∈ S)))
grd(X) = min A,com(·),⊆(X)
stb(X) = cf (X) ∧ ∀x(x ∈ A → x ∈ X⊕

R)
pref(X) = max A,adm(·),⊆(X)

naive(X) = max A,cf (·),⊆(X)
stage(X) = max A,cf (·),⊆⊕

R
(X)

sem(X) = max A,adm(·),⊆⊕
R

(X)

Reasoning and verification can then be done in an intuitive way, see [DSW12]. For
example, to find out whether an argument a is credulously accepted w.r.t. stable semantics
we can use the formula ∃X(stb(X) ∧ a ∈ X). We can immediately apply Courcelle’s
theorem [Cou87, Cou90] to obtain the desired result.

Theorem 5.9. Let SF be a SETAF. For the semantics under our consideration, reasoning
is fixed-parameter tractable w.r.t. the incidence-treewidth itw(SF).

5.2 Dynamic Programming on SETAFs
In the following, we specify three dynamic programming algorithms utilizing incidence-
treewidth to reason in stable, admissible, and complete semantics. Ultimately, we

100

5.2. Dynamic Programming on SETAFs

a

c

b

d
r4

r2
r3

r1

(a)(a)

a

b

c

d

r1

r2

r3

r4

(b)

1: ∅

2: {c}

3: {b, c}

4: {b, c, r4}

5: {b, c, r4}

6: {b, c}

7: {b, r1, c}

8: {b, r1}

9: {r1}

10: {a, r1}

11: {b, c, r4}

12: {b, r4}

13: {b, r4, d}

14: {b, d}

15: {b, r2, d}

16: {b, d}

17: {b, r3, d}

Bo
tt

om
-u

p
co

m
pu

ta
tio

n
Figure 5.3: Running example for Section 5.2: (a) SETAF SF ; (b) incidence graph
Inc(SF); (c) nice tree decomposition of Inc(SF).

will show that these algorithms allow us to reason efficiently in SETAFs with fixed
incidence-treewidth.

To illustrate the underlying idea of all three of these algorithms, we restrict the tree-
decompositions of the incidence graph to nice tree-decompositions.

Definition 5.10. A tree-decomposition (T , X) is called nice if T = (VT , ET) is a rooted
tree with an empty bag in the root node, and each node t ∈ T (shorthand notion for
n ∈ VT) is of one of the following types:

1. Leaf: n has no children in T ,

2. Forget: n has one child n�, and Xn = Xn� \ {v} for some v ∈ Xn�,

3. Insert: n has one child n�, and Xn = Xn� ∪ {v} for some v !∈ Xn�,

4. Join: n has two children n�, n��, with Xn = Xn� = Xn��.

101

5. Treewidth-Based Evaluation

Any tree-decomposition can be transformed into a nice tree decomposition with the same
width in linear time [Klo94]. Let SF = (A, R) be a SETAF and Inc(SF) = (V, E). For
sets U ⊆ V , by UA, UR we identify the sets (U ∩ A), (U ∩ R), respectively. By X≥n we
denote the union of all bags Xm where m ∈ VT appears in the subtree of T rooted in n.
Likewise, by X>n we denote the set X≥n \ Xn.

Example 5.11. We exemplify the notation with our running example, illustrated in
Figure 5.3. If we focus on node 5, we have X5 = {b, c, r4} = XA

5 ∪ XR
5 , with XA

5 = {b, c},
and XR

5 = {r4}. The subtree rooted in node 5 contains the nodes 5-10. Consequently,
we have X≥5 = {a, b, c, r1, r4} and X>5 = {a, r1}. We illustrate the relevant parts of the
SETAF for each node in Figure 5.4.

We use colors to keep track of the arguments and attacks that appear in the bag Xn of
node n ∈ VT . We call an assignment of colors to arguments and attacks a coloring—they
are akin to the idea of labelings for SETAFs, which is an alternative though (mostly)
equivalent approach for SETAF semantics [FB19]. However, note that in our case
we also color (or “label”) the attacks in addition to the arguments, similar in spirit
to attacks semantics [VBvdT11, CKRU24]. In our case, these colorings characterize
extension candidates w.r.t. nodes in the tree-decomposition that are consistent with
the sub-framework rooted in the node in question. Consequently, as the framework
rooted in the root node of the decomposition is the entire framework, the colorings in
the root node characterize the extensions of the SETAF. Let SF = (A, R) be a SETAF.
For an argument a ∈ A, we use different colors to indicate its relation to an extension
E ⊆ A. The color ina indicates a ∈ E (a is “accepted”), outa/pouta indicate a ∈ E+ (a is
“defeated”), and unda/punda indicate a ∈ A \ (E ∪ E+) (a is “undecided”). We use two
colors each for defeated and undecided arguments, respectively, to ensure the correctness
of our algorithm. The colors pouta and punda correspond are in a sense “provisional” in
that the “responsible” attack has not yet appeared in the bottom-up computation along
the tree decomposition.

Likewise, for attacks (T, h) we use the colors inr if all t ∈ T are ina; outr if one t ∈ T
is outa or pouta; poutr for the case where we expect at a later stage in the algorithm
to add some t ∈ T that is outa or pouta; undr if one t ∈ T is unda or punda (and no
t ∈ T is outa or pouta’); and pundr for the case where we expect at a later stage in the
algorithm to add some t ∈ T that is unda or punda (and again no t ∈ T is outa or pouta’).
Note that the exact interpretation of the colorings will be discussed in detail when we
investigate each semantics, as we will be able to optimize the colorings tailored to each
semantics. For example, we do not need to consider undecided arguments or attacks in
stable semantics, as no extension can contain these.

5.3 Characterizing Stable Extensions
In the following we give a detailed account on how to characterize stable extensions via
dynamic programming on the incidence-tree decomposition. In this regard, we define so

102

5.3. Characterizing Stable Extensions

r1 r2r3

r4

a

c

b

d

1:

r1 r2r3

r4

a

c

b

d

2:

r1 r2r3

r4

a

c

b

d

3:

r1 r2r3

r4

a

c

b

d

4:

r1

r4

a

c

b

5:

r1

a

c

b

6:

r1

a

c

b

7:

r1

a b
8:

r1

a
9:

r1

a
10:

r2r3

r4c

b

d

11:

r2r3

r4

b

d

12:

r2r3

r4

b

d

13:

r2r3

b

d

14:

r2r3

b

d

15:

r3

b

d

16:

r3

b

d

17:

Figure 5.4: Running example ctd.: for each node we illustrate the parts of the SETAF
rooted in the subtree (dashed+non-dashed) and the arguments/attacks of the current
node (non-dashed).

103

5. Treewidth-Based Evaluation

called st-colorings for each node of the tree-decomposition in a way that can easily be
implemented in a system. Moreover, we define stable colorings, i.e., the desired colorings
for each node. Ultimately, we show that st-colorings and stable colorings coincide and
thereby show the correctness and completeness of our algorithm.

As in a stable extension E we only have arguments either in E or attacked by E, we
do not need to consider the undecided colors. After all, no extension candidate with
undecided arguments or attacks in it can be extended to a stable extension. Hence, the
colors Cstb we use for the dynamic programming algorithm for stable semantics are given
as follows.

Cstb = {ina, outa, pouta, inr, outr, poutr}

In the following we assume we are given an arbitrary but fixed SETAF SF = (A, R), as
well as a corresponding nice tree decomposition T = (VT , ET) of Inc(SF).

We next characterize the stable colorings for each node of the tree decomposition. The
stable colorings of a node characterize the candidates for stable extensions, as per the
information that is available up to the current node. That means, in the root node
(where information about the whole SETAF is available) the stable colorings correspond
exactly to the stable extensions of the SETAF. We will later define st-colorings as the
output of our algorithm and show that st-colorings and stable colorings coincide.

We relate a coloring Xn of a specific node n to a (hypothetical, not actually computed)
generally larger coloring C � on all the arguments and attacks of the subtree rooted in
node n (i.e., on all elements in X≥n). Ultimately, for the root node this subtree contains
all arguments and attacks of the SETAF, which ensures that the colorings in this node
in fact correspond only to stable extensions, as we will show in Proposition 5.13.

Definition 5.12. A coloring C : Xn → Cstb for a node n ∈ VT is stable if we can extend
C to a coloring C � : X≥n → Cstb such that the following conditions are met for each
a ∈ XA

≥n and each (T, h) ∈ XR
≥n:

1. if a ∈ XA
>n then C �(a) ∈ {ina, outa},

2. if r ∈ XR
>n then C �((T, h)) ∈ {inr, outr},

3. if C �(a) = ina then ∀(S, a) ∈ XR
≥n : C �((S, a)) ∈ {outr, poutr},

4. C �(a) = outa if and only if ∃(S, a) ∈ XR
≥n : C �((S, a)) = inr,

5. if C �((T, h)) = inr then ∀t ∈ T ∩ XA
≥n : C �(t) = ina, and

6. C �((T, h)) = outr if and only if ∃t ∈ T ∩ XA
≥n : C �(t) ∈ {outa, pouta}.

For a coloring C in node n we define by en(C) the set of such extended colorings C � on
X≥n s.t. (1)-(6) are met. These are the characterized colorings.

104

5.3. Characterizing Stable Extensions

We now give some intuition for this definition. For the extended coloring C � we require
six conditions (1)-(6) to be satisfied. (1) and (2) ensure that for all the arguments/attacks
that only appear below a current node (i.e., in the subtree rooted in the node, excluding
the node itself) only non-provisional colors are used. This is because by the properties
of tree decompositions, we will not “encounter” these arguments/attacks again in the
remaining computation; hence, provisional colors could not be “confirmed” to become
non-provisional, and could therefore never be extended to an actual stable extension of
the SETAF. (3) and (4) capture the requirements of stable extensions for arguments,
i.e., if an argument is in then all attacks towards the argument must be out, and if an
argument is out then at least one attack towards it must be in. Note that these conditions
effectively characterize admissibility, but since we only allow two options ina and outa
for arguments and every argument has to be colored, this suffices to characterize stable
extensions. Similarly, (5) ensures that for each attack that is in all of the arguments in
the tail of the attack are in, and (6) makes sure that for each attack that is put at least
one tail-argument is out. These last two requirements make sure that the colors of the
attacks correspond to the desired intuition, namely: (5) an attack (T, h) is colored inr if
and only if it is “effective”, i.e., all of its tail-arguments t ∈ T are in the characterized
stable extensions and the head of the attack t is indeed attacked, and (6) an attack
(T, h) is colored outr or poutr if at least one of the tail arguments t ∈ T is attacked by
the characterized extensions E which renders the attack “ineffective” and h is defended
against the attack (by whatever attack is responsible for attacking t).

We now illustrate the purpose of the colorings, namely that the characterized colorings
of the root node correspond to the stable extensions of the SETAF.

Proposition 5.13. Let T = (VT , ET) be a nice tree-decomposition of a SETAF SF =
(A, R) and let r ∈ VT be the root node of T . Moreover, let Cr be the set of stable colorings
for r. Then

stb(SF) =
�{a | C �(a) = ina} | C ∈ Cr, C � ∈ er(C)

�
.

Proof. Since the root node is empty, we have that XA
>n = A and XR

>n = R, which by (1)
and (2) means that we have no provisional colors in each extended coloring C � ∈ er(C)
(in case there is a stable coloring C ∈ Cr, i.e., Cr != ∅). Finally, condition (3) and (6) give
us the following property (a) and (4) and (5) give us the following property (b):

(a) If C �(a) = ina then ∀(T, a) ∈ R ∃t ∈ T : C �(t) = outa, and

(b) C �(a) = outa if and only if ∃(T, a) ∈ R ∀t ∈ T : C �(t) = ina.

(a) exactly characterizes conflict-freeness, i.e., for each attack (T, a) towards an argument
a that is in the extensions (i.e., in the set {a | C �(a) = ina}) there is at least one argument
in T that is not in the extension. (b) characterizes the fact that every argument that
is not in the extension is attacked by the extension (since for stable semantics the only
options for arguments are the colors ina and outa). (a) and (b) together exactly define
the stable extensions.

105

5. Treewidth-Based Evaluation

We want to point out that since the root node of a nice tree decomposition is always
empty, we have either Cr = ∅ or Cr = {�}, i.e., either there are no colorings in r or the
empty coloring C = �. In the first case, Proposition 5.13 tells us that there are no stable
extensions; in the second case the characterized extended colorings er(C) characterize
the stable extensions. Intuitively, the actual extensions can be computed by straight-
forwardly combining the corresponding colorings of one branch of T , wherever a coloring
“persists” throughout the whole branch. All extensions can be enumerated this way with
linear delay (for details see [JPW09]).

We will now continue to discuss the four node types and show that in each node we
indeed capture exactly the stable colorings. In particular, we present the algorithm itself
(i.e., define the st-colorings), and show that we characterize all the stable extensions and
only stable extensions (i.e., that each intermediate coloring in each node is stable as per
Definition 5.12).

5.3.1 Leaf Nodes
Intuitively, in leaf nodes for each argument and each attack we guess one of two possibilities:
in or out (in the second case we use either out or pout, as we will explain below). We
then keep every “consistent” coloring, e.g., if an argument is colored ina then there
cannot be an attack towards it that is colored inr. Whether (i) an argument or (ii) an
attack is colored out or pout depends only on whether the color is “confirmed”, i.e., (i)
for arguments whether there is an attack colored inr towards the argument, and (ii) for
attacks whether there is an argument colored outa in the tail of the attack.

Definition 5.14 (st-colorings: Leaf). An st-coloring for a leaf node n ∈ VT is each
coloring C : Xn → Cstb that satisfies the following conditions. For each argument a ∈ XA

n :

C(a) = ina ⇒ ∀(T, a) ∈ XR
n : C((T, a)) ∈ {poutr, outr}

C(a) = outa ⇔ ∃(T, a) ∈ XR
n : C((T, a)) = inr

For every attack r = (T, h) ∈ XR
n :

C(r) = inr ⇒ ∀t ∈ T ∩ XA
n : C(t) = ina

C(r) = outr ⇔ ∃t ∈ T ∩ XA
n : C(t) ∈ {pouta, outa}

In our running example in Figure 5.5, the nodes 10 and 17 are leaf nodes. Note that
there is no explicit condition for the colors pouta and poutr. This reflects the fact that we
can color any argument/attack provisionally out (as long as it does not violate any of
the conditions for the other colors) which captures the situation where an argument is
going to be attacked by an attack that we have not yet considered, i.e., that is still going
to be handled in a later (i.e., upper) node in the tree decomposition.

For the following lemmas note that for leaves it holds XA
>n = XR

>n = ∅. Then the following
two results directly follow from Definition 5.12 of stable colorings and Definition 5.14 of

106

5.3. Characterizing Stable Extensions

-
�

1:

c

outa
pouta

2:

b c

ina outa
outa pouta
pouta ina

3:

b c r4
ina outa outr
outa pouta outr
outa ina poutr
pouta ina ina

4:

b c r4
ina outa outr

pouta pouta outr
pouta ina poutr
pouta ina inr

5:

b c

ina outa
pouta pouta
pouta ina

6:

b r1 c

ina inr outa
pouta outr pouta
pouta outr ina

ina poutr pouta
ina poutr ina

7:

b r1
ina inr

pouta outr
ina poutr

8:

r1
inr

poutr
9:

a r1
ina inr

ina poutr
pouta outr

10:

b c r4
ina ina inr

ina pouta outr
ina ina poutr
outa ina poutr
outa pouta poutr
pouta ina inr

11:

b r4
ina inr

ina poutr
outa poutr
pouta inr

12:

b r4 d

ina inr outa
ina poutr outa
outa poutr ina

pouta poutr pouta
pouta inr outa

13:

b d

ina outa
outa ina

pouta pouta

14:

b r2 d

ina poutr pouta
ina inr outa
outa outr ina

pouta outr pouta

15:

b d

ina pouta
outa ina

pouta pouta

16:

b r3 d

ina poutr ina

ina outr pouta
outa inr ina

pouta poutr ina

pouta outr pouta

17:

(c)

r1 r2r3

r4

a

c

b

d

(b)

a

c

b

d
r4

r2
r3

r1

(a)

stb(SF) = {{a, b}}

Figure 5.5: All st-colorings for our running example. (a) Our running example SETAF
SF with its stable extensions, (b) its incidence-graph Inc(SF), and (c) all st-colorings
for SF w.r.t. the tree decomposition given in Figure 5.3.

107

5. Treewidth-Based Evaluation

a r1
ina inr

ina poutr
pouta outr

10:(a) a

pouta
r1

outr
(b)

r1
inr

poutr
9:(c)

Figure 5.6: St-colorings for leaf nodes and forget argument nodes. Example for st-colorings
for (a) the leaf node 10 from Figure 5.5 and (c) the “Forget a” node 9 for argument a.
Subfigure (b) illustrates the subgraph of the incidence graph that corresponds to the leaf
node together with the coloring that is discarded by the forget node.

st-colorings in leaves. The following lemma captures the soundness of our algorithm and
holds because the conditions for st-colorings imply the properties of stable colorings.

Lemma 5.15. Each st-coloring C for a leaf node n ∈ VT is stable.

Proof. We need to show that each of the conditions (1)-(6) of Definition 5.12 is met. (1)
and (2) are trivially true, as for leaves it holds XA

>n = XR
>n = ∅. (3)-(6) follow directly

from the conditions in Definition 5.14.

The next result captures the completeness of our algorithm and holds because the
properties of stable colorings imply the conditions for st-colorings for leaves.

Lemma 5.16. Each stable coloring C for a leaf node n ∈ VT is an st-coloring.

Proof. It follows directly from the definition of stable colorings that C adheres to the
conditions in Definition 5.14.

5.3.2 Forget Nodes
We examine forget argument nodes and forget attack nodes separately. Let n be a
forget argument node with child n� such that XA

n = XA
n� \ {a}. We have to discard all

colorings C where C(a) = pouta, as in these colorings a is supposed to be attacked by
the extensions that C potentially characterizes. However, as we forget a in the current
node by the definition of a tree-decomposition, this cannot happen: consider again the
running example from Figure 5.5. Node 9 is a forget node, where the argument a is
forgotten (we illustrate this situation in Figure 5.6). This means, in the “upper” part of
the tree decomposition, no attacks towards a can be added. Hence, there cannot be an
attack colored inr towards a that confirms a being attacked, and the provisional color
pouta cannot be updated to outa. One can clearly see that this behavior is correct, as
there is indeed no attack towards a in SF .

Definition 5.17 (st-coloring: Forget Argument). Let n be a forget argument node with
child n� such that XA

n = XA
n� \ {a}, and let C be an st-coloring for n�. If C(a) != pouta,

then C − a is an st-coloring for n, where C − a for each b ∈ Xn is defined as follows:

(C − a)(b) = C(b)

108

5.3. Characterizing Stable Extensions

b c

ina outa
pouta pouta
pouta ina

6:(a)

b r1 c

ina inr outa
pouta outr pouta
pouta outr ina

ina poutr pouta
ina poutr ina

7:(b)
r1 inr

a
ina

c outa

b ina

(c)

Figure 5.7: St-colorings forget attack nodes. Example of (a) the forget node 6 and (b)
its child node 7 from the running example (the discarded colorings are struck out). (c)
illustrates the sub-framework rooted in 6 (i.e., containing X≥6) and an extended coloring
C � that extends the highlighted colorings of (a) and (b).

We handle forget attack nodes in a similar way, i.e., we discard colorings where the attack
we forget is provisionally out. In this case, we colored the attack poutr at an earlier
stage in the algorithm, anticipating the possibility for an insert argument node where
a tail-argument is colored outa or poutr. Due to the properties of tree-decompositions,
such an insert argument node cannot appear above the forget attack node, which is why
we can discard colorings where the attack is colored provisionally.

Definition 5.18 (st-coloring: Forget Attack). Let n be a forget attack node with child
n� such that XR

n = XR
n� \ {r}, and let C be an st-coloring for n�. If C(r) != poutr, then

C − r is an st-coloring for n, where C − r for each b ∈ Xn is defined as follows:

(C − r)(b) = C(b)

Next we show the soundness of our algorithm for forget nodes. This result carries over
from the child node, as we discard colorings where the forgotten argument/attack is
provisional. Let us revisit a part of our running example (see Figure 5.7), we see in node
6 (where we “forget” the attack r1) that we “copy” each st-coloring of the child node 7
except for the last two colorings where r1 has the provisional color poutr (Figure 5.7(b)).
It is then clear that since each st-coloring of node 7 can be extended to a coloring on all of
X≥7 (since we assume these colorings are stable) that the same holds for the st-colorings
of node 6. For example, the st-coloring C∗ of node 7 with C∗(b) = ina, C∗(r1) = inr, and
C∗(c) = outa can be extended to the coloring C � on X≥7 = {a, b, c, r1} with C �(a) = ina

(and of course C �(x) = C∗(x) for x ∈ {b, c, r1}); analogously the st-coloring C of 6 with
C(b) = ina and C(c) = outa can also be extended to C � on X≥6, and it can easily be
checked that C is stable.

Lemma 5.19. If for the child node n� of a forget node n each st-coloring is stable, then
each coloring C of n is stable.

Proof. We need to show that each of the conditions (1)-(6) of Definition 5.12 is met.
(1) and (2) are true because they hold for n�, and if the forgotten argument/attack is
provisional, then it is discarded. The satisfaction of (3)-(6) immediately carries over from
n�.

109

5. Treewidth-Based Evaluation

To show the completeness of our algorithm, we can show that for each stable coloring
C for node n there has to be a corresponding st-colorings C∗ in the child node n� such
that C = C∗ − x for the forgotten argument/attack x. This means that n contains every
stable coloring. The key idea is that C∗ in the child node n� coincides with C and does
not color x in a provisional color, as otherwise C would not be a stable coloring for n.
Again consider node the forget node 6 of our running example (Figure 5.7). Even without
knowing that coloring C with C(b) = ina and C(c) = outa is an st-coloring of node 6,
we can check that this coloring is stable for node 6. This means we can extend it to a
coloring C � on X≥6 = {a, b, c, r1}, and we can infer that there has to be a stable coloring
C∗ for the child node 7 that can also be extended to C �. As with the other direction, we
then see that indeed C = C∗ − r1.

Lemma 5.20. Let C be a stable coloring of a forget node n. If in the child node n� of n
stable colorings and st-colorings coincide then C is an st-coloring for n.

Proof. Let C � be the extended coloring of C on X≥n s.t. the conditions of Definition 5.12
are satisfied.

We start with forget argument nodes. We show that C∗ is an st-coloring for n� where C∗

coincides with C on each a, (T, h) ∈ Xn and for the forgotten argument b ∈ Xn� \ Xn it
holds C∗(b) != pouta.

• If C �(b) = ina then clearly C∗ is stable for n� with C∗(b) = ina: in this case each
condition (1)-(6) carries over from C. Then by assumption this means C∗ is an
st-coloring for n�.

• If C �(b) = outa then C∗ is stable for n� with C∗(b) = outa: this is because by
condition (4) we have for node n that ∃(S, b) ∈ XR

≥n : C �((S, b)) = inr, and since
XR

≥n = XR
≥n� this carries over to node n�. The other conditions clearly carry over,

and by assumption this means C∗ is an st-coloring for n�.

In both cases we see that there is a corresponding st-coloring C∗ in n� that gives us C as
an st-coloring in n, and since there is no other possibility, this means that C = C∗ − b is
an st-coloring of n.

We continue with forget attack nodes. We show that C∗ is an st-coloring for n� where C∗

coincides with C on each a, (T, h) ∈ Xn and for the forgotten attack (S, t) ∈ Xn� \ Xn it
holds C∗((S, t)) != poutr.

• If C �((S, t)) = inr then clearly C∗ is stable for n� with C∗(b) = inr: in this case
each condition (1)-(6) carries over from C. Then by assumption this means C∗ is
an st-coloring for n�.

• If C �((S, t)) = outr then C∗ is stable for n� with C∗((S, t)) = outr: this is because
by condition (6) we have for node n that ∃s ∈ S ∩ XA

≥n : C �(s) ∈ {outa, pouta}, and

110

5.3. Characterizing Stable Extensions

since XA
≥n = XA

≥n� this carries over to node n�. Again the other conditions clearly
carry over, and by assumption this means C∗ is an st-coloring for n�.

In both cases we see that there is a corresponding st-coloring C∗ in the child node n�

that gives us C as an st-coloring in n, and since there is no other possibility, this means
that C = C∗ − (S, t) is an st-coloring of n.

5.3.3 Insert Nodes
We distinguish the two cases where we insert an argument and insert an attack. Whenever
we insert an argument a, we have to consider up to two different scenarios. Scenario 1,
(C + a): the added argument is attacked by the characterized extension. In this case
the added argument is colored pouta or outa, depending on whether the “responsible"
attack is already in the current bag. In case a is in the tail of an attack, we can color
this attack outr. Scenario 2, (C+̇a): the added argument is in the extension. In both
scenarios we have to check whether the result will be consistent with the existing colors,
i.e., for (C + a) the added argument must not be in the tail of an attack that is colored
inr, and for (C+̇a) there must not be an attack colored inr towards the added argument.
Assume we would color the inserted argument b as outa/pouta while b is in the tail of
attack r, which we already colored inr in a previous step. Of course, this is not consistent
with our intended meaning of the attack color inr. On the other hand, assume we color
b as ina while it is attacked by r which we already colored inr in a previous step. This
would introduce a conflict in the constructed extension.

Definition 5.21 (st-coloring: Insert Argument). Let n be an insert argument node with
child n� such that XA

n� = XA
n \ {a}, and let C be an st-coloring for n�.

• If �(T, h) ∈ XR
n�: (C((T, h)) = inr ∧ a ∈ T), then C + a is an st-coloring for n;

• If �(T, a) ∈ XR
n�: (C((T, a)) = inr), then C+̇a is an st-coloring for n.

The operations C + a and C+̇a are defined as follows for each b ∈ Xn:

(C + a)(b) =

������
outa if b = a ∧ ∃(T, a) ∈ XR

n�: C((T, a)) = inr

pouta if b = a ∧ �(T, a) ∈ XR
n�: C((T, a)) = inr

outr if b = (T, h) ∧ a ∈ T ∧ C(b) = poutr
C(b) otherwise

(C+̇a)(b) =
�

ina if b = a
C(b) otherwise

For insert attack nodes, we also have to consider two cases for an attack r = (T, h):
(C + r): the extension attacks T , either in the current bag (in which case we color the
attack outr), or possibly in the “upper” parts of T , then we color the attack poutr. (C+̇r):
this case indicates T ⊆ E for the extension E. In this case the head of the attack can be

111

5. Treewidth-Based Evaluation

b d

ina pouta
outa ina

pouta pouta

16:(a)
r2

inr

b

outa
d

ina� �(b)

r2

inr

b

pouta
d

(p)outa�(c)

b r2 d

ina poutr pouta
ina inr outa
outa outr ina

pouta outr pouta

15:(d)

Figure 5.8: St-colorings for insert attack nodes. (a) shows the st-colorings for node 16
and (d) the st-colorings for “Insert attack r2” node 15 from Figure 5.5. Subfigures (b)
and (c) show inconsistent colorings.

set to outa. Again, we can only apply this coloring if it is consistent with the previous
colors. The idea is very similar to the insert argument nodes; we exemplify the issues in
Figure 5.8: in (b) we cannot color the added attack r2 with inr due to two issues, namely
(1) the argument b in the tail of r2 is not colored ina, and (2) the head of r2 (argument
d) is already colored ina. In (c) we cannot color r2 with inr even though the head is
matching, because the tail argument b is not colored ina. We will use the operations
C + r and C+̇r as given in Definition 5.22.

Definition 5.22 (st-coloring: Insert Attack). Let n be an insert attack node with child
n� such that XR

n� = XR
n \ {r}, and let C be an st-coloring for n�, and r = (T, h).

• C + r is an st-coloring for n;

• If (h /∈ XA
n� ∨ C(h) != ina) ∧ ∀t ∈ T ∩ XA

n� : C(t) = ina, then C+̇r is an st-coloring
for n.

The operations C + r and C+̇r are defined as follows for each b ∈ Xn:

(C + r)(b) =

��
outr if b = r ∧ ∃t ∈ T ∩ XA

n�: C(t) ∈ {pouta, outa}
poutr if b = r ∧ �t ∈ T ∩ XA

n�: C(t) ∈ {pouta, outa}
C(b) otherwise

(C+̇r)(b) =

��
inr if b = r
outa if r = (T, h) ∧ b = h
C(b) otherwise

Again, we show that the insert nodes exactly characterize the stable colorings. For the
following lemma (soundness) we need to show that each of the colorings of an insert
node n is stable. It can be shown that in both cases, i.e., when the st-coloring C in
node n is constructed either from an st-coloring C � of child node n� via C = C � + x or
C = C �+̇x (for an argument/attack x) all conditions (1)-(6) of stable colorings hold.
This is ensured either via the requirements for adding C � + x or C �+̇x, or by construction
by the assigned colors. In particular, the colors outa/pouta and outr/poutr are assigned
according to whether the “confirming” argument/attack is already present in the current

112

5.3. Characterizing Stable Extensions

b r1
ina inr

pouta outr
ina poutr

8:(a)
r1
inr

poutr
9:(b) r1 outr/poutr

a

ina/ina

b pouta/ina

(c) r1 poutr
a

ina
(d)

Figure 5.9: St-colorings for insert argument nodes. Example of (a) the insert node 8 with
highlighted colorings C1 (red) and C2 (blue), and (b) its child node 9 from the running
example. (c) illustrates the sub-framework rooted in 8 (i.e., containing X≥8) and an
extended colorings C �

1 (red) and C �
2 (blue), (d) illustrates the sub-framework rooted in 9

with the extended coloring C ��.

node n. This together with the fact that the original st-coloring C � of the child node
n� is stable—the basis for the constructed coloring C in n—ensures that C is stable as
well. For example, consider in our running example the insert node 8 (illustrated in
Figure 5.9). Its child node 9 contains an st-coloring C∗ with C∗(r1) = poutr. For 8 we get
C1 = C∗ +b and C2 = C∗+̇b (Figure 5.9(a)). In C1 we set C1(b) = pouta which “confirms”
the provisional color of r1 and “upgrades” it to outr, the corresponding extended coloring
C �

1 on X≥8 is illustrated in Figure 5.9(c). In C2 on the other hand we set C2(b) = ina

and keep C2(r1) = poutr, the corresponding extended coloring C �
2 is also illustrated in

Figure 5.9(c). Since we update the color of r1 only because we have “proof” to do so, we
can again check that these st-colorings are stable.

Lemma 5.23. If for the child node n� of an insert node n each st-coloring is stable, then
each st-coloring C of n is stable.

Proof. We need to show that each of the conditions (1)-(6) of Definition 5.12 is met. (1)
and (2) immediately carry over from n� both for insert argument and insert attack nodes.

For (3)-(6) we discuss first the insert argument nodes. Note that we construct C either
from a stable coloring C � of n� via C = C � + a or via C = C �+̇a. Clearly, (3) and (4)
hold both in the cases C = C � + a and C = C �+̇a w.r.t. C for all b ∈ XA

n� (i.e., the “old”
arguments that have not been added in this node) because they hold for n�.

• For the added argument a regarding (3) only the coloring C �+̇a is relevant (as
(C � + a)(a) != ina). Since we can add the coloring C �+̇a only if �(T, a) ∈ XR

n� :
(C �((T, a)) = inr) and the only possible colors for attacks are inr, outr, and poutr,
we know that in this case (3) is satisfied.

• For the added argument a regarding (4) only the coloring C = C � + a is relevant.
In this case, if C(a) = outa then we know ∃(T, a) ∈ XR

n� : (C((T, a)) = inr ∧ a /∈ T)
which means condition (4) is satisfied; if otherwise C(a) = pouta then (4) is trivially
true for a.

113

5. Treewidth-Based Evaluation

• Conditions (5) and (6) immediately carry over from n� for all attacks (T, h) ∈ XR
n

where for the added argument a it holds a /∈ T . Let (T, h) ∈ XR
n be such that for

the added argument a it holds a ∈ T . If C �((T, h)) = inr then we do not add C � + a
as a coloring to n, which means the satisfaction of condition (5) carries over from
n� in this case. For C �+̇a condition (5) also carries over from n� for each attack
(T, h) ∈ XR

≥n with a /∈ T , and as (C �+̇a)(a) = ina the condition is also satisfied for
the attacks with a ∈ T .

• Moreover, in both cases C � + a and C �+̇a condition (6) carries over for each attack
(T, h) ∈ XR

≥n with a /∈ T . Moreover, for the case where we set (C �+a)((T, h)) = outr
where we had C �((T, h)) = poutr, condition (6) is satisfied as the a ∈ T and
(C � + a)(a) ∈ {outa, pouta}.

Hence, conditions (1)-(6) are met for insert argument nodes.

For (3)-(6) we now discuss the insert attack nodes.

• Regarding (3), it suffices to discuss for the added attack r = (T, h) the case (C �+̇r)
(for the other attacks condition(3) carries over from n�). However, the coloring
C �+̇r is only added to n if C �(h) != ina, which also ensures that condition (3) is
met for when we set the added attack to inr.

• Condition (4) carries over from n�, and the case where we set (C �+̇r)(a) = outa when
we previously had C �(a) = pouta is only applied if we set (C �+̇(T, a))((T, a)) = inr,
i.e., (4) is satisfied.

• For (5), only the case C �+̇(T, h) is relevant, the other cases follow from n�. However,
we only add C �+̇(T, h) to n if ∀t ∈ T ∩ XA

n it holds C(t) = ina, and because of the
properties of tree decompositions we know that XA

>n ∩ T = ∅, i.e., there are no tail
arguments strictly below the current node. Hence, (5) is satisfied.

• As to (6), the only case that is not clear from n� is in C � + (T, h), but in this case
we set C((T, h)) to outr only if ∃t ∈ T ∩ XA

n : C(t) ∈ {pouta, outa}, which means (6)
is also satisfied.

To summarize, all of (1)-(6) is satisfied, which means that each coloring in n is stable.

For the following result (completeness) we can show that for each stable coloring C
in the insert node n there has to be a corresponding st-coloring C∗ in the child node
n� on all of X≥n such that C = C∗ + x or C = C∗+̇x for the added argument/attack
x. The key idea here is that C∗ differs from C exactly in those cases where the added
argument/attack leads to non-provisional colors in C, these colors we set to pouta/poutr
in C∗. We can then check that all conditions of stable colorings are satisfied for C∗, and
since we assume that in the child node n� stable colorings and st-colorings coincide, we
know that C∗ is an st-coloring of n�. Finally it is easy to see that in both cases the

114

5.3. Characterizing Stable Extensions

requirements for adding C = C∗ + x or C = C∗+̇x as an st-coloring for n are satisfied.
Revisiting the example of Figure 5.9 we can see that for both st-colorings C1 and C2 the
corresponding st-coloring in node 9 has C∗(r1) = poutr, which is due to the fact that
there is no “confirming” argument in the tail of r1 in XA

≥9. Since this coloring has to be
an st-coloring of 9 and we can construct both C1 and C2 from C∗, we can see that these
two stable colorings are indeed st-colorings of node 8.

Lemma 5.24. Let C be a stable coloring for an insert node n. If in the child node n� of
n stable colorings and st-colorings coincide then C is an st-coloring for n.

Proof. Let C � be the extended coloring of C on X≥n s.t. the conditions of Definition 5.12
are satisfied.
We start with insert argument nodes. We show that there is an st-coloring C∗ in node
n� s.t. for the added argument a we have C = C∗ + a if C �(a) ∈ {outa, pouta}, and
C = C∗+̇a if C �(a) = ina.

• Let C �(a) ∈ {outa, pouta}, then C∗ is an st-coloring of n� where C∗ coincides
with C on each b, (T, h) ∈ Xn� with the exception of attacks (T, h) with a ∈ T ,
C((T, h)) = outr, and �t ∈ T ∩ XA

n� : C �(t) ∈ {outa, pouta}, for these attacks we
set C∗((T, h)) = poutr. To show that C∗ is an st-coloring of n� we need to show
that the conditions (1)-(6) of stable colorings are satisfied. (1) and (2) carry over
from C, as X>n = X>n� . Note for (3) that C and C∗ coincide on the color ina,
and on the set of attacks colored either outr or poutr, which means (3) carries over
from C. (4) and (5) immediately carry over as well, as C and C∗ coincide on
all relevant colors on Xn� . Regarding (6) note that for each attack (T, h) ∈ XR

n�
with a ∈ T this holds by definition of C∗, and for the other attacks the property
carries over from C. Hence, in this case C∗ is stable for n� and therefore by
assumption an st-coloring for n�. Then since C∗ is stable from condition (5) it
follows �(T, h) ∈ X∗R

n� : (C((T, h)) = inr ∧ a ∈ T), hence, C = C∗ + a is an
st-coloring for n (the correct color outa/pouta directly follows from the fact that C
is stable and that due to the properties of tree decompositions all attacks towards
a in XR

≥n have to be in XR
n).

• Now on the other side let C �(a) = ina, then C∗ is an st-coloring of n� where C∗

coincides with C on each b, (T, h) ∈ Xn� . Again we show that the conditions (1)-(6)
are satisfied. (1) and (2) carry over from C, as X>n = X>n� . (3)-(6) immediately
carry over as well, as C and C∗ coincide on all relevant colors on Xn� . Then since
C∗ is stable from condition (3) it follows �(T, a) ∈ XR

n� : (C((T, a)) = inr), hence,
C = C∗+̇a is an st-coloring for n.

We showed that in both cases C is an st-coloring of n.

We continue with the insert attack nodes. Again we show that there is an st-coloring C∗ in
node n� s.t. for the added attack (T, h) we have C = C∗+(T, h) if C �((T, h)) ∈ {outr, poutr},
and C = C∗+̇(T, h) if C �((T, h)) = inr.

115

5. Treewidth-Based Evaluation

• Let C �((T, h)) ∈ {outr, poutr}, then C∗ is an st-coloring of n� where C∗ coincides
with C on each b, (S, t) ∈ Xn� . To show that C∗ is an st-coloring of n� we need to
show that the conditions (1)-(6) of stable colorings are satisfied. (1) and (2) carry
over from C, as X>n = X>n� . (3)-(6) immediately carry over from C as C and C∗

coincide on all relevant colors on Xn� . Hence, C∗ is stable for n� and therefore an
st-coloring, and C = C∗ + (T, h) is an st-coloring for n (as with insert argument
nodes, the correct color outr, poutr follows from C being stable and the properties
of tree decompositions).

• Now on the other side let C �((T, h)) = inr, then C∗ is an st-coloring of n� where
C∗ coincides with C on each b, (T, h) ∈ Xn� with the exception of the argument
h (given that h ∈ XA

n�) if �(S, h) ∈ XR
≥n� : C �((S, h)) = inr, in this case we set

C∗(h) = pouta. Again we show that the conditions (1)-(6) are satisfied. (1) and (2)
carry over from C, as X>n = X>n� . (3), (5), and (6) immediately carry from C,
as C and C∗ coincide on all relevant colors on Xn� . Regarding (4), note that this
clearly carries over from C for all arguments a ∈ XA

n� \ {h}, and for the argument h
it holds by definition of C∗. Then since C∗ is stable from condition (3) it follows
(h /∈ XA

n ∨ C(h) != ina) and from condition (5) it follows ∀t ∈ T ∩ XA
n� : C(t) = ina,

hence, C = C∗+̇(T, h) is an st-coloring for n.

We showed that in both cases C is an st-coloring of n.

5.3.4 Join Nodes
In these nodes we combine the colorings of immediate child nodes. The ina colored
arguments and the inr colored attacks of the (to be) combined colorings have to coincide
to yield an st-coloring for the join node. Whenever at least one of the child node colorings
has a non-provisional out color (on arguments or attacks), the non-provisional color
carries over to the resulting coloring in the join node. This is because it means in at least
one of the sub-trees the color has been “confirmed”.

Definition 5.25 (st-coloring: Join). Let n be a join node with children n�, n��, let C be an
st-coloring for n�, and let D be an st-coloring for n��. If {a | C(a)= ina} = {a | D(a)= ina}
and {r | C(r)= inr} = {r | D(r)= inr} then C � D is an st-coloring for n, where

(C � D)(b) =

��������������

ina if C(b) = D(b) = ina

outa if C(b) = outa ∨ D(b) = outa
pouta if C(b) = D(b) = pouta
inr if C(b) = D(b) = inr

outr if C(b) = outr ∨ D(b) = outr
pouta if C(b) = D(b) = poutr

Again we show that our algorithm for st-colorings is correct, i.e., that the conditions
(1)-(6) of Definition 5.12 are satisfied. Since we assume that the colorings C and D in the

116

5.3. Characterizing Stable Extensions

b c r4
ina outa outr
outa pouta outr
outa ina poutr
pouta ina ina

4:(a)

b c r4
ina outa outr

pouta pouta outr
pouta ina poutr
pouta ina inr

5:(b)

b c r4
ina ina inr

ina pouta outr
ina ina poutr
outa ina poutr
outa pouta poutr
pouta ina inr

11:(c)

Figure 5.10: St-colorings for join nodes. Example of (a) the join node 4 with highlighted
coloring C � D, (b) its child node 5 with highlighted coloring C, and (b) its child node
11 with highlighted coloring D.

child nodes n� and n�� are stable, the conditions for the join node n are satisfied by C � D:
the sub-frameworks rooted in nodes n� and n�� are parts of the sub-framework rooted
in n which means all conditions carry over. This situation is illustrated in Figure 5.10.
Note how in Figure 5.10(a) the provisional color pouta for b of C (Figure 5.10(b)) and
poutr for r4 of D (Figure 5.10(c)) are “upgraded” to non-provisional colors outa and outr,
respectively. This is because b is colored outa in D and r4 is colored outr in C, which
means for the join node 4 that the “proof” for the non-provisional colors occurs in the
sub-framework.

Lemma 5.26. If for the child nodes n�, n�� of a join node n each st-coloring is stable,
then each st-coloring C of n is stable.

Proof. We need to show that each of the conditions (1)-(6) of Definition 5.12 is met. (1)
and (2) immediately carry over from n� and n�� since XA

n = XA
n� = XA

n�� and XR
n = XR

n� =
XR

n�� . (3) holds because it has to hold both for all (S, a) in XR
n� and in XR

n�� by assumption.
(4) is satisfied, as we set an argument to outa only if it is colored outa in at least one of
the two colorings of n� and n��. Similarly, (5) and (6) carry over from n� and n��.

To show the other direction, i.e., completeness of our algorithm for join nodes, we have
to show that for each stable coloring C in join node n there are st-colorings C∗ and D∗

in the child nodes of n s.t. C = C∗ � D∗ and therefore C is an st-coloring of the join
node. If we assume that C is stable, we can easily construct such C∗ and D∗ for the
child nodes—for the construction we have to take into account that the non-provisional
colors of C might be provisional in C∗ or D∗ (but not both), then we can easily check
that the thereby constructed colorings are stable for the child nodes. For example, we
can check that the highlighted coloring C is stable for node 4 in the running example,
illustrated in Figure 5.10. When constructing the corresponding coloring C∗ for child
node 5 we see that there is no possible attack towards b that is colored ina and we have to
set C∗(b) = pouta. Similarly, we set D∗(r4) = poutr since we can extend D∗ to a coloring
on X≥11 such that no argument in the tail of the attack r4 is colored pouta or outa. C∗

and D∗ are stable for their respective nodes 5 and 11, and in fact we see in Figure 5.10(b)
and Figure 5.10(c), respectively, that the constructed colorings are indeed st-colorings.

117

5. Treewidth-Based Evaluation

Lemma 5.27. Let C be a stable coloring for a join node n. If in the child nodes n�, n��

of n stable colorings and st-colorings coincide then C is an st-coloring for n.

Proof. Let C � be the extended coloring of C on X≥n s.t. the conditions of Definition 5.12
are satisfied.

We will show that there are st-colorings C∗ for n� and D∗ for n�� such that C = C∗ � D∗.
We define C∗ such that it coincides with C on each a, (T, h) ∈ Xn with the exception of
arguments b s.t. C(b) = outa and �(S, b) ∈ XR

≥n� : C �((S, b)) = inr, for these arguments
we set C∗(b) = pouta, and the second exception of attacks (S, b) s.t. C((S, b)) = outr and
�s ∈ S ∩ XA

≥n� : C �(s) ∈ {outa, pouta}, for these attacks we set C∗((S, b)) = poutr. We
show that properties (1)-(6) of stable colorings are satisfied for C∗. (1) and (2) carry
over from C, as X>n = X>n� = X>n�� . (3) is satisfied as for C and C∗ it holds

{(T, h) ∈ XR
n | C((T, h)) ∈ {outr, poutr})} = {(T, h) ∈ XR

n� | C∗((T, h)) ∈ {outr, poutr})}.

(4) and (6) are satisfied by definition of C∗. (5) immediately carries over from C. Hence,
C∗ is stable (and D∗ as well due to symmetry). Finally, note that by construction of C∗

and D∗ it holds

• {a | C �(a) = ina} ∩ XA
n = {a | C(a)= ina} = {a | C∗(a)= ina} = {a | D(a)= ina}

and

• {r | C �(r) = inr} ∩ XR
n = {r | C(r)= inr} = {r | C∗(r)= inr} = {r | D∗(r)= inr}.

Hence, C = C∗ � D∗ is an st-coloring for n.

5.3.5 Final Steps for Stable Semantics
Towards characterizing the stable extensions via our st-colorings, we can now utilize the
soundness and completeness results that we established for each node type. We obtain
the following results that underpin the adequacy of the algorithm.

Proposition 5.28. Let T = (VT , ET) be a nice tree-decomposition of a SETAF SF .
Then in each node n ∈ VT st-colorings and stable colorings coincide.

Proof. (⊆) Follows by structural induction over the tree-decomposition structure with the
leaves as a base (Lemma 5.15) and the forget, insert, and join nodes as steps (Lemma 5.19,
Lemma 5.23, Lemma 5.26).

(⊇) First note that by (⊆) all st-colorings in each node are stable. Then the statement
follows by structural induction over the tree-decomposition structure with the leaves
as a base (Lemma 5.16) and the forget, insert, and join nodes as steps (Lemma 5.20,
Lemma 5.24, Lemma 5.27).

118

5.4. Characterizing Admissible Sets

Effectively, we established that the root node indeed characterizes the stable extensions.
We can decide Credstb/Skeptstb for an argument a ∈ A by flagging colorings that con-
tain/do not contain a. In each node we update the flag accordingly; the flag in the root
node indicates credulous/skeptical acceptance. We can keep the count of extensions w.r.t.
each coloring, and to enumerate the extensions once the dynamic programming algorithm
is done we can traverse the tree top-down and output the extensions with linear delay
(cf. [JPW09, DPW12]). Hence, we obtain the following upper bound for the problems of
stable semantics.

Theorem 5.29. With the presented algorithm, Credstb, Skeptstb as well as counting the
number of stable extensions can be done in time O(5k · k · (|A| + |R|)). Moreover, we can
enumerate all stable extensions with linear delay.

Proof. The correctness of the algorithm (i.e., we account only for stable colorings in the
root node) and the completeness of the algorithm (i.e., we account for all the stable
colorings in the root node) is shown in Proposition 5.28. Then, from Proposition 5.13 we
get that we exactly characterize stb(SF).

We can assume the number of nodes to be bounded by O(|A| + |R|) and that we can
find and access rows in linear time w.r.t. k. For each node, the number of (valid)
colorings (i.e., rows in our tables of colorings) is bounded by 3k. In leaf nodes, we can
check the colorings in time O(k2) for each of the O(3k) possible colorings, resulting in
O(3k · k2). In forget nodes, we can check the conditions and compute eventually resulting
colorings in time O(k) for each of the O(3k) colorings of the child node, resulting in
O(3k · k). In insert nodes, we can check the conditions and compute eventually resulting
colorings in time O(k2) for each of the O(3k) colorings of the child node, resulting in
O(3k · k2). Finally, for join nodes we have to consider 3k · 3k = 9k pairs. However, we
only need to consider 5k pairs if we assume the data structure to be properly sorted, e.g.
lexicographically by treating the colors ina/inr as 0 and pouta/outa/poutr/outr as 1. As
each table has O(3k) rows, sorting is in O(3k · k). Let C be a coloring such that m ≤ k
arguments/attacks are colored as ina/inr. There exist at most 2k−m distinct colorings C �

with ∀x : (C(x) ∈ {ina, inr} ⇔ C �(x) ∈ {ina, inr}). There are

 k

m

�
possibilities resulting

from the choice of m, resulting in �k
m=0

 k
m

� · 2k−m · 2k−m = 5k join pairs. We can then
compute C � D in O(k), resulting in O(5k · k) for join nodes, dominating the runtime of
the other node types. The resulting runtime for the algorithm is O(5k ·k · (|A|+ |R|)).

5.4 Characterizing Admissible Sets
For admissible sets we have to account for arguments that are neither in an extension
nor attacked by it. Hence, we extend colorings the colorings we used to characterize
stable extensions to reflect these “undecided” arguments. In addition to the colors
ina, outa, pouta for arguments and inr, outr, poutr for attacks, we consider the color unda

for arguments, and the two colors undr, pundr for attacks. Intuitively, with the unda

color we indicate arguments that are neither in an admissible set E nor attacked by E

119

5. Treewidth-Based Evaluation

(this situation is not allowed in stable extensions). The color undr indicates attacks (T, h)
that in relation to an admissible set E neither attack E (i.e., have T ⊆ E) nor have a
defeated argument in their tail (i.e., all arguments t ∈ T are either in the extension or
undecided, and at least one argument is not in the extension). Analogous to the outr
color, we have to account for provisionally undecided attacks. That is, if all arguments
t ∈ T we encountered so far in the bottom-up computation of the algorithm have been
colored ina, but we could encounter an additional tail-argument that we will color unda.
In insert argument nodes, the pundr color can be “upgraded” to undr if we color the
inserted argument unda and it appears in the tail of the attack. As with the outr/poutr
colors we have to discard attacks colored pundr in forget attack nodes, as we cannot
update this color to undr anymore. Hence, for admissible sets we get the following set of
colors.

Cadm = {ina, outa, pouta, unda, inr, outr, poutr, undr, pundr}

We next characterize the admissible colorings for each node of the tree decomposition,
similar to the stable colorings of Section 5.3 Again we will utilize this notion to establish
the correctness of our algorithm: as we will show, if in each node we compute as ad-
colorings exactly the admissible colorings then we ultimately characterize exactly the
admissible sets with the colorings for SF in the root node.

Definition 5.30. A coloring C : Xn → Cadm for a node n ∈ VT is admissible if we can
extend C to a coloring C � : X≥n →Cadm such that the following conditions are met for
each a∈XA

≥n and each (T, h)∈XR
≥n:

1. if a ∈ XA
>n then C �(a) ∈ {ina, outa, unda},

2. if r ∈ XR
>n then C �((T, h)) ∈ {inr, outr, undr},

3. if C �(a) = ina then ∀(S, a) ∈ XR
≥n : C �((S, a)) ∈ {outr, poutr},

4. C �(a) = outa if and only if ∃(S, a) ∈ XR
≥n : C �((S, a)) = inr,

5. if C �((T, h)) = inr then ∀t ∈ T ∩ XA
≥n : C �(t) = ina,

6. C �((T, h)) = outr if and only if ∃t ∈ T ∩ XA
≥n : C �(t) ∈ {outa, pouta}, and

7. C �((T, h)) = undr if and only if ∃t ∈ T ∩ XA
≥n : C �(t) ∈ {unda, punda} and �t ∈

T ∩ XA
≥n : C �(t) ∈ {outa, pouta}.

For a coloring C in node n we define by en(C) the set of such extended colorings C � s.t.
(1)-(7) are met. These are the characterized colorings.

First note that we give no explicit condition for arguments w.r.t. the color unda. This
is due to the fact that we can color an argument undecided “at will”, only with the
exception that an inr-colored attack towards the argument mandates we color it outa

120

5.4. Characterizing Admissible Sets

(reflected by condition (4)). Next we point out that the conditions (1)-(6) are almost
identical to stable colorings as per Definition 5.30, with the only exception that in (1)
and (2) we also allow undecided colors for the arguments and attacks that only appear
strictly below the current node. Conditions (3)-(6) are exactly as we had them in stable
colorings and guarantee admissibility. Finally, the novel condition (7) is similar to (6)
and characterizes a “confirmed” undecided color for attacks where it is required that
at least one tail-argument is undecided. Moreover, (7) captures the “priority” of the
outr/poutr colors over the undr/pundr colors, in that the undecided colors can only be
applied if the attack in question is not necessarily out due to an argument in its tail. We
want to point out that the conditions (6) and (7) imply the following additional property
for provisionally undecided attacks:

If C �((T, h)) = pundr then ∀t ∈ T ∩ XA
≥n : C �(t) = ina.

This is due to the fact that if the attack (T, h) had a tail-argument that is colored outa or
pouta, the attack would have to be colored outr by (6), and if there was a tail argument
colored unda the attack would have to be colored undr by (7). Since the only colors for
arguments for admissible sets are ina, outa, pouta, and unda, this property is implied.

Proposition 5.31. Let T = (VT , ET) be a nice tree-decomposition of a SETAF SF =
(A, R) and let r ∈ VT be the root node of T . Moreover, let Cr be the set of admissible
colorings for r. Then

adm(SF) = {{a | C �(a) = ina} | C ∈ Cr, C � ∈ er(C)}.

Proof. Since the root node is empty, we have that XA
>n = A and XR

>n = R, which by (1)
and (2) means that we have no provisional colors in each extended coloring C � ∈ er(C).
Condition (3) and (6) give us the following property (a) and (4) and (5) give us the
following property (b):

(a) If C �(a) = ina then ∀(T, a) ∈ R ∃t ∈ T : C �(t) = outa, and

(b) C �(a) = outa if and only if ∃(T, a) ∈ R ∀t ∈ T : C �(t) = ina.

(a) exactly characterizes conflict-freeness, i.e., for each attack (T, a) towards an argument
a that is in the extensions (i.e., in the set {a | C �(a) = ina}) there is at least one
argument in T that is not in the extension. (a) and (b) together characterize defense,
i.e., for each argument a that has the color ina for each attack (T, a) towards a, there is
a counter-attack (S, t) for some t ∈ T such that S ⊆ {b | C �(b) = ina}. Conflict-freeness
and defense exactly characterizes the admissible sets.

We adapt our running example for admissible semantics (i.e., we compute the ad-colorings
w.r.t. the tree decomposition in Figure 5.3) and along the way we introduce extension-
counting. This concept is illustrated together with the ad-colorings in Figure 5.11.

121

5. Treewidth-Based Evaluation

Say one is interested only in extensions that contain a certain argument. Then we
can use the “filter-method” to (1) only obtain the desired results and (2) speed up the
computation by omitting to compute irrelevant colorings. In a nutshell, we only care
about the colorings that contain (or do not contain) a certain label for an argument/attack
and discard colorings that do not match. Note that for nodes n where X≥n does not
contain the argument/attack in question we cannot omit any colorings. It is easy to see
that the (adapted) soundness and completeness results carry over to this setting. We will
illustrate this method in our running example (see Figure 5.11) by filtering for colorings
that set argument c to unda. Note that we can also filter for multiple arguments/attacks,
i.e., if we are only interested in colorings (and, ultimately, extensions) that set argument
a to unda and at the same time attack r2 to inr the same principles apply. Finally, on
the account of filtering we want to point out optimization potential for implementations:
in our running example we filter for colorings that set c to unda, this has implications
for the incoming and outgoing attacks. In particular, in this case all attacks towards c
cannot be inr (as this would mean c has to be outa). Similarly, outgoing attacks from
c cannot be colored inr either. Moreover, we do not consider colorings where outgoing
attacks from c are colored pundr (as we know that every node containing the argument
c will have these attacks set to the non-provisional undr color). These optimizations
depend on the semantics in question and the filtered colors. Note that in our running
example for simplicity we do not apply these optimization strategies.

We next formally introduce the concept of extension counting for our algorithm. In that,
we can without much additional effort utilize our tree-decomposition based computation
to count the number of extended colorings en(C) on the (partial) framework SF≥n w.r.t.
a given node n and a coloring C. Ultimately, this means we can count the number of
extensions w.r.t. the semantics in question. To this end, we define the function #n(C)
and show that this coincides with |en(C)|.
Definition 5.32 (Counting). Let T = (VT , ET) be a nice tree-decomposition of a SETAF
SF = (A, R) and let n ∈ VT be a node of T . Moreover let C be an (st/ad/co)-coloring
for n. We define the number of extended colorings #n(C) as follows:

• If n is a leaf node, we set #n(C) = 1 for all C.

• If n is a forget node with child n� with colorings Cn� s.t. Xn = Xn� \ {x}, we set

#n(C) =

C�∈Cn� ,C=C�−x

#n�(C �),

i.e., #n(C) is the sum of all #n�(C �) where C = C � − x.

• If n is an insert node with child n� with colorings Cn� s.t. Xn� = Xn \ {x}, we set

#n(C) =

C�∈Cn� ,C=C�◦x,◦∈{+,+̇,+̈}
#n�(C �),

i.e., #n(C) is the sum of all #n�(C �) where C = C � + x, C = C �+̇x, or C = C �+̈x.

122

5.4. Characterizing Admissible Sets

• If n is a join node with child nodes n�, n�� with colorings Cn� , Cn��, respectively, we
as set

#n(C) =

C�∈Cn� C��∈Cn�� ,C=C� � C��
#n�(C �) · #n��(C ��),

i.e., #n(C) is the sum of all products #n�(C �) · #n��(C ��) where C = C � � D�.

With this method, we can count the number of extension candidates, and for the root
node, the number of extensions. We want to highlight that this result not only holds
for stable semantics, but also for the other semantics we consider in this work, i.e.,
admissible and complete semantics. We will present the respective definitions for ad- and
co-colorings in Sections 5.4 and 5.5, respectively.

Proposition 5.33. Let T = (VT , ET) be a nice tree-decomposition of a SETAF SF =
(A, R) and let n ∈ VT be a node of T . Moreover let C be an (st/ad/co)-coloring for n.
Then #n(C) = |en(C)|.

It is easy to see why this holds; similar ideas have also been applied in previous work for
AFs [DPW12, Cha12, FHM19]. For leaf nodes this is clearly the case. For forget nodes,
the extended colorings of n and the extended colorings of its child node exactly coincide.
For insert nodes, even though some of the colors may be changed to non-provisional
by the construction, note that there is still a clear correspondence of the colorings of n
and its child node. In this case, the number of extended colorings that correspond to a
coloring of the child node depends on how many of the operations +, +̇, +̈ are applicable.
Finally, for join nodes we have to account for all the combinations of colorings.

Clearly, we can combine the ideas of filtering and counting, and count the number of
filtered colorings (extensions)—as we illustrate with our running example. Finally note
that both filtering and counting can analogously be done for all the semantics discussed
in this chapter, and the additional effort is polynomial for each node.

5.4.1 Leaf Nodes
We start by characterizing leaf nodes. Intuitively, in leaf nodes for each argument and
each attack we guess one of three possibilities (in contrast to the two possibilities of stable
semantics): in, out, or und (in the second and third case we use either the confirmed
or provisional color, as we will explain below). We then again keep every “consistent”
coloring. Again whether an argument/attack is colored out or pout depends only on
whether the color is “confirmed”, this distinction is analogous to stable semantics. For
admissible semantics, we have no provisionally undecided arguments. Since there is no
“maximality”-requirement as in e.g. complete semantics, we freely apply the unda color.
However, the color outa has “priority” if it is applicable. In summary, whenever an
argument is the head of an attack we color inr we have to apply the color outa; for the
color ina every attack towards the argument has to be colored outa/pouta, and the colors
unda and pouta can always be applied if the color outa is not mandated. For attacks, we

123

5. Treewidth-Based Evaluation

− #
� 31:

c #
unda 32:

b c #
pouta unda 2
unda unda 2
ina unda 1

3:

b c r4 #
outa unda poutr 2
pouta unda poutr 2
pouta unda undr 2
unda unda poutr 2
unda unda undr 2
ina unda poutr 1
ina unda undr 1

4:

b c r4 #
pouta unda poutr 2
pouta unda undr 2
unda unda poutr 2
unda unda undr 2
ina unda poutr 1
ina unda undr 1

5:

b c #
pouta unda 2
unda unda 2
ina unda 1

6:

b r1 c

ina inr outa 1
pouta outr pouta 2
pouta outr ina 2
pouta outr unda 2
ina poutr pouta 2
ina poutr ina 2
ina poutr unda 2

unda poutr pouta 2
unda poutr ina 2
unda poutr unda 2
ina pundr pouta 1
ina pundr unda 1

unda undr pouta 2
unda undr unda 2
ina undr pouta 1
ina undr unda 1

7:

b r1 #
ina inr 1

pouta outr 2
ina poutr 2

unda poutr 2
ina pundr 1

unda undr 2
ina undr 1

8:

r1 #
inr 1

poutr 2
pundr 1
undr 1

9:

a r1 #
pouta outr 1
ina inr 1
ina poutr 1
ina pundr 1

unda undr 1
unda poutr 1

10:

b c r4 #
ina unda poutr 1
ina unda undr 1
outa unda poutr 1
pouta unda poutr 1
pouta unda undr 1
unda unda poutr 1
unda unda undr 1

11:

[...]

(c)

r1 r2r3

r4

a

c

b

d

(b)

a

c

b

d
r4

r2
r3

r1

(a)

adm(SF) = {∅, {a}, {b}, {a, b}}
admissible sets where c is set
to unda:
{∅, {a}, {b}}

Figure 5.11: Selected ad-colorings for our running example. (a) Our running example
SETAF SF with its admissible sets, (b) its incidence-graph Inc(SF), and (c) the ad-
colorings for SF w.r.t. the tree decomposition given in Figure 5.3 “filtered” for the
argument c set to unda (discarded colorings are indicated in node 7). The “#” columns
show the number of colorings in en(C) for the coloring C of each line (cf. Definition 5.32).
We omit the branch below node 11.

124

5.4. Characterizing Admissible Sets

do distinguish the cases undr and pundr. This is very similar to the distinction between
outr and poutr: an undecided attack gets a provisional color unless there is a “proof”, i.e.,
an undecided argument in its tail.

Definition 5.34 (ad-colorings: Leaf). An ad-coloring for a leaf node n ∈ VT is each
coloring that satisfies the following conditions. For each argument a ∈ XA

n :

C(a) = ina ⇒ ∀(T, a) ∈ XR
n : C((T, a)) ∈ {poutr, outr}

C(a) = outa ⇔ ∃(T, a) ∈ XR
n : C((T, a)) = inr

For every attack r = (T, h) ∈ XR
n :

C(r) = inr ⇒ ∀t ∈ T ∩ XA
n : C(t) = ina

C(r) = outr ⇔ ∃t ∈ T ∩ XA
n : C(t) ∈ {pouta, outa}

C(r) = undr ⇔ ∃t ∈ T ∩ XA
n : C(t) = unda ∧ �t ∈ T ∩ XA

n : C(t) ∈ {pouta, outa}

The new unda color is similar in spirit to the pouta and ina color, in that it can be assigned
to an argument without reason. The only situation where an argument cannot be unda

(or pouta, ina) is when there is already an attack towards the argument that is colored
inr. The colors for attacks also follow the same intuitive ideas. We want to highlight that
the outr color has “priority” over the undr color: if in the tail T of an attack (T, h) we
color some arguments unda and others outa/pouta, the color of the attack (T, h) has to
be outr. This corresponds to the fact that the argument h is indeed defended against
this attack (which would not be captured if the attack was colored undr).

We now establish that all ad-colorings in the leaf nodes coincide with the admissible
colorings.

Lemma 5.35. Each ad-coloring C for a leaf node n ∈ VT is admissible.

Proof. We need to show that each of the conditions (1)-(7) of Definition 5.30 is met. (1)
and (2) are trivially true, as for leaves it holds XA

>n = XR
>n = ∅. (3)-(7) follow directly

from the conditions in Definition 5.34.

In our running example in Figure 5.11 the node 10 is a leaf node. Regarding the counting
feature we recall that in leaf nodes all colorings characterize exactly one extended coloring
(as X≥n = Xn).

Lemma 5.36. Each admissible coloring C for a leaf node n ∈ VT is an ad-coloring.

Proof. It follows directly from the definition of admissible colorings that C adheres to
the conditions in Definition 5.34.

125

5. Treewidth-Based Evaluation

5.4.2 Forget Nodes
We again examine forget argument nodes and forget attack nodes separately. Let n be a
forget argument node with child n� such that XA

n = XA
n� \ {a}. We have to discard all

colorings C where C(a) = pouta, as in these colorings a is supposed to be attacked by the
characterized admissible set. As we forget a in the current node, this cannot happen.

Definition 5.37 (ad-coloring: Forget Argument). Let n be a forget argument node with
child n� such that XA

n = XA
n� \ {a}, and let C be an ad-coloring for n�. If C(a) != pouta,

then C − a is an ad-coloring for n, where C − x for each b ∈ Xn is defined as follows:

(C − x)(b) = C(b)

We handle forget attack nodes in the same way. However, this time we also have to
account for provisionally undecided attacks in addition to the provisionally out attacks.

Definition 5.38 (ad-coloring: Forget Attack). Let n be a forget attack node with child n�

such that XR
n = XR

n� \ {r}, and let C be an ad-coloring for n�. If C(r) /∈ {poutr, pundr},
then C − r is an ad-coloring for n, where C − x for each b ∈ Xn is defined as follows:

(C − x)(b) = C(b)

We next establish that in forget nodes admissible colorings and ad-colorings coincide.

Lemma 5.39. If for the child node n� of a forget node n each ad-coloring is admissible,
then each coloring C of n is admissible.

Proof. We need to show that each of the conditions (1)-(7) of Definition 5.30 is met.
(1) and (2) are true because they hold for n�, and if the forgotten argument/attack is
provisional, then it is discarded. The satisfaction of (3)-(7) immediately carries over from
n�.

In Figure 5.11 node 9 is a forget argument node where X9 = X10 \ {a}. As expected,
we discard the colorings C where C(a) = pouta. Note that both colorings C1 and C2 of
node 10 with C1(a) = ina, C2(a) = unda, C1(r1) = C2(r2) = poutr are kept for node 9,
which means the coloring C3 of node 9 characterizes two extended colorings on X≥9, as
indicated in the # column.

Lemma 5.40. Let C be an admissible coloring of a forget node n. If in the child node
n� of n all admissible colorings and ad-colorings coincide then C is an ad-coloring for n.

Proof. Let C � be the extended coloring of C on X≥n s.t. the conditions of Definition 5.30
are satisfied.

We start with forget argument nodes. We show that C∗ is an ad-coloring for n� where
C∗ coincides with C on each a, (T, h) ∈ Xn and for the forgotten argument b ∈ Xn� \ Xn

it holds C∗(b) != pouta.

126

5.4. Characterizing Admissible Sets

• If C �(b) = ina then clearly C∗ is admissible for n� with C∗(b) = ina: in this case
each condition (1)-(7) carries over from C. Then by assumption this means C∗ is
an ad-coloring for n�.

• If C �(b) = outa then C∗ is admissible for n� with C∗(b) = outa: this is because by
condition (4) we have for node n that ∃(S, a) ∈ XR

≥n : C �((S, a)) ∈ {outr, poutr},
and since XR

≥n = XR
≥n� this carries over to node n�. Again the other conditions

clearly carry over, and by assumption this means C∗ is an ad-coloring for n�.

• Finally, if C �(b) = unda then C∗ is admissible for n� with C∗(b) = unda: in this
case each condition (1)-(7) carries over from C. Then by assumption this means
C∗ is an ad-coloring for n�.

In all three cases we see that there is a corresponding ad-coloring C∗ in the child node n�

that gives us C as an ad-coloring in n, and since there is no other possibility, this means
that C = C∗ − b is an ad-coloring of n.

We continue with forget attack nodes. We show that C∗ is an ad-coloring for n� where
C∗ coincides with C on each a, (T, h) ∈ Xn and for the forgotten attack (S, t) ∈ Xn� \ Xn

it holds C∗((S, t)) != poutr and C∗((S, t)) != pundr.

• If C �((S, t)) = inr then clearly C∗ is admissible for n� with C∗(b) = inr: in this case
each condition (1)-(7) carries over from C. Then by assumption this means C∗ is
an ad-coloring for n�.

• If C �((S, t)) = outr then C∗ is admissible for n� with C∗((S, t)) = outr: this is because
by condition (6) we have for node n that ∃s ∈ S ∩ XA

≥n : C �(s) ∈ {outa, pouta}, and
since XA

≥n = XA
≥n� this carries over to node n�. Again the other conditions clearly

carry over, and by assumption this means C∗ is an ad-coloring for n�.

• Finally, if C �((S, t)) = undr then clearly C∗ is admissible for n� with C∗(b) = undr:
this is because by condition (7) we have for node n that ∃s ∈ S∩XA

≥n : C �(s) = unda,
and since XA

≥n = XA
≥n� this carries over to node n�. Again the other conditions

clearly carry over, and by assumption this means C∗ is an ad-coloring for n�.

In all three cases we see that there is a corresponding ad-coloring C∗ in the child node n�

that gives us C as an ad-coloring in n, and since there is no other possibility, this means
that C = C∗ − b is an ad-coloring of n.

5.4.3 Insert Nodes
As with forget nodes, we handle the case of inserting an argument and inserting an attack
separately. In Section 5.3.3 we introduced two operations (C + x, C+̇x) to compute the
st-colorings when aiming at characterizing the stable extensions—these two operations
corresponded to the cases where the inserted argument/attack is in or out. For admissible

127

5. Treewidth-Based Evaluation

sets we consider similar scenarios but also need to consider the case where the added
argument/attack is undecided, which is reflected by the third operation C+̈x.

Regarding insert argument nodes, the intuition for the operations C + a and C+̇a are
the same as it was for stable semantics: C + a corresponds to the case where the added
argument a is colored outa/pouta and can be applied whenever a is not in the tail of
an attack that is colored inr. C+̇a characterized the case where a is colored ina and
can be applied whenever there is no attack colored inr, undr, or pundr towards a (or
equivalently, if all attacks towards a are colored outr or poutr). C+̈a captures the case
where a is colored unda and can be applied whenever a is not in the head or tail of an
attack that is colored inr. In the first case (C +a), the added argument a is either colored
provisionally out (pouta) if the responsible attack is not in the current bag, or “confirmed”
outa otherwise. If a is in the tail of an attack that is colored poutr in the original coloring
of the child node, then this color is “upgraded ” to outr. Similarly, in the third case
(C+̈a) a provisional color pundr of attacks that have the newly added argument a in its
tail the color is “upgraded” to undr, as the color unda of a “confirms” the provisional
color of the attack. Formally:

Definition 5.41 (ad-coloring: Insert Argument). Let n be an insert argument node with
child n� such that XA

n� = XA
n \ {a}, and let C be an ad-coloring for n�.

• if �(T, h) ∈ XR
n� : (C((T, h)) ∈ {inr, undr, pundr} ∧ a ∈ T), then C + a is an

ad-coloring for n;

• if �(T, a) ∈ XR
n� : (C((T, a)) ∈ {inr, undr, pundr}), then C+̇a is an ad-coloring for

n;

• if �(T, h) ∈ XR
n� : (C((T, h)) = inr ∧ (a = h ∨ a ∈ T)), then C+̈a is an ad-coloring

for n.

The operations C + a, C+̇a, and C+̈a are defined as follows for each b ∈ Xn:

(C + a)(b) =

������
outa if b = a ∧ ∃(T, a) ∈ XR

n� : C((T, a)) = inr

pouta if b = a ∧ �(T, a) ∈ XR
n� : C((T, a)) = inr

outr if b = (T, h) ∧ a ∈ T ∧ C(b) = poutr
C(b) otherwise

(C+̇a)(b) =
�

ina if b = a
C(b) otherwise

(C+̈a)(b) =

��
unda if b = a
undr if b = (T, h) ∧ a ∈ T ∧ C(b) = pundr
C(b) otherwise

We can apply the first case C + a where we set (C + a)(a) = outa or (C + a)(a) = pouta if
a is not part of an attack that is either inr, undr, or pundr (as the color of a only allows

128

5.4. Characterizing Admissible Sets

for the color outr for the attack). Similarly, if no attack towards a is inr, undr, or pundr,
we can apply the case (C+̇a)(a) = ina (otherwise we would violate conflict-freeness or
admissibility). Finally, for the case (C+̈a)(a) = unda we have to check that a is in the
head or tail of an attack that is inr. For insert attack nodes, we also have to consider the
three cases of the added attack being outr/poutr, inr, or undr/pundr.

Definition 5.42 (ad-coloring: Insert Attack). Let n be an insert attack node with child
n� such that XR

n� = XR
n \ {r}, and let C be an ad-coloring for n�, and r = (T, h).

• C + r is an ad-coloring for n;

• If (h /∈ XA
n ∨ C(h) ∈ {outa, pouta}) ∧ ∀t ∈ T ∩ XA

n� : C(t) = ina, then C+̇r is an
ad-coloring for n;

• If C(h) != ina ∧ �t ∈ T ∩ XA
n� : C(t) ∈ {outa, pouta}, then C+̈r is an ad-coloring for

n.

The operations C + r, C+̇r, and C+̈r are defined as follows for each b ∈ Xn:

(C + r)(b) =

��
outr if b = r ∧ ∃t ∈ T ∩ XA

n� : C(t) ∈ {outa, pouta}
poutr if b = r ∧ �t ∈ T ∩ XA

n� : C(t) ∈ {outa, pouta}
C(b) otherwise

(C+̇r)(b) =

��
inr if b = r
outa if r = (T, h) ∧ b = h
C(b) otherwise

(C+̈r)(b) =

��
undr if b = r ∧ ∃t ∈ T ∩ XA

n� : C(t) = unda

pundr if b = r ∧ �t ∈ T ∩ XA
n� : C(t) = unda

C(b) otherwise

The condition for the applicability of C+̈r reflects the “priority” of the outr color over the
pundr/undr color: we can only apply this case if none of the arguments in the tail of the
attack are colored outa/pouta. Again, we show that the insert nodes exactly characterize
the admissible colorings.

Lemma 5.43. If for the child node n� of an insert node n each ad-coloring is admissible,
then each ad-coloring C of n is admissible.

Proof. We need to show that each of the conditions (1)-(7) of Definition 5.30 is met. (1)
and (2) immediately carry over from n� both for insert argument and insert attack nodes.

For (3)-(7) we discuss first the insert argument nodes. Note that we construct C either
from an admissible coloring C � of n� via C = C � + a, via C = C �+̇a, or via C = C �+̈a.

129

5. Treewidth-Based Evaluation

• Clearly, (3) and (4) hold in all three cases w.r.t. C for all b ∈ XA
n� (i.e., the

“old” arguments that have not been added in this node) because they hold for
n�. For the added argument a regarding (3) only the coloring C �+̇a is relevant
(as (C � + a)(a) != ina and (C �+̈a)(a) != ina). Since we can add the coloring C �+̇a
only if �(T, a) ∈ XR

n�: (C �((T, a)) ∈ {inr, undr, pundr}) and the only possible colors
for attacks are inr, outr, poutr, undr, and pundr, we know that in this case (3) is
satisfied.

• For the added argument a regarding (4) only the coloring C = C � + a is relevant.
In this case, if C(a) = outa then we know ∃(T, a) ∈ XR

n : (C((T, a)) = inr ∧ a /∈ T)
which means condition (4) is satisfied; if otherwise C(a) = pouta then (4) is trivially
true for a.

• Conditions (5), (6), and (7) carry over from n� for all attacks (T, h) ∈ XR
n where

for the added argument a it holds a /∈ T . Let (T, h) ∈ XR
n be such that for the

added argument a it holds a ∈ T . If C �((T, h)) = inr then we do not add C � + a or
C �+̈a as a coloring to n, which means the satisfaction of condition (5) carries over
from n� in these cases. For C �+̇a condition (5) also carries over from n� for each
attack (T, h) ∈ XR

≥n with a ∈ T as (C �+̇a)(a) = ina.

• Moreover, in all three cases C � + a, C �+̇a, and C �+̈a condition (6) carries over
for each attack (T, h) ∈ XR

≥n with a /∈ T . Moreover, for the case where we
set (C � + a)((T, h)) = outr, condition (6) is satisfied as we have a ∈ T and
(C � + a)(a) ∈ {outa, pouta}.

• Finally, for the case where we set (C � + a)((T, h)) = undr, condition (7) is satisfied
as we have a ∈ T and (C � + a)(a) = unda.

Hence, conditions (1)-(7) are met for insert argument nodes.

We now discuss the insert attack nodes w.r.t. the conditions (3)-(7).

• Regarding (3), it suffices to discuss for the added attack r = (T, h) the cases (C �+̇r)
and (C �+̈r) (for the other attacks (3) carries over from n�). However, the coloring
C �+̇r is only added to n if C �(h) /∈ {ina, unda, punda}, which also ensures that
condition (3) is met for when we set the added attack to inr. Likewise, C �+̈r is
only added if C �(h) != ina.

• Condition (4) carries over from n�, and the case where we set (C �+̇r)(a) = outa
when we previously had C �(a) = pouta is only applied if we set (C �+̇r)(r) = inr,
i.e., (4) is satisfied.

• For (5), only the case C �+̇r is relevant, the other cases follow from n�. However,
we only add C �+̇r to n if ∀t ∈ T ∩ XA

n� it holds C �(t) = ina, and because of the
properties of tree decompositions we know that XA

>n ∩ T = ∅, i.e., there are no tail
arguments strictly below the current node. Hence, (5) is satisfied.

130

5.4. Characterizing Admissible Sets

• As to (6), the only case that is not clear from n� is in C � + (T, h), but in this case
we set C((T, h)) to outr only if ∃t ∈ T ∩ XA

n : C(t) ∈ {pouta, outa}, which means
(6) is also satisfied.

• Finally, for (7) we need to consider the case C+̈r, and in this case we set C((T, h))
to undr only if ∃t ∈ T ∩ XA

n : C(t) = unda, which means (7) is also satisfied.

To summarize, all of (1)-(7) is satisfied, which means that each coloring in n is admissible.

In our running example in Figure 5.11 node 8 is an insert argument node. Node 9 contains
two colorings C1 and C2 with C1(r1) = pundr, C2(r1) = undr. We can in both cases apply
the operation +̈ and obtain C3 = C1+̈b = C2+̈b, as in the case of C1 the provisional
color of r1 is “upgraded” to confirmed undr. The fact that the resulting coloring C3 of
node 8 corresponds to two extended colorings on X≥8 is reflected by the # column. The
corresponding extended colorings of C3 (i.e., e8(C3) = {C �

1, C �
2}) defined on X≥8 are as

follows:

C �
1(a) =ina C �

1(b) =unda C �
1(r1) =undr

C �
2(a) =unda C �

2(b) =unda C �
2(r1) =undr

It can be checked that these extended colorings have corresponding pendants in each of
the nodes above (towards the root node), i.e., in each parent node at least one coloring is
preserved that extends to an extension of C �

1 and C �
2. Indeed, these extended colorings

correspond to the admissible sets ∅ and {a}.

Lemma 5.44. Let C be an admissible coloring for an insert node n. If in the child node
n� of n admissible colorings and ad-colorings coincide then C is an ad-coloring for n.

Proof. Let C � be the extended coloring of C on X≥n s.t. the conditions of Definition 5.30
are satisfied.

We start with insert argument nodes. We show that there is an ad-coloring C∗ in node
n� s.t. for the added argument a we have C = C∗ + a if C �(a) ∈ {outa, pouta}, C = C∗+̇a
if C �(a) = ina, and C = C∗+̈a if C �(a) = unda.

• Let C �(a) ∈ {outa, pouta}, then C∗ is an ad-coloring of n� where C∗ coincides
with C on each b, (T, h) ∈ Xn� with the exception of attacks (T, h) with a ∈ T ,
C((T, h)) = outr, and �t ∈ T ∩ XA

n� : C �(t) ∈ {outa, pouta}, for these attacks we set
C∗((T, h)) = poutr. To show that C∗ is an ad-coloring of n� we need to show that
the conditions (1)-(7) of admissible colorings are satisfied. (1) and (2) carry over
from C, as X>n = X>n� . Note for (3) that C and C∗ coincide on the colors ina and
unda, and on the set of attacks colored either outr or poutr, which means (3) carries
over from C. (4) and (5) immediately carry over as well, as C and C∗ coincide on

131

5. Treewidth-Based Evaluation

all relevant colors on the arguments/attacks Xn� . Regarding (6) note that for each
attack (T, h) ∈ XR

n� with a ∈ T , C((T, h)) = outr property (6) holds by definition of
C∗, and for the other attacks (with C(T, h) = outr and a /∈ T) the property carries
over from C. Finally, regarding (7) we have that for each attack (T, h) ∈ XR

n� with
a ∈ T , C((T, h)) = undr property (7) carries over from C. Hence, in this case C∗ is
admissible for n� and therefore by assumption an ad-coloring for n�. Then since C∗

is admissible from condition (5) it follows �(T, h) ∈ XR
n� : (C∗((T, h)) = inr ∧a ∈ T),

hence, C = C∗ + a is an ad-coloring for n (the correct color outa/pouta directly
follows from the fact that C is admissible and that due to the properties of tree
decompositions all attacks towards a in XR

≥n have to be in XR
n).

• Now on the other side let C �(a) = ina, then C∗ is an ad-coloring of n� where
C∗ coincides with C on each b, (T, h) ∈ Xn� . Again we show that the conditions
(1)-(7) are satisfied. (1) and (2) again carry over from C, as X>n = X>n� . (3)-(7)
immediately carry over as well, as C and C∗ coincide on all relevant colors on Xn� .
Then since C∗ is admissible it is an ad-coloring for n� and from condition (3) it
follows �(T, a) ∈ XR

n� : (C((T, a)) = inr), hence, C = C∗+̇a is an ad-coloring for n.

• Finally, let C �(a) = unda, then C∗ is an ad-coloring of n� where C∗ coincides
with C on each b, (T, h) ∈ Xn� , with the exception of attacks (T, h) with a ∈ T ,
C((T, h)) = undr, and �t ∈ T ∩ XA

n� : C �(t) = unda, for these attacks we set
C∗((T, h)) = pundr. Again we show that the conditions (1)-(7) are satisfied. (1)
and (2) carry over from C, as X>n = X>n� . (3)-(7) immediately carry over
as well, as C and C∗ coincide on all relevant colors on Xn� (note for (7) that
similarly to the first case with C �(a) ∈ {outa, pouta} regarding property (6) we have
{(T, h) ∈ XR

n� | C∗((T, h)) = undr} ⊆ {(T, h) ∈ XR
n | C((T, h)) = undr}). Then

since C∗ is admissible it is an ad-coloring for n� and from conditions (3) and (5) it
follows �(T, h)∈XR

n� : (C((T, h)) = inr ∧ (a = h ∨ a ∈ T)), hence, C = C∗+̈a is an
ad-coloring for n.

We showed that in all three cases C is an ad-coloring of n.

We continue with the insert attack nodes. Again we show that there is an ad-coloring C∗ in
node n� s.t. for the added attack (T, h) we have C = C∗+(T, h) if C �((T, h)) ∈ {outr, poutr},
C = C∗+̇(T, h) if C �((T, h)) = inr, and C = C∗+̈(T, h) if C �((T, h)) ∈ {undr, pundr}.

• Let C �((T, h)) ∈ {outr, poutr}, then C∗ is an ad-coloring of n� where C∗ coincides
with C on each b, (S, t) ∈ Xn� . To show that C∗ is an ad-coloring of n� we need to
show that the conditions (1)-(7) of admissible colorings are satisfied. (1) and (2)
carry over from C, as X>n = X>n� . (3)-(7) immediately carry over from C as C
and C∗ coincide on all relevant colors on Xn� . Hence, C∗ is admissible for n� and
therefore an ad-coloring, and C = C∗ + (T, h) is an ad-coloring for n (as with insert
argument nodes, the correct color outr, poutr follows from C being admissible and
the properties of tree decompositions).

132

5.4. Characterizing Admissible Sets

• Now on the other side let C �((T, h)) = inr, then C∗ is an ad-coloring of n� where C∗

coincides with C on each b, (T, h) ∈ Xn� with the exception the argument h (given
that h ∈ XA

n�) if �(S, h) ∈ XR
≥n� : C �((S, h)) = inr, in this case we set C∗(h) = pouta.

Again we show that the conditions (1)-(7) are satisfied. (1) and (2) carry over
from C, as X>n = X>n� . (3), (5), (6), and (7) immediately carry from C, as C
and C∗ coincide on all relevant colors on Xn� . Regarding (4), note that this clearly
carries over from C for all arguments a ∈ XA

n� \ {h}, and for the argument h it
holds by definition of C∗. Then since C∗ is admissible from condition (3) it follows
(h /∈XA

n� ∨C(h)!=ina) and from condition (5) it follows ∀t∈T ∩ XA
n�:C(t)= ina, hence,

C = C∗+̇(T, h) is an ad-coloring for n.

• Finally, let C �((T, h)) ∈ {undr, pundr}, then C∗ is an ad-coloring of n� where C∗

coincides with C on each b, (S, t) ∈ Xn� . To show that C∗ is an ad-coloring of n�

we need to show that the conditions (1)-(7) of admissible colorings are satisfied. (1)
and (2) carry over from C, as X>n = X>n� . (3)-(7) immediately carry over from
C as C and C∗ coincide on all relevant colors on Xn� . Hence, C∗ is admissible for
n� and therefore an ad-coloring, and C = C∗ + (T, h) is an ad-coloring for n (the
correct color undr, pundr follows from C being admissible and the properties of tree
decompositions).

We showed that in all three cases C is an ad-coloring of n.

5.4.4 Join Nodes

We now consider the join nodes. In these nodes we combine matching colorings. A
coloring matches another if all arguments and attacks have the same color ignoring
provisional colors. If two colorings are combined where an argument/attack is provisional
in one, but non-provisional in the other, the non-provisional color is kept. This is due to
the fact that the “proof” for the non-provisional color already appeared in the branch
where the coloring originates. Formally:

Definition 5.45 (ad-coloring: Join). Let n be a join node with children n�, n��, let C be
an ad-coloring for n�, and let D be an ad-coloring for n��. If C and D are compatible,
i.e.,

1. {a ∈ XA
n� | C(a) = ina} = {a ∈ XA

n�� | D(a) = ina},

2. {r ∈ XR
n� | C(r) = inr} = {r ∈ XR

n�� | D(r) = inr},

3. {a ∈ XA
n� | C(a) = unda} = {a ∈ XA

n�� | D(a) = unda}, and

4. {r ∈ XR
n� | C(r) ∈ {undr, pundr}} = {r ∈ XR

n�� | D(r) ∈ {undr, pundr}}

133

5. Treewidth-Based Evaluation

then C � D is an ad-coloring for n, where

(C � D)(b) =

����������������������������

ina if C(b) = D(b) = ina

unda if C(b) = D(b) = unda

outa if C(b) = outa ∨ D(b) = outa
pouta if C(b) = D(b) = pouta
inr if C(b) = D(b) = inr

undr if C(b) = undr ∨ D(b) = undr
pundr if C(b) = D(b) = pundr
outr if C(b) = outr ∨ D(b) = outr
poutr if C(b) = D(b) = poutr

Lemma 5.46. If for the child nodes n�, n�� of a join node n each ad-coloring is admissible,
then each ad-coloring C of n is admissible.

Proof. We need to show that each of the conditions (1)-(7) of Definition 5.30 is met. (1)
and (2) immediately carry over from n� and n�� since XA

n = XA
n� = XA

n�� and XR
n = XR

n� =
XR

n�� . (3) holds because it has to hold both for all (S, a) in XR
n� and in XR

n�� by assumption.
(4) is satisfied, as we set an argument to outa only if it is colored outa in at least one of
the two colorings of n� and n��. Similarly, (5) and (6) carry over from n� and n��. (7) is
satisfied, similarly to (4), because we set an attack to undr only if it is colored undr in at
least one of the two colorings of n� and n��.

Node 4 in Figure 5.11 is our illustrated join node. If we look at the coloring C1
of node 5 with C1(b) = pouta, C1(c) = unda, C1(r4) = poutr we see two matching
colorings D1 and D2 in node 11: D1(b) = outa, D1(c) = unda, D1(r4) = poutr and
D2(b) = pouta, D2(c) = unda, D2(r4) = poutr. We get the resulting ad-colorings for node
4: (C1 � D1) = D1 and (C1 � D2) = D2.

Lemma 5.47. Let C be an admissible coloring for a join node n. If in the child nodes
n�, n�� of n admissible colorings and ad-colorings coincide then C is an ad-coloring for n.

Proof. Let C � be the extended coloring of C on X≥n s.t. the conditions of Definition 5.30
are satisfied.

We will show that there are ad-colorings C∗ for n� and D∗ for n�� such that C = C∗ � D∗.
We define C∗ such that it coincides with C on each a, (T, h) ∈ Xn with the following
three exceptions, each accounting for one of the provisional colors pouta, poutr, and pundr:

1. arguments b s.t. C(b) = outa and �(S, b) ∈ XR
≥n� : C �((S, b)) = inr, for these

arguments we set C∗(b) = pouta,

2. attacks (S, b) s.t. C((S, b)) = outr and �s ∈ S ∩ XA
≥n� : C �(s) ∈ {outa, pouta}, for

these attacks we set C∗((S, b)) = poutr, and

134

5.4. Characterizing Admissible Sets

3. attacks (S, b) s.t. C((S, b)) = undr and �s ∈ S ∩ XA
≥n� : C �(s) = unda, for these

attacks we set C∗((S, b)) = pundr.

We show that properties (1)-(7) of admissible colorings are satisfied for C∗. (1) and (2)
carry over from C, as X>n = X>n� = X>n�� . (3) is satisfied as for C and C∗ it holds

{(T, h) ∈ XR
n | C((T, h)) ∈ {outr, poutr})} = {(T, h) ∈ XR

n� | C∗((T, h)) ∈ {outr, poutr})}.

(4), (6) and (7) are satisfied by definition of C∗ for the “updated” colors, for the others
the property carries over from C. (5) immediately carries over from C. Hence, C∗ is
admissible (and D∗ as well due to symmetry). Finally, note that by construction of C∗

and D∗ it holds

1. {a ∈ XA
n� | C∗(a) = ina} = {a ∈ XA

n�� | D∗(a) = ina},

2. {r ∈ XR
n� | C∗(r) = inr} = {r ∈ XR

n�� | D∗(r) = inr},

3. {a ∈ XA
n� | C∗(a) = unda} = {a ∈ XA

n�� | D∗(a) = unda}, and

4. {r ∈ XR
n� | C∗(r) ∈ {undr, pundr}} = {r ∈ XR

n�� | D∗(r) ∈ {undr, pundr}}

Hence, C = C∗ � D∗ is an ad-coloring for n.

5.4.5 Final Steps for Admissible Semantics
Again we can combine the results we obtained for each of the node types to prove the
soundness and completeness of our algorithm as a whole. We show that our ad-colorings
coincide with the admissible colorings in each node.

Proposition 5.48. Let T = (VT , ET) be a nice tree-decomposition of a SETAF SF .
Then in each node n ∈ VT ad-colorings and admissible colorings coincide.

Proof. (⊆) Follows by structural induction over the tree-decomposition structure with the
leaves as a base (Lemma 5.35) and the forget, insert, and join nodes as steps (Lemma 5.39,
Lemma 5.43, Lemma 5.46).

(⊇) First note that by (⊆) all ad-colorings in each node are admissible. Then the
statement follows by structural induction over the tree-decomposition structure with the
leaves as a base (Lemma 5.36) and the forget, insert, and join nodes as steps (Lemma 5.40,
Lemma 5.44, Lemma 5.47).

Now we are ready for the main result regarding admissible semantics. We obtain a
runtime of O(9k · k · (|A| + |R|)) which is mainly due to the high complexity of join nodes.
The key idea is to sort the ad-colorings in the child nodes such that the combination of
colorings can be done more efficiently.

135

5. Treewidth-Based Evaluation

Theorem 5.49. The problems Credadm = Credcom = Credpref as well as counting the
number of admissible sets can be done in time O(9k · k · (|A| + |R|)). Moreover, we can
enumerate all admissible sets with linear delay.

Proof. The correctness of the algorithm (i.e., we account only for admissible colorings
in the root node) and the completeness of the algorithm (i.e., we account for all the
admissible colorings in the root node) is shown in Proposition 5.48. Then, from the
fact that in the root node n we have XA

n = XR
n = ∅, we trivially get XA

>n = A and
XR

>n = R. Hence, by property (1) and (2) of admissible colorings we know that the
colorings in the root node can be extended to SF such that no provisional colors are used.
By Proposition 5.31 we then get that the colorings in the root node exactly characterize
adm(SF).

We can assume the number of nodes to be bounded by O(|A| + |R|) and that we can
find and access rows in linear time w.r.t. k. For each node, the number of valid colorings
(i.e., rows in our tables of colorings) is bounded by 5k. In leaf nodes, we can check the
conditions for leaves in time O(k2) for each of the O(5k) possible colorings, resulting
in O(5k · k2). In forget nodes, we can check whether the condition is satisfied and
compute eventually resulting colorings in time O(k) for each of the O(5k) colorings
of the child node, resulting in O(5k · k). In insert nodes, we can check whether the
condition is satisfied and compute eventually resulting colorings in time O(k2) for
each of the O(5k) colorings of the child node, resulting in O(5k · k2). Finally, for join
nodes we have to consider 5k · 5k = 25k pairs. However, we only need to consider
9k pairs if we assume the data structure to be properly sorted, e.g. lexicographically
by treating the colors ina/inr as 0, unda/undr/pundr as 1, and pouta/outa/poutr/outr
as 2. As each table has O(5k) rows, sorting is in O(5k · k). Let C be a coloring
such that m ≤ k arguments/attacks are colored as ina/inr. There exist at most 2k−m

“distinct” colorings C � (distinct within their group when we group colorings as follows:
{ina, inr}, {unda, undr, pundr}, {outa, pouta, outr, poutr}) with ∀x : (C(x) ∈ {ina, inr} ⇔
C �(x) ∈ {ina, inr}). There are

 k
m

�
possibilities resulting from the choice of m. Finally,

we have to distinguish 2k−m combinations of sets {x | C(x) ∈ {unda, undr, pundr}} and
{x | C(x) ∈ {outa, pouta, outr, poutr}}, resulting in �k

m=0

 k

m

� · 2k−m · 2k−m · 2k−m = 9k

join pairs. We can then compute C � D in O(k), resulting in O(9k · k) for join nodes,
dominating the runtime of the other node types. The resulting runtime for the algorithm
is O(9k · k · (|A| + |R|)).

We can decide credulous acceptance by flagging those colorings that contain the argument
in question. In each node we update this flag accordingly, and the flag in the root
node indicates whether the argument is credulously accepted. We can keep the count of
admissible sets corresponding to each coloring (cf. [DPW12]). Finally, to enumerate the
admissible sets once the dynamic programming algorithm is done we can traverse the
tree top-down and output the admissible sets with linear delay (cf. [DPW12]).

136

5.5. Characterizing Complete Extensions

Since in the special case of AFs we have |R| = O(|A|2), this algorithm has runtime
O(9k ·k · |A|2) for AFs (compared to O(10k ·k · |A|) in the “standard” algorithm [DPW12]).
However, since in this case it will always be the case that the color of an attack (a, b)
coincides with the color of a, it is not necessary to compute these two separately and we
can achieve a speedup obtaining a runtime of O(9k · k · |A|).

5.5 Characterizing Complete Extensions
For complete extensions we can extend our ideas from admissible sets. The main difference
is that for a complete extension, there has to be a “proof” for an undecided argument,
i.e., an argument can only be undecided if there is an undecided attack towards it. The
effect is that whenever all attacks towards an argument are colored outr the argument has
to be colored ina (in contrast to admissible sets where both ina and unda were options
in this case). This corresponds to the requirement of complete extensions to contain
each argument that is defended. Hence, we extend the colorings we used to characterize
admissible sets by the color punda to reflect “provisionally undecided” arguments, i.e.,
arguments towards which in the sub-tree originating in the current node there is no
undecided attack. Hence, the colors for the complete algorithm are as follows:

Ccom = {ina, outa, pouta, unda, punda, inr, outr, poutr, undr, pundr}
As with the previous semantics we characterize our target that we want to capture with
our algorithm. We will define co-colorings for each node in a tree decomposition of SF
and will ultimately show that these coincide with complete coloring.

Definition 5.50. A coloring C : Xn → Ccom for a node n ∈ VT is complete if we can
extend C to a coloring C � : X≥n → Ccom such that the following conditions are met for
each a ∈ XA

≥n and each (T, h) ∈ XR
≥n:

1. if a ∈ XA
>n then C �(a) ∈ {ina, outa, unda},

2. if r ∈ XR
>n then C �((T, h)) ∈ {inr, outr, undr},

3. if C �(a) = ina then ∀(S, a) ∈ XR
≥n : C �((S, a)) ∈ {outr, poutr},

4. C �(a) = outa if and only if ∃(S, a) ∈ XR
≥n : C �((S, a)) = inr,

5. if C �((T, h)) = inr then ∀t ∈ T ∩ XA
≥n : C �(t) = ina,

6. C �((T, h)) = outr if and only if ∃t ∈ T ∩ XA
≥n : C �(t) ∈ {outa, pouta},

7. C �((T, h)) = undr if and only if ∃t ∈ T ∩ XA
≥n : C �(t) ∈ {unda, punda} and

�t ∈ T ∩ XA
≥n : C �(t) ∈ {outa, pouta}, and

8. C �(a) = unda if and only if ∃(S, a) ∈ XR
≥n : C �((S, a)) ∈ {undr, pundr} and �(S, a) ∈

XR
≥n : C �((S, a)) = inr.

137

5. Treewidth-Based Evaluation

For a coloring C in node n we define by en(C) the set of such extended colorings C � s.t.
(1)-(8) are met. These are the characterized colorings.

Note that conditions (1)-(6) exactly coincide with Definition 5.30 for admissible colorings,
and (7) mostly coincides as well, with the minor adjustment to account for the provisionally
undecided arguments (recall that we did not consider the color punda for admissible
sets). The added condition (8) parallels condition (4) and ensures that an undecided
argument is non-provisional if and only if there is a “witnessing” attack towards it, in a
similar spirit as with the non-provisional outa color in condition (4). The second part of
condition (8) reflects the “priority” of the color outa over unda, i.e., whenever we can
only use the color unda if we do not instead have to use the color outa. This addition,
together with the introduction of the new color punda, leads to a situation where we have
to have a “proof” for an argument being undecided. In particular, in admissible sets it
was possible for an argument a where each attack (T, a) towards it was colored outr (or
poutr) to still color the argument unda. Now with the complete extensions on the other
hand we can set a the color punda, but in order to have a non-provisional color unda we
need an attack that is colored undr/pundr towards a (note also that there cannot be an
attack colored inr towards a, as this would imply that a is colored outa). This has the
effect that in the end whenever all attacks towards argument a are colored outa, the only
possible (non-provisional) color for a is ina, reflecting the “maximality”-condition for
complete extensions.

Proposition 5.51. Let T = (VT , ET) be a nice tree-decomposition of a SETAF SF =
(A, R) and let r ∈ VT be the root node of T . Moreover, let Cr be the set of complete
colorings for r. Then

com(SF) = {{a | C �(a) = ina} | C ∈ Cr, C � ∈ er(C)}.

Proof. Since the root node is empty, we have that XA
>n = A and XR

>n = R, which by (1)
and (2) means that we have no provisional colors in each extended coloring C � ∈ er(C).
Conditions (3) and (6) give us the following property (a), (4) and (5) give us the following
property (b), and (8) gives us the following property (c):

(a) C �(a) = ina if and only if ∀(T, a) ∈ R ∃t ∈ T : C �(t) = outa,

(b) C �(a) = outa if and only if ∃(T, a) ∈ R ∀t ∈ T : C �(t) = ina, and

(c) C �(a) = unda if and only if �(T, a) ∈ R ∀t ∈ T : C �(t) = ina and ! ∀(T, a) ∈ R ∃t ∈
T : C �(t) = outa.

(a) exactly characterizes conflict-freeness, i.e., for each attack (T, a) towards an argument
a that is in the extensions (i.e., in the set {a | C �(a) = ina}) there is at least one
argument in T that is not in the extension. (a) and (b) together characterize defense,
i.e., for each argument a that has the color ina for each attack (T, a) towards a, there is

138

5.5. Characterizing Complete Extensions

a counter-attack (S, t) for some t ∈ T such that S ⊆ {b | C �(b) = ina}. (c) characterizes
completeness, i.e., if an argument is undecided, then it is not defended against each
incoming attack (as in that case it would have to be colored ina). (a), (b), and (c) exactly
characterize the complete extensions.

5.5.1 Leaf Nodes
Intuitively, as with admissible semantics, in leaf nodes we guess for each argument and
each attack one of three possibilities in, out, or und, and keep every “consistent” coloring.
The distinction between outa and pouta (or between outr and poutr) is analogous to
admissible semantics. However, in contrast to admissible semantics we now make use of
the color punda. We color an argument punda instead of unda if there is not yet “proof”
for the argument being undecided: for complete semantics, not all attacks towards an
undecided argument can be defended against (i.e., not all attacks towards an argument
can be colored outr/poutr), as then the argument would have to be in the extension. For
the case where such an attack that is not colored outr/poutr is not yet encountered in
the current leaf node, we assign the color punda. Effectively, this means for an argument
to be colored unda there needs to be an attack towards it colored undr/pundr. Note that
again for both arguments and attacks the out colors have “priority” over the und colors.

Definition 5.52 (co-colorings: Leaf). A co-coloring for a leaf node n ∈ VT is each
coloring that satisfies the following conditions. For each argument a ∈ XA

n :

C(a) = ina ⇒ ∀(T, a) ∈ XR
n : C((T, a)) ∈ {poutr, outr}

C(a) = outa ⇔ ∃(T, a) ∈ XR
n : C((T, a)) = inr

C(a) = unda ⇔ ∃(T, a) ∈ XR
n : C((T, a)) ∈ {pundr, undr} ∧ �(T, a) ∈ XR

n : C((T, a)) = inr

For every attack r = (T, h) ∈ XR
n :

C(r) = inr ⇒ C(h) != ina ∧ ∀t ∈ T ∩ XA
n : C(t) = ina

C(r) = outr ⇔ ∃t ∈ T ∩ XA
n : C(t) ∈ {pouta, outa}

C(r) = undr ⇔ ∃t ∈ T ∩ XA
n : C(t) ∈ {punda, unda} ∧ �t ∈ T ∩ XA

n : C(t) ∈ {pouta, outa}

For co-colorings we have to consider both for arguments and attacks the confirmed
undecided color. In both cases the out color has priority, which is why we have to account
for the case where the out color should be applied. We now establish that all co-colorings
in the leaf nodes coincide with the complete colorings.

Lemma 5.53. Each co-coloring C for a leaf node n ∈ VT is complete.

Proof. We need to show that each of the conditions (1)-(8) of Definition 5.50 is met. (1)
and (2) are trivially true, as for leaves it holds XA

>n = XR
>n = ∅. (3)-(8) follow directly

from the conditions in Definition 5.52.

139

5. Treewidth-Based Evaluation

- #
� 21:

c #
outa 1
pouta 2
unda 1

2:

. . .3:

b c r4 #
ina outa outr 1
outa pouta outr 1
outa ina poutr 1
outa punda poutr 1
unda pouta outr 1
unda unda undr 1

4:

b c r4 #
ina outa outr 1

pouta pouta outr 1
pouta ina poutr 1
pouta ina inr 1
pouta ina pundr 1
pouta punda poutr 1
pouta punda undr 1
punda pouta outr 1
punda unda poutr 1
punda unda undr 1

5:

b c #
ina outa 1

pouta pouta 1
pouta ina 1
pouta punda 1
punda pouta 1
punda unda 1

6:

. . .7:

b r1 #
ina inr 1

pouta outr 1
ina poutr 1

punda poutr 1
ina pundr 1

punda undr 1

8:
r1 #
inr 1

poutr 1
pundr 1

9:

a r1 #
ina inr 1

pouta outr 1
ina poutr 1

punda undr 1
ina pundr 1

punda poutr 1

10:

b c r4 #
ina pouta outr 1
ina ina poutr 1
ina punda poutr 1
ina ina inr 1
ina ina pundr 1
ina punda undr 1
outa pouta outr 1
outa ina poutr 1
outa punda poutr 1
pouta ina inr 1
pouta ina pundr 1
pouta punda undr 1
punda ina inr 1
unda pouta outr 1
unda ina poutr 1
unda punda poutr 1
unda ina pundr 1
unda punda undr 1

11:

[...]

(c)

r1 r2r3

r4

a

c

b

d

(b)

a

c

b

d
r4

r2
r3

r1

(a)

com(SF) = {{a}, {a, b}}

Figure 5.12: Selected co-colorings for our running example. (a) Our running example
SETAF SF with its complete extensions, (b) its incidence-graph Inc(SF), and (c) the
co-colorings for SF w.r.t. the tree decomposition given in Figure 5.3. We omit parts of
the tree (co-colorings for nodes 3 and 7 as well as the sub-tree rooted in node 11).140

5.5. Characterizing Complete Extensions

In our example from Figure 5.12 we have the leaf node 10. We see that we have similar
co-colorings as we had ad-colorings in Figure 5.11, but instead of unda colors for a we
have punda colors. Since in this particular example we have no arguments that are in
the head of an attack in the present node, this behavior is of course to be expected.

Lemma 5.54. Each complete coloring C for a leaf node n ∈ VT is a co-coloring.

Proof. It follows directly from the definition of complete colorings that C adheres to the
conditions in Definition 5.52.

5.5.2 Forget Nodes
We examine forget argument nodes and forget attack nodes separately. Let n be a forget
argument node with child n� such that XA

n = XA
n� \ {a}. We have to discard all colorings

C where C(a) ∈ {pouta, punda}, as in these colorings a is supposed to be attacked by the
characterized extension or undecided. As we forget a in the current node, this cannot
happen.

Definition 5.55 (co-coloring: Forget Argument). Let n be a forget argument node
with child n� such that XA

n = XA
n� \ {a}, and let C be a co-coloring for n�. If C(a) /∈

{pouta, punda}, then C − a is a co-coloring for n, where C − x for each b ∈ Xn is defined
as follows:

(C − x)(b) = C(b)

We handle forget attack nodes in a similar way—in fact, the steps for ad-colorings and
co-colorings are exactly the same.

Definition 5.56 (co-coloring: Forget Attack). Let n be a forget attack node with child
n� such that XR

n = XR
n� \ {r}, and let C be a co-coloring for n�. If C(r) /∈ {poutr, pundr},

then C − r is a co-coloring for n, where C − x for each b ∈ Xn is defined as follows:

(C − x)(b) = C(b)

We next establish that in forget nodes complete colorings and co-colorings coincide.

Lemma 5.57. If for the child node n� of a forget node n each co-coloring is complete,
then each coloring C of n is complete.

Proof. We need to show that each of the conditions (1)-(8) of Definition 5.50 is met.
(1) and (2) are true because they hold for n�, and if the forgotten argument/attack is
provisional, then it is discarded. The satisfaction of (3)-(8) immediately carries over from
n�.

141

5. Treewidth-Based Evaluation

We see in Figure 5.12 in node 9 that all colorings of node 10 where a is undecided (or
out) are discarded. This corresponds to the fact that a is unattacked and has to be in
every complete extension. We are left with three co-colorings in node 9 that each extend
to an extended coloring on X≥9 where a is set to ina.

Lemma 5.58. Let C be a complete coloring of a forget node n. If in the child node n�

of n complete colorings and co-colorings coincide then C is a co-coloring for n.

Proof. Let C � be the extended coloring of C on X≥n s.t. the conditions of Definition 5.50
are satisfied.

We start with forget argument nodes. We show that C∗ is a co-coloring for n� where C∗

coincides with C on each a, (T, h) ∈ Xn and for the forgotten argument b ∈ Xn� \ Xn it
holds C∗(b) /∈ {pouta, punda}.

• If C �(b) = ina then clearly C∗ is complete for n� with C∗(b) = ina: in this case
each condition (1)-(8) carries over from C. Then by assumption this means C∗ is a
co-coloring for n�.

• If C �(b) = outa then C∗ is complete for n� with C∗(b) = outa: this is because by
condition (4) we have for node n that ∃(S, a) ∈ XR

≥n : C �((S, a)) ∈ {outr, poutr},
and since XR

≥n = XR
≥n� this carries over to node n�. Again the other conditions

clearly carry over, and by assumption this means C∗ is a co-coloring for n�.

• Finally, if C �(b) = unda then C∗ is complete for n� with C∗(b) = unda: this is because
by condition (8) we have for node n that ∃(S, a) ∈ XR

≥n : C �((S, a)) ∈ {undr, pundr},
and since XR

≥n = XR
≥n� this carries over to node n�. Again the other conditions

clearly carry over, and by assumption this means C∗ is a co-coloring for n�.

In all three cases we see that there is a corresponding co-coloring C∗ in the child node n�

that gives us C as a co-coloring in n, and since there is no other possibility, this means
that C = C∗ − b is a co-coloring of n.

We continue with forget attack nodes. We show that C∗ is a co-coloring for n� where C∗

coincides with C on each a, (T, h) ∈ Xn and for the forgotten attack (S, t) ∈ Xn� \ Xn it
holds C∗((S, t)) != poutr and C∗((S, t)) != pundr.

• If C �((S, t)) = inr then clearly C∗ is complete for n� with C∗(b) = inr: in this case
each condition (1)-(8) carries over from C. Then by assumption this means C∗ is a
co-coloring for n�.

• If C �((S, t)) = outr then C∗ is complete for n� with C∗((S, t)) = outr: this is because
by condition (6) we have for node n that ∃s ∈ S ∩ XA

≥n : C �(s) ∈ {outa, pouta}, and
since XA

≥n = XA
≥n� this carries over to node n�. Again the other conditions clearly

carry over, and by assumption this means C∗ is a co-coloring for n�.

142

5.5. Characterizing Complete Extensions

• Finally, if C �((S, t)) = undr then clearly C∗ is complete for n� with C∗(b) = undr:
this is because by condition (7) we have for node n that ∃s ∈ S ∩ XA

≥n : C �(s) ∈
{unda, punda}, and since XA

≥n = XA
≥n� this carries over to node n�. Again the other

conditions clearly carry over, and by assumption this means C∗ is a co-coloring for
n�.

In all three cases we see that there is a corresponding co-coloring C∗ in the child node n�

that gives us C as a co-coloring in n, and since there is no other possibility, this means
that C = C∗ − b is a co-coloring of n.

5.5.3 Insert Nodes
As with forget nodes, we handle the case of inserting an argument and inserting an attack
separately. For insert argument nodes, we will use the operations C + a, C+̇a, C+̈a,
similar to the case of admissible sets. The key difference to characterizing admissible sets
is that for C+̈a where we account for the case that the added argument a is undecided,
we have to distinguish the case where a is “confirmed” undecided (i.e., if there is already
an undecided attack towards a present in the current node), and the case where a is
provisionally undecided. This operation is now mostly symmetrical to C + a where we
handle the case where the added argument a is out.

Definition 5.59 (co-coloring: Insert Argument). Let n be an insert argument node with
child n� such that XA

n� = XA
n \ {a}, and let C be a co-coloring for n�.

• If �(T, h) ∈ XR
n : (C((T, h)) ∈ {inr, undr, pundr}∧a ∈ T), then C+a is a co-coloring

for n;

• If �(T, a) ∈ XR
n : (C((T, a)) ∈ {inr, undr, pundr}), then C+̇a is a co-coloring for n;

• If �(T, h) ∈ XR
n : (C((T, h)) = inr ∧ (a = h ∨ a ∈ T)), then C+̈a is a co-coloring

for n.

The operations C + a, C+̇a, and C+̈a are defined as follows for each b ∈ Xn:

(C + a)(b) =

������
outa if b = a ∧ ∃(T, a) ∈ XR

n : C((T, a)) = inr

pouta if b = a ∧ �(T, a) ∈ XR
n : C((T, a)) = inr

outr if b = (T, h) ∧ a ∈ T ∧ C(b) = poutr
C(b) otherwise

(C+̇a)(b) =
�

ina if b = a
C(b) otherwise

(C+̈a)(b) =

������
unda if b = a ∧ ∃(T, a) ∈ XR

n : (C((T, a)) ∈ {undr, pundr})
punda if b = a ∧ �(T, a) ∈ XR

n : (C((T, a)) ∈ {undr, pundr})
undr if b = (T, h) ∧ a ∈ T ∧ C(b) = pundr
C(b) otherwise

143

5. Treewidth-Based Evaluation

With insert attack nodes we apply the same intuition as for admissible sets (cf. Defini-
tion 5.42).

Definition 5.60 (co-coloring: Insert Attack). Let n be an insert attack node with child
n� such that XR

n� = XR
n \ {r}, and let C be a co-coloring for n�, and r = (T, h).

• C + r is a co-coloring for n;

• If (h /∈ XA
n ∨ C(h) ∈ {outa, pouta}) ∧ ∀t ∈ T ∩ XA

n : C(t) = ina then C+̇r is a
co-coloring for n;

• if C(h) != ina ∧ �t ∈ T ∩ XA
n : C(t)∈{outa, pouta} then C+̈r is a co-coloring for n.

The operations C + r, C+̇r, and C+̇r are defined as follows for each b ∈ Xn:

(C + r)(b) =

��
outr if b = r ∧ ∃t ∈ T ∩ XA

n : C(t) ∈ {outa, pouta}
poutr if b = r ∧ �t ∈ T ∩ XA

n : C(t) ∈ {outa, pouta}
C(b) otherwise

(C+̇r)(b) =

��
inr if b = r
outa if r = (T, h) ∧ b = h
C(b) otherwise

(C+̈r)(b) =

������
undr if b = r ∧ ∃t ∈ T ∩ XA

n : C(t) ∈ {unda, punda}
pundr if b = r ∧ �t ∈ T ∩ XA

n : C(t) ∈ {unda, punda}
unda if r = (T, h) ∧ b = h
C(b) otherwise

Again, we show that the insert nodes exactly characterize the complete colorings.

Lemma 5.61. If for the child node n� of an insert node n each co-coloring is complete,
then each co-coloring C of n is complete.

Proof. We need to show that each of the conditions (1)-(8) of Definition 5.50 is met. (1)
and (2) immediately carry over from n� both for insert argument and insert attack nodes.

For (3)-(8) we discuss first the insert argument nodes. Note that we construct C either
from a complete coloring C � of n� via C = C � + a, via C = C �+̇a, or via C = C �+̈a.

• Clearly, (3) and (4) hold in all three cases for w.r.t. C for all b ∈ XA
n� (i.e., the

“old” arguments that have not been added in this node) because they hold for
n�. For the added argument a regarding (3) only the coloring C �+̇a is relevant
(as (C � + a)(a) != ina and (C �+̈a)(a) != ina). Since we can add the coloring C �+̇a
only if �(T, a) ∈ XR

n�: (C �((T, a)) ∈ {inr, undr, pundr}) and the only possible colors
for attacks are inr, outr, poutr, undr, and pundr, we know that in this case (3) is
satisfied.

144

5.5. Characterizing Complete Extensions

• For the added argument a regarding (4) only the coloring C = C � + a is relevant.
In this case, if C(a) = outa then we know ∃(T, a) ∈ XR

n : (C((T, a)) = inr ∧ a /∈ T)
which means condition (4) is satisfied; if otherwise C(a) = pouta then (4) is trivially
true for a.

• Conditions (5), (6), and (7) carry over from n� for all attacks (T, h) ∈ XR
n where

for the added argument a it holds a /∈ T . Let (T, h) ∈ XR
n be such that for the

added argument a it holds a ∈ T . If C �((T, h)) = inr then we do not add C � + a or
C �+̈ as a coloring to n, which means the satisfaction of condition (5) carries over
from n� in these cases. For C �+̇a condition (5) also carries over from n� for each
attack (T, h) ∈ XR

≥n with a ∈ T as (C �+̇a)(a) = ina.

• Moreover, in all three cases C � + a, C �+̇a, and C �+̈a condition (6) carries over
for each attack (T, h) ∈ XR

≥n with a /∈ T . Moreover, for the case where we
set (C � + a)((T, h)) = outr, condition (6) is satisfied as we have a ∈ T and
(C � + a)(a) ∈ {outa, pouta}.

• For the case where we set (C � + a)((T, h)) = undr, condition (7) is satisfied as we
have a ∈ T and (C � + a)(a) ∈ {unda, punda}.

• For the added argument a regarding (8) only the coloring C = C �+̈a is relevant. In
this case, if C(a) = unda then we know ∃(T, a) ∈ XR

n�: (C((T, a)) ∈ {undr, pundr})
which means condition (8) is satisfied; if otherwise C(a) = punda then (8) is trivially
true for a.

Hence, conditions (1)-(8) are met for insert argument nodes.

We now discuss the insert attack nodes w.r.t. the conditions (3)-(8).

• Regarding (3), it suffices to discuss for the added attack r = (T, h) the cases (C �+̇r)
and (C �+̈r) (otherwise, the condition carries over from the child node or the added
attack is set to either undr or pundr). However, the coloring C �+̇r is only added
to n if C �(h) /∈ {ina, unda, punda}, which also ensures that condition (3) is met for
when we set the added attack to inr. Likewise, C �+̈r is only added if C �(h) != ina.

• Condition (4) carries over from n�, and the case where we set (C �+̇r)(a) = outa
when we previously had C �(a) = pouta is only applied if we set (C �+̇r)(r) = inr,
i.e., (4) is satisfied.

• For (5), only the case C �+̇r is relevant, the other cases follow from n�. However,
we only add C �+̇r to n if ∀t ∈ T ∩ XA

n it holds C(t) = ina, and because of the
properties of tree decompositions we know that XA

>n ∩ T = ∅, i.e., there are no tail
arguments strictly below the current node. Hence, (5) is satisfied.

• As to (6), the only case that is not clear from n� is in C � + (T, h), but in this case
we set C((T, h)) to outr only if ∃t ∈ T ∩ XA

n : C �(t) ∈ {pouta, outa}, which means
(6) is also satisfied.

145

5. Treewidth-Based Evaluation

• For (7) we need to consider the case C+̈r, and in this case we set C((T, h)) to undr
only if ∃t ∈ T ∩ XA

n : C(t) ∈ {unda, punda}, which means (7) is also satisfied.

• Condition (8) carries over from n�, and the case where we set (C �+̈r)(a) = unda

when we previously had C �(a) = punda is only applied if we set (C �+̈r)(r) = undr
or (C �+̈r)(r) = pundr, i.e., (8) is satisfied.

To summarize, all of (1)-(8) is satisfied, which means that each coloring in n is stable.

In Figure 5.12 node 5 is an insert attack node. Consider the coloring C1 in node 6 with
C1(b) = pouta and C1(c) = ina. Here we can apply all three cases C1 + r4, C1+̇r4, and
C1+̈r4. It is easy to see that in general for each coloring C in the child node of an insert
attack node n for an attack (T, h) where for each t ∈ T ∩ XA

n it holds C(t) = ina all
three possibilities are applicable, since (1) the attack can still be set to out if another
t ∈ T \ XA

n is inserted and set to outa/pouta, (2) the attack can be set to in since since
all t ∈ T are in, and (3) the attack can be undecided if no t ∈ T \ XA

n is inserted and set
to outa/pouta and some t ∈ T \ XA

n is inserted and set to unda/punda.

Lemma 5.62. Let C be a complete coloring for an insert node n. If in the child node n�

of n complete colorings and co-colorings coincide then C is a co-coloring for n.

Proof. Let C � be the extended coloring of C on X≥n s.t. the conditions of Definition 5.50
are satisfied.

We start with insert argument nodes. We show that there is a co-coloring C∗ in node n�

s.t. for the added argument a we have C = C∗ + a if C �(a) ∈ {outa, pouta}, C = C∗+̇a if
C �(a) = ina, and C = C∗+̈a if C �(a) ∈ {unda, punda}.

• Let C �(a) ∈ {outa, pouta}, then C∗ is a co-coloring of n� where C∗ coincides
with C on each b, (T, h) ∈ Xn� with the exception of attacks (T, h) with a ∈ T ,
C((T, h)) = outr, and �t ∈ T ∩ XA

n� : C �(t) ∈ {outa, pouta}, for these attacks we
set C∗((T, h)) = poutr. To show that C∗ is a co-coloring of n� we need to show
that the conditions (1)-(8) of complete colorings are satisfied. (1) and (2) carry
over from C, as X>n = X>n� . Note for (3) that C and C∗ coincide on the colors
ina, unda, and punda, and on the set of attacks colored either outr or poutr, which
means (3) carries over from C. (4) and (5) immediately carry over as well, as C
and C∗ coincide on all relevant colors on the arguments/attacks Xn� . Regarding
(6) note that for each attack (T, h) ∈ XR

n� with a ∈ T , C((T, h)) = outr property
(6) holds by definition of C∗, and for the other attacks (with C(T, h) = outr and
a /∈ T) the property carries over from C. Regarding (7) we have that for each
attack (T, h) ∈ XR

n� with a ∈ T , C((T, h)) = undr property (7) carries over from C.
Finally, (8) immediately carries over as well, as the arguments and attacks with
the relevant colors coincide in C and C �. Hence, in this case C∗ is complete for n�

and therefore by assumption an co-coloring for n�. Then since C∗ is complete from

146

5.5. Characterizing Complete Extensions

condition (5) it follows �(T, h) ∈ XR
n : (C∗((T, h)) = inr ∧a ∈ T), hence, C = C∗ +a

is a co-coloring for n (the correct color outa/pouta directly follows from the fact
that C is complete and that due to the properties of tree decompositions all attacks
towards a in XR

≥n have to be in XR
n).

• Now on the other side let C �(a) = ina, then C∗ is a co-coloring of n� where C∗

coincides with C on each b, (T, h) ∈ Xn� . Again we show that the conditions
(1)-(8) are satisfied. (1) and (2) again carry over from C, as X>n = X>n� . (3)-(8)
immediately carry over as well, as C and C∗ coincide on all relevant colors on Xn� .
Then since C∗ is complete it is a co-coloring for n� and from condition (3) it follows
�(T, a) ∈ XR

n�: (C((T, a)) = inr), hence, C = C∗+̇a is a cod-coloring for n.

• Finally, let C �(a) ∈ {unda, punda}, then C∗ is a co-coloring of n� where C∗ coincides
with C on each b, (T, h) ∈ Xn� , with the exception of attacks (T, h) with a ∈ T ,
C((T, h)) = undr, and �t ∈ T ∩ XA

n� : C �(t) ∈ {undr, pundr}, for these attacks we set
C∗((T, h)) = pundr. Again we show that the conditions (1)-(8) are satisfied. (1) and
(2) carry over from C, as X>n = X>n� . Note for (3) that C and C∗ coincide on the
colors ina, unda, and punda, and on the set of attacks colored either outr or poutr,
which means (3) carries over from C. (4) and (5) immediately carry over as well, as
C and C∗ coincide on all relevant colors on the arguments/attacks Xn� . Regarding
(6) we have that for each attack (T, h) ∈ XR

n� with C((T, h)) = outr property (6)
carries over from C. Regarding (7) note that for each attack (T, h) ∈ XR

n� with
a ∈ T , C((T, h)) = undr property (7) holds by the definition of C∗, and for the
other attacks (with C(T, h) = outr and a /∈ T) the property carries over from C.
Finally, (8) immediately carries over as well, as the arguments and attacks with
the relevant colors coincide in C and C �. Hence, in this case C∗ is complete for n�

and therefore by assumption a co-coloring for n�. Then since C∗ is complete from
conditions (4) and (5) it follows �(T, h) ∈ XR

n� : (C∗((T, h)) = inr ∧ (a = h∨a ∈ T)),
hence, C = C∗+̈a is a co-coloring for n (the correct color unda/punda directly
follows from the fact that C is complete and that due to the properties of tree
decompositions all attacks towards a in XR

≥n have to be in XR
n).

We showed that in all three cases C is a co-coloring of n.

We continue with the insert attack nodes. Again we show that there is a co-coloring C∗ in
node n� s.t. for the added attack (T, h) we have C = C∗+(T, h) if C �((T, h)) ∈ {outr, poutr},
C = C∗+̇(T, h) if C �((T, h)) = inr, and C = C∗+̈(T, h) if C �((T, h)) ∈ {undr, pundr}.

• Let C �((T, h)) ∈ {outr, poutr}, then C∗ is a co-coloring of n� where C∗ coincides
with C on each b, (S, t) ∈ Xn� . To show that C∗ is a co-coloring of n� we need to
show that the conditions (1)-(8) of complete colorings are satisfied. (1) and (2)
carry over from C, as X>n = X>n� . (3)-(8) immediately carry over from C as C
and C∗ coincide on all relevant colors on Xn� . Hence, C∗ is complete for n� and
therefore a co-coloring, and C = C∗ + (T, h) is a co-coloring for n (as with insert

147

5. Treewidth-Based Evaluation

argument nodes, the correct color outr, poutr follows from C being complete and
the properties of tree decompositions).

• Now on the other side let C �((T, h)) = inr, then C∗ is a co-coloring of n� where C∗

coincides with C on each b, (T, h) ∈ Xn� with the exception the argument h (given
that h ∈ XA

n�) if �(S, h) ∈ XR
≥n� : C �((S, h)) = inr, in this case we set C∗(h) = pouta.

Again we show that the conditions (1)-(8) are satisfied. (1) and (2) carry over from
C, as X>n = X>n� . (3), (5), (6), (7), and (8) immediately carry from C, as C and
C∗ coincide on all relevant colors on Xn� . Regarding (4), note that this clearly
carries over from C for all arguments a ∈ XA

n� \ {h}, and for the argument h it
holds by definition of C∗. Then since C∗ is complete from condition (3) it follows
(h /∈XA

n ∨C(h)!=ina) and from condition (5) it follows ∀t∈T ∩ XA
n :C(t)= ina, hence,

C = C∗+̇(T, h) is a co-coloring for n.

• Finally, let C �((T, h)) ∈ {undr, pundr}, then C∗ is a co-coloring of n� where C∗

coincides with C on each b, (S, t) ∈ Xn� with the exception the argument h (given
that h ∈ XA

n�) if �(S, h) ∈ XR
≥n� : C �((S, h)) ∈ {undr, pundr, outr, poutr}, in this case

we set C∗(h) = punda. To show that C∗ is a co-coloring of n� we need to show
that the conditions (1)-(8) of complete colorings are satisfied. (1) and (2) carry
over from C, as X>n = X>n� . (3)-(8) immediately carry over from C as C and
C∗ coincide on all relevant colors on Xn� , or by construction of C∗. Hence, C∗ is
complete for n� and therefore a co-coloring, and C = C∗ + (T, h) is a co-coloring for
n (the correct color undr, pundr follows from C being complete and the properties
of tree decompositions).

We showed that in all three cases C is a co-coloring of n.

5.5.4 Join Nodes
We now consider the join nodes where we combine matching colorings. Intuitively,
we perform the same steps as in admissible semantics (see Definition 5.45). The only
difference is that we also have to consider “upgrades” for the undecided colors, which in
join nodes behave exactly like the out/pout idea.

Definition 5.63 (co-coloring: Join). Let n be a join node with children n�, n��, let C be
a co-coloring for n�, and let D be a co-coloring for n��. If C and D are compatible, i.e.,

1. {a ∈ XA
n� | C(a) = ina} = {a ∈ XA

n�� | D(a) = ina},

2. {r ∈ XR
n� | C(r) = inr} = {r ∈ XR

n�� | D(r) = inr},

3. {a ∈ XA
n� | C(a) ∈ {unda, punda} = {a ∈ XA

n�� | D(a) ∈ {unda, punda}}, and

4. {r ∈ XR
n� | C(r) ∈ {undr, pundr}} = {r ∈ XR

n�� | D(r) ∈ {undr, pundr}}

148

5.5. Characterizing Complete Extensions

then C � D is an ad-coloring for n, where

(C � D)(b) =

��������������������������������

ina if C(b) = D(b) = ina

unda if C(b) = unda ∨ D(b) = unda

punda if C(b) = D(b) = punda

outa if C(b) = outa ∨ D(b) = outa
pouta if C(b) = D(b) = pouta
inr if C(b) = D(b) = inr

undr if C(b) = undr ∨ D(b) = undr
pundr if C(b) = D(b) = pundr
outr if C(b) = outr ∨ D(b) = outr
poutr if C(b) = D(b) = poutr

Lemma 5.64. If for the child nodes n�, n�� of a join node n each co-coloring is complete,
then each co-coloring C of n is complete.

Proof. We need to show that each of the conditions (1)-(8) of Definition 5.50 is met. (1)
and (2) immediately carry over from n� and n�� since XA

n = XA
n� = XA

n�� and XR
n = XR

n� =
XR

n�� . (3) holds because it has to hold both for all (S, a) in XR
n� and in XR

n�� by assumption.
(4) is satisfied, as we set an argument to outa only if it is colored outa in at least one of
the two colorings of n� and n��. Similarly, (5) and (6) carry over from n� and n��. (7) is
satisfied, similarly to (4), because we set an attack to undr only if it is colored undr in
at least one of the two colorings of n� and n��. Likewise, (8) is true because we set an
argument to unda only if it is colored unda in at least one of the two colorings of n� and
n��.

The join node 4 of our Figure 5.12 combines the co-colorings of nodes 5 and 11. Note
that 4 contains fewer co-colorings than both of its child nodes. While in general we have
to consider all possible combinations of colorings, we expect that in most SETAFs many
co-colorings will be “filtered out” by join nodes due to sufficiently “different” co-colorings
in the two branches, as it is the case in our example. One possible optimization strategy
for implementations could be to actively encourage this situation to happen by cleverly
choosing the tree decomposition.

Lemma 5.65. Let C be a complete coloring for a join node n. If in the child nodes n�,
n�� of n complete colorings and co-colorings coincide then C is a co-coloring for n.

Proof. Let C � be the extended coloring of C on X≥n s.t. the conditions of Definition 5.50
are satisfied.

We will show that there are co-colorings C∗ for n� and D∗ for n�� such that C = C∗ � D∗.
We define C∗ such that it coincides with C on each a, (T, h) ∈ Xn with the following
three exceptions, each accounting for one of the provisional colors pouta, poutr, punda,
and pundr:

149

5. Treewidth-Based Evaluation

1. arguments b s.t. C(b) = outa and �(S, b) ∈ XR
≥n� : C �((S, b)) = inr, for these

arguments we set C∗(b) = pouta,

2. attacks (S, b) s.t. C((S, b)) = outr and �s ∈ S ∩ XA
≥n� : C �(s) ∈ {outa, pouta}, for

these attacks we set C∗((S, b)) = poutr,

3. arguments b s.t. C(b) = unda and �(S, b) ∈ XR
≥n� : C �((S, b)) ∈ {undr, pundr}, for

these arguments we set C∗(b) = punda,

4. attacks (S, b) s.t. C((S, b)) = undr and �s ∈ S ∩ XA
≥n� : C �(s) = unda, for these

attacks we set C∗((S, b)) = pundr.

We show that properties (1)-(8) of complete colorings are satisfied for C∗. (1) and (2)
carry over from C, as X>n = X>n� = X>n�� . (3) is satisfied as for C and C∗ it holds

{(T, h) ∈ XR
n | C((T, h)) ∈ {outr, poutr})} = {(T, h) ∈ XR

n� | C∗((T, h)) ∈ {outr, poutr})}.

(4), (6), (7), and (8) are satisfied by definition of C∗ for the “updated” colors, for the
others the property carries over from C. (5) immediately carries over from C. Hence, C∗

is complete (and D∗ as well due to symmetry). Finally, note that by construction of C∗

and D∗ it holds

1. {a ∈ XA
n� | C∗(a) = ina} = {a ∈ XA

n�� | D∗(a) = ina},

2. {r ∈ XR
n� | C∗(r) = inr} = {r ∈ XR

n�� | D∗(r) = inr},

3. {a ∈ XA
n� | C∗(a) ∈ {unda, punda}} = {a ∈ XA

n�� | D∗(a) ∈ {unda, punda}}, and

4. {r ∈ XR
n� | C∗(r) ∈ {undr, pundr}} = {r ∈ XR

n�� | D∗(r) ∈ {undr, pundr}}

Hence, C = C∗ � D∗ is a co-coloring for n.

5.5.5 Final Steps for Complete Semantics
We can again sum up our results for each node type to obtain the soundness and
completeness for our algorithm to characterize the complete extensions.

Proposition 5.66. Let T = (VT , ET) be a nice tree-decomposition of a SETAF SF .
Then in each node n ∈ VT co-colorings and complete colorings coincide.

Proof. (⊆) Follows by structural induction over the tree-decomposition structure with the
leaves as a base (Lemma 5.53) and the forget, insert, and join nodes as steps (Lemma 5.57,
Lemma 5.61, Lemma 5.64).

(⊇) First note that by (⊆) all co-colorings in each node are complete. Then the statement
follows by structural induction over the tree-decomposition structure with the leaves
as a base (Lemma 5.54) and the forget, insert, and join nodes as steps (Lemma 5.58,
Lemma 5.62, Lemma 5.65).

150

5.5. Characterizing Complete Extensions

We then obtain the main result for complete semantics. We want to emphasize that the
runtime is bounded by the same function as with admissible sets. This is due to the fact
that in join nodes we have sort in three “categories”: in, out, undecided. The addition of
the provisional undecided color for arguments does not add any additional complexity
w.r.t. our complexity analysis.

Theorem 5.67. The problems Credadm = Credcom = Credpref as well as counting the
number of complete sets can be done in time O(9k · k · (|A| + |R|)). Moreover, we can
enumerate all complete extensions with linear delay.

Proof. The correctness of the algorithm (i.e., we account only for complete colorings in
the root node) and the completeness of the algorithm (i.e., we account for all the complete
colorings in the root node) is shown in Proposition 5.66. Then, from the fact that in the
root node n we have XA

n = XR
n = ∅, we trivially get XA

>n = A and XR
>n = R. Hence, by

property (1) and (2) of complete colorings we know that the colorings in the root node
can be extended to SF such that no provisional colors are used. By Proposition 5.51 we
then get that the colorings in the root node exactly characterize com(SF).

We can assume the number of nodes to be bounded by O(|A| + |R|) and that we can find
and access rows in linear time w.r.t. k. For each node, the number of valid colorings (i.e.,
rows in our tables of colorings) is bounded by 5k.

In leaf nodes, we can check the conditions for leaves in time O(k2) for each of the O(5k)
possible colorings, resulting in O(5k · k2). In forget nodes, we can check whether the
condition is satisfied and compute eventually resulting colorings in time O(k) for each
of the O(5k) colorings of the child node, resulting in O(5k · k). In insert nodes, we can
check whether the condition is satisfied and compute eventually resulting colorings in
time O(k2) for each of the O(5k) colorings of the child node, resulting in O(5k · k2).
Finally, for join nodes we have to consider 5k · 5k = 25k pairs. However, we only
need to consider 9k pairs if we assume the data structure to be properly sorted, e.g.
lexicographically by treating the colors ina/inr as 0, unda/punda/undr/pundr as 1, and
pouta/outa/poutr/outr as 2. As each table has O(5k) rows, sorting is in O(5k · k). Let
C be a coloring such that m ≤ k arguments/attacks are colored as ina/inr. There
exist at most 2k−m “distinct” colorings C � (distinct within their group when we group
colorings as follows: {ina, inr}, {unda, punda, undr, pundr}, {outa, pouta, outr, poutr}) with
∀x : (C(x) ∈ {ina, inr} ⇔ C �(x) ∈ {ina, inr}). There are

 k
m

�
possibilities resulting

from the choice of m. Finally, we have to distinguish 2k−m combinations of sets {x |
C(x) ∈ {unda, punda, undr, pundr}} and {x | C(x) ∈ {outa, pouta, outr, poutr}}, resulting
in �k

m=0

 k

m

� · 2k−m · 2k−m · 2k−m = 9k join pairs. We can then compute C � D in O(k),
resulting in O(9k · k) for join nodes, dominating the runtime of the other node types.
The resulting runtime for the algorithm is O(9k · k · (|A| + |R|)).
We can decide credulous acceptance by flagging those colorings that contain the argument
in question. In each node we update this flag accordingly, and the flag in the root
node indicates whether the argument is credulously accepted. We can keep the count of

151

5. Treewidth-Based Evaluation

complete extensions corresponding to each coloring (cf. [DPW12]). Finally, to enumerate
the complete extensions once the dynamic programming algorithm is done we can traverse
the tree top-down and output the complete extensions with linear delay (cf. [DPW12]).

5.6 Discussion
In this chapter, we investigated the treewidth parameter for reasoning tasks in SETAFs.
We showed that reasoning with constant primal-treewidth remains hard (contrasting
the results for the special case of AFs), while constant incidence-treewidth allows us to
reason and count in polynomial time. The parameterized problems are in FPT. Finally,
we improved these generically obtained results by providing a dynamic programming
algorithm tailored for SETAFs, highlighting interesting differences to the AF-case that
arise from the generalization step. While we presented DP algorithms for stable, ad-
missible, and complete semantics, the thereby introduced ideas form the basis also for
other semantics such as preferred and semi-stable extensions. For this, the ideas for
AFs are also applicable in the context of SETAFs [DPW12, BHW16]. In particular,
Dvořák et al. [DPW12] characterize preferred extensions for AFs in a tree decomposition
based dynamic programming approach by storing for each admissible coloring a set Γ of
admissible colorings that characterize sets that are proper supersets of the characterized
extensions of the coloring. These “certificates” intuitively capture the admissible sets
that prevent an admissible set from being preferred (due to violated subset-maximality).
This approach can be adapted to characterize preferred extensions in SETAFs.

The underlying structure of SETAFs is a directed hypergraph. While there are measures
available for general hypergraphs, the directed case is not as well explored. Moreover,
while there are several systems available to compute the treewidth of undirected simple
graphs efficiently—be it exactly or heuristically—the situation for implementations of
hyper-treewidth is less advanced (see e.g. [GLS01, GGS14] for an overview). Finally,
reasoning in frameworks with fixed directed graph parameters (e.g., cycle rank, directed
path-width, etc.) already turned out to be intractable for AFs [DPW12]; which carries
over to SETAFs. Hence, we decided to focus on the treewidth-based measures, so that
we can implement the presented algorithms in the future.

Considering SETAFs in recent additions to the treewidth literature in the context of
argumentation constitutes interesting topics for future research, see e.g. [FHMM21].

152

CHAPTER 6
Conclusion

In this thesis, we thoroughly investigated argumentation frameworks with collective
attacks (SETAFs). SETAFs oftentimes proved useful due to their rich syntax (compared
to AFs), and many key semantic properties have been shown to generalize to SETAFs:
for instance, already when first discussing collective attacks, Nielsen and Parsons showed
that the fundamental lemma of Dung AFs generalizes to SETAFs. However, SETAFs
have not been investigated in great detail w.r.t. computational properties by means of
formal complexity-theoretic methods, barring algorithmic ideas on the computation of
preferred extensions [NP06a]. In this thesis, we fill this gap. In 2019, it was shown that it
is possible to generalize most common semantics to SETAFs both for extensions as well as
labelings [FB19], while still preserving many desirable properties. In the same year it was
shown that SETAFs are strictly more expressive than AFs in most semantics [DFW19].
In the light of these promising results one would expect computational drawbacks, such
as raised upper bounds or the inapplicability of advanced algorithmic ideas. While it
was shown that in general the same upper bounds in terms of our considered decision
problems hold for AFs and SETAFs [DGW18], the latter question remained open.

We cannot reasonably assume to come up with efficient algorithms to reason on every
SETAF due to the well-known hardness-results and the widely believed relationship
P != NP . However, on restricted classes (like with bounded size of strongly-connected-
components (SCCs), low treewidth, or small backdoor size) we can show significant
improvements via advanced algorithmic techniques. We showed that indeed these tech-
niques can be applied to SETAFs, either on their primal-graph or incidence-graph
structure. In the following, we summarize our findings in this regard. In particular,
Section 6.1.1 summarizes our findings regarding principles and SCC-recursiveness of
Chapter 3, in Section 6.1.2 we recall the findings of Chapter 4 where we establish the
backdoor notion for SETAFs and provide backdoor-based reasoning algorithms, and in
Section 6.1.3 we reiterate our results regarding the parameter treewidth. Section 6.1.4

153

6. Conclusion

contains the insights that we gain when comparing the different approaches regarding
pairwise compatibility. Finally, in Section 6.2 we discuss future work.

6.1 Summary & Insights

In the following, we provide a concise summary of the results and insights of Chapters 3–5.

6.1.1 Principles and Incremental Computation

In Chapter 3 we established that for SETAFs most principles—when carefully generalized
with their intuitions in mind—still apply in the same manner as for AFs. A notable
exception here is the tightness principle: its violation for the SETAF semantics is due
to their increased expressiveness, and can therefore be seen as either an advantage or a
disadvantage, depending on the application. Intuitively, tightness is satisfied if for an
extension E and an argument a /∈ E the reason why E is not acceptable w.r.t. E is at
least one argument b ∈ E which is never jointly accepted alongside a. While many AF
semantics satisfy this principle, in SETAFs due to their set attacks tightness is violated,
as the reason for an unacceptable argument can be a set of arguments rather than a
single one. Along the way we discovered intricate details that hide interesting phenomena
in AFs behind their simple syntax, such as the difference between unattacked sets and
uninfluenced sets. We argued that indeed the influence of a path in the primal graph
exceeds the mere meaning of attacks, but also influences defense and undecidedness in the
targeted part of a framework. While on AFs both notions coincide, the richer structure of
SETAFs allows us to formally investigate this and other important distinctions. Finally,
we introduced novel principles for semantics of SETAFs such as Allowing Partial Conflicts
I–III, Tail Strengthening, and Attack Weakening that in the future will help guide the
development of new semantics. These principles are genuinely applicable in the context
of collective attacks, as they trivialize or exceed the syntactic possibilities of AFs.

Moreover, we showed that SETAFs can be split along the structure of the SCCs of the
primal-graph, and the verification of preferred extensions is in FPT w.r.t. the size of the
largest SCC. Note that this result captures a general characterization of argumentation
semantics in the sense that they can be evaluated in parts (along the SCC-structure).
This is also applicable for other admissibility-based semantics studied in this thesis. We
then generalized this result by utilizing the tractable fragments of SETAFs, exploiting
SCCs that are acyclic, even- or odd-cycle-free, or primal-bipartite. In a nutshell, if an
SCC either contains less than a constant k many arguments or belongs to one of these
fragments, we can efficiently compute the corresponding sub-problem. If all SCCs have
this property, we can verify preferred extensions in FPT time for the whole SETAF.
However, this idea is not applicable to SCCs that are fully-symmetric under projection,
as we have also shown. Moreover, the results give rise to incremental algorithms to
enumerate extensions along the SCC-structure.

154

6.1. Summary & Insights

6.1.2 The Backdoor-Based Approach
In Chapter 4 we showed that the backdoor approach is applicable to SETAFs as well,
again via the route of tractable fragments in the primal graph. This is possible for deletion
backdoors to acyclicity and even-cycle-freeness—for the other tractable fragments under
our consideration it was shown already for AFs that this is impossible (under standard
complexity-theoretic assumptions) [DOS12]. We have shown that we can characterize the
extensions in time O(2p · poly(|SF |)) instead of O(3p · poly(|SF |)) (with p being the size
of the backdoor), which was the state-of-the-art in AFs. We achieve this improvement by
instead of making a 3-valued guess (in, out, undecided), making only a 2-valued guess (in,
“not in”)—the second option is later resolved to correspond either to “out” or “undecided”,
depending on the context. Assuming the Strong-Exponential-Time-Hypothesis holds, we
established that no further improvement is possible in this regard, as then our algorithm is
optimal (w.r.t. the exponential part). We cannot hope to characterize complete extensions
with a 2p approach, as we have shown there can be O(3p) many w.r.t. a backdoor of size
p. Hence, in this case we generalized the 3p technique of AFs to to SETAFs. In summary,
we showed that the backdoor approach is indeed applicable to SETAFs, and along the
way even improved the state-of-the-art in the special case of AFs.

6.1.3 The Treewidth-Based Approach
In Chapter 5 we investigated the parameter treewidth. We first established that even
with constant primal-treewidth it is impossible to obtain polynomial time reasoning (as
always under standard complexity theoretic assumptions). This is in contrast to our
positive results regarding SCC-recursiveness and backdoors; intuitively, the reason for
this discrepancy is that we can encode the “hard parts” of a SETAF in the collective
attacks, while the primal structure remains simple—cf. Figure 5.1. In this example the
clauses of a propositional formula in CNF are encoded as collective attacks of a SETAF,
and the “choice” between the positive and negative instance of a literal is simply modeled
as a symmetric attack. As the focus of the backdoor approach lies on the arguments
rather than the attacks, this route is indifferent to the “overlapping attacks”. Hence, we
obtain a backdoor size to even-cycle-freeness (and acyclicity) of k for the reduction in
Figure 5.1 for k variables in the original propositional formula, while we obtain constant
treewidth.

Given this negative result, the focus of our investigations shifted to the incidence graph,
which more accurately captures the structure of a SETAF (note that while many SETAFs
can map to the same primal graph, the incidence graph uniquely identifies a SETAF). To
this end we first established that FPT time reasoning is possible for all semantics under our
consideration w.r.t. incidence-treewidth via Courcelle’s theorem and a characterization in
monadic second order logic. We then refined these results by providing tailored algorithms
for selected semantics (each illustrating a key idea). Similar to our backdoor approach, we
were able to obtain an improvement in the asymptotic runtime over the state-of-the-art
in AFs. This is obtained by a technical change of the use of colors: while in the AF
approach of [DPW12] it is possible to “upgrade” an “undecided” color to an out “color”,

155

6. Conclusion

we disallow this change in our approach. Instead, we fully rely on provisional colors,
which allows us to obtain an improved asymptotic runtime for join nodes (which are
the computational bottleneck), as far fewer candidate solutions have to be compared.
In summary, we showed that the treewidth approach is applicable for SETAFs for the
incidence graph (but not for the primal graph), and the close look to the structure again
allowed us to obtain runtime improvements over the state-of-the-art even in the special
case of AFs.

6.1.4 Comparison and Compatibility
We have seen tree different general approaches to achieve computational advantages.
In the following we want to briefly highlight why it makes sense to talk about these
techniques specifically, as they are, in a sense, pairwise orthogonal. It follows from the
respective AF result (see [DHK+22]), together with the fact that in the special case of
AFs the primal-treewidth equals the incidence-treewidth, that in a SETAF the parameters
treewidth and backdoors are unrelated. That is, there is a family of AFs/SETAFs where
one parameter can be arbitrarily high while the other remains constantly low. Hence, it
makes sense to initially consider both variants, and depending on the problem at hand
choose whichever is more suitable. In this context is is noteworthy that also a hybrid
parameter backdoor-treewidth has been investigated for AFs [DHK+22], where the new
parameter value dominates both the backdoor and treewidth parameter value. While
it is reasonable to assume that this technique generalizes to SETAFs, the drawback of
this approach is that there are as of yet no efficient methods to find the parameter value
(or its witness, in this case a backdoor with small treewidth in the so-called torso graph,
which is needed to perform the actual calculations). On the other hand, a backdoor
to low treewidth (a “treewidth-backdoor”) has not yet been investigated. While this
parameter might work in principle, it combines the worst of the both worlds, as finding
such a backdoor poses a major computational issue, and in addition the final computation
along the tree decomposition is everything but straight-forward.

Finally, regarding SCC-recursiveness it is easy to see that both the number as well as
the size of the SCCs is independent of both treewidth and backdoor size (other than
that each non-trivial SCC induces at least one cycle). However, our work has shown
that any technique that allows for the consideration of mitigated attacks and is closed
under argument- and attack-deletion can be used for the intermediate step of evaluating
one SCC in an incremental computation procedure. Both the backdoor- and treewidth
approach trivially allow for argument- and attack-deletion (in that the parameter value
does not increase), and the consideration of mitigated attacks should not pose a major
issue 10.

In summary, our approaches are orthogonal, but can be combined in the future.
10In this regard it is noteworthy that mitigated attacks can also be “simulated” by adding a novel

self-attacking argument to the tail of a mitigated attack, as is discussed for SETAFs in the context of
splitting [BDKW24] or is done for SCC-recursiveness on ADFs [GRS21]. This effectively means that we
do not need to consider mitigated attacks in a solver if we perform this pre-processing step.

156

6.2. Future Work & Outlook

6.2 Future Work & Outlook
With the introduction of the SETAF-reduct and the modularization property, the fam-
ily of semantics based on weak admissibility can be defined for SETAFs. Preliminary
work in this regard in connection with structured argumentation was recently pub-
lished [BKU24]. While it is reasonable to assume that problems w.r.t. weak-admissibility
for SETAFs will be PSPACE-complete as for AFs [DUW22], thorough investigations
regarding computational aspects have not yet been conducted. The notion of SCC-
recursiveness for SETAFs gives rise to the possibility to define new semantics such as
cf2 [BGG05] and stage2 [DG12]. Moreover, our investigations serve as a starting point
for a structural analysis of HYPAFs—frameworks with sets of arguments attacking
sets of arguments [DDK+23]—which generalize SETAFs. HYPAFs have recently been
shown to capture the semantics of assumption-based argumentation with preferences
(ABA+) [DDK+24]. For these frameworks, future work includes a principle-based anal-
ysis, as well as a thorough investigation of computational aspects. Finally, while our
considerations are mainly theoretical analyses, in the future these approaches can be
implemented and measured in comparison to existing SETAF solvers, such as via Answer-
Set-Programming (ASP) [DGW18]. While the backdoor-approach has recently been
implemented to solve problems in structured argumentation [AU24], this is still open for
the other approaches.

We showed that SETAFs indeed yield the same advantages w.r.t. principles (barring
tightness), and that the advanced algorithmic ideas under our consideration are applicable
in the context of SETAFs. SETAFs are a minimally-invasive generalization of AFs which
allow for additional modeling power while retaining the advantages of simplicity and
the computational upper bounds of AFs. Now that the computational landscape for
SETAFs is more clear, in the future we might see more and more applications that make
use of their extended syntax. This is in line with recent trends in the computational
argumentation community that call for a more in depth analysis of algorithmic ideas for
abstract argumentation [Dun22].

157

Overview of Generative AI Tools
Used

For this work no generative AI tools were used. In particular, this work contains no
generated text, neither in full nor in changed form. Moreover, all figures, tables, etc.
were created by the author without the help of AI tools. For spellchecking the Latex
IDE TeXstudio was used, version 4.8.1 (https://texstudio.org/).

159

https://texstudio.org/

List of Figures

2.1 The standard reduction . 19

4.1 SETAF primal graph, running example for Chapter 4 73
4.2 A NOEVEN-backdoor and the remaining SETAF after removal 74
4.3 Example for the function propagateIO . 78
4.4 Example for the function propagateU . 80
4.5 Illustration of high number of complete extensions w.r.t. backdoor size . . 85
4.6 Example for the backdoor-algorithm for complete extensions 87

5.1 Hardness-proof for primal-treewidth . 97
5.2 Hardness-proof for primal-treewidth (preferred semantics) 98
5.3 Running example for Chapter 5 . 101
5.4 Sub-frameworks per node of the running example 103
5.5 All st-colorings for our running example 107
5.6 St-colorings for leaf nodes and forget argument nodes 108
5.7 St-colorings forget attack nodes . 109
5.8 St-colorings for insert attack nodes . 112
5.9 St-colorings for insert argument nodes . 113
5.10 St-colorings for join nodes . 117
5.11 Selected ad-colorings for our running example 124
5.12 Selected co-colorings for our running example 140

161

List of Tables

2.1 Complexity of reasoning in SETAFs . 18

3.1 Overview of SETAF principles . 23

163

Bibliography

[AMW17] Michael Abseher, Nysret Musliu, and Stefan Woltran. htd - A free, open-
source framework for (customized) tree decompositions and beyond. In
Proceedings of the 14th International Conference on Integration of AI and
OR Techniques in Constraint Programming, CPAIOR 2017, pages 376–386.
Springer, 2017. doi: 10.1007/978-3-319-59776-8_30.

[AS17] Ryuta Arisaka and Ken Satoh. Coalition formability semantics with
conflict-eliminable sets of arguments. In roceedings of the 16th Conference
on Autonomous Agents and MultiAgent Systems, AAMAS 2017, pages
1469–1471. ACM, 2017. doi: 10.5555/3091125.3091332.

[AU24] Kiet Ngyuen Anh and Markus Ulbricht. Preferred reasoning in ABA by
cycle-breaking. In Proceedings of the 33rd International Joint Confer-
ence on Artificial Intelligence, IJCAI 2024, pages 3523–3531, 2024. doi:
10.24963/ijcai.2024/390.

[AW14] Amir Abboud and Virginia Vassilevska Williams. Popular Conjectures
Imply Strong Lower Bounds for Dynamic Problems. In Proceedings of
the 55th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2014, pages 434–443, 2014. doi: 10.1109/FOCS.2014.53.

[Bau11] Ringo Baumann. Splitting an argumentation framework. In Proceedings
of the 11th International Conference on Logic Programming and Non-
monotonic Reasoning, LPNMR 2011, volume 6645 of LNCS, pages 40–53.
Springer, 2011. doi: 10.1007/978-3-642-20895-9_6.

[BB20] Meghyn Bienvenu and Camille Bourgaux. Querying and repairing incon-
sistent prioritized knowledge bases: Complexity analysis and links with
abstract argumentation. In Proceedings of the 17th International Confer-
ence on Principles of Knowledge Representation and Reasoning, KR 2020,
pages 141–151, 2020. doi: 10.24963/KR.2020/15.

[BBU20a] Ringo Baumann, Gerhard Brewka, and Markus Ulbricht. Comparing
weak admissibility semantics to their dung-style counterparts - reduct,
modularization, and strong equivalence in abstract argumentation. In

165

https://doi.org/10.1007/978-3-319-59776-8_30
https://doi.org/10.5555/3091125.3091332
https://doi.org/10.24963/ijcai.2024/390
https://doi.org/10.1109/FOCS.2014.53
https://doi.org/10.1007/978-3-642-20895-9_6
https://doi.org/10.24963/KR.2020/15

Proceedings of the 17th International Conference on Principles of Knowl-
edge Representation and Reasoning, KR 2020, pages 79–88, 2020. doi:
10.24963/kr.2020/9.

[BBU20b] Ringo Baumann, Gerhard Brewka, and Markus Ulbricht. Revisiting the
foundations of abstract argumentation - semantics based on weak admissi-
bility and weak defense. In Proceedings of the 34th AAAI Conference on
Artificial Intelligence, AAAI 2020, pages 2742–2749. AAAI Press, 2020.
doi: 10.1609/aaai.v34i03.5661.

[BCD+21] Antonis Bikakis, Andrea Cohen, Wolfgang Dvořák, Giorgos Flouris, and
Simon Parsons. Joint attacks and accrual in argumentation frameworks.
FLAP, 8(6):1437–1501, 2021.

[BCG11] Pietro Baroni, Martin Caminada, and Massimiliano Giacomin. An introduc-
tion to argumentation semantics. Knowledge Eng. Review, 26(4):365–410,
2011. doi: 10.1017/S0269888911000166.

[BDKM17] Elise Bonzon, Jérôme Delobelle, Sébastien Konieczny, and Nicolas Maudet.
A parametrized ranking-based semantics for persuasion. In Proceedings of
the 11th International Conference on Scalable Uncertainty Management,
SUM 2017, volume 10564 of LNCS, pages 237–251. Springer, 2017. doi:
10.1007/978-3-319-67582-4_17.

[BDKU24] Giovanni Buraglio, Wolfgang Dvořák, Matthias König, and Markus Ul-
bricht. Justifying argument acceptance with collective attacks: Discussions
and disputes. In Proceedings of the 33rd International Joint Conference on
Artificial Intelligence, IJCAI 2024, pages 3281–3288, 2024. doi: 10.24963/ij-
cai.2024/363.

[BDKW24] Giovanni Buraglio, Wolfgang Dvořák, Matthias König, and Stefan Woltran.
Splitting argumentation frameworks with collective attacks. In Proceedings
of the 5th International Workshop on Systems and Algorithms for Formal
Argumentation, SAFA 2024, CEUR Workshop Proceedings, pages 41–55,
2024.

[BDST23] Stefano Bistarelli, Victor David, Francesco Santini, and Carlo Taticchi.
Temporal probabilistic argumentation frameworks. In Proceedings of the
38th Italian Conference on Computational Logic, CILC 2023, volume 3428
of CEUR Workshop Proceedings. CEUR-WS.org, 2023.

[BG07] Pietro Baroni and Massimiliano Giacomin. On principle-based evaluation
of extension-based argumentation semantics. Artif. Intell., 171(10-15):675–
700, 2007. doi: 10.1016/j.artint.2007.04.004.

166

https://doi.org/10.24963/kr.2020/9
https://doi.org/10.1609/aaai.v34i03.5661
https://doi.org/10.1017/S0269888911000166
https://doi.org/10.1007/978-3-319-67582-4_17
https://doi.org/10.24963/ijcai.2024/363
https://doi.org/10.24963/ijcai.2024/363
https://doi.org/10.1016/j.artint.2007.04.004

[BGG05] Pietro Baroni, Massimiliano Giacomin, and Giovanni Guida. SCC-
recursiveness: a general schema for argumentation semantics. Artif. Intell.,
168(1-2):162–210, 2005. doi: 10.1016/j.artint.2005.05.006.

[BGGvdT18] Pietro Baroni, Dov Gabbay, Massimiliano Giacomin, and Leendert van der
Torre, editors. Handbook of Formal Argumentation. College Publications,
2018.

[BGL14] Pietro Baroni, Massimiliano Giacomin, and Beishui Liao. On topology-
related properties of abstract argumentation semantics. A correction and
extension to dynamics of argumentation systems: A division-based method.
Artif. Intell., 212:104–115, 2014. doi: 10.1016/j.artint.2014.03.003.

[BHW16] Bernhard Bliem, Markus Hecher, and Stefan Woltran. On efficiently
enumerating semi-stable extensions via dynamic programming on tree
decompositions. In Proceedings of the 6th International Conference on
Computational Models of Argument, COMMA 2016, volume 287 of FAIA,
pages 107–118. IOS Press, 2016. doi: 10.3233/978-1-61499-686-6-107.

[BJN+21] Dorothea Baumeister, Matti Järvisalo, Daniel Neugebauer, Andreas Niska-
nen, and Jörg Rothe. Acceptance in incomplete argumentation frameworks.
Artif. Intell., 295:103470, 2021. doi: 10.1016/J.ARTINT.2021.103470.

[BK23] Michael Bernreiter and Matthias König. From qualitative choice logic to
abstract argumentation. In Proceedings of the 20th International Conference
on Principles of Knowledge Representation and Reasoning, KR 2023, pages
737–741, 2023. doi: 10.24963/KR.2023/73.

[BKU24] Lydia Blümel, Matthias König, and Markus Ulbricht. Weak admissibility
for ABA via abstract set attacks. In Proceedings of the 21st International
Conference on Principles of Knowledge Representation and Reasoning, KR
2024, pages 178–188, 2024. doi: 10.24963/kr.2024/17.

[Boc03] Alexander Bochman. Collective argumentation and disjunctive logic pro-
gramming. J. Log. Comput., 13(3):405–428, 2003. doi: 10.1093/log-
com/13.3.405.

[Bod96] Hans L. Bodlaender. A linear-time algorithm for finding tree-
decompositions of small treewidth. SIAM J. Comput., 25(6):1305–1317,
1996. doi: 10.1137/S0097539793251219.

[BRT19] Pietro Baroni, Antonio Rago, and Francesca Toni. From fine-grained prop-
erties to broad principles for gradual argumentation: A principled spectrum.
Int. J. Approx. Reason., 105:252–286, 2019. doi: 10.1016/j.ijar.2018.11.019.

[BW10] Gerhard Brewka and Stefan Woltran. Abstract dialectical frameworks. In
Proceedings of the 12th International Conference on Principles of Knowledge
Representation and Reasoning, KR 2010, pages 780–785. AAAI Press, 2010.

167

https://doi.org/10.1016/j.artint.2005.05.006
https://doi.org/10.1016/j.artint.2014.03.003
https://doi.org/10.3233/978-1-61499-686-6-107
https://doi.org/10.1016/J.ARTINT.2021.103470
https://doi.org/10.24963/KR.2023/73
https://doi.org/10.24963/kr.2024/17
https://doi.org/10.1093/logcom/13.3.405
https://doi.org/10.1093/logcom/13.3.405
https://doi.org/10.1137/S0097539793251219
https://doi.org/10.1016/j.ijar.2018.11.019

[Cam14] Martin Caminada. Strong admissibility revisited. In Proceedings of
the 5th International Conference on Computational Models of Argument,
COMMA 2014, volume 266 of FAIA, pages 197–208. IOS Press, 2014. doi:
10.3233/978-1-61499-436-7-197.

[CCD12] Martin Caminada, Walter A. Carnielli, and Paul E. Dunne. Semi-stable
semantics. J. Log. Comput., 22:1207–1254, 2012.

[CGGS15] Andrea Cohen, Sebastian Gottifredi, Alejandro Javier García, and
Guillermo Ricardo Simari. An approach to abstract argumentation with
recursive attack and support. J. Appl. Log., 13(4):509–533, 2015. doi:
10.1016/J.JAL.2014.12.001.

[CGVZ14] Federico Cerutti, Massimiliano Giacomin, Mauro Vallati, and Marina
Zanella. An SCC recursive meta-algorithm for computing preferred la-
bellings in abstract argumentation. In Proceedings of the 14th International
Conference on Principles of Knowledge Representation and Reasoning, KR
2014. AAAI Press, 2014.

[Cha12] Günther Charwat. Tree-decomposition based algorithms for abstract argu-
mentation frameworks. Master’s thesis, TU Wien, 2012.

[CKRU24] Martin Caminada, Matthias König, Anna Rapberger, and Markus Ul-
bricht. Attack semantics and collective attacks revisited. Argument and
Computation, 2024. Pre-press. doi: 10.3233/AAC-230011.

[CLL+08] Jianer Chen, Yang Liu, Songjian Lu, Barry O’Sullivan, and Igor Razgon.
A fixed-parameter algorithm for the directed feedback vertex set problem.
J. ACM, 55(5):21:1–21:19, 2008. doi: 10.1145/1411509.1411511.

[CMDM05] Sylvie Coste-Marquis, Caroline Devred, and Pierre Marquis. Symmetric
argumentation frameworks. In Proceedings of the 8th European Conference
on Symbolic and Quantitative Approaches to Reasoning with Uncertainty,
ECSQARU 2005, volume 3571 of LNCS, pages 317–328. Springer, 2005.
doi: 10.1007/11518655_28.

[Cou87] Bruno Courcelle. Recognizability and second-order definability for sets of
finite graphs. Technical Report I-8634, Université de Bordeaux, 1987.

[Cou90] Bruno Courcelle. Graph rewriting: an algebraic and logic approach. In
Handbook of theoretical computer science, Vol. B, pages 193–242. Elsevier,
Amsterdam, 1990. doi: 10.1016/B978-0-444-88074-1.50010-X.

[DBC01] Paul E. Dunne and Trevor J. M. Bench-Capon. Complexity and combina-
torial properties of argument systems. Technical report, Dept. of Computer
Science, University of Liverpool, 2001.

168

https://doi.org/10.3233/978-1-61499-436-7-197
https://doi.org/10.1016/J.JAL.2014.12.001
https://doi.org/10.3233/AAC-230011
https://doi.org/10.1145/1411509.1411511
https://doi.org/10.1007/11518655_28
https://doi.org/10.1016/B978-0-444-88074-1.50010-X

[DBC02] Paul E. Dunne and Trevor J. M. Bench-Capon. Coherence in finite argu-
ment systems. Artif. Intell., 141(1/2):187–203, 2002. doi: 10.1016/S0004-
3702(02)00261-8.

[DD18] Wolfgang Dvořák and Paul E. Dunne. Computational problems in formal
argumentation and their complexity. In Handbook of Formal Argumentation,
chapter 14, pages 631–687. College Publications, 2018. Also appears in
IfCoLog Journal of Logics and their Applications 4(8):2557–2622.

[DDK+23] Yannis Dimopoulos, Wolfgang Dvořák, Matthias König, Anna Rapberger,
Markus Ulbricht, and Stefan Woltran. Sets attacking sets in abstract
argumentation. In Proceedings of the 21st International Workshop on
Nonmonotonic Reasoning, NMR 2023, volume 3464 of CEUR Workshop
Proceedings, pages 22–31. CEUR-WS.org, 2023.

[DDK+24] Yannis Dimopoulos, Wolfgang Dvořák, Matthias König, Anna Rapberger,
Markus Ulbricht, and Stefan Woltran. Redefining ABA+ semantics via
abstract set-to-set attacks. In Proceedings of the 38th AAAI Conference on
Artificial Intelligence, AAAI 2024, pages 10493–10500. AAAI Press, 2024.
doi: 10.1609/AAAI.V38I9.28918.

[DDLW15] Paul E. Dunne, Wolfgang Dvořák, Thomas Linsbichler, and Stefan Woltran.
Characteristics of multiple viewpoints in abstract argumentation. Artif.
Intell., 228:153–178, 2015. doi: 10.1016/j.artint.2015.07.006.

[DFW19] Wolfgang Dvořák, Jorge Fandinno, and Stefan Woltran. On the expressive
power of collective attacks. Argument Comput., 10(2):191–230, 2019. doi:
10.3233/AAC-190457.

[DG12] Wolfgang Dvořák and Sarah Alice Gaggl. Incorporating stage semantics
in the scc-recursive schema for argumentation semantics. In Proceedings
of the 14th International Workshop on Non-Monotonic Reasoning, NMR
2012, 2012.

[DG16] Wolfgang Dvořák and Sarah Alice Gaggl. Stage semantics and the SCC-
recursive schema for argumentation semantics. J. Log. Comput., 26(4):1149–
1202, 2016.

[DGW18] Wolfgang Dvořák, Alexander Greßler, and Stefan Woltran. Evaluating
SETAFs via answer-set programming. In Proceedings of the 2nd Interna-
tional Workshop on Systems and Algorithms for Formal Argumentation,
SAFA 2018, volume 2171 of CEUR Workshop Proceedings, pages 10–21.
CEUR-WS.org, 2018.

[DHK+22] Wolfgang Dvořák, Markus Hecher, Matthias König, André Schidler, Ste-
fan Szeider, and Stefan Woltran. Tractable abstract argumentation via

169

https://doi.org/10.1016/S0004-3702(02)00261-8
https://doi.org/10.1016/S0004-3702(02)00261-8
https://doi.org/10.1609/AAAI.V38I9.28918
https://doi.org/10.1016/j.artint.2015.07.006
https://doi.org/10.3233/AAC-190457

backdoor-treewidth. In Proceedings of the 36th AAAI Conference on Arti-
ficial Intelligence, AAAI 2022, pages 5608–5615. AAAI Press, 2022. doi:
10.1609/aaai.v36i5.20501 .

[DHM+11] Paul E. Dunne, Anthony Hunter, Peter McBurney, Simon Parsons, and
Michael Wooldridge. Weighted argument systems: Basic definitions, algo-
rithms, and complexity results. Artif. Intell., 175(2):457–486, 2011. doi:
10.1016/j.artint.2010.09.005.

[DJWW14] Wolfgang Dvořák, Matti Järvisalo, Johannes Peter Wallner, and Stefan
Woltran. Complexity-sensitive decision procedures for abstract argumenta-
tion. Artif. Intell., 206(0):53 – 78, 2014. doi: 10.1016/j.artint.2013.10.001.

[DKUW21] Wolfgang Dvořák, Matthias König, Markus Ulbricht, and Stefan Woltran.
A reduct-driven study of argumentation frameworks with collective attacks.
In Proceedings of the 19th International Workshop on Non-Monotonic
Reasoning, NMR 2021, pages 285–294, 2021.

[DKUW22] Wolfgang Dvořák, Matthias König, Markus Ulbricht, and Stefan Woltran.
Rediscovering argumentation principles utilizing collective attacks. In
Proceedings of the 19th International Conference on Principles of Knowl-
edge Representation and Reasoning, KR 2022, pages 122–131, 2022. doi:
10.24963/kr.2022/13.

[DKUW24] Wolfgang Dvořák, Matthias König, Markus Ulbricht, and Stefan Woltran.
Principles and their computational consequences for argumentation frame-
works with collective attacks. J. Artif. Intell. Res., 79:69–136, 2024. doi:
10.1613/JAIR.1.14879.

[DKW21a] Wolfgang Dvořák, Matthias König, and Stefan Woltran. Graph-classes of
argumentation frameworks with collective attacks. In Proceedings of the
17th European Conference on Logics in Artificial Intelligence, JELIA 2021,
volume 12678 of LNCS, pages 3–17. Springer, 2021.

[DKW21b] Wolfgang Dvořák, Matthias König, and Stefan Woltran. On the complexity
of preferred semantics in argumentation frameworks with bounded cycle
length. In Proceedings of the 17th International Conference on Principles
of Knowledge Representation and Reasoning, KR 2021, pages 671–675,
2021. doi: 10.24963/kr.2021/67.

[DKW22a] Wolfgang Dvořák, Matthias König, and Stefan Woltran. Deletion-backdoors
for argumentation frameworks with collective attacks. In Proceedings of
the 4th International Workshop on Systems and Algorithms for Formal
Argumentation, SAFA 2022, volume 3236 of CEUR Workshop Proceedings,
pages 98–110. CEUR-WS.org, 2022.

170

https://doi.org/10.1609/aaai.v36i5.20501
https://doi.org/10.1016/j.artint.2010.09.005
https://doi.org/10.1016/j.artint.2013.10.001
https://doi.org/10.24963/kr.2022/13
https://doi.org/10.1613/JAIR.1.14879
https://doi.org/10.24963/kr.2021/67

[DKW22b] Wolfgang Dvořák, Matthias König, and Stefan Woltran. Treewidth for
argumentation frameworks with collective attacks. In Proceedings of the 9th
International Conference on Computational Models of Argument, COMMA
2022, pages 140–151. IOS Press, 2022.

[DKW23] Wolfgang Dvořák, Atefeh Keshavarzi Zafarghandi, and Stefan Woltran.
Expressiveness of SETAFs and support-free ADFs under 3-valued se-
mantics. J. Appl. Non Class. Logics, 33(3-4):298–327, 2023. doi:
10.1080/11663081.2023.2244361.

[DKW24] Wolfgang Dvořák, Matthias König, and Stefan Woltran. Parameterized
complexity of abstract argumentation with collective attacks. Argument &
Computation, 2024. Under review.

[DKZLW20] Martin Diller, Atefeh Keshavarzi Zafarghandi, Thomas Linsbichler, and
Stefan Woltran. Investigating subclasses of abstract dialectical frameworks.
Argument & Computation, 11:191–219, 2020. doi: 10.3233/AAC-190481.

[DOS12] Wolfgang Dvořák, Sebastian Ordyniak, and Stefan Szeider. Augmenting
tractable fragments of abstract argumentation. Artificial Intelligence,
186(0):157–173, 2012. doi: 10.1016/j.artint.2012.03.002.

[DPW12] Wolfgang Dvořák, Reinhard Pichler, and Stefan Woltran. Towards fixed-
parameter tractable algorithms for abstract argumentation. Artif. Intell.,
186:1 – 37, 2012. doi: 10.1016/j.artint.2012.03.005.

[DRW20] Wolfgang Dvořák, Anna Rapberger, and Stefan Woltran. Argumentation
semantics under a claim-centric view: Properties, expressiveness and rela-
tion to SETAFs. In Proceedings of the 17th International Conference on
Principles of Knowledge Representation and Reasoning, KR 2020, pages
341–350, 2020. doi: 10.24963/kr.2020/35.

[DSW12] Wolfgang Dvořák, Stefan Szeider, and Stefan Woltran. Abstract argumenta-
tion via monadic second order logic. In Proceeedings of the 6th International
Conference on Scalable Uncertainty Management, SUM 2012, volume 7520
of LNCS, pages 85–98. Springer, 2012. doi: 10.1007/978-3-642-33362-0_7.

[DT96] Yannis Dimopoulos and Alberto Torres. Graph theoretical structures in
logic programs and default theories. Theor. Comput. Sci., 170(1-2):209–244,
1996. doi: 10.1016/S0304-3975(96)80707-9.

[Dun95] Phan Minh Dung. On the acceptability of arguments and its fundamental
role in nonmonotonic reasoning, logic programming and n-person games.
Artif. Intell., 77(2):321–358, 1995. doi: 10.1016/0004-3702(94)00041-X.

[Dun07] Paul E. Dunne. Computational properties of argument systems satisfying
graph-theoretic constraints. Artif. Intell., 171(10-15):701–729, 2007. doi:
10.1016/j.artint.2007.03.006.

171

https://doi.org/10.1080/11663081.2023.2244361
https://doi.org/10.3233/AAC-190481
https://doi.org/10.1016/j.artint.2012.03.002
https://doi.org/10.1016/j.artint.2012.03.005
https://doi.org/10.24963/kr.2020/35
https://doi.org/10.1007/978-3-642-33362-0_7
https://doi.org/10.1016/S0304-3975(96)80707-9
https://doi.org/10.1016/0004-3702(94)00041-X
https://doi.org/10.1016/j.artint.2007.03.006

[Dun09] Paul E. Dunne. The computational complexity of ideal semantics. Artif.
Intell., 173(18):1559–1591, 2009. doi: 10.1016/j.artint.2009.09.001.

[Dun22] Paul E. Dunne. Well, to be honest, I wouldn’t start from here at all. In
Proceedings of the 9th International Conference on Computational Models
of Argument, COMMA 2022, volume 353 of FAIA, pages 3–14. IOS Press,
2022. doi: 10.3233/FAIA220134.

[Dun24] Paul E. Dunne. Decidability in argumentation semantics. Argument
Comput., 15(2):191–204, 2024. doi: 10.3233/AAC-220020.

[DUW22] Wolfgang Dvořák, Markus Ulbricht, and Stefan Woltran. Recursion in
abstract argumentation is hard - on the complexity of semantics based
on weak admissibility. J. Artif. Intell. Res., 74:1403–1447, 2022. doi:
10.1613/JAIR.1.13603.

[Dvo12] Wolfgang Dvořák. Computational Aspects of Abstract Argumentation. PhD
thesis, Vienna University of Technology, Institute of Information Systems,
2012.

[DW10] Wolfgang Dvořák and Stefan Woltran. Complexity of semi-stable and stage
semantics in argumentation frameworks. Inf. Process. Lett., 110(11):425–
430, 2010. doi: 10.1016/j.ipl.2010.04.005.

[DW11] Wolfgang Dvořák and Stefan Woltran. On the intertranslatability of
argumentation semantics. J. Artif. Intell. Res. (JAIR), 41:445–475, 2011.

[FB19] Giorgos Flouris and Antonis Bikakis. A comprehensive study of argumenta-
tion frameworks with sets of attacking arguments. Int. J. Approx. Reason.,
109:55–86, 2019. doi: 10.1016/j.ijar.2019.03.006.

[FHM19] Johannes K. Fichte, Markus Hecher, and Arne Meier. Counting complexity
for reasoning in abstract argumentation. In Proceedings of the 33rd AAAI
Conference on Artificial Intelligence, AAAI 2019, pages 2827–2834. AAAI
Press, 2019. doi: 10.1609/aaai.v33i01.33012827.

[FHMM21] Johannes Klaus Fichte, Markus Hecher, Yasir Mahmood, and Arne Meier.
Decomposition-guided reductions for argumentation and treewidth. In Pro-
ceedings of the 30th International Joint Conference on Artificial Intelligence,
IJCAI 2021, pages 1880–1886, 2021. doi: 10.24963/ijcai.2021/259.

[FS15] Johannes Klaus Fichte and Stefan Szeider. Backdoors to tractable
answer set programming. Artif. Intell., 220:64–103, 2015. doi:
10.1016/j.artint.2014.12.001.

[FU21] Tom Friese and Markus Ulbricht. On the relationship of modularity
notions in abstract argumentation. In Proceedings of the 19th International
Workshop on Non-Monotonic Reasoning, NMR 2021, pages 51–60, 2021.

172

https://doi.org/10.1016/j.artint.2009.09.001
https://doi.org/10.3233/FAIA220134
https://doi.org/10.3233/AAC-220020
https://doi.org/10.1613/JAIR.1.13603
https://doi.org/10.1016/j.ipl.2010.04.005
https://doi.org/10.1016/j.ijar.2019.03.006
https://doi.org/10.1609/aaai.v33i01.33012827
https://doi.org/10.24963/ijcai.2021/259
https://doi.org/10.1016/j.artint.2014.12.001

[Gab09] Dov M. Gabbay. Semantics for higher level attacks in extended argumen-
tation frames part 1: Overview. Stud Logica, 93(2-3):357–381, 2009. doi:
10.1007/S11225-009-9211-4.

[GGS14] Georg Gottlob, Gianluigi Greco, and Francesco Scarcello. Treewidth
and hypertree width. In Tractability: Practical Approaches to
Hard Problems, pages 3–38. Cambridge University Press, 2014. doi:
10.1017/CBO9781139177801.002.

[GGST21] Dov Gabbay, Massimiliano Giacomin, Guillermo R. Simari, and Matthias
Thimm, editors. Handbook of Formal Argumentation. College Publications,
2021.

[GLS01] Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree decom-
positions: A survey. In Proceedings of the 26th International Symposium
on Mathematical Foundations of Computer Science, MFCS 2001, volume
2136 of LNCS, pages 37–57. Springer, 2001. doi: 10.1007/3-540-44683-4_5.

[GMAB04] Guido Governatori, Michael J. Maher, Grigoris Antoniou, and David
Billington. Argumentation semantics for defeasible logic. J. Log. Comput.,
14(5):675–702, 2004. doi: 10.1093/logcom/14.5.675.

[GMO+14] Serge Gaspers, Neeldhara Misra, Sebastian Ordyniak, Stefan Szeider, and
Stanislav Zivný. Backdoors into heterogeneous classes of SAT and CSP. In
Proceedings of the 28th AAAI Conference on Artificial Intelligence, AAAI
2014, pages 2652–2658. AAAI Press, 2014.

[GOS17] Serge Gaspers, Sebastian Ordyniak, and Stefan Szeider. Backdoor sets for
CSP. In The Constraint Satisfaction Problem: Complexity and Approxima-
bility, volume 7 of Dagstuhl Follow-Ups, pages 137–157. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2017.

[GRS21] Sarah Alice Gaggl, Sebastian Rudolph, and Hannes Straß. On the decompo-
sition of abstract dialectical frameworks and the complexity of naive-based
semantics. J. Artif. Intell. Res., 70:1–64, 2021. doi: 10.1613/jair.1.11348.

[IP99] Russell Impagliazzo and Ramamohan Paturi. Complexity of k-SAT. In
Proceedings of the 14th Annual IEEE Conference on Computational Com-
plexity, CCC 1999, pages 237–240, 1999. doi: 10.1109/CCC.1999.766282.

[IPZ98] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which Prob-
lems Have Strongly Exponential Complexity? In Proceedings of the 39th
Annual Symposium on Foundations of Computer Science, FOCS 1998,
pages 653–662, 1998.

[JPW09] Michael Jakl, Reinhard Pichler, and Stefan Woltran. Answer-set program-
ming with bounded treewidth. In Proceedings of the 21st International

173

https://doi.org/10.1007/S11225-009-9211-4
https://doi.org/10.1017/CBO9781139177801.002
https://doi.org/10.1007/3-540-44683-4_5
https://doi.org/10.1093/logcom/14.5.675
https://doi.org/10.1613/jair.1.11348
https://doi.org/10.1109/CCC.1999.766282

Joint Conference on Artificial Intelligence, IJCAI 2009, pages 816–822,
2009.

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In Proceed-
ings of a symposium on the Complexity of Computer Computations, The
IBM Research Symposia Series, pages 85–103. Plenum Press, New York,
1972.

[Klo94] Ton Kloks. Treewidth, Computations and Approximations, volume 842 of
LNCS. Springer, 1994. doi: 10.1007/BFb0045375.

[Kön20] Matthias König. Graph-classes of argumentation frameworks with collective
attacks. Master’s thesis, TU Wien, 2020.

[KRU22] Matthias König, Anna Rapberger, and Markus Ulbricht. Just a matter
of perspective. In Proceedings of the 9th International Conference on
Computational Models of Argument, COMMA 2022, volume 353 of FAIA,
pages 212–223. IOS Press, 2022. doi: 10.3233/FAIA220154.

[KvdTV18] Souhila Kaci, Leendert W. N. van der Torre, and Serena Villata. Preference
in abstract argumentation. In Proceedings of the 7th International Confer-
ence on Computational Models of Argument, COMMA 2018, volume 305 of
FAIA, pages 405–412. IOS Press, 2018. doi: 10.3233/978-1-61499-906-5-405.

[KVV22] Atefeh Keshavarzi Zafarghandi, Rineke Verbrugge, and Bart Verheij. Strong
admissibility for abstract dialectical frameworks. Argument Comput.,
13(3):249–289, 2022. doi: 10.3233/AAC-210002.

[LAD+24] Francesco Leofante, Hamed Ayoobi, Adam Dejl, Gabriel Freedman, Deniz
Gorur, Junqi Jiang, Guilherme Paulino-Passos, Antonio Rago, Anna Rap-
berger, Fabrizio Russo, Xiang Yin, Dekai Zhang, and Francesca Toni. Con-
testable AI needs computational argumentation. CoRR, abs/2405.10729,
2024. doi: 10.48550/ARXIV.2405.10729.

[Lin14] Thomas Linsbichler. Splitting abstract dialectical frameworks. In Pro-
ceedings of the 5th International Conference on Computational Models of
Argument, COMMA 2014, volume 266 of FAIA, pages 357–368. IOS Press,
2014. doi: 10.3233/978-1-61499-436-7-357.

[LJK11] Bei Shui Liao, Li Jin, and Robert C. Koons. Dynamics of argumentation
systems: A division-based method. Artif. Intell., 175(11):1790–1814, 2011.
doi: 10.1016/j.artint.2011.03.006.

[LPS16] Thomas Linsbichler, Jörg Pührer, and Hannes Strass. A uniform account
of realizability in abstract argumentation. In Proceedings of the 22nd
European Conference on Artificial Intelligence ECAI 2016, volume 285 of
FAIA, pages 252–260. IOS Press, 2016. doi: 10.3233/978-1-61499-672-9-252.

174

https://doi.org/10.1007/BFb0045375
https://doi.org/10.3233/FAIA220154
https://doi.org/10.3233/978-1-61499-906-5-405
https://doi.org/10.3233/AAC-210002
https://doi.org/10.48550/ARXIV.2405.10729
https://doi.org/10.3233/978-1-61499-436-7-357
https://doi.org/10.1016/j.artint.2011.03.006
https://doi.org/10.3233/978-1-61499-672-9-252

[Mod09] Sanjay Modgil. Reasoning about preferences in argumenta-
tion frameworks. Artif. Intell., 173(9-10):901–934, 2009. doi:
10.1016/J.ARTINT.2009.02.001.

[NP06a] Søren Holbech Nielsen and Simon Parsons. Computing preferred extensions
for argumentation systems with sets of attacking arguments. In Proceedings
of the 1st International Conference on Computational Models of Argument,
COMMA 2006, volume 144 of FAIA, pages 97–108. IOS Press, 2006.

[NP06b] Søren Holbech Nielsen and Simon Parsons. A generalization of Dung’s
abstract framework for argumentation: Arguing with sets of attacking
arguments. In Proceedings of the 3rd International Workshop on Argu-
mentation in Multi-Agent Systems, ArgMAS 2006, volume 4766 of LNCS,
pages 54–73. Springer, 2006. doi: 10.1007/978-3-540-75526-5_4.

[ON08] Nir Oren and Timothy J. Norman. Semantics for evidence-based argumen-
tation. In Proceedings of 2nd International Conference on Computational
Models of Argument, COMMA 2008, volume 172 of FAIA, pages 276–284.
IOS Press, 2008.

[OSS21] Sebastian Ordyniak, André Schidler, and Stefan Szeider. Backdoor DNFs.
In Proceedings of Proceedings of the 30th International Joint Conference
on Artificial Intelligence, IJCAI 2021, pages 1403–1409. ijcai.org, 2021.
doi: 10.24963/ijcai.2021/194.

[Pol16] Sylwia Polberg. Understanding the abstract dialectical framework. In
Proceedings of the 15th European Conference On Logics In Artificial Intel-
ligence, JELIA 2016, volume 10021 of LNCS, pages 430–446, 2016. doi:
10.1007/978-3-319-48758-8_28.

[Pol17] Sylwia Polberg. Developing the Abstract Dialectical Framework. PhD thesis,
Vienna University of Technology, Institute of Information Systems, 2017.

[PW23] Andrei Popescu and Johannes Peter Wallner. Reasoning in assumption-
based argumentation using tree-decompositions. In Proceedings of the
18th European Conference on Logics in Artificial Intelligence, JELIA 2023,
volume 14281 of LNCS, pages 192–208. Springer, 2023. doi: 10.1007/978-
3-031-43619-2_14.

[RS86] Neil Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects
of tree-width. J. Algorithms, 7(3):309–322, 1986. doi: 10.1016/0196-
6774(86)90023-4.

[RS09] Iyad Rahwan and Guillermo R. Simari. Argumentation in Artificial Intelli-
gence. Springer, 2009.

175

https://doi.org/10.1016/J.ARTINT.2009.02.001
https://doi.org/10.1007/978-3-540-75526-5_4
https://doi.org/10.24963/ijcai.2021/194
https://doi.org/10.1007/978-3-319-48758-8_28
https://doi.org/10.1007/978-3-031-43619-2_14
https://doi.org/10.1007/978-3-031-43619-2_14
https://doi.org/10.1016/0196-6774(86)90023-4
https://doi.org/10.1016/0196-6774(86)90023-4

[RST99] Neil Robertson, P. D. Seymour, and Robin Thomas. Permanents, pfaffian
orientations, and even directed circuits. Annals of Mathematics, 150(3):929–
975, 1999.

[VBvdT11] Serena Villata, Guido Boella, and Leendert W. N. van der Torre. Attack
semantics for abstract argumentation. In Proceedings of Proceedings of
the 22nd International Joint Conference on Artificial Intelligence, IJCAI
2011, pages 406–413. IJCAI/AAAI, 2011. doi: 10.5591/978-1-57735-516-
8/IJCAI11-076.

[vdTV17] Leon van der Torre and Srdjan Vesic. The principle-based approach to
abstract argumentation semantics. FLAP, 4(8):2735–2778, 2017.

[Ver96] Bart Verheij. Rules, reasons, arguments: formal studies of argumentation
and defeat. PhD thesis, Maastricht University, Netherlands, January 1996.
doi: 10.26481/dis.19961205hv.

[WCG09] Yining Wu, Martin Caminada, and Dov M. Gabbay. Complete extensions in
argumentation coincide with 3-valued stable models in logic programming.
Studia Logica, 93(2-3):383–403, 2009. doi: 10.1007/s11225-009-9210-5.

[YCQ+21] Liuwen Yu, Dongheng Chen, Lisha Qiao, Yiqi Shen, and Leendert van der
Torre. A principle-based analysis of abstract agent argumentation seman-
tics. In Proceedings of the 18th International Conference on Principles of
Knowledge Representation and Reasoning, KR 2021, pages 629–640, 2021.
doi: 10.24963/kr.2021/60.

[YVC20] Bruno Yun, Srdjan Vesic, and Madalina Croitoru. Sets of attacking ar-
guments for inconsistent datalog knowledge bases. In Proceedings of
the 8th International Conference on Computational Models of Argument,
COMMA 2020, volume 326 of FAIA, pages 419–430. IOS Press, 2020. doi:
10.3233/FAIA200526.

176

https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-076
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-076
https://doi.org/10.26481/dis.19961205hv
https://doi.org/10.1007/s11225-009-9210-5
https://doi.org/10.24963/kr.2021/60
https://doi.org/10.3233/FAIA200526

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	State of the Art & Related Work
	Contributions and Overview
	Publications

	Background
	Abstract Argumentation and Collective Attacks
	Complexity of Reasoning in Abstract Argumentation

	Principle-Based Analysis
	Basic Principles
	Reduct and Modularization
	Directionality and Non-Interference
	SCC-Recursiveness
	Incremental Computation
	Discussion

	Backdoor-Based Evaluation
	Towards SETAF Backdoors
	Backdoor Evaluation
	Conditional Lower Bounds for Backdoor Evaluation
	Discussion

	Treewidth-Based Evaluation
	Towards SETAF Treewidth
	Dynamic Programming on SETAFs
	Characterizing Stable Extensions
	Characterizing Admissible Sets
	Characterizing Complete Extensions
	Discussion

	Conclusion
	Summary & Insights
	Future Work & Outlook

	Overview of Generative AI Tools Used
	List of Figures
	List of Tables
	Bibliography

