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Abstract

To enhance immersion in virtual reality applications, this dissertation addresses the
challenges and opportunities of implementing natural hand interactions through hardware-
based hand tracking, particularly in the context of multi-user colocated VR environments.
The research introduces ’EasyHand’, a hand-tracking framework that unifies detection
mapping, visualization, interaction, and networking for several tracking systems to
facilitate intuitive hand tracking for visualization and interaction while addressing the
limitations of tracking range dead spots in colocated scenarios.
The first experiment describes a novel approach for creating colocated multi-user VR
scenarios for SLAM-tracked (Simultaneous Localization and Mapping) VR headsets
without the need for external tracking cameras to continuously track all users. By
leveraging the hand recognition capabilities of the VR headset, the system synchronizes
the virtual space for colocated users. This method is compared to alternative approaches
such as initial positioning and ArUco marker recognition, with a comprehensive evaluation
of accuracy, consistency, and simplicity, demonstrating the superior performance of the
proposed hand tracking-based calibration method.
The dissertation proceeds with an experiment that demonstrates a method for trans-
forming hand data detected via an RGB camera and the MediaPipe framework into 3D
space. This technique includes user-specific hand length estimation to determine 3D hand
positions, enabling the detection of multiple hands simultaneously. This allows a hand
detection system to track the hands of other users and thus also support their detection
systems in the event that they are not able to see these hands. Comparative analysis with
Oculus Quest and Leap Motion, conducted under different conditions (static & dynamic)
and distances from the tracking device, confirms the effectiveness of the proposed method,
with significantly extended tracking ranges for colocated scenarios.
Finally, the dissertation explores methods for assigning tracked hands to colocated
virtual users, introducing an algorithm that leverages past assignments to enhance future
assignments’ robustness and effectiveness. Multiple assignment algorithms are evaluated,
highlighting the precision of the proposed algorithm.
Overall, this work provides initial insights into calibrating multi-user environments,
compensating for tracking loss and assignment of hands to users for colocated VR scenarios,
while maintaining user-specific interactions, representing a substantial advancement in
VR technology.
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CHAPTER 1
Introduction

"Curiosity is the most powerful driving force in the universe because it can
overcome the two greatest braking forces in the universe: Reason and Fear."

— Walter Moers - The City Of Dreaming Books

Hand tracking has emerged as a popular feature in Virtual Reality (VR) systems, offering
users a multitude of interaction possibilities while granting maximum hand freedom
without the need for handheld controllers. Controllers are the modern standard method
for interaction, supporting direct manipulation of virtual content via a series of buttons
and gestures through stable tracking of hand position as well as multimodal feedback
(vibration and sound, passive haptic feedback from buttons, triggers, etc.). However,
since the use of controllers obscures the user’s own hands and makes free gesticulation and
the use of props impossible, hand tracking and hand interactions offer significantly more
scope and more natural interaction possibilities. While the majority of applications and
use cases for virtual reality in general and hand interactions in particular have historically
focused on single-user experiences, there is a growing trend towards multi-user approaches.
Specifically, colocated multi-user environments, where individuals share both virtual and
physical spaces, hold the promise of immersive virtual activities.

As there is a push in colocated VR due to affordability, technical feasibility and user
acceptance, new challenges and opportunities for hand tracking also arise: hands of
several users must be tracked accurately and assigned to the correct user. Also, tracking
redundancy when multiple systems recognize the same hand, or when one system recog-
nizes multiple hands, can be used to improve tracking stability and range, or even to
synchronize the coordinate systems of the head-mounted displays (HMDs). Solving this
challenge and utilizing the mentioned possibilities is the goal that this work tries to solve

This dissertation shows solutions that are designed to enable colocated VR environments
for SLAM-tracked virtual reality headsets equipped with hand-tracking technology.
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1. Introduction

Furthermore, it explores the usability of this approach in comparison to more complex
alternatives. Additionally, this work explores the limitations encountered when using
hand tracking in such scenarios and propose strategies to overcome these limitations.
These enable the integration of multiple hand-tracking systems that can assist each other
in cases where hands become obscured.

These solutions are combined and integrated in a comprehensive system that provides an
accessible framework for developers who want to create a unified application independently
from the tracking system and are able to create colocated virtual environments solely
reliant on hand-tracking technology and do not require additional hardware such as an
external camera rig. Additionally, it leverages the transformation of two-dimensional
tracked hands into the three-dimensional world through pose estimation and robust user
assignment. Furthermore, this work evaluates the usability of these systems and explore
potential enhancements that can improve usability and enable more effective interactions
within colocated multi-user VR environments, ultimately supporting a more natural VR
experience and eliminating the need for physical controllers.

1.1 Motivation
Since the release of Oculus Rift and HTC Vive, virtual reality (VR) has experienced
significant growth within the commercial sector [34]. This expansion is evident both
in personal gaming, with Sony’s PSVR and the VR stores offered by HTC Vive and
Oculus, as well as in the industrial sector, where VR is extensively used for training
(e.g. Strivr1) and marketing purposes (e.g. IKEA Virtual Showroom2). VR has evolved
to offer the most immersive digital experiences available and has become increasingly
user-friendly and easy to set up, featuring fewer cables and cameras [2][34]. With the
advent of Simultaneous Localization and Mapping (SLAM) technology, VR systems can
now function without outside-in tracking technology, enhancing their portability.

The trend to minimize hardware dependency continues with the emerging technology
in optical hand-tracking. This allows users to interact within the virtual world solely
using their hands, eliminating the need for additional controllers or gloves. Therefore the
virtual representation of the hand could better match the real hand and the interaction
with bare hands in the virtual environment may have a positive influence on the sense or
presence.

In recent years, a growing desire among people to share digital experiences was observed,
as evidenced by the increasing usage of social media platforms [6]. This desire for shared
experiences extends to VR, particularly in colocated environments. VR arenas and
similar spaces (e.g. YULLBE3) take advantage of this technology to create collaborative
and immersive virtual reality experiences.

1Strivr: https://www.strivr.com/ (Accessed: 2024-06-21)
2IKEA VR Showroom: https://present.digital/ikea/ (Accessed: 2024-06-21)
3YULLBE: https://yullbe.com/ (Accessed: 2024-06-21)
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1.2. Problem Statement and Contribution

Many of these colocated experiences currently rely on an array of additional hardware,
including body-worn trackers, external camera setups, and cable-bound head-mounted
displays attached to user-worn backpacks. The optimization of the setup effort and
space limitation of such scenarios would benefit from the development of SLAM-tracked
headsets capable of creating colocated environments without the need for extra hardware
or cameras. Furthermore, the integration of hand-tracking capabilities could enhance
the sense of presence and collaboration, especially in cases where a single user’s hand
tracking may fail due to obscured hands, where limited tracking volume and handling of
physical objects may cause the hands to not be properly visible to the tracking sensor. In
colocated setups, multiple hand-tracking systems could assist each other, enlarging the
tracking range in which a hand can be detected. This would result in a scenario where
users only need to wear a lightweight HMD to fully immerse themselves in a shared VR
experience, making it independent of the surrounding hardware setup and having the
devices support each other in their tracking. Ideally, this is then not limited to a specific
HMD and thus allows interoperability, which to our current knowledge is not yet possible
with current headsets (e.g. Meta Quest or Apple Vision Pro).

1.2 Problem Statement and Contribution
In this section we will briefly summarize what the goals of this work are, what problems
we encounter and what this work offers as contributions to achieve these goals.

Overall, we want to advance what has been achieved so far in the area of multi-user to
improve hand-based interactions within a physical and virtual shared space in a virtual
reality (VR) application (colocated VR). Such a shared area offers the advantage that
users often are within sight of other users. This means that their hand recognition
systems can also see the hands of the other users. Using this fact to enable the systems to
support each other in tracking is one of the overarching goals of this work. This makes it
possible for the systems to recognize hands and make them virtually usable in situations
in which hands may be hidden or not visible to their own system (for example, when
they are held behind the back).

When developing the methods, it was also important for us to limit ourselves to hardware
that is easily available to a potential end user without incurring high additional costs.
This results in the use of widely available SLAM tracked headsets (such as the Meta
Quest) and the use of RGB cameras in our work, as this allows the use of wide-spread
webcams without the need for expensive hardware such as depth cameras. This should
increase the range of users who can easily use the solution. Of course, these limitations
also entail problems which, to our knowledge, have not yet been solved. These problems
and our contribution to solving them are discussed below.

Numerous hardware options and implementations are available to enable hand tracking
in virtual reality, such as the Leap Motion Sensor, the HTC hand tracking solution or
Megatrack [43][14][37]. However, each of these implementations originates from different
manufacturers and comes with its own software development kit (SDK). Consequently,

3



1. Introduction

each implementation possesses its unique detection events, gesture recognition, finger
joint index mapping, and other specific features. This diversity makes it challenging to
develop hand-tracking applications that work seamlessly across multiple VR systems.
Developers are often forced to choose one particular system, such as Leap Motion, Meta
Quest, or Vive, to focus on their development efforts. Thus, this thesis introduces a
comprehensive hand-tracking framework that consolidates multiple hand-
tracking APIs, simplifying the development process for applications across various
systems. Furthermore, it facilitates colocation capabilities for all supported
systems with the capability to send networking messages between all connected users
(chapter 3). All the implementations presented in this thesis are conducted within this
unified framework.
Many colocation implementations require additional sensors or cameras to track all users
in a shared environment [122][15]. This introduces a more complex setup, which requires
extra effort and expenses. Such a setup runs counter to the purpose of SLAM-tracked
headsets, which are designed to be independent of external cameras for positional tracking.
To address these issues, this thesis proposes a method to enable colocation for
SLAM-tracked headsets using only tracked hands (chapter 4), thus synchronizing
the self-contained coordinate systems of SLAM headsets and eliminating the need for
external tracking systems.
To avoid ambiguity in tracking hands of multiple people, commercial hand tracking
systems are typically limited to tracking only two hands; left and right [37]. However, in
scenarios where tracking more hands is required, as when multiple users are physically
colocated, alternative tracking methods must be considered. Ideally, additional costly
hardware should be avoided (such as RGB-D sensors), restricting the choice to RGB-
based tracking methods, such as the MediaPipe framework [64]. The challenge lies in
the absence of 3D pose capabilities in such systems due to missing depth sensors. In
response, this thesis proposes a method to transform a two-dimensional tracked
hand with relative depth data of finger joints into a three-dimensional repre-
sentation. This work compares this approach with state-of-the-art systems
and demonstrate its high accuracy, enabling interactions and significantly
extending the tracking range, rendering it suitable for assistance in colocated
multi-user scenarios (chapter 5).
In colocated setups, where the limitation of only two concurrent hands is not given, it is
possible to track more than two hands or multiple left or right hands simultaneously. In
such cases, a system must assign each tracked hand to a virtual user. While straightforward
in cases where users are far apart, this assignment becomes non-trivial in close proximity
(within an arms length). This thesis presents a solution for accurately assigning
tracked hands to virtual users, achieving a remarkable 99% accuracy, whether
in close or far proximity. Importantly, this method relies solely on positional
data from hands and users gained from the HMD and does not require
additional hardware (chapter 6).
In summary, we aim to offer the following contributions:

4



1.3. Resulting Publications

• I: A framework that offers versatility for use in both single- and multi-user scenarios,
with the ability to seamlessly switch between tracking systems.

• II: A method to calibrate colocated virtual environments for SLAM-tracked headsets
using only tracked hands.

• III: A method to position a two-dimensionally tracked hand in a three-dimensional
space.

• IV: Enabling the simultaneous tracking and virtual representation of more than
two hands.

• V: A method to assign virtual hands to the corresponding user in colocated multi-
user environments.

We aim to have a system that offers the creation of colocated VR environments, utilizing
RGB hand tracking to monitor all visible hands in the view frustum and assign them to
the respective users, even when their hands are obscured to their own tracking systems,
potentially facilitating tracking and interaction with the virtual environment even when
hands are obscured.

1.3 Resulting Publications
This PhD dissertation is the result of the following peer-reviewed publications, which are
incorporated as published, with minor changes to conform to the overall thesis:

1. Dennis Reimer, Iana Podkosova, Daniel Scherzer and Hannes Kaufmann. "Colo-
cation for SLAM-Tracked VR Headsets with Hand Tracking". In the journal of
Advances in Seated Virtual Reality, Computers 2021, 10(5), 58, 2021.

2. Dennis Reimer, Iana Podkosova, Daniel Scherzer and Hannes Kaufmann. "Evalua-
tion and improvement of HMD-based and RGB-based hand tracking solutions in
VR". In the journal of Beyond Touch: Free Hand Interaction in Virtual Environ-
ments, Frontiers in Virtual Reality, 4:1169313, 2023.

3. Dennis Reimer, Daniel Scherzer and Hannes Kaufmann. "Ownership Estimation for
Tracked Hands in a Colocated VR Environment". In the proceedings of the 33rd
International Conference on Artificial Reality and Telexistence & Eurographics
Symposium on Virtual Environments (ICAT-EGVE), Dublin, Ireland, pp. 105-114,
2023.

As the first author of the publications listed in this thesis, the main work was also done
by me. This included the design, implementation, execution of the experiments, analysis,
and writing of the publications. Other authors were involved in a supporting role and
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1. Introduction

provided advice during the conception, writing, and analysis. This also applies to the
’EasyHand’ framework presented, where the design and implementation of which was
carried out by me, but for which I received supportive feedback during the design process.
Due to the advisory contribution of the additional authors and supervisors, I use the
term ’we’ instead of ’I’ in this dissertation.

The contents of the first paper are described in detail in chapter 4, the second paper is
described in chapter chapter 5 and the third paper is described in chapter 6.

1.4 Thesis Structure
The remaining thesis is structured as follows:

First, chapter 2 presents the background and related work in the areas that are relevant
to this dissertation. This includes an overview of work in SLAM tracking for HMDs,
detecting hands with RGB and RGB-D cameras as well as multi-user virtual reality. Also,
research work done on multi-user interaction and hand-body association is given.

Then, chapter 3 presents ’EasyHand’, the underlying system that is used in all presented
experiments to combine different hand tracking systems and render the results, as well
as to create colocated scenarios and assign tracked hands to users.

Next, chapter 4 describes the first experiment to create colocated scenarios for SLAM-
tracked headsets with hand tracking and compares it with other colocation methods.

The following chapter 5 presents a method for hand size estimation of the user and
the usage of this information to do a 3D pose estimation for tracked hands with an
RGB camera. Tracking accuracy and tracking range are compared with state-of-the-art
tracking systems for VR.

For the final experiment, chapter 6 describes methods to assign tracked hands to virtual
hands in a colocated multi-user VR setup as well as the experiment to determine the
method with the highest accuracy.

Finally, the dissertation is concluded in chapter 7 and an outlook for future development
and improvements is given.

6



CHAPTER 2
Related Work

This chapter provides an overview of the relevant previous research conducted in the
central areas of this thesis. Research topics include SLAM tracking, multi-user VR
systems, hand detection in VR environments, and hand-body association.

Before we go deeper into previous work on the specific research topics relating to this
paper, we want to position our work in the reality-virtuality continuum of Milgram et al.
[75]. They present a scale that can be used to classify whether an application takes place
in complete virtual reality (VR), the virtual augments the real (augmented reality - AR),
the real augments the virtual (augmented virtuality) or whether it takes place completely
in reality. They define everything that mixes the real and the virtual as mixed reality
(MR). Since our work deals with the area of colocated virtual reality and the recognition
of real hands and their virtual representation (AR), we would see the overall context of
this work in the mixed reality area, even if the main use case of this work takes place in
a completely virtual space (VR).

Since we create colocated VR scenarios for SLAM-tracked VR headsets, we begin by
introducing existing SLAM-tracked headsets, elucidating their operational principles, and
addressing the research related to their limitations. Next, we examine hand detection
in both VR and non-VR contexts. We explore research involving RGB depth (RGB-D)
cameras and non-depth (RGB) cameras, highlighting their respective limitations and
advantages. Furthermore, we review studies on 3D pose estimation employing these
camera types. Given that our work involves evaluating the accuracy of our system, we
also present existing research on the accuracy assessment of hand detection systems in
static and dynamic interaction scenarios.

Then, we delve into the domain of multi-user VR systems, categorizing existing approaches
and show work done in interactions within such systems. Additionally, we discuss research
on colocation, with focus on SLAM headsets, as well as experiments done using external
camera systems.

7



2. Related Work

Lastly, we analyze the existing research on hand-body association, their limitations,
and present the reasons why the existing work in this area is of limited use for our
experimental purposes.

2.1 SLAM Tracking for Virtual Reality Headsets
SLAM, an acronym for ’Simultaneous Localization and Mapping’, refers to a set of
algorithms designed to detect the surroundings using one or more cameras or sensors,
build a map of the tracked environment, and determine the position of an object, typically
a robot, vehicle, or VR headset, within this environment [42]. This technology enables
the tracking of objects within a confined space without the need for an external camera
system, such as the HTC VIVE with its external Lighthouse tracking system, which is
used to track objects in a physical space [81], or the Oculus Rift headset, which uses
low-cost external micro-electromechanical systems sensors and a predictive strategy to
minimize lag [57].

An example of SLAM tracking is illustrated in Figure 2.1, where a camera tracks
environmental features, creating a point cloud, while the user is simultaneously positioned
within the mapped environment.1

Figure 2.1: An example of SLAM tracking where features of the environment are tracked
in a point-cloud an the user is positioned in the mapped environment.

SLAM technology finds extensive applications in mobile robots, improving the navigation
of autonomous devices like robot vacuum cleaners [78][52]. It extends to a wide range of
domains, including robotics [53][46], autonomous driving [11], and virtual reality headsets
[9][72]. In our context, we focus on Visual SLAM, which employs images from cameras,

1https://medium.com/@mccartneykyle12/whats-the-deal-with-s-l-a-m-and-track
ing-technology-d1ef6ede9bbb (Accessed: 2023-10-09)
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such as RGB and RGB-D cameras, to achieve SLAM, as opposed to LiDAR SLAM,
which relies on LiDAR sensors. Barros et al. conducted a survey of various Visual
SLAM algorithms, providing an overview for developers to explore existing solutions
and challenges in Visual SLAM research [65]. Similarly, Saputra et al. conducted a
survey specifically on SLAM in dynamic environments, addressing three key problems:
robustness, dynamic object segmentation and tracking, and joint motion segmentation
and reconstruction [97].

An algorithm specifically designed for indoor environments and mobile RGB-D cameras
was presented by Brunetto et al. [8]. They proposed a real-time 3D reconstructed
environment that, while usable, operates too slowly (10Hz) for real-time applications in
VR. In the context of virtual reality headsets, it is essential to have a fast and mobile SLAM
technique. Additionally, since common commercial VR headsets are typically equipped
with RGB cameras without the ability to track depth input, alternative algorithms are
required for Visual SLAM with RGB cameras.

Williams et al. presented a mapping generation system for SLAM tracking with VR
headsets, offering keypoint recognition for monocular SLAM within a 33ms frame time,
improving the approach of Brunetto et al. and facilitating real-time VR scenarios
[124]. Bustos et al. dived into the bundle adjustment technique commonly used in
SLAM systems and its applications in VR tracking for 6DOF tracking and environment
mapping, proposing further improvements to accelerate calculations and enhance the
overall complexity of the SLAM system [9].

In our work, we use the Meta Quest and Meta Quest 2 headsets, that are employing
Visual SLAM tracking with four cameras on the headset for inside-out tracking [72].
Building upon existing SLAM research, they leverage their ’Oculus Insight’ AI technology
to enhance SLAM, controller recognition, and 6DOF tracking for their headset [39]. This
involves using motion capture data and device simulation in predefined scenarios as
training data to improve tracking accuracy, along with presenting a computer vision
architecture to optimize map generation and updating based on changes in the user
environment. The result is a submillimeter tracking accuracy for the Meta Quest 2,
even surpassing the accuracy of the HTC Vive Trackers 2.0, that use outside-in tracking
technology [40].

2.2 Advancing Hand Detection
In addition to the conventional controllers that became standard with commercial VR
headsets, hand tracking presents a natural alternative to translate users’ hand movements
into the virtual space, enabling intuitive interaction. For example, a comparative user
study by Voigt-Antons et al. demonstrated that tracked hand interactions in a virtual
environment enhance the sense of presence and offer improved usability for activities
such as grasping and virtual typing [116].

Manresa-Yee et al. introduced a real-time algorithm to track and recognize hand gestures
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and emphasize the usability for interaction with video games. Their approach involved
identifying various hand characteristics, extracting these features, and using a finite-state
classifier to determine hand configurations [67]. Feuchtner explored the phenomenon of
body ownership illusion in virtual and augmented reality interactions and its potential to
transcend the limitations of our physical bodies, leading to more effective and engaging
interactions [21]. Khundam et al. argued that hand tracking holds great promise in
medical applications due to its naturalness in real-world scenarios and usability in contrast
to conventional controllers, highlighting the ongoing importance of research in this area
[48].

Hand recognition techniques can be broadly categorized into two areas: recognition
using gloves worn by the user [133][110][82], and visual recognition employing cameras
and sensors [43][41][37][130]. In 1986, the company ’VPL Research’ developed the first
commercial glove for hand tracking, which used glass fibers to detect finger curvature
[133], as illustrated in Figure 2.2. Subsequent commercial data gloves, including the
CyberGlove [47], emerged in the wake of this development. Temoche et al. introduced a
low-cost glove designed for VR and commercial use [110], and other researchers sought
to enhance glove tracking [50]. Brendan O’Flynn et al. presented a case of using data
gloves for arthritis rehabilitation, introducing a smart glove equipped with sensors,
processors, and wireless technology to quantitatively assess range of motion with the goal
of improving the rehabilitation process, where recalibration is no longer required for each
user [82]. Xu et al. proposed a collision detection algorithm that relies on predicting the
movement direction of a virtual hand and that is effective in conjunction with a data
glove, particularly in a mine training simulation system. They also suggested a dynamic
algorithm to resolve collision detection issues between two solid simulation models [126].

Modern gloves frequently incorporate haptic feedback to enhance immersion [111][89].
Notable examples include the Senseglove Nova 2), Haptx glove 3), and TESLAGLOVE
4). However, these devices, while enhancing presence, can be costly for end-users and
require the user to wear a fabric device consistently.

Alternatively, there are tracking systems that optically track the user’s hands using
cameras and sensors. One such system is the LeapMotion controller, which relies on
infrared cameras and emitters to capture hand movements [3]. The subsequent sections
will delve into systems and research that employ RGB-D or simple RGB cameras for
hand tracking.

2.2.1 Hand Tracking and Pose Estimation Using RGB-D Cameras
A large selection of different types of cameras is available, which can also be used for
hand detection. One approach to hand tracking involves the use of RGB-D cameras.
These cameras typically employ additional sensors, such as infrared sensors, to determine

2Senseglove Nova: https://www.senseglove.com/product/nova/ (Accessed: 2023-10-17)
3Haptx: https://haptx.com/ (Accessed: 2023-10-17)
4TESLAGLOVE: https://teslasuit.io/products/teslaglove/ (Accessed: 2023-10-17)
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Figure 2.2: One of the first data gloves, developed by ’VPL Research’ for interaction in
virtual environments [133].

the depth of visually tracked objects in the image. Many different techniques exist5.
Structured Light Cameras that use light projection and infrared sensors to perform
pattern recognition for depth calculation can be very precise, but also require a long
computing time. Time-of-flight cameras, on the other hand, calculate the time of flight
of a light pulse from their infrared emitter for depth calculation. This means that depth
data can be displayed in real time, but there may be a loss of precision. Additionally,
there are the Stereo Vision Cameras, which calculate depth information by triangulating
the images from two camera lenses. These are easy to replicate in terms of hardware
design and are inexpensive, but the range can be limited and require long computing
times.

Prominent examples of such cameras include the Intel RealSense Depth Camera D435
(Stereo Vision Camera), which is equipped with two stereo RGB cameras and an infrared
sensor for depth detection of up to 10 meters 6), or the ASUS Xtion PRO LIVE camera
(Structured Light Camera), which features an RGB camera, two infrared detectors, an
accelerometer, and a microphone 7). Both cameras are depicted in Figure 2.3. RGB-D
cameras find utility in various applications, such as 3D reconstruction using depth and

5Depth Camera Principles: https://wiki.dfrobot.com/brief_analysis_of_camera_prin
ciples (Accessed: 2023-07-01)

6Intel RealSense: https://www.intelrealsense.com/depth-camera-d435/ (Accessed:
2023-10-24)

7ASUS Xtion PRO LIVE: http://xtionprolive.com/asus-xtion-pro-live (Accessed:
2023-10-24)
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color images [114] or in real-time hand tracking, an area of particular interest for our use
case.

Figure 2.3: Two RGB-D cameras are depicted. Left: Intel RealSense Depth Camera
D435; Right: ASUS Xtion PRO LIVE

In a prior work by Frati et al., a commercial camera, the Microsoft Kinect, was utilized
in combination with a wearable haptic device for hand tracking and rendering, allowing
for hand interactions within a virtual reality environment [24]. While our system does
not depend on additional hardware worn on the hand, this work highlights the necessity
and potential of depth cameras in providing interactive hands within virtual scenes.

Huang et al. conducted a survey and performance analysis of hand shape and pose
estimation techniques using RGB-D cameras [41]. They identified several state-of-the-
art methods achieving low estimation errors (<10mm), enabling practical interactive
applications. Despite their effectiveness and efficiency, certain challenges, such as occlusion
and self-similarity, require further investigation. The authors emphasize the need for
additional research to address issues in 3D pose estimation.

Researchers Sharp et al. [103] and Malik et al. [66] presented implementations for hand
tracking and pose estimation with depth cameras. Both approaches use a single depth
camera to estimate the pose of the tracked hand. Sharp et al.’s approach combined a
multilayered discriminative reinitialization strategy for per-frame pose estimation with a
model fitting process based on stochastic optimization of an objective function. Their
evaluation yielded a tracking range of 0.5 to 4 meters and a precision of less than 3
centimeters [103]. Malik et al. improved upon this by generating a 3D mesh representation
of a hand from a single depth image. They used a synthetic data set with accurate joint
annotations, achieving a joint location error of less than 1.5 centimeters, segmentation
masks, and mesh files derived from depth maps for neural network recognition. The
processing time from the depth image to the mesh was 3.7 ms [66].

However, it is important to note that depth cameras are typically more expensive than
RGB cameras (e.g. simple webcams). Consequently, these approaches are not always
intended for widespread commercial use. On the contrary, most computer users possess
webcams that lack depth estimation sensors, necessitating alternative methods to estimate
the pose of tracked hands. The lower costs as well as the better availability is the reason
why this work focuses on the use of RGB cameras. The following section will delve into
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works related to hand tracking and depth estimation with RGB cameras. Our proposed
solution to this challenge is also presented in section 5.2.3.

2.2.2 Hand Tracking and Pose Estimation Using RGB Cameras
Images retrieved from RGB cameras consist of only three color channels - red, green, and
blue. With this information alone, tracking hands and estimating their virtual 3D posi-
tions becomes more challenging in the absence of depth information. Consequently, much
research has turned to machine learning-based classification techniques, utilizing informa-
tion from the image detection process to derive 3D hand and joint poses [10][107][119][62].
Our solution to this challenge, explained in section 5.2.3, also incorporates additional
information, specifically the real size of the user’s hand, to transform tracked hands into
the 3D world.

Before transitioning the tracked hand into three-dimensional space, an analysis of the 2D
image to detect the hand in it must occur. For instance, Zariffa et al. achieved hand
segmentation in egocentric video using pixel-wise skin classifiers, followed by shape-based
post-processing techniques. This allowed hand tracking in a 2D space using a single
camera [129]. Hammer et al. presented their own algorithm, also relying on contour
detection. Due to their requirement for use in interactive environments, their detection
process operates in real time [36]. Both systems identify the contour of the hand without
the need for markers worn on the hand, but do not include finger joint detection.

The MediaPipe framework, as introduced by Lugaresi et al., offers perception pipelines for
various tasks, including object detection, utilizing machine learning with RGB cameras
[64]. Zhang et al. showed a hand tracking implementation with MediaPipe extending
the base hand detection with a 2.5D joint recognition for more than two simultaneously
visible hands with good performance and precision [130]. Due to its open accessibility
and strong performance, especially on mobile devices with processing times ranging from
1.1 to 7.5 ms on iPhone 11, depending on the model used, we selected the MediaPipe
framework as the foundation for our RGB-based hand tracking method. However, like
many similar methods, Zhang et al.’s approach provides 3D finger joint positions relative
to the origin in the middle of the hand (see Figure 2.4 [130]). The distance between the
hand and the tracking camera remains unknown. However, this information is essential
to enable reliable interactions in three-dimensional space.

Estimating the 3D pose of the hand is a widely researched area. For instance, Sun et
al. proposed the first real-time one-stage method for pose estimation from a single RGB
image, predicting 2.5D hand joint coordinates while locating two hand regions. Their
experiments on public datasets demonstrated competitive results with state-of-the-art
methods [107]. Zimmermann et al. published a method for 3D hand pose estimation
based on RGB input, tested on a synthetic dataset for neural network hand recognition,
with performance comparable to existing depth-based approaches [134]. Additionally, Lin
et al. utilized a neural network-based pipeline for hand tracking and created a new 3D
dataset to train the algorithm for two simultaneously tracked hands, reporting a mean
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Figure 2.4: Tracked hands using the MediaPipe framework, which is used in our im-
plementation. Left: Tracked finger joints with relative depth to the wrist. Right:
Simultaneously tracked multiple hands.

End Point Error of 12.47mm, but only within arm’s length range and for a maximum of
two simultaneously visible hands [62].

Han et al. used four monochromatic cameras to track a maximum of two hands in 3D
space for real-time virtual reality applications [37]. Their solution was subsequently
implemented in Meta Quest headsets for hand tracking. Panteleris et al. achieved 3D
pose estimation for hands tracked in 2D by using OpenPose for 2D hand recognition and
non-linear least-squares minimization to fit a 3D hand model to the estimated 2D joint
positions, thus recovering the 3D hand pose [87]. Che et al. presented a detection-guided
method capable of recovering 3D hand posture with a color camera, by lifting the 3D
pose from the estimated 2D joints through a model-fitting approach [10]. Wang et al.
developed a method to track 3D real-time interactions using a monocular RGB camera.
They employed a multi-task convolutional neural network (CNN) that regresses multiple
complementary pieces of information, including segmentation, dense matchings to a 3D
hand model, and 2D keypoint positions [119]. This approach also proposed intra-hand
relative depth and inter-hand distance maps.

While several methods exist to track hands with an RGB camera and lift detected
hands into 3D space, none of them fully suited our use case. They either are limited to
tracking two simultaneous hands, operate solely in the 2D or 2.5D space, or do not track
beyond the user’s arm’s reach. However, for our planned use within colocated scenarios
it is necessary for the hands of several users to be recognized at greater distances and
correctly positioned in three-dimensional space to enable interactions within the virtual
environment. This led us to propose our solution for estimating the 3D pose of tracked
hands. As explained earlier, we selected the MediaPipe hand tracking implementation
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by Zhang et al. as our base tracking system due to its open accessibility and good
performance for our 3D pose estimation, as discussed in section 5.2.3.

2.2.3 Evaluating Hand Tracking Solutions
Several reports and evaluations have examined the precision and usability of common
hand tracking systems, which is highly relevant to our work as we plan to compare these
systems, namely the Meta Quest and Leap Motion Controller, with our implemented
depth solution in section 5.3. With this we want to show that the proposed solution is
suitable for use in colocated VR scenarios and has advantages over existing commercial
solutions.

Let’s first look at metrics that can be evaluated in hand recognition systems. The first
metric to be mentioned is accuracy, which indicates how closely the tracked hand
positions and rotations match the real positions and rotations. To determine this, a
ground-truth comparison can be used, for example by an external tracking system, as
used by Abdlkarim et al. or by us in this work [1]. The latency can also be used
as a metric that measures the delay between a user’s physical hand movement and
the corresponding response. in the latency evaluation of modern HMDs, for example,
Gruen et al. use external cameras that observe virtual and real inputs and measure the
differences with a clock with submillisecond accuracy [33]. Tracking range is another
important metric that we will discuss in chapter 5. This can also be measured, as in
our work, by an external ground-truth tracking system, for example. Other metrics
are robustness, to evaluate how robust the system behaves in difficult situations (e.g.
covered hands or changing lighting conditions), usability, such as ease of calibration or
user comfort, which is usually evaluated with user tests[20], or performance, in which
the computational effort is measured [130].

For example, Schneider et al. reported the accuracy of finger tracking for touch-based
tasks like pointing or drawing in the virtual environment, finding that Meta Quest and
Leap Motion outperformed HTC Vive hand tracking in terms of spatial accuracy. Users
generally preferred the Leap Motion sensor [98]. Their previous study also demonstrated
superior tracking accuracy for Leap Motion compared to HTC Vive, with a Z error of
approximately 2.6 cm for interactions with horizontally aligned surfaces (and 1 cm for
vertically aligned surfaces) in walk-up-and-use scenarios [99]. Vysocky et al. conducted an
accuracy study on Leap Motion, reporting an error of up to 1 cm for measurements taken
at a distance of 20 cm [117], while Bachmann et al. performed an initial evaluation of
the general usage and interactability of Leap Motion as a contact-free pointing device [3].
Even earlier, Weichert et al. reported that the Leap Motion controller could deliver near-
and submillimeter precision when detecting hands, allowing developers to accurately
visualize the pose of a user’s hand inside a virtual environment [121]. Additionally,
Mizera et al. compared the visual tracking accuracy of the Leap Motion sensor with the
accuracy of two data gloves [76]. They found that the Leap Motion was less precise when
measuring finger bending but very precise in estimating fingertip positions, making it
the best device for fine manipulation tasks involving the thumb and opposing fingers.
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A recent study of Matulic et al. propose a mirror-based solution that reflects the front
camera of a smartphone to estimate the 3D position of the fingertip with the help of a
deep neural network. They report a mean precision of 6mm and how their system could
be adapted to VR systems in the future [69].

In the context of strategies to measure tracking accuracy in VR hand tracking systems,
Abdlkarim et al. introduced a framework and demonstrated its application in the Meta
Quest 2 [1]. Their setup involved a height-adjustable table that could be lowered to a
height difference of 82 cm. The Oculus was attached to the top to track the user’s hand
during the experiment. Ground truth data was collected from infrared markers placed
on the table and tracked by an optical camera system. The users were instructed to
point at different markers during the experiment to collect data. The authors reported
an average error of 1.1 cm in the position of fingertips for the Meta Quest 2. Ferstl et
al. introduced and evaluated strategies to mitigate the impact of hand tracking loss,
highlighting the potential influence of tracking loss on the user experience [20]. As a
result, our evaluation design includes tracking loss distances for all hand tracking systems
evaluated in section 5.3.2.

However, for VR hand tracking systems, standardized evaluation techniques for dynamic
hand movements are lacking. Such techniques are commonly used in fields like machine
tools, iGPS, and laser trackers. For example, Wang et al. tracked the trajectories of an
industrial robot using a standardized strategy [120], and Ding et al. measured dynamic
tracking error for five-axis CNC machining [17]. Due to the absence of standardized
evaluation techniques for dynamic hand movements in VR, we have developed our own
method, tailored to our experiment, to determine tracking accuracy and error curves for
dynamic hand movements in section 5.3.2.

2.3 Advancing Multi-user VR Systems
By having social aspects such as communication, cooperation and collaboration, multi-user
applications introduce a realm of possibilities that single-user applications cannot offer.
Even in non-VR contexts, it has been demonstrated that multi-user virtual environments
can facilitate enhanced learning experiences compared to traditional direct instruction
methods [112].

When it comes to implementing multi-user experiences in the domain of virtual reality,
developers have various options to consider. Podkosova has introduced a taxonomy that
categorizes different types of such systems, which is depicted in Figure 2.5.

In contrast to single-user VR experiences, where each user typically occupies their own
physical and virtual space, multi-user VR can be characterized by whether users share
the physical space, the virtual space, or both. One common scenario is where users share
the virtual space while maintaining their distinct physical spaces. This configuration
is prevalent in multi-player VR games 8, virtual meeting environments that emphasize

8Tetra Studios: https://www.tetrastudios.com.au/ (Accessed: 2023-10-10)
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Figure 2.5: Taxonomy of multi-user VR created by Podkosova [92].

social interactions 9, and casual VR chat platforms 10. The highly anticipated Metaverse
is also expected to incorporate such multi-user VR access [115]. For example, Shi et
al. used such an environment to demonstrate that a shared virtual environment can
enhance communication efficiency in facility management [104]. You also don’t run the
risk of colliding with other players or having a mismatch between the physical and virtual
presence of another user (e.g. hearing him behind you while standing in front of you).
When using physical devices, however, a mismatch between physical space and physical
device must be aligned, as proposed by Fink et al. with their Re-locations method [22].

Conversely, the colocated non-shared VR approach involves users occupying the same
physical space while experiencing their unique virtual spaces. For example, the commercial
VR experience ’YULLBE GO’ offers free-roaming colocated non-shared VR experiences,
where up to ten users share a physical space of approximately 80 square meters, each

9Spatial: https://www.spatial.chat/ (Accessed: 2023-10-10)
10VRChat: https://hello.vrchat.com/ (Accessed: 2023-10-10)
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engaging with their own VR application asynchronously 11. These experiences typically
include collision avoidance mechanisms, with visual cues within the application signaling
proximity to other users. However, effectively managing collisions while maintaining a
high level of presence and immersion remains an ongoing challenge.

Various approaches have been explored in the creation of multi-user VR applications.
As early as 1996, Benford et al. investigated shared spaces and provided an example
of an internet foyer to showcase the possibilities offered by multi-user VR [5]. Just
two years later, Frécon et al. introduced ’DIVE’, a network architecture for creating
distributed virtual environments. Although it was not developed explicitly for VR, it
presents techniques that are applicable in this context [28].

Research in the area of multi-user VR has continued to evolve, often intersecting with
other research domains. For example, Langbehn et al. playfully explored redirected
walking in a colocated virtual reality scenario, where multiple users share the physical and
virtual space. They introduce a technique that enables users to explore virtual spaces five
times larger than the shared physical space [55]. Redirected walking in separate physical
spaces and shared virtual spaces have also been studied by Xu et al., who developed
methods to reduce the frequency of resets by predicting potential reset points based on a
user’s current reachable area [125].

The last approach in the spectrum of multi-user virtual reality is colocated shared VR,
where all users occupy both the physical and virtual space collectively. This configuration
introduces unique challenges in terms of implementation, as it involves the simultaneous
management of physical and virtual experiences. These challenges will be examined in
greater detail in the subsequent section.

2.3.1 Exploring Colocated VR
As described in the previous section, colocated shared VR refers to multi-user applications
where multiple users share both the virtual space and the physical space. An example on
colocated users can be found in Figure 2.6. Recent studies have shown that this type of
multi-user experience can create a strong social atmosphere with a positive impact on
social closeness between users [108].

Such a colocated scenario can be either symmetric, where all users use the same interface
[15][91], or asymmetric, where users use different interfaces to interact with the shared
environment [86]. For instance, Drey et al. conducted a comparative study of symmetric
and asymmetric methods in the context of pair-learning and found that both approaches
yielded equivalent results in terms of learning success [19]. In our work, we focus on
symmetric approaches to give the users of the application a similar experience.

To reliably synchronize both realities, precise localization of all users in the physical
space is essential. One common approach involves continuously synchronizing all users
with the help of external camera systems. These camera systems are frequently used in

11YULLBE Go: https://yullbe.com/yullbe-go/ (Accessed: 2023-10-10)
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Figure 2.6: Two colocated users in both the physical and virtual space, with hand tracking
enabled. The point of view (POV) is from the left user within the virtual scene.

VR arena experiences and are offered by companies such as Vicon 12 and OptiTrack 13.
However, these systems can be expensive and have limitations in terms of spatial size
and the number of users they can accommodate.

As an alternative, Weissker et al. proposed a low-cost colocation system using the
Lighthouse tracking system of the HTC Vive [122]. They use a single tracking system to
synchronize the tracking data of multiple users to a common coordinate system, enabling
colocation in a more cost-effective manner.

In contrast, SLAM-tracked VR headsets, such as the Meta Quest, use inside-out tracking
without the need for external cameras. These headsets create their own internal environ-
mental mapping of the physical space. Therefore, solutions are required to synchronize
the physical positions of all users within their own environmental data.

Researchers have already developed solutions to address this challenge for virtual (VR) and
augmented (AR) reality headsets. McGill et al. investigated practical and cost-effective
ways to implement colocated scenarios for SLAM-tracked headsets. They categorized
these solutions into two main types: ’Aligning to a single known point’ and ’Aligning to
two known points’ [70].

The single-point calibration method is straightforward. It involves having a single point
in the real world and a corresponding reference point in the virtual world. When the
location of the user’s headset relative to the real-world point is known, the user’s virtual
pose can be set accordingly. An example of this setup can be seen in the CAVE experience
by Layng et al., where each user is assigned a seat with a predetermined position that is
mirrored in the virtual world [58]. Herscher et al. employed a similar approach in their
CAVRN system, where users are positioned in real-world seats corresponding to virtual
orientations and positions [38]. However, these systems are limited as they only recognize

12Vicon: https://www.vicon.com/hardware/cameras/ (Accessed: 2023-10-11)
13OptiTrack: https://optitrack.com/applications/virtual-reality/ (Accessed: 2023-

10-11)
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users based on their seating positions, and further tracking and movement within the
virtual world are not supported after relocalization. ’TritonVR’ 14, a multiplayer shooting
game, offers a different approach by allowing users to stand in the same physical location,
followed by recalibrating their positions in the virtual environment to match their real-
world poses. The precision of this method depends on how accurately users stand on the
predefined positions.

On the other hand, the two-point calibration method uses two points or anchors in the
real world to better approximate the users’ poses and reduce drifting in larger rooms [70].
While this calibration method requires more calibration points and takes longer than
single-point calibration, it can potentially provide more precise results by compensating
for tracking errors. In our research, we implement both one-point calibration and two-
point calibration in a standard room-sized environment (4x4 meters) and compare their
results in section 4.4.

Colocation can also be achieved by tracking markers attached to headsets. DeFanti
proposed a solution in which multiple users within a colocated space track each other
using cameras on their HMDs to track ArUco markers attached to each user. These
data are then shared among users to recalculate their relative positions in the virtual
world [15]. However, this method depends on accurate and consistent recognition of each
other’s markers. We investigate a modified version of marker-based colocation in our
experiments in section 4.2.2.

A drawback of the previously mentioned methods is their reliance on either additional
AR-tracking cameras or the precise positioning of users in the real world. As more
SLAM-tracked VR headsets, which also offer integrated hand tracking, become available
(e.g., Meta Quest, or VIVE Focus15), we propose a solution in section 4.2.3 to use this
feature for colocation. This approach ensures precision independent of the user and
relies solely on the tracking system. Additionally, it eliminates the need for additional
hardware, using only the SLAM-tracked headsets.

We can also differentiate between continuous calibration and one-time calibration. Con-
tinuous calibration, as the name suggests, updates each user’s location every frame in the
tracking system’s coordinate system when external cameras are used. An example of this
approach is the calibration using the Lighthouse tracking system of the HTC Vive by
Weissker et al. [122]. Waller et al. used an infrared optical outside-in tracking solution
with eight cameras and an HMD attached to a rendering computer worn by a user for their
’HIVE’ system [118]. DeFanti used cameras attached to the users’ HMDs to continuously
track other users [15]. Furthermore, Podkosova et al. created ImmersiveDeck, a system
that combines inside-out head tracking with motion capture, enabling multiple users to
move freely in a large area (i.e. 200m2) [91]. In the field of robotics, a shared spatial
map can be used for collaborative applications to maximize efficiency in environment

14Triton VR: https://www.tetrastudios.com.au/tritonvr (Accessed: 2023-10-12)
15VIVE Focus: https://enterprise.vive.com/de/product/vive-focus/ (Accessed:

2023-10-12)

20

https://www.tetrastudios.com.au/tritonvr
https://enterprise.vive.com/de/product/vive-focus/


2.3. Advancing Multi-user VR Systems

exploration [23]. Unlike continuous calibration, one-time calibration aligns all devices
only once.

The accuracy of colocated systems after calibration depends on the tracking accuracy
of the device. If the error becomes too significant, a recalibration is necessary. For
instance, McGill et al. used one-time calibrations for their experiments, whether for a
one-point or two-point calibration [70]. In seated experiences, such as CAVE or CAVRN,
users are placed in real-world seats that correspond to virtual orientations and positions,
and continuous calibration is not used [58][38]. Given our desire to minimize additional
hardware and efforts, our approach relies on one-time calibration, leveraging the low drift
of our SLAM devices after calibration. However, we ensure that recalibration remains a
viable option with minimal effort.

2.3.2 Hand Interactions in Multi-User Systems
Interaction stands as a very important concept within the domain of virtual environments,
such as in virtual reality, augmented reality or even for tabletop. It can be manifested
through various means, including gestures and direct manipulation.

There is existing work comparing hand interactions to conventional controller input.
Khundam et al. compared interaction time and usability between hand and controller
interactions in intubation training, with the result that there are no significant differences
[49]. Zhao et al. also found comparable user preference and performance between hand
and controller interactions for virtual locomotion [131]. However, Schäfer et al. found
significantly better performance and accuracy for interactions in which objects are picked
up and put down between the use of hands and controllers [101]. This is also inline with
other studies by Masurovsky et al. and Hameed et al. that show the preferential usability
and accuracy of controller-based interactions compared to hand interactions [68][35].
However, they also emphasize that growing acceptance and familiarization with hand
interaction systems, as well as the continuous improvement and better availability of hand
recognition systems and their naturalness, offer the potential to overtake conventional
controllers in terms of user experience in the future [68].

Extending the interaction concept into shared virtual worlds introduces both challenges
and opportunities. For instance, as early as 2007, Streuber et al. investigated the impact
of multi-user environments on joint actions and social behavior. In their study, they
designed a test in which a colocated user pair had to navigate a stretcher through an
obstacle course. Their findings suggested that humans can quickly adapt to the lack of
haptic and tactile feedback when fully immersed in the virtual environment [106].

Further research has focused on designing frameworks and strategies tailored to multi-user
contexts. For example, Gong et al. conducted a case study to develop interaction design
strategies for multi-user virtual reality systems in manufacturing settings, underscoring
the importance of robust interaction systems in such scenarios [31]. Langbehn et al.
cautioned against making substantial user manipulations, like altering a user’s voice
pitch, as it may distract users from interactions in the virtual environment [54].
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In addition to multi-user VR applications, Zaman et al. aimed to create a platform that
enables collaborative tasks regardless of the type of head-mounted display, thus enabling
collaboration between multiple VR and AR devices [128]. Olin et al. explored cross-device
interaction in a virtual environment, allowing handheld device users to engage with VR
headset users. Their research provided a framework and design suggestions for such
scenarios, demonstrating immersive integration of non-VR users into virtual interactions
[83].

Within the scope of multi-user AR applications, Jansen et al. introduced ShARE, a
head-worn AR device equipped with a projector to enable simultaneous interactions with
non-AR users. Through marker detection, outside users can interact with the projected
image, fostering multi-user interactions across three different applications: collaborative
games, competitive games, and external visualizations, resulting in a proof-of-concept
device for multi-device multi-user AR interactions in a shared virtual world [44].

However, in the context of multi-user VR applications, one significant aspect of interaction
involves the hands themselves, which is particularly relevant to the current work aimed
at improving hand recognition and interaction in colocated scenarios. Pretto et al.
conducted research on hand interaction through gestures using Google Cardboard as an
HMD and Leap Motion for hand tracking. They applied this technology in a forensics
use case, integrating real-world objects into a VR environment [93].

Beyond the VR domain, multi-user hand interactions have been explored in the media
domain using multimedia tabletops. Del Bimbo et al., for instance, created a computer
vision-based system and algorithms that uses hand recognition to enable multi-user
interactions at a display table, even with distinguishing hands of two users that were
overlapped in the 2D area [16]. Dohse et al. developed a tabletop that utilized a
combination of computer vision for hand recognition and touch detection to distinguish
hands in close proximity. Multiple users interacting with the tabletop can be seen in
Figure 2.7. This work emphasized the importance of distinguishing and assigning hands
to different users to enable interactions in multi-user and close proximity scenarios [18].
We address this issue in the context of colocated multi-user VR in chapter 6.

In the realm of colocated VR scenarios, an area of focus in this work, researchers have
investigated various interaction possibilities and their impact on the user experience.
Salzmann et al. examined collaborative assembly tasks using only hands in the automotive
industry, demonstrating their suitability for two simultaneous users [96]. Their findings
revealed higher precision in task execution and user preference for these tasks. Li et al.
conducted user testing to evaluate the influence of interactions using hand-held controllers
in multi-user co-location scenarios for cultural heritage. Their conclusion highlighted the
positive effects of social influence on performance expectancy and effort expectancy [61].

All of these systems emphasize the importance of interactions in shared virtual experiences
and the challenges they involve, such as obscured hands and hand-body ambiguity.
Consequently, the system presented in this thesis represents a significant step towards
providing reliable hand interactions in a colocated multi-user application.
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Figure 2.7: Three users interacting with the multi-touch tabletop by Dohse et al. On top
is a camera attached that is used for hand tracking [18]. The image is taken the authors’
work.

2.4 Fostering Hand-Body Association in Multi-user
Scenarios

Assigning tracked hands to specific users in a colocated shared virtual environment is
crucial for creating a seamless and immersive experience. In 2D space, various research
studies have explored hand ownership in egocentric views to assign detected hands to
users. For example, Frati et al. utilized the capabilities of the Kinect in conjunction with
wearable haptic devices for hand tracking (as stated in section 2.2.1), making it easier
to assign these hands to users due to the additional full-body tracking provided by the
Kinect [24]. However, most tracking systems are limited to tracking only the hands of
users, and the user’s full body may not always be in the tracking device’s field of view,
which requires alternative solutions for hand assignment.

Narasimhaswamy et al. employed neural networks to associate hands with bodies by
utilizing image detection of bodies and hands. They used overlapping tracking bounding
boxes from image detection, as well as the locations of heads and hands, to perform hand
assignments [80]. This approach demonstrates the potential for improved hand tracking
and hand contact estimation with hand-body association. However, it relies on having
a user’s body within the camera’s field of view for bounding box creation, as shown in
Figure 2.8, an image taken from the work of Narasimhaswamy et al. [80]. Tsutsui et al.
also used visual cues provided by image tracking, such as color, depth, skin texture, and
shape, for hand identification in egocentric views [113]. However, their approach focused
solely on identifying a user’s own hands, without considering other users and their hands
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in the environment. Furthermore, their approach demonstrated a verification error rate
of 36%, making it impractical for real-world scenarios and not applicable to our scenario.

Figure 2.8: Hand-Body association by Narasimhaswamy et al. involves the creation of
2D bounding boxes to assign hands to users in the detected image [80].

Lee et al. explored the distinction of multiple hands in an egocentric view by utilizing
the location of the hand in the two-dimensional recognition frame image. However, this
method was not designed for three-dimensional tracked hands [59]. Lin et al. proposed a
method for detecting hand raising in classrooms using image detection on a single image
and a selection algorithm, achieving a mean Average Precision of 90% [63]. Building
on this method, Zhou et al. extended it with an improved detection algorithm, a pose
algorithm, and a matching technique for the raised hand and the hand raiser by utilizing
the location of the hand and various keypoints of the hand-raisers body (face and limbs)
with an average recognition precision of 83% [132].

However, all the mentioned research is either confined to hand assignment in the 2D
space [59][63][132], or relies on additional tracking information such as skin color or 2D
tracking boundaries [80][113]. These approaches are not directly applicable to our use
case, which involves assigning hands in a colocated virtual environment in 3D space, with
limited information available by the employed tracking systems, specifically, the location
of the hands and user heads. Therefore, our methods presented in chapter 6 build on
existing 2D domain methods and extend them with our ideas tailored to the 3D domain.
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CHAPTER 3
EasyHand - A Modular Hand
Interaction and Visualization

Framework for Single and
Colocated VR Scenarios

This chapter introduces ’EasyHand’, a Unity3D framework developed to harmonize the
hand tracking capabilities of various hand tracking systems. ’EasyHand’ serves as the
foundational system for visualizing, positioning, and interacting with tracked hands in all
the experiments presented in this thesis. To maintain a concise and easily comprehensible
structure within the chapter, the sections will typically commence with an outline of
the concept and design of each component. If required, we will then proceed with an
explanation of its implementation.

We begin by providing an overview of the ’EasyHand’ system, outlining its primary
objectives and the requirements that guided its design and development. We will also
elaborate on the hardware and software compatibility of this framework. We demonstrate
how the unification of different base tracking systems within the framework for universal
usage in the development process is done. This unification includes the integration of hand
detection and gesture recognition events. After that, it is explained, how visualization
for skeletal and mesh rendering as well as interaction is done based on the unified data.

Then, we address the conceptualization and implementation of the network layer, a
mandatory component for creating colocated scenarios. This will be followed by an explo-
ration of our efforts to enhance the framework’s capabilities through the implementation
of plugins. Finally, we conclude this chapter with an overview of the current state of the
’EasyHand’ framework and discuss potential future development.
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3.1 System Overview
The framework was initially designed with specific capabilities in mind. It not only
serves as a hand-interaction layer, but also encompasses hand tracking capabilities.
These capabilities encompass networking features for multi-user applications, including
colocation capabilities, as well as the ability to assign tracked hands to virtual users. To
our knowledge, the ’EasyHand’ framework stands as the sole system currently available
capable of creating colocated multi-user applications utilizing hand interactions. Moreover,
it is compatible with various existing base hand tracking systems.

3.1.1 Overall System Design
Initially, the system was designed to unify various hand tracking systems, such as
Meta Quest, LeapMotion, or HTC Vive, providing developers with an easily accessible
framework to develop applications across multiple platforms. Each of these systems is
equipped with its own unique API and functionalities for visualization, gesture recognition,
and interaction (see Figure 3.1). The term ’gesture’ used in this paper refers to a fixed
hand posture, such as all fingers being bent (’Fist’ gesture) or the index and middle fingers
being stretched (’Peace’ gesture). Our ’EasyHand’ framework serves as an intermediary
layer between the application and these base APIs, allowing developers to employ a
unified system for visualization, interaction with the virtual environment and gesture
recognition across all supported APIs, as illustrated in Figure 3.2. Furthermore, the
system is designed to facilitate the seamless addition of new hand tracking systems to
expand its compatibility.

Figure 3.1: Overview of hand tracking API integration of different systems in one
application. Each system comes with distinct visualization, interaction and gestures.

To fit our needs we defined the following requirements for the system:

• The system should support several base systems.
As the framework serves as an intermediary layer for developers, it is designed to
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Figure 3.2: ’EasyHand’ acting as a layer between several hand tracking APIs and the
application, unifying visualization (V), interaction (I) and gesture recognition (G).

support several popular state-of-the-art hand tracking systems, including those
used in the Meta Quest and Vive HMDs, as well as the Ultraleap system.

• The system should implement visualization, interaction, and simple gestures. All
data are unified.
Developers will utilize this system to craft interactive applications. Consequently,
the framework should support a unified visualization for both, with simple lines
and a visually more realistic mesh rendering. Furthermore, interactions should
remain consistent across various base systems, with a similar set of recognized
gestures (e.g. pinch) being supported. The system should also provide events for
the detection and loss of the hand to adequately handle the visibility of the virtual
hand. Additionally, all tracked data should be accessible through a unified data
structure.

• The system should be easily expandable.
As developers may have diverse requirements, they should have the flexibility to
easily integrate hand tracking systems that were not initially included. This can be
achieved by adding a unification class as an intermediate layer between the tracking
system and the ’EasyHand’ framework.

• The system should be usable in real time.
Provided that the basic recognition systems allow it, a framerate of at least 60
frames per second (FPS), which is necessary in VR for a smooth run, should be
achieved.
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With the refinement of experiments and the addition of desired colocation capabilities,
the following requirements were subsequently defined:

• The system should support networking.
To create multi-user scenarios with hand tracking capabilities, the system must
be capable of efficiently synchronizing all tracked hand data over a low-latency
network layer.

• The system should be able to create colocated scenarios.
The ’EasyHand’ framework, utilizing integrated hand tracking solutions, should
enable the creation of colocated multi-user scenarios, including the handling of
calibration and synchronization of the coordinate systems.

• The system should provide hand tracking for more than two hands.
To support other tracking systems inside colocated multi-user scenarios, the system
should be able to track more than two hands, respectively the hands of colocated
users. To achieve this the framework should incorporate a fitting RGB camera
hand tracking algorithm and seamlessly integrate it into the system. This also
enhances accessibility and hand tracking is not restricted to VR environments but
can also find usage in desktop applications.

• The system should be able to assign hands to virtual colocated users.
To be able to support each other’s hand tracking by combining tracking cameras and
ensure accurate interactions, the system should possess the capability to consistently
assign tracked hands to virtual users within a colocated multi-user scenario.

3.1.2 Implementation Environment

Many different engines are available to develop applications for XR. Among them are
the Unreal Engine1, Unity3D2, CryEngine3 or OpenXR4. To support a wide range of
hand tracking systems, it is necessary to choose a well-supported engine. A 2019 TIGA
study in the UK indicates that a majority (72%) of developers surveyed use the Unity3D
engine [105].

Due to the wide adoption and strong developer support for this platform, as well as the
fact that we don’t have to worry about rendering and physics, Unity3D was chosen as
the development platform. For the basic hand detection of the different systems, the
corresponding Unity3D plugins were included. This allows the ’EasyHand’ framework to
be made available to a wide range of developers.

1Unreal Engine: https://www.unrealengine.com/en-US/xr (Accessed: 2023-10-06)
2Unity3D Engine: https://www.unity.com/solutions/vr(Accessed:2023-10-06)
3CryEngine: https://www.cryengine.com/ (Accessed: 2023-10-06)
4Khronos OpenXR: https://www.khronos.org/openxr/ (Accessed: 2023-10-06)
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3.2. Hand Detection

3.2 Hand Detection
The most critical component of the system is hand detection itself. To provide a visual
representation of the process, we start with integrating base tracking systems. This
involves unifying the incoming base data into a standardized dataset with an index
mapping of all detected finger joints that can be used independently of the tracking
system in use. This unification of the base system is also where developers can add
new tracking systems to the ’EasyHand’ framework, as depicted in Figure 3.13. The
developer only has to provide the index mapping (as explained in section 3.2.2) and an
implementation of the ’ITracker’ interface class, where the tracking systems low-level
hand detection is mapped to the unified data set of ’EasyHand’.

From this unified dataset, we can proceed to use low-level events or, in cases where they
do not already exist, create custom events to trigger actions when hands are detected
or lost by the tracking device. Additionally, we employ a similar approach to handle
detected hand gestures.

3.2.1 Low-Level Tracking Modules
As low-level tracking modules we chose systems that are widely used for optical hand
tracking in XR scenarios. This includes the following systems (MediaPipe for RGB
tracking is explained in chapter 5):

Figure 3.3: Hemispherical area of the interaction zone of the LeapMotion Sensor.

LeapMotion The LeapMotion hand tracking from Ultraleap is a tracking device
consisting of two monochromatic IR cameras and three infrared LEDs. It can detect
hands in a hemispherical area with an interaction zone of up to 60 cm and a field of view
(FOV) of 120° x 150° [43] (see Figure 3.3)5. It is either used on a tabletop, on top of a

5LeapMotion Hemisphere: https://cms.ultraleap.com/app/uploads/2020/09/ultralea
p-hand-tracking-interaction-zone-side.jpg (Accessed: 2024-01-07)
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screen or it can be attached to a VR HMD (see Figure 3.4).
The underlying Ultraleap API extracts 27 distinct joints per hand with positional and
rotational data (including elbow recognition which is irrelevant for our framework). The
detected joints can be seen in Figure 3.4.

Figure 3.4: Left: The LeapMotion controller attached to a VR HMD. Right: Detected
joints of the Ultraleap API

Meta Quest The Meta Quest6 (2019) / Meta Quest 2 (2020) is a state-of-the-art virtual
reality head-mounted display (HMD) that utilizes SLAM (Simultaneous Localization and
Mapping) technology for 6 Degrees of Freedom (6 DoF) tracking. The device is equipped
with four monochronous cameras, which are used to track the user’s hands within a 3D
space, a concept presented with the commercial solution MEgATrack proposed by Han
et al.[37]. This hand tracking functionality is achieved through the application of deep
neural networks, enabling the estimation of the hands’ location and the detection of 21
individual hand joints. See Figure 3.5 for a visual representation of the device and how
tracked hands appear in a greyscale passthrough view.7

Figure 3.5: Left: The Meta Quest 2 HMD. Right: Detected hands and joints with the
Meta Quest 2.

6Originally Oculus Quest before Meta rebranding in 2021
7Quest Hand Greyscale: https://www.uploadvr.com/content/images/2021/04/QuestHan

dTrackingGreyscale.png (Accessed: 2023-10-06)
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Vive Hand Tracking The Vive Hand Tracking SDK provides hand tracking capabilities
for supported headsets within the HTC Vive series, including the Valve Index. This SDK
offers 2D and 3D tracking for a total of 21 finger joints and operates at a smooth frame
rate of 60 FPS for minimal GPU requirements for VR with a NVIDIA GTX1060/AMD
RX480 GP [14]. Additionally, the Vive Hand Tracking SDK includes support for base
gesture recognition, which includes a set of six gestures, all of which are integrated into
the ’EasyHand’ framework. While the number of finger joints is the same as with the
Meta Quest hand recognition system, the indexing differs. An overview of the detected
joints and available gestures can be found in Figure 3.6.

Figure 3.6: Left: The detected joints of the Vive Hand Tracking. Right: Recognized
Gestures of the Vive Hand Tracking.

3.2.2 Unified Joint Mapping
As depicted in Figures 3.4, 3.5, and 3.6, each of the base systems is capable of detecting
finger joints and assigning a specific integer index to each joint. However, it’s important
to note that this indexing is not standardized across these systems. The ability to discern
which part of the finger is currently being tracked is crucial for accurate hand visualization
and gesture recognition.

To address this challenge, we introduce our own index mapping system (where we were
inspired by LeapMotion and Quest) within the ’EasyHand’ framework. This mapping
defines a name for each part of the finger and assigns a corresponding index to each
part. This name definition can be seen in Figure 3.7. During an initialization step, we
establish a correlation between the index assigned by the base tracking system and the
corresponding ’EasyHand’ joint/bone index.

For instance, let’s consider the ’EasyHand’ joint named ’Wrist’. Initially, Vive and Quest
assign this joint the index ’0’, while LeapMotion assigns it an index ’20’. Through
the aforementioned mapping process, we ensure that we consistently obtain the correct
location and rotation data when referencing the bone identified as ’Wrist.’
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Figure 3.7: Joint index mapping and description of an ’EasyHand’ hand skeleton.

With this mapping in place, we can easily maintain unified data structures for tracked
hands. As one of the initial steps in the ’EasyHand’ update cycle, we map the detected
base joints to this unified data structure. This allows us to subsequently build upon these
data, enabling us to perform all logic related to gestures, visualization, and interaction
without relying heavily on the specifics of the underlying base tracking system. The
current implementation is limited to the joints used in Figure 3.7. If a base system has
more, the most suitable ones are selected and the others are discarded. The case that
the base system does not have these joints is not yet covered, but offers the potential
to calculate them in a future extension by interpolation, for example. However, this
case has not occurred for the base systems used in this work. In this context, the only
remaining information we need to obtain from the base system, if available, is about
detection events and gesture recognition.

3.2.3 Gesture Recognition - Design and Implementation
Recognizing various hand gestures is a broad topic for scientific research in its own right.
Therefore, our primary focus does not encompass the recognition of complex gestures
but centers on the identification of simple gestures to facilitate basic gesture integration
for developers. These simple gestures comprise six distinct hand gestures, as previously
detailed in the HTC Vive hand tracking plugin overview presented in Figure 3.6.

To determine whether a specific gesture has been executed, we initially verify if the
underlying recognition system successfully identifies any of the predefined gestures
autonomously. In cases where this recognition does not occur, we resort to our custom
implementation for gesture recognition. Since all of the mentioned gestures hinge on the
extension or bending of fingers, we evaluate the angles at each finger joint. Each finger
consists of four joints, forming three vectors. As illustrated in Figure 3.7 for the index
finger, we can establish vectors as follows: v1 = 6̄5, v2 = 7̄6 & v3 = 8̄7. We then calculate
the resulting angle (α) between v1 & v2, as well as between v2 & v3, add them up, and
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Figure 3.8: The ’Peace’ gesture recognized by the system. Left: Labels indicate which
fingers are bent and which are not. Here the system recognizes the gesture when all
fingers are bent except the index and middle Finger. Right: Angle calculations between
the joints are used to determine which fingers are bent and which are not.

subsequently apply predefined threshold values to discern whether the finger is extended
(α < 45◦) or bent (α > 100◦). An example calculation for the ’Peace’ gesture is shown in
Figure 3.8, where all fingers need to be bent except the index and middle fingers.

3.3 Visualization and Interaction

After detecting the hands and assigning IDs to the detected joints, users require the
ability to incorporate these hands into the virtual world. To accomplish this, it is essential
to provide users with a means to visualize these hands and imbue them with physical
capabilities, e.g. colliders, enabling interaction with the virtual environment. Special
events that originate from the base tracking system when hands are newly detected or
detection is lost are used to trigger visualization.

For visualization, we have implemented two widely recognized approaches (such as those
used by Metzner et al. [74]): one employs an abstract representation of the detected
joints and connecting bones, while the other utilizes a more realistic mesh representation
of the hand. As Ricca et al. suggested that the visual representation of the hand does
not always impact tool-based motor tasks training in immersive VR simulators, these
visualizations promise good and interactively usable representations of the hand[95].
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Figure 3.9: Skeletal rendering of detected hands.

3.3.1 Skeletal

One of the fundamental representations of the hand is the skeletal visualization, comprising
spheres positioned at the detected joint locations and connecting lines to illustrate the
bones. This approach enables users to identify each individual finger joint, as illustrated
in Figure 3.9. The hand’s world position is determined by the location of the ’Wrist’
joints, and its orientation is derived from the resulting vector connecting the ’Wrist’ and
’Middle1’ joints.

3.3.2 Mesh

For a more lifelike representation of the tracked hand, we employ predefined meshes that
offer adaptable visual presentations, allowing us to choose between realistic textures,
abstract wireframes, and the ability to alter skin color, among other options.

To align the hand mesh with the detected hand, each rigged bone in the mesh is mapped
to the corresponding joint index, as illustrated in Figure 3.7. The position and rotation of
each joint are then dynamically adjusted through code to accurately mimic the connections
of real hand bones. To ensure that the mesh closely matches the user’s real hand size,
we compute an ideal finger length based on the positions of the detected joints. This
approach allows us to resize the bones to approximate the user’s specific hand dimensions.
The resulting visual representation can be observed in Figure 3.10.

We have taken advantage of existing resources, incorporating pre-assembled meshes
from the ’OculusIntegration’ Unity package [73], and we have also utilized the mesh
calculations already used in the Vive hand tracking system for Unity [13].
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Figure 3.10: Skeletal rendering of detected hands.

3.3.3 Direct 3D Object Manipulation in Unity3D

Interacting with the virtual environment constitutes a crucial aspect of any VR application.
One mode of interaction involves using predefined gestures, as explained in section 3.2.3.
Another approach is direct interaction with and manipulation of the virtual environment,
encompassing actions such as pressing buttons, picking up and tossing virtual objects,
or selecting items. To enable these interactions, we must facilitate physical interactions
with the visualized hand.

To achieve this, we used the existing collider component within the Unity game engine.
Since we already have the locations of each finger joint, and therefore the length of each
bone, we can easily generate capsule colliders with corresponding lengths for each bone.
The positions of these colliders are then dynamically adjusted in each physics update
loop to align with the user’s hand movements.

An alternative approach would involve creating an exact mesh collider to match the hand
precisely. While this approach would offer greater precision in interactions, it presents
challenges due to the static nature of meshes in the Unity engine. Creating such a mesh
every time the hand pose changes would impose an exceedingly high computational
load. With our implemented solution, we maintain an interactable hand with good
precision while simultaneously managing an acceptable computational load in the physics
calculations.

3.3.4 EasyHandRig Template Implementation

To seamlessly integrate the concepts presented above into the VR environment, we have
devised a template structure known as ’EasyHandRig’. This template simplifies the
process for developers, enabling them to effortlessly incorporate functional hand tracking
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into their projects. The architectural components of this template are illustrated in
Figure 3.11.

Figure 3.11: Components for the ’EasyHandRig’ template.

At the core of this template is the ’EasyHandManager’ class, which serves as a central hub
for developers to select their preferred hand tracking system (e.g., Quest or Ultraleap).
This class is responsible for initializing the foundational tracking system, selecting the
mapping joints as per the developer’s specifications, and initializing the visualization and
gesture detection subsystems.

The ’HandTrackingProvider’ is responsible for providing the unified joint data for each
rendered frame to both the visualizer and gesture recognizer. To render the virtual scene,
we use a virtual camera that is equipped with a pose tracker that handles the translation
of real-world head-mounted display (HMD) movements into corresponding virtual world
transforms.

An example of the ’EasyHandRig’ inside the Unity Engine is illustrated in Figure 3.12.

3.4 Multi-User Capabilities
To enable colocated VR scenarios, our system is designed to create multi-user VR
experiences. To achieve this, we use Photon PUN (Photon Unity Networking)8, a
real-time cloud networking solution designed for multiplayer games and applications.
Photon PUN operates on a client-host architecture, where clients communicate with a
central server, which then relays messages to other connected clients. This approach

8Photon PUN: https://www.photonengine.com/pun(Accessed:2023-10-06)
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Figure 3.12: The ’EasyHandRig’ inside the Unity engine. The ’EasyHandManger’
component is placed on the parent ’EasyHandRig’ game object. Each hand object has
its own visualizer and gesture recognizer. The VR camera represents the user’s HMD
and is responsible for user positioning and rendering. In this example, Meta Quest hand
tracking is used, which is why an OVRManager is created at runtime to obtain the
low-level data of the tracking system for unification.

eliminates the need for direct communication between connected clients, simplifying the
communication process when multiple clients are connected simultaneously.

Table 3.1: Overview over all synchronized that is sent to the Photon server and then
broadcasted to all connected clients

Name Type Size (Bytes) Sync Rate
Connect ID Integer 4 Once
Rig Transform Vector3 & Quaternion 28 60 Hz
Camera Transform Vector3 & Quaternion 28 60 Hz
Hand Data Hand 373++ 60 Hz
Gestures GestureEventArgs 9++ Once when detected

Synchronizing Data Photon automatically configures the cloud server to broadcast
received data to all connected clients while also managing matchmaking and handling
connection-related events, including connection losses. To minimize latency and optimize
data handling, only essential data is sent to the server and subsequently broadcasted to
all clients. An overview of the synchronized data is provided in Table 3.1. In cases where
’++’ follows the sent package size, it indicates that the sent data has a minimum size
specified but may be larger due to the inclusion of dynamic data, such as strings with
variable lengths.

Hand De-/Serialization As mentioned in Table 3.1, the synchronization of detected
hand data over the network is a needed component of our system. Leveraging our
unified data class for recognized hands, we can precisely define the data to be serialized.
Given that connected clients require more than just joint positions, we also synchronize

37



3. EasyHand - A Modular Hand Interaction and Visualization Framework for
Single and Colocated VR Scenarios

additional relevant information. Table 3.2 provides an overview of the elements needed
for synchronization.

Table 3.2: Synchronized data for a serialized hand

Name Type Size (Bytes)
Left or Right Hand Boolean 1
ID Length Integer 4
ID String ID Length
Hand Transform Vector3 & Quaternion 28
Tracking Method Integer 4
21 Joint Indices Integer 21 x 4
21 Joint Positions Vector3 21 x 12

This results in a data set with a minimum size of 373 bytes, generated from the hand
data class during each synchronization cycle. This data set is then transmitted to the
clients and parsed back into the appropriate data class. Subsequently, it can be employed
for visualization and interactions, as detailed in the previous sections.

The same process is applied to recognized gesture data. Alongside the recognized gesture
itself, which occupies 4 bytes in size, we transmit additional information, including
whether the gesture is performed by the left or right hand (1 byte) and the sender’s ID
(4 bytes for the ID length, with a custom size of bytes for the actual ID, since we don’t
know the length of the ID String). This information enables every client to definitely
associate a gesture with a specific hand of a network user.

3.5 Distribution and Extensions
The framework has been developed as an extension for Unity3D, designed to be modular
and easily accessible for developers to seamlessly integrate into both new and existing
projects. It adheres to the structure of Unity’s UPM (Unity Package Manager) workflow
[109] and is hosted on the Git provider ’Bitbucket’9. This enables developers to effortlessly
incorporate the package and all its dependencies through Unity’s Package Manager using
the provided Git URL. An overview of their integration is depicted in Figure 3.13 at the
’System Integration’ part.

To streamline the integration process and minimize overhead, we have externalized
base-tracking systems and additional features as separate packages. The core framework
comprises the following essential components:

• Core Source Code: Containing fundamental code, including data structures,
mapping, visualization, gesture recognition, and physics.

9EasyHand Repository: https://bitbucket.org/Densen90/easyhand (Accessed: 2023-10-17)

38

https://bitbucket.org/Densen90/easyhand


3.6. Current State

• MediaPipe Tracking: Handling the logic and integration of the MediaPipe
system, enabling hand tracking from webcams (see chapter 5).

• Networking: Offering seamless network integration, facilitating multi-user capa-
bilities, and serialization / deserialization of hand data.

• Hand-Ownership Estimation: Containing classes for estimating hand ownership
using straightforward methods.

Should developers require additional functionality, custom plugins can be incorporated.
A plugin is essentially an archive hosted on a web server containing the necessary logic
implementations, external dependencies, packages, and the required assets and resources.
The following plugins are available and provided by us:

• LeapIntegration: Allow hand tracking with the LeapMotion tracking controller.

• QuestIntegration: Allowing hand tracking with the Meta Quest or supported
Meta HMDs.

• ViveIntegration: Allowing hand tracking with all compatible HMDs using HTC
hand tracking technology.

• MLHOAgentsIntegration: Enhancing the hand ownership algorithm by integrat-
ing Unity3D’s machine learning agents for assigning virtual hands (see section 6.2).

• Colocation: An additional UPM package that relies on the ’EasyHand’ framework,
facilitating the creation of colocated VR scenarios. This can be achieved using
tracked hands, initial HMD placements, or AruCo markers (see section 4.2).

Archives for accessing these plugins, as well as the Colocation UPM package, are also
hosted on servers of the git provider ’Bitbucket’10.

3.6 Current State
The ’EasyHand’ system currently meets all the requirements outlined in section 3.1.1. A
high-level overview of the system workflow is provided in Figure 3.13.

The components denoted as ’System Integration’ and ’VR Headset Tracking’ are customiz-
able and can be chosen to suit the user’s specific hand tracking and VR system preferences.
The core logic for a unified Visualization, Interaction, and Gesture Recognition system,
as explained in the preceding sections, is designed to seamlessly interface with these
interchangeable integrated systems. The resulting unified data can then be synchronized

10EasyHand Plugins Repository: https://bitbucket.org/Densen90/eh_plugins (Accessed:
2023-10-17)
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Figure 3.13: General overview of the flow of the ’EasyHand’ system. ’System Integration’
shows how base hand tracking systems are integrated. ’Unified Logic’ is the core logic
for Visualization, Interactions, and Gesture Recognition of the system. These parts can
be synchronized over the network. ’VR Headset Tracking’ is the integration of a VR
headset to track the user’s head movement and work in conjunction with tracked hands
in the final application.

over the network to create a multi-user VR application. When there are multiple users
present, the developer has the ability to use the Hand Ownership algorithm outlined in
chapter 6 to discern which hand corresponds to each active user.

The ’EasyHand’ framework is currently on version 1.1.811, implemented in Unity3D
version 2022.3.5f1 and relies on Photon Unity Networking 2.30 for network functionality.
At the time of writing this thesis, the framework supports the following hand tracking
base systems:

• Meta Quest Hand Tracking with ’OculusIntegration’ v.55.0

• LeapMotion Hand Tracking with Ultraleap Plugin v.6.10.0

• Vive Hand Tracking v.1.0.0

• MediaPipe with Hand Tracking Integration v.0.8.10, together with a Unity C#
wrapper plugin v.0.10.312

Future work on the system could focus on the automatic integration of current versions
of underlying base hand tracking APIs. Currently, the system includes plugin archives

11EasyHand Repository: https://bitbucket.org/Densen90/easyhand (Accessed: 2023-10-17)
12MediaPipe Unity Plugin: https://github.com/homuler/MediaPipeUnityPlugin (Accessed:

2023-10-06)
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hosted on a web server, each of which integrates a specific version of the base hand
tracking API (e.g. OculusIntegration). Automatically referencing the officially released
versions of these APIs would serve to reduce the file size of hosted archives. This approach
would make it more convenient for developers to use the system and provide access to the
latest features and performance updates of the tracking systems without the necessity of
manually updating the plugin archives on the web server.

Additionally, the integration of hand tracking capabilities of the OpenXR standard
could expand the utility of the ’EasyHand’ system. This enhancement would enable
compatibility with the universal XR platform, allowing for the seamless integration
of multiple additional hand tracking systems, such as Microsoft Mixed Reality [32].
This expansion would facilitate uniform XR hand tracking within the system, further
enhancing the user experience. Furthermore, it would open opportunities to incorporate
networking capabilities into OpenXR, as discussed earlier. These advancements would
contribute to making the ’EasyHand’ system more widely accessible and user-friendly.
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CHAPTER 4
Using Tracked Hands to Create

Colocated VR

The following chapter will present our methods for synchronizing the coordinate systems
the virtual worlds of two independent users using SLAM-tracked VR headsets. We will
introduce three distinct approaches: one that involves the alignment of the HMDs, another
where both systems track an ArUco marker, and a third where the HMDs are aligned by
tracking the hands of the same user. Following this, a comparative experimental analysis
will be performed to evaluate the calibration error, and we will discuss the optimal
approach considering factors such as consistency, usability, ease of setup, and scalability.

4.1 Motivation
In a colocated VR setup, poses of all users within the same coordinate frame need to be
known. To achieve this, virtual users must be placed in correspondence to each others
locations concerning their position and view direction. Figure 4.1 illustrates this. In
setups where external cameras are used, this approach is easier, as the external camera
system establishes the same shared coordinate system for all users inside the tracking
range of the system. Such systems can utilize, for example, the Lighthouse tracking
system of the Vive [122] or external camera systems like OptiTrack for large physical
environments [29]. However, these systems are intricate to set up, come with high costs
and are limited in their mobility. For these reasons, we aim to have no dependency on
these systems for the creation of colocation.

At the time of writing, head-mounted displays that use built-in visual SLAM techniques
for head tracking are gaining popularity in the consumer VR market. These demonstrate
the substantial advantage of not requiring an external camera setup for fast and precise
6DOF tracking. They can often allow virtual environments that are larger than those
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Figure 4.1: Sketch of requirements for a colocated scenario. Left: Two users standing
in front of each other at a distance d and their view directions v1 and v2. Right: Their
virtual representations are aligned to have the fitting distance and view direction of their
real-world counterparts.

that similarly-priced external tracking camera installations can cover. The Meta Quest is
an example of an HMD that uses SLAM and is available to consumers.

As a SLAM-tracked device, each Meta Quest creates an individual environmental tracking
map. However, for colocated shared environments, synchronizing the virtual space for
all users becomes a challenging task, given that the tracking map cannot be read out
and copied to other devices. As we aim to avoid reliance on external tracking systems
for map synchronization, given the constraints of most devices that can be integrated
with the HMD, our focus is on developing methods that synchronize exclusively with the
user’s SLAM-tracked HMD — in this case, the Meta Quest headset.

We address this challenge by investigating three methods that initially calibrate SLAM-
tracked HMDs within the same physical environment to create a shared colocated VR
scenario:

• Fixed-point calibration: All colocated HMDs are initial placed at predefined
positions within the physical environment.

• Marker-based calibration: A marker in the physical environment is tracked
simultaneously by all client applications running on the user’s HMDs.

• Hand tracking-based calibration: The hands of one of the colocated users are
used as spatial anchors, simultaneously tracked by all client applications.

Although two of the investigated calibration methods - fixed-point calibration and marker-
based calibration - have been used in previous research, to our knowledge, the hand
tracking-based calibration method is entirely novel.

To summarize, we present the following contributions with our experiment:
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• A new calibration method for shared colocated VR scenarios using SLAM-tracked
HMDs with hand tracking. This method employs user hands as spatial calibration
anchors, eliminating the need for additional infrastructure and demonstrating
superior calibration accuracy.

• An experimental comparative evaluation of the accuracy of three colocation cali-
bration methods.

• Analysis of limitations and future possibilities of the discussed calibration methods.

To achieve our overarching goal of creating colocated shared environments with hand
tracking, where tracked hands can be obtained by multiple systems and assigned to the
correct user, the method presented here for creating colocated shared environments for
SLAM-tracked headsets with the help of hand tracking is the first necessary step.

4.2 Calibration Methods for Creating Colocated VR
In this section, we present the design and implementation of three different calibration
methods that enable shared colocated VR scenarios. All discussed methods are designed
to work with SLAM tracked headsets in general, are independent of external tracking
systems and tested on the Meta Quest HMD. The details of our implementation of two
previously published calibration methods - fixed-point calibration and marker-based
calibration - are followed by the description of the design and implementation of our
novel hand tracking-based method.

4.2.1 Fixed-Point Calibration
This calibration method is the most simple and straightforward of the three presented
methods. To prepare the physical environment for calibration, a specific point is predefined
and marked (for example, the center of the room). We call this point UR. Then, a
point in the virtual world UV is manually set up that should correspond to UR. After
calibration, a user at position UR in the physical space should have the position UV in the
virtual space. A set of distinct UR and UV positions is determined for each colocated user.
Some applications use the same reference points for all users, calibrating user positions
one after another [70]. We choose to set up a unique reference point pair for each user,
enabling simultaneous calibration.

For the calibration, we position the HMD of each user on the floor at their corresponding
UR, rotated in the direction that is set with UV . Then we manually start the calibration
process to align the virtual users with their reference points.

Let Uprev be the virtual starting point of the user and UV be the pose we want the user to
be aligned with. We define the position and rotation of the virtual user with{pprev, rprev} ∈
Uprev & {pV , rV } ∈ UV . We then determine the amount we have to rotate the user (α)
and the amount we have to move the user (Δp) with the following formula:
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Δp = pV − pprev

α = rV ∗ r−1
prev

(4.1)

The process can also be seen in Figure 4.2, where the location and orientation of the
user’s heads are aligned with their physical HMD counterparts.

In the setup used in our evaluation experiment described in section 4.3, the reference
points of two users were placed one meter apart from each other, with the HMDs rotated
to look at each other. However, reference points can be set at arbitrary distances, as
long as their relative poses in the physical world correspond to those in the virtual
environment.

Figure 4.2: Left: The users‘ headsets are positioned on predefined locations in the real
world. Right: Virtual users who are repositioned to UV , which is the virtual representation
of UR. Distance ΔdU is the same in the real and virtual world. Red arrows represent the
view direction of the user.

4.2.2 Marker-Based Calibration
Our implementation of the marker-based calibration method uses an ArUco marker placed
on the floor in the tracking space as a spatial anchor for the colocated HMDs. ArUco
markers are square images featuring a black border and an inner matrix represented
by white dots denoting the marker’s ID [84]. These markers are easily created and
adequately unique for our use case, as only one marker is required for our setup. We
used a ZED mini camera that we attached to Meta Quest to detect the ArUco marker.
However, HMDs front-facing cameras could be used as well, as long as their video feed
can be made accessible to the developer. Using the OpenCV framework, we calculate the
position and rotation of the detected marker in camera space to recalculate the position
and rotation of the camera in the coordinate frame associated with the marker.
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This marker also has a reference representation in the virtual world. This representation
is our virtual anchor from which we are relocating our users.

Compared to fixed-point calibration, where UV is known as the location we want to be
aligned with, in marker-based calibration, we have to calculate this pose after a marker
was detected. Since we know the pose of the world space markers (MV ) in the virtual
world, we can determine the location of the world space (UV ) to which we want to
align our user. The marker recognition software provides us with the marker location
in the user’s camera space. This can be inversed to determine the user’s location in
the marker space (we define this with UM ). We now are able to determine UV with
UV = MV + UM . Since we now know UV , we can relocate the virtual user to this location
using Equation 4.1. An illustration of the calibration process can be found in Figure 4.3.

Figure 4.3: Left: The users standing in the real world detecting an ArUco marker. Right:
Virtual users who are relocated depending on the detected marker. The virtual user is
moved by Δp and rotated by α to get to UV , which is the position of the user p⃗m and
rotation r⃗m in the marker space.

This calibration can be used for each user independently or simultaneously. The process
is either triggered by a user interaction (e.g. pressing a button on a controller) or, in our
case, from an admin computer. This way, it can be controlled and easily redone during
the experiment, as long as the marker is in sight of the AR camera. Figure 4.9 shows
this setup in the real world.

4.2.3 Hand Tracking-Based Calibration

Our novel calibration method based on hand tracking of colocated users requires a hand
tracking-capable device. We worked with Meta Quest in our implementation; however an
additional sensor such as a LeapMotion device attached to the HMD could be used.

47



4. Using Tracked Hands to Create Colocated VR

To see whether it makes a difference in accuracy or effort, we implemented two recalibration
methods with hand tracking. The first one uses one tracked hand (here the right one) to
relocate the user according to the tracked pose. The second one relocates the user by
tracking both hands and calculating a mean pose to which the user is reoriented.

During the calibration process, one user’s hands are held behind their back to prevent
the headsets from accidentally tracking these hands. The other user is then holding their
right hand (respectively both hands) in front of both headsets, so both track it. If this is
the case, the colocation process can be triggered by a user interaction (e.g. pressing a
button). The calculations for that are found in Equation 4.2. In our setup, an admin
computer is triggering the colocation process. However, in future implementations, this
could also be done by one of the users.

Then one user sends the position and rotation of their hand anchor to the other user as
a reference point. For one hand, this is the tracked hand pose; for both hands, it is a
mean pose of both tracked hands. The receiving user then reorients his virtual hand to
match the received pose. The whole user is then reoriented by the difference between its
own and the received hand pose.

Δp = prefHand − ph

puser = puser + Δp

Δr = rrefHand ∗ r−1
ownHand

ruser = ruser ∗ Δr

(4.2)

In this method Δp is the amount we move the user’s position and Δr the amount we
rotate the user to get them to the location UV . Figure 4.4 illustrates the reorientation
process. UV is the location we want to set the users to in the virtual world.

From now on, the users are colocated. Depending on the HMDs tracking accuracy, this
reorientation can be redone every time the headsets’ drift gets too big. However, such
an increase in drift did not occur in the experiments carried out in this study. Since it
does not require any preparation in the real world, this can be done anytime, anywhere
during application. The only requirement is that the reference hand is visible for both
users. Compared to the other methods, not all users are repositioned to a new virtual
location. Since one user’s hand is sent as a reference to other users, this user does not
need to get reoriented because other users are relocated to match the reference position.

Variant based on the tracking of two hands For the calibration method where
two hands are used, a mean point of both tracked hands is used. This point is the mid
point between pl and pr which are the virtual points for the detected left and right hand
and calculated as:

pM =pr + pl − pr

2 (4.3)
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Figure 4.4: Left: The users standing in the real world detecting the same hand. Right:
User gets relocated by difference Δp. α is the difference in rotation between the tracked
hand and the received reference hand. Rotation is visualized by red arrows. Compared
to other methods, only the other user gets relocated.

This formula is used to get the mean of the position and the rotation, that are then used
as a single reference point when recalibrating the user, as explained in section 4.2.3.

4.3 Usability Evaluation Experiment
The goal of our experiment is to evaluate the usability of each of four presented calibration
methods in terms of calibration accuracy, difficulty of setup and the need of additional
hardware. Our four calibration methods are clearly distinct with respect to the calibration
effort and the need for additional hardware and software. While this experiment comprises
a first technical evaluation, we plan to conduct a user-centered evaluation with multiple
participants as part of our future work1.

4.3.1 Experimental Design and Evaluation
The evaluation was performed with two HMDs (Meta Quest) colocated within the same
room and calibrated with each of the described methods. To estimate the precision of
the calibration, we used ground-truth tracking data obtained with an externally mounted
Lighthouse 2.0 tracking system with two sensor stations. A HTC Vive tracker was
attached to each HMD (pictured in Figure 4.5), allowing the ground-truth distance
between both HMDs dGT (t) in the frame t to be calculated as the distance between two
trackers, adjusted by offset between the centre of the tracker and the centre of the HMD.

1Due to the COVID-19 pandemic, an extensive usability study with multiple users was not feasible
at this stage.
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The calibrated distance between the HMDs dC(t) in the frame t was calculated as the
difference between their positions in the virtual scene. The difference between dGT (t)
and dC(t) provides the final distance error in the frame t as described by Equation 4.4.

δ(t)=|dGT (t) − dC(t)| (4.4)

Figure 4.5: Meta Quest with an attached Vive Tracker and ZED-Mini camera used in
the evaluation.

It is worth noting that δ(t) contains possible contributions due to imprecision or drift of
the in-built SLAM-based tracking of Meta Quest as well as the influence of tracking errors
inherent to the Lighthouse tracking system used as a ground-truth reference. The tracking
accuracy of a Vive tracker delivered by the Lighthouse system has been shown to be in
the millimeter range with high reproducibility of position measurements, making it viable
for collecting ground-truth measurements [4][7]. In comparison, the tracking accuracy
of Meta Quest was measured at a level below 1 cm under good lighting conditions [88].
These results motivate our use of the Lighthouse system as the source of ground-truth
tracking data, as we believe its accuracy is sufficient to allow the comparison of the
investigated calibration methods. To minimize the impact of these tracking errors, we
calculate δ(t) for a number of frames after each calibration.

4.3.2 Pilot Evaluation
We collected pilot evaluation data, performing the calibration five times for each calibra-
tion method and calculating the distance error δ(t) in N=1000 consecutive frames after
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Figure 4.6: Time distribution of the distance error, shown on the example of a dataset
from fixed-point calibration.

each calibration. These pilot recordings showed that, for each calibration method, the
calculated error of the distance between two HMDs δ(t) is not correlated with time. An
example of time distribution of the distance error can be seen in Figure 4.6. This example
shows the tracking error over time during the 1000 frames recorded. The variance could
be explained by inaccurate positioning in the fixed-point calibration, but this will be
discussed again later. Furthermore, for each method, the median distance error was
different for different calibration events. This fact was established with a Friedman’s
ANOVA repeated-measures non-parametric test for each calibration method, since all
error distributions were not normal [25][26][27]. The box-plots of distance error obtained
from the pilot recording are presented in Figure 4.7.

The box-plots indicate a considerable number of outliers in the distance error distributions.
We are inclined to think that these outliers are the result of tracking inaccuracy in
individual frames during recording sessions. However, our method does not allow to
distinguish between contributions of possible inaccuracy of the SLAM-based tracking of
Meta Quest or the Lighthouse system.

The pilot analysis shows that neither of the investigated methods provides consistent
calibration performance across different calibration attempts. For the fixed-point method,
the inconsistency in the calibration results can be readily explained by the inconsistency
of precision with which the users place the HMDs on predefined calibration positions.
For the remaining methods, calibration success directly depends on the precision of the
various tracking data (of marker or users’ hands) in the frame where the calibration took
place. This dependency on the precision of the tracking data used in a calibration method
could be addressed in future modification to the calibration methods, however, potentially
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at the cost of additional setup effort on the part of the users. We will discuss potential
mitigation strategies in section 4.4. To address the impact of the varied imprecision of
every individual calibration, as well as to eliminate the impact of outliers present in the
measurement of the distance error, we chose to perform each type of calibration multiple
times and to record the distance error in a large number of frames after each calibration.
Afterwards, we compare median distance errors resulting from each calibration. We
further use the term calibration error to refer to the median distance error calculated
from the recorded distance data after each calibration.

Figure 4.7: Distance error box-plots of pilot recordings.

4.3.3 Setup and Procedure
A distributed VR application run in the experiment is developed with Unity 3D
(v.2019.4.3), with the networking layer built on the basis of the Photon Unity Plu-
gin (PUN). The networking layer insured the synchronization of poses obtained with
input tracking data and the simultaneous execution of experimental commands on all
machines. Meta Integration asset for Unity 3D was used as an API layer providing
tracked head and hand poses of Meta Quest to each Unity3D client application. How-
ever, the rendering of tracked user hands was achieved with the help of the ’EasyHand’
framework that was presented in chapter 3, providing a universal layer for collecting and
distributing hand tracking data obtained from any input source. In the experiment, both
client applications running on Meta Quest were connected to a server, also running an
administrative client issuing experimental commands. All poses of VR-immersed users as
well as calibration-specific tracking data (of the tracked marker or tracked hands) are
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visible on the administrative client. The main command issued by the administrative
client triggers the calibration procedure for a selected calibration method. A diagram
illustrating the communication flow between the administrative client and Meta Quest
clients is presented in Figure 4.8.

Figure 4.8: Network communication between admin computer and VR users.

The evaluation data was collected with the following experimental procedure:

1. Start the administrative client, which is also the master client (host) in the PUN
distribution pipeline, to open the network connection.

2. Connect both HMDs with respective connected Vive trackers.

3. Ensure correct synchronization and assignments of HMDs and Vive trackers in the
administration client.

4. Collect data following the procedure detailed in Section section 4.3.1.

To enable marker-based calibration methods, we attached a ZED-Mini camera to each
HMD as demonstrated in Figure 4.5. Figure 4.9 illustrates our experimental setup on a
room-scale. An ArUco marker was positioned on the floor in the middle of the room. Two
markers for one headset each were placed on the floor at a distance of one meter for fixed-
point calibration. When users connected to the same distributed application, they were
able to see each other in the same virtual environment, although their relative positions
did not coincide with those in the real room before calibration. After the calibration
procedure was triggered from the administrative client, users’ relative positions in the
virtual environments were moved to coincide to their relative positions in the physical
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environment and recording of their poses started. Although the evaluation was conducted
with two colocated users, the calibration procedure accommodates an arbitrary number
of users.

Figure 4.9: Exemplary experiment setup for marker-based calibration method.

4.4 Results and Discussion
The following section will present the results of the analysis of the aforementioned
evaluation. After stating the calibration error of the several methods we will discuss
these results and elaborate on further important properties of the evaluated calibration
methods for colocated SLAM-tracked HMDs.

4.4.1 Calibration Error Outcome
Data used in the evaluation was collected following the approach described in section 4.3.1.
For each method, the calibration was performed 25 times, resetting the application each
time and attempting to perform the same head movements each time; the error between
the ground-truth distance between the HMDs and the distance derived from the calibrated
positions was recorded during 1000 frames after each calibration. We then calculated
the median error for each dataset of 1000 error values, obtaining four datasets of median
errors with 25 entries in each. The box-plots of these four datasets are presented in
Figure 4.10. The median errors proved to be normally distributed in the Shapiro-Wilk
test [102] after two outliers had been removed (p = 0.055 for the fixed point method, p
= .102 for the marker-based method, p = 0.021 for the method based on one hand hand
tracking, p = 0.066 for the method based on two hands hand tracking). The removed
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outliers can be seen in Figure 4.10, one in the marked-based method and one in the hand
tracking-based method with two hands. We then used one-way ANOVA [85] to compare
the distributions means. The analysis was performed with IBM SPSS Statistics.

Figure 4.10: Box-plots of median distance error for four calibration types.

Figure 4.11: Mean values of calibration error (median distance error) for each calibration
method.

Levene’s test [60] showed a violation of the homogeneity of variance (p < .001). Therefore,
we used Welch’s test [123] for the main analysis and the Games-Powel test for post-hoc
comparisons. The median error differed significantly with different calibration methods
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(Welch’s F(3, 46.765) = 40.965, p < .001 ). The resulting plot of mean values is presented
in Figure 4.11. Post-hoc analysis revealed that the median error was significantly larger
for the fixed-point method than for all other methods. The median error of the hand
tracking-based method with two hands was significantly smaller compared to all other
methods. Details of post hoc comparisons are summarized in Table 4.1. Mean differences
are reported as significant at the 0.05 level.

(i) method (j) method mean diff. (i - j) std. error sig. 95% CI
lower bound upper bound

fixed-point
marker 7.60789 2.49586 .02 .9291 14.2867

one hand 8.41017 2.68948 .016 1.2433 15.5770
two hands 18.44063 2.16391 < .001 12.5353 24.3460

marker
fixed-point -7.60789 2.49586 .02 -14.2867 -.9291

one hand .80227 2.20473 .983 -5.0771 6.6817
two hands 10.83273 1.51988 < .001 6.7132 14.9523

one hand
fixed-point -8.41017 2.68948 .016 -15.5770 -1.2433

marker -.80227 2.20473 .983 -6.6817 5.0771
two hands 10.03046 1.82044 < .001 5.0816 14.9793

two hands
fixed-point -18.44063 2.16391 < .001 -24.3460 -12.5353

marker -10.83273 1.51988 < .001 -14.9523 -6.7132
one hand -10.03046 1.82044 < .001 -14.9793 -5.0816

Table 4.1: Results of post-hoc pairwise comparisons with Games-Powel test.

The results of our evaluation show that the fixed-point calibration method proved to have
the largest median calibration error, whereas the hand tracking-based method provided
the most accurate calibration when the variant based on the tracking of two user hands
was used. The accuracy results of the marker-based method and hand tracking-based
method using one user hand are comparable, with their accuracy being higher than that
of the fixed-point method but lower than those of the hand tracking-based method using
two hands.

The observed higher accuracy in methods using hand detection and ArUco markers,
compared to the fixed-point method, can be attributed to the inherent limitations of the
fixed-point method. The fixed-point method relies on manual placement of the HMD
and lacks the automated detection employed by the other methods. Consequently, the
introduction of human error is a significant factor in this approach. In contrast, hand
recognition utilizes multiple cameras on the HMD to precisely determine the position
and rotation of hands in a three-dimensional space, ensuring a high level of accuracy in
placement. Notably, the method involving two hands exhibits the smallest error. This
can be attributed to both the high tracking precision afforded by the hand-tracking
technology and the use of multiple anchors in space. The presence of two hands allows for
error compensation, wherein any potential inaccuracies in the position of one hand can
be mitigated by the information from the other hand. This is in line with the findings
of McGill et al., who demonstrated that employing two fixed points can yield improved
accuracy [70].
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4.4.2 Consistency and Potential for Improvement

Consistency of the calibration result describes the extent to which each calibration
method delivers similar calibration accuracy when the user performs identical actions
to calibrate the colocated HMDs. In the pilot evaluation stage, we discovered that the
median distance error measured after each calibration proved to be different for all the
methods evaluated. Data of 25 calibrations for each discussed method allows us to have
a more detailed look at the method’s calibration consistency.

The fixed-point calibration method showed the highest variability among the four eval-
uated methods, demonstrated by the largest range of median error values and their
interquartile range (Figure 4.10). This result is somewhat expected, given that each
user needs to manually place their HMD at the marked spot to calibrate for a colocated
scenario. It is hardly possible for users to achieve placement accuracy in the sub-cm range.
The accuracy and possibly consistency of the fixed-point method could be improved by a
two-point calibration procedure suggested by McGill et al. [70].

For the marker-based calibration method, the accuracy of each individual calibration is
contingent on the accuracy of marker tracking in the frame where the calibration takes
place. Compared to fixed-point and hand tracking-based calibration with one hand, this
method shows a smaller interquartile range and span of median errors, indicating a better
consistency than these two methods. Since the tracking process uses RGB images, its
accuracy can be highly dependent on lighting conditions and varied in unstable lighting.
A possible solution to mitigate the shortcomings of marker tracking is to collect marker
pose data for several frames and use the averaged pose value in the calibration procedure.
However, balanced values of frames need to be found since users would need to be very
still during the marker pose collection time. Alternatively, a larger number of markers
could be used in the calibration procedure, with the mean camera pose being calculated
with the tracking data of all markers (similarly to the multi-marker tracking method
used by Podkosova et al. [91]).

For calibration based on hand tracking using only one hand, the interquartile range
and median error range are comparable to the fixed-point calibration range, showing
much larger variability in distance error data compared to the setup when two tracked
hands are used in the calibration process. This stark difference in the variability of error
between the variants based on tracking of one hand and two hands might be an indication
of the advantage of using multiple spatial anchors in the calibration process.

The hand tracking-based calibration method demonstrated the strongest consistency
when two tracked hands were used in the calibration process. The increased consistency
compared to the other tested methods is reflected in the much more compact span
of the median error values and their interquartile range (Figure 4.10). According to
our evaluation, the greater accuracy of this method combined with the clearly better
consistency and ease of execution on the part of the users makes it the best method for
calibrating two-user colocated scenarios.
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4.4.3 Ease of Setup

The fixed-point calibration method does not require any additional hardware. It also
means that no additional software or plug-ins are required for developers, making this
method usable by a wide range of HMDs. However, the execution of the fixed-point
calibration requires certain involvement on the part of users as they need to take place
(or place their HMDs) at predefined locations as accurately as possible. Moreover, if
recalibration is necessary during the application runtime, users would have to remove
their HMDs to ensure that their positions in the tracking space are accurate.

Marker-based calibration might require additional hardware and software, depending
on whether the HMD has integrated cameras that can be accessed to enable marker
tracking or whether an external camera needs to be used, as in our evaluation. The
use of marker tracking itself requires additional implementation. In addition, a marker
must be positioned in a fixed location, which restricts mobility. For users, however, the
execution of marker-based calibration does not present any difficulty since users only
need to position themselves in a way that allows the calibration marker to be seen in
the camera image. When recalibrating, users need to return to the marker, making
calibration and recalibration dependent on the location of the real-world marker. The
calibration process can be made even easier for users if continuous tracking is used and
markers are attached directly to each user, as in the work of DeFanti et al. [15].

The hand tracking-based calibration method has similar hardware requirements as the
marker-based calibration. Either an HMD with integrated hand tracking (for example,
Meta Quest) or an external sensor (for example, LeapMotion) is needed. For both cases,
the developer needs to implement hand tracking detection (i.e., use the tracking systems
SDK). Since integrated hand tracking is becoming more ubiquitous, this calibration
method can be used on more and more HMDs without requiring additional hardware.
For preparation and calibration effort, this method is shown to be the least demanding
among the evaluated methods. Neither a physical marker nor a fixed location has to
be set in the real world. The only requirement is that the hands of one user must be
simultaneously visible to both users. For recalibration, the users do not need to return
to a specific spot in the real world. Still, they have to be near each other enough so that
the reference hand is visible to both tracking systems.

4.4.4 Scalability

In our evaluation, two users were colocated in the same physical environment. However,
each of the tested methods is designed to work for an arbitrary amount of users. In
the following, we briefly discuss how the applicability of each method extends to larger
amounts of colocated users. A future comprehensive user test can further verify this.

The fixed-point calibration method can be easily extended to accommodate any amount
of users. A corresponding number of marked positions in the physical environment and
their counterpart target positions in the virtual environment need to be prepared to
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extend the method. Although such preparations would require additional involvement of
an application developer, the calibration difficulty for users will remain unchanged.

For the marker-based calibration method, there might be an upper limit on the amount
of participating users since HMDs (or cameras attached to them) of all users would
need to track the calibration marker simultaneously (in the case where a simultaneous
calibration is required). However, this limit would be rather large - it should be possible
for up to ten users to stand in a circle so that the calibration marker can be tracked in
all client applications. Such a limit on the amount of user HMDs that can be calibrated
simultaneously would most probably be larger than the number of users that can be
physically colocated in a regularly sized tracking room. For larger tracking spaces that
many users share, several markers with known offsets could be arranged to calibrate
sub-groups of users. Otherwise, it would also be possible to rely on the low drift of
the SLAM-tracked HMDs and calibrate the users one after the other. In this case, the
number of users would also be limited by the size of the physical environment.

As with the marker-based calibration method, the hand tracking-based method could
have an upper limit on the amount of participating users. For a successful calibration, the
reference hand needs to be tracked simultaneously in all client applications. The range of
hand tracking limits the number of possible user positions from which the reference hand
can be tracked. The exact scale of this limitation needs to be examined in future work.
For a larger number of users, the hand-tracking-based calibration could be separated into
multiple calibration steps. Users’ poses could be calibrated to the same reference hand
one after another until all users are correctly colocated in the virtual environment.

4.4.5 Exploring Colocation in a Different VR Scenarios

The applicability of all four discussed calibration methods extends to various VR scenarios.
The most common use cases relate to room-scale environments, where users stand and
navigate the virtual space by walking (see Figure 4.12).

Figure 4.12: Two colocated users standing in front of each other with hand tracking
enabled.
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In future investigations, it would be worthwhile to delve deeper into room-size constraints
and drift issues that may arise during walking, with a focus on determining the optimal
frequency for recalibration.

But the colocation is not limited to room-scale scenarios. Seated colocated VR experiences
enabled by SLAM-tracked HMDs also require calibration and environment synchronization.
Colocation in seated VR can be used in a number of scenarios. For example, it can enable
a meeting scenario where several participants are sitting at the same table. A calibration
method will ensure that the virtual environment and all users are synchronized, allowing
them to view and interact with the same 3D model or visualized data. It can also prevent
collisions and enable the use of haptic elements or physical props in the environment.

Likewise, the discussed calibration methods can be used for seated collaborative VR
experiences in CAVE environments [58], where users are placed in physical seats aligned
with virtual seats. Currently, alignment is ensured manually by measuring the poses
of the physical seats in the CAVE space. This alignment can be automated using a
calibration procedure with an AR marker or hand tracking for more flexible scenarios.
Figure 4.13 shows two seated users after being colocated interacting with their hands.

Figure 4.13: Two seated colocated users using their hands.

4.4.6 Applicability and Future of Hand Tracking-Based Calibration

Currently, Meta Quest is not designed to be used in colocated scenarios. This argument
can be supported by the absence of access to the internal tracking map, which makes
colocation calibration necessary in the first place. Its hand tracking-enabled interaction
input is not designed to be used in colocated scenarios either, the possibility of tracking
hands of users not wearing the Meta Quest device itself clearly being an artifact. It is
this artifact that allowed us to use hand tracking for colocation calibration.
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It is conceivable that, in the future, neural net training used to enable hand tracking
on HMDs with forward-facing cameras would be implemented in a way that prevents
the hands of other users from being tracked (for example, by taking arm poses into
account during the training stage). In this case, direct use of hand tracking for colocation
calibration would not be possible.

However, hand tracking capabilities of HMDs equipped with frontal cameras can be
extended to track hands of other users deliberately, even if colocated users are relatively
far away in the common walkable area. Such extension could be helpful in providing hand
pose (and possibly derived full-body pose) estimations in situations where a user does
not keep their hands in front of their head (for example, when the user’s arms are kept
down, alongside the body). If such augmentations to hand tracking are developed, they
can prove beneficial for colocation calibration, potentially proving increased accuracy.
Mutual tracking is a promising direction of future work on colocated VR environments
overall.

4.5 Conclusion
The research presented in this chapter investigated three calibration methods that
enable shared colocated VR scenarios for SLAM-tracked HMDs. We implemented and
experimentally evaluated fixed-point calibration, marker-based calibration, and our novel
calibration method that uses hand tracking data of colocated users as spatial anchors.

Our experimental evaluation showed that hand tracking-based calibration using two user
hands as anchors achieved the highest consistent accuracy compared to fixed-point and
marker-based calibration. Not requiring any internal infrastructure and being easy to
execute at any time in a colocated scenario, our hand tracking-based calibration method
proved to be very advantageous.

With the current trend of hand tracking being adopted by HMD manufacturers, this
calibration method provides great potential for a wide range of VR solutions. Since the
setup is easy to use for end-users, we hope that this encourages developers to implement
colocation into end-user VR applications further. In future applications, it would be
interesting to extend the methods to more than two users. A limitation of concurrent
users and the impact of interference of all users and VR systems could be examined. A
tracking system designed to track users’ hands mutually could improve the user experience
in colocated scenarios and be promising research. With this approach, the impact of view
direction when tracking hands on calibration results is a promising topic of investigation.

After successfully establishing a colocated scenario using the presented method and
demonstrating its applicability, the next step involves facilitating interaction among
colocated users. To achieve this, it becomes essential to track more than two hands and
enable these hands to interact within a three-dimensional virtual environment. This
aspect will be explored in detail in the upcoming chapter.

61





CHAPTER 5
Evaluate and Improve an

RGB-Based Hand Tracking
Solution for Colocated VR Usage

In this chapter, we will provide a method to enhance the existing RGB hand tracking
capabilities of the MediaPipe framework [64][130] by extending the 2.5-dimensional
tracking of keypoints into three-dimensional space. This process involves a three-step
approach: first, detecting the hand itself; second, estimating the real-world hand size of
the user; and third, utilizing this information to calculate the three-dimensional world
space of the hand.

Subsequently, in the evaluation section, we will assess the placement accuracy of this
algorithm and compare it with state-of-the-art hand tracking systems such as Meta Quest
and LeapMotion. This comparative analysis will be conducted in both static and dynamic
environments, as well as in real usage scenarios. We will determine and compare the
tracking ranges of all systems. Finally, our findings will be summarized in a conclusion
where we discuss the applicability and usability of the proposed algorithm.

5.1 Motivation
In chapter 4 we presented methods to create colocated VR scenarios with the help
of hand tracking. Ensuring consistent tracking of all users’ hands within the shared
workspace is crucial for enabling reliable interactions over a wide tracking range. To
achieve reliable hand tracking for all colocated users, we propose a method that takes
advantage of the tracking system’s capability to track more than two hands and operates
within an extended range of distances, and furthermore accurately position the hands
in a three-dimensional space, thereby facilitating colocated hand interactions; this way,
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each tracking device which is worn by a user can provide tracking input not only for this
user’s virtual hands but also for virtual hands of colocated others. This idea is presented
in Figure 5.1 on the right: although the hands of user B are outside the field of view
of their hand tracking camera, they are tracked by the camera of user A and can be
rendered correctly. In this case, the camera of user A is tracking four hands at the same
time. This is not possible with the integrated hand tracking of the Meta Quest, where
Han et al. present the recognition algorithm with the fact that they expect a maximum
output of two hands, making the recognition of more than two hands impossible [37].
The same applies to LeapMotion or integrated hand detection systems of other HMDs
(like the HTC Vive Cosmos).

Figure 5.1: A colocated multi-user VR setup. User B’s hands are outside the range of
their own hand tracking, but visible to user A. With off-the-shelf solutions, only two
hands can be detected at the same time within a short range (left). Our solution allows
us to detect and position the hands of other users in 3D space. This way the hands of
user B can still be detected (right).

Since hand tracking methods integrated into off-the-shelf devices are closed systems, it is
currently impossible to adjust them to closely align with the interaction requirements of
colocated multi-user VR. For this reason, we turn to methods that use RGB input to
detect the user’s hands. Camera-based methods have certain advantages: they can work
with any RGB source, not being bound to any specific hardware, and they work at larger
distances, the limits of tracking being set only by the resolution of users’ hands in the
images. However, most RGB-based solutions offer the capability of detecting the hand
pose in 2D image coordinates only, additional calculations being necessary to obtain the
full 3D pose.
This chapter presents a hand tracking method that is based on the MediaPipe framework
[64][130], a cross-platform solution for object recognition (including hand recognition)
in 2D images using machine learning. With this framework it is possible to recognize
more than two hands at the same time (see Figure 2.4), which qualifies it for use for our
mentioned purposes. To calculate the full 3D hand pose based on finger joint coordinates
provided by MediaPipe, we have developed an algorithm that uses an estimation of the
user’s hand size to obtain its distance from the tracking camera.
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We evaluate the performance of our method in comparison with hand tracking methods
provided by Meta Quest and LeapMotion, providing an accuracy assessment for each
method in static and dynamic conditions in the range from 0.25m to 3m from the tracking
camera. With these results we want to determine whether our proposed method provides
comparable or even better tracking accuracy in different tracking ranges. With good
tracking accuracy at typical tracking area-scale distances and the ability to track more
than two hands, our method would present a step towards enabling reliable natural hand
interactions in colocated multi-user VR.

5.2 3D World Position Estimation of a Camera Tracked
Hand

Our proposed method for enhancing the tracking data of the RGB tracking system
consists of three stages:

1. Hand Detection: Hands are detected in the monocular RGB image; 3D positions
of finger joints are calculated relative to the center of each hand. This stage is
carried out by the hand tracking implementation of Zhang et al. in the MediaPipe
framework [130].

2. Hand Size Estimation: Real-world hand size of the user is estimated according
to one of the methods described in section 5.2.2.

3. Depth Estimation: Distance of the hand to the tracking camera is calculated
according to the method described in section 5.2.3, using the estimation of the real
hand size.

This workflow is presented in Figure 5.2, which includes the details of each stage described
in the sections below.

Our objective is to develop a workflow for calculating the hand sizes of users and utilizing
this information to accurately position the tracked virtual hand (using the MediaPipe
framework) within a three-dimensional environment, thereby enabling natural hand
interactions. To evaluate the effectiveness of our approach, we will compare it with
existing off-the-shelf tracking solutions.

By leveraging hand size estimation for positioning, we anticipate higher accuracy in hand
tracking as the precision of hand size estimation improves. We also expect to achieve
accurate hand size estimation by inferring the hand size from the user’s body height
(derived from Pheasant [90]).

Overall, expect a system capable of facilitating 3D hand interactions with a much larger
tracking range, surpassing the capabilities of existing off-the-shelf tracking solutions.
This advancement will make our solution highly advantageous for use in colocated VR
scenarios.
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Figure 5.2: Step-by-step diagram for adjusting and positioning a detected hand from
MediaPipe. After detection, the virtual hand is adjusted to the real-world hand size and
then positioned with the help of the intercept theorem.

5.2.1 2.5D Joint Detection with MediaPipe
We chose the MediaPipe framework ([64]) as the hand detection step in our workflow
(and the hand and finger detection implemented by Zhang et al. [130]) due to its ability
to detect more than two hands at the same time. As they report an average precision
between 86.22% and 95.7% for palm detection, we can assume a similar detection accuracy
in our experiment.

With the help of two TensorFlow machine learning models (palm detector and hand
landmark model), MediaPipe tracks the finger joints of the hand with high prediction
quality. As a result of the recognition, we get the following information from the
framework for each detected hand:

• Handedness: A label (’left’ or ’right’) and an estimation probability for this
handedness.

• World Landmarks: 21 landmarks (a landmark corresponds to a finger joint)
consisting of x, y, and z coordinates with the origin at the hand’s approximate
geometric center.

• Normalized Landmarks: 21 landmarks consisting of x, y, and z coordinates in
the normalized viewport space of the camera.

The landmark definitions can be seen in Figure 5.3 (taken from the official MediaPipe
hand tracking website [71]). The marked landmarks are later used for hand length
calculation in the virtual space. Together with the remaining landmarks in the coordinate
frame of the center of the hand and normalized landmarks, they are used in the calculation
of the distance of the hand to the tracking camera. This detection step can be seen as
the first step in Figure 5.2.
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Figure 5.3: Landmark indices of the MediaPipe framework. Marked landmarks are used
for hand length calculations.

5.2.2 Estimating Real Size of Users’ Hands
We use the real-world length of the user’s hand to estimate the distance of the hand to
the camera. To obtain the hand’s size, three different methods are used, resulting in
three variants of our hand tracking method that were evaluated. In Figure 5.2 these
methods are visualized in the second step.

1. We use MediaPipe 3D hand landmarks with the origin in the center of the hand to
calculate the distance between the position of the wrist and the tip of the middle finger.
This distance represents the length of the hand. We refer to this method of hand size
calculation as MediaPipeInternal in the rest of the chapter.

2. We measure the real length of the user’s hand (wrist to the tip of the middle finger) and
use the measurement as an input to our program (later referred to as MediaPipeHand).

3. The third method requires more calculations but could provide an easier setup
experience for the user. Since most people do not know the length of their hand, we use
the body height (measured manually for best accuracy) as an input parameter to infer
the length of the hand (later referred to as MediaPipeBody).

Figure 5.4: Body Size estimations excerpt from Pheasant [90].

Pheasant conducted an examination of different body part sizes and their frequency in
the English population [90]. Figure 5.4 is an excerpt from this book and shows different
estimations of the size of body parts (in mm) with three percentiles (including the mean)
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and the standard deviation for a normal distribution. We use these values to create
normal distributions and derive body part sizes from another reference body part size.

Zafar et al. evaluated the body-hand relations by calculating the body size based on the
size of the hand with an accuracy of 2.9 cm [127]. Since their method also requires the
age of the user and we want to keep the input data set as small as possible, we calculate
the hand size using the tables from [90].

In this way, the actual body part does not have to be physically measured. In our case,
we use the body size of the user to get its percentile in the normal distribution which
is then used to recalculate the hand length size for this percentile. For this we use the
following equations:

z = x0 − µ

σ

p = 1
2


1 + erf


z√
2


x = µ + (σ ∗ z)

(5.1)

For our experiment in section 5.3.2, our user had a body size (height) of 1892mm. For
this size we look up µ = 1740mm (given at a percentile of 50%) and σ = 70 in Figure 5.4.
With Equation 5.1 we calculate a percentile of 0.985.

For the hand size we look up µ = 190 mm and σ = 10. With the percentile of 0.985, we
can estimate a hand size of 211.71 mm for the given body size. In comparison, we have
determined a measured hand size of 213 mm for the user.

We calculated the size of the hand based on the body height of all participants in our
user test (n = 10, see section 5.3.2 & section 5.3.3) and compared the resulting value
with the measured size of the hand.

Figure 5.5: Discrepancy between measured hand length and calculated hand length of
ten users that participated in the evaluation of section 5.3.2 & section 5.3.3.

68



5.3. Accuracy Evaluation Experiment

The box-plot of the difference between the calculated and measured hand lengths can be
seen in Figure 5.5. With a mean difference of 0.0787 cm, it can be seen that the hand
length can be calculated accurately from the body size, even though differences of up to
1 cm are possible depending on the user.

5.2.3 Estimating Hand Depth
With the fitted 3D coordinates of the tracked landmarks we now have a correctly scaled
hand with the expected hand length, which only has to be adjusted in the distance to the
virtual camera. To achieve this we use the intercept theorem ([100]), which describes rules
about the ratio of parallel line segments which are intersected by a line. We calculate the
hand length of the normalized 2D landmark positions in the camera’s image space (lsm),
which are obtained from MediaPipe. We also transform our fitted 3D coordinates to the
viewport space and calculate the hand length of these transformed viewport points (lsr ).

With the intercept theorem, we know the following about the ratios:

dR

dV
= lsr

lsm

(5.2)

To get the final depth dR to the camera we solve the equation to dR = lsr

lsm

∗ dV = sf ∗ dV

where dV in this step is the current distance of the virtual hand to the virtual camera.
The step-by-step procedure from detecting the hand to virtual positioning can be seen in
Figure 5.2.

5.3 Accuracy Evaluation Experiment
We conducted three experiments to evaluate the effectiveness of our hand tracking method.
In Experiment 1, we conducted a comprehensive technical assessment to compare the
accuracy of our method against two off-the-shelf solutions: LeapMotion and Meta Quest.
This evaluation focused on the hand data from a single user. Experiment 2 aimed to
validate the performance of our hand tracking method with hand images from multiple
users. We analyzed three variants of our method using data input from nine users. In
Experiment 3, we conducted a demonstrative test to assess the application of our hand
tracking method in an actual colocated scenario, involving a pair of users.

The following sections will present each experiment sequentially, along with their corre-
sponding results. This organization facilitates a clear grouping of each experiment with
its respective results, enhancing readability and understanding of the outcomes.

5.3.1 Setup
As hand tracking devices we used a LeapMotion sensor, a Meta Quest 2 HMD with its
integrated hand tracking, and a 1080p webcam with a 60° horizontal field-of-view and

69



5. Evaluate and Improve an RGB-Based Hand Tracking Solution for Colocated
VR Usage

with MediaPipe as the tracking framework. Figure 5.6 shows a sketch of the experimental
setup.

Figure 5.6: Sketch of the experimental setup.

The tracking devices were mounted on a fixture that can move back and forth along a rail.
The Vive Lighthouse system was used to calculate real-world distances. The real-world
position offset between the Vive tracker and the real-world position of the hand tracking
device (as well as the offset between the Vive tracker and the real hand) was measured
and taken into account in the virtual world calculations. The rail is 4 m long, which was
sufficient for the maximum tracking distance of the evaluated methods. Vive Lighthouse
base stations were positioned around the rail system. One Vive tracker was attached to
a fixed position on the bracket, and the other to the wrist of the hand to be detected.
The offsets to the tracking devices and the center of the hand were measured and added
to the respective positions in the evaluation.

The VR application to collect evaluation data was developed with Unity3D (v.2021.2.14).
The rendering of tracked user hands was achieved with the help of the ’EasyHand’
framework that was presented in chapter 3. For hand tracking, the following versions of
the hand tracking API were used: Oculus Integration v.38, Ultraleap Plugin v.5.4.0 and
MediaPipeUnityPlugin1 v.0.8.3 with MediaPipe backend v.0.8.9.

5.3.2 Experiment 1: Comparison to Integrated Tracking Solutions
In this experiment, we access the performance of our hand tracking method based on
RGB input by comparing it to the methods integrated into Meta Quest and LeapMotion.
All selected solutions can be combined with HMDs and are therefore, in principle, suitable
for use in a colocated VR setup. We evaluate three variants of our RGB-based hand
tracking method (as explained in section 5.2.2: MediaPipeInternal, MediaPipeHand
and MediaPipeBody.

1Mediapipe Unity Plugin: https://github.com/homuler/MediaPipeUnityPlugin (Accessed:
2023-12-15)
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Since our MediaPipe-based method is not fine-tuned for a specific interaction range, in
contrast to LeapMotion and Meta Quest, we do not expect it to be more accurate than
those methods in the close range (within the arm’s length). Nevertheless, we expect to
be able to cover a larger tracking range with MediaPipe hand tracking and to achieve
higher tracking accuracy at distances beyond arm’s length. We expect our method to
provide a usable tracking capability that works with a simple RGB camera, is simple to
set up and has the ability to detect more than two hands at a time.

We analyze the following metrics:

• Static distance error: Error in the distance of the hand from the tracking device,
compared to the ground-truth, while the hand is held still in one position. This
metric is calculated at different distances from the tracking device.

• Dynamic distance error: Error in the distance of the hand from the tracking device,
compared to the ground-truth, while the hand is moving away relative to the
tracking device. We analyze the correlation between the dynamic error and the
distance to the tracking device for all methods.

• Tracking lost and tracking acquired distances: Distance at which tracking is lost
when the hand is moving away and the distance at which tracking is found when
the hand is moving towards the tracking device.

The ground-truth distance dr of the hand to the tracking device is measured with an
externally mounted Lighthouse 2.0 tracking system, the tracking accuracy of which has
been shown to be in the millimeter range with high replicability of position measurements
([4][7]). HTC Vive trackers were attached to the wrist of the hand and the tracking device,
allowing the ground-truth distance dr in the frame t to be calculated as the distance
between two trackers, adjusted by the offset between the center of the tracker and the
center of the hand and between the center of the second tracker and the center of the
tracking device.

The virtual distance dv from the virtual hand to the virtual camera is calculated from
the hand tracking data. The absolute euclidean distance error δ(t) for a frame t can thus
be calculated with

δ(t) = |dv − dr| (5.3)

Static Error Evaluation

For the static error measurement, the tracking device and the tracked hand of a user
were positioned at fixed distances from each other with d ∈ 25, 50, 75, 100, 150, 200, 250
cm. Smaller intervals of 25 cm were chosen in the range where LeapMotion and Meta
Quest could consistently track the hand. For d >= 100, the sampling interval was
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increased to 50 cm since only MediaPipe was able to consistently track the hand for
these distances. A maximum length of 250 cm was chosen, as LeapMotion and Meta
Quest had a much shorter possible tracking distance in initial tests and we felt that this
distance was sufficient to evaluate the MediaPipe system and thus keep the evaluation
time tolerably short.

At every sampling position, we collected hand tracking data over N=400 consecutive
frames. This was done 25 times per position for each tracking method (Quest, LeapMotion,
and three variants of the MediaPipe method). Each sample containing tracking data of
400 consecutive frames was collapsed to its median value, to account for possible small
movements of the user’s hand. This way, our resulting evaluation sample for each tracking
method consists of 25 median static error values per one sampling position. Collections
were only carried out if there was consistent tracking during the 400 frames. For Meta
Quest and LeapMotion this worked in the range [25 cm;75 cm] and for all variations of
the MediaPipe method in the range [25 cm;250 cm].

Results A few outliers were observed, which likely resulted from the temporary tracking
loss of the deployed ground truth trackers in the environment. As these outliers were not
attributed to the tracking of the hand itself, they were excluded from the analysis to avoid
any false influence on the results. Following the removal of outliers, the Shapiro-Wilk
normality test was performed on all median error samples [102]. Because not all median
error distributions were normal and because sampling position ranges were different for
the evaluated methods, we compare the median static error of the evaluated methods
separately for each sampling position, using the non-parametric Independent-Samples
Median test. We also analyze the impact of the distance to the tracking device on the
median static error for each method in the non-parametric Friedman’s 2-way ANOVA
test [25][26][27]. The corresponding box-plots are presented in Figure 5.7.

Figure 5.7: Box-plots for static data collection for each method and distance.

As expected, the tracking error for close distances [25 cm;50 cm] is the lowest for Meta
Quest and LeapMotion. Interestingly, MediaPipeHand delivered a lower error of 1.53
cm than Meta Quest with a distance of 75 cm to the camera (p < 0.001), which is still
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within the user’s arm’s reach. Except for LeapMotion, the other tracking methods show
an increasing median error as distances are increased to the camera. This is in line with
our results from the dynamic evaluation.

For distances greater than 75 cm, only the values of the MediaPipe methods can be
compared. However, a significant difference in mean error can be found between all three
methods for all distances (p < 0.001). The error for MediapipeInternal is significantly
larger at all further sampling positions than for MediaPipeBody and MediaPipeHand.
For large distances, the error of MediaPipeInternal increases to values significantly above
10 cm, which can be too inaccurate for precise interactions. The results show that this
error can be significantly reduced by using the real hand size (p < 0.001). With a
maximum error of 4.47 cm at a distance of 250 cm from the camera, reasonably precise
interactions in virtual space at greater distances are also possible with this method. The
derivation of the size of the hand by the size of the body also shows a significantly lower
error. However, as expected, the accuracy is not quite as good as when the actual hand
size is given. With a maximum error of 8.57 cm at a distance of 250 cm from the camera,
the error is significantly larger, but still improves the initial recognition of MediaPipe by
more than three times (with an initial error of 28.48 cm). A summary of the resulting
mean and median values can be found in Table 5.1.

25cm 50cm 75cm 100cm
MPI MPB MPH LM Q MPI MPB MPH LM Q MPI MPB MPH LM Q MPI MPB MPH LM Q

Mean (cm) 4.14 1.71 1.81 0.58 0.73 6.53 2.01 1.71 0.67 1.49 9.45 2.14 1.42 0.93 2.94 11.41 3.63 1.52 - -
Median (cm) 4.2 1.71 1.25 0.6 0.76 6.53 1.99 1.73 0.53 1.71 9.40 2.13 1.24 0.83 2.58 11.49 3.66 1.5 - -

150cm 200cm 250cm
MPI MPB MPH LM Q MPI MPB MPH LM Q MPI MPB MPH LM Q

Mean (cm) 19.27 5.25 2.41 - - 24.62 6.95 3.85 - - 28.49 8.57 4.47 - -
Median (cm) 19.72 4.94 2.46 - - 27.7 6.89 3.64 - - 28.37 8.47 4.71 - -

Table 5.1: The resulting mean and median values for all distances in the static error
evaluation. Error values are in centimeters.

These results show that the accuracy of MediaPipe tracking in 3D space can be significantly
improved by inputting the user’s real hand size and allowing 3D interactions for large
distances, which is not possible for the LeapMotion sensor or the Meta Quest hand
tracking.

Dynamic Error Evaluation

For the dynamic evaluation, the user held his hand at a fixed position (resting his elbow
on a fixture to guarantee consistent height of the hand) while the tracking device moved
away from it on a rail system (starting at the distance of 25 cm), at a constant slow
speed up to a distance at the edge of the device tracking range. The user had extended
all fingers, as this is an easy to hold and repeatable gesture and is usually well recognized
by hand recognition systems. While a user walking away from the tracking device would
have presented a more ecologically valid hand tracking situation, the rail system was used
to ensure repetitiveness and uniformity of data collection for this technical evaluation.

73



5. Evaluate and Improve an RGB-Based Hand Tracking Solution for Colocated
VR Usage

The movement range was: for the LeapMotion sensor r → [0.25; 0.75], for Meta Quest
r → [0.25; 1.75] and for MediaPipe r → [0.25; 2.75]. Interestingly, the Meta Quest
achieved a higher tracking range here than in the previous test, which may be due to the
fact that the system can recognize an already recognized hand for longer than it takes to
recognize a completely new hand. However, the real reason for this remained hidden from
us. This procedure was repeated 10 times for each tracking method. Dynamic error data
resulting from these recordings were averaged and analyzed according to a procedure
described in detail in the following section.

Results For each frame, we get the real-world distance dr and the virtual world distance
dv of the hand to the camera. Tracking error was calculated with Equation 5.3 and
paired with the real-world distance dr.
Examples of dynamic error data samples for Meta Quest and MediaPipeHand prepared
in this way are illustrated in the scatter plot in Figure 5.8.

Figure 5.8: Scatter plots of two example dynamic error distributions for Meta Quest and
MediaPipeHand. The x-axis refers to real-world distance of the hand to the tracking
device, the y-axis refers to the error difference between real-world and virtual-world
distance. Three Regression lines for Meta Quest data are illustrated separately for
NearRange, MidRange and FarRange due to the rising gradients in each range. One
regression line for MediaPipeHand over all distances is illustrated. The linear equations
for the regression lines are in cm

cm . Quest median error shows a higher rising error for
large distances.

The discretized dynamic error distributions are used to perform linear regression, with
the gradient of the fitted regression line determining the rate of the error increase with
distance from the tracking device. Since the tracking ranges of the evaluated tracking
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methods are different, we perform the linear regression separately in three distance ranges:
NearRange [< 75 cm], MidRange [75 cm;150 cm] and FarRange [>150 cm]. The
NearRange distance was chosen based on the results from the previous experiment, as
both LeapMotion and Meta Quest delivered reliable results here. We are also within the
usual range of one arm’s length. MidRange was also selected as Meta Quest provided
additional results here in the current experiment. FarRange was then selected for all
results above MidRange, which was only achieved by the MediaPipe methods in the
experiment (the Quest did reach the range a little, but already in error values that were
not in relation to the other methods). This procedure results in 10-entry distributions of
regression coefficients for every tracking method, in distance ranges covered by the method.
We can now compare all five tracking methods in NearRange, Meta Quest and three
MediaPipe variants in MidRange, and three MediaPipe methods in FarRange (the
analysis for the Quest was carried out in this range as well for the sake of completeness).
We use one-way ANOVA to compare mean regression coefficient values between the
methods within each distance range (data is normally distributed in the Shapiro-Wilk
test).
The resulting ANOVA plots are shown in Figure 5.9. The scaling of the gradients is

error
distance given in cm

cm , which shows the increase in the tracking error in cm per each cm of
distance from the tracking device.

Figure 5.9: Mean gradient values for each method and distance range. Gradients are in
cm
cm .

In NearRange, LeapMotion shows the most consistent tracking with a mean gradient
of 0.0007. This is a significantly (p < 0.001) smaller error increase rate than for the
Meta Quest and the MediaPipe methods. Meta Quest has the steepest error increase
rate with distance with a mean gradient of 0.213 and shows significant differences to
MediaPipeBody (p = 0.006) and MediaPipeHand (p = 0.002). The mean gradient of
0.098 for MediaPipeHand is the lowest for the three MediaPipe methods, with a mean
gradient of 0.117 for MediaPipeBody and 0.162 for MediaPipeInternal. The statistical
analysis, along with a substantial effect size of η2 = 0.827 (as measured by η-squared),
reveals significant differences among all MediaPipe methods, except for MediaPipeHand
and MediaPipeBody. Further information on means and pairwise comparisons can be
found in Table 5.2.
MidRange shows significant differences (p < 0.001) and an effect size of η2 = 0.992
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for all pairwise comparisons of mean gradients, except (as in NearRange) between
MediaPipeHand and MediaPipeBody (p = 0.333). With a gradient of 0.567, the Quest
has the largest gradient here, which more than doubled compared to NearRange.
Since the gradient of MediaPipeHand with 0.054 and MediaPipeBody with 0.064 has
decreased somewhat compared to the NearRange, the tracking error in these areas
does not increase as much. In comparison, the gradient of MediaPipeInternal with 0.144
is similarly high as in NearRange. This shows that the external input of hand size
(whether measured or by body size) improves the tracking error. A significant difference
between hand size by measurement and by body size cannot be found in MidRange.

In FarRange, the Meta Quest again shows a higher gradient compared to the closer
ranges (with a mean gradient of 0.749). This is again significantly higher than in the
MediaPipe methods (p < 0.001). This shows a strongly increasing error for Meta Quest
and large distances and that the hand tracking of the Quest does not seem to be aligned
for these distances. The MediaPipe methods again show similar mean gradients as in
MidRange. With a mean gradient of 0.102, MediaPipeInternal shows the largest change
in tracking error among the 3 methods, with a significant difference from MediaPipeHand
(p = 0.006; a significant difference from MediaPipeBody could not be shown at p =
0.170). With a mean gradient of 0.059 for MediaPipeBody and 0.047 for MediaPipeHand,
these two gradients are close to each other. As there are again no significant differences for
FarRange between these two (p = 0.915), it can generally be stated that the increasing
error can be significantly improved by entering the size of the hand compared to the
size of the internal hand, but no significant differences could be determined between
the calculation of the hand size by measurement and the derivation by body size. The
one-way ANOVA analysis yielded an effect size of η2 = 0.98, as measured by η-squared.
This substantial effect size indicates a strong influence of the methods on the observed
differences in the gradients. The findings highlight the significant impact that the choice
of method has on the measured outcomes.

Figure 5.8 shows the distributed points with its linear regression lines, where one can see
how fast the error rises for Meta Quest in comparison to the MediaPipe method with
inputting the measured real hand size.

NearRange MidRange FarRange
MPI MPB MPH LM Q MPI MPB MPH LM Q MPI MPB MPH LM Q

Mean (cm) 0.162 0.117 0.0982 0.001 0.213 0.147 0.0644 0.054 - 0.567 0.102 0.059 0.047 - 0.749

Table 5.2: The resulting mean value gradients for different ranges in the dynamic error
evaluation. Mean error gradient values are in cm

cm
.

Lost and Acquired Tracking Distances

For each tracking method, we recorded the distance at which the tracking device loses
the hand while being moved away as well as when the tracking device firstly acquires the
hand while being moved towards the device.
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To determine the lost tracking distance, the user positioned his hand at a distance where
it was reliably tracked. After the hand was tracked for at least one second, the device
was moved away from the hand and distance at the moment in which the device lost the
hand was recorded. To avoid recordings for moments in which the tracking was only
briefly disrupted, the hand had to be lost for at least one second.

The measurement of the distance at which the tracking device acquires the tracking of
the hand follows a similar procedure. The device was set at a distance where the hand
is not detected (LeapMotion: 1m; Quest: 1m; MediaPipe: 3.75m). After the program
ensured that the hand was not tracked for at least one second, the device was moved
toward the hand until the hand was tracked. Again, the hand has to be tracked for at
least one second to record the distance. Both procedures were repeated 25 times per
method.

Results A total of 25 data points were collected for each tracking method and both
evaluations.

Figure 5.10: Box-plots medians for lost and acquired tracking distance for tracking
methods. Labels are median values.

The medians for lost tracking distances proved to be normally distributed in the
Shapiro-Wilk test ([102]) after three outliers (caused by interferences in the ground truth
tracking) had been removed (p = 0.229 for the MediaPipe tracking, p = 0.557 for the
LeapMotion, p = 0.293 for the Quest tracking). The resulting box-plots can be seen in
Figure 5.10.

For the main analysis, Welch’s test ([123]) was employed, yielding a significance level
of p < 0.001 and an effect size of η2 = 0.827. Subsequently, the post-hoc analysis was
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conducted using the Games-Howell test [30]. The findings from the post-hoc analysis
demonstrated that the mean lost tracking distance for the MediaPipe tracking method
(mean distance of 412.48 cm) was significantly greater than that of all other methods (p
< 0.001). The mean lost tracking distance of the Meta Quest was significantly larger
than with LeapMotion ( p < 0.001), but also significantly lower than with MediaPipe
tracking (p < 0.001). The lowest mean distance where the tracking is lost is the lowest
for LeapMotion with 95.6 cm. With 237.78 cm the Meta Quest has quite a large tracking
range, but also has severe tracking errors at longer distances, as can be seen in the
previous sections. The detailed results can be found in Table 5.3.

Distributions of recorded distances at which tracking was acquired deviated from
normal (in the Shapiro-Wilk normality test) for two out of three tracking methods;
therefore, median tracking acquired distance values were compared in the Independent-
Samples Median test. The corresponding box-plots are illustrated in Figure 5.10.

The pairwise comparisons of the Independent-Samples Median test demonstrate significant
differences between the methods, with a notable effect size (as measured by η-squared)
of η2 = 0.827. These comparisons reveal that the median distance of 324.94 cm for
MediaPipe is significantly greater than that of LeapMotion, which measures 46.05 cm
(p < 0.001), as well as Meta Quest, with a median distance of 40.33 cm (p < 0.001).
The difference in acquired tracking distance between Meta Quest and LeapMotion is also
statistically significant (p = 0.008), although the corresponding median values are much
closer (with a difference of 5.72 cm). The fact that MediaPipe consistently acquires hand
tracking in a range of approximately 3 meters shows that this method could be used
for larger areas while LeapMotion and Meta Quest are limited to near-range distances
within arm’s length.

EnterHand LeaveHand
MediaPipe LeapMotion Quest MediaPipe LeapMotion Quest

Mean (cm) 321.51 46.6 40.27 412.48 95.6 237.78
Median (cm) 324.94 46.05 40.33 411.43 95.47 235.37

Table 5.3: The resulting mean and median distances for the different tracking methods
when tracking is acquired and lost. Distance values are in centimeters.

5.3.3 Experiment 2: Accuracy of MediaPipe-Based Hand Tracking for
Multiple Users

The primary objective of this second experiment was to validate the effectiveness of
our MediaPipe-based method for various users and to assess the influence of hand size
estimation on the accuracy of the 3D positioning error in greater depth. Although it did
not involve an extensive user study with joint-error measurements, it served to confirm
the usability of our method and highlight other impacts on positioning errors. The user
test is intended to validate the applicability of our proposed methods for calculating
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hand length and positioning the hand in 3D space using various input data (such as body
height and hand size).

In this experiment, we repeated the procedure for static and dynamic tracking error
measurement from Experiment 1 for each user separately, this time focusing only on
MediaPipeInternal, MediaPipeBody, and MediaPipeHand methods. For the static error
measurement, four hand tracking data recordings (400 frames each) per distance per user
were made at distances d ∈ 25, 50, 75, 100, 150, 200, 250 cm between the tracking device
and the user’s hand, resulting in four median error values. One recording of dynamic
tracking error data per user (for each method) was conducted. The calculations of the
distance error in the static and dynamic conditioned were the same as in the previous
experiment.

The hardware and software setup used for data recording was the same as in Experiment
1. In total, hand tracking data was collected from 9 additional users, 3 female and 6
male, ranging in age from 20 to 56 years. They consisted of students from various fields
of study, as well as acquaintances. They took part in the experiment voluntarily and
did not receive any compensation. Including measurements of body and hand size and
introduction, the procedure took about 45 minutes per user.

Results - Static Error Figure 5.11 presents box plots illustrating the average static
error of MediaPipeInternal, MediaPipeBody, and MediaPipeHand at different distances.
To maintain a consistent analysis metric and account for the relatively low variance
observed in the four median error values obtained for each user at each distance, we
consolidated these errors by calculating their median value and employed this value
for the analysis. As evident from the results, outliers are observed, which may have
been caused by temporary tracking losses. Despite their presence, these outliers were
retained in the analysis because it could not be guaranteed that their removal would be
advantageous for maintaining the integrity of the test, as previously mentioned.

With the data deviating from the normal distribution in many cases, we again used
the Independent-Samples Median Test to find whether the error depends on the hand
tracking method at each distance. The method was statistically significant for the error
at the distance of 200 cm (p = 0.016; follow-up pairwise comparisons did not find any
statistical significance), with the result at the distance of 250 cm being marginally below
statistical significance. From the pattern seen in the box-plots with MediaPipeInternal
producing visibly higher errors at larger distances, we believe that more detailed results
could be achieved with a larger sample size of users or recorded data. Nevertheless, the
available data supports the results of the main analysis.

Analyzing the relationship of error to distance from the tracking camera for each method,
we found that the error increases with the distance for MediaPipeInternal (p = 0.002
in Independent-Samples Median Test) and MediaPipeBody (p = 0.029). For Medi-
aPipeHand, no statistically significant dependency of an error on the distance could be
found.
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Figure 5.11: Box-plots of the mean error at every measured distance in the test with
multiple users.

The results of the previous experiment are confirmed by these results that the tracking
error can be improved by entering the real hand size and thus interactions in 3D space
can also be made possible over larger distances.

Results - Dynamic Error We used the same approach for calculating the gradients
of error change in the near, middle and far range on the evaluation data of multiple
users. Figure 5.12 shows the gradients for each method in NearRange, MidRange and
FarRange.

Figure 5.12: Mean gradient values for each method and distance range in Experiment
2. Gradients are in cm

cm .

We used Mixed ANOVA with the range as a repeated-measures factor (with three levels)
and the method as a between-subject factor (also with three levels). In this analysis,
only the range was found to be statistically significant (F = 4.683, p = 0.014), with
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within-subject repeated contrasts showing the increase of gradient from MidRange
(mean = 0.035) to FarRange (mean = 0.112), p = 0.002. The result shows us that
the increase in error also increases with greater distance for all MediaPipe methods.
Figure 5.12 shows mean gradients for each tested range and method.

5.4 Demonstration in a Colocated Setup
The goal of this last experiment was to test the usability of our hand tracking method in
a real-world colocated VR scenario. To do this, we developed a simple VR application in
which two users can see each other’s avatars consisting of the virtual HMD and hands
steered by head and hand tracking input. The aim was not to create a detailed qualitative
user analysis, but rather a proof-of-concept demonstration.

In our setup, each user has an HTC Vive tracker attached to their hand, which provides
position and rotation data of the real hand positions in the space of the Lighthouse
2.0 Tracking and serves as ground-truth. Both users have a VR headset on (we used
Meta Quest with its own hand tracking feature turned off). User 1 has an RGB camera
attached to the HMD (in this scenario a ZED mini camera that only provided the RGB
image of one lens to use with MediaPipe). With this camera, all hands were detected
and visualized in the shared virtual environment. Since only User 1 had a running hand
detection system, it was ensured that only one system tracked all hands and placed them
in the virtual space. The users stood facing each other at a distance of about 1.5 meters
and held their hands in the tracking area of the RGB camera. As a result, the hands
of User 1 were in NearRange and the hands of User 2 were in MidRange during the
recording. The camera simultaneously detected and tracked the hands of User 1 and User
2. In the virtual environment, the user’s hands were positioned with the hand tracking
input.

5.4.1 Results
Figure 5.13 shows a snapshot of the scenario experienced by the users in the experiment.
The RGB image of the tracking camera is overlayed with the virtual scene seen in VR to
give a better illustration of hand tracking. The plane that can be seen in Figure 5.13
is the floor plane in the virtual environment. Since only User 1 had a hand tracking
device attached to his HMD, the view of all virtual hands, his own and those of User 2,
is enabled by his hand tracking camera. The same virtual hands were displayed to User
2 and animated by hand tracking data.

Hand tracking data was recorded over a period of about 30 seconds, resulting in snapshots
of 1242 consecutive frames. The detected hands were assigned in pairs to the corresponding
Vive trackers, and the deviation from the position of the ground truth tracker was
calculated as a tracking error. The position errors for each user are plotted in Figure 5.14.
Peaks and missing values in the plot are moments where corresponding hands were not
tracked for a moment.
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Figure 5.13: The point of view of User 1 with the tracking device attached tracking also
the hands of User 2. Both users are colocated, the real-world view of the camera can be
seen slightly overlayed.

Since MediaPipe provides a new set of position data every frame, which is not based
on previous results, the actual hand movement in virtual space can look very jumpy.
Frame-related short interruptions cause virtual hands to jump around a lot in space. To
counteract this, we have applied an exponential low-pass smoothing filter that adjusts
hand positions based on previous positioning. Short dropouts are thus counteracted
and general movements appear much smoother. The implementation is taken from
the DigitalRune library and has a time constant of 0.05 ms as a delay 2. Due to this
smoothing filter, inaccurate positioning can occur right before losing or after acquiring
tracking.

The calculated mean error for the hands of User 1 was 5.1 cm with a standard error of
0.154. The 95% confidence interval provides a lower limit of 4.8 and an upper limit of
5.41 cm. For User 2, we obtain a mean of 8.21 cm with a standard error of 0.17, a lower
limit of 7.88, and an upper limit of 8.55 cm for the 95% confidence interval.

The higher position error values for User 2 were expected, as User 2 was further away
from the camera. The values correspond to the expectations of a more realistic scenario
based on the results of the dynamic and static tracking error evaluations.

Although we calculated the error of the tracked hands in this scenario, it is important
to note that a single user pair is insufficient to provide a comprehensive user study for
real-world colocated applications. In addition, the use of direct manual manipulation
tasks would be an interesting extension in such a study in order to additionally validate
the usability. Nevertheless, we aim to demonstrate that our method is not limited to
controlled scenarios with fixed machinery but can also be applied in real colocated setups
involving two users. To further evaluate the presented method, it would be valuable to
conduct a qualitative user study that measures interaction precision, usability, and user

2DigitalRune: https://digitalrune.github.io/DigitalRune-Documentation/html/81
cd4f27-5ce5-4439-9a6c-121f2942f175.htm(Accessed:2024-02-19)
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5.5. Discussion

Figure 5.14: Error of hand pairs in centimeters during the preliminary user test. The
hands of User 1 were in NearRange, while the hands of user 2 were in MidRange. Spikes
can occur due to tracking losses and wrongly positioning due to a smoothing filter.

experience. Such a study would provide an interesting avenue for future research and a
more comprehensive evaluation of our approach.

5.5 Discussion
The results of Experiment 1 show that Meta Quest and LeapMotion are more accurate
at arm’s length range than RGB input-based tracking with MediaPipe, which was to be
expected. The tracking errors for Meta Quest and LeapMotion are in line with previous
research results ([1][99]). However, if the user’s hand length is used to improve the
MediaPipe-based method (either being estimated based on the height or entered from a
real measurement), RGB tracking delivers comparable accuracy with a distance error
in the range of 12.4mm to 21.3mm (see the lowest and largest error in Figure 5.7 for
MediaPipeHand and MediaPipeBody in distances between 25 cm and 75 cm). This shows
that in this distance range the improved RGB hand recognition offers interactions with
similar precision as the off-the-shelf solutions.

At the best value in the close range of 25 cm, the error of the RGB method with a real
measured hand is 3.36 times lower than without external input. In the outer range at
a distance of 250 centimeters even by a factor of 6. Due to the improvement through
external hand size input, this even allows interactions in ranges of 2.5 meters, which is
not possible with Meta Quest or LeapMotion. Assuming a colocated multi-use scenario,
the participating users move at different distances from each other. If they carry out
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joint interactions or tasks at the same location, they move in close proximity, which
usually exceeds their own hand length. Detection and interaction ranges of 2.5 meters
also qualifies this method for use in such scenarios, although these would need to be
investigated in more detail together.

The results of the acquired and lost tracking distance show that Meta Quest and
LeapMotion are in a similar range at which distance a hand is recognized for the first
time. This makes sense in the sense that both systems were designed for interactions in
the arm’s length. In comparison, MediaPipe has an almost eight times higher distance
at which the hand is recognized for the first time, which also allows for a significantly
higher range and more possibilities, for example, to recognize the hands of other users
that are further away from the own user.

After a hand has been detected once, all methods have a greater distance where the
tracking of the hand is lost again. It is striking that LeapMotion only allows hand
detection in the areas where tracking quality is guaranteed to be within a certain tracking
confidence range (which LeapMotion calculates), whereas the Meta Quest goes beyond
this range and continues tracking the detected hand up to a distance of 235 centimeters.
These differences between acquired and lost tracking are shown by the purple ’overtracking
ranges’ in Figure 5.10. This lack of limitation of the Meta Quest for distances beyond
arm’s length also leads to very strongly increasing tracking errors in this case. This
makes the Quest unusable due to high tracking errors in Mid- and FarRange detection,
even though hand tracking would be possible for the system in this range.

This is also reflected in the results of dynamic tracking. Within the tracking range,
LeapMotion has significantly fewer discrepancies in tracking error than, for example,
the Meta Quest. The latter shows significantly increasing tracking errors, especially in
tracking outside the NearRange.

MediaPipe is much more consistent here, even though the tracking error still increases as
the distance increases. However, this slope is nowhere near as steep as in Meta Quest.
Even between the different presented depth estimations for MediaPipe, the increasing
error is significantly lower in the variants where the user’s hand size was added externally.
Thus, the error is less at larger distances. This is also reflected in the results of the static
evaluation. This is a further indication that RGB methods (such as MediaPipe) can be
improved and are thus suitable for enabling hand tracking and hand interactions even at
greater distances.

During the demonstration, we observed that the computation time and the occurrences
of temporal tracking losses increased as the number of simultaneously detected hands
increased, although we did not collect accurate real-time data. This behavior aligns with
expectations for an image-tracking system designed for multi-object recognition. While
the presence of four hands within the tracking frame did not cause significant issues, the
limitations of the current state of the MediaPipe system became more apparent as the
number of hands increased. However, it is important to note that these observations did
not affect our calculations, and we anticipate that future versions of the framework will
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address these limitations and enhance stability.

As has also been shown, the way the real hand size is determined has a significant impact
on tracking accuracy. The more accurately the hand size is determined, the smaller the
error. Unfortunately, the 3D coordinates of the finger joints provided by MediaPipe
did not accurately match the real hand size and the size of the hand had to be input
externally to effectively improve depth calculation.

The results of Experiment 2 largely reflect the pattern of the main analysis, although
significance was not shown in all comparisons. The error of the 3D hand positioning
increases with the distance to the tracking camera. However, the error can be reduced
(especially for high distances) by inputting the users’ hand size. We believe that a larger
data set and extended user testing (which unfortunately was not possible at this time)
would increase the significance and further increase the level of detail in the results.

Furthermore, it can be seen that when estimating hand size from body size for 10 users
(from Experiment 1 and Experiment 2), the deviation of the calculated hand size to
the actual hand length was less than 1 cm for all users. The algorithm can be used as an
alternative when the user’s body size is known rather than their hand length. For future
applications, it would be interesting to find a method to perform this measurement more
universally and without external input. One possibility would be a calibration step at the
beginning of the application, where the hand is measured at a certain distance, or where
the body size is determined based on the height of the VR headset and then the hand size
is derived. For applications where full-body avatars are used, for example, these could
also be used to improve the tracking error that still exists. If they are scaled to the user’s
size, their maximum arm length can be used as an improvement metric to position the
hand more accurately to the avatar. An approach such as ’Virtual Caliper’ by Pujades
et al. would be interesting and helpful in this respect, that use a VR controller to take
measurements in order to adapt a 3D avatar to the user’s body measurements [94].

The mean hand position errors calculated in Experiment 3 are in line with the results
of the controlled static and dynamic tests. With continuously detected hands, consistent
positioning can take place. In the test, we noticed that the quality of positioning is
also dependent on the quality of the underlying tracking (MediaPipe in this case). A
more consistent and better recognition in the future also improves the real error of our
algorithm. Coupled with a high-resolution camera, consistent multi-user hand tracking
in colocated rooms can be realized.

5.6 Conclusion
The study that was presented in this chapter evaluated the tracking error and tracking
range of three different hand tracking technologies, one of which works via RGB cameras
and is not tied to a specific manufacturer’s hardware. In addition, a method was developed
that significantly improves the tracking result of RGB hand tracking by taking hand size
into account.
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The evaluation shows that although the hand tracking of Meta Quest and LeapMotion is
more accurate in the arm’s length range, they are not designed for hand detection outside
this range. Therefore, we achieve comparatively higher precision at larger distances with
the RGB method. This can be further increased if additional information about the
user’s hand length is used in the calculation of the 3D positions. Direct measurement
of the hand length is more precise, but deriving the hand length from the user’s height
also produces comparable tracking errors. For more general use, the body height input is
probably more intuitive, as many people know their body height rather than their hand
length. It might even be possible to automatically determine the body height in a virtual
reality application through an initialization phase. This would be a use case for future
research.

The presented results showed that hand tracking using the (improved) RGB method
has significantly higher tracking ranges (with usable distance well above arm’s length
range) as well as the ability to track more than just two hands at a time. This can be
especially useful for hand recognition in larger tracking areas with multiple users. Thus,
we have also shown that by inputting the user’s real hand size, a tracking system based
on a single image RGB camera can provide results that provide a tracking error that
could allow direct virtual interactions, as well as significantly expand the tracking range
for hands. This method could be superior to the presented commercial systems such as
LeapMotion or Meta Quest for specific scenarios as colocated multi-user scenarios, where
one also wants to track the hands of the other users.

Therefore, it would be interesting in future experiments to see the effects of such RGB
tracking in multi-user VR scenarios and to find out how it can disrupt or improve hand
tracking in such applications. Since our setup and use case focuses on a single camera for
tracking, using a camera array to improve tracking of colocated users’ hands would be
an interesting extension for the future.

One limitation of the measurements in the experiments shown was that only the distance
of the palm of the hand was measured. A more detailed analysis of the distance errors of
all finger joints would be an interesting extension of these results.

With the successful implementation of the presented work, we can now create a colocated
VR environment using hand tracking. This system allows us to track multiple hands
and accurately position them in three-dimensional space within an acceptable margin of
error, enabling seamless interaction for each user. However, the introduction of multi-user
hand tracking presents a new challenge – the reliable assignment of recognized hands to
virtual users. This is crucial for tailoring specific interactions to individual users. The
forthcoming chapter will address this challenge and explore various approaches to solving
it.
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CHAPTER 6
Assignment of Tracked Hands in

Colocated VR

The upcoming chapter will focus on our approach of assigning virtual hands to colocated
virtual users. We will present various methods for calculating confidences that a specific
hand belongs to a particular user. These methods are designed to accommodate different
scenarios, utilizing either the distance or rotation of the hand to the user, bounding
boxes of the user’s reach area, or employing a machine learning approach for assignment
confidence calculations.

To enhance assignment accuracy and explore initial steps towards performance improve-
ments, we introduce algorithms that build upon the base methods. One algorithm
dynamically selects the most suitable base method based on user formations, while
another leverages historical cached results to predict future hand assignments, addressing
temporary weaknesses in the assignment algorithm.

To determine the effectiveness of the proposed methods and improvement algorithms, we
conducted an extensive evaluation using simulated colocation scenarios. Our analysis
encompasses accuracy and performance requirements, providing insights into the usability
of these methods in real-time scenarios. The chapter concludes with a recommended
method for hand assignment and offers a future outlook on potential enhancements to
the results.

6.1 Motivation
In a colocated VR scenario where each user utilizes their own hand tracking system, the
assignment of tracked virtual hands is straightforward. Given that many tracking systems,
such as LeapMotion, Meta Quest, or Vive Focus, are typically limited to tracking two
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hands at most [37], the assignment is made based on the tracking system that initially
detected the hand. Figure 6.1 provides an illustration of this process.

Figure 6.1: A colocated scenario involving two users, each equipped with their own hand
tracking system. Virtual hands in the right image are assigned to the system that tracked
the corresponding real hand in the left image.

With the introduction of hand tracking capable of simultaneously tracking more than
two hands, as detailed in chapter 5, the assignment process becomes considerably more
complex. This challenge is illustrated in Figure 6.2. In scenarios where a tracking
system can detect more than two hands at once, it becomes impractical to assign virtual
hands directly to the user equipped with the hand tracking system. To ensure consistent
three-dimensional interactions, alternative methods must be explored to reliably assign
virtual hands to the correct colocated virtual user.

Current research addressing this problem focuses either on image tracking [113][80]
to extract additional information, such as overlapping tracking boxes or hand color,
or is limited to two-dimensional images [59]. To our knowledge, there is currently
no solution available that addresses this assignment problem in a three-dimensional
virtual environment where only location and orientation information is available. This is
especially difficult for hands in close proximity. Consequently, the objective of our work
is to assign all virtual hands in 3D space to their respective users solely based on the
location of the tracked hands relative to all present virtual users, and therefore enabling
targeted interactions within the virtual environment.

In this chapter, we present an algorithm that computes the confidence of a virtual hand
belonging to a specific user. We also address the challenging task of accurately assigning
hands when they overlap in the virtual scene. To achieve this, we demonstrate various
methods for computing this confidence and compare their effectiveness. In addition, we
introduce a history-based algorithm that utilizes previous assignments and confidences
to adjust future assignments (comparable to dead reckoning in multiplayer games [77]).
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Figure 6.2: Two colocated users where only one user is equipped with a hand tracking
system that is able to track more than two hands. Virtual hands on the right image
cannot be reliably assigned to the correct user.

Finally, we evaluate our methods within a colocated virtual reality simulation, considering
different user formations involving overlapping hand interactions.

Our evaluation focuses on assignment accuracy and the performance of seven method
combinations to identify the most reliable and robust approach for assigning hands in all
possible colocated virtual reality scenarios. We also assess the effectiveness of the history
algorithm in improving assignment accuracy.

We aim to offer an algorithm for accurately assigning hands to virtual users without
relying on additional image recognition methods, solely using the position and rotation of
the hand and the user, which are provided by the used HMD and hand-tracking system.
Additionally, we aim to solve the assignment problem that arises when tracked hands in
the virtual scene are in close proximity, which is also particularly useful when a user’s
hands are obscured (for example by other body parts).

6.2 Estimation Methods
Our algorithm aims to enable the most reliable hand assignment to users, taking into
account the unique challenges of multi-user colocation scenarios, such as close proximity
of the users and overlapping hands. In traditional hand-tracking systems, it is often
assumed that only the hands of the primary user will be tracked, as most systems
are limited to tracking a maximum of two hands at a time [37][119][107]. However, in
colocated scenarios, it is necessary to assign the hands of each user to their respective
tracking systems.

A naive approach to hand assignment is to assign each virtual hand to the user closest
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to it. However, this approach can be error-prone in formations where users are close to
each other and virtual hands are spatially intermixed. An example of such a scenario
would be a surgical or assembly task in which several users perform hand interactions in
a confined space. In our algorithm, we consider several algorithms, including distance
and rotation, to compute a confidence factor for each virtual hand’s assignment to a user.

In addition, we store the previous assignment of hands to users in a history cache to
improve the accuracy of future calculations. By considering the history of previous hand
assignments, our algorithm can make more reliable predictions about to which user a
particular virtual hand belongs to.

6.2.1 Empirical Estimation Methods

We developed four approaches to determine the affiliation of a hand to a user, each of
which computes a confidence factor p.

Distance: We calculate the euclidian distance of the hand to the user’s head and assume
that the closer the hand is, the more likely it is to belong to the user. This principle is
illustrated in Figure 6.3. If the distance exceeds a threshold value, we no longer assume
that the hand belongs to the user. The threshold was chosen so that it is slightly larger
than an arm’s length.

Figure 6.3: Distance method: The distance between the hand and the user is calculated.
The hand is assigned to the user with the shortest distance.

To calculate the confidence values between 0 and 1, we use a logistic curve, as shown in
Equation 6.1. We chose a distance range of [0.4m;1.3m] that results in a = 10.22 and
b = 0.85. Figure 6.4 shows the resulting logistic curve. This method was selected based
on its simplicity and anticipated high accuracy in numerous colocated scenarios, where
users are sufficiently separated from each other.
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p = 1 − 1
1 + e−a(x−b) (6.1)

where:

a = the logistic growth rate
b = the x value of the functions mid point

Figure 6.4: Logistic curve for distance (formula at bottom left)) and rotation (formula
at bottom right) calculations. The X-axis represents the input position/rotation, while
the Y-axis denotes the resulting confidence. The red lines indicate the selected threshold
values.

Rotation: We calculate the angle between the forward direction of the hand (calculated
via the connection between wrist position and position of the lowest joint of the middle
finger) and the direction vector between the head of the user and the hand. We assume
that a hand turned away from the user is more likely to belong to the user than a hand
turned towards the user (which would require an uncomfortable hand position). This
method is further illustrated in Figure 6.5.

We calculate p using the logistic curve in Equation 6.1 with values in the angle range
[90°;180°], which results in the values a = 0.1 and b = 135. The logistic curve can be
seen in Figure 6.4.

Prerecorded Area: In a preliminary setup, we asked the user to stretch out their arms
and perform defined movements in front, to the side, and behind their body, resulting
in a total of 459 points. A convex hull is then created from the points at performance,
in which it is checked whether the user’s hand is in this hull or not. Our focus was on
capturing the essential movements rather than the precise number of points to ensure
comprehensive coverage of all relevant sides of the body. Such a convex hull can be seen
in Figure 6.6. The fundamental idea is that although this approach is more complex
than using the distance method, it offers a more accurate representation of the radius of
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Figure 6.5: Rotation method: The angle between the forward vector of the hand and the
direction vector from hand to user is calculated. The hand is assigned to the user with
the smaller angle.

the hand. For instance, it acknowledges the limitation that hands cannot be positioned
as far behind the user as they can be in front of the user. If there are several hands in
this area at the same time, you can additionally use the ’Distance’ method for better
differentiation (as suggested in section 6.2.3).

6.2.2 Hand Assignment with Machine Learning Agents
In this approach, we used Unity3D’s machine learning agents [45][12] for hand assignment
using reinforcement learning. Unity’s Machine Learning Agents (ML-Agents) is a toolkit
that allows developers to integrate machine learning algorithms with Unity’s game devel-
opment platform. It enables the creation of intelligent agents within Unity environments,
allowing them to learn and adapt to tasks through machine learning techniques. The
technology and algorithms behind Unity ML-Agents involve reinforcement learning, a
type of machine learning in which an agent learns to make decisions by interacting with
an environment [56]1. The implementations of these algorithms are based on PyTorch,
an open-source Python library focused on machine learning 2.

During training, an agent received input data, including hand and user locations, and
received rewards for correct assignments. Hand and head movements were recorded
in advance and played back during the learning process to obtain the most realistic
learning data possible. To enrich the learning experience, we introduced random user
placements within a radius of 2 meters, with locations changing every frame. Additionally,
we enforced specific scenarios with overlapping hands when users were close to train the

1Unity ML Agents: https://github.com/Unity-Technologies/ml-agents(Accessed:
2024-01-25)

2PyTorch: https://pytorch.org/(Accessed:2024-01-25)
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Figure 6.6: Convex Hulls generated from user’s VR controller inputs. The red points
correspond to recordings from the right hand, while the blue points represent recordings
from the left hand. The resulting convex hulls are depicted in green.

agent for challenges. For varying user counts, we created dedicated agents (e.g., one for
two users, one for three users) to handle increased decision complexity. Training involved
1.5 million steps, and reward progression can be seen in Figure 6.7, showing smoothed
reward curves. In our tests, we trained up to five simultaneous users (which was sufficient
for our comparative analysis), but we could easily extend to more simultaneous users.

This training data served as training input for Unity’s ML system, enabling the creation of
an agent capable of runtime hand assignment using the same type of input data (positions,
rotations). In the assignment process, each visible hand in the scene is assigned to a
specific user using its own agent, depending on the number of concurrent users. Agents
were created for 2-5 concurrent users, but more concurrent user agents can be easily added.
A decision is made for hand assignment in each rendering frame. We anticipate that
this method can leverage multiple inputs during the learning process to autonomously
make real-time decisions. Consequently, we expect it to offer broader coverage of various
colocated situations.
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Figure 6.7: Reward development in Unity3D for ML training. The blue line corresponds
to training with 2 users, the grey line represents 3 users, the pink line denotes 4 users,
and the yellow line represents 5 users. The lines are smoothed for clarity, while the
transparent lines in the background display the unsmoothed results. The variance in
unsmoothed rewards may arise from randomized input data.

6.2.3 Dynamic Method Selection
This method combines the other methods to dynamically determine which method to use
in the current situation. The idea is that if all users to be tested are far apart, the distance
methods can give a very reliable indication of the hand’s affiliation. However, if at least
two users are spatially very close to each other, the assignment is no longer unambiguous,
and therefore a more reliable method is used when hands overlap. Figure 6.8 illustrates
such a possible dynamic selection.

Figure 6.8: An example of a dynamic selection of hand assignment methods for a hand.
The two left users and the hand are in close proximity. The complex ’Machine Learning’
algorithm is used here. The user on the right is further away, which is why the simpler
’Distance’ algorithm is used.

The idea is that computationally intensive methods (such as ’Machine Learning’) are only
used in situations where simpler methods are no longer sufficient, hence the computation
time compared to using the complex algorithm alone. The effectiveness of these savings
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is examined in section 6.4.3. In our test implementations, we use the combination of
’Prerecorded Area’ when far away and ’Distance’ when near. We use ’Distance’ method
in close proximity, since ’Prerecorded Area’ alone cannot make a distinction for multiple
hands in the same area and thus can still expect a comparably low computation time.
Additionally we use the combination of ’Distance’ when far away and ’Machine Learning’
when near as we assume that the ’Machine Learning’ method provides better results
than the ’Distance’ method in close proximity, but also has a higher computation time.
Therefore, the ’Distance’ method is used for the other proximities. This should improve
the overall computation time compared to the use of ’Machine Learning’ alone. As
threshold distance, we preliminarily tested assignment accuracy and determined a near
distance of 0.8m as effective.

6.2.4 Assignment History
In a naive mapping of a hand to a user, the probability that a hand belongs to a particular
user is computed independently for each hand and user in isolation. However, the previous
assignment of a hand may have a significant impact on future assignments. To address
this issue, we investigate whether incorporating historical information can improve the
assignment of hands. Our thought was that if we assign hands correctly in the past with
a high confidence, for example when users are further apart, we can catch the problems
in close scenarios when hands overlap. The idea is that if a hand has been confidently
assigned to a user before, then it is likely to belong to that user later. This approach
is similar to the basic idea of dead reckoning, where for example in multiplayer games
previous player network states are used to predict the next states to counteract network
latency [77].

In our implementation, we cache the calculated confidences of each hand for each user
for each frame. We limit the number of entries to 500 for memory and runtime efficiency,
with new entries replacing the oldest ones. From all cached entries, we compute the
mean confidence value (ranging from 0 to 1) and use it to calculate the total confidence.
However, we only incorporate the history information if the value of the history exceeds
a certain threshold. Pilot tests indicate that a confidence threshold of p >= 0.9 (90%) is
appropriate.

Furthermore, we compute a weighting for the history so that high prior confidences are
weighted more heavily in the overall computation, assuming that a frequently occurring
high confidence in the past probably means a correct assignment. This should counteract
low new confidences up to the point where they also occur frequently. As a result, the
history confidence can be multiplied by a weighting factor, depending on the previous
confidences. Another approach would be to weight newer confidences higher due to their
actuality, which was not used in this work and would be an interesting comparison for
future work.

To ensure that the maximum display of the raw input confidence is maximally doubled
(which we chose to avoid over-weighting of the past confidences) and to ensure that the
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history algorithm returns to lower confidences after consecutive frames with low input
raw confidences occur, a weighting factor of 2 was selected. This expected behavior is
specifically anticipated in such a scenario. The confidence p of the history is calculated
using the following formula:

ph =
�N

n=0 pn

N
∗

�N
n=0 pn ∗ wf

Nmax
= wf ∗ (�N

n=0 pn)2

N ∗ Nmax
(6.2)

where:

N = number of entries in the history
Nmax = maximum number of entries

in the history, set to 500 in our implementation
wf = maximum weight, set to 2 in our implementation

Therefore, a reliable previous assignment of a hand can also be critical for future
calculations if an assignment is no longer straightforward. For instance, in dynamic
scenarios where users start far apart but later converge to interact with the same virtual
object, relying solely on distance for hand assignment becomes less effective. In such
situations, the use of historical data can help to make more accurate hand assignments.
This underscores the value of incorporating historical information in dynamic contexts.

6.3 Experiment
To assess the effectiveness of various hand assignment estimation methods and examine
the impact of the history algorithm, we developed an evaluation framework that simulates
diverse test scenarios within a colocated VR environment. Each scenario comprises specific
user formations and whether users move or are positioned stationary. The objective of
this evaluation is to provide comparable scenarios for different combinations of assignment
methods and to conduct a quantitative analysis of the accuracy and performance of the
different methods. Since we want to use hand assignment in a colocated VR environment
(which we created in chapter 4) in which a hand recognition system can recognize more
than two hands (as established in chapter 5), it is necessary to use it in a real-time
environment. Therefore, in this experiment, we also want to find out which methods are
best suited in a real-time application regarding the performance and accuracy.

6.3.1 Experimental Design and Evaluation
We created a simulated environment that maps a colocated VR application, with 2-5
simulated users as needed. For each user, hand movements were recorded by us beforehand
over a period of 1500 consecutive frames, representing an activity such as assembly work
(using a screwdriver) or typing on a keyboard. These recordings can then be played
back for different test scenarios, making these scenarios similar in their hand movements
and thus comparable. Each simulated user had different recordings to cover different
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tracking scenarios. To maintain repeatability and comparability, it was ensured that the
recordings in the evaluation are always assigned to the same virtual user and that the
virtual hands thus also have the same recorded relative distances and rotations to this
user.

Each test scenario is defined by the following factors:

• Formation: A predefined formation of how the virtual users are positioned with
respect to each other in the virtual space and at different distances.

• Method: An assignment method, as described in section 6.2.

• History: Whether history is used as in section 6.2.4.

Specifically, we use the methods described in section 6.2 in isolation (Distance (D),
Rotation (R), Prerecorded Area (PA), and Machine Learning (ML)). In addition, we
use a combination of Prerecorded Area and Distance (D-PA-C) to see if this combination
improves the individual results. The selection of the methods was made in a preliminary
evaluation run. Two constellations were used for the dynamic method: Area Prerecorded
as a base method with Distance as an additional method when users are close to each
other (PA-D-DYN); and Distance as a base method and Machine Learning when
users are close to each other (D-ML-DYN). The idea is to use a simple algorithm for
straightforward scenarios (i.e. hands are further away from the user) and switch to a more
complex, potentially slower one when necessary, such as in close proximity when hands are
overlapping. This approach aims to improve the average performance while maintaining
good results. Therefore, a total of seven method constellations were evaluated. We
use the abbreviations mentioned above for the methods and their combinations in the
analysis. ’C’ stands for combination of methods and ’DYN’ for a dynamic selection
between two methods. In the dynamic selection, the method in the first place is the one
that is used at further distances, and the second is the one for close proximity.

In the simulation, we assume that all virtual hands are detected by a hand detection
system, but remain unassigned to users. With ground truth information about hand
assignment (which we have through the recordings and the controlled simulation setup),
we can compare assignment results. We calculate an accuracy ratio, representing the
percentage of accurate assignments per frame during the evaluation. A ratio of 1 signifies
perfect assignment accuracy, serving as a key metric for method comparison in our study.

In addition to assessing assignment accuracy, we evaluate the performance (in ms) of each
method to determine its applicability in a real-time scenario and the computational time
required. To find the overall performance per frame, we sum up the measured times for
all frames and divide by the total frames collected. Anticipating decreased performance
with more users, we calculate an adjusted performance per user by dividing the frame’s
runtime by the number of concurrent users, as elaborated in section 6.4.3.
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The evaluation covers a total of 73 formations, comprising 14 formations with 2 users, 16
with 3 users, 20 with 4 users, and 23 with 5 users. We aimed to represent diverse formations
where users stood both farther apart and close together, resulting in overlapping hands.
Some of those formations can be seen in Figure 6.9. Variation in the number of formations
is attributed to the increasing number of concurrent users, which in turn leads to a
greater diversity of potential arrangements. The following example can illustrate this
again: If we have 2 simultaneous users standing facing each other they can either stand
close to each other or far away from each other, resulting in two formations. If we now
take four simultaneous users, they can face each other (in a square) too. However, they
can all stand close together, only some of them (two stand close together and the other
two further apart), or all stand far apart. This creates more than two possible formations.

Additionally, we selected formations in which users remained fixed in one place and
dynamic formations where users moved along a fixed path, representing stationary and
moving users in colocated scenarios. Each of the seven methods mentioned above was
applied to each formation for the duration of 1500 frames to determine the percentage of
correctly assigned hands. This evaluation was carried out with and without applying the
history algorithm, resulting in 14 conditions (7 method constellations with and without
applying the history algorithm). In total, we obtained 1022 results for comparative
analysis (for performance and accuracy).

Figure 6.9: Some exemplary formations of the evaluation with two to five simultaneous
users. Formations include near and far proximities to cover diverse and difficult assignment
scenarios.
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6.3.2 Setup
The evaluation was performed on a Windows notebook equipped with an Intel Core
i7-12700H CPU and an NVIDIA GeForce RTX 3070 Ti Laptop GPU. We utilized Unity3D
2021.3.9 as the software platform, coupled with the ’EasyHand’ framework for Unity that
we presented in chapter 3. This framework served as a layer for hand tracking, and was
responsible for recording tracked hands in a preliminary setup, which was done by us,
playing back these recordings, and rendering the hands during the evaluation.

By conducting these evaluations, we gain insight into the accuracy of hand assignment
and the computational efficiency of the methods, ensuring their feasibility in real-time
applications.

6.4 Results and Discussion
We conducted an analysis of correct assignment ratio and computational efficiency to
determine the optimal method for a real colocated VR scenario. Firstly, we evaluated the
effectiveness of our history algorithm in improving hand assignment results. In addition,
we identified the method or combination of methods that yielded the best results. To
evaluate the algorithm and methods, we measured the accuracy of hand assignment for
each frame, allowing us to calculate an accuracy ratio for each combination of method,
formation, and utilization of the history algorithm. This resulted in a total of 1022 values,
each representing the percentage of correctly assigned hands throughout the evaluation.

The second metric we examined was the performance of the algorithm. As our objective
is to use this estimation method in real-time colocated VR applications, performance is
a critical factor in determining the method’s feasibility. The performance was measured
in milliseconds per frame for each run.

Based on our implementation and the complexity of the methods, we formulated the
following hypotheses for our expected results:

• H1: The history algorithm significantly improves hand assignments for all assign-
ment methods.

• H2: The machine learning algorithm (ML) is significant more accurate than the
distance (D), rotation (R) or Prerecorded Area (PA) algorithm.

• H3: The machine learning algorithm (ML) alone is significant slower than all other
individual methods (D, R and PA).

• H4: A dynamic combination of the machine learning algorithm (ML) with the
distance algorithm (D) can yield results with an accuracy comparable to that of
machine learning alone, while also achieving a better performance.

By analyzing these metrics and testing our hypotheses, we aim to provide valuable insights
into the performance and suitability of different methods for real-time colocated VR
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scenarios. To select the appropriate test for the comparative analysis in the subsequent
sections, we performed a Shapiro-Wilk normality test [102] on each analysis. The test
results suggested that the examined data did not adhere to a normal distribution (p <
0.001), leading to the use of the analysis methods mentioned in the following sections. We
presume that the non-normal distribution might be attributed to the varying complexity
of different methods, leading to distinct runtimes and diverse accuracy distributions
across different scenarios.

6.4.1 History Algorithm Effectiveness
To assess the impact of the history algorithm, we analyzed all available test results,
resulting in a sample size of 1022 entries. Half of the entries (n = 511) were executed
with the history algorithm enabled, while the other half was executed without it. The
objective was to determine whether the use of the history algorithm leads to a significant
improvement in the accuracy of the assignment of the hand. The results are visualized in
Figure 6.10.

Figure 6.10: Accumulated accuracy across all methods with and without the history
algorithm. The utilization of the history algorithm leads to an overall higher level of
accuracy.

Since all methods, and thus also poor assignment accuracy of some methods, were included
in the analysis, we do not consider the exact assignment accuracy of the history algorithm
here, but only whether there is a significant improvement. A detailed assignment accuracy
of the methods is shown in section 6.4.2.

Without employing the history algorithm, an average accuracy of 0.658 (σ = 0.26) was
observed across all data. However, when the history algorithm was included, the accuracy
increased to 0.793 (σ = 0.29). We conducted an Independent-Samples Mann-Whitney
U test [79] for comparative analysis. The resulting p-value (p < 0.001; U = 79317),
together with a rank-biserial correlation coefficient of r = 0.333 (indicating a positive
effect size), demonstrate significant differences with a notable improvement in hand
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assignment accuracy when using the history algorithm. These findings confirm H1, as
the utilization of our history algorithm led to significantly enhanced assignment results,
showcasing an average improvement of 20% in our evaluations.

6.4.2 Assignment Accuracy
In this analysis, the methods listed in section 6.3.1 were compared based on their accuracy.
Since the previous section demonstrated the superior performance of the history algorithm,
we focused on runs where the history algorithm was applied to achieve the highest possible
accuracy in our evaluations. This resulted in a sample size of 511 entries (consequently
half as much as for the analysis in section 6.4.1), corresponding to N=73 per method
with 7 applied methods.

Initially, we calculated the means and standard deviations (σ) of the accuracy for all
methods, which can be found in detail in Table 6.1. From the table, it is evident
that the methods that include machine learning exhibit the highest accuracy with the
lowest standard deviation. In contrast, the rotation method yielded the lowest average
accuracy, with approximately half of the assigned hands being incorrect on average. The
corresponding bar graph can be seen in Figure 6.11.

Table 6.1: Mean and standard deviation of accuracy of the methods

Method Mean SD σ

Machine Learning (ML) 0.987 0.033
Distance (D) 0.729 0.31
Rotation (R) 0.584 0.334
Prerecorded Area (PA) 0.738 0.265
Prerecorded Area Distance
Combination (D-PA-C)

0.782 0.291

Dynamic Prerecorded Area
Distance (PA-D-DYN)

0.744 0.30

Dynamic Distance Machine
Learning (D-ML-DYN)

0.989 0.033

We conducted an Independent-Samples Kruskal-Wallis test [51] to assess the differences in
accuracy among all methods. The analysis yielded a significant result (p<0.001; H=92.9;
df=6) and a medium effect size, as measured by η-squared (η2 = 0.172), indicating
substantial differences in the distribution of accuracy across the methods.

To further investigate these differences, we performed a post-hoc test for pairwise
comparisons between the methods. We applied Bonferroni correction (with k = 21) to
adjust the resulting p-values. Detailed p-values can be found in Table 6.2.

The rotation method exhibited significantly worse results in terms of accuracy compared
to all other methods. The machine learning method demonstrated significantly better
accuracy compared to the distance and rotation methods. Although significance in
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Figure 6.11: Mean accuracy results for the methods. The two most accurate methods
are highlighted.

Table 6.2: Resulting p-values of the pairwise comparison of the methods after applying
the Bonferroni correction. Significant results are marked in bold.

p ML D R PA D-PA-C PA-D-DYN
D .032
R <.001 .013
PA .066 1 .006
D-PA-C .469 1 <.001 1
PA-D-DYN .141 1 .002 1 1
D-ML-DYN .424 <.001 <.001 <.001 <.001 <.001

accuracy was initially observed between the dynamic methods before Bonferroni correction,
it was no longer present after adjusting for multiple comparisons. However, it is worth
noting that the machine learning method exhibited the least variance and the most
consistent accuracy across all runs, as evidenced by its low standard deviation and
consistent data distribution.

The dynamic combination of distance and machine learning shows an even more favorable
outcome, showing significant differences compared to all other methods except for the
standalone Machine Learning method. It also displayed high consistency with a low
standard deviation (SD = 0.033).

With an accuracy of 99%, both the machine learning algorithm and the dynamic
combination of machine learning and distance emerged as significantly superior algorithms
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for hand assignments. Therefore, these findings support Hypothesis H2, that the machine
learning algorithm yields the best accuracy among the single used algorithms.

The remaining methods fell within a similar range of average accuracy, ranging from 72%
to 78%, and did not produce significant differences from each other. This suggests that
the choice of method in this range should be based on other factors, such as performance.

6.4.3 Performance Results

In our final decision regarding the optimal hand assignment algorithm, it is crucial to
consider the performance to assess the feasibility of the method in a real-time scenario.
Since we have already established in section 6.4.1 that the history algorithm significantly
improves hand assignments, we also need to investigate if it introduces a substantial
decrease in performance. In addition to accuracy, performance plays a vital role in
selecting the best method.

To obtain the final performance for the most effective hand assignment method, we
calculated and compared the performance for each method when the history algorithm
was employed. As the allocation methods are applied to active hands and simulated users
in each frame, the computational load increases with more users and hands. To account
for this, we used a user-adjusted performance per computation frame for the analysis by
dividing the measured frame runtime by the number of users.

By analyzing the performance results, we can gain insight into the computational
performance of each method and identify any significant differences. These findings will
aid in selecting the most suitable algorithm for hand assignment, taking into account
both accuracy and performance.

History performance To assess the impact of the history algorithm on performance,
we evaluated performance across all available runs, resulting in a sample size of 1022,
evenly split between runs with and without the history algorithm.

When using the history algorithm, we observed an average user-adjusted performance of
0.465 ms (σ = 0.22). In contrast, the average user-adjusted performance without the
history algorithm was 0.147 ms (σ = 0.24). It is important to note that these mean
values do not solely represent the performance of the algorithm, as they incorporate
the values from different assignment methods. However, they indicate that the history
algorithm generally results in a poorer performance.

A Shapiro-Wilk normality test confirmed that the data did not follow a normal distribution
(p<0.001). Therefore, we conducted an independent-samples Mann-Whitney U test and
calculated the rank-biserial correlation coefficient to determine the effect size. The test
yielded a significant result (p < 0.001; U = 40603), and the coefficient (r=0.689 ) indicated
a positive effect size, demonstrating significant differences between using and not using
the history algorithm.
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Table 6.3: Mean performance of methods (in milliseconds) based on number of users,
including User-corrected times

Method Performance (ms) ± σ

2 User 3 User 4 User 5 User User-
corrected

ML 1.63 ± .75 2.37 ± .09 3.58 ± .14 4.09 ± .27 .83 ± .17
D .55 ± .03 1.01 ± .04 1.49 ± .08 1.88 ± .15 .35 ± .04
R .55 ± .01 1.03 ± .03 1.60 ± .12 2.03 ± .18 .37 ± .06
PA .54 ± .02 1.01 ± .03 1.47 ± .07 1.88 ± .16 .35 ± .05
D-PA-C .57 ± .05 1.02 ± .04 1.52 ± .10 1.95 ± .16 .36 ± .05
PA-D-DYN .55 ± .03 1.03 ± .03 1.54 ± .07 1.97 ± .18 .36 ± .05
D-ML-DYN 1.08 ± .48 1.88 ± .66 2.81 ± 1.02 3.51 ± .94 .65 ± .23

Method performance Considering the significant improvement in the accuracy
achieved by the methods, we proceeded to analyze the performance of each method
when combined with the history algorithm. The mean performance values per number of
users, along with the user-corrected value, are presented in Table 6.3 and are visually
represented in Figure 6.12.

Figure 6.12: Mean performance results for the methods at various user counts. One bar
illustrates the mean performance adjusted for the number of users.

Again, we performed a Shapiro-Wilk test to assess the normality of the data. The
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test yielded a p-value of less than 0.001 for all methods, indicating that the data is not
normally distributed. Consequently, we conducted an Independent-Sample Kruskal-Wallis
test once again. The analysis revealed significant differences among the user-corrected
performances of the methods, with a p-value of less than 0.001 (H = 249.74; df = 6) and
a positive effect size (calculated using η-squared) of η2 = 0.484. To determine the specific
differences, post-hoc pairwise comparisons were performed with Bonferroni correction
(with k = 21).

The results indicate significant differences between the Machine Learning (ML) method
and all other methods, as well as between the Dynamic Method with Machine Learning
and Distance (D-ML-DYN) and all other methods, each with a p-value of less than 0.001.
Since both of these methods involve Unity3D’s Machine Learning Agents, it was expected
that they would have better performance, as reinforced learning agents require more
CPU time. These findings confirm our hypothesis H3.

However, it should be noted that there was also a significant difference between the
two methods using machine learning (p = 0.047). This indicates that the dynamic
combination, with a mean performance of 0.65ms, is significantly faster than the Machine
Learning method alone, which has an average performance of 0.83ms, by 27.7%. When
considering the results of section 6.4.2, hypothesis H4 can also be confirmed. The
dynamic combination of machine learning and distance algorithms exhibits a significantly
better performance while achieving the best accuracy among all the applied methods.

No significant differences were observed among the remaining methods that do not
utilize machine learning agents, suggesting similar performance for these methods. With
an average performance of approximately 0.35ms, these methods are 85.7% faster
than the dynamic method with machine learning and 137.1% faster than the isolated
machine learning method. In the next section, a more comprehensive discussion on the
applicability of the methods based on these results, along with the previous findings, is
presented.

6.4.4 Usability in Realtime Applications
The results demonstrate significant differences in the effectiveness of different algorithms
for assigning recognized hands to users in colocated VR scenarios. As expected, the
rotation method performs the worst, with approximately half of the virtual hands
being incorrectly assigned. This outcome is logical since hands typically have a specific
orientation to their owners, but can be freely rotated. The assignment of hands becomes
challenging when two users have similar orientations in the scene, resulting in ambiguous
assignments. Although a combination of the rotation method with other methods could
potentially yield improvements, preliminary unstructured tests did not reveal any visible
enhancement over other methods. Furthermore, since the rotation method does not offer
significantly better performance, it is not suitable for reliable hand assignment.

The distance-based methods, whether utilizing the distance or a prerecorded area, deliver
similar results across all examined aspects. With an accuracy of approximately three out
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of four hands correctly assigned over all group sizes, the performance is better than that
of the rotation method, but still insufficient to ensure a reliable assignment. Contrary to
our assumptions, the precise definition of the hand’s area of action (prerecorded area)
does not yield significantly better results compared to the pure distance method, which
essentially represents a radius around the user. Additionally, the combination of these
two methods did not confirm the notion that they could mutually support each other.
Given similar accuracy and performance, the distance algorithm is preferable to the
prerecorded area algorithm in terms of simplicity.

Taking into account Figure 6.13, it becomes evident again why the distance methods do
not exhibit high overall accuracy. When examining user information where users are
far apart, the assignment of hands can be achieved with a high confidence of success.
However, if users are standing close to each other and their hands overlap, assigning
hands based solely on distance becomes significantly more challenging. Consequently,
distance methods are more suitable for scenarios where users in colocated spaces are not
in close proximity to each other.

Figure 6.13: Effect of user proximity on the accuracy for the distance method. Reduced
accuracy and increased variance can be seen when users are near each other. Figure 6.9
illustrates formations with different proximities.

When examining the methods involving machine learning, the results demonstrate a
significantly improved assignment accuracy. Prior reinforcement learning of an AI agent
was crucial in effectively determining the assignment factors. However, the one-time
learning effort is no longer necessary in subsequent applications, highlighting its ability
to produce good results. With an accuracy of approximately 99%, these machine learning
methods exhibit the highest accuracy in hand assignment, regardless of the proximity of
users to each other. This distinguishes them clearly from distance methods and scores an
even higher accuracy than existing algorithms [63].

Nonetheless, as expected, the machine learning methods also have the lowest performance
due to the computational complexity involved, with a user-corrected performance ranging
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from 0.65 to 0.83 ms. Performance decreases linearly with the number of users and
hands present in the scene. Its applicability is thus contingent on the number of users, as
well as the complexity and rendering demands of the virtual VR scene. However, the
performance remains sufficiently high to allow usage in real-time applications.

The dynamic combination of machine learning and distance algorithms proves to be the
optimal approach among the presented methods. The results indicate that the weaknesses
of the distance method in assigning hands to users standing close to each other (see
Figure 6.13) can be effectively compensated for by the machine learning agent. As a
result, a significantly improved performance (of 21%) can be achieved while maintaining
a high accuracy. This combination is particularly suitable for complex applications
with high computational complexity. When users are consistently in close proximity to
each other, the worst-case performance is comparable to that of using machine learning
alone. On the basis of these findings, this combination is recommended for real-time
applications.

Finally, the results highlight the significant improvement in the accuracy of hand as-
signments achieved by the history algorithm we developed. As expected, applying the
algorithm also leads to a poorer performance, however, remaining at a reasonable level.
The 20% improvement in assignment accuracy, coupled with an acceptable decrease in
performance, establishes the algorithm as a substantial enhancement to the methods.
Consequently, we incorporate it into our methods for optimal results.

6.5 Conclusion and Future Outlook
This research aimed to present and compare algorithms for assigning tracked hands
to virtual users in a colocated virtual environment, using limited information from
the tracking system. Unlike other solutions that rely on image detection information
[113][59][63][132], we focused on utilizing the location of the hand in the virtual scene. We
introduced and evaluated various methods for determining hand assignments, including
a history algorithm that enhances assignment robustness by leveraging past assignment
information.

Our evaluation revealed that assignment methods employing prelearned AI agents achieved
the highest accuracy with the lowest variance. Specifically, the dynamic combination
of an AI agent for close user proximity and overlapping hands, combined with a simple
distance calculation for greater distances, improved the performance while maintaining a
high accuracy of 99%. This dynamic combination effectively addressed the challenge of as-
signing overlapping hands. Although other methods exhibited better general performance,
their accuracy fell short of being suitable for real colocated VR scenarios, where every
fourth hand would then be assigned incorrectly. In scenarios involving hand tracking
systems for tracking multiple hands, such as those utilizing camera tracking meshes, our
solution provides developers with a high-accuracy and real-time hand assignment tool.

The computational load in a colocated VR environment increases with each additional
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user, which leads us to anticipate that this approach will eventually be constrained by
the computational power of the system, ultimately limiting the maximum number of
concurrent users before the application becomes impractical. Future applications should
consider investigating the limitations concerning the maximum number of users and
hands that can be simultaneously present in the virtual scene. Furthermore, it would
be worthwhile to explore potential enhancements to the algorithm’s performance. For
instance, enhancing the performance of hand assignments can be achieved by optimizing
the algorithm’s execution frequency. This can be accomplished by avoiding the execution
of the algorithm during each frame. For example, a proximity observer could rerun the
algorithm every time the proximity of two users changes. This way the performance could
be greatly improved. An avenue to improve the accuracy of assignment is to investigate
the integration of image detection cues (as done in other work in the two-dimensional
domain [80]), such as hand color, shape, and classification, to increase both accuracy and
performance in hand assignment. Such explorations have the potential to significantly
advance the effectiveness and efficiency of hand assignment estimation techniques.
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CHAPTER 7
Conclusion

The focus of this dissertation and the research presented herein centered on the utilization
of hand tracking technology, particularly in scenarios involving multiple colocated users.
We began by introducing ’EasyHand’, our framework for the Unity3D engine, which
seamlessly integrates rendering, interaction, and gestures from various hand tracking
technologies 1. This framework served as the foundation for subsequent research and was
designed with ease of extensibility in mind.

Several problems were presented, for which we have introduced solutions, including the
creation of colocated virtual reality environments, the simultaneous tracking of multiple
hands within such environments to facilitate the sharing of tracked hand data, and
the consistent assignment of tracked virtual hands to their respective users, allowing
consistent assignments of interactions to the right user. These are now integrated into the
current version of the ’EasyHand’ framework, or can be added as a plugin (see section 3.5).
The overarching objective is to empower users in colocated multi-user settings to engage
in virtual interactions by sharing tracking data, overcoming tracking losses of hands in
ones own hand recognition systems.

In the following chapter, we will provide a final summary of the research objectives and
outcomes, followed by an outlook on potential future extensions and unresolved research
questions.

7.1 Summary
With this dissertation, we have approached several challenges that occur in hand tracking
and colocated VR scenarios, as outlined in chapter 1. In the following section we will
refer to the fulfilled contributions that were mentioned in section 1.2.

1EasyHand Repository: https://bitbucket.org/Densen90/easyhand
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Hand tracking unification. In chapter 3, we introduced the ’EasyHand’ framework,
which serves as a unification tool for visualization, interaction, and gestures across multiple
hand tracking APIs. This framework enables developers to easily extend support for any
hand tracking technology, allowing them to deploy software across various VR systems
while maintaining consistent behavior. Additionally, ’EasyHand’ includes capabilities for
networked scenarios, supporting both non-shared and shared virtual environments. This
fulfills the contribution I. By integrating existing standardization such as OpenXR hand
tracking [32], ’EasyHand’ expands its functionalities and offers a versatile solution for
hand tracking in VR applications.

Creating colocated scenarios for SLAM-tracked headsets using only hands.
In chapter 4, we introduced a novel method for creating colocated virtual environments
for SLAM-tracked headsets, using only tracked hands as synchronization anchors, hence
affirming contribution II. This approach surpassed existing methods in synchronization
accuracy, which often rely on additional AR markers or manual positioning of the headsets.
Importantly, our method is headset-agnostic, as it relies solely on hand tracking and is
not limited to a specific headset model. Unlike solutions such as the Vive Focus 3, which
require sharing internal environment mapping data between headsets to create colocated
environments 2, our approach offers greater flexibility and interoperability.

Tracking more than two hands in three-dimensional environments. In chapter 5,
we addressed the limitation of current state-of-the-art hand tracking systems, which
typically track only two hands simultaneously. Our solution involved using 2.5-dimensional
tracking data from the MediaPipe hand tracking system in a three-dimensional space,
confirming contribution III. This approach enabled VR interactions with a much larger
tracking range than existing systems. Through an extensive evaluation, we compared
our method with existing state-of-the-art hand tracking systems, demonstrating both
comparability and improvements. Importantly, our method not only enables tracking
of the user’s own hand but also hands of other users within the tracking frustum of the
camera. This capability allows and for sharing of tracking data among users, enhancing
consistency in interaction and counteracting tracking losses within colocated scenarios.
Therefore we can offer the contribution IV.

Assigning virtual hands to users. In chapter 6, we addressed the challenge of hand
assignment that arises with the ability to track more than two hands simultaneously. We
proposed solutions to this problem by introducing algorithms designed to assign virtual
hands to the correct user. Through evaluation, we demonstrated that we can achieve this
assignment with 99% accuracy in real-time scenarios, without the need for additional
camera recognition or hardware. By solely utilizing positional data from hands and
users, we enable correct and consistent interactions tailored to the respective user within
colocated virtual environments. This finally fulfills contribution V.

2VIVE Environment Mapping: https://business.vive.com/us/solutions/vive-locatio
n-based-software-suite/ (Accessed: 2024-02-08)
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7.2. Open questions

In summary, with ’EasyHand’ we have introduced a comprehensive system capable of
creating colocated VR scenarios, tracking both the user’s own hands and those of other
users within shared environments, and accurately assigning these hands to the correct
virtual user. This framework enables the sharing of hand tracking data among users,
facilitating tracking and interaction with the virtual environment even when hands are
obscured, as long as at least one system can detect the hand. Importantly, all these
functionalities are achieved solely through hand tracking, without the need for additional
external sensors or hardware. This not only ensures affordability but also mobility and
flexibility (as there is no room preparation required), as well as ease of use for both
developers and end-users alike. With these results, we have achieved our overarching
goal of providing ways for hand recognition systems to support each other in colocated
VR scenarios. Thus, we see this work as an important improvement in the field of hand
recognition and interaction in colocated multi-user VR scenarios.

7.2 Open questions

The research presented in this dissertation demonstrates the utility of hand-tracking
technology in creating colocated multi-user environments and improving the consistency
of interactions within such environments through multi-user hand tracking. Additionally,
the dissertation addresses the challenge of assigning virtual hands to users in such
scenarios. However, despite these advancements, several open questions remain, and
opportunities for future research come up.

Usability and limitations in real user scenarios. Usability and limitations in
real user scenarios are crucial aspects that warrant further investigation. While many
evaluations and experiments in this work utilized simulated data or involved a limited
number of testers3, future research could benefit greatly from extensive user tests. We
believe that our results are applicable to use in a real user scenario, as our simulations
and tests have been designed to be as close as possible to such scenarios. Nonetheless,
such tests would provide valuable additional insights into the effectiveness and precision
of sharing tracked hand data among users, and furthermore, the use of our methods in
real colocated scenarios for the case of hand tracking loss is theoretically possible, but
a practical application in those cases is still pending. In addition, effects such as the
camera moving instead of the hands in the evaluation in chapter 5 can be measured
and analyzed. Lastly, they could help identify limitations of the proposed methods
and systems, such as the maximum number of users supported depending on runtime
constraints, the scalability of the methods for colocating multiple users, and the impact
of sharing hand data on computational load. Addressing these aspects would contribute
significantly to the practical applicability and refinement of the proposed solutions.

3Due to the COVID-19 pandemic and limited availability of potential participants.
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Improving multi-user hand tracking. In our method, we utilized the MediaPipe
framework to detect more than two hands simultaneously. While effective, this approach
relies solely on RGB cameras and may lack some pose accuracy compared to systems
with additional sensors, such as the LeapMotion sensor. We decided to use RGB cameras
because of the lower price and better availability. Nonetheless, it would be beneficial
to explore hand tracking systems equipped with improved sensor technology for higher
accuracy and make them capable of tracking more than two hands. Such advancements
could enhance the positioning of virtual hands, thereby improving hand ownership and
facilitating the desired sharing of hand data among users. Integration of such technology
into state-of-the-art HMDs like the Meta Quest or VIVE Focus holds promise for delivering
a better multi-user hand tracking experience for end-users. Another interesting approach
for the future would be to use multiple hand tracking systems per user. Each user has
a ’primary’ hand tracking system to recognize their own hand and a secondary one to
assist other users if tracking is lost. In this way, the tracking workload could be divided
between several tracking systems.

Continuous colocation with multi-hand tracking. The colocation method pre-
sented using hand tracking was a one-time process, which introduces the challenge of
dependency on the drift of the HMD for further accuracy. To address this issue, a method
could be developed to synchronize the virtual worlds of individual users continuously in
multi-user hand tracking scenarios, every time, and as long as the hands are visible to the
users. This approach could help mitigate potential drift. Additionally, sharing internal
tracking data of the environment across systems could enhance colocation for multiple
different systems. However, this would require approval from the system manufacturers
and agreement on a standard for the data, making it unlikely to happen in the near
future.

In summary, this dissertation has provided initial insights into calibrating multi-user
environments, compensating for tracking loss and assignment of hands to users for
colocated VR scenarios. While the focus was primarily on virtual reality, the methods
presented are not limited to VR alone. Collaborative AR applications, such as multi-
user surgery simulations or tabletop interactions where multiple users can interact
simultaneously, stand to benefit from these findings as well. It is our hope that this
work will have a significant impact on researchers and inspire further development and
continuous improvement of hand recognition and multi-user interactivity in colocated
scenarios. The natural input of hands makes this area particularly promising for future
advancements.
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