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Kurzfassung

Parametrisierte Komplexität [CFK+15] bietet eine reiche Werkzeugkiste, um mit unlösba-
ren Problemen umzugehen, die in verschiedenen Bereichen der Informatik auftreten. Eines
der Hauptziele hierbei ist es, eine feinkörnigere Komplexitätsanalyse von rechnerisch
schwierigen Problemen zu erhalten, die nicht nur auf der Eingabegröße, sondern auch
auf einem bestimmten Parameter basiert ist. Die Analoga zu polynomial lösbareren
Problemen hier sind die parametrisierbare (engl. fixed-parameter tractable oder FPT )
Probleme, die einen Algorithmus mit einer Laufzeit von f(k) · nO(1) zulassen, wobei f
eine berechenbare Funktion, n die Eingabegröße und k ein Parameter sind. In dieser
Arbeit untersuchen wir die parametrisierte Komplexität von Problemen, deren Instan-
zen Graphendarstellungen zulassen, sodass die Parameter, die wir betrachten, mit den
strukturellen Eigenschaften des Eingabegraphen verbunden sind. Wir konzentrieren uns
auf dekompositionelle Graphenparameter, die es ermöglichen, Graphen entlang einer
baumähnlichen Struktur in Komponenten zu zerlegen.

Unter den dekompositionellen Graphenparametern ist die Baumweite [RS86] am promi-
nentesten, welche die Baumähnlichkeit eines Graphen anhand von Knoten-Trenner misst.
Um Probleme anzugehen, die in Bezug auf sie keine FPT sind, werden häufig restrikti-
vere auf Knoten-Schnitt (engl. vertex-cut) basierende Parameter wie Pfadweite [RS83],
Baumtiefe [NdM12] oder die Knotenüberdeckungszahl [FPR+18] verwendet. Bei einigen
Problemen ist es jedoch natürlich, stattdessen auf Kanten-Schnitt basierende Parameter
zu betrachten, und hier ist die Auswahl viel begrenzter, was große Lücken im Verständnis
der Komplexität dieser Probleme hinterlässt. Unser Ziel in dieser Arbeit ist es, diese Lücke
in der Hierarchie der auf Kanten-Schnitt basierenden Graphenparameter zu schließen. Als
unseren Hauptbeitrag führen wir einen neuen Parameter ein, die slim Tree-Cut Width,
welche eine Einschränkung der Tree-Cut Width [Wol15] ist, und zeigen, dass sie perfekt
für eine Reihe klassischer Graphenprobleme passt, bei denen die Parametrisierung durch
letzteren nicht hilft.

Wir führen eine tiefe theoretische Untersuchung der strukturellen Eigenschaften der slim
Tree-Cut Width durch. Insbesondere bieten wir drei äquivalente Charakterisierungen des
Parameters: (i) tatsächliche slim Tree-Cut Width, definiert mit Hilfe von Baum-Schnitt-
Zerlegungen (engl. tree-cut decompositions) und vielen Vorteilen der Tree-Cut Width
ererbend, (ii) super Edge-Cut Width, die eine einfach zu verwendende Zerlegung in Form
eines Spannbaums in Algorithmen bietet, und (iii) die Charakterisierung in Bezug auf
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Blockzerlegungen, die es ermöglicht, Graphen in Komponenten mit kleiner Baumweite
und maximalem Grad zu zerlegen. Wir bieten mehrere Beispiele, die bezeugen, dass
slim Tree-Cut Width und andere auf Kanten-Schnitt basierende Parameter nicht nur in
vielen klassischen Graphenproblemen, sondern auch in einigen grundlegenden Problemen,
die aus der KI stammen, wie Datenvervollständigung und kausales Netzwerklernen,
Tragfähigkeit erreichen helfen.



Abstract

Parameterized complexity [CFK+15] provides a rich toolbox for dealing with intractable
problems that arise in different areas of computer science. One of the main aims here is to
obtain a more fine-grained complexity analysis of computationally hard problems based
not only on the input size but also on some parameter. The analogues of polynomially
solvable problems here are fixed-parameter tractable problems, which admit an algorithm
with running time f(k) · nO(1) for some computable function f , where n is an input
size and k is a parameter. In this work, we investigate the parameterized complexity of
problems whose instances admit graph representations, so the parameters we consider
are tied to structural properties of the input graph. We focus on decompositional graph
parameters, which allow to decompose graphs into components along some tree-like
structure.

Among the decompositional graph parameters, the most prominent is treewidth [RS86],
which measures the treelikeness of a graph in terms of vertex separators. To handle
problems where it does not help to achieve fixed-parameter tractability, more restrictive
vertex-cut based parameters such as pathwidth [RS83], treedepth [NdM12], or vertex
cover number [FPR+18] are commonly used. However, for some problems, it is natural
to consider edge-cut-based parameters instead, and here the choice is much more limited,
leaving large gaps in the understanding of complexity of these problems. Our aim in this
work is to fill this gap in the hierarchy of edge-cut based graph parameters. As our main
contribution, we introduce a new parameter slim tree-cut width which is a restriction of
tree-cut width [Wol15], and show that it is a perfect fit for a number of classical graph
problems where the parameterization by the latter does not help.

We perform a deep theoretical study of the structural properties of slim tree-cut width.
In particular, we provide three equivalent characterizations of the parameter: (i) actual
slim tree-cut width, defined with the help of tree-cut decompositions and inheriting many
advantages of the tree-cut width, (ii) super edge-cut width, providing an easy-to-use in
algorithms decomposition in terms of a spanning tree, and (iii) the characterization in
terms of block decompositions, allowing to decompose graph into components of small
treewidth and maximum degree. We provide multiple examples witnessing that slim
tree-cut width and other edge-cut based parameters help achieve tractability not only in
many classical graph problems but also in some fundamental problems originating from
AI, such as data completion and causal network learning.
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CHAPTER 1
Introduction

1.1 Motivation
Most fundamental problems that arise in various areas of computer science and be-
yond, such as constraint satisfaction, resource allocation, graph drawing, causal network
learning, and many others, cannot be solved efficiently: based on common complexity-
theoretical assumptions, these problems do not admit algorithms with polynomial running
times. Despite their differences, all of these problems have a common characteristic:
their complexity is derived from an exponential search space, even though the struc-
ture of a potential solution is often relatively simple. In particular, they are typically
NP-hard [GJ79].

Parameterized complexity [DF13] provides a powerful set of tools to overcome the
intractability of NP-hard problems by designing parameterized algorithms [CFK+15]
which allow to efficiently solve some specific classes of instances. This can be achieved by
using different approaches: one is to restrict the problem to instances of a specific input
structure, while another is to require additional properties from solutions, narrowing
the search space. This process often occurs gradually, when identification of some basic
property (parameter) that enables a fast algorithm is followed by sequential relaxations,
resulting in as general restrictions as possible.

Many problems admit a natural graph representation, which has led to the development
of a rich hierarchy of structural graph parameters (see, e.g., Figure 1 in [BJK13]).
Numerous works have been conducted in parameterized complexity, exploring the limits
of tractability with respect to these parameters.

Treewidth [Bod05], introduced by Robertson and Seymour, is by far the most prominent
parameter in this hierarchy, and it is known that many problems of interest are fixed-
parameter tractable when parameterized by treewidth. However, in this work, we will
primarily be interested in problems that lie on the other side of this spectrum: those which
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1. Introduction

remain intractable when parameterized by treewidth. One way to deal with such problems
is to use a more restrictive decompositional parameter, for instance, treedepth [NdM12],
and as we will see when dealing with synchronous dynamical systems, sometimes it is
a perfect fit. However, for many problems (such as well-established Edge Disjoint
Paths (EDP)) even vertex cover—the most restrictive parameter based on vertex
separators—does not help achieve tractability. This motivates us to try an alternative
approach—namely, to consider a decompositional parameter based on edge-cuts.

A first natural candidate for such a parameter would be tree-cut width, discovered
by Wollan, who described it in terms of tree-cut decompositions—variations of tree
decompositions based on edge cuts instead of vertex separators [Wol15]. Although
it is true that “tree-cut decompositions share many of the natural properties of tree
decompositions” [MW14], from the perspective of algorithmic design, tree-cut width
seems to behave differently than an edge-cut based alternative to treewidth. To provide
one example, consider the EDP problem mentioned above: Vertex Disjoint Paths
is a classical example of a problem that is FPT parameterized by treewidth, and one
should by all means expect a similar outcome for EDP parameterized by the analogue of
treewidth based on edge cuts. However, EDP is W[1]-hard parameterized by tree-cut
width. At the same time, it is fixed-parameter tractable w.r.t. treewidth plus maximum
degree. In the latter parameterization, small degree and vertex separators allow to obtain
small edge-cuts for free. However, restriction on the maximum degree is quite strong, as
it might be violated even on trees and stars. And EDP is not an exception: out of twelve
problems that are W[1]-hard parameterized by treewidth but fixed parameter-tractable
w.r.t. treewidth plus maximum degree, where a tree-cut width parameterization has been
pursued so far, only four are fixed-parameter tractable [GKS22, GKO21] while eight turn
out to be W[1]-hard [BHKN19, GKS22, GK21, GO21, GÖP+17] (see Table 3.1).

So, what is the algorithmic analogue of treewidth for edge cuts? In this work, we develop
a candidate for such a measure, which we call slim tree-cut width. The name here is not
random: our parameter is defined similarly to the tree-cut width but imposes stronger
restrictions on the tree-cut decompositions, making them sparser or thinner. Crucially,
the slim tree-cut width allows one to handle graphs with high degrees. As we show, it
makes all eight problems mentioned above fixed-parameter tractable. Moreover, it turns
out that the slim tree-cut width helps not only in classical graph-theoretical problems
but also in fundamental problems arising in AI, such as causal network learning and data
completion. Last but not least, it inherits all desirable structural properties of tree-cut
width and yet admits an easy-to-use decomposition which is simply a spanning tree.

1.2 Organisation of Thesis
In Chapter 2 we introduce basic notions and techniques related to parameterized com-
plexity and graph theory. In particular, we define such fundamental graph parameters as
treewidth, treedepth, and tree-cut width, which will be used throughout our work. Most
of the definitions provided in this chapter are rather classical, and for this reason, we
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1.2. Organisation of Thesis

omit technical details, but refer an interested reader to a well-established literature.

Our contribution begins with Chapter 3, where we make an attempt to design an
algorithmically-driven edge-cut based analogue of treewidth. We start by introducing a
new decompositional parameter called edge-cut width, which, intuitively, measures the
number of cycles intersecting in one vertex. Crucially, this parameter allows us to achieve
tractability for all eight problems mentioned above. Moreover, we ensure that it can
be computed in FPT time. However, despite its practical advantages and easy-to-use
spanning tree decomposition, the parameter has some drawbacks. In particular, it is not
closed under vertex and edge deletions. We provide these results—both positive and
negative—in Section 3.1, which is based on our joint work with C. Brand, E. Ceylan,
R. Ganian and C. Hatschka [BCG+22].

The next Section 3.2 emerged from our follow-up work with R. Ganian [GK22a, GK24]
that targeted development of a more structurally complete edge-cut measure. Slim tree-
cut width, introduced and studied here, fills the gaps left by its predecessor edge-cut width:
it is closed under taking subgraphs and generalizes both edge-cut width and treewidth
plus maximum degree, but is more restrictive than tree-cut width. Still, we show that all
the tractability results achieved for the edge-cut width can be easily transferred to the
slim tree-cut width. In this context, it can be considered as a unifying reason why the
problems are FPT by both edge-cut width and degree treewidth but not tree-cut width.

We provide three equivalent characterizations of the slim tree-cut width. The first
is based on tree-cut decomposition, similarly to the definition of tree-cut width. It
allows us to derive a number of nice structural properties: the slim tree-cut width is
closed under taking weak immersions, k−edge sums, admits a simple characterization in
terms of excluded weak immersions and can be approximated in FPT time. The second
characterization is in terms of super edge-cut width, obtained by a slight modification
of the definition of edge-cut width. This definition is more convenient in the context of
dynamic programming, and we use it to prove fixed-parameter tractability for a variant
of maximum stable matching in Section 3.3.

In principle, fixed-parameter tractability of the rest of the problems studied in [BCG+22]
w.r.t. super edge-cut width (and hence slim tree-cut width) could be established in a
similar fashion, by generalizing FPT algorithms for the edge-cut width. However, as we
have discovered later, slim tree-cut width admits one more equivalent characterization–
namely, in terms of block decompositions–that allows us to derive tractability directly
from known results for the degree treewidth. This set of results is based on our recent
journal publication [GK24] and is provided in Section 3.4. We conclude the chapter with
Section 3.5 comparing edge-cut width and slim tree-cut width and their relation to other
recent edge-cut measures.

While most of the problems studied in Chapter 3 are classical graph-theoretical problems,
in the next chapters we demonstrate that slim tree-cut width and other edge-cut based
parameters are also extremely helpful for a variety of other problems, in particular those
arising in artificial intelligence research.

3



1. Introduction

In particular, Chapter 4, based on our recent joint work with R. Ganian and S. Szei-
der [GKS24], deals with the classical task of learning causal relationships (represented
as a so-called causal graph) from observational data. Here, we investigate the complex
relationship between the graph structure and the efficiency of constraint-based causal
discovery algorithms. First, in Section 4.4 we provide a near-tight characterization
of which causal graphs can potentially be efficiently recovered by a constraint-based
causal discovery algorithm. Then, in Section 4.5 we explicitly construct a sequence
of causal graphs on which the influential PC algorithm works extremely inefficiently.
Finally, in Section 4.6 we formulate a new causal discovery algorithm which achieves
fixed-parameter running time by considering the maximum number of edge-disjoint paths
between variables in the (undirected) super-structure as the parameter.

In Chapter 5, we study a fundamental problem called k-means clustering, also related to
data completion. In particular, we focus on the settings where most of the data is not
known or simply irrelevant. Our approach is based on exploiting the structural properties
of a graphical encoding of the missing entries. We consider two natural encodings—
incidence and primal graphs—and provide three novel fixed-parameter algorithms: one
for the clustering of bounded-domain data and two incomparable algorithms that target
real-valued data. The first two algorithms exploit treewidth, while the latter uses slim
tree-cut width and can be considered as a first step towards resolving a long-standing
open problem for the real-valued data. This chapter is based on our joint work with
R. Ganian, T. Hamm, K. Okrasa and K. Simonov [GHK+22].

The last set of our results, provided in Chapter 6, is related to synchronous dynamic
systems, well-established models that have been used to capture a range of phenomena
in networks, including opinion diffusion, spread of disease, and product adoption. We
study the three most notable problems in synchronous dynamic systems: whether the
system will transition to a target configuration from a starting configuration, whether
the system will reach convergence from a starting configuration, and whether the system
is guaranteed to converge from every possible starting configuration. Although all three
problems were known to be intractable in the classical sense, we initiate the study of
their exact boundaries of tractability from the perspective of structural parameters of
the network. In particular, we show that all three problems remain intractable even
on instances of small constant treewidth. We complement this negative finding with
fixed-parameter algorithms for the former two problems parameterized by treedepth.
For the convergence guarantee, treedepth alone is known to be insufficient to obtain a
similar algorithm. However, we design a fixed-parameter algorithm when additionaly
parameterized by maximum in-degree. The results provided in this chapter are based on
our joint work with E. Eiben, R. Ganian and T. Hamm [EGHK23].

For completeness, we declare that not all of the research work carried out during the
Ph.D. studies is included in this thesis. In particular, for the sake of conciseness and
coherence, scientific contributions to the areas of fine-grained complexity [GHK+24],
resource allocation [DEKS24], algebraic algorithms [BKS23, BKSS24], and approximation
algorithms [KLS+24] were not included in this manuscript.
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CHAPTER 2
Preliminaries

We denote the set of natural numbers by N. For i ∈ N, let [i] denote the set {1, . . . , i}
of the first i natural numbers, and let [i]0 = [i] ∪ {0}.

2.1 Parameterized Complexity Theory
In parameterized algorithmics [CFK+15, DF13, Nie06] the running time of an algorithm
is studied with respect to a parameter k ∈ N and input size n. The basic idea is to find
a parameter that describes the structure of the instance such that the combinatorial
explosion in the running time can be confined to this parameter. In this respect, the
most favorable complexity class is FPT (fixed-parameter tractable) which contains all
problems that can be decided by an algorithm running in time f(k) · nO(1), where f is
a computable function. Algorithms with this running time are called fixed-parameter
algorithms or just FPT algorithms.

A less favorable outcome is an XP algorithm, which is an algorithm running in time O(nf(k)).
Problems admitting such algorithms form the class XP. Another important complexity
class is W[1]. A proper definition of the class is relatively involved and is not needed to
establish our results. For a general impression, let us mention that W[1] is contained in
XP and showing W[1]-hardness of a problem rules out the existence of a fixed-parameter
algorithm under the well-established assumption that W[1] ̸= FPT. This is usually done
via a parameterized reduction from some known W[1]-hard problem. A parameterized
reduction from a parameterized problem P to a parameterized problem Q is a function:

• which maps Yes-instances to Yes-instances and No-instances to No-instances,
• which can be computed in time f(k) · nO(1), where f is a computable function, and
• where the parameter of the output instance can be upper-bounded by some function

of the parameter of the input instance.

5



2. Preliminaries

Moreover, there also exists an even less favorable outcome than W[1]-hardness for a
parameterized problem: it may turn out to be NP-hard even for a fixed value of the
parameter. For a more comprehensive introduction to parameterized complexity, we refer
the interested reader to the monograph by Cygan et al. [CFK+15].

2.2 Graphs and Directed Graphs
We use the standard terminology of Diestel [Die17]. Let G be a graph with the vertex
(node) set V and the edge set E, we denote this by G = (V, E). For a subset V ′ ⊆ V of
vertices of G, we denote by G[V ′] the graph with the vertex set V ′ and the edge set E′′

consisting of the edges of G with both endpoints in V ′. That is, G[V ′] = (V ′, E′′), where
E′′ = {e ∈ E : e ⊆ V ′}. Moreover, for a subset E′ of E, we denote by G[E′] a graph G
with the set of vertices 

e′∈E′ e′ and the set of edges E′. We say that G[V ′] (G[E′]) is a
vertex-induced (edge-induced) subgraph of G induced by a set V ′ (E′ respectively). A
vertex-induced subgraph of G that is a tree is called an induced subtree of G.

In contrast, we use G \ W (G \ E′) to denote the graph obtained from G by removing
all the vertices in W (edges in E′). Here, when removing a vertex, we also remove
all its incident edges, that is, the graph G \ W has the vertex set V \ W and the
edge set E ∩ ((V \ W ) × (V \ W )). In case W consists of a single vertex w, we may also
write G \ w to denote G \ {w}, similarly for edges. Moreover, if H is a subgraph of G,
we denote by G \ H the graph obtained from G by removing all vertices and edges of H.
Moreover, we denote the graph obtained by adding a set V ′ of vertices (set E′ of edges) to
the set of vertices (edges) of G by G ∪ V ′ (G ∪ E′ respectively). Furthermore, if G and H
are two (not necessarily vertex and edge disjoint) graphs, we denote their union by G∪H ,
that is, G ∪ H is a graph with the vertex set V (G) ∪ V (H) and the edge set E(G) ∪ E(H).
For simplicity, we use the short notation xy for an edge e = {x, y}.

Given a graph G, we denote its vertex set by V (G) and its edge set by E(G). The (open)
neighborhood of a vertex x ∈ V (G) is the set {y ∈ V (G) | xy ∈ E(G)} and is denoted
by NG(x). For a vertex subset X, the neighborhood of X is defined as 

x∈X NG(x) \ X
and is denoted by NG(X); we drop the subscript if the graph is clear from the context. If
H is a subgraph of G, we denote it by H ⊆ G. Contracting an edge {x, y} is the operation
of replacing vertices x, y by a new vertex whose neighborhood is (N(x) ∪ N(y)) \ {x, y}.

A path π between a vertex x1 and a vertex xn in G is a non-repeating sequence of vertices
x1, . . . , xn such that for each pair of vertices xi and xi+1, there is an edge xixi+1 in E(G).
If x1, . . . , xn is a path in G and G contains an edge between x1 and xn, we say that
x1, . . . , xn, x1 is a cycle in G. Note that any path π in G defines both the set of vertices
Vπ = {x1, . . . , xn} and the set of edges Eπ = {x1x2, . . . , xn−1xn}, which form a subgraph
(Vπ, Eπ) of G; sometimes we will identify π with this subgraph.

A graph is called a forest if it has no cycles. A graph is called connected if there is a
path between any pair of its distinct vertices. A connected forest is called a tree. We
refer to a tree with some fixed vertex (called root) as rooted tree. A rooted forest is a
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2.2. Graphs and Directed Graphs

disjoint union of rooted trees. Note that every graph G is a disjoint union of connected
graphs, we call these graphs connected components of G. In particular, the connected
components of a forest are trees.

Let x, y and z be some vertices of G. An edge-cut in G which separates x from y is a set
E′ of edges such that x and y lie in different connected components of G \ E′; we say
that E′ touches a vertex z if it contains at least one edge incident to y.

Let x, y and z be three distinct vertices of G such that xy, yz ∈ E(G). To lift the pair of
edges xy, yz means to delete the edges xy and yz from G and add (if it doesn’t exist yet)
a new edge xz. We say that G contains H as weak immersion (denoted H ≤I G) if and
only if H can be obtained from G by a sequence of edge deletion, vertex deletion, and
lifting operations.

For a natural number k, we say that a graph G is a k-edge sum of vertex-disjoint graphs
G1 and G2 if there exist vertices xi ∈ V (Gi) of degree k for i = 1, 2 and a bijection
π : NG1(x1) → NG2(x2) such that G is obtained from (G1 \ x1) ∪ (G2 \ x2) by adding an
edge (x, π(x)) for every x ∈ NG1(x1). In this case, we write G = G1 ⊕k G2. Observe that
the same pair of graphs may produce different k-edge sums.

We say that a tree T is a spanning tree of a connected graph G if V (T ) = V (G)
and E(T ) ⊆ E(G). In case G is not connected and consists of connected components
G1, . . . , Gl, we say that a graph F is a maximal spanning forest of G if F is a disjoint
union of trees T1, . . . , Tl such that Ti is a spanning tree of Gi, i ∈ [l].

To obtain some of our results, we will also need to consider directed graphs, i.e., digraphs.
For a digraph D, we denote by V (D) and A(D) its sets of vertices and arcs respectively.
If D is a digraph with vertex set V and arc set A, we denote this by D = (V, A). For
an arc (x, y) ∈ A we may use a short notation xy. The in-neighborhood of a vertex
x ∈ V (D) is the set {y ∈ V (D) | yx ∈ A(D)}, and the out-neighborhood of x is the
set {y ∈ V (D) | xy ∈ A(D)}. The elements of these sets are called the in- and out-
neighbors of x, and the sizes of these sets are called the in-degree and out-degree of x,
respectively. The same as for graphs, if the digraph H is a subgraph of a digraph D, we
denote this as H ⊆ D. The notions of deleting a vertex set, an arc set, or a subgraph, as
well as taking a union of two digraphs are defined analogously to the case of graphs.

A skeleton (sometimes called the underlying undirected graph) D of a directed graph D
is the simple graph obtained by replacing each arc in D with an undirected edge. An
(undirected) path between x1 and xn in digraph D is a path between x1 and xn in the
skeleton of D. The path is directed if for each pair of vertices xi and xi+1, there is an arc
xixi+1 in A(D). If such a path exists, we say that xn is reachable from x1 or, equivalently,
xn is a descendant of x1 in D (x1 is an ancestor of xn in D). As a special case for n = 1,
every vertex is reachable from (is a descendant and an ancestor of) itself. Similarly to
the case of graphs, each directed path defines a subgraph of D, and we will often identify
them for simplicity.
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2.3 Structural Graph Parameters
A natural approach to parameterizing problems dealing with graphs is to consider funda-
mental structural graph parameters, such as the well-established notion of treewidth [RS86].
In the context of digraphs, it is common to consider the structural parameters of the
underlying undirected graph.

Among basic graph parameters, one usually distinguishes the feedback vetex and edge
numbers, the vertex cover number. An edge set E′ ⊆ E(G) is a feedback edge set of
G if G \ E′ is a forest. The feedback edge number of a graph G, denoted by fen(G), is
the smallest integer k such that G has a feedback edge set of size k. The notions of
feedback vertex set and feedback vertex number of G, are defined analogously. A vertex
set V ′ ⊆ V (G) is a vertex cover of G if for each e ∈ E(G) we have e ∩ V ′ ≠ ∅. The vertex
cover number of a graph G, denoted by vcn(G), is the smallest integer k such that G
admits a vertex cover of size k.

Let G denote the class of all finite graphs. Given two graph parameters α, β : G → N,
we say that α dominates β if there exists a function p such that for each graph G ∈ G,
it holds that α(G) ≤ p(β(G)). If α dominates β but β does not dominate α, we often
say that β is more restrictive than α (or, equivalently, α is more general than β. As
an example, treewidth is more general than vertex cover number. Two parameters that
dominate each other are called asymptotically equivalent.

2.3.1 Treewidth
Treewidth is a well-established fundamental graph parameter which intuitively captures
the “tree-likeness” of a graph [RS86]. One way to define it is in terms of tree decomposi-
tions. A tree decomposition T of a graph G = (V, E) is a pair (T, χ), where T is a tree
(whose vertices we call nodes) rooted at a node r and χ is a function that assigns each
node t a set χ(t) ⊆ V such that:

• For every uv ∈ E there is a node t where u, v ∈ χ(t).

• For every vertex v ∈ V , the set of nodes t satisfying v ∈ χ(t) forms a subtree of T .

• |χ(ℓ)| = 1 for every leaf ℓ of T and |χ(r)| = 0.

The tree decomposition T is called nice if T has only three types of non-leaf nodes:

• Introduce node: a node t with exactly one child t′ such that χ(t) = χ(t′) ∪ {v}
for some vertex v ̸∈ χ(t′).

• Forget node: a node t with exactly one child t′ such that χ(t) = χ(t′) \ {v} for
some vertex v ∈ χ(t′).

• Join node: a node t with two children t1, t2 such that χ(t) = χ(t1) = χ(t2).
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Definition 2.1 (Treewidth). The width of a tree decomposition (T, χ) is defined as
tw(T, χ) = maxt∈V (T )(|χ(t)| − 1), and the treewidth of the graph G, denoted tw(G), is
the minimum width of a tree decomposition of G.

We let Tt denote the subtree of T rooted at a node t, and we use χ↓
t to denote the

set 
t′∈V (Tt) χ(t′). The sets χ(t) are commonly called bags. Any tree decomposition can

be transformed into a nice tree decomposition of the same width.

Fixed-parameter algorithms are known for computing (nice) tree decompositions of
optimal width and linearly many nodes [KL23, Bod96, Klo94], albeit more efficient
fixed-parameter approximation algorithms are often used to achieve better running
times [Kor22, BDD+16]. The notion of pathwidth is defined similarly with the only
difference that in a tree decomposition (T, χ), T must be a path. In particular, pathwidth
is more restrictive than treewidth. To see that vertex cover number is more restrictive
than pathwidth (and hence treewidth), assume that a graph G admits vertex cover V ′ of
size k. Consider a tree decomposition (T, χ) such that T is a path of length |V (G)| − k
and each bag contains V ′ plus a unique vertex from V (G) \ V ′. Then the size of each bag
is equal to k + 1, so tw(T, χ) = k + 1. Conversely, trees have treewidth one but arbitrary
large vertex cover numbers.

2.3.2 Treedepth

Treedepth is a parameter closely related to treewidth—in particular, the treedepth of
a graph is lower-bounded by its treewidth. A useful way of thinking about graphs of
bounded treedepth is that they are (sparse) graphs with no long paths. We formalize the
parameter below.

Let F be rooted forest. For a node x in a tree T of F , the height (or depth) of x in F is
the number of nodes in the path from the root of T to x. The height of a rooted forest is
the maximum height of a node of the forest.

Definition 2.2 (Treedepth). Let the closure of a rooted forest F be the graph λ(F ) =
(Vc, Ec), where Vc = V (F ) and Ec = {xy | x is an ancestor of y in some T ⊆ F}. A
treedepth decomposition of a graph G is a rooted forest F such that G ⊆ λ(F ). The
treedepth td(G) of a graph G is the minimum height of a treedepth decomposition of G.

It is known that an optimal-width treedepth decomposition can be computed by a
fixed-parameter algorithm [NdM12, RRVS14, NPS22] and also, e.g., via a SAT encod-
ing [GLOS19]; hence, in our algorithms we assume that such a decomposition is provided
on the input.
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2.3.3 Tree-Cut Width
The notion of tree-cut decompositions was introduced by Wollan [Wol15], see also
subsequent work by Marx and Wollan [MW14]. A family of subsets X1, . . . , Xk of X is a
near-partition of X if they are pairwise disjoint and k

i=1 Xi = X, allowing the possibility
of Xi = ∅.

Definition 2.3. A tree-cut decomposition of G is a pair (T, X ) which consists of a
rooted tree T and a near-partition X = {Xt ⊆ V (G) | t ∈ V (T )} of V (G). A set in the
family X is called a bag of the tree-cut decomposition.

For any node t of T other than the root r, let e(t) = ut be the unique edge incident to
t on the path to r. Let Tu and Tt be the two connected components in T \ e(t) which
contain u and t, respectively. Note that (q∈Tu

Xq,


q∈Tt
Xq) is a near-partition of V (G),

and we use Et to denote the set of edges with one endpoint in each part. We define the
adhesion of t (adh(t)) as |Et|; we explicitly set adh(r) = 0 and Er = ∅. The adhesion of
(T, X ) is then adh(T, X ) = maxt∈V (T ) adh(t).
The torso of a tree-cut decomposition (T, X ) at a node t, written as Ht, is the graph
obtained from G as follows. If T consists of a single node t, then the torso of (T, X )
at t is G. Otherwise, let T1, . . . , Tℓ be the connected components of T − t. For each
i = 1, . . . , ℓ, the vertex set Zi ⊆ V (G) is defined as the set 

b∈V (Ti) Xb. The torso Ht at t
is obtained from G by consolidating each vertex set Zi into a single vertex zi (this is also
called shrinking in the literature). Here, the operation of consolidating a vertex set Z
into z is to substitute Z by z in G, and for each edge e between Z and v ∈ V (G) \ Z,
adding an edge zv in the new graph. We note that this may create parallel edges.
The operation of suppressing (also called dissolving in the literature) a vertex v of degree
at most 2 consists of deleting v, and when the degree is two, adding an edge between the
neighbors of v. Given a connected graph G and X ⊆ V (G), let the 3-center of (G, X) be
the unique graph obtained from G by exhaustively suppressing vertices in V (G) \ X of
degree at most two. Finally, for a node t of T , we denote by H̃t the 3-center of (Ht, Xt),
where Ht is the torso of (T, X ) at t. Let the torso-size tor(t) denote |H̃t|.
Definition 2.4. The width of a tree-cut decomposition (T, X ) of G is defined as
tcw(T, X ) = maxt∈V (T ){adh(t), tor(t)}. The tree-cut width of G, or tcw(G) in short, is
the minimum tcw(T, X ) over all tree-cut decompositions (T, X ) of G.

Without loss of generality, we shall assume that Xr = ∅. We conclude this section with
some notation related to tree-cut decompositions. Given a tree node t, let Tt be the
subtree of T rooted at t. Let Yt = 

b∈V (Tt) Xb, and let Gt denote the vertex-induced
subgraph G[Yt]. A node t ̸= r in a rooted tree-cut decomposition is thin if adh(t) ≤ 2
and bold otherwise.
A tree-cut decomposition (T, X ) is nice if it satisfies the following condition for every
thin node t ∈ V (T ): N(Yt) ∩ (

b is a sibling of t Yb) = ∅. The intuition behind nice tree-
cut decompositions is that we restrict the neighborhood of thin nodes in a way which
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facilitates dynamic programming. Every tree-cut decomposition of width k can be
transformed into a nice tree-cut decomposition of the same width in cubic time [GKS22].
Moreover, the resulting nice decomposition has the following property. For a node t, let
Bt = {b is a child of t | |N(Yb)| ≤ 2 ∧ N(Yb) ⊆ Xt} denote the set of thin children of t
whose neighborhood is a subset of Xt, and let At = {a is a child of t | a ̸∈ Bt} be the set
of all other children of t. Then |At| ≤ 2k + 1 for every node t [GKS22].

We refer to previous work [MW14, Wol15, KOP+18, GKS22] for a detailed comparison
of tree-cut width to other parameters. Here, we mention only that tree-cut width is
dominated by treewidth and dominates treewidth plus maximum degree, which we denote
degtw(G) and may also refer to as degree treewidth. Tree-cut width also dominates the
feedback edge number.

Lemma 2.1 ([GKS22, MW14, Wol15]). For every graph G, it holds that

tw(G) ≤ 2 tcw(G)2 + 3 tcw(G), tcw(G) ≤ fen(G) + 1 and tcw(G) ≤ 4 degtw(G)2.
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CHAPTER 3
Refined Edge-Cut Measures

Tree-cut width parameterizations were typically considered for problems which are not
fixed-parameter tractable (FPT) w.r.t. treewidth, but are FPT w.r.t. feedback edge
number and also FPT w.r.t. treewidth plus maximum degree. The twelve candidate
problems where tree-cut width has been considered are shown in Table 3.1. However,
out of these twelve problems, only four are fixed-parameter tractable with respect to the
tree-cut width, while eight turn out to be W[1]-hard.

Our main goal in this chapter is to develop a new edge-cut based measure which yields
fixed-parameter tractability for all of these problems.

3.1 Edge-Cut Width
Our first candidate for such a new edge-cut based parameter is edge-cut width. On the
algorithmic side, edge-cut width has precisely the properties one could hope to see in an
edge-based analogue to treewidth: not only does it yield fixed-parameter algorithms for all
twelve “candidate” problems, but it is also based on a very simple type of decomposition
that is much easier to use than tree-cut decompositions.

3.1.1 Algorithmically-Driven Definition
The definition of edge-cut width is based on the notion of local feedback edge set, introduced
in a joint work with R. Ganian [GK21]. For a graph G and a maximal spanning forest T
of G, let the local feedback edge set at v ∈ V be

EG,T
loc (v) = {uw ∈ E(G) \ E(T ) | the path between u and w in T contains v}.

Definition 3.1. The edge-cut width of the pair (G, T ) is ecw(G, T ) = 1+maxv∈V |EG,T
loc (v)|,

and the edge-cut width of G (denoted ecw(G)) is the smallest edge-cut width among all
possible maximal spanning forests T of G.
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Problem tcw ecw degtw
Capacitated Vertex Cover FPT [GKS22] FPT FPT
Capacitated Dominating Set FPT [GKS22] FPT FPT
Imbalance FPT [GKS22] FPT FPT
Bounded Degree Deletion FPT [GKO21] FPT FPT
Edge Disjoint Paths W[1]-hard FPT FPT
List Coloring W[1]-hard FPT FPT
Precoloring Extension W[1]-hard FPT FPT
Boolean Constraint Satisfaction W[1]-hard FPT FPT
Bayesian Network Structure Learning W[1]-hard FPT FPT
Polytree Learning W[1]-hard FPT FPT
Min. Changeover Cost Arborescence W[1]-hard FPT FPT
Max. Stable Roommates (MSRTIL) W[1]-hard FPT FPT

Table 3.1: The twelve candidate problems and their complexity w.r.t. edge-cut based parameters
tree-cut width, edge-cut width and degree treewidth. As we will see in next sections, slim
tree-cut width provides a unified explanation for why these problems are FPT w.r.t. both ecw and
degtw, and lifts these results to more general inputs. The complexity of Bayesian Network
Structure Learning and Polytree Learning was studied in [GK21]. In particular, the
results obtained there immediately imply fixed-parameter tractability with respect to edge-cut
width, see [BCG+22] for more details and for the rest of FPT results for the edge-cut width.

Notice that the definition increments the edge-cut width of T by 1. This “cosmetic”
change may seem arbitrary, but it matches the situation for treewidth (where the width
is the bag size minus one) and allows trees to have a width of 1. Moreover, defining
edge-cut width in this way provides a more concise description of the running times
for our algorithms, where the records will usually depend on a set that is one larger
than |EG,T

loc (v)|. We note that the predecessor to edge-cut width, called the local feedback
edge number (lfen(G)) [GK21], was defined without this cosmetic change and hence is
equal to edge-cut width minus one.

Proposition 3.1 ([BCG+22]). For every graph G, tcw(G) ≤ ecw(G) ≤ fen(G) + 1.

In fact, it was shown in [BCG+22] that the gaps in both inequalities can be arbitrary
large, see Figure 3.1 for a simple example of the second one.

While Lemma 2.1 and Proposition 3.1 together imply that tw(G) ≤ 2 ecw(G)2 +3 ecw(G),
one can in fact show that the gap is linear. This will also allow us to provide a better
running time bound in Section 3.1.2.

Lemma 3.2 ([BCG+22]). For every graph G, tw(G) ≤ ecw(G).

Proof. Let T be a spanning tree of G such that ecw(G) = ecw(G, T ). We arbitrarily
pick a root r in T and construct the tree decomposition (T, χ) of G as follows. At first,

14



3.1. Edge-Cut Width

Figure 3.1: Example of a graph G with a spanning tree T (thick black) such that
ecw(G) = ecw(G, T ) = 3. The feedback edge number of G can be made arbitrarily large
in this fashion.

for every v ∈ V (G), we add to χ(v) the vertex v and the parent of v in T (if it exists).
Obviously, after this step each vertex v of G appears in some bag and every edge of T is
contained as a subset in some bag. Moreover, v appears only in χ(v) and in the bags of
children of v in T , which results in a connected subtree of T .

To complete the construction, we process feedback edges one by one. For every e ∈
E(G) \ E(T ), we arbitrarily choose an endpoint u of e = uw and add u to each bag
χ(v) such that u ∈ EG,T

loc (v). Note that any such step does not violate the connectivity
condition. Indeed, we add u to the bags of all vertices which lie on the path between the
endpoints of e in T . In particular, the path hits u whose bag χ(u) initially contained u.
Finally, both endpoints of e appear in χ(w). In the resulting decomposition, for each
v ∈ V (G) it holds that |χ(v)| ≤ 2 + EG,T

loc (v) ≤ 1 + ecw(G). Hence the width of (T, χ) is
at most ecw(G).

Crucially, as we show in the next section, a spanning tree resulting in a decomposition
of optimal width can be efficiently computed. This makes all our algorithms obtained
in [BCG+22] directly implementable in practice. We will not describe the algorithms
here, but note that they all share the same framework, which is a dynamic programming
along the spanning tree. The key idea here is to traverse nodes of the spanning tree in a
leaf-to-root fashion, at each node storing the information about partial solutions of the
instance restricted to corresponding subtree. The main observation is that small edge-cut
width guarantees that the number of edges “leaving” every such subtree (which we call
boundary) is bounded. Moreover, for every node, most of its children have only one such
edge. We will formally define the notion of boundary graph in Section 3.3 in context of
the slim tree-cut width, where we also apply this framework to design FPT algorithm for
Maximum Stable Matching.

3.1.2 FPT Algorithm for Computing Edge-Cut Width

In this section we consider the question of computing edge-cut width along with an
optimal “decomposition” (i.e., spanning tree). We provide an explicit fixed-parameter
algorithm for this task.

By Lemma 3.2, the treewidth of G can be linearly bounded by ecw(G). The algorithm
uses this to perform dynamic programming on a tree decomposition (T, χ) of G. For a
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node t ∈ V (T ), we denote by Gt the vertex-induced subgraph of G induced by χ↓
t , that

is, Gt = G[χ↓
t ].

Lemma 3.3. Given an n-vertex graph G of treewidth k and a bound w, it is possible
to decide whether G has edge-cut width at most w in time kO(wk2) · n. If the answer is
positive, we can also output a spanning tree of G of edge-cut width at most w.

Using the relation between treewidth and edge-cut width above, we immediately obtain:

Theorem 3.4. Given a graph G, the edge-cut width ecw(G) can be computed in
time ecw(G)ecw(G)3 · n.

Proof of Lemma 3.3. Without loss of generality, we assume that G is connected. Using
one of the approximation algorithms [BDD+16, Kor21], we first compute a nice tree
decomposition (T, χ) with root r ∈ V (T ) of width k = O(tw(G)) in time 2O(k) · n.

On a high level, the algorithm relies on the fact that if G has edge-cut width at most w,
then at each bag χ(t) the number of unique paths contributing to the edge-cut width of
vertices in χ(t) is upper-bounded by |χ(t)|w ≤ kw. Otherwise, at least one of the vertices
in χ(t) would lie on more than w cycles. We can use this to branch on how these at most
kw edges are routed through the bag.

At each vertex t ∈ T of the tree decomposition, we store records that consist of:

• an acyclic subset F of edges of G[χ(t)],

• a partition C of χ(t), and

• two multisets future,past of sequences of vertex-pairs (u, v) from χ(t), with the
following property:

– Every vertex of χ(t) appears on at most w distinct u-v paths, where (u, v) is
a pair of vertices in a sequence in future or past.

– vi and ui+1 are not connected by an edge in χ(t).

The semantics of these records are as follows: For every spanning tree of width at most
w, the record describes the intersection of the solution with G[χ(t)], and the intersection
of every fundamental cycle of this solution with G[χ(t)]. We encode the path that a
cycle takes through G[χ(t)] via a sequence of vertex pairs that indicate where the path
leaves and enters G[χ(t)] from the outside (it may be that these are the same vertex).
More precisely, past contains those cycles that correspond to an edge that has already
appeared in Gt, whereas future corresponds to those cycles that correspond to an edge
not in Gt. In particular, this allows to reconstruct on how many cycles a vertex of χ(t)
lies. The partition C says which vertices of χ(t) are connected via the solution in Gt.

16



3.1. Edge-Cut Width

To be more precise, let t ∈ T and let S be an acyclic subset of edges of G that has width
at most w on Gt (that is, each vertex of S lies on at most w fundamental cycles of S
in Gt). We call such S partial solutions at t. Then, we let the t-projection of S be defined
as (F, C,future,past), where

• F = S ∩ G[χ(t)].

• C is a partition of F according to the connected components of S in Gt.

• Let Ce be a fundamental cycle of S in G corresponding to the edge e ∈ G − S.
Then, there is a sequence Pe = ((u1, v1), . . . , (ut, vt)) in either future or past of
vertex pairs such that the intersection of Ce with S traverses F along the unique
ui-vi paths in the order they appear in Pe (note that ui = vi is possible, in which
case the path contains just the vertex ui).

• For each fundamental cycle Ce of S in G, if e ∈ Gt, then Pe ∈ past holds, otherwise,
Pe ∈ future holds.

Note that Pe can (and often will) be the empty sequence Pe = ∅. Moreover, we assume
that the correspondence between future ∪ past and the edges in G − S is bijective, in
the sense that if two edges e, e′ produce the same sequence Pe = Pe′ , then Pe and Pe′

occur as two separate copies in future ∪ past.

The encoding length of a single record is O(wk2 log k), dominated by the at most kw
sequences Pe of k pairs of vertices each, with indices having O(log k) bits. Overall, the
number of records is hence bounded by 2O(wk2 log k).

For each t ∈ T , we store a set of records R(t) that has the property that R(t) contains
the set of all t-projections of spanning trees of width at most w (that is, projections
of solutions of the original instance). In addition, we require for every record in R(t)
that there is a partial solution S of Gt of width at most w that agrees with F, C and
past of the record. In this case, we call R(t) valid. Supposing correctness of this
procedure, G is a YES-instance if and only if (Fr, Cr,pastr,futurer) ∈ R(r), with
Fr = Cr = futurer = ∅, pastr = {∅m−n}, and a NO-instance otherwise.

We compute R(t) bottom-up along the nice tree decomposition depending on the type of
the node t as follows:

At a leaf-node, per convention, χ(t) = ∅, and since Gt is the empty graph, any spanning
tree S has width at most w on Gt. This implies that any t-projection (F, C,past,
future) of such S satisfies F = C = past = ∅,future = {∅n−m}. It therefore suffices
to set R(t) = {(∅, ∅, ∅, {∅n−m})}, and this is valid.

At an introduce-node, let the vertex introduced at t be v ∈ G, and let s be the unique
child of t in T . By definition, χ(t) = χ(s) ∪ {v}. We assume by inductive hypothesis that
R(s) is valid. Consider now any solution S of width at most w on Gt. This solution will
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be of width at most w also on Gs. Hence, since R(s) is assumed valid, there is a record
(Fs, Cs,pasts,futures) corresponding to the s-projection of S.

We first branch over the way that the edges incident with v in G[χ(t)] extend Fs. Call
this new set of edges Ev. During this process, we discard any choice of Ev that connects
vertices within the same connected component as indicated by Cs.

Furthermore, we discard any choice that implies cycles in the solution via future: If
there is an entry in futures that contains two consecutive pairs (u, u′), (w, w′) such that
u′ and w are now in the same component of C (that is, were connected by adding v to Gs),
and one of u′ or w is not a neighbor of v, then this would imply two u′-w paths: u′ and
w, but not any of the vertices on the paths u′-v and v-w lie on the fundamental cycle
corresponding to the entry in futures containing (u, u′), (w, w′), yielding two paths:
One through the cycle, the other through v via Ev. Therefore, this choice of Ev can be
discarded.

Then, for every edge (v, u) incident with v that was not chosen into Ev, there must be a
sequence of pairs P in futures such that the last vertex in the last pair of the sequence
P is u, otherwise we may discard Ev (since the corresponding fundamental cycle wasn’t
reflected in futures.) We branch over all ways of choosing P1, . . . , Pd for each edge
e1, . . . , ed incident to v that is not in Ev. For each i = 1, . . . , d, if P = Pi just consists of
the single pair (u, u), we add the single pair (v, v) to P , and move P to past (since the
feedback edge (v, u) is now part of Gt). Otherwise, if the first pair (w, w′) in P is distinct
from (u, u), we add the pair (v, w′) to P , remove (w, w′) from P , and add P to past.

We now update past and future as follows: If there is a consecutive pair (u, u′), (w, w′)
in an element of pasts or futures such that u′ and w are neighbors of v, replace the
subsequence (u, u′), (w, w′) by (u, w′): any other choice of connecting u′ and w through
a path than directly via v would imply a cycle. In any case, add the resulting sequence
to past or future, respectively.

We then branch over the choices of extending fundamental cycles along v: For each pair
in a sequence in past or future that contains a neighbor u of v connected via Ev,
branch over whether or not to route this fundamental cycle via v by replacing (u, w) by
(v, w) or (w, u) by (w, v), respectively.

If during any of the choices for Ev, P1, . . . , Pd and the extensions of the fundamental
cycles via v, the solution would have to route more than w cycles over any vertex of
χ(t) (as can be checked by tracing out all the pairs in the sequences now contained in
future and past), discard the choice. If there is no way to choose the above without
exceeding the width bound, discard the entire choice of record and consider the next
record in R(s).

If this is not the case, then, for a choice of Ev (i.e., how to extend Fs), P1, . . . , Pd

(i.e., how to route the new edges in Gt in past) and a choice of extending the existing
cycles in pasts and futures to in—or exclude v, we branch over how many additional
fundamental cycles v outside of Gt will be part of, and add as many copies of the sequence
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consisting just of (v, v) to future, simultaneously decreasing the multiplicity of ∅ in
futures by as many, and adding the result to future.
Finally, add (Fs ∪ Ev, C,past,future) to R(t), and consider the next entry of R(s).
Since any partial solution of width at most w on Gt will have to extend its s-projection
in one of the above ways, this generates all possible t-projections (and possibly some
additional records with the same F, C,past). In particular, the generated set R(t) is
valid. This completes the description of the introduce step.
The running time of this step is dominated by branching over the sequences P1, . . . , Pd.
Since d ≤ k and there are at most kw sequences in total, we have (kw)k = 2O(wk log k)

choices at most, for each of the 2O(wk2 log k) records in R(s), and processing each choice only
adds a lower-order term in the running time. Therefore, this step takes time 2O(wk2 log k).
At a forget-node, let the vertex forgotten at t be v ∈ G, and let s be the unique child
of t in T . By definition, χ(t) = χ(s) \ {v}. We assume by inductive hypothesis that R(s)
is valid, and let (Fs, Cs,pasts,futures) ∈ R(s).
If {v} ∈ C (that is, v is a single component in the intersection of any solution that projects
to the current record with χ(t)), then discard the choice for the record and consider the
next element of R(s). In this case, the component that contains v in any partial solution
conforming with the record could never be completed to form a connected subgraph.
If (v, v) appears as part of a sequence in futures or pasts, remove (v, v) from the
sequence. Furthermore, if (v, u) is part of any sequence in pasts or futures for some
u ̸= v, replace (v, u) by (v′, u), where v′ is the next vertex on the unique v-u path in Fs

(and u = v′ is possible). In both cases, add the resulting sequence (which is possibly
equal to the empty sequence) to future or past, respectively. If the empty sequence
would be added to future, discard the current record (since there is no way of closing
this fundamental cycle in the future that can involve v).
We remove all edges involving v from Fs to obtain F and update Cs by removing v from
all sets it appears in, thereby obtaining C. We add (F, C,past,future) to R(t). Since
Gt = Gs, the set of solutions that contribute to the set of t-projections and s-projections
doesn’t change; we hence only have to update the s-projections to become t-projections,
as we did, in order to obtain a valid set R(t).
The running time of this step is dominated by the running time at the introduce-nodes.
At a join-node, let s and s′ be the two children of t in T . We consider all pairs of
records in R(s) and R(s′). If Fs ≠ Fs′ or futures ≠ futures′ , we discard the current
choice. Consider the transitive closures of the reachability relations on χ(t) as induced by
Cs and Cs′ , respectively. If their union (as multigraphs) produces a cycle (which could be
two parallel edges (u, v) and (u, v) for some u, v ∈ χ(t) = χ(s) = χ(s′)), any solution that
s-projected and s′-projected to Cs and Cs′ , respectively, would be cyclic on Gt. Hence,
we may discard this choice of records.
If none of the above happens, we set past = pasts ∪ pasts′ as multisets, and check if
this results in any of the vertices of χ(t) coming to lie on more than w fundamental cycles.
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If this is the case, we discard the current choice of records. If not, let C be finest common
coarsening of the partitions Cs and Cs′ (that is, the result of merging any two components
that share a vertex, and exhausting this process). We let F = Fs(= Fs′),future =
futures(= futureS′), and set R(t) = (F, C,past,future).

By a similar token as in the previous cases, this produces all possible t-projections of
solutions of Gs and Gs′ that are also solutions for Gt of width at most w, and hence a
valid set R(t).

Since we have to consider pairs of records that differ in past, and past dominates the
size of the records, the running time at the join-nodes dominates the running time at the
introduce-nodes, and is bounded by 2O(wk2 log k).

Overall, the running time of the algorithm is bounded by 2O(wk2 log k) · n. By keeping one
representative of a partial solution of Gt per record at each node t that t-projects to the
current record, we can successively build a solution of width at most w.

3.1.3 Structural Properties
Decomposition for the edge-cut width is simply a spanning tree. This makes it easier
to work with in dynamic programming applications than, e.g., tree-cut decompositions.
However, as we will see in this section, edge-cut width has some structural drawbacks. In
particular, it is not closed under vertex or edge deletions and is incomparable to degtw.

Lemma 3.5. For each m ∈ N, there exists a graph Gm of degree at most 3, tree-cut
width at most 2, and edge-cut width at least m + 1.

Proof. We start from two regular binary trees Y and Y ′ of depth m, i.e., rooted binary
trees where every node except leaves has precisely two children and the path from any
leaf to the root contains m edges. We glue Y and Y ′ together by identifying each leaf
of Y with a unique leaf of Y ′, preserving distances between any pair of leaves (see the
left part of Figure 3.2 for an illustration). It remains to show that the resulting graph,
which we denote Gm, has the desired properties.

Consider an arbitrary spanning tree T of Gm. There exists a unique path π ⊆ T between
the roots r and r′ of Y and Y ′. Observe that Gm \ π is a disjoint union of m graphs
Gl, l ∈ [m − 1]. We add to every such Gl two edges which connect it with π and denote
the resulting graph by Bl. Then every Bl contains at least one edge that contributes
to the local feedback edge set of q ∈ V (π), where q is a leaf in Y and Y ′. Indeed, fix
any l ∈ [m − 1] and denote by al and a′

l the vertices of Bl intersecting π in Y and Y ′

respectively. As T is a tree, T \ q is a union of two trees: one containing al and another
containing a′

l. Hence every vertex ob Bl is connected to precisely one of al and a′
l in T −q.

In particular, there exists an edge el of Bl such that one endpoint of el is connected to al

and another is connected to a′
l in T \ q. Then el belongs to the local feedback edge set of

every vertex of π that lies between al and a′
l, in particular, to the local feedback edge
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Figure 3.2: Left: Graph G4, where the roots of Y and Y ′ are a3 and a′
3, the path π is

green and B2 is violet. Right: Fragment of the tree-cut decomposition (Y ∗, χ) of G4.

set of q. As Bl and Bl′ don’t share edges for any l ̸= l′, this results in |EGm,T
loc (q)| ≥ m.

Since the inequality holds for any choice of T , we may conclude that ecw(Gm) ≥ m + 1.

To compute the tree-cut width of Gm, consider its tree-cut decomposition (Y ∗, χ) where
Y ∗ is a regular binary tree of depth m and χ is defined as follows. Let h : V (Y ∗) → V (Y )
and h′ : V (Y ∗) → V (Y ′) be bijections such that (1) if y is a leaf of Y ∗, then h(y) and
h′(y) are identified leaves of Y and Y ′, and (2) if y1 is a parent of y2 in Y ∗, then h(y1) is
a parent of h(y2) in Y and h′(y1) is a parent of h′(y2) in Y ′. Further, for every node y of
Y ∗ we define its bag to be Xy = {h(y), h′(y)} (see the right part of Figure 3.2 for the
illustration). Observe that the adhesion of every node as well as size of each bag is at
most 2, and all the children are thin, therefore, tcw(Gm) = 2.

Since it is known that treewidth dominates tree-cut width (see Lemma 2.1), Lemma 3.5
implies that edge-cut width does not dominate degtw. Conversely, it is easy to build
graphs with unbounded degtw and bounded edge-cut width (e.g., consider the class of
stars). Hence, we obtain that edge-cut width is incomparable to degtw. An illustration
of the parameter hierarchy including edge-cut width is provided in Figure 3.3.

Figure 3.3: Position of edge-cut width in the hi-
erarchy of graph parameters. Here an arrow from
parameter β to parameter α represents the fact that
α dominates β, i.e., there exists a function p such
that for each graph G, α(G) ≤ p(β(G)). We use fen
to denote the feedback edge number.

Last but not least, we show that—also somewhat surprisingly—edge-cut width is not
closed under edge or vertex deletion.
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For the edge-deletion case, we refer readers to Figure 3.4 which illustrates a graph G
along with a spanning tree witnessing that ecw(G) ≤ 4. Conversely, any spanning tree
T of G \ ac must contain both edges abi and bic for some i ∈ {1, 2, 3}. We will assume
that those edges are ab1 and b1c, since the other cases are symmetrical. Then T contains
precisely one edge of each pair (ab2, b2c) and (ab3, b3c). The other, “missing” edge from
each pair contributes to the local feedback edge set of b1. Together with two missing
edges of 3-cycles that intersect b1, this results in |EG\ac,T

loc (b1)| ≥ 4 and, since a similar
situation happens for any choice of a spanning tree, we conclude that ecw(G \ ac) ≥ 5.
The vertex deletion case can be argued analogously using the graph obtained from G by
subdividing the edge ac.

Corollary 3.6. There exist graphs G and H such that ecw(G \ e) > ecw(G) and
ecw(H \ v) > ecw(H) for some e ∈ E(G) and v ∈ V (H).

Figure 3.4: Left: Graph G \ ac of ecw(G \ ac) ≥ 5. Right: Green tree witnessing that
ecw(G) ≤ 4.

3.2 Slim Tree-Cut Width
While the structural drawbacks we have seen in the last section seem highly unfavorable,
here we will show that they can be easily overcome by a slight modification of the
definition of the edge-cut width. Basically, it suffices to consider the spanning tree of
any supergraph of a given graph, resulting in a strictly more general parameter super
edge-cut width. This parameter combines the advantages of tree-cut width and edge-cut
width while avoiding all the shortcomings listed above. It admits at least three equivalent
characterizations.

Slim tree-cut width, which we distinguish as a primal characterization of super edge-cut
width, is defined similarly to tree-cut width, by altering the threshold for when a torso
vertex is suppressed (dissolved) in the tree-cut decomposition from 3 to 2. If we go further
and make this threshold equal to 1, this leads to an even more restrictive parameter
0-tree-cut width. However, as we will see, it is asymptotically equivalent to the degree
treewidth, serving as a strong evidence that the slim tree-cut width is a perfect choice of
an intermediate edge-cut based measure between degree treewidth and tree-cut width.
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3.2. Slim Tree-Cut Width

3.2.1 Definitions and Comparison
Let (T, X ) be some tree-cut decomposition of G. Given a connected graph Q and
X ⊆ V (Q), let the 2-center of (Q, X) be the unique graph obtained from Q by exhaustively
deleting vertices in V (Q) \ X of degree at most one. For a node t of T , we denote by H̄2

t

the 2-center of (Ht, Xt), where Ht is the torso of (T, X ) at t. We denote |H̄2
t | by tor2(t).

Definition 3.2. The slim width of a tree-cut decomposition (T, X ) of a graph G is
stcw(T, X ) = maxt∈V (T ){adh(t), tor2(t)}. The slim tree-cut width of G, or stcw(G) in
short, is the minimum slim width of (T, X ) over all tree-cut decompositions (T, X ) of G.

Naturally extending the notions of 2- and 3-center for a connected graph Q and X ⊆ V (Q),
we define the 1-center of (Q, X) as the graph obtained from Q by deleting isolated vertices
in V (Q) \ X. For a node t of T , we denote by H̄1

t the 1-center of (Ht, Xt), where Ht is
the torso of (T, X ) at t. Let us denote |H̄1

t | by tor1(t).

Definition 3.3. The 0-width of a tree-cut decomposition (T, X ) of G is defined as
tcw0(T, X ) = maxt∈V (T ){adh(t), tor1(t)}. The 0-tree-cut width of G, or tcw0(G) in
short, is the minimum tcw0(T, X ) over all tree-cut decompositions (T, X ) of G.

It follows from the definitions that for any tree-cut decomposition (T, X ) of G, for each
node t of T , tor(t) ≤ tor2(t) ≤ tor1(t). In particular, the width of (T, X ) is upper-bounded
by its slim width, while the latter does not exceed the 0-width of (T, X ).

Corollary 3.7. For any graph G, tcw(G) ≤ stcw(G) ≤ tcw0(G).

The gaps in these inequalites can be arbitrarily large—and, more strongly, tcw0 is a more
restrictive parameter than stcw, which is in turn more restrictive than tcw. Indeed, for
the comparison of tcw0 and stcw consider the class of stars which have slim tree-cut
width 1. Let Sr denote the star with r leaves (i.e., the complete bipartite graph K1,r).

Lemma 3.8. For every positive integer r ≥ 1, tcw0(Sr2) ≥ r.

Proof. Let (T, X ) be a tree-cut decomposition of Sr2 of 0-width k where the bags of
leaves are non-empty. Let t be the node of T such that Xt contains the vertex of
degree r2. Observe that t has at most tor1(t) − |Xt| ≤ k − |Xt| children. For every child
t′ of t, Yt′ contains at most adh(t′) ≤ k vertices of Sr2 . In total, Yt contains at most
|Xt| + k · (k − |Xt|) ≤ k2 vertices of Sr2 . Together with at most adh(t) ≤ k vertices
outside of Yt, Sr2 has at most k · (k + 1) vertices and hence k ≥ r.

To show the gap between stcw and tcw, let us denote by Wr the graph on 2r + 1 vertices
consisting of r triangles sharing one vertex; here we call such graphs windmills, and refer
to Figure 3.5 later for an illustration. The class of windmills has tree-cut width 2 but, as
the following lemma shows, unbounded slim tree-cut width.
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Lemma 3.9. For every positive integer r ≥ 1, stcw(Wr2) ≥ r.

Proof. The case r = 1 is straightforward. For r ≥ 2, assume, to the contrary, that there
exists a tree-cut decomposition (T, X ) of Wr2 of slim width at most r − 1. Let t be the
node of T such that Xt contains the vertex of degree 2r2. Without loss of generality, we
assume that all the leaves of T have non-empty bags. Then the adhesion of any child
t′ of t is at least two, as Yt′ contains some vertex v of Wr2 and the two edge-disjoint
paths from v to the high-degree vertex in t each contribute to adh(t′). Hence, t has at
most tor2(t) ≤ r − 1 children. Moreover, for every child t′ of t, Yt′ intersects at most r−1

2
distinct triangles of Wr2 , since each such triangle contributes 2 to adh(t′). Hence, for
every child t′ of t, Yt′ contains at most r − 1 vertices of Wr2 . In total, Yt \ Xt contains at
most (r −1)2 vertices of Wr2 . Since both adh(t) and |Xt| are upper-bounded by r −1 and
the former bounds the number of vertices outside of Yt by r − 1, this would mean that
Wr2 has at most (r − 1)2 + 2r − 2 vertices, a contradiction with the definition of Wr2 .

Given a graph G and its nice tree-cut decomposition (T, X ) of width at most k, let us
denote by B

(2)
t the set of children of t from Bt with adhesion precisely two; notice that

B
(2)
t does not necessarily contain all children of t with adhesion precisely two, since some

may lie in At. Observe that for every fixed vertex t of T , if x is an element of 2-center of
the torso at t and x ̸∈ Xt, then x corresponds either to the parent of t in T or to some
child of t from At ∪ B

(2)
t . Hence tor2(t) ≤ 1 + |Xt| + |At| + |B(2)

t | ≤ 3k + 2 + |B(2)
t |.

Corollary 3.10. Let G be a graph with tree-cut decomposition (T, X ) of width at most k.
Then for each node t of T it holds that |B(2)

t | ≥ tor2(t) − 3k − 2.

3.2.2 Characterization in Terms of Forbidden Weak Immersions
Naturally extending the result of Wollan for tree-cut width [Wol15], we show that both
slim and 0-tree-cut width are closed under weak immersions.

Theorem 3.11. If G and H are graphs such that H ≤I G, then stcw(H) ≤ stcw(G)
and tcw0(H) ≤ tcw0(G).

Proof. It is sufficient to proof the statement when H is obtained from G by precisely
one edge deletion, isolated vertex deletion or lifting a pair of edges. Let (T, X ) be a
tree-cut decomposition of G of minimum slim (or 0-) width. Then (T, X ) is also a tree-cut
decomposition of G \ e for any edge e of G with the same or smaller slim (0-) width.
Similarly for the isolated vertex deletion: we just need to delete the vertex from the
corresponding bag. It remains to consider the case H = G \ {xy, yz} ∪ {xz} for some
edges xy, yz ∈ E(G).

Notice that the lifting operation doesn’t increase adhesion of any node t of T : if the edge
xz has endpoints in different connected components of T \ e(t), then so does at least
one of the edges xy or yz. To see that tor2(t) and tor1(t) do not increase either, denote
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by QG and QH the torsos at t in (T, X ) for graphs G and H respectively. Every vertex
of QG corresponds to a non-empty subset of the vertices of G. Depending on how the
vertices x, y and z are split among these subsets, it holds that either E(QH) ⊆ E(QG)
(which yields the same or smaller 1-center and 2-center) or QH is obtained from QG

by splitting a pair of edges. For the latter, observe that v ∈ V (QG) \ Xt is not in the
2-center of (QG, Xt) if and only if v belongs to some induced subtree of QG connected to
the rest of QG by at most one edge. It is not hard to see that lifting the pair of edges
preserves the property. For the 1-center the situation is even simplier: isolated vertices
of QG remain isolated.

Recall that the weak immersion relation ≤I is a transitive, reflexive and antisymmetric
relation on the set of finite graphs, i.e., a partial order. The previous theorem showed that
stcw is monotone with respect to ≤I . Our next goal is to find graphs of simple structure
but large slim (or 0-) tree-cut width, such that forbidding them as weak immersions
bounds the corresponding width of a graph. Wollan in [Wol15] characterized such graphs
for tree-cut width. Namely, he established the following dichotomy:

Theorem 3.12. (a) If G is a graph such that H2r2 ≤I G for some r ≥ 3, then tcw(G) ≥ r.
(b) There exists a function f : N → N such that if tcw(G) ≥ f(r), then Hr ≤I G, r ∈ N.

Here Hr denotes the r-wall, the graph which can be obtained from the r × r grid
by deleting every second vertical edge in each row, see [Wol15] for the definition and
Figure 3.5 for an illustration. We are going to complete the family of excluded immersions
to provide similar characterizations for 0-tree-cut width and slim tree-cut width. Recall
that the families of stars Sr and windmils Wr have unbounded 0- and slim tree-cut width,
respectively (Lemmas 3.8 and 3.9). Combining this with Theorem 3.11, we immediatedly
obtain:

Lemma 3.13. For every positive integer r, if stcw(G) < r (tcw0(G) < r), then G does
not admit Wr2 (Sr2, respectively) as a weak immersion.

As we will show in the remainder of this section, excluding Wr (Sr) as a weak immersion
along with Hr is actually sufficient to bound slim tree-cut width (0-tree-cut width).

Theorem 3.14. If G is a graph such that H2r2 ≤I G for some r ≥ 3 or Sr2 ≤I G for
some r ≥ 1, then tcw0(G) ≥ r. Moreover, there exists a function h : N → N such that if
tcw0(G) ≥ h(r), then Hr ≤I G or Sr ≤I G.

Proof. If H2r2 ≤I G for some r ≥ 3, we have that tcw(G) ≥ r by Theorem 3.12 and
hence tcw0(G) ≥ r. In case Sr2 ≤I G, the lower bound follows from Lemma 3.13.

Let f be the function given by Theorem 3.12. We define h by h(r) = r · f(r) + 3 · f(r) + 2.
Assume that G is a graph such that tcw0(G) ≥ h(r). If tcw(G) ≥ f(r), we immediatedly
conclude that Hr ≤I G by Theorem 3.12. Otherwise, let (T, X ) be a nice tree-cut
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Figure 3.5: Illustrations of forbidden weak immersions for the graphs with bounded
standard, slim or 0-tree-cut width. Left: 6-wall H6, Middle: windmill W8, Right: star S8.

decomposition of G of width at most f(r) with leaves having non-empty bags. There
exists a node t of T such that tor1(t) ≥ h(r), in particular, Bt ≥ r · f(r). As the size of
Xt is at most f(r), some vertex of Xt has degree of at least r and hence Sr ≤I G.

Before providing similar characterization for slim tree-cut width, we introduce a simple
technical modification of tree-cut decompositions, which will also be used later for
establishing the connection between slim tree-cut width and edge-cut width. The aim is,
roughly speaking, to avoid the situation where a thin child has adhesion 2, even though
it consists of two completely independent components each of which could be a thin child
of adhesion 1. Formally, let (T, X ) be a nice tree-cut decomposition of G. We say that a
node t with parent t′ in T is decomposable if the following conditions hold:

• t ∈ Bt′ and there exist two edges e1 and e2 between Gt and G \ Gt in G;

• the endpoints of e1 and e2 in Gt belong to different connected components of Gt.

Lemma 3.15. Any nice tree-cut decomposition of G can be transformed into a nice
tree-cut decomposition of the same tree-cut width with no decomposable nodes.

Proof. Let (T ′, X ′) be a nice tree-cut decomposition of G with at least one decomposable
node. Let t be a decomposable node of T ′ with minimum distance to the root, and
let e1 and e2 be the edges between Gt and G \ Gt in G. We create a copy T ′

t∗ of the
rooted subtree T ′

t where the copy of s ∈ T ′
t is s∗ ∈ T ′

t∗ . We then connect t∗ to the parent
of t. Let G1 be the connected component of Gt containing an endpoint of e1. For every
s ∈ V (T ′

t ) we set Xs = X ′
s ∩ V (G1) and Xs∗ = X ′

s \ Xs. For the rest of nodes s of T ′ we
set Xs = X ′

s. Finally, we exhaustively remove empty bags which are leaves and denote
the obtained tree by T . Observe that the resulting decomposition (T, X ) is nice and its
width is not greater than the width of (T ′, X ′). Moreover, our transformation doesn’t
create any decomposable nodes outside of subtrees rooted in t and t∗; both t and t∗ have
an adhesion of one and hence are not decomposable. Therefore, after a finite number of
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such steps we obtain some nice tree-cut decomposition of G of the same width but with
no decomposable nodes.

Further, as a technical term, we will refer to nice decompositions with no decomposable
nodes as very nice decompositions.

Corollary 3.16. Every tree-cut decomposition can be transformed into a very nice
tree-cut decomposition in quartic time, without increasing the width.

Proof. Let (T ′′, X ′′) be a tree-cut decomposition of G of width k. We transform (T ′′, X ′′)
into a nice tree-cut decomposition (T ′, X ′) of width at most k (this can be done in cubic
time, see [GKS22] for details). Further, we apply Lemma 3.15 on (T ′, X ′). This requires
at most quartic time, since every node of T ′ is decomposed at most once and every such
decomposition can be performed in cubic time. Then the resulting decomposition (T, X )
is very nice and has width of at most k.

With this transformation in hand, we are now ready to fully characterize forbidden weak
immersions for graphs of bounded slim tree-cut width.

Theorem 3.17. If G is a graph such that H2r2 ≤I G for some r ≥ 3 or Wr2 ≤I G for
some r ≥ 1, then stcw(G) ≥ r. Moreover, there exists a function g : N → N such that if
stcw(G) ≥ g(r), then Hr ≤I G or Wr ≤I G.

Proof. If H2r2 ≤I G for some r ≥ 3, we have that tcw2(G) ≥ r by Theorem 3.12 and
hence stcw(G) ≥ r. In case Wr2 ≤I G, the lower bound follows from Lemma 3.13.

Let f be the function given by Theorem 3.12. We define g by g(r) = 2r ·f2(r)+3 ·f(r)+2.
Assume that G is a graph such that stcw(G) ≥ g(r). If tcw(G) ≥ f(r), we immediatedly
conclude that Hr ≤I G by Theorem 3.12. Otherwise, by Corollary 3.16 there exists a
very nice tree-cut decomposition (T, X ) of G of width at most f(r). Let us pick a node
t of T such that tor2(t) ≥ g(r). By Corollary 3.10 we have that the size of B

(2)
t is at

least g(r) − 3 · f(r) − 2 = 2r · f2(r). Since (T, X ) is very nice, all the children of t in
B

(2)
t are non-decomposable. Recall that for every t′ ∈ B

(2)
t , the neighbourhood of Yt′ in

G is a one- or two-element subset of Xt, and hence Yt′ provides a path between some
(possibly equal) vertices of Xt. As the size of Xt is at most f(r), G contains either 2r
cycles intersecting in one vertex of Xt or 2r paths between two vertices of Xt. Since
every such pair of paths can be transformed into a cycle by lifting the pair of their first
edges, in both cases we have Wr ≤I G.
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3.2.3 k-Edge Sums
Another natural property Wollan [Wol15] established for tree-cut width is that the
parameter is closed under the operation of taking k-edge sum for small k:

Lemma 3.18 ([Wol15]). Let G, G1, and G2 be graphs such that G = G1 ⊕k G2. If Gj

has a tree-cut decomposition (Tj , Xj) for j = 1, 2, then G has a tree-cut decomposition
(T, X ) such that adh(T, X ) = max{k, adh(T1, X1), adh(T2, X2)}. Moreover, for every
t ∈ V (T ), the torso Ht of t in (T, X ) is isomorphic to the torso of some vertex of (T1, X1)
or (T2, X2).

Based on this result for optimal decompositions (T1, X1) and (T2, X2), we immediatedly
obtain the upper bound on 0- and slim tree-cut width for k-edge sums:

Corollary 3.19. Let G, G1 and G2 be graphs such that G = G1 ⊕k G2. Then it holds that
stcw(G) ≤ max{k, stcw(G1), stcw(G2)} and tcw0(G) ≤ max{k, tcw0(G1), tcw0(G2)}.

In particular, if both G1 and G2 have 0-, slim or standard width of at most ω and k ≤ ω,
we may conclude that the corresponding width of G is at most ω.

3.2.4 Super Edge-Cut Width
In this section, we study one more alternative characterization of slim tree-cut width and
0-tree-cut width. In particular, we observe that the latter is asymptotically equivalent
to maximum degree plus treewidth. This provides an interesting connection between
tree decompositions and tree-cut decompositions, but essentially rules out its study as
a means of establishing novel tractability results. For slim tree-cut width, however, we
obtain a characterization in terms of super edge-cut width that ties it to the previously
studied edge-cut width.

Characterization of 0-Tree-Cut Width. Wollan [Wol15] showed that a bound on
the treewidth and maximum degree implies a bound on the tree-cut width of a graph:

Proposition 3.20. Let G be a graph with maximal degree d and treewidth w. Then there
exists a tree-cut decomposition of adhesion at most (2w + 2)d such that every torso has
at most (d + 1)(w + 1) vertices.

In particular, as tor1(t) ≤ |Ht| ≤ (d + 1)(w + 1) ≤ (2w + 2)d for every node t of T , we
have tcw0(G) ≤ (2w + 2)d. In the following proposition, we show that the converse is
true as well: bounded tcw0 implies bounded treewidth and maximum degree of a graph.

Proposition 3.21. Let G be a graph with tcw0(G) = k. Then every vertex of G has
degree of at most k2 + 2k and tw(G) ≤ 2k2 + 3k.
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Proof. By Lemma 2.1 and Corollary 3.7 we have tw(G) ≤ 2 tcw(G)2+3 tcw(G) ≤ 2k2+3k.
Since tcw0(G) = k, Lemma 3.8 implies that G does not contain S(k+1)2 as a weak
immersion, in particular, degree of any vertex of G is at most k2 + 2k.

Corollary 3.22. 0-tree-cut width is asymptotically equivalent to maximum degree plus
treewidth.

This also implies an immediate connection to cutwidth—another edge-cut based pa-
rameter, defined in terms of linear orderings. A linear ordering of G is a bijective
mapping f : V → {1, . . . , n}. The cut at vertex v with respect to f (denoted cut(v))
is |{(u, w) ∈ E | f(u) ≤ f(v) < f(w)}|. The cutwidth of a linear ordering f is defined
as maxv∈V (G) cut(v). The cutwidth of G is the minimum cutwidth of f over all linear
orderings f of G.

Observe that the degree of every vertex v of G is at most two times the cutwidth of G:
neighbours of v that go after v in the ordering contribute to cut(v), while the rest of
the neighbours contribute to cut(w) where f(w) = f(v) − 1. It is known that both the
pathwidth and the treewidth of a graph is upper-bounded by its cutwidth [KS93], and in
particular this implies that the class of binary trees has unbounded cutwidth. Hence,
cutwidth is a strictly more restrictive parameter than degtw (and hence tcw0).

Characterization of Slim Tree-Cut Width. Recall that edge-cut width is a parameter
that is defined over spanning trees in the input graph G, which serve as the corresponding
decompositions. Let us now consider a slight generalization of this where we consider not
only spanning trees over G, but of any supergraph of G. Such a generalization would—
unlike edge-cut width itself—trivially be closed under both vertex and edge deletion. For
our considerations, let us denote this parameter super edge-cut width (sec(G)):

sec(G) = min{ecw(H, T ) | H ⊇ G and T is a maximal spanning forest of H}.

If H ⊇ G is a supergraph of G and T is a maximal spanning forest of H such that
ecw(H, T ) ≤ k, we say that T witnesses sec(G) ≤ k. Observe that there always exists a
connected witness, i.e., a tree. Indeed, if H consists of m > 1 connected components, we
can arbitrarily extend it to a connected graph H∗ by adding m − 1 edges. The addition
of these edges to T then results in the tree T ∗ witnessing sec(G) ≤ k. Moreover, notice
that any witness of ecw(G) ≤ k is also a witness of sec(G) ≤ k.

Corollary 3.23. For every graph G, sec(G) ≤ ecw(G).

However, graphs of constant super edge-cut width can have arbitrarily large edge-cut
width, as will become clear at the end of the section. A slight modification of the proof
of Proposition 3.1 yields:

Proposition 3.24. For every graph G, tcw(G) ≤ sec(G).
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Figure 3.6: Possible configurations of edges between thin child b ∈ B
(2)
t and its parent t.

Proof. Let Q be the supergraph of G and let T be a spanning tree of Q such that
ecw(Q, T ) = sec(G). We construct a tree-cut decomposition (T, X ) of G where each bag
contains at most one vertex, notably by setting Xt = {t} for each t ∈ V (G) and Xt = ∅
for each t ∈ V (Q) \ V (G). Fix any node t in T other than the root, let u be the parent
of t in T . All the edges of G \ ut with one endpoint in the rooted subtree Tt and another
outside of Tt belong to EQ,T

loc (t), so adhT (t) ≤ |EQ,T
loc (t)| + 1 ≤ sec(G).

Let Ht be the torso of (T, X ) in t, then V (Ht) = Xt ∪ {z1...zl} where zi correspond
to connected components of T \ t, i ∈ [l]. In H̃t, only zi with degree at least 3 are
preserved. But all such zi are the endpoints of at least two edges in |EQ,T

loc (t)|, so
tor(t) = |V (H̃t)| ≤ 1 + |EQ,T

loc (t)| ≤ sec(G). Thus tcw(G) ≤ sec(G).

To represent a deeper connection between tree-cut decompositions and super edge-
cut width, it will be convenient to work with very nice decompositions introduced in
Section 3.2.2.

Proposition 3.25. Let (T, X ) be a very nice tree-cut decomposition of G of width at
most k. Then for each node t of T , |B(2)

t | ≤ k · sec(G). In particular, it holds that
stcw(G) ≤ sec(G)2 + 4 · sec(G).

Proof. Assume that T ∗ is a spanning tree of H ⊇ G such that sec(G) = ecw(H, T ∗). For
any node t of T and b ∈ B

(2)
t , b has one of three types (see Figure 3.6):

1. N(Yb) = {x} for some x ∈ Xt, x is connected to distinct x1
b and x2

b from Yb;

2. N(Yb) = {x1, x2} for x1 ̸= x2, x1 and x2 are connected to the same xb ∈ Yb;

3. N(Yb) = {x1, x2} for x1 ̸= x2, x1 and x2 are connected to distinct x1
b and x2

b from
Yb respectively;

Let us start with the first type. If xi
bx doesn’t belong to T ∗ for i = 1 or i = 2, then

xi
bx ∈ EH,T ∗

loc (x). Otherwise, x1
b and x2

b are connected via x in T ∗. Then T ∗[Yb] has
precisely two connected components. As b is not decomposable, there exists a path
p between x1

b and x2
b in Gb containing precisely one edge outside of T ∗. This edge

contributes to EH,T ∗
loc (x).
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As T ∗ is a tree, there can be at most |Xt| − 1 ≤ k − 1 thin children b of the second type
such that xb is adjacent to two elements of Xt in T ∗. For the rest of b of the second type,
there exists x ∈ Xt such that xxb ∈ G \ T ∗ ⊆ H \ T ∗ and therefore xxb ∈ EH,T ∗

loc (x).

Let b be a thin node of the third type. If xb
1 and xb

2 are connected via a path in T ∗[Yb],
we can apply the same argument as for the second type. Otherwise, T ∗[Yb] has precisely
two connected components and, analogously to the first type, there exists an edge in
Gb ∪ {x1xb

1, x2xb
2} that belongs to EH,T ∗

loc (x1).

To conclude, any node of B
(2)
t either increases EH,T ∗

loc (x) for some x ∈ Xt or creates a path
in T ∗ between two vertices of Xt. Since T ∗ is a tree, |Xt| ≤ k and |EH,T ∗

loc (x)| ≤ sec(G)−1
for every x ∈ Xt, the size of B

(2)
t is at most (k − 1) + �

x∈Xt
|EH,T ∗

loc (x)| ≤ k · sec(G) − 1.
Then tor2(t) ≤ |At| + |Xt| + 1 + |B(2)

t | ≤ 3k + 1 + k · sec(G) ≤ k · (sec(G) + 4). Since the
bound holds for every node t of T , we may conclude that the slim width of (T, X ) is at
most k · (sec(G)+4). By Proposition 3.24 and Corollary 3.16, there exists a very nice tree-
cut decomposition of G of width k ≤ sec(G), therefore stcw(G) ≤ sec(G)2 +4 ·sec(G).

Hence, slim tree-cut with of any graph is upper-bounded by a quadratic function of its
super edge-cut width. Next, we show that the converse statement holds as well:

Proposition 3.26. For every graph G, sec(G) ≤ 3 · (stcw(G) + 1)2. Moreover, given a
tree-cut decomposition of G of slim width k, it is possible to compute a supergraph Q ⊇ G
and its spanning tree T witnessing sec(G) ≤ 3(k + 1)2 in cubic time.

Proof. Let (T0, X0) be a tree-cut decomposition of G of slim width k. We start by
transforming it into a nice tree-cut decomposition (T, X ) in cubic time as in [GKS22].
The transformation procedure acts on the 2-centers of torsos only by contracting some
edges. Recall that v ∈ V (Ht) \ Xt is not in the 2-center of (Ht, Xt) if and only if v
belongs to some induced subtree of Ht connected to the rest of Ht by at most one edge.
Since contracting an edge either preserves the property or merges v with some other
vertex, it doesn’t increase tor2(t) for any node t of T . In particular, the slim width of
(T, X ) is at most k.

Let Ω ⊆ X be the set of empty bags of (T, X ), we construct Q ⊇ G along with its tree-cut
decomposition (T, X ′) as follows. Firstly, we add to G vertices vt for every t ∈ Ω. We
define X ′

t = {vt} if Xt = ∅ and X ′
t = Xt otherwise. For every node t ∈ T , construct

an arbitrary tree T ∗
t over X ′

t and add its edges to Q. Further, we process every edge
e = pt ∈ E(T ) such that p is the parent of t in T and either N(Yt) ̸⊆ Xt or adh(t) > 1
as follows. If G doesn’t contain an edge between X ′

t and X ′
p, we add to E(Q) arbitrary

edge with endpoints in X ′
t and X ′

p. This increases the adhesion of e by at most one.

Now we proceed to the choice of the spanning tree T ∗ in Q. For every t ∈ T other
than the root, let p be the parent of t in T . If adh(t) = 1 and N(Yt) ⊆ Xt, we denote
by et the unique edge between Y ′

t and X ′
p in Q. Otherwise, let et be arbitrary edge of

Q with endpoints in X ′
t and X ′

p. We then construct T ∗ by gluing together all T ∗
t via
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Figure 3.7: Position of slim and 0-tree-cut width in the hi-
erarchy of edge-cut based parameters. An arrow from p to
q represents the fact that p is more restrictive than q, while
asymptotic equivalence is depicted by ≡.

edges et, that is, T ∗ = (∪t∈V (T )T
∗
t ) (∪t∈V (T )\r{et}). Obviously the construction can be

performed in cubic time; we will show that sec(Q, T ∗) ≤ 3(k + 1)2.

To this end, fix any node t of T and x ∈ X ′
t and denote Eloc(x) = EQ,T ∗

loc (x). If T ∗ contains
more than one edge between Y ′

t and rest of T ∗, then all but one of them are the unique
edges connecting Q′

q to the rest of Q for some descendants q of t in T . Hence, they don’t
belong to any path in T ∗ between the endpoints of some feedback edge e ∈ E(Q) \ E(T ∗).
Therefore, every edge of Eloc(x) has at least one endpoint in Y ′

t . The number of edges in
Eloc(x) with both endpoints in X ′

t is at most |X ′
t| · (|X ′

t| − 1) ≤ k · (k − 1). Every edge
with one endpoint in X ′

t and another outside of Y ′
t contributes to the adhesion of t in

(T, X ′), so their number is bounded by k + 1.

Finally, if e = yz ∈ Eloc(x) contains an endpoint y in Y ′
t \ X ′

t, then y ∈ Y ′
q for some

child q of t. Then Q contains a cycle intersecting Y ′
q and x ∈ Xt. In particular, by

construction of Q we may conclude q ∈ At ∪ B
(2)
t w.r.t. the decomposition (T, X ). By the

same arguments as for the node t, we conclude that at most one edge between Y ′
q and

the rest of T ∗ belongs to any path in T ∗ between the endpoints of some feedback edge
e ∈ E(Q)\E(T ∗), so z ̸∈ Y ′

q and e contributes to the adhesion of q in (T, X ′). In particular,
Eloc(x) contains at most adh(q) + 1 edges with an endpoint in Y ′

q . In total, at most
maxq∈At(adh(q)+1)·|At|+max

q∈B
(2)
t

(adh(q)+1)·|B(2)
t | ≤ (k+1)(2k+1)+3k = 2k2+6k+1

edges in Eloc(x) have an endpoint in Y ′
t \X ′

t, so |Eloc(x)| ≤ k·(k−1)+(k+1)+2k2+6k+1 =
3k2 + 6k + 2 and hence sec(Q, T ∗) ≤ 3k2 + 6k + 3 = 3(k + 1)2.

Corollary 3.27. sec and stcw are asymptotically equivalent.

The results of this section are summarized in Figure 3.7. In particular, the graph family
provided in [BCG+22, Lemma 2] shows that graphs of constant super edge-cut width
may have arbitrarily large edge-cut width.

3.2.5 Cubic Approximation

In this section we show how to efficiently construct a tree-cut decomposition of a graph G
with slim width bounded by a cubic function of its optimal value stcw(G). As a starting
point for our approximation, we use the following result of Kim, Oum, Paul, Sau and
Thilikos:

32



3.2. Slim Tree-Cut Width

Theorem 3.28 ([KOP+18]). There exists an algorithm that, given a graph G and ω ∈ N,
either outputs a tree-cut decomposition of G with width at most 2ω or correctly reports
that no tree-cut decomposition of G with width at most ω exists in 2O(ω2·logω) · n2 steps.

As an observant reader might have already noticed, if G has bounded slim tree-cut width,
it imposes some restrictions on the structure of possible decompositions of G of small
(standard) tree-cut width. This fact enables us to construct an efficient approximation
for stcw(G).

Theorem 3.29. There exists an algorithm that, given a graph G and ω ∈ N, either
outputs a tree-cut decomposition of G with slim width at most 6(ω+1)3 or correctly reports
that no tree-cut decomposition of G with slim width at most ω exists in 2O(ω2·logω) · n4

steps.

Proof. Given a graph G and ω ∈ N, let us run the algorithm from Theorem 3.28. If it
reports that tcw(G) > ω, we may conclude that stcw(G) > ω by Corollary 3.7. In case
the algorithm returns a tree-cut decomposition (T ′, X ′) of width at most 2ω, we invoke
Corollary 3.16 to transform this decomposition into a very nice decomposition (T, X ) of the
same width in at most quartic time. By Proposition 3.25, we have that |B(2)

t | ≤ 2ω ·sec(G)
for each node t of T . If for some node t the size of B

(2)
t exceeds 6ω · (ω + 1)2, then

sec(G) > 3(ω + 1)2 and by Proposition 3.26 we may correctly report that stcw(G) > ω.
Otherwise, tor2(t) ≤ 1 + |Xt| + |At| + |B(2)

t | ≤ 1 + 2ω + (4ω + 1) + 6ω · (ω + 1)2 ≤ 6(ω + 1)3

for any node t of T . Hence, the slim width of (T, X ) is at most 6(ω + 1)3.

Combining this result with Proposition 3.26 shows that instead of using a tree-cut
decomposition of the input graph G to design fixed-parameter algorithms—as was done
in past dynamic programming algorithms that utilized tree-cut width—we can perform
dynamic programming along a spanning tree T of a supergraph H of G. Both H and
T can be computed from G in a pre-processing stage by using Theorem 3.29 and then
Proposition 3.26, and using a spanning tree instead of a tree-cut decomposition typically
leads to significantly more concise (and conceptually cleaner) algorithms.

Corollary 3.30. There exists an algorithm that, given a graph G and ω ∈ N, either
outputs a supergraph H of G along with a spanning tree T such that ecw(H, T ) = O(ω6)
or correctly reports that the slim tree-cut width of G is greater than ω in 2O(ω2·logω) · n4

steps.

The cost for this simplification is the quadratic gap between the widths of these decom-
positions. We note that this situation is somewhat analogous to how one still typically
uses clique-width [CMR00] as a general and easy-to-use parameterization for various
problems (especially when aiming for instances with higher edge-densities), even though
rank-width [Oum05] and Boolean-width [BTV11] are asymptotically equivalent parame-
terizations which have been shown to yield more efficient algorithms [GH10]—there, the
gap is even exponential.
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3.3 Algorithmic Application: Maximum Stable Matching
Having established its structural properties, we now turn to the algorithmic aspects of
the slim tree-cut width. We exploit slim tree-cut width to obtain FPT algorithms for
problems which remain W[1]-hard w.r.t. tree-cut width (see Table 3.1). In a joint work
with Brand et al. [BCG+22] we showed that these problems are fixed-parameter tractable
w.r.t. edge-cut width. Although the functional gap between edge-cut width and slim
tree-cut width may be arbitrarily large, it is not hard to lift each of these tractability
results to the super edge-cut width, and, hence, slim tree-cut width (recall that stcw and
sec are asymptotically equivalent).

To illustrate this, here we provide an FPT algorithm for one of the problems from
Table 3.1, which is Maximum Stable Roommates with Ties and Incomplete
Lists (MSRTIL). This problem originates from the area of computational social
choice [BHKN19]. It is W[1]-hard when parameterized by tree-cut width [BHKN19] but
FPT when parameterized by degree treewidth [BHKN19, AGR+18].

In MSRTIL, we are given a set of agents V , where each agent v ∈ V has a preference
Pv = (Pv, ⪯v). The agents Pv ⊆ V \ {v} are called acceptable (for v) and ⪯v is a linear
order on Pv with ties. Let u, w ∈ Pv. If u ≺v w, then we say that v strongly prefers u to
w; otherwise we say that v weakly prefers w to u.

We represent this problem via the undirected acceptability graph G, which contains a
vertex for each agent in V and an edge between two agents if and only if both appear in
the preference lists of the other. A set M ⊆ E(G) is called a matching if no two edges in
M share an endpoint. If the edge {v, w} is contained in M , then we say v is matched
to w and denote this as M(v) = w and vice versa. In case a vertex v is not incident to
any edge in M , then v is unmatched resp. M(v) = ⊥ (where we assume ⊥ to be less
preferable than all acceptable neighbors of v). An edge {v, w} ∈ E(G) \ M is blocking for
M (we also say v, w form a blocking pair) if w ≺v M(v) and v ≺w M(w). A matching is
stable if it does not admit a blocking pair.

Maximum Stable Roommates with Ties and Incomplete Lists (MSRTIL)
Input: A set of agents V , a preference profile P = (Pv)v∈V , and an integer π.
Question: Is there a stable matching of (V, P ) of cardinality at least π?

Theorem 3.31. MSRTIL is fixed-parameter tractable when parameterized by the slim
tree-cut width of the acceptability graph.

Proof. As a starting point, we apply Corollary 3.30 to compute a supergraph H of G along
with its spanning tree T such that ecw(H, T ) = O(stcw(G)6). Let r be an arbitrarily
chosen root in T . For each node v ∈ V (T ), we will use Tv to denote the subtree of T
rooted at v. Without loss of generality, we will assume that G and H are connected.
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The central notion used in our algorithm is that of a boundary graph, which plays a
similar role as the bags in tree decompositions. Intuitively, the boundary graph contains
all the edges which leave Tv (including the vertices incident to these edges). For each
v ∈ V (T ), the boundary graph ∂(v) of Tv is the edge-induced subgraph of G induced by
those edges which have precisely one endpoint in Tv.

Observe that for each v ∈ V (T ), |E(∂(v))| ≤ ecw(H, T ) and |V (∂(v))| ≤ 2 ecw(H, T ). It
will also sometimes be useful to speak of the graph induced by the vertices that are “below”
v in T , so we set Yv = V (Tv) and Gv = G[Yv]; we note that v ∈ Yv for every vertex v
of G. Observe that ∂(v) acts as a separator between vertices outside of Yv ∪ V (∂(v)) and
vertices in Yv \ V (∂(v))

We are now ready to design a dynamic programming procedure that proceeds the
spanning tree T of H in a leaf-to-root fashion, computing records at each node, so
that the record for the root will contain a solution to our problem. We start by
defining the syntax of the records. For v ∈ V (T ), let a signature at v be a mapping
E(∂(v)) → {matched,unsafe,safe}. Clearly, the number of signatures at v is upper-
bounded by 3k, where k = ecw(H, T ).

To make it easier to describe the semantics of the records, let us first define the graph Gv

as the non-disjoint union of Gv and ∂(v); we recall that ∂(v) contains both vertices in
Gv and vertices adjacent to these, and that E(∂(v)) forms an edge-cut separating Gv

from the rest of G.

We are now ready to define the semantics of the records. A matching M in Gv is called a
partial solution if there is no blocking edge for M in E(Gv); in other words, we explicitly
forbid the edges in the boundary graph from forming blocking pairs in partial solutions.
Each partial solution M corresponds to a signature sig at v defined as follows:

• for each e ∈ M ∩ E(∂(v)), sig(e) = matched,

• for each e = ab ∈ E(∂(v)) \ M such that a ∈ Yv and there exists ac ∈ M such that
c ≺a b , sig(e) = safe, and

• sig(e) = unsafe otherwise.

Intuitively, the signature of M captures the following information about M : which edges
of the boundary graph are matched, and for those which are not matched it stores
whether they are “safe” (meaning that the endpoint in Yv will never form a blocking
pair with that edge), or “unsafe” (meaning that the endpoint in Yv could later form a
blocking pair with that edge, depending on the preferences and matching of the endpoint
outside of Yv).

We define R(v) to be a mapping from the set of all signatures at v to N ∪ {−∞}, where
(1) if there is no partial solution corresponding to a signature τ , then R(v)(τ) %→ −∞,
and otherwise (2) R(v) maps τ to the size of the largest partial solution in Gv whose
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signature is τ . To avoid any confusion, we remark that when applying addition to the
images of R(v), we let −∞ + x = −∞ for each x ∈ N ∪ {−∞}.

If we can compute R(r) for the root r of a spanning tree T witnessing that ecw(G, T ) ≤ k,
then by definition each partial solution is also a stable matching in the instance. Hence,
it suffices to check whether R(r)(∅) ≥ π; if this is the case, then we output “Yes”, and
otherwise we can safely output “No”. At this point, it suffices to compute R(v) for each
v ∈ V (G) in leaf-to-root fashion along T .

If v is a leaf, we may assume without loss of generality that v is a vertex of G. First,
we add the mapping (E(∂(v)) %→ unsafe) %→ 0 to R(v), which corresponds to the empty
partial solution. Then, for each vw ∈ E(∂(v)) we construct a signature τw which assigns
vw to matched, and for each neighbor u of v in G other than w either assigns vu to
safe (if v weakly prefers w to u) or assigns vu to unsafe (if v strongly prefers u to w).
For each τw constructed in this way, we set R(v)(τw) = 1.

If v is an internal node, there are two possibilities: either v is a vertex of G or it is a
vertex of H \ G. In first case, we begin by branching over all edges vw ∈ E(G) incident to
v, and for each such edge we proceed by restricting our attention to all partial solutions
which contain vw. In both cases, we also have a separate branch to deal with all partial
solutions where v remains unmatched; in case v ∈ H \ G this will be the only branch.
We will begin by dealing with this branch.

Branch 1: v remains unmatched. Assume that for some child u of v it holds that
E(∂(u)) = {uv}. Then, in particular, u and v are vertices of G and uv ∈ E(G). For
every such child u of v, we observe that only partial solutions at u with the signature
uv %→ safe can be extended to a partial solution at v; indeed, uv %→ matched would
violate our assumption that v remains unmatched, while uv %→ unsafe would, by
definition, lead to a blocking pair. For brevity, let us set simple-size to be the sum of
all R(u)(uv %→ unsafe) over all vertices u with a single-edge boundary graph. In case
there are no such u (in particular, if v ̸∈ V (G)) we set simple-size = 0.

We observe that at this point only at most 2k children of v remain to be processed, say
x0, . . . , xℓ. We proceed by simultaneously branching over all of the at most 3k signatures
for each of these children, resulting in a total branching factor of 3k2 ; each branch can
be represented as a tuple (sigx0 , . . . ,sigxℓ

). We now discard all tuples that are not
well-formed, where a tuple is well-formed if the following conditions hold:

• it contains no signature that maps an edge incident to v to either unsafe or
matched (as before, these edges may only be mapped to safe);

• for each edge ab ∈ E(G) such that a ∈ Yxi and b ∈ Yxj , i, j ∈ [ℓ], the signatures of
xi and xj must either (a) both map that edge to matched, or (b) both map that
edge to safe, or (c) map that edge to safe once and unsafe once (signatures
must be consistent).
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For all remaining tuples, we set branching-size to �
i∈[ℓ] R(xi)(sigxi

). We also
identify a unique signature sig∗ corresponding to the current branch as follows: each
edge in ∂(v) incident to v is mapped to unsafe, and each edge e in ∂(v) not incident to
v must have an endpoint in Yxi for some xi and is mapped to sigxi

(e). At this point,
we update R(v)(sig∗) as follows: if the value of R(v)(sig∗) computed so far is greater
than simple-size + branching-size, then we do nothing, and otherwise we set
that value to simple-size+ branching-size. We now proceed to the next branch,
i.e., choice of neighbor of v.

Branch 2: v is matched to w. Recall that this can only happen if v, w ∈ V (G) and
vw ∈ E(G). We will in principle follow the same steps as in the previous branch, but
with a few extra complications. Let us begin by distinguishing whether (1) w itself is a
child of v such that E(∂(u)) = {uv}, (2) w is in Yxi for some child xi of v not satisfying
this property (including the case where w = xi), or (3) w ̸∈ Yv. In the first case, we set
the child w aside and initiate simple-size = R(w)(wv %→ matched). In the second
case, we will later (in the appropriate branching step) discard all signatures of xi which
do not map wv to matched. In the third case, we will take this into account when
constructing sig∗.

Next, for each child u of v such that E(∂(u)) = {uv} (other than w, in case (1)), we distin-
guish whether v weakly prefers w to u, or not. For each u where this holds, we observe that
any partial solution at u that does not use v can be safely extended to a partial solution at
v—hence, we increase simple-size by max(R(u)(uv %→ unsafe), R(u)(uv %→ safe)).
Furthermore, for each u where v strongly prefers u to w we observe that a partial solution
at u can only be extended to one at v if it matches u in a way which prevents the
creation of a blocking pair with v. Hence, in this case, we increase simple-size by
R(u)(uv %→ safe).

In the second step, we once again proceed by simultaneously branching over all of
the at most 3k signatures for the remaining children x0, . . . , xℓ of v. As before, this
results in a total branching factor of 3k2 , and each branch can be represented as a tuple
(sigx0 , . . . ,sigxℓ

). We now discard all tuples that aren’t well-formed, where a tuple is
well-formed if the following conditions hold:

• for each edge ab such that a ∈ Yxi and b ∈ Yxj , i, j ∈ [ℓ], the signatures of xi and
xj must either (a) both map that edge to matched, or (b) both map that edge to
safe, or (c) map that edge to safe once and unsafe once (signatures must be
consistent);

• in case (2), the edge vw is mapped to matched in the appropriate signature;

• the tuple contains no signature that maps any edge incident to v (other than vw)
to matched;

• for no edge vz where z ∈ Yxi for some i ∈ [ℓ] such that v strongly prefers z to w,
the signature of xi maps vz to unsafe (as this would create a blocking pair).
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For all remaining tuples, we set branching-size to �
i∈[ℓ] R(xi)(sigxi

) in cases (1)
and (2); in case (3), we set it to �

i∈[ℓ] R(xi)(sigxi
) + 1. We also identify a unique

signature sig∗ corresponding to the current branch as follows: each edge vc ∈ E(∂(v)) is
mapped to unsafe if v strongly prefers c to w, and safe otherwise (with the exception
of c = w in case (3), where vw must be mapped to matched). Furthermore, each edge
e in ∂(v) not incident to v must have an endpoint in Yxi for some xi and is mapped
to sigxi

(e). At this point, we update R(v)(sig∗) as follows: if the value of R(v)(sig∗)
computed so far is greater than simple-size+branching-size, then we do nothing,
and otherwise we set that value to simple-size+branching-size. We then proceed
to the next branch, i.e., choice of neighbor of v.

The correctness of the algorithm can be shown by induction; it is not difficult to verify
that the computation of the records is correct at the leaves, and for non-leaves one uses
the assumption that the records of the children are correct. The crucial point is that
every partial solution at a child that corresponds to a certain signature can be extended
to a partial solution at the parent if the verified conditions hold, which justifies the
correctness of adding up the appropriate values for the children. The running time is
upper-bounded by 3k2 · n2.

3.4 Block Decompositions and more Algorithmic
Applications

One way to design FPT algorithms for the slim tree-cut width, used in Section 3.3, is
to consider an asymptotically equivalent parameter super edge-cut width and proceed
dynamic programming along the spanning tree decomposition. But sometimes we can
obtain the algorithm almost immediately, if the problem is known to be FPT by the
treewidth plus maximum degree. This is based on one crucial advantage that slim tree-cut
width pocesses, comparing to its predecessor edge-cut width. This advantage is related to
block decompositions, which we use in this section to provide one more characterization
of the slim tree-cut width.

After establishing some structural properties of block decompositions of graphs with
bounded slim tree-cut width, we will exploit them to obtain the FPT results for the
rest of the problems for which we provided FPT algorithms w.r.t. the edge-cut width
in our earlier work [BCG+22]. The approach used here allows us to lift these previous
algorithmic results to the more general setting of slim tree-cut width without requiring
the technical and lengthy description of entirely new dynamic programming procedures.
Intuitively, we obtain these results by showing that every graph of bounded slim tree-cut
width can be decomposed into a tree of 2-connected blocks of bounded treewidth and
degree, and this structure can be processed in a leaf-to-root fashion. We provide formal
definitions in the following subsection.
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3.4.1 Block Decompositions and Slim Tree-Cut Width
For a connected graph G = (V, E), we say that e ∈ E is a bridge if G \ e is disconnected.
We introduce an equivalence relation ≡ on V such that for any v, w ∈ V , v ≡ w if and
only if the shortest path between v and w in G doesn’t contain bridges. For v ∈ V (G), let
us denote by v̄ the equivalence class containing v. We construct the block decomposition
ΥG of G which is a graph with nodes and edges defined as follows:

• the set of nodes V (ΥG) is the set of equivalence classes {v̄ | v ∈ V },

• for every bridge e = (v, w) of G, add an edge ē = (v̄, w̄) to E(ΥG).

While a block decomposition is well-defined for any graph and always forms a tree, in
general it does not provide any algorithmic insights. For instance, if there are no bridges
in G, then ΥG consists of a unique node containing all the vertices of G. However, the
situation is completely different if we consider graphs of bounded slim tree-cut width.
Crucially, we can establish the following property:

Lemma 3.32. Let G be a graph such that stcw(G) ≤ k. Then, for every v̄ ∈ V (ΥG),
tcw0(G[v̄]) ≤ k.

Proof. Consider a tree-cut decomposition (T, χ) of G[v̄] of slim width at most k. By
definition, the adhesion in each node t of T is at most k. The graph G[v̄] is connected
and does not contain bridges, so for every node t both tor1(t) and tor2(t) are equal to
the size of the torso at t, in particular tor1(t) = tor2(t) ≤ stcw(G[v̄]) ≤ k and hence
tcw0(G[v̄]) ≤ k.

Along with Proposition 3.21 this immediatedly provides upper bounds for the maximum
degree and treewidth of any induced subgraph G[v̄]:

Corollary 3.33. For a graph G and every v̄ ∈ V (ΥG), maximal degree of G[v̄] is at
most stcw(G)2 + 2 stcw(G) and tw(G[v̄]) ≤ 2 stcw(G)2 + 3 stcw(G).

Next, we describe how this result can be used to lift fixed-parameter tractability from
degree treewidth to slim tree-cut width.

3.4.2 Edge Disjoint Paths
Let us start from the Edge Disjoint Paths problem, which was shown to be FPT w.r.t.
degree treewidth [GOR21] but W[1]-hard with respect to tree-cut width [GO21].

Edge Disjoint Paths (EDP)
Input: A graph G and a set P of terminal pairs, i.e., a set of subsets of V (G)

of size two.
Question: Is there a set of pairwise edge disjoint paths connecting every terminal

pair in P?
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Consider an arbitrary instance (G, P ) of EDP. Assume that e ∈ E(G) is a bridge, and G1
and G2 are connected components of G \ e. If P contains at least two terminal pairs with
one vertex in G1 and another in G2, we have a NO-instance, since any path connecting
such a pair would be routed through e. Otherwise, if both endpoints of any terminal
pair belong to the same connected component, we may solve the problem independently
on G1 and G2, restricting the set of terminal pairs to their vertex sets. Finally, if there
exists precisely one terminal pair (v1, v2) ∈ P such that v1 ∈ V (G1) and v2 ∈ V (G2),
then a path between v1 and v2 in a potential solution must contain the edge e. Let xi be
the endpoint of e that belongs to Gi, i = 1, 2. To solve the original instance (G, P ), it is
sufficient to independently solve the instances (Gi, Pi), where Pi contains all the pairs
from P with both endpoints in V (Gi) plus the pair (vi, xi), i = 1, 2.

Iteratively applying this argument for every bridge of G, we obtain the set of instances
(G[v̄], Pv), v̄ ∈ V (ΥG), such that (G, P ) is a YES-instance if and only if every (G[v̄], Pv)
is a YES-instance. Since by Corollary 3.33 the degree treewidth of each G[v̄] is bounded
by a quadratic function of stcw(G), we may now apply the fixed-parameter algorithm
from [GOR21].

Corollary 3.34. Edge Disjoint Paths is fixed-parameter tractable w.r.t. the slim
tree-cut width.

3.4.3 Minimum Changeover Cost Arborescence
Some problems cannot be decomposed along bridges in such a simple way. In this case,
instead of solving independent instances for each G[v̄], we try to iteratively compress the
original instance, every time decreasing the number of nodes in the block decomposition.
For example, let us consider the problem Minimum Changeover Cost Arborescence,
which is W[1]-hard when parameterized by the tree-cut width [GÖP+17] but FPT when
parameterized by degree treewidth [GSSZ16].

An arborescence is a directed tree with a designated vertex r (often called the root),
which contains a directed path from each vertex to r. Given an arborescence T with root
r and an edge e ∈ E(T ) we denote with succ(e) the edge incident to e on the path from
v to the root r. For an edge e incident to the root we define succ(e) = e.

A function cost : X2 → N is called a changeover cost function if it satisfies the following:

1. cost(x1, x2) = cost(x2, x1) for each x1, x2 ∈ X, and

2. cost(x, x) = 0 for each x ∈ X.

The total changeover costs of an arborescence T are now defined as�
e∈E(T )

cost(e,succ(e)).
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Minimum Changeover Cost Arborescence (MinCCA)
Input: A directed graph D = (V, A), a root r ∈ V (D), an arc coloring

col : A(D) → X, and a changeover cost function cost : X2 → N.
Question: What is an arborescence of D minimizing the total changeover costs?

Let I = (D, r,col,cost) be instance of MinCCA, and let G be the skeleton of D. Since
the root r is fixed, we can determine for each bridge e of the block decomposition ΥG

which orientation e must have in the arborescence. In particular, for any leaf t of ΥG we
can restrict I to the vertices contained in t, plus the bridge et connecting t to its parent
s in ΥG. Let vt and vs be the endpoints of et that belong to t and s, respectively. The
skeleton of the restricted instance has bounded degree treewidth, and hence an optimal
arborescence T [t] can be constructed in FPT time by applying the known algorithm
from [GSSZ16]. After obtaining T [t], we delete from G all vertices of t, and for each
vertex v such that vsv ∈ A, we update vsv by changing its color to the new color cvsv such
that for any other color c, cost(cvsv, c) = cost(col(et),col(vsv))+cost(col(vsv), c).
Iteratively applying this rule, we obtain an optimal arborescence T [t] for each node t of
ΥG that respects additional costs from incoming bridges. An optimal arborescence T can
then be obtained by gluing all the individual T [t]’s together.

Corollary 3.35. MinCCA is fixed-parameter tractable when parameterized by the slim
tree-cut width of the skeleton of G.

3.4.4 List Coloring and Precoloring Extension
Another problem where some kind of iterative compression along the block decomposition
works is List Coloring. A coloring col is a mapping from the vertex set of a graph to
a set of colors; a coloring is proper if for every pair of adjacent vertices a, b, it holds that
col(a) ̸= col(b). The problem can then be formulated as follows:

List Coloring
Input: A graph G = (V, E) and for each v ∈ V a list L(v) of permitted colors.
Question: Does G admit a proper coloring col where for each vertex v it holds

col(v) ∈ L(v)?

List Coloring is one more example of a problem that is W[1]-hard w.r.t. tree-cut width
but FPT w.r.t. degree treewidth [GKS22].

Consider an instance I = (G, L) of List Coloring. If ΥG consists of a unique node,
we conclude that G has bounded degree treewidth and therefore I can be solved in FPT
time [GKS22]. Otherwise, we show how to iteratively compress the leaves of ΥG.

Let v̄ ∈ V (ΥG) be a leaf adjacent to w̄, where vw ∈ E(G). First, for each color c ∈ L(v),
we create an instance Ic = (G[v̄], Lc) where Lc coinsides with L on v̄ except Lc(v) = {c}.
Since G[v̄] has bounded degree treewidth, every such instance can be solved in FPT
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time [GKS22]. Observe that L′(v) = {c ∈ L(v) | Ic is a YES-instance} is the set of all
colors that v receives in some proper coloring of G[v̄] that agrees with L. If L′(v) = ∅,
I is obviously a NO-instance. If the cardinality of L′(v) is at least 2, removing v̄ from
V (G) results in an instance that is equivalent to I: any coloring of G \ v̄ can be extended
to v̄ so that v and w receive different colors. Finally, if L′(v) contains a unique color c,
we remove v̄ from V (G) and, in case c ∈ L(w), remove c from L(w). In each case, we
reduce the number of nodes of the block decomposition by one. For the last node, we
simply apply the FPT algorithm from [GKS22].
Precoloring Extension is another coloring problem from Table 3.1, where a graph
is given with a partial coloring, and the task is to extend it to the proper coloring. As
was mentioned in [BCG+22], this problem can be considered as a special case of List
Coloring.

Corollary 3.36. List Coloring and Precoloring Extension are fixed-parameter
tractable w.r.t. slim tree-cut width.

3.4.5 Boolean CSP
Finally, let us consider the classical constraint satisfaction problem over a Boolean
domain [SS10], which is W[1]-hard w.r.t. tree-cut width [GKS22]. An instance I of
Boolean CSP is a tuple (X, C), where X is a finite set of variables and C is a finite
set of constraints. Each constraint in C is a pair (S, R), where the constraint scope S
is a non-empty sequence of distinct variables of X, and the constraint relation R is a
relation over {0, 1} (given as a set of tuples) whose arity matches the length of S. An
assignment is a mapping from the set X of variables to {0, 1}. An assignment σ satisfies a
constraint C = ((x1, . . . , xn), R) if (σ(x1), . . . , σ(xn)) ∈ R, and σ satisfies the Boolean
CSP instance if it satisfies all its constraints. An instance I is satisfiable if it is satisfied
by some assignment.

Boolean CSP
Input: A set of variables X and a set of constraints C.
Question: Is there an assignment σ : X → {0, 1} satisfying all constraints in C?

We represent this problem via the incidence graph G, whose vertex set is X ∪ C and
which contains an edge between a variable and a constraint if and only if the variable
appears in the scope of the constraint. Boolean CSP is known to be fixed-parameter
tractable when parameterized by the degree treewidth of G [SS10]. Similarly as before,
to lift the result to slim tree-cut width, it is sufficient to provide a reduction compressing
a leaf of ΥG in a given instance I. We distinguish the following two cases.
Case 1: v̄ ∈ V (ΥG) is a leaf adjacent to c̄, where v, c are the unique variable in v̄
and constraint in c̄, respectively, such that v appears in the scope of c. We create two
instances I0 and I1, where Ii is obtained from I by restricting G to v̄ and adding a new
constraint with the scope (v) which is satisfied if and only if σ(v) = i.
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• if both I0 and I1 are NO-instances, clearly I is a NO-instance as well.

• if both I0 and I1 are YES-instances, we simply remove from I all the variables
and constraints that belong to v̄ and remove v from the scope of c (i.e., we forget
corresponding coordinate in the constraint relation). For correctness, observe that
any satisfying assignment σ of the modified instance can be extended to v to satisfy
c. Then, if σ(v) = i, any solution to Ii provides an extension of σ to the variables
in v̄,

• if for some i ∈ {0, 1}, Ii is a YES-instance and I1−i is a NO-instance, we remove
from I all the variables and constraints that belong to v̄, same as before. But now,
before removing v from the scope of c, we delete from the constraint relation of c
all the tuples which assign to v the value 1 − i. This also results in an equivalent
instance, since any sattisfying assignment for I must map v to i.

Case 2: c̄ ∈ V (ΥG) is a leaf adjacent to v̄, and c, v are the unique constraint in c̄ and
variable in v̄, respectively, such that v appears in the scope of c. For each i ∈ {0, 1}, we
try to satisfy all the constraints in c̄ while assigning to v the value i. For this, we solve
the instances I0 and I1 where Ii is obtained from I by deleting from c all the tuples that
set v equal to 1 − i, removing v from the scope of c and then removing all the variables
and constraints outside of c̄. There can be three possible outcomes:

• if both I0 and I1 are NO-instances, we conclude that I is a NO-instance.

• if both I0 and I1 are YES-instances, we simply remove from I all the variables and
constraints that belong to c̄.

• if for some i ∈ {0, 1}, Ii is a YES-instance and I1−i is a NO-instance, any potential
solution should assign to v the value i. Hence we can safely delete from the
constraints of I all the tuples setting v equal to 1 − i, and then remove variables
and constraints that belong to c̄ ∪ {v}.

Corollary 3.37. Boolean CSP is fixed-parameter tractable w.r.t. the slim tree-cut
width of the incidence graph.

3.5 Discussion
The contributions of this chapter are mainly conceptual: they provide a possible resolution
to the search for an alternative to treewidth for edge cuts which is both structurally
sound and exhibits the expected (and desired) algorithmic properties. Slim tree-cut
width can be viewed as the “missing link” which explains why the problems depicted in
Table 3.1 admit fixed-parameter algorithms that exploit dynamic programming along
small edge cuts w.r.t. both edge-cut width (as a generalization of the feedback edge
number) and treewidth plus maximum degree. We firmly believe that there are many
more problems of interest where edge-cut based parameters may help push the frontiers
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of tractability. On this front, the alternative characterization via the edge-cut width of a
supergraph provides decompositions which are better suited for dynamic programming
than tree-cut decompositions. The problem of computing optimal decompositions for
slim tree-cut width remains, as in the case of tree-cut width [KOP+18], a prominent
open question. Moreover, we believe that the ideas used to obtain a 2-approximation
algorithm for tree-cut width could also be used to obtain an improved constant-factor
approximation for slim tree-cut width. In this context, edge-cut width, a predecessor
of the slim tree-cut width, has a practical advantage—it can be computed in FPT time
along with a witnessing spanning tree decomposition of minimal width.

3.5.1 Edge-cut Width or Slim Tree-cut Width?

Given the ease of transferring dynamic programming algorithms from edge-cut width
or degree treewidth to slim tree-cut width, an inquisitive reader might be wondering
whether it is not possible to formally prove that every problem which is FPT w.r.t. former
is also FPT w.r.t. the latter. That is, however, not true in general: one can construct
entirely artificial problems which do not behave in this way.

To illustrate this on a high level for edge-cut width, let us consider an arbitrary graph
problem PP which remains NP-hard even on trees (as an example, the Firefighter
problem [FKMR07]) and can be solved on general n-vertex graphs in time τ(n). Moreover,
let γ(n) denote the time required to compute the slim tree-cut width of a graph G via
an exhaustive brute force search, and let ψ be a function which dominates both τ and γ.
We now define an artificial new problem PP′ as follows:

• every n-vertex graph G such that ψ(ecw(G)) ≤ n is a YES-instance, and otherwise

• G is a YES-instance if and only if G is a YES-instance of Firefighter.

Then PP′ is FPT parameterized by edge-cut width. Indeed, given an instance (G, k) of
PP′, one can attempt to run a brute-force search to determine the edge-cut width (which
is promised to be at most k) with a time-out of ψ(ψ(k)). If the algorithm times out,
this implies that ψ(ecw(G)) ≤ n and we correctly output “Yes”. If not, we proceed by
calling a brute-force algorithm to solve Firefighter on G, and this must once again
complete in time at most ψ(ψ(k)). Conversely, PP′ remains NP-hard even on graph
classes with constant stcw(G)—consider, for instance, the class of all graphs with two
connected components, one of which is a tree and the other a graph from the class with
constant slim tree-cut width but unbounded edge-cut width (one such class is depicted
in Figure 2 of [BCG+22]). On some inputs from this class, PP′ will ask for a solution to
the Firefighter problem (which is NP-hard on trees) but the parameter stcw(G) will
remain constant.
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3.5.2 Other edge-cut based measures
Recently, Chang et al. [CKL23] introduced new edge-cut based measures, called α-edge-
crossing width and edge-crossing width. The parameters are defined in terms of tree-cut
decompositions similarly to tree-cut width, but use the notions of thickness and crossing
number instead of torso size and adhesion respectively.

The thickness of a tree-cut decomposition (T, X) is simply the maximal cardinality of
a bag, while the crossing number of a bag t measures the number of edges that have
endpoints in different components of T \ t. For a positive integer α, the α-edge-crossing
width of a graph G, denoted by ecrwα(G), is the minimum crossing number over all
tree-cut decompositions of G whose thicknesses are at most α. The edge-crossing width
of (T, X) is the maximum of the crossing number and the thickness of (T, X). The
edge-crossing width of G, denoted by ecrw(G), is the minimum edge-crossing width over
all tree-cut decompositions of G, and it turns out to be asymptotically equivalent to the
tree-partition width.

Both α-edge-crossing width, for any α ∈ N, and edge-crossing width are more general
than slim tree-cut width but more restrictive than treewidth. Somewhat surprisingly,
α-edge-crossing width is incomparable to tree-cut width [CKL23, Lemmas 3.7 and 3.8].
Along with the fact that Precoloring Extension is FPT when parameterized by ecrwα

for any fixed α, it would be natural to ask whether ecrwα allows to achieve tractability
for any other problem from Table 3.1.

For completeness, we also note that an article exploring a different parameter that is
aimed at providing an edge-based alternative to treewidth was recently authored by
Magne, Paul, Sharma and Thilikos [MPST23]; the parameter is based on different ideas
and is incomparable to both tree-cut width and slim tree-cut width.
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CHAPTER 4
Edge-Cut Based Parameters in

Causal Network Learning

Causality has become a crucial topic in AI research for overcoming the limitations of
machine learning systems that are typically based on correlation. While causal inference
focuses on estimating the effect of a known or hypothesized causal relationship, causal
discovery (the subject of this chapter) aims to uncover new causal relationships directly
from data, often without prior hypotheses.

The causal structure over a set of random variables can be explicitly expressed as a
causal graph, which is a directed graph whose vertices are the variables, and where an
arc X → Y indicates that X is a direct cause of Y . Causal discovery is the problem of
identifying as much as possible about the causal graph given a dataset of measurements
over the underlying variables; in some cases, part of the causal relationships among the
variables is provided from expert knowledge [NZZZ21, CSCD16, TBA06] which can be
presented in terms of a super-structure [PIM08, OS13, GK21, GK22b], a graph containing
all edges which are known or allowed to be part of the causal graph in some orientation.

An important family of algorithms for causal discovery are constraint-based algorithms
which work with a (usually very large) set of observational data and repeatedly perform
independence checks between pairs of variables, i.e., test X ⊥ Y | Z. Here, it is crucial to
distinguish how one models these tests: one commonly assumes these are performed by an
oracle which can either (1) determine whether X and Y are conditionally independent via
a single query, or (2) test independence under a specific assignment of the conditioning
set Z. Here, we take the latter approach—which we from now on refer to as the fine-
grained oracle model—as it allows us to more faithfully model settings where, e.g., the data
needs to be obtained via on-the-fly experiments or when the amount of data is excessively
large. We note that under the fine-grained oracle model, performing independence tests
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for very large choices of Z becomes infeasible—a fact which also corresponds well to the
known unreliability of such independence tests [WL21, TP20].

Our main goal in this chapter is to draw a connection between the graph structure and the
efficiency of constraint-based causal discovery algorithms. Our main contributions include
(i) a near-tight characterization of which causal graphs can potentially be efficiently
recovered by a constraint-based causal discovery algorithm, (ii) the explicit construction
of a sequence of causal graphs on which the influential PC algorithm works extremly
inefficiently, and (iii) the formulation of a new causal discovery algorithm which achieves
fixed-parameter running time by considering the maximum number of edge-disjoint paths
between variables in the (undirected) super-structure as the parameter.

4.1 Related Work
The PC algorithm, proposed by Peter and Clarke [SGS00], is a constraint-based algorithm
that had a monumental impact on causal discovery and served as the basis for several
other constraint-based algorithms; in fact, it is considered the “default algorithm for
attempting causal discovery” [Sha23]. The statistical independence check used by the
PC algorithm (and many other constraint-based causal discovery algorithms) is based
on so-called d-separating sets (note that “d” here stands for “dependence” and is not a
number). Since the running time of the test in the fine-grained oracle model is exponential
in the size of the d-separating set, the PC algorithm performs the tests with gradually
increasing d-separating sets, starting from checking unconditional independence (which
corresponds to checking for the existence of an empty d-separating set).

There are two main approaches to causal discovery: constraint-based and score-based.
Score-based causal discovery was extensively studied in the literature, both in terms of
standard and parameterized complexity [OS13, KP15, GK21, GKM21, GK22b]. In this
chapter we focus on constraint-based causal discovery. Its complexity is well-studied
in terms of the number of conditional independence tests. As Claassen, Mooij and
Heskes ([CMH13]) noted, the PC algorithm allows learning causal networks whose node
degree is upper-bounded by k via at most n2(k+2) independence tests. Recent works
have also explored other constraint-based causal discovery algorithms, including the
refinement ED-PC of the PC algorithm by Wienöbst and Liskiewicz ([WL21]) and MAR-
VEL [MAGK21]; the latter achieves nearly-tight bounds in the number of independence
tests performed.

However, these results do not carry over to the fine-grained oracle model since the
algorithms assume the possibility of performing efficient independence tests with large
conditioning sets; the sizes of these sets are only upper-bounded by the maximal in-degree.
The importance of reducing the sizes of conditioning sets was also mentioned in many
other articles (see, e.g., the discussion in the work of [MAJ+22]). For instance, [TP20]
aimed to bound the number of oracle calls and the size of d-separating sets. They did
so by considering the so-called moral graph of the hidden causal graph and showed that
whenever the moral graph has treewidth at most k, each pair of variables admits a
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d-separating set of size at most k + 1. This is incomparable to our results: we show
that the size of a d-separating set is upper-bounded by a function of the maximum
edge-cut of a skeleton of the hidden causal graph (which allows us to obtain strong
bounds even for skeletons with high-degree nodes), but it is easy to observe that a bound
on the treewidth of the moral graph implies a bound on the degree of the skeleton. An
example of an instance where our bounds supersede previous results can be seen, e.g., in
Figure 4.5. Moreover, it is unclear whether one can efficiently compute moral graphs in
the fine-grained oracle model.

It is known that the smallest d-separating set between X and Y corresponds to the smallest
vertex separator in a moral graph of D restricted to ancestors of X and Y [TP98]. We
show that this characterization cannot be extended to skeletons (and, therefore, neither to
the super-structure setting) by constructing a family of networks with skeletons containing
a vertex separator of size 3 between every pair of variables but arbitrarily large smallest
d-separating sets between some pair of variables (Theorem 4.5). We summarize the
discussed related work and some of our results, providing upper-bounds on the size of
the smallest d-separating set, in Table 4.1.

4.2 Our Contribution
The PC and other constraint-based algorithms proposed for causal discovery over the last
two decades have been refined and analyzed from statistical and empirical perspectives
(see the discussion of related work in Section 4.1). However, relatively little is known about
the complexity-theoretic foundations of constraint-based causal discovery algorithms in
the fine-grained oracle model. We perform the first complexity-theoretic analysis in this
more refined setting by attacking the following three fundamental research questions.

Q1 Which structural properties of the causal graph guarantee small d-separating sets
between any pair of variables? A small d-separating set is a prerequisite for applying
constraint-based causal discovery algorithms efficiently and provides guarantees for
their running times.

Q2 How large are the d-separating sets discovered by the PC algorithm compared to
smallest d-separating sets? Let us refer to the difference between the size of a
d-separating set identified by the PC algorithm and the size of a smallest such
set as the “approximation error”. The smaller the approximation error, the closer
the PC algorithm’s time complexity is to the time complexity of an idealistic
constraint-based algorithm.

Q3 Which properties of the provided super-structure guarantee efficient causal discovery?
We consider this question with respect to the PC algorithm, but also for new
constraint-based algorithms that we design to exploit the properties of the super-
structure better.
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separation property skeleton moral graph
vertex sep. of size ≤ k unrestricted (restricted to ancestors of X and Y ): ≤ k

treewidth ≤ k unrestricted ≤ k + 1
edge cut of size ≤ k ≤ 2k2 ≤ 2k (see first row)

Table 4.1: Upper bounds for the size of the smallest d-separating set between a pair X, Y
of variables, provided for different separation properties of a skeleton or moral graph.
Our results are marked in bold. Here unrestricted means that the minimal size of a
d-separating set can be arbitrary large, even if the parameter k is a small constant.

Addressing Q1: We obtain a near-tight characterization of which causal graphs admit
a small d-separating set for each pair of vertices. In particular, if the number of edge-
disjoint paths between each pair of vertices in the skeleton of the causal graph (i.e., the
undirected graph underlying the causal graph) is bounded, then there is a d-separating
set between each pair of vertices of bounded size (Theorem 4.3). At the same time,
the statement cannot be strengthened to simply speak of edge-disjoint directed paths
(Observation 4.4) or to the number of vertex-disjoint paths in the skeleton (Theorem 4.5).
Conversely, if a causal graph admits a d-separating set of size at most ℓ for each pair of
non-adjacent vertices, then for each pair of non-adjacent vertices, the number of directed
vertex-disjoint paths is at most ℓ (Observation 4.8, Corollary 4.9). We show that this
result is tight in the sense that it cannot be improved to a bound on the number of
vertex-disjoint or edge-disjoint paths in the skeleton (Lemma 4.10) or to a bound on the
number of directed edge-disjoint paths in the causal graph (Lemma 4.11). These results
are presented in Section 4.4, see Table 4.1 for a short summary.

Addressing Q2: We first observe that no constraint-based causal discovery algorithm
can run faster than in time nk, where n is the number of variables and k is the size of a
smallest d-separating set between any pair of variables (Lemma 4.13). In other words,
the size of a smallest d-separating set is a hard complexity bound for all constraint-based
algorithms.

In the literature, it has been claimed that the PC algorithm will find and use a smallest
d-separating set between every pair of variables [CMH13, Subsection 3.1]. We, in fact,
show that this is not the case: the PC algorithm might fail to run efficiently due to failing
to find a small d-separating set even when such a set exists. This would be relatively
easy to show when expert knowledge is provided, but our construction works even in the
base case with no expert knowledge (i.e., when the super-structure is a complete graph).
In particular, we construct a non-trivial class of instances where the PC algorithm only
discovers a d-separating set of size linear in the total number of variables, even though
there exists a d-separating set of size 3 (Theorem 4.14). This direction is investigated
within our Section 4.5.
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Addressing Q3: We have now seen two obstacles to efficient causal discovery: if the
d-separating set is large, then no constraint-based algorithm will run efficiently, but even
if it is small, the PC algorithm might not run efficiently. Here, we consider whether
natural graph-theoretic structural restrictions on the super-structure can help us address
both of these obstacles to guarantee efficient causal discovery for cases where some
(suitable) expert knowledge is available. In particular, we aim to avoid the exponential
blowup of nk by designing FPT algorithms for the problem.

A typical restriction one would consider in the setting of fixed-parameter tractability
would be to consider super-structures of bounded treewidth [RS86]; however, as our
first result in this direction we prove that using treewidth (as well as many other more
restrictive variants of it that have been used in this context) as a parameter cannot
yield fixed-parameter tractability for causal discovery, for any constraint-based algorithm
(Corollary 4.16). In contrast, we show that the maximum degree in the super-structure
is a parameter which guarantees that the PC algorithm will terminate in fixed-parameter
time (Theorem 4.17). Unfortunately, the restriction to super-structures of bounded
degree only is very strong, and so this result begs the question of whether tractability
can be extended to super-structures of unbounded degree.

We show that by a slight modification of the PC algorithm, we can lift the tractability
for the bounded-degree case to parameterizing by the maximum degree within each 2-
connected component (Theorem 4.18); it is worth noting that fixed-parameter tractability
for the PC algorithm without our modification cannot be guaranteed in this case (Corol-
lary 4.19). We conclude by developing a new causal discovery algorithm that guarantees
a fixed-parameter running time in a much more general setting—in particular, there it
suffices to parameterize by the maximum number of edge-disjoint paths between any pair
of variables (Theorem 4.20)—and again match this with a lower bound showing that the
PC algorithm (even the modified one) cannot solve this case efficiently (Corollary 4.21).
This third set of results is presented in Section 4.6.

4.3 Basic Notions, d-Separation and the PC algorithm
A causal graph is a directed acyclic graph D over a set V (D) of variables (represented
as vertices) whose arcs represent causal relationships between these variables. Here we
consider variables to range over a finite and fixed domain of size B. A vertex (or variable)
Xi is a collider on a path P if the path contains Xi−1 → Xi ← Xi+1; otherwise it is a
non-collider [GZS19].

A super-structure G is a graph on the same vertex set as the causal graph D which
forms a supergraph of the skeleton D of D, i.e., D can be obtained from G by removing
some set of edges. In the context of causal discovery, it is used to represent all potential
dependencies between variables (known, e.g., from prior or expert knowledge).
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Conditional Independence and d-Separation. Let D be a causal graph and P be a
probability distribution over its vertices. D and P satisfy the Causal Markov Condition if
and only if every vertex X of D is conditionally independent of its non-descendants given
its parents. D and P satisfy the Faithfulness Condition if and only if every conditional
independence relation true in P is entailed by the Causal Markov Condition applied
to D [SGS00]. The two conditions—Faithfulness and Causal Markov—are common
assumptions in causal discovery, and we also assume these to hold in the remainder of
Chapter 4.

Let S be a subset of variables in D, and let X and Y be two different variables outside of
S. We say that X is d-separated from Y conditional on S if and only if all paths between
X and Y in D are blocked by S. A path P is blocked by S if at least one of the following
two conditions holds:

• P contains a non-collider which is in S, or

• P contains a collider which has no descendants in S.

Assuming the Causal Markov Condition and the Faithfulness Condition, X is d-separated
from Y by S if and only if X and Y are conditionally independent given S [GZS19].
Further, we will denote both of these facts (namely, conditional independence and
d-separation of X from Y given S) by X ⊥ Y | S.

The PC algorithm. The PC algorithm is one of the basic algorithms used to determine
the Markov Equivalence Class (i.e., a partially oriented skeleton) of the causal graph. It
receives as input a set V (D) of variables, possibly a super-structure of the (hidden) causal
graph over V (D), and an oracle that can check conditional (in)dependencies between
variables X, Y w.r.t. a subset of V (D) \ {X, Y }.

In its entirety, the PC algorithm consists of two phases: the first phase (called the
learning phase) computes a skeleton, while the second obtains a partial orientation of the
skeleton obtained in the first phase. The key distinction is that while the second phase
can be implemented as a polynomial-time postproceessing routine, the learning phase
can in general take exponential time. Hence, in this complexity-theoretic study we focus
our attention solely to the learning phase, which forms the bottleneck in the worst-case
running time of the PC algorithm. This phase consists of the following sequence of
procedures (algorithm from [GZS19], modified for the case of expert knowledge):

1. Construct a complete undirected graph over the provided set of variables.

2. Eliminate edges between variables that are either unconditionally independent
or are known to be independent due to expert knowledge (non-adjacent in the
super-structure).

3. Set i = 1 and repeat the following:
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• for each ordered pair of variables (X, Y ) having an edge between them, and for
each subset S ⊆ V (D) \ {X, Y } of size i of variables adjacent to Y , eliminate
the edge between X and Y if X ⊥ Y | S.

• increment i by 1.
• if the obtained skeleton has maximum degree at most i, return it as the answer.

After the skeleton was returned, let k ≤ i be the maximum size of sets that need to be
considered in Step 3 in order for the PC algorithm to discover the whole skeleton of the
causal graph. We remark that if k is known in advance, it can be used to provide a basic
upper bound on the running time of the PC algorithm, since we may safely stop the
process once all sets of size at most k have been checked.

Indeed, observe that there are only O(nk) subsets of size k, and that checking the
independence of X and Y conditional on every such set S requires the performance of
an independence test for X and Y for every assignment of variables from S. Since the
number of such assignments is upper-bounded by B|S|, the time required to process one
pair of variables for an independence test conditioned on a set of size k is upper-bounded
by Bk · nO(k).

Various variants of the PC algorithm have been proposed over the last two decades [GZS19].
We will refer to all such variants—and in particular, all complete algorithms that are based
on checking the conditional independence of pairs of variables in terms of d-separation in a
learning phase, followed by an orientation phase (such as the FCI algorithm [SGS00])—as
constraint-based causal discovery algorithms.

4.4 Characterizing Small d-Separating Sets
The aim of this section is to characterize necessary and sufficient conditions for the
existence of bounded-size d-separating sets in a hidden causal graph D. While one
would at first glance expect that such conditions would be closely tied to structural
properties that depend on the orientation of the arcs in D (and, in fact, some of our results
provide precisely such a relationship), here we provide positive results for conditions that
are oblivious to the orientation of the arcs, i.e., conditions that solely depend on the
undirected skeleton D. There are two reasons for this:

1. It is known to be impossible to identify the exact hidden causal graph D using
constraint-based algorithms, but such algorithms can reliably compute D [Ebe17,
Section 2]. This makes the undirected skeleton a tangible and guaranteed output
of such algorithms.

2. We provide concrete examples and constructions which show that the results linking
the existence of bounded-size d-separating sets to undirected structures in D cannot
be lifted to analogous directed structures in D.
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As a first basic step, it will be useful to provide a lemma that can be seen as an independent
short proof of the correctness of the PC algorithm. Let X and Y be two distinct variables
in D, and let VXY be the union of vertices of all undirected paths between X and Y in D.
We denote by DXY and DXY the vertex-induced subgraphs of D and D respectively
induced by VXY in D. For the following, it will be useful to recall that the causal graphs
considered here are acyclic.

Note that the only difference between DXY and DXY is that the former preserves edge
orientations from D.

Lemma 4.1. Let X and Y be distinct and non-adjacent variables such that X is not
reachable from Y in D. Let S be the set of all in-neighbors of Y in DXY . Then X ⊥ Y |S.

Proof. Let Q be the set of all vertices of D reachable from Y via directed paths in D,
and observe that S ∩ Q = ∅. To see that S is a d-separating set for X and Y , consider
an arbitrary undirected path P between X and Y in DXY . If P contains an arc ZY for
some in-neighbor Z of Y , then Z belongs to S and occurs as a non-collider in P, so it
blocks P . Otherwise, P contains an arc Y Z for some out-neighbor Z of Y , in which case
Z ∈ Q. Since X is not reachable from Y , there is some collider W on P that is reachable
from Z. In particular, all descendants of W belong to Q, so they are not contained in S.
Hence, W blocks P.

Lemma 4.1 immediately implies that if the causal graph has in-degree ℓ, then every
pair of variables admits a d-separating set of size at most ℓ. In particular, bounded
maximum in-degree in D—and hence also bounded maximum degree in D—is a sufficient
condition for the existence of small d-separating sets. Naturally, such a condition is far
from necessary: for instance, the class of simple stars with all edges oriented towards the
center has arbitrarily large maximum in-degree even though each pair of non-adjacent
variables admits a d-separating set of size 0.

As our next task, we will provide a strictly more general, comparing to the maximum in-
degree, sufficient condition on D for the existence of small d-separating sets—specifically,
the existence of a bounded number of edge-disjoint paths between each pair of variables.
The next lemma provides the first step towards this goal:

Lemma 4.2. Let X and Y be non-adjacent vertices in D such that X is not reachable
from Y in D. Assume that D admits an edge-cut of size k which separates X and Y and
does not touch X. Then X and Y can be d-separated by a set of size at most 2k in D.

Proof. Let C be the set of endpoints of the edge-cut of size k separating X from Y , and
observe that |C| ≤ 2k. As before, we define Q to be the set of all vertices of D reachable
from Y via directed paths in D.

We show that S = C \ Q is a d-separating set for X and Y . Indeed, let P be an arbitrary
undirected path between X and Y . If P contains vertices from Q \ {Y }, then at least
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one such vertex—say Z—must be a collider since X is not reachable from Y in D. In
this case, also all descendants of Z in D belong to Q. By the construction of S we have
Q ∩ S = ∅, and hence Z blocks P.

The remaining case is that P ∩ Q = {Y }; here, let e be an arc of P that belongs to the
selected edge-cut of size k. In the subcase where Y is an endpoint of e, another endpoint
Z of e must be an in-neighbor of Y since Z /∈ Q. In particular, Z is a non-collider that
belongs to S, and hence Z blocks P . Otherwise both endpoints of e are in C \ Q = S. At
least one of these is a non-collider and hence this element of S once again blocks P, as
desired.

We note that it is crucial that the edge-cut considered in Lemma 4.2 does not touch
X: Figure 4.1 depicts a causal graph admitting an edge-cut {XZ, XW} of size two, but
requires large d-separating set for X and Y . Indeed, to block the path X → Z → Y ,
we need to include Z into a d-separating set. Because of this, we cannot block any of
the paths X → W ← Vi → Y by excluding the collider W and its descendants from the
d-separating set. Hence, all of the variables Vi, i ∈ [n], must be part of the d-separating
set.

X Y

V1

V2

Vn

Z

W

.

.

.

Figure 4.1: An example of a causal graph where X and Y are separated by two edges
XZ and XW , but any d-separating set for X and Y has size at least n + 1.

Interestingly, when aiming for a sufficient condition that would guarantee the existence
of small d-separating sets between all pairs of variables, we show that the existence of
arbitrary edge-cuts of bounded size is sufficient (regardless of which variables they touch).

Theorem 4.3. If every pair of vertices X and Y can be separated in D by an edge-cut
of size at most k, then every pair of non-adjacent variables can be d-separated in D by a
set of size at most 2k2.

Proof. Let X and Y be an arbitrary pair of non-adjacent (i.e., conditionally independent)
variables. Assume w.l.o.g. that X is not reachable from Y in D. Let E ′ be the edge-cut
of size at most k that separates X from Y in D. We modify E ′ to exclude X from the
set of endpoints as follows. For every edge e = XZ of E ′, we replace e by an edge-cut of
size at most k that separates Z from Y in D \ {X}. The size of the resulting edge-cut E
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can be upper-bounded by k2, as in the worst case it could happen that every edge e ∈ E ′

is replaced by k new edges not incident to X. Crucially, E does not touch X. At this
point, we apply Lemma 4.2 to X, Y and E to obtain the claimed d-separating set of size
at most 2k2.

Notice that the bound above is imposed on the number of undirected edge-disjoint paths.
By contrast, restricting the number of directed edge-disjoint paths does not suffice: as a
simple example, consider a causal graph Ln that consists of two variables X and Y plus
n vertex-disjoint paths of length 2 between them, where every vertex other than X and
Y is a source. In particular, X and Y are sinks.

Observation 4.4. Ln does not contain a directed path between any pair of non-adjacent
variables, but the only d-separating set for X and Y has size n.

However, this still raises the question of whether Theorem 4.3 could be strengthened by
simply requiring the existence of a vertex-separator of size at most k (instead of having
an edge-cut of size at most k) between each pair of variables. Below, we answer this in
the negative:

Theorem 4.5. There exists a family {Di : i ∈ N} of causal graphs with |V (Di)| = O(4i),
i ∈ N, such that each Di contains a pair of non-adjacent variables with no d-separating
set of size smaller than 2i−1 + 1, and yet each pair of variables in Di admits a vertex
separator of size 3.

Proof. For convenience, let us define D0 to simply be a causal graph consisting of a
single arc. If the edge begins in X and ends in Y , we say that D0 has orientation XY .
We construct the family by induction; to this end, let us assume that the causal graph
Di, i ∈ N ∪ {0}, has already been defined and has a special pair of vertices called its
orientation.

For the construction itself, take two vertex-disjoint copies of Di with orientations XR
and R′Y and glue them together by identifying R and R′, and denote the obtained graph
as Drepeat

i . Take another two vertex-disjoint copies of Di with orientations M ′X ′ and
MY ′ and glue them together by identifying M and M ′, and denote the graph as Dmirror

i .
Finally, glue together Drepeat

i and Dmirror
i by identifying X ′ with X and Y ′ with Y . The

resulting graph is Di+1 with orientation XY . An illustration of the construction—which
may be viewed as “fractal” in nature—is provided in Figure 4.2.

By construction, for every i ∈ N, the graph Di+1 contains 4 copies of Di as subgraphs. If
M and R are the gluing points for the copies of Di in Dmirror

i ⊆ Di+1 and Drepeat
i ⊆ Di+1

respectively, then the orientations of these four copies are XR, RY , MX and MY . It
also follows from the construction that Y is a sink, X and R have precisely one outgoing
edge, and M has precisely two outgoing edges in Di+1. Moreover, Y is reachable from
X, and both X and Y are reachable from M .
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Claim 4.6. For every i ∈ N, Di admits a vertex separator of size at most 3 between any
pair of vertices.

Proof of the Claim: For D1 the claim is trivial. Let A and B be two vertices of Di, i ≥ 2.
Let j ∈ [i] ∪ {0} be minimal such that A and B belong to the same copy of Dj in Di,
further in this proof we will refer to it simply as Dj . Let QW be the orientation of Dj ,
and let M and R be the gluing vertices of its subgraphs Dj−1 in Dmirror

j−1 and Drepeat
j−1

respectively.

If {A, B} ∩ {Q, W} = ∅, we add Q and W to the vertex separator to hit every path
between A and B that contains vertices outside of Dj . In case A and B are both in
Drepeat

j−1 (both in Dmirror
j−1 ), they cannot coincide with R or M due to the minimality of j,

and so we may add R (or M , respectively) to the vertex separator in order to intersect
the remaining paths inside Dj .

Otherwise, without loss of generality we may assume that A = Q. Then we form the
vertex separator by taking R and M to intersect the paths inside Dj , plus (in case j < i)
one of the two vertices determining the orientation of Dj+1 ⊇ Dj other than Q and W ;
see Figure 4.3 for an illustration. ■

Claim 4.7. For every i ∈ N, the causal graph Di with orientation XY contains no
d-separating set between X and Y of size smaller than 2i−1 + 1.

Proof of the Claim: For i = 1 the claim obviously holds, since in D1 the only d-separating
set between X and Y has size 2 = 20 + 1. For the inductive step, assume that the
statement holds for Di and consider the graph Di+1 with orientation XY and gluing
points M and R for the copies of Di in Dmirror

i ⊆ Di+1 and Drepeat
i ⊆ Di+1, as defined in

the construction. Let S be some minimal d-separating set for X and Y in Di+1. Observe
that if R ∈ S, then R only blocks the paths where it occurs as a non-collider. But all
such paths contain the unique out-neighbor of R (which by construction has in-degree
of one), so we can replace R in S by its out-neighbor. Similarly, if M belongs to S, we
replace it by its only two out-neighbors. This results in a d-separating set S ′ for X and
Y of size at most |S| + 1 that does not contain M and R.

D0

D1

repeat

D0

mirror

D1

mirror
D2

D1

repeat

Figure 4.2: Construction of Di+1 from 4 copies of Di for i = 0, 1. The red dashed arcs
depict the orientations.
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X Y = W

B1

A2

B2

A1

Q

R M

Figure 4.3: Vertex separators in the skeleton of D3 from the proof of Claim 4.6. Red
vertices form the vertex separator between A1 and B1, while blue vertices form the vertex
separator between A2 and B2. In both cases, j = 1.

Since S ′ blocks every path in Dmirror
i ⊆ Di+1, it should block every path in at least one of

the copies of Di in Dmirror
i . Indeed, assume that there are paths P1 in one copy and P2

in another copy which are not blocked by S ′. Since their concatenation P1P2 is blocked
by S ′ and M ̸∈ S ′, M must be a collider on P1P2 such that none of its descendants
belong to S ′. Recall that X and Y are reachable from M via paths in the corresponding
copies of Di. The concatenation of these paths forms the path between X and Y that
consists only of descendants of M and does not contain colliders, so it is not blocked by
S ′, a contradiction. This implies that the restriction S ′

M of S ′ to Dmirror
i ⊆ Di+1 forms a

d-separating set for at least one of the copies of Di in Dmirror
i . In particular, S′

M has size
of at least |V (Di)| by the inductive assumption.

To show that S ′ also blocks every path in at least one of the copies of Di in Drepeat
i ,

we distinguish two cases. Firstly, assume that none of the descendants of R in Drepeat
i

belongs to S ′. Let P0 be the directed path from R to Y in the copy of Di ⊆ Drepeat
i with

orientation RY . Consider an arbitrary path P from X to R in the copy of Di ⊆ Drepeat
i

with orientation XR. Their concatenation PP0 is blocked by S ′, and by our assumptions
P0 ∩ S ′ = ∅. Therefore, P is blocked by S ′. Since P was chosen arbitrarily, we conclude
that the restriction S ′

R of S ′ to Drepeat
i ⊆ Di+1 forms a d-separating set for the copy of

Di with orientation XR. It remains to consider the case when S ′ contains descendants
of R. Assume that there are paths P1 in one copy of Di ⊆ Drepeat

i and P2 in another
copy which are not blocked by S ′. Since R does not belong to S ′ but has descendants in
S ′, their concatenation P1P2 is not blocked by S ′, a contradiction. Hence, S ′

R forms the
d-separating set for at least one of the copies of Di in Drepeat

i . In particular, S ′
R has size

of at least 2i−1 + 1 by the inductive assumption.
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Therefore, |S| ≥ |S ′| − 1 = |S ′
R| + |S ′

M | − 1 ≥ 2(2i−1 + 1) − 1 = 2i + 1, which by the
minimality of S concludes the proof. ■
The theorem follows directly from the above two claims.

Theorems 4.3 and 4.5 imply that while having a bounded number of undirected edge-
disjoint paths between variables guarantees the presence of a bounded-size d-separating
set, this is not the case for undirected vertex-disjoint paths. Hence, having a bounded
number of undirected edge-disjoint paths can be seen as a sufficient condition for the
existence of a bounded-size d-separating set. Our aim in the rest of this section is to
identify a condition which is necessary.

We begin by making a simple observation concerning a necessary condition tied to the
hidden causal graph (as opposed to the skeleton). In particular, since a d-separating set
must intersect each directed path between a pair of variables in the causal graph, we
obtain:

Observation 4.8. If a causal graph D admits a d-separating set of size k for each pair
of non-adjacent variables, then for each pair of non-adjacent variables the number of
directed vertex-disjoint paths is bounded by the same bound k.

In terms of conditions on the actual skeleton D, we note the following. If the number of
vertex-disjoint paths between two non-adjacent variables X and Y in D is large, then
there exists an acyclic orientation of D with no small d-separating set between X and Y
(this occurs, e.g., when all of the X-Y paths are oriented from X to Y ). Hence, having
a small number of vertex-disjoint paths between each pair of non-adjacent variables is
necessary to guarantee that every orientation of D admits a small d-separating set. In
other words:

Corollary 4.9. Let D be an undirected graph. Assume that, in every acyclic orientation
D of D, every pair of non-adjacent variables can be d-separated in D by a set of size k.
Then every pair of non-adjacent variables can be separated in D by a vertex separator of
size at most k.

Finally, the fact that Corollary 4.9 references every orientation D of D is crucial. Indeed:

Lemma 4.10. There exists a family of undirected graphs H = {X i | i ∈ N} with the
following properties:

• Each X i admits an acyclic orientation Xi where every pair of non-adjacent variables
can be d-separated by a set of size 0, and

• X i contains a pair of non-adjacent variables A, B whose minimum vertex separator
has size i.
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Proof. Let X i be the graph consisting of two variables A, B and i vertex-disjoint A-B
paths, each containing a single internal vertex Vj , j ∈ [i]. Clearly, this family satisfies
the latter condition of the lemma. For the former condition, it suffices to consider the
orientation Xi which makes each variable Vj other than A and B a sink.

As the final result in this section, we also exclude the possibility of generalizing Obser-
vation 4.8 to a bound on the number of directed edge-disjoint paths (as opposed to a
bound on the number of directed vertex-disjoint paths).

Lemma 4.11. There exists a family {D′
i : i ∈ N} of causal graphs with |V (D′

i)| = O(4i),
i ∈ N, such that each Di contains 2i directed edge-disjoint paths between some pair of
non-adjacent variables, and yet each pair of non-adjacent variables can be d-separated by
a set of size at most 3.

Proof. For every i ∈ N0, we define the causal graph D′
i as follows. The skeleton of D′

i

coincides with the skeleton of Di from Theorem 4.5, and if such Di has orientation XY ,
in D′

i we orient all the arcs on every path from X and Y towards Y . In particular, D′
i+1

can be obtained by gluing together 4 copies of D′
i, i ∈ N0.

Unlike in Di, we can find constant-sized d-separating sets between each pair of variables
in D′

i:

Claim 4.12. For every i ∈ N0, D′
i admits a d-separating set of size at most 3 for any

pair of non-adjacent variables.

Proof of the Claim: For D′
0 the claim is trivial. Let A and B be two non-adjacent vertices

of D′
i, i ∈ N. Let j ∈ [i] be minimal such that A and B belong to the same copy of D′

j in
D′

i; for brevity, we will refer to this particular copy of D′
j simply as D′

j . Let QW be the
orientation of D′

j , and let M and R be the gluing vertices of its subgraphs D′
j−1 other

than Q and W .

By minimality of j, X and B belong to different copies of D′
j−1. We can always block

the paths between A and B that lie inside D′
j by a set S1 of size at most 2. Namely,

if A = Q or B = W , we choose S1 = {R, M}. If A ̸= Q, B ̸= W and the copies of D′
j

containing A and B are glued in one of the vertices R or M , then any path between
A and B inside D′

j will intersect either this vertex as a non-collider or W as a collider.
Otherwise any path between A and B inside D′

j will intersect either Q as a non-collider
or W as a collider. In either of these cases, this allows us to choose S1 of size 1.

Let us define the d-separating set to be S = S1 ∪ {T} \ {A}, where T is present if and
only if i > j and denotes the source of D′

j+1 ⊇ D′
j . In this case we denote the sink of this

D′
j+1 by U . see Figure 4.4 for the illustration. Since S does not contain any descendant

of W (including W itself), it also blocks all the paths between A and B that lie inside D′
j .

Let P be a path between A and B that is not contained in D′
j . Then P must cross T

and U . If A ̸= T , then P contains T ∈ S as a non-collider. Otherwise W ̸= U and the
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Figure 4.4: Two examples of d-separating sets in D′
3 from the proof of Claim 4.12. Red

vertices d-separate A1 and B1, blue vertices d-separate A2 and B2. For each pair Ai and
Bi, the notations are same as in the proof, but with the lower index i.

subpath of P between W and U is oriented towards Y . Since A is not reachable from
Y , the subpath of P between U and A contains a collider of P reachable from W . In
particular, the collider has no descendants in S and therefore blocks P. ■

The lemma now follows from the fact that each causal graph Di consists of 2i edge-disjoint
paths from X to Y .

4.5 Limits of Tractability for the PC Algorithm
While the previous section was aimed at identifying necessary and sufficient conditions
for the existence of a small d-separating set, having a small d-separating set itself is
merely a necessary condition for efficient causal discovery. Indeed, in this section we
show that the existence of a small d-separating set cannot on its own guarantee efficient
running times for causal discovery.

We begin with a lower bound ruling out fixed-parameter causal discovery by any constraint-
based algorithm.
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Lemma 4.13. There exists a class of causal graphs H = {Di,j | i, j ∈ N; j ≤ i} such
that:

1. each Di,k contains n = i + 3 vertices,

2. each Di,k has a single pair X, Y of non-adjacent vertices with a d-separating set of
size k, and

3. every constraint-based algorithm needs to test Ω(nk−1) subsets to determine whether
X and Y are conditionally independent in Di,k.

Proof. Let each Di,k be a complete digraph minus the arc XY , where X is a source and
Y has k incoming and n − k − 1 outgoing arcs. Furthermore, there is an arc from every
in-neighbor of Y to every out-neighbor (i.e., none of the in-neighbors of Y is a descendant
of any of Y ’s out-neighbors). The remaining arcs are oriented arbitrarily in a way which
preserves acyclicity.

Observe that Di,k contains precisely one d-separating set between X and Y : it contains
every in-neighbor Z of Y (as these are the only non-colliders on the path XZY ), and
contains no out-neighbor W of Y (as these are the only colliders on the path XWY ).
Therefore, the set consists of precisely k in-neighbors of Y . Before discovering this set,
any constraint-based algorithm satisfying the properties specified in Section 4.3 would in
the worst case need to test all of the Ω(nk−1) subsets of size at most k − 1.

While Lemma 4.13 may already seem disheartening, the lower bound it provides only
becomes truly problematic as k grows above a small constant. In other words, at this
point it would still seem plausible that the PC algorithm achieves a running time of,
e.g., nO(k), where k is the size of the largest d-separating set in the causal graph. As our
second result in this section, we show that the situation is in fact much worse—there is
a class of causal graphs for which the PC algorithm will necessarily run in exponential
time, even though all pairs of variables admit very small d-separating sets between them.

Theorem 4.14. For each n ≥ 2, there exists a causal graph Tn on O(2n) vertices such
that Tn admits d-separating sets of size at most 3 between every pair of non-adjacent
variables, but the PC algorithm only discovers a d-separating set of size 2n + 2 for at
least one pair of variables.

Proof. To obtain Tn, we start from two full binary trees T 1
n and T 2

n with 2n leaves each,
where all the arcs are oriented from the roots to the leaves. We glue T 1

n and T 2
n together

at their roots and denote the resulting common root by On. Moreover, we introduce
a variable Wn and add an incoming arc to it from every leaf of T 1

n . Symetrically, we
introduce a variable En and add an incoming arc to it from every leaf of T 2

n . Finally, we
add two variables Nn and Sn along with out-going arcs to X and Y from both of them,
see Figure 4.5 for an illustration.
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W3 E3

N3

S3

O3

Figure 4.5: The causal graph T3, where E3 and W3 admit a d-separating set of size 3 but
the PC algorithm only discovers a d-separating set of size 10.

Claim 4.15. For every n ≥ 2, the sizes of minimal d-separating sets between non-adjacent
variables are as follows:

• 0 between Sn or Nn and any vertex other that En and Wn;

• 1 between any pair of vertices from V (T 1
n ) ∪ V (T 2

n ),
between Wn (En) and any non-root vertex of T 2

n (T 1
n );

• 2 between On and En or Wn;

• 3 between Wn and En, between Wn and any non-root vertex of T 1
n , between En and

any non-root vertex of T 2
n .

For every such pair except for Wn and En, the minimal d-separating set can be chosen
from the neighborhood.

Proof of the Claim: First, notice that En and Wn are sinks. In particular, Sn and Nn

are d-separated by an empty set from every vertex other than En and Wn.

Furthermore, any two non-adjacent vertices X and Y from V (T 1
n )∪V (T 2

n ) are d-separated
by the parent of one of them in the corresponding tree: any path between X and Y
passes either through the parent or through the sink En or Wn. The same holds for Wn

and any non-root vertex of T 2
n , as well as En and any non-root vertex of T 1

n .
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In order to d-separate On from Wn (or from En), it suffies to take the two children of
On in T 1

n (in T 2
n respectively), which matches the lower bound given by the number of

vertex-disjoint paths not containing a collider.

Between Wn and any non-root vertex X of T 1
n , there are 3 such paths: one of them

passes through the parent of X and then through the root On, while two others follow
the directions of arcs. In particular, the three neighbours of X form the d-separating set
of the minimal size. Same holds for En and any non-root vertex of T 2

n .

Finally, the only d-separating set for Wn and En of size 3 consists of Sn, Nn and On.
Here, Sn and Nn should be necessarily added to any d-separating set as the only internal
vertices on the paths of length 2. If we look for a d-separating set between Wn and En

that contains only their neighbors, we have to also select all the leaves of one of the trees
T 1

n or T 2
n , resulting in a set of size at least 2n + 2. ■

Now, let us analyze how the PC algorithm will discover the d-separating sets in Tn. In
the first stage, it searches for d-separating sets of size 0, which will disconnect Sn and
Nn from all the other vertices except En and Wn.

Next, it finds all the d-separating sets of size 1 and 2 (these can be chosen from the
respective neighborhoods by Claim 4.15) and removes the corresponding edges.

Further, PC proceeds to d-separating sets of size 3. The only such set for En and Wn

cannot be discovered since On is not their neighbor anymore. However, any other pair of
non-adjacent vertices of Tn that remains connected until this stage, becomes disconnected
since it admits a d-separating set of size 3 chosen from the neighborhood by Claim 4.15.
Therefore, after this stage we obtain an undirected graph consisting of the skeleton of Tn

plus one additional edge WnEn. To eliminate this final edge, the PC algorithm will need
to add Nn and Sn along with all the leaves of T 1

n or T 2
n to the d-separating set, resulting

in a set of size 2n + 2.

4.6 Utilizing the Super-Structure for Fixed-Parameter
Algorithms

In our final section, we show that the lower bounds arising from Lemma 4.13 and
Theorem 4.14 can both be circumvented if we are provided with a super-structure
possessing suitable structural properties. In particular, our aim is to show that causal
discovery can be carried out in fixed-parameter time not with respect to the size of a
maximum d-separating set (as this was ruled out in Lemma 4.13), but instead with
respect to a structural measure of a provided super-structure.

A first natural graph-theoretic measure of the super-structure would be the well-established
treewidth. However, we can immediately rule out the use of treewidth (and also many
other related graph parameters) by recalling the graph class L = {Li | i ∈ N} used in
Observation 4.4. Indeed, X and Y form a vertex cover of each graph Li ∈ L, and hence
all graphs in that class have treewidth at most 2. However, the only d-separating set
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between X and Y has size i. Thus, by setting L′
i to be a super-structure for Li that

contains each edge in Li plus the edge XY , we obtain the corollary below. In particular,
each Li consists of X, Y , and a set of i sources adjacent to both X and Y , and L′

i adds
a “superfluous” edge XY to the skeleton of Li.

Corollary 4.16. For every i ∈ N, there exists a super-structure L′
i of Li with a vertex

cover of size 2 such that no constraint-based causal discovery algorithm can compute the
skeleton of the hidden causal graph Li in time less than Bi.

We remark that the same construction rules out efficient algorithms based on not only the
treewidth and the vertex cover number, but also treedepth, tree-cut width and a range of
other graph parameters typically used to achieve fixed-parameter tractability. However,
as we will see in the rest of the section, there are natural structural properties of the
super-structure which guarantee efficient causal discovery. The first such property is the
maximum degree in the super-structure. It may be worth noting that it is exceedingly
rare for a computational problem to be fixed-parameter tractable w.r.t. the maximum
degree and yet intractable w.r.t. parameters such as the vertex cover number.

Theorem 4.17. If the PC algorithm is provided an n-variable super-structure G of
maximum degree k, then it will discover the skeleton D of the hidden causal graph in time
2kBkO(nk), where B is the size of domain.

Proof. By Lemma 4.1, for any two independent variables X and Y such that X is not
reachable from Y , the set S of all in-neighbors of Y in DXY forms a d-separating set for
X and Y . Hence for every pair of variables X and Y there are at most 2k subsets of
neighbors of Y in the super-structure, and testing whether a fixed subset of size i ≤ k
forms a d-separating set takes time O(Bi).

Note that we only need to perform this procedure for those X and Y that are adjacent
in G. Since G has maximum degree k, there are at most nk such pairs.

Next, we show that the tractability result of Theorem 4.17 can be extended to the setting
where only the maximum degree of each 2-connected component is bounded. To this
end, we define a new constraint-based algorithm PC∗. For a super-structure G and two
variables X, Y ∈ V (G), let GXY be the subgraph of G induced by all paths between X and
Y in G. PC∗ takes G (which may, in the worst case, be the complete graph) as input and
proceeds similarly to the PC algorithm, with only a single modification: while looking
for potential d-separating sets for X and Y , it only checks those subsets of neighbors of
Y that belong to GXY .

Theorem 4.18. Given a super-structure G of D over n variables, PC∗ computes the
skeleton of D in time 2kBkO(nk), where k is the maximum degree over all 2-connected
components of G.
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Proof. Let X and Y be two non-adjacent variables of D such that X is not reachable
from Y in D. By Lemma 4.1, X and Y admit the d-separating set S consisting of
in-neighbors of Y in DXY . Since DXY ⊆ GXY , S has size of at most k and it will be
necessarily discovered by PC∗.

Again, we only test conditional independence for those X and Y that are adjacent in G.
Since the maximum degree of any 2-connected component of G is k, there are at most
nk such pairs contained in the same connected component, plus at most n pairs with
endpoints in different 2-connected components.

Even though the difference between the PC and PC∗ algorithms might seem rather
subtle, the latter immediately extends the class of instances for which the skeleton can
be computed efficiently.

To illustrate this, consider for instance the class {Ln
k | n, k ∈ N} of causal graphs obtained

from the graphs Lk (cf. Observation 4.4) by introducing n − k new in-neighbors of X and
n − k new in-neighbors of Y . Assume that the super-structure G of the hidden causal
graph Ln

k , provided in the input, consists of the skeleton of Ln
k plus one extra edge XY ,

i.e., XY is the only edge to be eliminated. Then X and Y can be d-separated by a set S
of size k consisting of all their neighbors inside of Lk ⊆ Ln

k . However, the PC algorithm
will check all subsets of neighbors of size at most k − 1 before it discovers S, and there
are Ω(nk−1) of these. By contrast, the PC* algorithm will only check subsets contained
in the subgraph of G induced by all paths between X and Y in G, which is precisely the
skeleton of Lk. Therefore, the PC* algorithm will not test more than 2k subsets before
discovering S.

Corollary 4.19. If Ln
k is a hidden causal graph and G contains the only extra edge

between its pair of high-degree vertices, then the PC algorithm requires Ω(nk−1) iterations
to eliminate the single superfluous edge in G, while the PC* algorithm computes the
skeleton in time 2kBkO(nk).

As our final contribution, we provide a new causal discovery algorithm called PCcut that
features fixed-parameter runtime guarantees not only on all instances where the PC and
PC* algorithms do, but also on more general classes of inputs. To this end, it will be useful
to recall that a bound on the size of smallest edge-cuts between each pair of variables is a
sufficient condition for the existence of small d-separating sets (see Theorem 4.3). While
causal graphs with this property need not be efficiently discoverable by constraint-based
algorithms, this changes when dealing with a provided super-structure.

The PCcut algorithm alters the original PC algorithm by testing conditional independence
via subsets selected from a smallest edge-cut between the variables X, Y , instead of
simply checking the neighborhood of these two variables. More precisely, we define the
PCcut algorithm as follows. It begins by performing the same initial two steps as the PC
algorithm (see Section 4.3). Afterwards, it performs a subroutine that starts with i := 1
and increments this up to a value of 2k2, where k upper-bounds the size of a smallest
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edge-cut. For each choice of i, it runs over all ordered pairs of adjacent variables, and
for each such pair (X, Y ) it computes an edge-cut E of minimum size between X and Y
in the graph computed so far (but without the edge XY ) that does not touch X (this
can be done, e.g., via the Ford-Fulkerson algorithm where we make the edges incident
to X undeletable). Let SE be the set of variables incident to the edges in E . We now
perform essentially the same procedure the PC algorithm originally performs over the
neighborhood of X and Y , but on the set SE ; in particular, for all subsets S of SE of
size i, we test whether X ⊥ Y | S and if this test succeeds we eliminate the edge XY .

Theorem 4.20. When given a super-structure G of an n-variable causal graph D such
that each pair of variables can be separated by an edge-cut of size at most k in G, the
PCcut algorithm will compute the skeleton D of D in time at most BO(k2) · n.

Proof. Assume w.l.o.g. that X is not reachable from Y in D. It follows from the proof of
Theorem 4.3 that whenever X and Y are conditionally independent in D, some subset of
SE is a d-separating set for them. Indeed, the subset can be formed by restricting E to
D and removing vertices reachable from Y in D. While we are not aware of the edge
orientations when working with D, the PCcut algorithm tests all subsets of SE .

Crucially, |SE | is upper-bounded by 2k2, since the size of an edge-cut that does not
touch X is upper-bounded by k2 due to the existence of an edge-cut of size at most k
between each pair of variables (see also the proof of Theorem 4.3). Therefore, at most
22k2 ≤ B2k2 sets will be tested. Testing independence with respect to each choice of S
takes time O(B2k2).

Let us estimate the number of edges in G. Pick any pair X, Y of varibles that belong
to the same connected component of G. By the theorem assumption, we can choose at
most k edges to disconnect X from Y , and this will increase the number of connected
components of G by at least one. Hence, after disconnecting at most n pairs of varibles we
will obtain edgeless graph. Therefore, G has at most nk edges, which upper-bounds the
number of pairs of variables for which the conditional independence should be tested.

We conclude this section by noting that there exist classes of inputs where PCcut will
outperform both the PC and PC* algorithms by an arbitrarily large factor.

Indeed, consider the class of instances where the hidden causal graphs are the graphs Tn

defined in the proof of Theorem 4.14. Let the super-structure G be the skeleton of Tn

plus one extra edge WnEn. Observe that G admits an edge-cut of size at most 5 between
each pair of variables. Indeed, in every pair other than En and Wn this claim holds since
one vertex of the pair has degree at most 4. For En and Wn, the claim also holds due
to the existence of the edge-cut WnEn, WnNn, WnSn plus the two edges of T 1

n adjacent
to On. By Theorem 4.20, PCcut will compute the skeleton in time at most BO(1) · 2n for
every n. In contrast, since every d-separating set between W3 and E3 that lies in the
neighborhoods of these two variables has size Ω(2n), both the PC and PC* algorithms
will necessarily need to test 2Ω(2n) subsets before they discover such a set.
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Corollary 4.21. If Tn is a hidden causal graph and G contains the only extra edge
between its pair of high-degree vertices, PC and PC* need 2Ω(2n) iterations to eliminate
the single extra edge, while PCcut computes the skeleton in time BO(1) · 2n.

4.7 Discussion
In this chapter we have studied the relationship between the graph structure of causal
graphs and the efficiency of constraint-based causal discovery algorithms from various
angles. We have provided a near-tight characterization of the causal graphs that admit
small d-separating sets, pointed out obstacles for the PC algorithm to run efficiently, and
established the fixed-parameter tractability of causal discovery exploiting properties of
the super-structure.

The crucial parameter we used here is the maximum number of edge-disjoint paths
between each pair of variables. Given as a promise on the hidden causal graph structure,
it allows to bound the sizes of d-separating sets. Moreover, in case the super-structure
of a hidden network with bounded value of this parameter is provided, we can learn
hidden causal relationships efficiently. We leave as an intriguing open question for future
research whether a skeleton having a large number of edge-disjoint paths between some
pair of variables implies that there is an orientation with a large d-separating set between
some pair of variables.
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CHAPTER 5
Structural Parameters that make

Clustering FPT

The problem of k-means clustering, also closely related to data completion, is another
fundamental task in machine learning and data analysis, one that has been the focus
of extensive empirical as well as theoretical research. In general, the aim in k-means
clustering is to partition the rows in an input matrix A into k clusters and compute one
center per cluster so as to minimize the within-cluster sum of squares—or, when viewed
as a decision problem, achieve a within-cluster sum of squares of at most a specified
target value ℓ.

In this chapter, we focus on the settings where most of the rows of A are not known or
simply irrelevant, and exploit the structural properties of a graphical encoding of the
missing entries. Namely, we consider two natural encodings—incidence and primal graphs—
and provide three novel fixed-parameter algorithms: (i) parameterized by treewidth of
the incidence graph for bounded-domain data, (ii) parameterized by treewidth of the
primal graph for real-valued data and (iii) parameterized by the slim tree-cut width of
the incidence graph for real-valued data.

5.1 Related Work
Depending on the setting, the matrix A could be real-valued [Llo82, MDRF20, FGS21]
or contain integers from a bounded domain; for instance, Fomin et al. [FGP18] studied
the case where A was binary, and Ganian et al. [GKOS18] the bounded-domain case
where ℓ = 0.

It is well known that k-means clustering is NP-complete, even when restricted to k = 2
clusters [DFK+04, ADHP09]. Parameterized complexity paradigm provides a more
fine-grained look into the complexity of the problem [CAdMRR18, FGP18].
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Apart from classical clustering problems, one direction that has been gaining traction
in recent years is the study of clustering in settings where some of the data is not
known or simply irrelevant—a task that essentially combines data completion with
clustering [WLH+19]. Indeed, several authors have studied the parameterized complexity
of various clustering problems for data with missing entries [GKOS18, KFN20, KFN21,
EGK+21], and Eiben et al. [EFG+21] obtained a fixed-parameter approximation algorithm
specifically for (k-)Means Clustering with Missing Entries (MCME).

While their approaches and techniques differ, all of these works target the case where
nearly all entries are known, i.e., where the unknown entries only occur in a precisely
defined “sparse” way. At the same time, very little is known about the complexity of
MCME when the number of unknown entries is large; such situations are of practical
relevance in, e.g., recommender systems and predictive analytics. For example, in the
classical Netflix Prize challenge where the task was to predict user ratings for movies
based on previous ratings, only about 1% of the user-movie pairs were originally supplied
with a rating.3 The central mission of this section is to push the boundaries of tractability
for MCME to instances where known entries are sparse.

5.2 Our Contribution
A natural approach for handling instances of MCME with many missing entries would
be to invert the parameterizations that have been developed for tackling instances
where almost all entries are known. For instance, Eiben et al. [EGK+21] and Ganian et
al. [GKOS18] obtained several fixed-parameter clustering algorithms by using a parameter
called the covering number, which is the minimum number of rows and columns needed
to cover all the unknown entries. Equivalently, if we use an auxiliary binary matrix W
(the mask) to specify which entries of A are relevant/known4, the covering number is
simply the minimum number of rows and columns needed to cover all the 0’s in W . It
would be tempting to instead parameterize by the number of rows and columns needed to
cover all the 1’s in W ; such an “inverse covering number” would lead to fixed-parameter
algorithms targeting instances where all known entries occur in a few columns and rows.

However, we show that in our setting it is in fact possible to do much better than that.
Our approach is based on using the incidence graph representation of W , which is the
graph containing one vertex for each column and for each row of W and where an edge
connects row a with column b if and only if W [a, b] = 1. Observe that the inverse covering
number considered in the previous paragraph would simply be the size of a minimum
vertex cover in W , while the covering number is the size of a minimum vertex cover in
the complement of W . It is worth noting that in graph-theoretic settings, the size of
a minimum vertex cover is considered a highly restrictive parameterization, one that
is used primarily when more desirable parameterizations fail. In contrast, the by far

3The dataset is available at https://www.kaggle.com/netflix-inc/netflix-prize-data.
4The mask W has the same size as the matrix A. For each relevant/known entry of A, the corresponding

entry of W is 1, and rest of the entries of W are 0’s.
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most prominent parameter used for graphs is treewidth, which has found ubiquitous
applications throughout computer science and which is less restrictive than the size of a
minimum vertex cover. As our first result, we use the treewidth of the incidence graph of
the mask W (the incidence treewidth) to prove:

Result 1: Bounded-domain MCME is fixed-parameter tractable when parameterized
by the incidence treewidth of the mask.

Result 1 is noteworthy not only due to the use of treewidth instead of the inverse covering
number, but also because incidence treewidth is the only parameter required to achieve
tractability. In particular, unlike previous algorithms for clustering incomplete (bounded-
domain or real-valued) data by Eiben et al. [EFG+21, EGK+21], Ganian et al. [GKOS18],
and Koana et al. [KFN20, KFN21], Result 1 can also be applied to instances where the
number k of clusters is large. As we will see later, we will be able to retain this benefit
in all our algorithms.

Unfortunately, an extension of Result 1 towards real-valued instances seems difficult at
this point. Indeed, a fixed-parameter algorithm for real-valued MCME parameterized
by the incidence treewidth of the mask would imply, as a special case, fixed-parameter
tractability parameterized by the number d of columns. However, the existence of a
fixed-parameter algorithm even for k-Means (corresponding to the restriction of MCME
where all entries are known) when parameterized by d is a long-standing open problem
dating back to Inaba et al.’s celebrated XP algorithm parameterized by k + d [IKI94].

Instead, we show that one can obtain fixed-parameter algorithms for real-valued MCME
by using the treewidth of a different graph representation of W . In particular, we use
the primal graph—a well-established counterpart to the incidence graph representation
in settings such as Boolean satisfiability [SS09], constraint satisfaction [SS10] or integer
programming [GO19]. In our context, the primal graph of W contains a vertex for each
row of W , with edges connecting pairs of rows that share at least one coordinate which is
known/relevant according to the mask, and the primal treewidth is simply the treewidth
of this graph.

Result 2: Real-valued MCME is fixed-parameter tractable when parameterized by the
primal treewidth of the mask.

Note that, due to the nature of the primal graph representation, the primal treewidth is
a more restrictive parameter than the incidence treewidth (in the sense of being bounded
on fewer classes of instances). In fact, the primal treewidth of a mask may in certain cases
be unboundedly large even when its incidence graph is just a tree. It would hence be
useful to also have an algorithm for real-valued MCME that can exploit properties of the
incidence graph, even for properties that are more restrictive than incidence treewidth.

However, the same obstacle towards extending Result 1 to the real-valued setting also
applies to all traditional structural parameters that are, intuitively, based on small vertex
separators in the graph—including pathwidth [RS83], treedepth [NdM12], the feedback
vertex number (e.g., [MNN20]) and even the vertex cover number (e.g., [GN19, FPR+18]),
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which is the most restrictive vertex separator based parameter. In spite of this, as our third
and final result we identify a parameter of the incidence graph that yields fixed-parameter
tractability of real-valued MCME: the slim tree-cut width.

Result 3: Real-valued MCME is fixed-parameter tractable when parameterized by the
slim tree-cut width of the incidence graph of the mask.

We note that the parameters used in Results 2 and 3 are orthogonal and the gap between
them may be arbitrarily large. Because of this, both results are incomparable and give
rise to different tractable classes for the problem.

5.3 Notation and Problem Definition
Recall that for an integer i, we denote by [i] the set {1, 2, . . . , i} and [i]0 = [i] ∪ {0}.
In contrast, if p is an equivalence relation on domain X, we denote by [p] the set of
equivalence classes of p and by |[p]| the cardinality of [p], i.e., the number of equivalence
classes of p. For every x ∈ X, [x]p ∈ [p] is the equivalence class containing x.

Let A be a matrix with n rows and d columns. We use VA and CA to denote the set of row
and column indices of A, i.e., VA = [n] and CA = [d]. Let MA = maxv∈VA

maxc∈CA
|A[v, c]|.

For two matrices A, B, we denote by A−B the entry-wise subtraction of the two matrices,
i.e., (A − B)[i, j] = A[i, j] − B[i, j], and similarly by A ◦ B the entry-wise product of
the two matrices, i.e., (A ◦ B)[i, j] = A[i, j] · B[i, j]. For a matrix A ∈ Rn×d we denote
its squared Frobenius norm by ||A||2F = �n

i=1
�d

j=1 A[i, j]2. We can now formalize our
problems of interest (abbreviated as MCME):

Means Clustering with Missing Entries
Input: Matrix A ∈ Dn×d over a domain D ⊆ R, binary matrix W (the mask),

integers k and ℓ.
Task: Determine if there exists a matrix B over D containing at most k distinct

rows such that ∥W ◦ (A − B)∥2
F ≤ ℓ.

We distinguish between Bounded-domain MCME and Real-valued MCME depend-
ing on whether D = [z]0 for some fixed integer z, or D is the set of reals. In particular,
for z = 1 this coincides with Binary k-Means Clustering [FGP18]. In this case,
minimizing the Frobenius norm also minimizes the sum of Hamming distances for each
row to its cluster center. Using the Frobenius norm also for z > 1 is not only consistent
with the continuous case, but also allows us to capture further applications, e.g., when
the data matrix to cluster is composed of user ratings each taking a small numeric value.

While we state MCME as a decision problem for complexity-theoretic reasons, every
algorithm presented here is constructive and can output a solution matrix B if one exists.

In this formulation, the distinct rows of B are the centers of the sought-after clusters
while ℓ is the target upper-bound on the sum of squares. For V ′ ⊆ VA, we call a mapping
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ϕ : V ′ → [k] a cluster-assignment w.r.t. B if for every v1, v2 ∈ V ′ such that ϕ(v1) = ϕ(v2),
it holds that B[v1] = B[v2]. Notice that the existence of a cluster assignment w.r.t. a
matrix B′ implies that B′ has at most k distinct rows. The clusters associated with ϕ
are then sets of the form {v ∈ V | ϕ(v) = i} for some i ∈ [k].

In our algorithms, we often construct the solution matrix dynamically by “merging”
smaller matrices; we formalize this procedure below. Let {Bi | i ∈ [m]} be a set of
matrices, where each Bi has row labels Vi, column labels Ci and is associated with a
cluster-assignment ϕi : Vi → [k] and the following two consistency conditions hold:

• ϕi(v) = ϕj(v) for every v ∈ Vi ∩ Vj , i, j ∈ [m],

• if ϕi(vi) = ϕj(vj) for some vi ∈ Vi and vj ∈ Vj , then Bi[vi, c] = Bj [vj , c] for every
c ∈ Ci ∩ Cj .

Let ϕ = 
i∈[m] ϕi. We define the composition of (Bi, ϕi), i ∈ [m], to be the matrix B∗

with row labels V = 
i∈[m] Vi, column labels C = 

i∈[m] Ci and entries as follows. For
every v ∈ V and c ∈ C, pick any i ∈ [m] such that c ∈ Ci and there exists vi ∈ Vi with
ϕ(vi) = ϕ(v). We set B∗[v, ci] = Bi[vi, ci]. If there is no such i ∈ [m], we simply set
B∗[v, c] to some arbitrary but uniform default value—in our case, we will always use 0.
Observe that if both consistency conditions hold, then both B∗ and ϕ are well-defined
and that ϕ is a cluster-assignment w.r.t. B∗.

Claim 5.1. B∗ is well-defined and admits the cluster-assignment ϕ.

Proof. To see that B∗ is well-defined, pick v ∈ V and c ∈ Ci ∩ Cj . If there exist vi ∈ Vi

and vj ∈ Vj such that ϕ(vi) = ϕ(v) and ϕ(vj) = ϕ(v), then ϕ(vi) = ϕ(vj), so Bi[vi, c] =
Bj [vj , c] by the consistency conditions. Moreover, ϕ is the cluster-assignment w.r.t. B∗.
Indeed, consider u, v ∈ V with ϕ(u) = ϕ(v) and c ∈ C. If c ∈ Ci for some i ∈ [m] such
that there exists vi ∈ Vi with ϕ(vi) = ϕ(v) = ϕ(u), then B∗[v, c] = Bi[vi, c] = B∗[u, c]. If
there is no such i ∈ [m], we have B∗[v, c] = 0 = B∗[u, c].

Observe that if Ci ∩ Cj = ∅ for every i ̸= j, we can skip the second consistency condition:
in this case it just requires Bi[v] = Bi[u] whenewer ϕi(v) = ϕi(u), which holds as ϕi is
the cluster-assignment w.r.t. Bi.

Sparse Matrices. It follows from definition of MCME that entries of the input matrix
A and the target matrix B are only relevant when the respective entry of the mask W is
set to “1”. We thus assume that only those entries are stored explicitly; in particular,
the size of the input is therefore linear in the number of non-zero entries of W . All the
structural parameters in our considerations automatically imply that the mask W is
sparse, in the sense that it has only Ok(n + d) non-zero entries, where the constant under
Ok(·) depends on the respective parameter k. All algorithms we provide except one are
linear-time in the number of non-zero entries of the mask, and the above allows us to
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state their running times in the form (n + d) · f(k), where f is a certain function of the
respective parameter k.

5.4 Solving Bounded-Domain MCME by Exploiting the
Mask

Since Bounded-domain MCME is NP-complete [DFK+04, ADHP09], it is natural to
attempt and circumvent this lower bound by exploiting structural measures of the inputs
to obtain fixed-parameter tractability. Eiben et al. [EFG+21] recently obtained a fixed-
parameter approximation algorithm for Bounded-domain requiring the simultaneous
parameterization by three measures: the number of clusters, the desired approximation
ratio, and a technical measure that captures the sparsity of the missing data (i.e., the “0”
entries in W ).

In this section, we will present a fixed-parameter algorithm for Bounded-domain
MCME which is aimed at the complementary case where the relevant data is sparse. To
formalize this, we consider the incidence graph representation GI of W which is defined as
follows: V (GI) = VW ∪ CW , and E(GI) = {ab | a ∈ VW , b ∈ CW , W [a, b] = 1}. Figure 5.1
later on can also be used as an example of the representation.

Intuitively, each “1” entry in W will correspond to an edge in GI , and hence “structurally
sparse” incidence graphs correspond to settings where most data is unknown. There is a
well-studied hierarchy of structural graph parameters which measure, in a certain sense,
the sparsity of graphs (see, e.g., Figure 1 in [BJK13]). Treewidth will be our parameter
of choice here, as the best known and also most general parameter in this hierarchy.
However, it is worth noting that the use of the incidence graph may provide a new
perspective on previous algorithms for clustering problems—for instance, the so-called
covering number parameter [GKOS18, EGK+21] is simply the vertex cover number of
the complement of GI .

The main goal of this section is to establish the fixed-parameter tractability of MCME
parameterized by tw(GI). As a first step towards this goal, we obtain a dynamic program-
ming algorithm that handles the simpler case where k is also part of the parameterization.

Theorem 5.2. Bounded-Domain MCME is fixed-parameter tractable when parame-
terized by k + tw(GI).

Proof. We begin by applying the recent 2-approximation algorithm for treewidth designed
by Korhonen [Kor22] to compute a nice tree decomposition (T, χ) of GI of width q ≤
2 tw(GI) + 1 in time 2O(tw(GI))(n + d). Let r be the root of T . Given a node t of T , let
Vt and Ct be the sets of vectors and coordinates in χ(t), respectively. Moreover, let C↓

t

and V ↓
t be the restrictions of χ↓

t to the sets of coordinates and vectors.

To prove the theorem, we will design a leaf-to-root dynamic programming algorithm
which will compute and store a set of records at each node t of T , whereas once we
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ascertain the records for r we will have the information required to output a correct
answer. Intuitively, the records will store the cluster centers restricted to the coordinates
that appear in the bag, the partition of the vectors in the bag into clusters and the sum
of minimum distances from vectors in V ↓

t to the cluster centers along the coordinates
in C↓

t .

Formally, the records will have the following structure. We call a pair (cent,part) a
snapshot in t if the following holds:

• cent : [k] × Ct → D,

• part : Vt → [k].

Let S(t) be the set of all snapshots of t. The record Rt of t is then a mapping from S(t)
to the set R+ of non-negative reals. Observe that |S(t)| ≤ |D|k(q+1)kq+1.

To introduce the semantics of our records, let Bt be the set of all matrices with row labels
V ↓

t , column labels C↓
t and entries of domain D. Let Bt be a matrix in Bt. We define the

partial weighted distance from Bt to A in t as follows:

pwd(Bt, t) =
�

v∈V ↓
t

�
c∈C↓

t

W [v, c] · (A[v, c] − Bt[v, c])2.

For Bt ∈ Bt, we say that (cent,part) ∈ S(t) is the snapshot of Bt in t if there is a
cluster-assignment ϕ w.r.t. Bt such that the following conditions hold:

• part = ϕ|Vt ,

• for every c ∈ Ct and v ∈ V ↓
t , Bt[v, c] = cent[ϕ(v), c].

Recall that the existence of a cluster-assignment implies, in particular, that Bt has at
most k distinct rows. We are now ready to define the record Rt. For each snapshot
(cent,part) ∈ S(t), we set Rt(cent,part) = τ if there exists Bt ∈ Bt such that:

• (cent,part) is the snapshot of Bt in t,

• pwd(Bt, t) = τ , and

• ∀B′
t ∈ Bt such that (cent,part) is the snapshot of B′

t, pwd(B′
t, t) ≥ τ .

In this case we say that Bt witnesses Rt(cent,part) = τ .

Recall that for the root r, we assume χ(r) = ∅. Hence S(r) contains only one element
(∅, ∅), and Rr(∅, ∅) is equal to the minimum value of ∥W ◦(A−B)∥2

F that can be achieved
by any matrix B with entries of domain D containing at most k distinct rows. In other
words, the instance is a YES-instance if and only if Rr(∅, ∅) ≤ ℓ. To prove the theorem,
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it now suffices to show that the records can be computed in a leaf-to-root fashion by
proceeding along the nodes of T . We distinguish the following cases:

t is a leaf node. Let χ(t) = {v} where v is a vector. By definition, S(t) =
{(∅,part)|part : [1] → [k]} and Rt(∅,part) = 0 for every (∅,part) ∈ S(t) as
there are no coordinates to sum over. Let χ(t) = {c} for some coordinate c. Then
S(t) = {(cent, ∅)|cent : [k] × [1] → D} and Rt(cent, ∅) = 0 for each (cent, ∅) ∈ S(t).

t is a forget node. Let t′ be the child of t in T and χ(t) = χ(t′)\{v} for some vector v. We
set R0

t (cent,part) := mini∈[k] Rt′(cent,part ∪ (v, i)) for each (cent,part) ∈ S(t).

For correctness, it will be useful to observe that Bt = Bt′ . If Rt(cent,part) = τ ,
then there exists a matrix Bt which witnesses this. But then Bt also admits a snapshot
(cent,part ∪ (v, i)) at t′ for some i ∈ [k] and witnesses Rt′(cent,part ∪ (v, i)) ≤ τ .
So in our algorithm R0

t (cent,part) ≤ Rt′(cent,part ∪ (v, i)) ≤ τ . Conversely, if
R0

t (cent,part) = τ , then there exists a snapshot (cent,part ∪ (v, i)) at t′ for some
i ∈ [k] such that Rt′(cent,part∪ (v, i)) = τ . Existence of a matrix witnessing the value
of Rt′(cent,part ∪ (v, i)) implies that Rt(cent,part) ≤ τ . Hence, we can correctly
set Rt = R0

t .

If χ(t) = χ(t′) \ {c} for some coordinate c, we set:

Rt(cent,part) = min{Rt′(cent′,part)|cent is obtained from cent′ by deleting c}.

Correctness can be argued similarly to the case of a forgotten vector.

t is an introduce node (introducing a vector). Let t′ be the child of t in T
and let χ(t) = χ(t′) ∪ {v0} for some vector v0. Fix a snapshot (cent,part) in S(t),
let i = part(v0) and part′ = part \ (v0, i). We will denote by Δ0 the sum of
distances from v0 to the i-th cluster center along the coordinates in Ct, i.e., Δ0 =�

c∈Ct
W [v0, c]·(A[v0, c]−cent[i, c])2. We set R0

t (cent,part) = Rt′(cent,part′)+Δ0.

For correctness, assume that R0
t (cent,part) = τ = Rt′(cent,part′) + Δ0. Construct

a matrix Bt from the witness Bt′ of Rt′(cent,part′) with a cluster-assignment ϕ′ by
adding a new row with a label v0 as follows. If i = ϕ′(v) for some v ∈ V ↓

t′ , we set
Bt[v0] := Bt[v]. Otherwise we define Bt[v0, c] := cent[i, c] for c ∈ Ct and Bt[v0, c] := 0 in
the rest of coordinates c. Note that in both cases Bt[v0, c] = cent[i, c] for every c ∈ Ct:
in the second case it follows from the definition, while in the first one we have Bt[v0, c] :=
Bt[v, c] = Bt′ [v, c] = cent[ϕ′(v), c] = cent[i, c]. The matrix Bt with a cluster-assignment
ϕ = ϕ′ ∪(v0, i) has a snapshot (cent,part) in t and pwd(Bt, t) = �

v∈V ↓
t

�
c∈C↓

t
W [v, c] ·

(A[v, c]−Bt[v, c])2 = pwd(Bt′ , t′)+�
c∈C↓

t
W [v0, c]·(A[v0, c]−Bt[v0, c])2. As pwd(Bt′ , t′) =

Rt′(cent,part′), W [v0, c] = 0 for every forgotten coordinate c and Bt[v0, c] := cent[i, c]
for every c ∈ Ct, we have pwd(Bt, t) = Rt′(cent,part′) + Δ0 = τ. So Bt witnesses that
Rt(cent,part) ≤ τ .

For the converse, assume that Rt(cent,part) = τ . Then there exists a matrix Bt in
Bt admitting the snapshot (cent,part) in t such that pwd(Bt, t) = τ . Let ϕ be the
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corresponding cluster-assignment w.r.t. Bt. We construct Bt′ from Bt by deletion of the
row v0. Then Bt′ with cluster-assignment ϕ′ = ϕ \ {(v0, i)} has a snapshot (cent,part′)
in t and witnesses that Rt′(cent,part′) ≤ pwd(Bt′ , t′) = τ − Δ0. Therefore in our
algorithm R0

t ≤ Rt′(cent,part′) + Δ0 ≤ τ . Hence, we can correctly set Rt = R0
t .

t is an introduce node (introducing a coordinate). Let t′ be the child of t in T and
let χ(t) = χ(t′)∪{c0} for some coordinate c0. Fix a snapshot (cent,part) in S(t), we wil
denote by Δ0 the sum of distances from v ∈ V ↓

t to the corresponding cluster center along
the coordinate c0, i.e., Δ0 = �

v∈Vt
W [v, c0] · (A[v, c0] − cent[part(v), c0])2. Let cent′

be the restriction of cent to all the coordinates except c0. We set R0
t (cent,part) =

Rt′(cent′,part) + Δ0.

For correctness, assume that R0
t (cent,part) = τ = Rt′(cent′,part) + Δ0. We

construct a matrix Bt from a witness Bt′ of Rt′(cent′,part) with cluster-assignment
ϕ′ by adding a column c0. For every v ∈ V ↓

t , we set Bt[v, c] = Bt′ [v, c] for all c ∈ C↓
t′

and Bt[v, c0] = cent[ϕ′(v), c0]. Then Bt with the same cluster-assignment ϕ′ has a
snapshot (cent,part) in t and pwd(Bt, t) = pwd(Bt′ , t′) + Δ0 = Rt′(cent′,part) +
Δ0 = τ . Therefore Bt witnesses that Rt(cent,part) ≤ τ . Conversely, assume that
Rt(cent,part) = τ . Then there exists a matrix Bt in Bt with the snapshot (cent,part)
in t such that pwd(Bt, t) = τ . Let Bt′ be obtained from Bt by deletion of the column
with the label c0. Then Bt′ witnesses Rt′(cent′,part) ≤ τ − Δ0, so in our algorithm
R0

t (cent,part) = Rt′(cent′,part) + Δ0 ≤ τ . Hence, we can correctly set Rt = R0
t .

t is a join node. Let t1, t2 be the two children of t in T , recall that χ(t1) = χ(t2) = χ(t)
and χ(t1)↓ ∩ χ(t2)↓ = χ(t). For every (cent,part) in S(t) we set R0

t (cent,part) =
Rt1(cent,part) + Rt2(cent,part) − doublecount, where doublecount is equal
to �

v∈Vt

�
c∈Ct

W [v, c] · (A[v, c] − cent[part(v), c])2.

For correctness, assume that R0
t (cent,part) = τ = τ1 + τ2 − doublecount, where

τ1 = Rt1(cent,part), τ2 = Rt2(cent,part). Let Bi with the cluster-assignment
ϕi be the witness of Rti(cent,part) = τi, i = 1, 2. We obtain a matrix Bt with
cluster-assignment ϕ = ϕ1 ∪ ϕ2 as a composition of (B1, ϕ1) and (B2, ϕ2). To check the
consistency conditions, observe that the sets of common row and column labels of B1 and
B2 are Vt and Ct respectively. Recall that ϕ1|Vt = part = ϕ2|Vt . Moreover, if v1 ∈ V1
and v2 ∈ V2 are such that ϕ1(v1) = ϕ2(v2), then we have B1[v1, c] = cent[ϕ1(v1), c] =
cent[ϕ2(v2), c] = B2[v2, c] for every c ∈ Ct.

Note that for every v ∈ Vt, ϕ(v) = ϕ1(v) = part. Pick c ∈ Ct and v ∈ V ↓
t , then v ∈ V ↓

ti

for some i ∈ {1, 2} and so Bt[v, c] = Bi[v, c] = cent[ϕi(v), c] = cent[ϕ(v), c]. Therefore
(cent,part) is a snapshot of Bt in t. Recall that pwd(Bt, t) = �

v∈V ↓
t

�
c∈C↓

t
W [v, c] ·

(A[v, c] − Bt[v, c])2. Here W [v, c] = 0 for every v ∈ V ↓
ti

and c ̸∈ C↓
ti

, i = 1, 2. So
pwd(Bt, t) = �

v∈V ↓
t1

�
c∈C↓

t1
W [v, c]·(A[v, c]−Bt[v, c])2+�

v∈V ↓
t2

�
c∈C↓

t2
W [v, c]·(A[v, c]−

Bt[v, c])2 − �
v∈Vt

�
c∈Ct

W [v, c] · (A[v, c] − Bt[v, c])2 = pwd(B1, t1) + pwd(B2, t2) −
doublecount = τ1 +τ2 −doublecount = τ . Hence Bt witnesses Rt(cent,part) ≤ τ .

77



5. Structural Parameters that make Clustering FPT

For the converse, assume that Rt(cent,part) = τ and Bt is a matrix witnessing this.
Let Bi be the restriction of Bt to rows V ↓

ti
and columns C↓

ti
, i = 1, 2. Then B1 and B2 have

a snapshot (cent,part), so R0
t (cent,part) ≤ Rt1(cent,part)+Rt2(cent,part)−

doublecount ≤ pwd(B1) + pwd(B2) − doublecount = pwd(B) = τ . Hence the
resulting record Rt = R0

t is correct, which concludes the correctness proof of the
algorithm.

To bound the runtime of the algorithm, observe that at each node t we compute the record
Rt for |S(t)| ≤ |D|kqkq = |D|O(k·tw(GI)) entries, where each entry is computed in time at
most quadratic in tw(GI). Since the tree decomposition is nice and has only O(n + d)
nodes, the runtime of the algorithm is upper-bounded by (n + d) · |D|O(k·tw(GI)).

Towards proving fixed-parameter tractability without involving k, we consider the case
where k is significantly larger than tw(GI). We prove that this case always admits a
“perfect” solution, which can also be computed efficiently.

Lemma 5.3. If k ≥ (tw(GI) + 1) · |D|tw(GI)+1, then there exists a matrix B over domain
D containing at most k distinct rows such that ∥W ◦ (A − B)∥2

F = 0. Moreover, given
a nice tree decomposition of width q − 1 such that k ≥ q · |D|q, such a matrix B can be
computed in time (n + d) · |D|O(q).

Proof. We will prove the second claim of the lemma, from which the first one follows. To
this end, let us assume that we are given a nice tree decomposition T = (T, χ) of GI of
width q − 1 and k ≥ q · |D|q. We denote the root of T by r and define Ct, Vt, C↓

t and
V ↓

t analogously to the proof of Theorem 5.2. We will explicitly construct q · |D|q cluster
centers yielding a zero sum of squares, so that after processing the node t, each of the
centers is defined on coordinates c ∈ C↓

t . The remaining clusters will be empty, thus for
the rest of the proof we assume k = q · |D|q.

Formally, we will attach to every node t the pair (Rt, αt) where Rt is the matrix with the
row labels [k] and the column labels C↓

t , and αt is a mapping from V ↓
t to [k]. Intuitively,

Rt stores the restrictions of cluster centers to processed coordinates, while αt assigns
a cluster index to every row label v ∈ V ↓

t . Throughout the dynamic programming
procedure, we will maintain the following invariants:

1. αt(u) ̸= αt(v) for any two distinct u and v from Vt,

2. for every ω ∈ DCt , there are precisely k
|D||Ct| indices i ∈ [k] such that Rt[i][Ct] = ω,

where Rt[i][Ct] is the restriction of Rt[i] to the coordinate set Ct,

3. �
v∈V ↓

t

�
c∈C↓

t
W [v, c] · (A[v, c] − Rt[αt(v), c])2 = 0.

Assume that the invariants hold in the root r, let us define the matrix B by setting
B[v] = Rr[αr(v)]. Then B has at most k distinct rows and the third invariant yields that
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�
v∈VA

�
c∈CA

W [v, c] · (A[v, c] − B[v, c])2 = 0. In particular, for q = tw(GI) + 1 we get
the statement of the lemma. Hence it is sufficient to construct (Rt, αt) in a leaf-to-root
fashion, for each of the following cases.

t is a leaf node. If χ(t) = {v0} for some row label v0, we set αt(v0) = 1 and Rt[i] = ∅
for every i ∈ [k]. Otherwise, χ(t) = {c} for a coordinate c. Then αt should be the empty
mapping, for every i ∈ [k] we set Rt[i, c] equal to some γ ∈ D so that every γ ∈ D
appears in Rt precisely k

|D| times. It is easy to see that all the invariants are satisfied.

t is a forget node. Let t′ be the child of t in T , we keep Rt = Rt′ and αt = αt′ . The first
and third invariants are obviously preserved. In case χ(t) = χ(t′) \ {c0} for a coordinate
c0, we have Ct′ = Ct ∪ {c0}. By the second invariant for t′, for every γ ∈ D and ω ∈ DCt

the number of i ∈ [k] with Rt′ [i][Ct] = ω and Rt′ [i][c0] = γ is k

|D||Ct′ | . Therefore the
number of i ∈ [k] with Rt[i][Ct] = ω is precisely |D| · k

|D||Ct′ | = k
|D||Ct| .

t is an introduce node (introducing a vector). Let t′ be the child of t in T
and χ(t) = χ(t′) ∪ {v0} for some row label v0. We then set Rt = Rt′ and αt =
αt′ ∪ (v0, i0) where i0 ∈ [k] is such that Rt′ [i0][Ct] = A[v0][Ct] and αt′(v) ̸= i0 for
any v ∈ Vt′ . Such an index always exists: by the second invariant for t′ there are

k
|D||Ct| ≥ k

|D|q = q > |Vt′ | indices i such that Rt′ [i][Ct] = A[v0][Ct], so at least one of
them is not equal to any αt′(v), v ∈ Vt′ . As the third invariant holds in t′, we have�

v∈V ↓
t

�
c∈C↓

t
W [v, c] · (A[v, c]−Rt[αt(v), c])2 = �

c∈C↓
t

W [v0, c] · (A[v0, c]−Rt[αt(v0), c])2.
Here W [v0, c] = 0 for every c ∈ C↓

t \ Ct because such c never appears in the same bag
with v0. Moreover, for c ∈ Ct, Rt[αt(v0), c] = Rt[i0, c] = A[v0, c], so every summand is
equal to zero.

t is an introduce node (introducing a coordinate). In case if t′ is the child of t in T
and χ(t) = χ(t′) ∪ {c0} for some coordinate c0, we set αt = αt′ , Rt[i][Ct′ ] = Rt′ [i][Ct′ ] for
every i ∈ [k] and define Rt in the column c0 as follows. For every vector ω ∈ DCt′ , let gω

be the set of indices i ∈ [k] such that Rt′ [i][Ct′ ] = ω. Recall that by the second invariant
for t′, |gω| = k

|D||Ct−1| . We subdivide gω into |D| groups {gω
γ | γ ∈ D} of the same size

k
|D||Ct| so that if αt(v) ∈ gω for some v ∈ Vt, then αt(v) ∈ gω

γ with γ = A[v, c0]. It is always
possible as αt is injective on Vt (so the index γ is determined uniquely for αt(v) ∈ gω) and

k
|D||Ct| ≥ k

|D|q = q ≥ |Vt| (so potentially one of the groups can contain αt(v) for all v ∈ Vt).
For every γ ∈ D and i ∈ gω

γ we then set Rt[i, c0] = γ and by this satisfy the second invariant
in t. The following validates the third one: �

v∈V ↓
t

�
c∈C↓

t
W [v, c]·(A[v, c]−Rt[αt(v), c])2 =�

v∈V ↓
t

W [v, c0] · (A[v, c0] − Rt[αt(v), c0])2 = �
v∈Vt

W [v, c0] · (A[v, c0] − Rt[αt(v), c0])2.
Fix v ∈ Vt, let γ = A[v][Ct′ ]. Then αt(v) ∈ gω, so αt(v) ∈ gω

γ with γ = A[v, c0]. Therefore
Rt[αt(v), c0] = γ = A[v, c0], i.e., every summand is equal to zero.

t is a join node. Let t1, t2 be the two children of t in T , recall that in this case
χ(t1) = χ(t2) = χ(t). By the well-known separation property of tree decompositions,
χ(t1)↓ ∩ χ(t2)↓ = χ(t) [DF13, CFK+15]. Without loss of generality we may assume
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that αt1 and αt2 coincide on Vt and Rt1 [i, c] = Rt2 [i, c] for every i ∈ [k] and c ∈ Ct. In
the case it does not hold, we achieve it by permuting the rows of Rt2 : by the second
invariant, the sets of rows Rt1 and Rt2 are the same when restricted to Ct, thus there is a
permutation that achieves Rt1 [i, c] = Rt2 [i, c] for every i ∈ [k] and c ∈ Ct. Furthermore,
by the third invariant, for each v ∈ Vt, αt2 maps v to a row that coincides with v on Ct.
Together with the first invariant it means that for each ω ∈ DCt , αt2 acts injectively
from V ω

t = {v ∈ Vt : A[v][Ct] = ω} to the set of rows of Rt2 that coincide with ω on Ct.
Since the same holds for αt1 and Rt1 , for each ω ∈ DCt there is a permutation on the
rows of Rt2 equal to ω on Ct that makes αt1 and αt2 agree on V ω

t . Combinining the
above permutations, applying the resulting permutation πt of [k] on the rows of Rt2 , and
replacing αt2 with πt ◦ αt2 leads to the desired property.

Then, we can correctly define αt = αt1 ∪ αt2 and construct Rt as follows:

• for every i ∈ [k] and c ∈ C↓
t1 , Rt[i, c] = Rt1 [i, c],

• for every i ∈ [k] and c ∈ C↓
t2 , Rt[i, c] = Rt2 [i, c].

(Rt, αt) obviously satisfies the first and second invariants, let us verify the third one.
Note that W [v, c] = 0 for every v ∈ V ↓

tj
and c ̸∈ C↓

tj
, j = 1, 2. Therefore:�

v∈V ↓
t , c∈C↓

t
W [v, c]·(A[v, c]−Rt[αt(v), c])2 ≤ �

v∈V ↓
t1

, c∈C↓
t1

W [v, c]·(A[v, c]−Rt1 [αt1(v), c])2

+ �
v∈V ↓

t2
, c∈C↓

t2
W [v, c] · (A[v, c] − Rt2 [αt2(v), c])2 = 0 + 0 = 0 as desired.

We now estimate the running time of our procedure. To show the desired time bound
that is linear in terms of n + d, we further specify how the entries (Rt, αt) are stored. For
a node t, we store separately the mapping αt on the forgotten row indices V ↓

t \ Vt as a
linked list of pairs (v, αt(v)) where v ∈ V ↓

t \ Vt, and separately the values of α on the row
indices of Vt; for the Vt part, the precise method of storage is not relevant for our desired
running time bound as there are at most q such entries in each node. Analogously, for
each i ∈ [k], the row Rt[i] is stored separately on the columns of Ct and C↓

t \ Ct, where
the latter is stored as a linked list of pairs (c, Rt[i, c]), c ∈ C↓

t \ Ct.

With the storage method above in mind, observe first that for all nodes except join nodes
the manipulations on the entries in the bag take time O(kq), while the entries for the
forgotten row and column indices are simply copied from the child node. Since the entry
at a child node is never reused further in the algorithm, the corresponding linked lists
can be copied by reference in constant time each.

For a join node, finding a suitable permutation of Rt2 that matches with Rt1 on Ct takes
time O(k2q) by comparing the values in the columns of Ct for each pair of rows from Rt1

and Rt2 , and the same time bound covers tweaking this permutation to obtain πt that
also makes αt1 and αt2 agree on Vt. Applying πt to rearrange the rows of Rt2 takes time
O(kq) since we pass the representations of Rt2 [i][C↓

t \ Ct] by reference. Now, to compose
πt with αt2 , instead of computing the image value-by-value which would take linear time,
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we do the following constant-time deferred application. For the linked list that stores
the values of αt2 on V ↓

t \ Vt, we consider another type of node that contains a single
permutation πt of [k]. This node in interpreted as follows: any pair (v, i) that comes
after this node is deemed to represent the pair (v, πt(i)) instead. Using permutation
nodes, πt can by applied to αt2 in O(k + q) by computing the values on Vt explicitly
and putting a permutation node πt at the beginning of the linked list for V ↓

t \ Vt, and
another permutation node π−1

t at the end of this list. Finally, the union of αt1and αt2

is computed in time O(q) by appending the linked list that stores the images of αt2 on
V ↓

t2 \ Vt2 to the linked list of αt1 on V ↓
t1 \ Vt1 , and storing the values on Vt separately.

In the same fashion, for each i ∈ [k] we construct the row Rt[i] by concatenating the
respective linked lists of Rt1 [i] and Rt2 [i].

After processing the root node r, the entries of B can be restored efficiently in the
following way. Recall that only O((n + d) · q) entries of W are “1”, as the graph GI has a
tree decomposition of width q − 1; only the corresponding O((n + d) · q) entries of B are
relevant, others need not to be restored. First, in time O(kd) we retrieve the rows of Rr

from the computed representation and store each row as an array indexed by the column
indices. The cluster assignment can be retrieved from the representation of αr in time
O((n + d) · k) by traversing through the corresponding linked list while maintaining the
composition of all occured permutation nodes (observe that at most 2(n + d) permutation
nodes were created throughout the execution). Afterwards each relevant entry B[v, c] can
be computed in constant time, by retrieving the cluster assignment αr(v) of v and the
value Rr[αr(v), c] from the respective row array. Since the number of nodes in the tree
decomposition is bounded by O(n + d) and processing of each node takes time O(k2q),
the total running time is thus bounded by

O((n + d) · k2q) = (n + d) · |D|O(q),

as desired.

At this point, we can prove the main result of this section.

Theorem 5.4. Bounded-domain MCME is fixed-parameter tractable when parameter-
ized by tw(GI).

Proof. Given an instance of Bounded-Domain MCME, we construct the incidence
graph GI and then apply the 2-approximation algorithm for treewidth [Kor22] to compute
a tree decomposition of GI of width q − 1 ≤ 2 tw(GI) + 1 in time 2O(tw(GI)) · (n + d). At
this point we proceed by comparing q and k, as follows:

• if k ≥ q · |D|q, then we can correctly output “Yes” (along with a suitable witness)
by using Lemma 5.3;

• if k ≤ q · |D|q, then we instead invoke Theorem 5.2 to solve the instance.
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W =

�����
1 1 1 0
1 1 1 0
0 0 0 1
0 1 0 0
1 0 1 0

					
GI

VW CW

GP

Figure 5.1: Example of a mask W (left) together with its incidence graph (middle) and
its primal graph (right). Vertices from top to bottom correspond to rows from top to
bottom and in the case of CW columns from left to right. In this example tw(GI) = 3
and tw(GP ) = 2.

The running time in the former case is upper-bounded by (n + d) · |D|O(tw(GI)), while in
the latter case the bound is (n + d) · |D|O(k·tw(GI)) ≤ (n + d) · |D||D|O(tw(GI )) .

5.5 Handling Real-Valued Matrices with Treewidth
We now turn our attention to Real-valued MCME. As we mentioned before, a fixed-
parameter algorithm for the problem parameterized by the incidence treewidth of W
would resolve a long-standing open problem as a special case, and so far remains beyond
reach. However, we can still make tangible progress on the problem by considering the
treewidth of a different representation of W . In particular, the primal graph GP of W is
a graph containing one vertex for each row of W , where two rows a, b are adjacent if
and only if there is a column e such that W [a, e] = W [b, e] = 1. An example comparing
primal and incidence graphs is provided in Figure 5.1.

Our aim in this section is to prove the next theorem.

Theorem 5.5. Real-valued MCME is fixed-parameter tractable when parameterized
by tw(GP ).

Before we proceed to the proof, we will first introduce some additional notation that
will be useful in the context of real-valued matrices. For every V ′ ⊆ VA, let µ(V ′, c) =
argminxf(x) for f(x) = �

v∈V ′ W [v, c] · (A[v, c] − x)2 and let Δc(V ′) = f(µ(V ′, c)).
Intuitively, if vectors from V ′ form a cluster, then Δc(V ′) is a minimal sum of distances
to the cluster center along the coordinate c.

Observation 5.6. For each coordinate c, if V ′′ = {z ∈ V ′ | W [z, c] = 1} ≠ ∅, then

µ(V ′, c) =
�

v∈V ′′ A[v, c]
|V ′′| , and Δc(V ′) =

�
v∈V ′′

(A[v, c])2 − (�v∈V ′′ A[v, c])2

|V ′′| .

Proof. As W is a binary matrix, we can rewrite f(x) as follows:

f(x) =
�

v∈V ′′
(A[v, c] − x)2 = |V ′′|x2 − 2

�
v∈V ′′

A[v, c] · x +
�

v∈V ′′
(A[v, c])2.
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By assumption, |V ′′| ̸= 0, so f(x) is a quadratic function and attains a minimum at an
extreme point, i.e., at x =

�
v∈V ′′ A[v,c]

|V ′′| . The minimal value of f can be computed as�
v∈V ′′(A[v, c])2 − (

�
v∈V ′′ A[v,c])2

|V ′′| .

Now we are ready to present the proof of Theorem 5.5.

Proof of Theorem 5.5. As our initial step, we once again apply the 2-approximation
algorithm [Kor22] to compute a nice tree decomposition (T, χ) of GP of width q ≤
2 tw(GP ) + 1. We keep the notations r, Vt, and V ↓

t from the previous section. Note
that now the bags in the tree decomposition contain only vectors, so Vt = χ(t). In
contrast to the previous section, for every node t we denote by C↓

t the set of all processed
in t coordinates, i.e., coordinates c such that W [vc, c] ̸= 0 for some vc ∈ V ↓

t \ Vt. A
crucial observation is the following: if c ∈ C↓

t , then for all vectors v ̸∈ V ↓
t it holds that

W [v, c] = 0, otherwise v and vc would appear in the same bag. In other words, values of
the cluster centers on c ∈ C↓

t are not meaningful for vectors introduced outside of Tt.

We will design a leaf-to-root dynamic programming algorithm which computes a set of
records Rt at each node t of T . For each way p of partioning the vectors in the bag Vt

into at most k clusters, the record Rt stores the minimum cost of clustering the vectors
of V ↓

t in the coordinates of C↓
t , considering only the partitions of V ↓

t that extend p.

Formally, for a node t of T let Pt be the set of all equivalence relations p ⊆ Vt × Vt with
at most k equivalence classes. The record Rt of t is a mapping from Pt to R+. Observe
that |Pt| ≤ (q + 1)q+1.

To introduce the semantics of our records, let Bt be the set of all real matrices with the
row labels V ↓

t and the column labels C↓
t . Let Bt be a matrix in Bt. We define the partial

weighted distance from Bt to A in t as follows:

pwd(Bt, t) =
�

v∈V ↓
t

�
c∈C↓

t

W [v, c] · (A[v, c] − Bt[v, c])2.

We also denote the number of forgotten clusters by fcl(Bt, t), that is, the number of
distinct rows in Bt not equal to any Bt[v], v ∈ Vt. We say that p ∈ Pt with |[p]| ≤ k
equivalence classes is the t-partition of Bt if the following conditions hold:

• for every v, w ∈ Vt such that (v, w) ∈ p, Bt[v] = Bt[w],

• fcl(Bt, t) is at most k − |[p]|.

The last two conditions are in fact equivalent to existence of a cluster-assignment ϕ w.r.t.
Bt such that for every u, v ∈ Vt, ϕ(u) = ϕ(v) if and only if (u, v) ∈ p.

We are now ready to define the record Rt. For each p ∈ Pt, we set Rt(p) = τ if there
exists Bt ∈ Bt such that:
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• p is the t-partition of Bt,

• pwd(Bt, t) = τ , and

• ∀B′
t ∈ Bt such that p is the t-partition of B′

t, pwd(B′
t, t) ≥ τ .

In this case we say that Bt witnesses that Rt(p) = τ .
Observe that Rt(p) < ∞ since any p ∈ Pt is a t-partition of the zero matrix, and
that Rt(p) is well-defined (in the sense that infBt∈Bt pwd(Bt, t) is achieved on Bt), since
pwd(Bt, t) is minimized on a matrix constructed by Observation 5.6 from an optimal
cluster-assignment, and there is only a finite number of those.
Recall that for the root r of T , we assume Vr = ∅. Hence Pr contains only one element
∅, and Rr(∅) is equal to the minimum value of ∥W ◦ (A − B)∥2

F that can be achieved
by any real matrix B containing at most k distinct rows. Indeed, if some coordinate c
is not processed in r, then W [v, c] = 0 for every row label v. Let us extend a witness
Br of Rr to a matrix B with column set CA by setting B[v, c] = 0 for every row
label v and every c ̸∈ C↓

r . Then Rr(∅) = �
v∈V ↓

r

�
c∈C↓

r
W [v, c] · (A[v, c] − Br[v, c])2 =�

v∈VA

�
c∈CA

W [v, c] · (A[v, c] − B[v, c])2. Hence the instance is a YES-instance if and
only if Rr(∅) ≤ ℓ.
We will show how to compute the records in a leaf-to-root fashion by proceeding along
the nodes of T , in each of the following cases:

t is a leaf node. Let Vt = {v}, then Pt contains only one equivalence relation p = {(v, v)}
and Rt(p) = 0 as there are no processed coordinates.

t is a forget node. Let t′ be the child of t in T and Vt = Vt′ \ {v0} for some vector v0,
we denote Cnew = C↓

t \ C↓
t′ . By branching over all p′ ∈ P(t′) such that p′|Vt×Vt = p, we

compute
R0

t (p) = min
p′

�Rt′(p′) + Δ(p′)
�

, where Δ(p′) =
�

[v]∈[p′]

�
c∈Cnew

Δc([v]).

For correctness, assume that R0
t (p) = τ = Rt′(p′) + Δ(p′) for some p′ ∈ P(t′) such that

p′|Vt×Vt = p. Construct a matrix Bt from the witness Bt′ of Rt′(p′) by adding a new
column for every label c ∈ Cnew as follows. Fot every v ∈ Vt′ , we set Bt[v, c] = µ([v]p′ , c).
If u ∈ V ↓

t′ \ Vt′ is such that Bt′ [u] = Bt′ [v] for some v ∈ Vt′ , we set Bt[u, c] = µ([v]p′ , c).
Otherwise we set Bt′ [u, c] = 0. To see that p is a t-partition of Bt, assume firstly that
there is v ̸= v0 such that (v0, v) ∈ p′, then fcl(Bt, t) = fcl(Bt′ , t′) and |[p]| = |[p′]|.
Otherwise fcl(Bt, t) ≤ fcl(Bt′ , t′) + 1 and |[p]| = |[p′]| − 1; in any case p is a t-partition
of Bt. Recall that

pwd(Bt, t) =
�

v∈V ↓
t

�
c∈C↓

t

W [v, c] · (A[v, c] − Bt[v, c])2

= pwd(Bt′ , t′) +
�

v∈V ↓
t

�
c∈Cnew

W [v, c] · (A[v, c] − Bt[v, c])2.
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As Cnew ∩ C↓
t′ = ∅, we have W [v, c] = 0 for all c ∈ Cnew and v ∈ V ↓

t′ \ Vt′ . Therefore,

pwd(Bt, t) = pwd(Bt′ , t′) +
�

v∈Vt′

�
c∈Cnew

W [v, c] · (A[v, c] − µ([v]p′ , c))2

= Rt′(p′) + Δ(p′) = τ,

and thus Bt witnesses that Rt(p) ≤ τ .

For the converse, assume that Rt(p) = τ and Bt is a matrix in Bt witnessing this. Let
Bt′ be obtained from Bt by deleting the columns with labels in Cnew. We construct
p′ ∈ P(t′) from p by adding v0 to an equivalence class of arbitrary v ∈ Vt′ such that
Bt[v0] = Bt[v]. If there is no such v, we create a new equivalence class {v0}. In any
case p′ is a t′-partition of Bt′ : if |[p′]| = |[p]|, then fcl(Bt′ , t′) = fcl(Bt, t); in case
|[p′]| = |[p]| + 1, we have fcl(Bt′ , t′) = fcl(Bt, t) − 1. Therefore Bt′ witnesses that

Rt′(p′) ≤ pwd(Bt′ , t′) = τ −
�

v∈Vt′

�
c∈Cnew

W [v, c] · (A[v, c] − Bt[v, c])2

≤ τ −
�

[v]∈[p′]

�
c∈Cnew

Δc([v]) = τ − Δ(p′).

So in our algorithm R0
t (p) ≤ Rt′(p′) + Δ(p′) ≤ τ . Hence, we can correctly set Rt = R0

t .

t is an introduce node. Let t′ be the child of t in T and let Vt = Vt′ ∪ {v0} for some
vector v0. For every p in P(t), we set R0

t (p) = Rt′(p′) where p′ = p|Vt′ ×Vt′ .

For correctness, it will be useful to observe that C↓
t = C↓

t′ . Recall from the first paragraph
of the proof that W [v0, c] = 0 for every c ∈ C↓

t′ . Assume Rt(p) = τ with a witness Bt, let
us obtain Bt′ from Bt by deleting the row with label v0. Then Bt′ admits the t′-partition
p′ and pwd(Bt′ , t′) = pwd(Bt, t), so Bt′ witnesses that Rt′(p′) ≤ τ .

For the converse, if Rt′(p′) = τ and Bt′ is a matrix witnessing this, let us add to Bt′

a row with the label v0 so that p is a t-partition of the resulting matrix Bt. For this,
if (v0, v) ∈ p for some v ∈ Vt′ , we set Bt[v0] := Bt′ [v], which results in |[p]| = |[p′]| and
fcl(Bt, t) = fcl(Bt′ , t′). Otherwise |[p]| = |[p′]| + 1; we make Bt[v0] equal to any row
of Bt′ that is not among {Bt′ [v] | v ∈ Vt′} (if such a row exists) and by this achieve
fcl(Bt, t) = fcl(Bt′ , t′) − 1. If all the rows of Bt′ are among {Bt′ [v] | v ∈ Vt′}, we set
Bt[v0] equal to any of them. Then p is a t-partition of Bt and Bt witnesses Rt(p) ≤ τ , so
we can correctly set Rt = R0

t .

t is a join node. Let t1, t2 be the children of t in T . For every p in Pt we set
R0

t (p) = Rt1(p) + Rt2(p).

For correctness, assume that R0
t (p) = τ = τ1 + τ2 where τ1 = Rt1(p), τ2 = Rt2(p). Let

Bi be a witness of Rti(p) = τi and let ϕi be the cluster-assignment w.r.t. Bi such that for
every u, v ∈ Vt, ϕi(u) = ϕi(v) if and only if (u, v) ∈ p, i = 1, 2. Without loss of generality
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we may assume that ϕ1|Vt = ϕ2|Vt . As V ↓
t1 ∩ V ↓

t2 = Vt and C↓
t1 ∩ C↓

t2 = ∅, there exists
a composition of (B1, ϕ1) and (B2, ϕ2), we denote it by Bt. Recall that Bt admits the
cluster-assignment ϕ = ϕ1 ∪ ϕ2, in particular, p is a t-partition of Bt. As W [v, c] = 0 for
every c ∈ C↓

ti
and v ∉ V ↓

ti
, i = 1, 2, we have

pwd(Bt, t) =
�

v∈V ↓
t1

�
c∈C↓

t1

W [v, c]·(A[v, c]−Bt[v, c])2+
�

v∈V ↓
t2

�
c∈C↓

t2

W [v, c]·(A[v, c]−Bt[v, c])2

= pwd(B1, t1) + pwd(B2, t2) = τ1 + τ2 = τ.

Hence Bt witnesses that Rt(p) ≤ τ .

For the converse, assume that Rt(p) = τ and Bt is a matrix witnessing this. Let Bi be the
restriction of B to rows V ↓

ti
and columns C↓

ti
, i = 1, 2. Then p is a t-partition of B1 and

B2 and in our algorithm R0
t (p) = Rt1(p) + Rt2(p) ≤ pwd(B1) +pwd(B2) = pwd(Bt) = τ .

So the resulting record Rt = R0
t is correct, which concludes the correctness proof of the

algorithm.

To estimate the time complexity, recall that in a forget node we branch over at most
(q + 1)q+1 = tw(GP )O(tw(GP )) partitions p′. Computing Δ(p′) requires time at most
|Cnew| · (q + 1)2 ≤ |Cnew| · O(tw(GP )2). Observe that each column appears in Cnew

of at most one forget node in T , as all rows that have a value of “1” in the same
column form a clique. Thus, the processing time of all forget nodes is upper-bounded by
d · tw(GP )O(tw(GP )). For the rest of the nodes, it is easy to see that the processing time
of each node is upper-bounded by tw(GP )O(tw(GP )). Since the nice tree decomposition T
has O(n) nodes, the total running time is at most (n + d) · tw(GP )O(tw(GP )).

5.6 An Incidence-Graph Based Algorithm for Real-Valued
MCME

While Theorem 5.5 significantly expands the previously known boundaries of tractability
for MCME, the algorithm’s performance strongly depends on the structural properties of
the primal graph. In general, primal graph representations are known to be denser than
incidence graph representations, and this may make them unsuitable for the application of
structure-based algorithms on certain instances (see, e.g., the example below Theorem 5.7).

As our final result, we show that although a fixed-parameter algorithm for Real-Valued
MCME parameterized by tw(GI) remains beyond our reach, we can exploit a different
parameter of the incidence graph to achieve fixed-parameter tractability—namely, the
slim tree-cut width.

Theorem 5.7. Real-Valued MCME is fixed-parameter tractable when parameterized
by stcw(GI).

We note that it is not difficult to show that stcw(GI) and tw(GP ) are pairwise incompa-
rable parameterizations. Indeed, an n × 1 mask with first entry “0”and rest of entries
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“1” has stcw(GI) = 1 but tw(GP ) = n − 1. Conversely, consider, for some integer m,
an (m2 + 1) × 2m2 mask W such that the first row v0 of W consists only of “1” entries,
while for each i ∈ [m2] the (i + 1)-th row has “1” entries on precisely two positions: i
and i + m2. Then GP is a star with center in v0, so tw(GP ) = 1. However, GI consists
of m2 edge-disjoint cycles intersecting in v0, so by Lemma 3.13 its slim tree-cut width is
at least m.

We proceed by introducing some additional terminology that will be useful in the
coming arguments. To simplify our algorithm, we will work with super edge-cut width, a
parameter that is asymptotically equivalent to the slim tree-cut width (see Corollary 3.27).
Let H be a supergraph of G and let T be a fixed rooted spanning tree of H such that
ecw(H) = ecw(H, T ) = sec(G), denote the root by r. For t ∈ V (T ), let Tt be the subtree
of T rooted at t. We define the boundary δ(t) of t to be the set of endpoints of all edges
in H with precisely one endpoint in V (Tt) (observe that the boundary can never have a
size of 1). t is called closed if |δ(t)| ≤ 2 and open otherwise. The notion of boundary
was introduced in a joint work with R. Ganian [GK21], where we also establish its basic
properties. Combining them with the fact that sec(G) = ecw(H) = lfen(H) + 1 (see
Section 3.1.1), we immediately obtain:

Proposition 5.8. Let H be a supergraph of G and let T be a spanning tree of H such
that sec(G) = ecw(H) = ecw(H, T ). For any node t of T the following holds:

1. For every closed child t′ of t in T , it holds that δ(t′) = {t, t′} and tt′ is the only
edge between V (Tt′) and V (H) \ V (Tt′) in H.

2. |δ(t)| ≤ 2 sec(G).

3. Let {ti|i ∈ [j]} be the set of all open children of t in T . Then j ≤ 2 sec(G) and
δ(t) ⊆ j

i=1 δ(ti) ∪ {t} ∪ NH(t).

To prove Theorem 5.7, we will provide a leaf-to-root dynamic programming algorithm
which stores information about optimal partitions of δ(t) into clusters. On a very intuitive
level, Point 1. of Proposition 5.8 allows the algorithm to handle the closed children in a
greedy manner, Point 2. ensures that the size of the records is bounded, and Point 3. is
used in the dynamic programming step to compute records for a parent based on the
records of its children. Furthermore, one can observe that | j

i=1 δ(ti)| is upper-bounded
by a linear function of sec(G), which will be useful to ascertain the runtime bound for
the algorithm.

Observation 5.9. For each node t in T , | j
i=1 δ(ti)| ≤ 4 sec(G).

Proof. By Point 2. of Proposition 5.8, the number of vertices in j
i=1 δ(ti) that belong

to δ(t) is at most |δ(t)| ≤ 2 sec(G). If v ∈ δ(ti) \ δ(t) for some i ∈ [j], then v = ti. So
the number of such v is at most j ≤ 2 sec(G) by Point 3. of Proposition 5.8. In total, we
have | j

i=1 δ(ti)| ≤ 4 sec(G).
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We are now ready to establish the claimed result by providing an algorithm for Real-
Valued MCME with running time (kn2 + d) · sec(GI)O(sec(GI)), assuming that the
supergraph H and its spanning tree T such that sec(G) = ecw(H, T ) are provided. If this
is not the case, we recall that Corollary 3.30 allows to compute supergraph H of G along
with its spanning tree T such that ecw(H, T ) = O(stcw(G)6). Let r be an arbitrarily
chosen root in T . For each node v ∈ V (T ), we will use Tv to denote the subtree of T
rooted at v.

Proof of Theorem 5.7. We will design a leaf-to-root dynamic procedure computing the
set of records for every node of T . Intuitively, the record in t will store the minimum
sum of distances of processed vectors, computed along the processed coordinates, to their
cluster centers for every possible partition of vectors in δ(t) into clusters.

Formally, let V ↓
t and C↓

t be the sets of vectors and coordinates of Tt respectively, we
denote by Vt and Ct the restrictions of δ(t) to vectors and coordinates respectively, then
δ(t) = Vt ⊔ Ct. Let Pt be the set of all equivalence relations p ⊆ Vt × Vt with at most
k equivalence classes. The record Rt of t is a mapping from Pt to R+. Observe that
|Pt| ≤ sec(GI)O(sec(GI)).

To introduce the semantics of our records, let Bt be the set of all real matrices with the
row labels V ↓

t ∪ Vt and the column labels C↓
t . Let Bt be a matrix in Bt. We define the

partial weighted distance from Bt to A in t as follows:

pwd(Bt, t) =
�

v∈Vt∪V ↓
t

�
c∈C↓

t

W [v, c] · (A[v, c] − Bt[v, c])2.

For a matrix Bt ∈ Bt, we say that p ∈ Pt is the t-partition of Bt if the following two
conditions hold:

• for every v, w ∈ Vt such that (v, w) ∈ p, Bt[v] = Bt[w],

• the number fcl(Bt, t) of pairwise different rows in Bt not equal to any B[v], v ∈ Vt,
is at most k − |[p]|.

Note that the existence of a t-partition automatically implies that Bt has at most k
distinct rows. We are now ready to define the record Rt. For each p ∈ Pt, we set
Rt(p) = τ if there exists Bt ∈ Bt such that:

• p is the t-partition of Bt,

• pwd(Bt, t) = τ , and

• ∀B′
t ∈ Bt such that p is the t-partition of B′

t, pwd(B′
t, t) ≥ τ .

88



5.6. An Incidence-Graph Based Algorithm for Real-Valued MCME

In this case we say that Bt witnesses that Rt(p) = τ .

Recall that for the root r ∈ T , the boundary is empty, in particular Vr = ∅, so Pr contains
only one element ∅, and Rr(∅) is equal to the minimum value of ∥W ◦ (A−B)∥2

F that can
be achieved by any real matrix B containing at most k distinct rows. Hence the instance
is a YES-instance if and only if Rr(∅) ≤ ℓ. We will compute the records in a leaf-to-root
fashion by proceeding along the nodes of T . Without loss of generality we may assume
that all of them are vertices of GI , that is, V (H) = V (GI). Indeed, if t is a leaf of T and
t ̸∈ V (GI), we can delete t from T and H (note that this does not change ecw(H, T )).
Next, we can remove from H all the edges that do not belong to GI ∪ T . We say that a
vector v is a fake vector if A[v, c] = W [v, c] = 0 for each c ∈ CA. Analogously, we say
that a coordinate c is a fake coordinate of A if A[v, c] = W [v, c] = 0 for each v ∈ VA.
Note that removing fake vectors and coordinates results in an equivalent instance. Hence,
we can make the following modifications, processing T from leaves to the root:

• If t ∈ V (T ) does not belong to GI and has coordinate as a child, we modify our
instance by adding to VA fake vector vt. Moreover, for each child v of vt which is a
vector, we subdivide an edge vvt in T and H by adding a fake coordinate ct,v.

• If t ∈ V (T ) does not belong to GI and has vector as a child, we modify our instance
by adding to CA fake coordinate ct. Moreover, for each child c of ct which is a
coordinate, we subdivide an edge cct in T and H by adding a fake vector vt,c.

Note that each edge of the modified graph H connects a vector and a coordinate, since
before we ensured that H = GI ∪ T . From now on, we will denote by GI the incidence
graph of the modified instance. Therefore, we may assume that T and GI have the same
sets of vertices, in particular, each node of T is either vector or coordinate.

Now we are ready to compute our records. Since for any leaf vector v, there are no
coordinates in Tv, we can set Rv(p) = 0 for every p ∈ Pv.

Let t = c be a (maybe leaf) coordinate and let v1, . . . , vm be all its children in T . We
assume that there is j ∈ [m] such that v1, . . . , vj are open and the rest are closed.
Furthermore, we asssume that the closed children are sorted by the coordinate c, i.e.,
A[vi, c] ≤ A[vi+1, c], i ∈ [m − 1] \ [j], except for the closed children v with W [v, c] = 0,
which appear at the end. Recall from Proposition 5.8 that j ≤ 2 sec(GI). Let us denote
V0 = NH(c) \ {v1, . . . , vm}, and for each i ∈ [m], Vi = Vvi , Ci = Cvi , V ↓

i = V ↓
vi

, and
C↓

i = C↓
vi

. Observe that Vt ⊆ 
i∈[j]0 Vi.

For every p0 ∈ Pt, we initiate by setting Rt(p0) = dnMA + 1 and branch over all
equivalence relations p on 

i∈[j]0 Vi such that |[p]| ≤ k and p|Vt = p0. In every branch we
construct a partition p∗ on the domain D∗ = 

i∈[m]0 Vi extending p to the set of closed
children. Intuitively, p∗ will provide a subdivision of the interval [j + 1, m] into at most
k subintervals such that closed children vi1 and vi2 belong to the same cluster if i1 and
i2 belong to the same subinterval.
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To find the optimal (i.e., minimizing the sum of distances in the coordinate c) subdivision,
we will compute the dynamic programming table M(i, S, kcl) for every subset S ⊆ [p]
and non-negative integers i ∈ [j, m] and kcl ≤ k − |[p]|, that stores the minimum sum of
distances along the coordinate c for the closed children vj+1 . . . vi if they are partitioned
into |S| + kcl clusters with the following property: kcl clusters contain only closed
children, and for each equivalence class [v] ∈ S, there is a cluster intersecting the
set NH(c) \ {vj+1, . . . , vm} by exactly [v]. We initiate by setting M(j, ∅, 0) = 0 and
M(j, S, kcl) = dnMA + 1 whenever S ≠ ∅ or kcl ̸= 0. Further, we set M(i, ∅, 0) =
dnMA +1 for i > j and then for remaining triples S ⊆ [p], i ∈ [j +1, m] and kcl ≤ k −|[p]|
compute:

M1(i, S, kcl) = min
j≤i′<i

�
M(i′, S, kcl − 1) + Δc(v(i′,i])


,

M2(i, S, kcl) =

min
j≤i′≤i

min
[v]∈S

�
M(i′, S \ {[v]}, kcl) + Δc([v] ∪ v(i′,i])


,

where v(i′,i] = {vy : y ∈ [i] \ [i′]}. Recall that for a subset V ′ ⊆ VA, Δc(V ′) is a minimal
sum of distances to the cluster center along the coordinate c assuming that vectors from
V ′ form a cluster, that is, Δc(V ′) = minx

�
v∈V ′ W [v, c] · (A[v, c] − x)2. As special cases,

we set M1(i, S, kcl) = dnMA + 1 if kcl = 0, and M2(i, S, kcl) = dnMA + 1 if S = ∅.
Intuitively, M1 corresponds to the case where the children in v(i′,i] form a separate
cluster, while M2 represents the addition of v(i′,i] to the cluster of open children from [v].
In particular, M2 captures an option when no closed children are added to the cluster of
[v], namely, when i = i′. We set M(i, S, kcl) = min(M1(i, S, kcl), M2(i, S, kcl)).

When all the entries of M are computed, let Δc(p) = min0≤kcl≤k−|[p]| M(m, [p], kcl),
which is equal to some M(m, [p], k0

cl). A simple back-tracking allows to construct
the partition p∗ of D∗ = 

i∈[m]0 Vi extending p such that |[p∗]| = |[p]| + k0
cl and�

[v]∈[p∗] Δc([v]) = Δc(p). We try to improve R0
t (p0) by �

i∈[m] Rvi(p∗|Vi) + Δc(p).

For correctness, assume that in our algorithm R0
v(p) = τ = �

i∈[m] Rvi(p∗|Vi) + Δc(p).
For every i ∈ [m], let pi = p∗|Vi and let Bi be the witness of Rvi(pi). We define the
matrix B0 with the only column label c and row labels V0 by setting B0[v, c] = µ([v]p∗ , c).
Then, in particular, �

u∈[v]∩V0 W [u, c] · (A(u, c) − B0(u, c))2 = Δc([v]) for every [v] ∈ [p∗].
For every i ∈ [m]0, pi = p∗|Vi and therefore we can construct cluster-assignments ϕi w.r.t.
Bi such that

• for every u, v ∈ Vi, ϕi(u) = ϕi(v) if and only if (u, v) ∈ p∗, i ∈ [m]0;

• for every v ∈ Vi1 ∩ Vi2 , ϕi1(v) = ϕi2(v), i1, i2 ∈ [m]0.

Note that the sets of column labels of Bi are pairwise disjoint, so there exists a composition
Bt of (Bi, ϕi), i ∈ [m]0. Recall that Bt admits the cluster-assignment ϕ = 

i∈[m]0 ϕi, has
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row labels 
i∈[m](Vi ∪ V ↓

i ) ∪ V0 = Vt ∪ V ↓
t and column labels 

i∈[m] C↓
i ∪ {c} = C↓

t . Let
us compute pwd(Bt, t) = �

v∈Vt∪V ↓
t

�
c′∈C↓

t
W [v, c′] · (A[v, c′] − Bt[v, c′])2.

Observe that if c′ ∈ C↓
i and v ̸∈ Vi ∪ V ↓

i , then W [v, c′] = 0, i ∈ [m]. The set
of v such that W [v, c] = 1 is subset of V0. Therefore pwd(Bt, t) can be computed
as �

i∈[m]
�

v∈Vi∪V ↓
i

�
c′∈C↓

i
W [v, c′] · (A[v, c′] − Bi[v, c′])2 + �

v∈V0 W [v, c] · (A[v, c] −
B0[v, c])2 = �

i∈[m] pwd(Bi, vi) + �
[v]∈[p∗] Δc([v]) = �

i∈[m] Rvi(pi) + Δc(p) = τ . Hence
Bt witnesses that R0

v(p) ≤ τ .

For the converse, assume that Rt(p0) = τ and Bt is a matrix witnessing this. There exists
a cluster-assignment ϕ w.r.t. Bt such that for every u, v ∈ Vt, ϕ(u) = ϕ(v) if and only if
(u, v) ∈ p0. We define the equivalence relation p∗ on domain D∗ as follows: (u, v) ∈ p∗ if
and only if ϕ(u) = ϕ(v). In particular, p∗ extends p0 and |[p]| ≤ k.

Claim 5.10. If u and v are closed children of c, W [v, c] = W [u, c] = 1 and A[u, c] ≤
A[v, c] but Bt[u, c] ≥ Bt[v, c], then there exists a witness B′

t ∈ Bt of Rt(p0) ≤ τ with
cluster-assignment ϕ′ such that:

• ϕ′(u) = ϕ(v), ϕ′(v) = ϕ(u);

• ϕ′ coincides with ϕ outside of V ↓
u ∪ V ↓

v ;

• B′
t[u, c] = Bt[v, c], B′

t[v, c] = Bt[u, c];

• B′
t[vi, c] = Bt[vi, c] for every vi ̸∈ {u, v}, i ∈ [m];

Proof. Let us define ϕ′ as follows:

• if w ∈ V ↓
u ∪ V ↓

v and ϕ(w) = ϕ(u), then ϕ′(w) = ϕ(v);

• if w ∈ V ↓
u ∪ V ↓

v and ϕ(w) = ϕ(v), then ϕ′(w) = ϕ(u);

• for the rest of w ∈ Vt ∪ V ↓
t , ϕ′(w) = ϕ(w);

We define the matrix B′
t with row and column labels Vt ∪ V ↓

t and C↓
t :

• if ϕ′(w) ̸= ϕ′(v) and ϕ′(w) ̸= ϕ′(u), we set B′
t[w] = Bt[w], w ∈ Vt ∪ V ↓

t ;

• B′
t[v, c′] = Bt[v, c′] for c′ ∈ C↓

v ∪ C↓
u; B′

t[v, c′] = Bt[u, c′] for the rest of c′;

• B′
t[u, c′] = Bt[u, c′] for c′ ∈ C↓

v ∪ C↓
u; B′

t[u, c′] = Bt[v, c′] for the rest of c′;

• if ϕ′(w) = ϕ′(x), we set B′
t[w] = B′

t[x], x ∈ {u, v}.
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Figure 5.2: Red and green segments represent contribution of v and u along c into the
total sum, for Bt and B′

t respectively. For any arrangement of A[u, c], A[v, c], Bt[u, c]
and Bt[v, c], the sum of squares of green segments is not larger than the sum of squares
of red ones.

From the last definition it is clear that ϕ′ is a cluster-assignment w.r.t. B′
t. Observe

that ϕ coincides with ϕ′ on Vt, in particular, p0 is a t-partition of B′
t. Let us compare

pwd(Bt, t) and pwd(B′
t, t). Summands corresponding to w with ϕ′(w) ̸= ϕ′(v) and

ϕ′(w) ̸= ϕ′(u) obviously coincide. Consider w ̸= v with ϕ′(w) = ϕ′(v). If w ∈ V ↓
v ∪ V ↓

u ,
then ϕ(w) = ϕ(v) and therefore for c′ ∈ C↓

v ∪C↓
u we have B′

t[w, c′] = B′
t[v, c′] = Bt[v, c′] =

Bt[w, c′]. For c′ ̸∈ C↓
v ∪ C↓

u, W [w, c′] = 0 as v and u are closed children. Assume that
w ̸∈ V ↓

v ∪ V ↓
u , then ϕ(w) = ϕ(u). For c′ ∈ C↓

v ∪ C↓
u, we have W [w, c′] = 0. For the

rest of c′, B′
t[w, c′] = B′

t[v, c′] = Bt[u, c′] = Bt[w, c′], so all the summands corresponding
to w coincide. Similarly they coincide for w ̸= u with ϕ′(w) = ϕ′(u). In particular,
B′

t[vi, c] = Bt[vi, c] for every vi ̸∈ {u, v}, i ∈ [m]. The only difference may occure in the
summands corresponding to u and v. Moreover, the only coordinate c′ where W [v, c′] = 1
and B′

t[v, c′] ̸= Bt[v, c′], is c′ = c, similarly for u. So comparing pwd(Bt, t) and pwd(B′
t, t)

in case W [v, c] = W [u, c] = 1 is in fact comparing (A[v, c]−Bt[v, c])2 +(A[u, c]−Bt[u, c])2

and (A[v, c] − Bt[u, c])2 + (A[u, c] − Bt[v, c])2. It is easy to see that the second sum is
not larger than the first, see Figure 5.2 for an illustration.
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In fact, Claim 5.10 allows us to assume without loss of generality that every cluster
intersects the set of closed children of c by some v(i1,i2], i1 ≤ i2, possibly except for some
of closed children v with W [v, c] = 0. Indeed, pick any closed children vi and vi′ of c
with i < i′ and W [vi, c] = W [vi′ , c] = 1, then A[vi, c] ≤ A[vi′ , c]. We will say that the
pair (vi, vi′) is bad if one of the following holds:

• Bt[vi, c] > Bt[vi′ , c];

• Bt[vi, c] = Bt[vi′ , c], ϕ(vi) ̸= ϕ(vi′) but there exists i′′ > i′ such that ϕ(vi) = ϕ(vi′′).

Observe that if there are any bad pairs, we can choose one of them so that application of
the Claim 5.10 to it decreases the number of bad pairs. Applying Claim 5.10 iteratively
until there remain no bad pairs, we finally obtain a witness B∗

t of Rt(p0) = τ with a
cluster assignment ϕ∗ such that any cluster of ϕ∗ intersects the set of closed children v
of c by some v(i1,i2] (recall that closed children v such that W [v, c] = 0 appear at the end
of the list, and since the choice of c does not matter for them, we may assume that they
all belong to the same cluster). Further we assume B∗

t = Bt, ϕ∗ = ϕ.

By optimality of Bt, we conclude that �
u∈[v] W [u, c] · (A[u, c] − Bt[u, c])2 = Δc([v]) for

every [v] ∈ [p∗]. Every such case is captured by the computation scheme of the dynamic
table M, so we have M(m, [p], k0

cl) ≤ �
[v]∈[p∗] Δc([v]) where p is the restriction of p∗ to

D∗ \ v(j,m] and k0
cl = |[p∗]| − |[p]|. Let Bi be the restriction of Bt to rows Vi ∪ V ↓

i and
columns C↓

i , i ∈ [m]. Then p∗|Vi is vi-partition of Bi and hence in our algorithm

R0
t (p0) ≤

�
i∈[m]

Rvi(p∗|Vi) + M(m, [p], k0
cl)

≤
�

i∈[m]
pwd(Bi, vi) +

�
[v]∈[p∗]

Δc([v])

= pwd(Bt, t) = τ.

It remains to consider the case where t = v is a vector with children c1, . . . , cm in T , where
c1, . . . , cj are open and the rest are closed. We will use the notations Vi = Vci , Ci = Cci ,
V ↓

i = V ↓
ci

and C↓
i = C↓

ci
, i ∈ [m]. For every p0 ∈ Pt, we initiate by setting Rt(p0) =

ndMA + 1 and then branch over equivalence relations p on 
i∈[j] Vi ∪ {v} ⊇ Vt such that

|[p]| ≤ k and p|Vt = p0. In every branch we set R0
v(p0) := min(R0

v(p0), �
i∈[m] Rci(pi))

where pi = p|Vi for i ∈ [j] and pi = {(v, v)} for i ∈ [m] \ [j].

For correctness, assume that in our algorithm R0
v(p0) = τ = �

i∈[m] Rci(pi) and let Bi

be the witness of Rci(pi). We define ϕ on the domain of p and with values in [k] by
setting ϕ(u) = ϕ(w) if and only if (u, w) ∈ p. Recall that pi = p|Vi for i ∈ [j] and
pi = {(v, v)} for i ∈ [m] \ [j], so there exist cluser-assignments ϕi w.r.t. Bi which agree
with ϕ on intersections of their domains. Sets of columns of Bi are pairwise disjoint, so
there exists a composition matrix Bt with cluster-assignment 

i∈[m] ϕi = ϕ, row labels
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i∈[m](Vi∪V ↓

i ) = Vt∪V ↓
t and column labels 

i∈[m] C↓
i = C↓

t . Let us compute pwd(Bt, t) =�
u∈Vt∪V ↓

t

�
c∈C↓

t
W [u, c] · (A[u, c]−Bt[u, c])2. Here C↓

t = ⊔i∈[m]C
↓
i and W [u, c] = 0 when-

ever c ∈ C↓
i and u ̸∈ Vi ∪ V ↓

i . Therefore pwd(Bt, t) = �
i∈[m]

�
u∈Vi∪V ↓

i

�
c∈C↓

i
W [u, c] ·

(A[u, c] − Bi[u, c])2 = �
i∈[m] pwd(Bi, vi) = �

i∈[m] Rci(pi) = τ . Hence Bt witnesses
that Rv(p) ≤ τ .

For the converse, assume that Rt(p0) = τ and Bt is a matrix witnessing this. Let ϕ be
the cluster-assignment w.r.t. Bt such that for every u, v ∈ Vt, ϕ(u) = ϕ(v) if and only if
(u, v) ∈ p0. We extend p0 to the equivalence relation p on domain 

i∈[j] Vi ∪ {v} defined
as follows: (u, v) ∈ p if and only if ϕ(u) = ϕ(v). Let Bi be the restriction of Bt to rows
Vi ∪ V ↓

i and columns C↓
i , i ∈ [m], then pi = p|Vi is ci-partition of Bi, i ∈ [j]. Hence in

our algorithm R0
t (p0) ≤ �

i∈[j] Rci(pi) + �
i∈[m]\[j] Rci({(v, v)}) ≤ �

i∈[m] pwd(Bi, ci) =
pwd(Bt, t) = τ . Hence the resulting record Rt = R0

t is correct, which concludes the
correctness proof of the algorithm.

Let us estimate the time for processing coordinates t = c. For a fixed c with mc

children, we branch over equivalence relations p on domain 
i∈[j]0 Vi ⊆ δ(c) ∪ 

i∈[j] δ(vi).
By Observation 5.9, the size of the domain is upper-bounded by O(sec(GI)), so there
are at most sec(GI)O(sec(GI)) branches. In every branch, we start from computing
Δc([v] ∪ v(i′,i]) and Δc(v(i′,i]) for each [v] ∈ [p] and i′ < i from [mc] \ [j]. Taking into
account Observation 5.6, all the computations can be performed in time at most m2

c · |[p]|.
After this, every entry of M can be calculated in time O(mc · |[p]|) ≤ mc · O(sec(GI)).
Moreover, M has size at most mck ·2|[p]| ≤ mck ·2O(sec(GI)) and therefore can be computed
for all the branches in time m2

ck · sec(GI)O(sec(GI)). As �
c∈CA

m2
c ≤ (�

c∈CA
mc)2 ≤ n2,

processing all the coordinates c takes time of at most n2k · sec(GI)O(sec(GI)). Record for
a vector v with mv children can be computed in mv · sec(GI)O(sec(GI)), which yields the
time d · sec(GI)O(sec(GI)) for processng all the vectors. Therefore the total running time
of the algorithm is upper-bounded by (kn2 + d) · sec(GI)O(sec(GI)).

5.7 Discussion
While our algorithmic results are specifically designed to deal with Means Clustering
with Missing Entries, it would be interesting to see whether the approaches and
techniques developed here can be applied to other clustering variants or, e.g., the
related task of low-rank matrix completion. Still, on the theoretical side the by far
most prominent problem that is relevant to this research direction is the complexity
of k-Means Clustering for real-valued matrices when parameterized by the number
of columns. A W[1]-hardness result for this problem would immediately exclude the
existence of a fixed-parameter algorithm for Real-valued MCME parameterized by
the incidence treewidth of the mask, while a fixed-parameter algorithm could potentially
open up the way towards tractability.
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CHAPTER 6
Lower Bounds and Algorithms for

Synchronous Dynamical Systems

Synchronous dynamic systems are a well-studied model used to capture a range of
diffusion phenomena in networks [RMRS21, CLPT20]. Such systems have been used,
e.g., in the context of social contagions (e.g., the spread of information, opinions, fads,
epidemics) as well as product adoption [AKM+19, GSM+18, OU17].

Informally, a synchronous dynamic system (SyDS) consists of a directed graph G (repre-
senting an underlying network) with each node v having a local function fv and containing
a state value from a domain B, which may evolve over discrete time steps1. While each
node v begins with an initial state value at time 0, at each subsequent time step it
receives an updated value by invoking the node’s local function fv on the state value of v
and of all nodes with arcs to v (i.e., the closed in-neighborhood of v). In line with recent
works [RMRS21, CLPT20], here we focus our attention to the Boolean-domain case with
deterministic functions, which is already sufficiently rich to model a variety of situations.
SyDS with Boolean domains are sometimes also called synchronous Boolean networks,
especially in the context of systems biology [OU20, AHCN07, KPST03].

In this chapter, we study the three most notable problems in synchronous dynamic systems:
whether the system will transition to a target configuration from a starting configuration,
whether the system will reach convergence from a starting configuration, and whether the
system is guaranteed to converge from every possible starting configuration. We show
that all three problems remain intractable even on instances of small constant treewidth.
We complement our hardness results with fixed-parameter algorithms parameterized by
treedepth. For the convergence guarantee, we achieve fixed-parameter tractability by
additional parameterization by maximum in-degree.

1Formal definitions are provided in Section 6.3.
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6.1 Related Work
A central notion in the context of SyDS is that of a configuration, which is a tuple
specifying the state of each node at a certain time step. In several use cases of SyDS,
there are clearly identifiable configurations that are either highly desirable (e.g., when
dealing with information propagation), or highly undesirable (when modeling the spread
of a disease or computer virus). Indeed, the Reachability problem [RMRS21]—deciding
whether a given target configuration will be reached from a given starting configuration—is
a classical computational problem on SyDS [OU17, AHCN07].
In other settings such as in opinion diffusion [AFG18, ACF+17], we do not ask for the
reachability of a specific configuration, but rather whether the system eventually converges
into a fixed point, i.e., a configuration that transitions into itself. This idea has led to the
study of two different problems on SyDS [CLPT20]: in Convergence we ask whether
the system converges (to an arbitrary fixed point) from a given starting configuration,
while in Convergence Guarantee we ask for a much stronger property—notably,
whether the system converges from all possible configurations.
In view of the fundamental nature of these three problems, it is somewhat surprising that
so little is known about their complexity. The PSPACE-completeness of Convergence
and Convergence Guarantee has been established few years ago [CLPT20], while
the PSPACE-completeness of Reachability on directed acyclic networks was established
even more recently [RMRS21]. Earlier, Barrett et al. [BIM+06] established the PSPACE-
completeness of Reachability on general directed networks of bounded treewidth and
degree, albeit the bounds obtained in that work are very large.

6.2 Our Contribution
Since Reachability, Convergence and Convergence Guarantee are all compu-
tationally intractable on general SyDS, it is natural to ask whether this barrier can be
overcome by exploiting the structural properties of the input network. In this chapter we
investigate these three problems through the lens of parameterized complexity.
As in case with clustering, we begin our investigation by considering treewidth, the most
widely studied and prominent graph parameter. In addition to its fundamental nature, it
should be noted that the structure of real-world networks has been shown to attain low
treewidth in several settings [MSJ19]. While Convergence Guarantee was already
known to be intractable even on networks of constant treewidth [RMRS21, Theorem 5.1]2,
previous reductions for Reachability and Convergence only apply to networks of
high treewidth [CLPT20, BIM+06]. Here, we show:

Theorem 6.1. Reachability and Convergence are PSPACE-complete, even on
SyDSs of treewidth 2 and maximum in-degree 3.

The main technical contribution within the proof is the construction of a non-trivial
counter which can loop over all exponentially many configurations of a set of nodes
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and whose structure is nothing more than a directed path. We believe the existence of
such a counter is surprising and may be of independent interest; it contrasts previous
counter constructions which relied on much denser connections between the nodes, but
interestingly its simple structure comes at the cost of the configuration loop generated
by the counter being highly opaque.

Intractability w.r.t. treewidth draws a parallel to the complexity behavior of the classical
QBF problem—an archetypical PSPACE-complete problem which also remains PSPACE-
complete on instances with bounded treewidth [AO14]. In fact, while being based on
entirely different ideas, our reduction and Atserias’ and Oliva’s construction for QBF
also show intractability for pathwidth, but do not exclude tractability w.r.t. treedepth.
Investigating the complexity of our problems under the parameter treedepth is the natural
next choice, not only because it lies at the very boundary of intractability, but also because
of its successful applications for a variety of other problems [GPSS20, GO18, GJW16] and
its close connection to the maximum path length in the network3. While the complexity
of QBF parameterized by treedepth remains a prominent open problem, as our second
main technical contribution we show:

Theorem 6.2. Reachability and Convergence are fixed-parameter tractable when
parameterized by the treedepth of the network.

The main idea behind the proof of Theorem 6.2 is to show that the total periodicity
of the configurations is upper-bounded by a function of the treedepth, and this fact
then enables us to argue the correctness of an iterative pruning step that allows us to
gradually reduce the instance to an equivalent one of bounded size. As for the third
problem (Convergence Guarantee), fixed-parameter tractability w.r.t. treedepth is
excluded by the intractability of the problem on stars.

While these results already provide a fairly tight understanding of the complexity land-
scape for two out of the three studied problems, they do raise the question of which
structural properties of the network can guarantee the tractability of Convergence
Guarantee. Intuitively, one of the main difficulties when dealing with Convergence
Guarantee is that it is not even possible to enumerate all possible starting configurations
of the network. Yet, in spite of this seemingly critical problem, we conclude by establish-
ing fixed-parameter tractability of Convergence Guarantee when parameterized by
treedepth plus the maximum in-degree:

Theorem 6.3. Convergence Guarantee is fixed-parameter tractable when parame-
terized by the treedepth plus the maximum in-degree of the network.

Our results are summarized in Table 6.1. For completeness, we remark that the results
are robust in terms of the type of functions that can be used—in particular, all our

3A class of networks has bounded treedepth if and only if there is a bound on the length of any
undirected path.
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algorithmic results hold even if we assume that the functions are black-box oracles.
Moreover, in some settings it may be useful to ask whether a target configuration and/or
convergence is reached up to an input-specified time point; incorporating this as an
additional constraint leads to a strict generalization of Reachability, Convergence
and Convergence Guarantee, and all of the algorithms provided here can also directly
solve these more general problems.

unrestricted tw td td + in-degree
Reachability PSPACE-c PSPACE-c† FPT FPT
Convergence PSPACE-c PSPACE-c† FPT FPT

Convergence Guarantee PSPACE-c coNP-h coNP-h FPT

Table 6.1: Summary of our main results (marked in bold). These include (1) the PSPACE-
completeness of the former two problems on networks of constant treewidth, (2) their
fixed-parameter tractability with respect to the parameter treedepth, and (3) a fixed-
parameter algorithm for Convergence Guarantee when parameterized by treedepth
plus the in-degree of the network. The coNP-hardness of the latter problem on networks of
constant treedepth and treewidth follows from previous work [RMRS21, Theorem 5.1]).
† The PSPACE-completeness of Reachability and Convergence on inputs of bounded
treewidth was already shown by Barrett et al. [BIM+06], albeit the constants used in
that reduction were very large while here we establish intractability for treewidth 2.

6.3 Notation and Problem Definition
We use δ−(v) to denote the in-neighbourhood of a node v in a directed graph, i.e., the set
of all nodes w such that the graph contains an edge wv which starts in w and ends in v.

It will be useful for us to consider tuples as implicitly indexed. This means, for two sets
A and B we use BA to denote the set of tuples with |A|-many entries, each of which
is an element of B and at the same time we associate each of the entries with a fixed
element of A. For a tuple x ∈ BA and an element a ∈ A, we denote by xa the entry of x
that is associated with a.

Synchronous Dynamic Systems. A synchronous dynamic system (SyDS) S =
(G,B, {fv | v ∈ V (G)}) consists of an underlying directed graph (the network) G, a node
state domain B, and for each node v ∈ V (G) its local function fv : Bδ−(v)∪{v} → B. In
line with previous literature, we will always consider B = {0, 1} to be binary; however, all
results presented herein can be straightforwardly generalized to any fixed (i.e., constant-
size) domain. A configuration of a SyDS is a tuple in BV (G). The successor of a
configuration x is the configuration y which is given by yv = fv(xv) for every v ∈ V (G).
A configuration x is a fixed point of a SyDS if it is its own successor, i.e. for all v ∈ V (G),
it holds that fv(xv) = xv.
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Given two configurations x and y of a SyDS S, we say y is reachable from x if there is a
sequence of configurations of S starting in x and ending in y such that every configuration
in the sequence is followed by its successor.

The three problems on synchronous dynamic systems we consider are formalized as
follows:

Reachability
Input: A SyDS S = (G,B, {fv | v ∈ V (G)}), a configuration x of S called starting

configuration and a configuration y of S called target configuration.
Task: Determine whether y is reachable from x.

Convergence
Input: A SyDS S = (G,B, {fv | v ∈ V (G)}) and a configuration x of S called

starting configuration.
Task: Determine whether there is a fixed point of S that is reachable from x.

Convergence Guarantee
Input: A SyDS S = (G,B, {fv | v ∈ V (G)}).
Task: Determine whether for every configuration x of S there is a fixed point

of S that is reachable from x.

Similarly to other applications of treewidth on directed networks [GHO21, GRSZ18],
in this chapter we consider the treewidth and treedepth of the underlying undirected
graph, which is the simple graph obtained by ignoring the orientations of all arcs in the
graph. While directed analogues for treewidth have been considered in the literature,
these have constant values on DAGs and hence cannot yield efficient algorithms for any
of the considered problems [RMRS21].

6.4 The Path-Gadget and Hardness for Treewidth
We provide a construction showing that even SyDSs which are directed paths can reach
an exponential number of configurations. This functions as a crucial gadget for showing
PSPACE-hardness of Reachability and Convergence, but is also an interesting
result in its own right as it significantly simplifies known constructions of SyDSs with
exponential periods [RMRS21].
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Theorem 6.4. For every n ∈ N, there is a SyDS X (n) = (G,B = {0, 1}, {fv | v ∈ V (G)})
and an initial configuration x0, such that

• G is a directed path v1v2 . . . v2n,

• x0 is the all-zero configuration,

• the successor of x0 is the configuration x1 such that x1
vj

= 1 if and only if j = 1 or
(j mod 2) = 0, and

• for every i ∈ [n+1] and every tuple t ∈ Bi, there exists q ∈ {0, . . . , 2i −1} such that,
for every p ∈ N, the configuration of X (n) after 2i · p + q successor steps restricted
to v1, v2, v4, . . . , v2i−4, v2i−2 is equal to t.

In particular, for every p ∈ N, after 2i · p steps, the node state of each of the nodes
v1, v2, v4, . . . , v2i−4, v2i−2 is 0.

Proof. Let us fix some n ∈ N. For simplicity of notation, we will denote the local function
fvj for the node vj by fj . The local function for the node v1 is f1 : B → B given by
f1(b) = 1 − b, that is the configuration alternates between 0 and 1. For every i ∈ [n], the
local function for the node v2i is f2i : B2 → B given by f2i(b1, b2) = (b1−b2+1)·(b2−b1+1).
Equivalently, f2i(b1, b2) = 1 if and only if b1 = b2 and f2i(b1, b2) = 0 otherwise, and so the
function is simply an evaluation of the equivalence relation. Next, for every i ∈ [n − 1],
the local function for the node v2i+1 is f2i+1 : B2 → B given by f2i+1(b1, b2) = b1 · (1 − b2).
Equivalently, the configuration on v2i+1 is 1 if and only if in the previous step, the
configuration on v2i+1 was 0 and the configuration on v2i was 1.

This finishes the description of the SyDS. We will now prove that the structure of
configurations over the time steps has the desired properties. To this end, we denote
the initial configuration x0 and for configuration xi, we denote its successor as xi+1.
Moreover, for simplicity of the notation, we denote by xi

j the state of the node vj in i-th
step, that is xi

vj
.

Clearly, xi
1 = 0 if i mod 2 = 0 and xi

1 = 1 if i mod 2 = 1. Moreover, it is also easy to
verify now that x1

j = 1 if and only if j = 1 or (j mod 2) = 0 since for j ≥ 2, we have by
the definition of the local functions that fj(0, 0) = 1 if and only if j is even. In order to
complete the proof, we first establish the following claim.

Claim 6.5. For all j ≥ 1 and i ∈ N, it holds that xi
j = xi′

j , where i′ = i mod 2⌊ j
2 ⌋+1.

Moreover, if j is even, then xi
j = 1 − xi′′

j , where i′′ = i + 2⌊ j
2 ⌋.

Proof of the Claim:

Let us first introduce some notation that will help with exposition. For a node vj , we

will let the period vector for the node vj be the vector pvj = (x0
jx1

j . . . x2⌊ j
2 ⌋+1−1

j ) of
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length 2⌊ j
2 ⌋+1. For simplicity, we mostly split the vector into smaller pieces consisting of

at most three entries. Moreover, we use the exponent for a piece to specify how many
times the same piece repeats in a row in the vector. For example, we could write the
vector (01001011) as (010)2(11). The reason we call these the “period vectors” is that we
will show that for all i ∈ N we have xi

j = xi′
j , where i′ = i mod 2⌊ j

2 ⌋+1; in other words,
the period vector repeats cyclically as the state xi

j of the node vj starting from x0
j .

Let us proceed by computing the few first period vectors. This is straightforward, as
we are always computing pvj+1 from pvj using the fact that x0

j+1 = 0. In each of the
cases, we also make sure that the period vector pvj indeed repeats as the state changes
of node vj . Since the length of the period vector pvj+1 is either the same as the period

vector pvj or double the length of period vector pvj , it suffices to verify that x2⌊ j
2 ⌋+1

= 0
(assuming that we did the check for pvj already). Moreover, we also check that for even
j we have xi

j = 1 − xi′′
j , where i′′ = i + 2⌊ j

2 ⌋.

• pv1 = (01);

• pv2 = (01)(10) = (011)(0);

• pv3 = (001)(0);

• pv4 = (010)(0)(101)(1) = (010)2(11);

• pv5 = (001)2(01);

• pv6 = (010)2(01)(101)2(10) = (010)2(011)3(0);

• pv7 = (001)5(0);

• pv8 = (010)5(0)(101)5(1) = (010)6(110)4(11);

• pv9 = (001)6(010)4(01);

• pv10 = (010)6(011)4(01)(101)6(100)4(10) = (010)6(011)11(001)4(0);

• pv11 = (001)17(000)(100)3(1);

• pv12 = (010)17(010)(110)3(1)(101)17(101)(001)3(0) = (010)18(110)21(100)3(10);

The reason we computed the first 12 entries is that we will show that from here onward,
the structure of the period vectors for vj will begin to follow a cyclic pattern. Namely,
we will distinguish the remaining nodes by (j mod 4) and show that the structure of
their period vectors is the same as the structure of period vectors for v9, v10, v11, and v12
respectively. More precisely, we show that for j ≥ 9, the following patterns are preserved.
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• If j = 4k, pvj = (010)ℓ(110)p(100)q(10) for some ℓ, p, q ∈ N such that ℓ + p + q =
22k+1−2

3 .

• If j = 4k + 1, pvj = (001)p(010)q(01) for some p, q ∈ N such that p + q = 22k+1−2
3 .

• If j = 4k + 2, pvj = (010)ℓ(011)p(001)q(0) for some ℓ, p, q ∈ N such that ℓ + p + q =
22k+2−1

3 .

• If j = 4k+3, pvj = (001)p(000)(100)q(1) for some p, q ∈ N such that p+q = 22k+2−4
3 .

While proving the structure of the period vector in each case, we will simultaneously
show that the claim holds in each of the cases. Moreover, note that the structural claim
about pvj holds for j = 12. We distinguish the cases on the remainder of j modulo four.

Case j = 4k for k ≥ 3. Let us assume that pvj = (010)ℓ(110)p(100)q(10) for some
ℓ, p, q ∈ N such that ℓ + p + q = 22k+1−2

3 . We know that fj+1(b1, b2) = b1 · (1 − b2).
Moreover x0

j+1 = 0. Before we prove the structure for the case j + 1 = 4k + 1 more
formally, let us write the two structures under each other in a suggestive way such that it
is rather straightforward to verify the structure of the period vector pvj+1 from pvj+1,
fact that x0

j+1 = 0, and the function fj+1.

pv4k → (010)ℓ(110)p(100)q(10)
pv4k+1 → (001)ℓ(010)p(010)q(01)

Now, we discuss this a bit more formally. Let us first check how the state of vj+1 changes,
when the state of vj is in the first part where it changes as (010)ℓ staring from x0

j = 0
and x0

j+1 = 0. We get x1
j+1 = fj+1(x0

j , x0
j+1) = fj+1(0, 0) = 0, x2

j+1 = fj+1(1, 0) = 1 and
x3

j+1 = fj+1(0, 1) = 0. That is from the first (010) for vj we get (001) and in addition we
get that the next triple starts again with 0. It follows that pvj+1 starts with (001)ℓ and
x3ℓ

j+1 = 0. Given this, let us see how xi
j+1 changes on the (110)p. We have fj+1(1, 0) = 1,

fj+1(1, 1) = 0, and fj+1(0, 0) = 0. Hence we get (010) on the first (110) with addition
that x3ℓ+3

j+1 = 0, hence we get additional (010)p to pvj+1. For (100), when the first state
of vj+1 is 0, we get fj+1(1, 0) = 1, fj+1(0, 1) = 0, fj+1(0, 0) = 0 . Hence, we get (010) for
the first (100) with the next state of vj+1 being again 0. Therefore, we get additional
period (010)q. Finally for (10) we get fj+1(1, 0) = 1 which leads to final (01) to the
period vector pvj+1 and pvj+1 = (001)ℓ(010)p+q(01). Finally, f(0, 1) = 0 ensures that
x22k+1

j+1 = x0
j+1 and since, by induction hypothesis, the period vector for vj repeats, so

does the vector for vj+1.

Case j = 4k + 1 for k ≥ 3. Let us assume that pvj = (001)p(010)q(01) for some
p, q ∈ N such that p+ q = 22k+1−2

3 . We know that fj+1(b1, b2) = (b1 − b2 + 1) · (b2 − b1 + 1).
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Moreover x0
j+1 = 0. Let us again write down how the period vector pvj influenced the

period vector pvj+1.

pv4k+1 → (001)p(010)q(01) | (001)p(010)q(01)
pv4k+2 → (010)p(011)q(01) | (101)p(100)q(10)
pv4k+2 → (010)p(011)q(011)(011)p(001)q(0)

Note that fj+1(1, 1) = 1, hence x22k+1
j+1 = 1 and we needed to repeat the period vector

for vj twice to get the period vector for vj+1. Moreover, we can see that for all i ∈
{0, . . . , 22k+1 − 1} it holds that xi

j+1 = 1 − xi+22k+1
j+1 . However, fj+1(1, 0) = 0 and

x22k+2
j+1 = x0

j+1 = 0 and it follows that the period vector for vj+1 repeats each 22k+2

steps. Checking that the transition outlined above is correct is rather straightforward
and similar to the case j = 4k.

Case j = 4k + 2 for k ≥ 3. Assume that pvj = (010)ℓ(011)p(001)q(10) for some
ℓ, p, q ∈ N such that ℓ + p + q = 22k+2−1

3 . Moreover, fj+1(b1, b2) = b1 · (1 − b2) and
x0

j+1 = 0. We get the following transition from pvj to pvj+1

pv4k+2 → (010)ℓ(011)p(001)(001)q−1(0)
pv4k+3 → (001)ℓ(001)p(000)(100)q−1(1)

Since fj+1(0, 1) = 0, we get x22k+2
j+1 = x0

j+1 = 0 and it follows that the period vector for
vj+1 repeats each 22k+2 steps. Checking that the transition outlined above is correct is
rather straightforward and similar to the case j = 4k.

Case j = 4k + 3 for k ≥ 3. Assume that pvj = (001)p(000)(100)q(1) for some p, q ∈ N
such that p + q = 22k+2−1

3 . Moreover, fj+1(b1, b2) = (b1 − b2 + 1) · (b2 − b1 + 1) and
x0

j+1 = 0. We get the following transition from pvj to pvj+1

pv4k+3 → (001)p(000)(100)q(1) | (001)p(000)(100)q(1)
pv4k+4 → (010)p(010)(110)q(1) | (101)p(101)(001)q(0)
pv4k+4 → (010)p(010)(110)q(110)(110)p(100)q(10)

Again, we have that fj+1(1, 1) = 1, hence x22k+2
j+1 = 1 and we needed to repeat the period

vector for vj twice to get the period vector for vj+1. Moreover, we can see that for all
i ∈ {0, . . . , 22k+2 − 1} it holds that xi

j+1 = 1 − xi+22k+2
j+1 . Finally, fj+1(1, 0) = 0 and

x22k+2
j+1 = x0

j+1 = 0 and it follows that the period vector for vj+1 repeats each 22k+3 steps.
■

Observe that the above claim already implies that for all i ∈ [n + 1] and p ∈ N, the state
of the node v2i−2 after 2i · p steps is 0 (i.e., x2i·p

2i−2 = 0).
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Now, given the above claim on the structure of the configuration, it is also rather
straightforward to show that for all i ∈ [n + 1] and all tuples t ∈ Bi, there exists
q ∈ {0, . . . , 2i − 1} such that, for every p ∈ N, the configuration of X (n) after 2i · p + q
successor steps restricted to the nodes v1, v2, v4, . . . , v2i−4, v2i−2 is equal to t. First note
that for i = 1, the node v1 flips always between 0 and 1 and the statement holds. Moreover,
for i = 2, the nodes v1 and v2 have the following transitions through configurations
00 ⇝ 11 ⇝ 01 ⇝ 10 ⇝ 00. Let us assume that for some i ∈ [n] for every tuple t ∈ Bi,
there exists q ∈ {0, . . . , 2i − 1} such that for every p ∈ N, the configuration of X (n) after
2i · p + q successor steps restricted to the nodes v1, v2, v4, . . . , v2i−4, v2i−2 is equal to t.

Let t ∈ Bi+1, we will show that there exists q ∈ {0, . . . , 2i+1 − 1} such that for every
p ∈ N, the configuration of X (n) after 2i+1 · p + q successor steps restricted to the
nodes v1, v2, v4, . . . , v2i−2, v2i is equal to t. Denote by t′ the restriction of t to the first
i bits. By induction hypothesis, there exists q′ ∈ {0, . . . , 2i − 1} such that for every
p′ ∈ N, the configuration of X (n) after 2i · p′ + q′ successor steps restricted to the nodes
v1, v2, v4, . . . , v2i−4, v2i−2 is equal to t′. By the above claim,

x2i·p′+q′
2i = 1 − x2i·p′+q′+2i

2i .

It follows that for every p ∈ N, t appears as the restriction of the configuration to
v1, v2, v4, . . . , v2i−2, v2i after 2i+1 · p + q steps, where q is either equal to q′ or to q′ + 2i.
Repeating the same argument for all t ∈ Bi+1 completes the proof.

With the path-gadget ready, we can proceed to establishing our first hardness result. The
idea of the reduction used in the proof loosely follows that of previous work [RMRS21],
but uses multiple copies of the path gadget from Theorem 6.4 (instead of a single counting
gadget that has a tournament as the network) to avoid dense substructures. Note that
the usage of the structurally simpler, but behaviourally more complicated, path-gadget
requires some additional changes to the construction. Furthermore, compared to the
earlier result of Barrett et al. [BIM+06], we obtain much smaller bounds on the treewidth
and maximum degree (however, our reduction does not provide a bound on the bandwidth
of the graph).

Theorem 6.1. Reachability and Convergence are PSPACE-complete, even on
SyDSs of treewidth 2 and maximum in-degree 3.

Proof. We proceed by a reduction from QBF which is known to be PSPACE-hard [GJ79]
and takes as input a formula Qnxn . . . Q1x1ϕ where all Qi are either ∀ or ∃ and ϕ is a
3SAT-formula.

From this we construct a SyDS S which converges to one specific configuration (the
all-one configuration) if and only if the given formula is true.

The overall idea is for (multiple copies4 of) the SyDS X (n) (see Theorem 6.4) to iterate
over all possible truth assignments of the variables x1 to xn. While it would be possible to

4all copies will be independent, have no additional in-neighbours and start at the same configuration
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Figure 6.1: Overview of the network constructed in the proof of Theorem 6.1. To not
clutter the figure, the arcs from z to all other nodes omitted, and subgraphs introduced
for variable nodes are illustrated in detail at the top and only indicated by orange (darker
shade ≃ higher index) in all other places.

simply associate every significant node X (n) with a variable, we will add auxiliary variable
nodes as to go through the variable assignments in a well-structured way. Then clause
nodes aggregate the implied truth values of the clauses of ϕ. These clause nodes can then
be used as incoming neighbours for subformula nodes to derive the truth value of formulas
Qixi . . . Q1x1ϕ respectively. Once the truth value of Qnxn . . . Q1x1ϕ is determined to be
true we use a control node to set the whole SyDS to a configuration with all entries being
equal to 1. Otherwise the copies of X (n) continue to loop through their period. We call
the nodes v1 and v2i with i ∈ [n] of a copy of X (n) significant.
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To not obfuscate the core of the construction we initially allow an arbitrary node degree
and give a description on how to reduce it to a constant at the end of the proof. The
overall structure of the underlying graph which we construct is depicted in Figure 6.1.
The starting configuration will have an entry 0 for all nodes except the ones in the copies
of X (n) which will instead start at configuration x1 from Theorem 6.4. We describe our
construction in a hierarchical manner, going from the most fundamental to the most
complex (in the sense that they rely on the earlier ones) types of nodes.

For each variable xi, a variable node ui has an incoming arc from the j-th significant
node of the j-th of i private copies of X (n) for all j ∈ [i]. In addition we add an auxiliary
node un+1 which will not actually represent a variable of ϕ itself but otherwise be treated
and hence also be referred to as a variable node for convenience. un+1 has incoming arcs
from the j-th significant node of the j-th of n + 1 private copies of X (n) for all j ∈ [n + 1].
It will become apparent later that it is useful to introduce un+1 and that X(n) cycles
only after 2n+1 time steps rather than just 2n for technical reasons. We define fui to
change the configuration at ui if and only if the configuration of all of its in-neighbours
is 0 and to leave it unchanged otherwise. To give some intuition for the behaviour of
the variable nodes with this construction it is useful to refer to the position of a tuple
t ∈ B{v1}∪{v2i|i∈[n]} as the number of time steps required to reach a configuration of X (n)

that is equal to t on the significant nodes starting from the configuration x1. Theorem 6.4
upper-bounds the position of a tuple by 2n+1.

Claim 6.6. At any time step, taken together the variable nodes un+1 . . . u1 encode the
position of the configuration of the significant nodes of the path gadgets in binary (that
are the same on different copies) in the previous time step.

Proof of the Claim: By Theorem 6.4 and the choice of our starting configuration, the
configuration at the i first significant nodes is all-zero exactly in multiples of 2i time
steps. Because of the definition of the local functions this means that the configuration at
ui flips at each time step after a multiple of 2i. Considering all variable nodes together,
this is exactly how a cyclic binary counter from 0 to 2n+1 works which is the same as a
counter for the position of a configuration on the significant nodes of X (n). ■

This means that the variable nodes just like the significant nodes of X (n) have the
property that on them any shared configuration is reachable, and in addition these shared
configurations are reached in the order of the binary numbers they represent. Clearly
this construction for each ui leads to an underlying tree and hence has treewidth 1.

For each clause C = xj1 ∨ xj2 ∨ xj3 of ϕ, a clause node c has incoming arcs from private
variable nodes uj1 , uj2 and uj3 and its local function is 1 if and only if the configuration
of at least one of these in-neighbours is 1. This means we will have a copy of each
variable node with its own copies of X (n) for each occurrence of that variable in ϕ. The
underlying graph formed by this construction is still a tree.
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For each i ∈ [n] we introduce a subformula node si. s1 has incoming arcs from all clause
nodes and a private variable node u1. For i ∈ [n] \ {1}, si has incoming arcs from si−1
and private variable nodes u1, . . . , ui. As before, this construction still results in a tree.

Now we turn to the definition of the local functions for subformula nodes. We define fs1

as follows: If the entry from u1 is 1, then fs1 maps to 1 if and only if all entries from the
clause nodes are 1. Otherwise if Q1 = ∃, fs1 maps to 1 if and only if the entry for s1 or
all entries from the clause nodes are 1. Otherwise the entry from u1 is 0 and Q1 = ∀,
and we let fs1 map to 1 if and only if the entry for s1 and all entries from the clause
nodes are 1. For i ∈ [n] \ {1} we define fsi as follows: If the incoming variable nodes in
the order ui . . . u1 are the binary encoding of 2i−1 + i − 1, then fsi maps to the entry
for si−1. Otherwise if the incoming variable nodes in the order ui . . . u1 are the binary
encoding of i − 1 and Qi = ∃, then fsi maps to 1 if and only if the entry for si or the
entry for si−1 is 1. Otherwise if the incoming variable nodes in the order ui . . . u1 are the
binary encoding of i − 1 and Qi = ∀, then fsi maps to 1 if and only if the entry for si

and the entry for si−1 is 1. Otherwise the incoming variable nodes in the order ui . . . u1
do not encode 2i−1 + i − 1 or i − 1 and we let fsi map to the entry for si.

With these local functions we can show the following.

Claim 6.7 (cf. [RMRS21, Claim 1]). Let i ∈ [n] and t be a tuple over B with an entry for
each of {xi+1, . . . , xn} which in the order txn . . . txi+1 is a binary encoding of the number k.
Then the configuration of si when un . . . u1 is the binary encoding of (k + 1)2i + i is equal
to the truth value (i.e. 1 if true and 0 if false) of Qixi . . . Q1x1ϕ(t) where ϕ(t) arises
from ϕ by replacing each occurrence of xj with j ∈ [n] \ [i] by its entry in t.

Proof of the Claim: This claim is already essentially shown as Claim 1 in [RMRS21] but
we reprove it in our setting and notation for self-containedness.

The proof works by induction on i. For the base case i = 1 we want to show the correct
configuration at s1 and when un . . . u1 encodes (k + 1)2 + 1. By Claim 6.6, to determine
the configuration of s1 when un . . . u1 encodes (k + 1)2 + 1, we need to consider the
application of the local function fs1 when un . . . u1 encodes (k + 1)2. By the definition of
fs1 this means that then the configuration at s1 is derived as the as the disjunction if
Q1 = ∃ and conjunction if Q1 = ∀ of the truth value of ϕ(a), where a associates xn . . . x1
to the bits of the binary encoding of (k + 1)2 − 1 = 2k + 1, and the configuration at s1
when un . . . u1 encodes (k + 1)2. To determine the latter we have to consider the the
application of the local function fs1 when un . . . u1 encodes (k + 1)2 − 1 = 2k + 1. By
the definition of fs1 this means the configuration at s1 when un . . . u1 encodes (k + 1)2
is equal to the truth value of ϕ(b), where b associates xn . . . x1 to the bits of the binary
encoding of 2k + 1 − 1 = 2k. Observe that a and b correspond to t+1 which adds to t an
entry with value 1 for x1 and t+0 which adds to t an entry with value 0 for x1 respectively.
The truth value of Q1x1ϕ(t) is the disjunction of ϕ(t+0) and ϕ(t+1) if Q1 = ∃, and the
conjunction of ϕ(t+0) and ϕ(t+1) if Q1 = ∀. This proves the base case.
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We now turn to the induction step. Same as before, the truth value of Qi+1xi+1 . . . Q1x1ϕ(t)
is the disjunction of Qixi . . . Q1x1ϕ(t+0) and Qixi . . . Q1x1ϕ(t+1) if Q1 = ∃, and the
conjunction of Qixi . . . Q1x1ϕ(t+0) and Qixi . . . Q1x1ϕ(t+1) if Q1 = ∀ where t+0 adds
an entry for xi+1 with value 0 and t+1 adds an entry for xi+1 with value 1 to t.
By induction hypothesis these are the configurations at si when un . . . u1 encodes
(2k + 1)2i + i = 2i+1k + 2i + i and (2k + 2)2i + i = 2i+1(k + 1) + i respectively.
When un . . . u1 encodes (2k + 1)2i + i = 2i+1k + 2i + i, then the in-neighbours of si+1
together encode 2i + i = 2i+1−1 + i + 1 − 1. By the definition of fsi+1 , si+1 then takes the
configuration at si which by the argument above is the truth value of Qixi . . . Q1x1ϕ(t+0).
This configuration is retained at si+1 until un . . . u1 encodes 2i+1(k + 1) + i because
for step between un . . . u1 encoding 2i+1k + 2i + i and 2i+1(k + 1) + i, does xi . . . x1
encode i or 2i + i. When un . . . u1 encodes 2i+1(k + 1) + i, then the in-neighbours of si+1
together encode i = i + 1 − i. By the definition of fsi+1 , si+1 then takes the disjunction if
Qi+1 = ∃ between the configuration at si which by the argument above is the truth value
of Qixi . . . Q1x1ϕ(t+1) and the configuration currently at si+1 which by the argument
above is the truth value of Qixi . . . Q1x1ϕ(t+0), and the conjunction of the same values
if Qi+1 = ∀. This is exactly the desired behaviour described at the beginning of the
induction step. ■

Taking this, the QBF input formula is true if and only if the entry of the configuration
of the SyDS S whose construction we described up to now in this proof when un . . . u1
are the binary encoding of 2n + n (= (0 + 1)2n + n for t being the empty tuple in the
previous claim) is 1.

In this case and only in this case we want the SyDS to converge, and in particular
interrupt the looping through different configurations of the copies of X (n). For this
purpose we introduce a control node z which has an incoming arc from every node of a
private copy of every variable node un+1 . . . u1 and and an outgoing arc to all other nodes.
We let fz map to 1 if and only if the entries for the variable nodes encode 2n + n in
binary (this is where the auxiliary node un+1 becomes important as this number cannot
be encoded by the even-index nodes of only X (n)) and the entry for rn is 1 or if the
entry for fz is already 1. We add an entry for fz to all previously defined local functions
and condition the previously defined behaviour on this entry being 0. As soon as this
entry is 1 the local functions of all nodes should also map to 1. In this way the all-one
configuration is reachable from the all-zero configuration if and only if the QBF input
formula is true and this is the only way for the SyDS to converge.

Note that the network constructed in this manner consists of a directed tree plus the
additional vertex z.

Modification for constant in-degree. To obtain a network with constant maximum
in-degree, note that by currying [Cur80] one can write every local function that takes
polynomially many arguments as a polynomial-length series of functions that each take 2
arguments. In this way we can essentially replace every node with an in-degree of more
than two by a tree of polynomial depth in which each node has in-degree 2.
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For simplicity, we keep the control node as in-neighbour for every node. Formally, we
replace any node a with δ−(a) = {b1, . . . , bℓ, z} with ℓ > 2 as follows. By currying,
we find f1, . . . , fℓ−1 such that f1, . . . , fℓ−2 take three arguments each, fℓ−1 takes four
arguments and for any tuple t ∈ B{b1,...,bℓ,b,z}, it holds that

fa(tb1 , . . . , tbℓ
, tb, tz) = fℓ−1(fℓ−2(. . . f1(tb1 , tb2 , tz), tbℓ−1 , tz), tbℓ

, tb, tz).

In place of a we introduce a1, . . . , aℓ−1 and let the in-neighbours of a1 be b1 and b2, and
the in-neighbours of ai+1 for i ∈ [ℓ − 2] \ {1} be ai and bi+2. We let the out-neighbours
of aℓ−1 be the former out-neighbours of a and define fai as fi. By the choice of fai for
i ∈ [ℓ − 1], assuming synchronous computation of the configurations at all of a1 . . . , aℓ−1
from b1 . . . , bℓ, a and aℓ−1 would be functionally equivalent.

However, this assumption is not one we can simply make, as the configuration of b1
through bℓ at one time step require differently long to reach aℓ−1. To avoid asynchronous
indirect arrival of the inputs from b1, . . . , bℓ we replace the arc that connects bi+2 for
i ∈ [ℓ − 2] to the tree replacing a by a directed path with i − 1 nodes. The first node on
each of these paths behaves like ai from the construction above and for the rest, let their
local function copy the configuration of their respective predecessor at the previous time
step. In this way, at time step t + ℓ − 1, aℓ−1 is functionally equivalent to a from our
old construction at time step t + 1. This means the output at all nodes which stand for
the nodes with in-degree ℓ > 3 from our original construction is delayed by ℓ − 2 time
steps. Because ℓ = n for all variable nodes, the configuration at every variable node is
uniformly delayed by n − 2 compared to our original construction. Similarly all clause
nodes are delayed by 1 in addition to the cumulative delay of its non-z ancestors, s1 is
delayed by one less than the number of clauses in addition to the cumulative delay of
its non-z ancestors, and each si with i ∈ [n] \ {1} is delayed by i − 1 in addition to the
cumulative delay of its non-z ancestors. As all variable nodes remain synchronised, this
delay does not impact the proof of correctness. This replacement does not change the
fact that the constructed network consists of a directed tree plus a single node.

6.5 An Algorithm Using Treedepth
In this section, we exploit the treedepth decomposition of the network to transform the
instances of Reachability and Convergence into equivalent ones of bounded size.
Our algorithms then proceed by simulating all possible configurations of the resulting
smaller network.

Let F be the treedepth decomposition of G; without loss of generality, we may assume
that F is a tree. We denote the subtree of F rooted in v by Fv. Let G∗

v be the vertex-
induced subgraph of G induced by the nodes associated to Fv and the neighbourhood of
Fv in G. Our aim is to iteratively compress nodes of G from the leaves to the root to
obtain a graph G′ with number of nodes bounded by some function of td(G).
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Lemma 6.8. Let I be an instance of Convergence or Reachability and let F be the
treedepth decomposition of G of height L. Assume that for some v ∈ V (G), all the subtrees
rooted in children of v contain at most m nodes. Then I can be modified in polynomial time
to an equivalent instance I ′ with network G′ which has a treedepth decomposition F ′ of
height at most L such that F ′ \F ′

v ⊆ F \Fv and |V (F ′
v)| ≤ mm−1 ·(4L+m · |B|L+m+1)m +1.

Proof. We say that two children u and w of v have the same type (denoted by u ≡ w) if
there exists an isomorphism φ : G∗

u → G∗
w that is the identity on the neighbourhood of

Fu such that for every z ∈ V (Fu):

• the initial states of z and φ(z) are the same.

• fφ(z) acts on Bδ−(φ(z))∪{φ(z)} as fz acts on Bδ−(z)∪{z} (the orderings of the neighbours
of z and their images agree).

In this case, the states of z and φ(z) coinside at each time step. Since the composition
of two such isomorphisms results in an isomorphism with the same properties, ≡ is an
equivalence relation on the set of children of v.

Let us upper-bound the number of its equivalence classes. For convenience, we will
represent the isomorphisms between the rooted subtrees of children of v by labelling
their nodes. Namely, if u1, . . . us have the same type, let us fix some isomorphisms
φi : G∗

ui
→ G∗

ui+1 , i ∈ [s − 1], witnessing this. We label the nodes of Gu1 arbitrarily and
then for each i ∈ [s − 1] label the nodes of Gui+1 to make the labels preserved under φi.
By the Cayley’s Formula (see, e.g., [Shu18]), the number of labelled trees on m nodes
is mm−2. For every node z of such a tree Z, there can be |B| possible initial configurations.
As G ⊆ λ(F), all the neighbours of z are either its ancestors or belong to Z. Since F
has the height of L, there are 2L+m−1 possibilities for the sets of in- and out-neighbours
of z. This results in at most 2L+m · |B|L+m options for the local function fz. In total,
the number of types of children of v is at most mm−2 · (4L+m · |B|L+m+1)m.

Let u and w be the children of v of the same type. Intuitively, since the configurations
of the rooted subtrees Fu and Fv coincide at each time step, it is sufficient to preserve
only one of them. Formally, let v̄1, . . . , v̄q be the equivalence classes of ≡ where vi ∈ v̄i.
Consider the graph G′ = G \ q

i=1


ui ̸=vi
V (Fui) with the treedepth decomposition

F ′ = F [V (G′)]. We define the local function f ′
v for each node v of G′ by shrinking its

local function fv as follows. We say that the ordered tuple τ ∈ Bδ−
G(v)∪{v} is an extension

of τ ′ ∈ Bδ−
G′ (v)∪{v} (or, equivalently, that τ ′ is a restriction of τ) if τ ′ can be obtained

from τ by deleting the entries corresponding to the nodes that are not present in G′,
while preserving the order. If in addition the entries of τ coincide for the nodes that
belong to subtrees of children of v with the same type and have the same label, we say
that τ is a true extension of τ ′. Observe that for any τ ′ ∈ Bδ−

G′ (v)∪{v} there exists unique
true extension τ , we set f ′

v(τ ′) = fv(τ). Finally, we define the initial (and final, in case of
Reachability) configurations x′ (y′) as the restrictions of x (and y respectively) to the
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node set of G′. In case of Reachability, if y is not a true extension of y′, we discard
the constructed instance and return a trivial NO-instance. In the reduced instance, v has
at most mm−2 · (4L+m · |B|L+m+1)m children. Since the rooted subtree of any child of v
has size of at most m, we can upper-bound |V (F ′

v)| by mm−1 · (4L+m · |B|L+m+1)m + 1.

Lemma 6.8 allows us to iteratively compress instances of Convergence or Reachability:

Lemma 6.9. There exists a computable function g : N×N → N such that for any L ∈ N
and l ∈ [L], any instance I of Convergence or Reachability with td(G) = L can be
in transformed in polynomial time into an equivalent instance I ′ such that td(G′) ≤ td(G)
and there is a treedepth decomposition of G′ of height td(G′) in which any subtree rooted
in a node of height L − l + 1 has at most g(L, l) nodes.

Proof. For the leaves (l = 1), we can simply set g(L, 1) = 1. Assume that g(L, i) is
defined for every i ∈ [l]. Let I be the instance of Convergence or Reachability and
let F be the treedepth decomposition of G of depth L such that any subtree rooted
in a node of height L − l + 1 has at most m = g(L, l) nodes. We consequently apply
Lemma 6.8 to each node of level L − l. In a resulting graph, a subtree rooted in any
node of level L − l has size at most mm−1 · (4L+m · |B|L+m+1)m + 1. Hence we can define
g(L, l + 1) = g(L, l)g(L,l)−1 · (4L+g(L,l) · |B|L+g(L,l)+1)g(L,l) + 1.

By setting h(L) = g(L, L) for each L ∈ N, we immediatedly obtain the compression
procedure:

Corollary 6.10. There exists a computable function h : N → N such that every instance
I of Convergence or Reachability with td(G) = L can be transformed in polynomial
time into an equivalent instance I ′ of the same problem with |V (G′)| ≤ h(L).

We are ready to prove the main theorem of the section:

Theorem 6.2. Reachability and Convergence are fixed-parameter tractable when
parameterized by the treedepth of the network.

Proof. Given an instance of Convergence or Reachability with network G of treedepth
L, we apply Corollary 6.10 to transform it into an equivalent instance where G′ has at
most h(L) nodes. Then G′ has at most |B|h(L) possible configurations. Therefore it suf-
fices to simulate the first |B|h(L) time steps of the reduced SyDS to solve Convergence
or Reachability.
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6.6 Restricting the In-Degree
In this final section, we turn our attention to Convergence Guarantee. In particular,
while one cannot hope to extend Theorem 6.2 to the Convergence Guarantee
problem due to known lower bounds [RMRS21], one can observe that the reduction used
there requires nodes with high in-degree. Here, we show that when we restrict the inputs
by including the in-degree as a parameter in addition to treedepth, the problem becomes
fixed-parameter tractable.

Let us start by showing that Convergence Guarantee can be solved efficiently for
networks without long directed paths and nodes of large in-degrees. In fact, the same
argument also allows us to obtain a more efficient algorithm for Convergence in this
setting.

Lemma 6.11. Convergence Guarantee (or Convergence) can be solved in time
|B|2(pdp+1) · O(n3) (or |B|pdp+1 · O(n3), respectively), where:

• p is the maximum length of a directed path in the network,

• d is the maximum in-degree of the input network, and

• n is the number of nodes in the network.

Proof. For a node v ∈ V (G), we denote by Xv the set of all u ∈ V (G) such that G
contains a directed path from u to v. Observe that to solve the instance I = (S, x) of
Convergence (or I = S of Convergence Guarantee), it is sufficient to solve its
restriction to every set Xv (denoted Iv = (Sv, xv) or Iv = Sv respectively). Let d and p
be the maximum in-degree and length of a simple directed path in G respectively, then
each Xv contains at most pdp + 1 elements. Therefore Sv can have at most |B|pdp+1

different configurations. For Convergence, we start from xv, simulate |B|pdp+1 time
steps and check whether the resulting configuration is a fixed point. We return “Yes” if
and only if every (Sv, xv) reaches a fixed point. In case of Convergence Guarantee,
we proceed similarly, but for every Sv at first branch over at most |B|pdp+1 possible
starting configurations. Since the number of sets Xv is O(n) and the simulation of
one step requires time of only O(n2), we get the time bounds of |B|pdp+1 · O(n3) and
|B|2(pdp+1) · O(n3) for Convergence and Convergence Guarantee respectively.

As an immediate corollary, we have:

Theorem 6.3. Convergence Guarantee is fixed-parameter tractable when parame-
terized by the treedepth plus the maximum in-degree of the network.

However, bounding only the in-degrees of nodes is not sufficient to achieve tractability of
the problem:
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Theorem 6.12. Convergence Guarantee is co-NP-hard even if G is a DAG with
maximum in-degree of 3.

Proof. It is sufficient to prove the statement for B = {0, 1}. In this case there is a
natural correspondence between the elements 0 and 1 of the domain and the boolean
values 0 and 1. We reduce from 3-unSAT problem where each clause has size of three as
follows. Let Y and C be the sets of variables and clauses respectively. For every variable
y ∈ Y , we create a node vy which will be a source in G. We define the local functions as
constants, i.e., fvy (0) = 0 and fvy (1) = 1. Then, to model clause c containing variables
y1, y2 and y3, we create a node wc and add arcs from y1, y2 and y3 to wc. We define fwc

so that the state of wc corresponds to the boolean value of c when the boolean values of
y1, y2 and y3 are determined by the states of vy1 , vy2 and vy3 . In particular, the state
of every wc stabilises after at most one step. Let C = {ci : i ∈ [m]}. To model the
conjunction of clauses, we create new nodes ui, i ∈ [m − 1], add arcs from c1 and c2 to
u1 and then from ui and ci+2 to ui+1 for every i ∈ [m − 2]. The local functions of each
ui acts as a logical “and” of the states of its in-neighbours. Then ui stabilises after at
most i + 1 steps in state with corresponds to a conjunction of first i + 1 clauses. We add
an auxiliary node v0 with the only in-neighbour um−1 and define it’s local function so
that the state of v0 remains constant if and only if um−1 is in state 0 (and alternates
otherwise). Notice that the state of v0 stabilises if and only if the initial states of vy,
y ∈ Y , do not form a satisfying assignment.

6.7 Discussion
Our results shed new light on the complexity of the three most fundamental problems
on synchronous dynamic systems. They also identify two of these—Reachability and
Convergence—as new members of a rather select club of problems with a significant
complexity gap between parameterizing by treewidth and by treedepth. It is perhaps
noteworthy that the few known examples of this behavior are predominantly (albeit not
exclusively [GJW16]) tied to problems relevant to AI research [GO18, GPSS20, GHO21].

One question left open for future work is the exact complexity classification of Con-
vergence Guarantee on networks of bounded treedepth or treewidth. Indeed, while
previous work [RMRS21] shows that the problem is coNP-complete on DAGs, it is not
clear why the problem should be included in coNP on general networks (in particular,
while convergence from a fixed starting state is polynomial-time checkable on DAGs, it
is PSPACE-complete on general networks). Another question that could be tackled in
future work is whether Theorem 6.3 can be generalized to treewidth instead of treedepth.
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CHAPTER 7
Conclusion

In this work, we provide a candidate for an edge-cut based alternative to treewidth which
possesses many desirable structural properties, admits different characterizations and is
convenient to use in dynamic programming. As our analysis shows, slim tree-cut width is
exactly the missing link between tree-cut width and degree treewidth—notably, all these
three parameters can be naturally described in a framework of tree-cut decompositions,
by changing only one constant, which is equal to 3 in the definition of tree-cut width and
takes values 2 and 1 in case of slim tree-cut width and degree treewidth respectively.

The intermediate position of the slim tree-cut width in the hierarchy of edge-cut based
decompositional parameters makes it a perfect fit when dealing with problems that
are fixed-parameter tractable when parameterized by degree treewidth but W[1]-hard
with respect to tree-cut width. We illustrate this by numerous algorithmic applications,
and some of them are related to highly relevant tasks that arise in AI. Among other
works we are aware of, slim tree-cut width was also succesfully applied in context of
system-optimal strategies in atomic congestion games (SOAC) [BGKI24], as well as
in colored clustering [KKKN23]. Interestingly, the last problem in general deals with
hypergraphs, and slim tree-cut width allows to cover only its graph variant. The situation
is similar in our ongoing work on fair division of indivisible items. This raises a natural
question: is there an algorithmically-useful way to generalize slim tree-cut width to the
hypergraph setting?

As one more direction possible for further research, we want to note that the problem of
computing optimal decompositions for the slim tree-cut width remains open. Crucially,
we provide a cubic approximation for computing the slim tree-cut width, so all our FPT
results hold even when a tree-cut decomposition of minimal slim width is not provided.
However, since our cubic approximation takes as a base tree cut decomposition computed
by a 2-approximation algorithm for tree-cut width [KOP+18], we believe that it is possible
to achieve a more efficient approximation relying on ideas used in the latter algorithm.

115



7. Conclusion

While slim tree-cut width fills the gap between tree-cut width and degree treewidth, there
still remains a huge unexplored part in the hierarchy of edge-cut based structural graph
parameters, including those which are incomparable to the tree-cut width. Recently,
Chang et al. [CKL23] have made strong progress in this direction by introducing new
edge-cut based measures, called α-edge-crossing width and edge-crossing width, both
strictly generalizing the slim tree-cut width. These parameters are also defined in
terms of tree-cut decompositions, but use the notions of thickness and crossing number
instead of torso size and adhesion respectively. Their work includes FPT algorithm for
Precoloring Extension parameterized by α-edge-crossing width for any fixed α, and
it would be interesting to see whether any other of our results FPT results for the slim
tree-cut width could be lifted to the latter parameterization.

Last but not least, while working on causal network structure learning, we implicitly
introduced another edge-cut based graph parameter, which measures the maximum
number of edge-disjoint paths between any pair of vertices. Let us for now call it
maximum pairwise edge-connectivity, to be consistent with a similar parameter based
on vertex cuts that was recently used by Korhonen et al. in the context of Markov
networks [KFP24]. As follows from our results provided in Chapter 4, there is a chance
that the maximum pairwise edge-connectivity will allow one to precisely characterize
which causal networks can be learned in FPT time by using constraint-based algorithms.
To understand whether this is the case, one needs to determine whether a large number of
edge-disjoint paths between some pair of variables implies the existence of an orientation
of the graph where some (not necessarily the same) pair of variables does not admit a
small d-separating set.
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