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Abstract

Flooding poses a significant challenge across much of the world. It ranks as a leading natural
disaster in terms of damage and the number of people affected. Effective management of
floods requires rapid or Near Real-Time (NRT) mapping, primarily using satellite-based
earth observation data. Synthetic Aperture Radar (SAR) data is considered the most
suitable for lood mapping operations due to its ability to operate in all weather conditions,
both day and night, and its skill at distinguishing between open water and land.

The Sentinel-1 SAR system has unrivaled temporal and spatial coverage and thus has
been tapped for various flood mapping operations. To better harness the vast Sentinel-1
data holdings, most researchers use data cube solutions. Notable in this regard is the TU
Wien flood mapping algorithm. This algorithm is based on Bayes Inference that leverages
a Sentinel-1 data cube to define the no-flood probability distribution of pixels via harmonic
modeling and flood probability from historical water samples reckoned per incidence angle.
It contributes to the Copernicus Emergency Management System’s (CEMS) Global Flood
Mapping (GFM) ensemble workflow being operated in NRT.

While working well in most cases, it has issues such as underestimation in flood transition
areas and overestimation in agricultural areas. Further, limitations due to SAR-based
flood retrievals necessitate the application of exclusion masks. However, over reliance
on exclusion masks also presents an issue. As the TU Wien algorithm’s novel Bayesian
Inference formulation presents opportunities for improvement, this thesis aims further to
improve it in the context of global NRT operations. To do this, we systematically analyzed
the algorithm performance and Bayesian Inference components for improvement.

First, we compared the performance of change detection algorithms in the northern
Philippines as a study area. We tested four well-known change detection algorithms
that rely on time-series SAR inputs against reference data from Sentinel Asia and optical
imagery. We tested parameterizations such as no-flood estimates or references and threshold
determination methods. The TU Wien algorithm was also varied by checking the effect of
its low sensitivity masking. Our results suggest that the Bayesian Inference used for the
TU Wien algorithm is superior to the other tested algorithms due to its stable performance
regardless of parameterization.

We then proposed an alternative to non-informative priors using Height Above Nearest
Drainage to derive spatially varying priors. The HAND data is used as an input to a
two-parameter sigmoid function to generate the priors. We optimized and tested this new
formulation of priors on five test events, comparing the HAND-based prior versus the
original non-informed priors using CEMS rapid mapping results. Overall, the proposed
HAND prior improved the flood mapping results by reducing false negatives, with the
added benefit of removing dependence on an external HAND exclusion mask.

Further, we explored the use of the exponential filter to estimate a no-flood reference
probability and replace the harmonic model. This filter is a promising alternative because
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it accounts for the most recent backscatter observations, coupled with its recursive for-
mulation, which makes it viable for NRT computation. We compared this filter and its
parameterizations for flood mapping performance on four flood events in Europe covered
by CEMS rapid activation and three sites in Asia covered by Sentinel Asia flood mapping
activations. We then proposed a novel time series assessment of false positive rates to
avert the pitfall of overfitting for flooded scenarios.

From the time-series assessments, we were able to analyze the causes of overestimation
at no-flood scenarios by referencing ERA-5 data. We found that well-known causes of low
backscatter, such as frost, dry soil conditions, and lesser-studied agriculture effects, trigger
higher FPR at scale. In all cases, the exponential filter showed reduced FP. However,
improvement to the exponential filter method is needed as prolonged floods in an area
result in poorly estimated no-food references and, thus, poor flood mapping performance.
We concluded that the exponential filter is an excellent alternative to the harmonic model.

In conclusion, we have established the TU Wien algorithm using the Sentinel-1 data
cube as a robust method compared with other change detection algorithms. Further, we
have shown improvements in the TU Wien algorithm from incremental changes to its
Bayesian Inference framework. These improvements are being (and will be applied) to
the TU Wien workflow under the CEMS GFM, thus impacting a true fully automated
near-real-time global flood mapping operations.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Need for SAR-based Flood Mapping at Near Real Time

Flooding is a concern that affects most of the globe and its population [13, 96, 110]. Tt
consistently ranks among the top natural disasters in terms of infrastructure damage and
lives affected. Unfortunately, floods are expected to worsen because of climate change [45].

To manage flooding events, rapid or Near Real-Time (NRT) mapping is of the utmost
importance. While traditional field-based mapping and drone surveys provide accurate
information, their usability is limited due to scale and costs. Hence, for large-scale floods,
most rely on space-borne earth observation data.

In this regard, Synthetic Aperture Radar (SAR) data is proving to be the best option
for operational flood mapping [98, 102, 109]. This is because of SAR’s day-night and
all-weather capability. Along with its sensitivity to distinguishing open water from other
land cover types. Thus, attempts at developing operational SAR-based flood mapping
workflows have garnered significant attention in literature[12, 73, 120].

SAR-based flood mapping techniques include single-image thresholding algorithms [39,
71], parametric or tile-based thresholding schemes [15, 72, 120, 141], change detection
algorithms [18, 24, 80] and machine learning methods [53, 105, 132]. However, not all
SAR-based algorithms are viable as NRT workflows. For NRT operations, an algorithm
should not require subjective manual inputs— automated, objective, and repeatable [35,
71]. These points emphasize the need to investigate SAR-based flood mapping methods
further for global NRT implementation.

1.1.2 Flood Mapping Theory and the TU Wien Flood Mapping
Algorithm

In most flood detection algorithms’ core is the identification of water. SAR data is a strong
choice for flood mapping because of its ability to differentiate calm standing water due to
its low backscatter from specular reflection of microwave signals. However, without context,
floods on Earth observation images are no different from existing water bodies. Thus, the
temporal dimension is often used to differentiate floods from non-crisis inundations such
as permanent or seasonal water bodies.

In terms of temporal and spatial coverage, the Sentinel-1 SAR system is unrivaled and
thus has been tapped for various flood mapping operations. Sentinel-1 uses a C-band
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sensor (CSAR) onboard a designed constellation of two satellites, with its main operation
measuring backscatter in VV and VH polarizations over land [113]. Sentinel-1 offers
systematic repeat observations within 12 days for a single satellite and an image every six
days when tandem satellites are available.

To harness the huge Sentinel-1 data holdings better, most researchers turn to data
cube solutions. These solutions offer access and processing mechanisms for large temporal
earth observation data collections abstracted as multi-dimensional arrays. SAR datacubes
solutions have proliferated [37, 77, 111, 125], and to varying degrees relied upon for flood
mapping [24, 121].

A notable implementation is the TU Wien flood mapping algorithm based on Bayes
Inference [8]. This algorithm leverages a Sentinel-1 datacube to define the no-flood
probability distribution of pixels via harmonic modeling and flooded probability from
historical water samples reckoned per incidence angle. This algorithm contributes to the
Copernicus Emergency Management System’s (CEMS) Global Flood Mapping (GFM)
[98] ensemble workflow being operated in NRT.

While working well in most cases— showing good use cases for temporal analysis [97], it
has shown issues such as underestimation in flood transition areas and overestimation in
agricultural areas [8]. Understandably, a globally applied method would not work well
everywhere. Further, limitations due to SAR-based flood retrievals (e.g., urban and arid
areas) necessitate the application of exclusion masks [137]. From our experience with
GFM, overreliance on exclusion masks also presents an issue. It is an advantage that the
TU Wien algorithm’s novel Bayesian Inference formulation presents several opportunities
for improvement.

1.2 Research Objective and Questions

The main objective of the study is to further improve the TU Wien flood mapping algo-
rithm in the context of global NRT operations. Hence, instead of looking at more complex
solutions that might incur greater processing requirements— we aim to systematically
analyze the algorithm performance and its Bayesian inference components. Thus, to guide
this doctoral research, we have posed the main research question:

How can the SAR-datacube-based TU Wien algorithm be further improved
to better address the challenges of global near-real-time application?

We further break down the problem into three main parts to answer this. First, we
aim to establish the viability of the TU Wien flood mapping algorithm compared to
other algorithms that follow similar concepts, specifically those that utilize time-series
information and apply change detection concepts. Hence, we pose the following questions:

How does the TU Wien flood mapping algorithm perform compared to other
change detection SAR-based flood mapping algorithms?

Specifically:
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o Are time-series-based change detection algorithms suitable for operational flood map-
ping? Which algorithms perform well in this context?

o Do parameterizations have a significant effect on each algorithm’s performance? Do
these algorithms require localization or tuning to work well?

After establishing the TU Wien algorithm’s robust performance compared to its peers,
we set out to improve our method incrementally. We first look at the aspect of Bayesian
algorithms that has received fewer contributions in literature. Specifically the priors. In
this regard, we ask the following:

Does topography-based a priori information improve SAR-based flood map-
ping?

Specifically:

e How to utilize topographic information as priors for SAR-based flood mapping without
localized tuning?

Another aspect that could be improved in the Bayes Formulation is the no-flood reference
case. Hence, we looked at this issue and tried to answer these posed questions:

Is the exponential filter a viable option as a no-flood reference to improve
SAR-based flood mapping?

Specifically:

o Does the exponential filter perform better than the harmonic model for flood mapping
in scenes with floods and no floods?

o How prevalent is the overestimation of floods using the TU Wien algorithm in no-flood
scenarios? What are its causes? Could using an exponential filter address this issue?

o How can we assess the performance of flood mapping algorithm improvements con-
sidering the need for automated execution for near-real-time operations?

1.3 Structure of the Thesis

To systematically answer these thesis questions and objectives, we subdivide this work
into five Chapters, including the first Introductory chapter, the last concluding chapter,
and the three main middle chapters based on published peer-reviewed journal articles.
Chapter 1 introduces the motivations, objectives, and outline of this study. Chapter 2
describes our initial study, where we examined the performance of the TU Wien flood
mapping algorithm compared with other data cube or time-series-based methods. Chapter
3 discusses our attempt to improve the TU Wien algorithm using priors derived from
topographic information. Chapter 4 assesses the viability of using an exponential filter
instead of the harmonic model for no-flood reference probability to further improve the
TU Wien Algorithm for global application. Lastly, Chapter 5 includes the conclusions,
implications, and recommendations of this study.
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1.3.1 Publication Summaries

In this section, we briefly summarize the work done in the middle Chapters— the afore-
mentioned published journal articles.

In Chapter 2: An Intercomparison of Sentinel-1 Based Change Detection
Algorithms for Flood Mapping [117], We compared the performance of change
detection algorithms. We selected the northern Philippines as a study area to test four
well-known change detection algorithms that rely on time-series SAR inputs against
reference data from Sentinel Asia and optical imagery.

We took a look at the theoretical basis for these algorithms and possible parametrizations.
As change detection methods, they commonly require no-flood estimates or references.
Thus, we tested prior images, temporal mean, and the harmonic model as inputs. We also
tested threshold determination methods such as the fixed values from literature, Otsu,
and KI methods. In contrast, the TU Wien algorithm was also varied by checking the
effect of its low sensitivity (a.k.a. internal pdf) masking method. Our results suggest that
the Bayesian Inference used for the TU Wien algorithm is superior to the other tested
algorithms due to its stable performance regardless of parameterization.

In Chapter 3: Improving Sentinel-1 Flood Maps Using a Topographic Index
as Prior in Bayesian Inference [119], I proposed an alternative to the usual non-
informative priors using Height Above Nearest Drainage to derive spatially varying priors.
The HAND data is used as an input to a two-parameter sigmoid function to generate the
priors. We optimized and tested this new formulation of priors on five test events, where
we compared the HAND-based prior versus the original non-informed priors using CEMS
rapid mapping results. Overall, the proposed HAND prior improved the flood mapping
results by reducing false negatives while also removing the dependence on an external
HAND exclusion mask.

In Chapter 4: Assessment of Time-Series-Derived No-Flood References for
SAR-based Bayesian Flood Mapping [116], we explored the possibility of using the
exponential filter, inspired by soil moisture studies [126], to estimate a no-flood reference
probability replacing the harmonic model. This filter is a promising alternative since
it uses the most recent backscatter observations, thus more accurately coping with the
dynamic changes. Unlike other temporal filters, the exponential filter has a recursive
formulation, making it viable for NRT computation. In this work, we compared this filter
and its’ parameterizations effect on the flood mapping performance on four flood events in
Europe covered by CEMS rapid activation and three sites in Asia covered by Sentinel Asia
flood mapping activations. We proposed a novel time series assessment of false positive
rates to avert the pitfall of overfitting for flooded scenarios.

In this time-series assessment, we also looked at the RMSD of the no-flood reference
models to check their capacity to estimate the no-flood SAR scene. In time-series as-
sessments of the RMSD and FPR, we analyzed the causes of overestimation at no-flood
scenarios by referencing ERA-5 data. We found that well-known causes of low backscatter—
such as frost, dry soil conditions, and the lesser studied agriculture effects —trigger higher
FPs at scale. We showed the effect of changing its descriptive parameter and settling on
an optimal estimate. In all cases, the exponential filter at this parameterization showed
reduced FP. However, improvement to the exponential filter method is required to realize
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its potential for global flood mapping. It was observed that prolonged floods result in
poorly estimated no-flood references and, thus, poor flood mapping performance.

1.3.2 Author Contributions

The publications contained in this thesis would not have been possible without the contri-
butions of my three co-authors: Wolfgang Wagner (W.W.), Bernhard Bauer-Marschallinger
(B.B.-M), and Florian Roth (F.R.). As the primary author (M.E.T.) of these publications,

my contributions are as follows:

e An Intercomparison of Sentinel-1 Based Change Detection Algorithms for
Flood Mapping: Conceptualization M.E.T. and W.W.; methodology M.E.T. and
W.W.; software M.E.T. and F.R.; validation M.E.T. and F.R.; formal analysis M.E.T;
investigation F.R., M.E.T. and B.B.-M.; data curation M.E.T.; writing—original
draft preparation M.E.T.; writing—review and editing ALL; visualization M.E.T.
and B.B.-M.; supervision B.B.-M. and W.W.

o Improving Sentinel-1 Flood Maps Using a Topographic Index as Prior in
Bayesian Inference: Conceptualization, M.E.T., and W.W.; methodology, M.E.T.,
and W.W.; software, M.E.T., and F.R.; validation, M.E.T.; formal analysis, M.E.T.;
investigation, M.E.T.; data curation, M.E.T.; writing—original draft preparation,
M.E.T.; writing—review and editing, all authors; visualization, M.E.T.; supervision,
B.B.-M. and W.W.

o Assessment of Time-Series-Derived No-Flood References for SAR-based
Bayesian Flood Mapping: Conceptualization, M.E.T. and W.W.; methodology,
M.E. T. and W.W.; software, M.E.T., and F.R.; validation, M.E.T.; formal analy-
sis, ML.E.T.; investigation, M.E.T.; data curation, M.E.T.; writing—original draft
preparation, M.E.T.; writing—review and editing, all authors; visualization, M.E.T';
supervision, W.W.
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Change Detection Algorithms for Flood
Mapping
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2.1 Abstract

With its unrivaled and global land monitoring capability, the Sentinel-1 mission has been
established as a prime provider in SAR-based flood mapping. Compared to suitable single-
image flood algorithms, change-detection methods offer better robustness, retrieving flood
extent from a classification of observed changes. This requires data-based parametrization.
Moreover, in the scope of global and automatic flood services, the employed algorithms
should not rely on locally optimized parameters, which cannot be automatically estimated
and have spatially varying quality, impacting much on the mapping accuracy. Within
the recently launched Global Flood Monitoring (GFM) service, we implemented a Bayes-
Inference (BI) based algorithm designed to meet these ends. However, whether other
change detection algorithms perform similarly or better is unknown. This study examines
four Sentinel-1 change detection models: Normalized Difference Scattering Index (NDSI),
Shannon’s entropy of NDSI (SNDSI), Standardized Residuals (SR), and Bayes Inference
over Luzon in the Philippines, which was flood-hit by a typhoon in November 2020. After
parametrization assessment against an expert-created Sentinel-1 flood map, the four models
are inter-compared against an independent Sentinel-2 classification. The obtained findings
indicate that the Bayes change detection profits from its scalable classification rules and
shows the least sensitivity to parametrization choices while also performing best in terms
of mapping accuracy. For all change detection models, a backscatter seasonality model for
the no-flood reference delivered best results.

Keywords: Flood Mapping; Change Detection; SAR; Sentinel-1; Datacube; Philippines

2.2 Introduction

Flooding is a significant concern all over the world. In global disaster assessment reports,
it consistently ranks among the most destructive of natural disasters. Unfortunately, flood
frequency and severity are expected to increase for most of the world due to climate
change [45], with further increased human exposure due to population growth. Therefore
rapid assessments of flood extent and impacts using Earth observation satellites are of
great importance. Due to their capacity to capture high-resolution images of the Earth’s
surface even in stormy weather, Synthetic Aperture Radar (SAR) sensors are unrivaled
in their capability to map large-scale flooding. Hence most disaster mapping services,
such as the Copernicus Emergency Management Service (CEMS) [128], and the Sentinel
Asia initiative [51] utilize SAR satellites for their operations. In the past, these services
have delivered SAR-based flood maps only upon requests from affected areas, manually
operated by human experts. This implies that flood events may be missed in case of late
or non-activation. To avoid this and improve timeliness, CEMS has recently launched
a Global Flood Monitoring (GFM) service that analyses Sentinel-1 SAR data in a fully
automatic fashion [98].

In principle, mapping flood extent from SAR images is relatively straightforward given
that backscatter from open water bodies is normally relatively low compared to backscatter
from the surrounding land surface areas. Thus, when mapping flooded areas from individual
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SAR images on demand, SAR image analysts usually work with simple thresholding
techniques. However, selecting a threshold value that works everywhere under all weather
conditions is clearly impossible [35, 71]. Therefore, in the fully automatic GFM service, a
relatively simple problem turns into the significant scientific challenge of finding a robust
flood detection model that works globally without the need for manual fine-tuning of its
parameters.

A large variety of methods to map flood extent from SAR imagery has already been
published, including change detection-based approaches [18, 101], split-window or tiled
thresholding techniques [12, 64, 71, 120], Bayesian [21, 34, 94, 100, 129] and machine
learning methods [20, 75, 138]. Most studies yielded excellent results for specific test areas,
but the performance on a large scale is often not known [139]. Moreover, while reviews
and assessments of these SAR flood and inundation mapping methods are available, [73,
103, 104], it has been pointed out that direct performance comparisons are limited [56].
However, such comparisons are crucial in designing and improving operational systems
that perform at large scales, e.g., regional or global extents. Last but not least, distinct
parameterizations might be required for these methods to perform at the same level
in different areas. Thus the robustness of parameterization is a crucial indicator when
selecting flood mapping workflows for implementation at scale [8, 15, 72]. Unfortunately,
this aspect usually is not treated explicitly in the scientific literature so far.

For the design of robust flood detection models and their parameterization, it is highly
advantageous to work with SAR backscatter data cubes that allow efficient access to the
data not just in the spatial but also temporal dimension [77, 111]. Using the Sentinel-1
backscatter data cube built up at the Earth Observation Data Centre (EODC) [125], it
has, e.g., been possible to parameterize a Bayesian flood detection model at the level of
individual pixels by analyzing backscatter time series for each pixel [8]. Another example
is the Sentinel-1 data cube implementation at the Google Earth Engine [37], which already
hosts several waterbody and flood mapping workflows [24, 69].

In this contribution, we compare the performance of four change detection models for
mapping floods using Sentinel-1 SAR data (Section 2.3). Compared to approaches that
map floods only based on single SAR images, the parameterization of change detection
models is normally less problematic, allowing to apply them over large and diverse domains.
Nonetheless, even the parameterization of change detection models may involve a lot of
choices that can have a strong impact on the accuracy of the derived flood maps, in
particular the choices of the no-flood reference image and the threshold for labeling a SAR
pixel as flooded. Hence, in our study, we investigated how sensitive the different model
are to changes in their parameterization.

As a study case, we chose a flood event that occurred in the Cagayan river basin in
the Northern Philippines in November 2020. This choice was motivated by the fact that
the area, which is situated in the Pacific typhoon belt, is projected to be significantly
impacted by climate change, including a general rise in precipitation with an indication
of higher frequency of heavy rainfall events [7] and, consequently, a greater threat of
flooding [112]. The study region and data are described in Section 2.4. The methods for
intercomparing the four change detection models and assessing the robustness of their
parameterizations are introduced in Section 2.5, followed by the presentation of the results
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on parametrization and model-intercomparison in Sections 2.6 and 2.7. Finally, Section
2.8 contains the discussion and conclusions.

2.3 Change Detection Algorithms

Change detection approaches for flood mapping compare in one way or another a SAR
backscatter image potentially containing flood pixels with a reference SAR scene describing
a non-flooded situation. By comparing two images, spatial signal variations are reduced,
simplifying the task of finding suitable thresholds and model parameterizations that work
for different land cover classes. Furthermore, the use of a no-flood reference image allows
for excluding other low backscatter areas that tend to be mislabeled as a flood. Nonetheless,
factors such as speckle and overall high variability of the backscatter measurements prompt
the need for some additional means of normalization. This problem is solved differently in
the four change detection models that we selected for this study, namely the Normalized
Scattering Difference Index, the Shannon’s entropy of NDSI, the Standardized Residuals,
and a Bayesian Inference method. Given that the choice of the no-flood reference and
different thresholding techniques has an important impact on the performance of these
four models, these parameterizations are discussed separately in subsections 2.3.5 and
2.3.6.

2.3.1 Normalized Difference Scattering Index

Indices such as the Normalized Difference Scattering Index (NDSI) [123] and the Normalized
Difference Ratio [4], while differently named, are similarly computed from backscatter
data from a flood image and a no-flood reference. For our purposes, we adopt the NDSI
for the rest of the document and compute it with:

o0 — 0,9
NDSI = 5 (2.1)

where ¢” represents the SAR image pixels that are potentially flooded and o the
no-flood reference. Both ¢” and ¥ are expressed in m*m~2. In this formulation, flooded
areas are associated with large negative numbers due to the decrease in backscatter when
the land surface is inundated, i.e., a pixel is labeled as flooded when NDSI is smaller than
a chosen threshold value. The normalization term o° + ¢ helps to reduce the impact of
signal variations in the reference image.

2.3.2 Shannon’s entropy of NDSI

Ulloa et al. [123] extends the NDST concept further by computing the Shannon’s entropy
of NDSI using a 9 x 9 moving window. The premise of this approach is that flooded pixels
are often adjacent to other flooded pixels (save for boundaries) and, thus, should primarily
have a smooth texture. Furthermore, since entropy measures the level of uncertainty of
possible grayscale values in a given area, it also serves as a textural measure. Shannon’s
entropy of NDSI, referred here to as SNDSI, is computed by:
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SNDSI = — > pxlog,p (2.2)

n

where p is the probability of NDSI estimated from a normalized histogram count for
all n pixels in the moving window. As for the NDSI, pixels are classified as flooded when
SNDSI becomes smaller than a chosen threshold.

2.3.3 Standardized Residuals

An alternative approach to normalize the difference term ¢ — o0 is to use a measure of
variance of the backscatter measurements [18, 24, 80, 101]. Here we adopt the terminology
of Schlaffer et al. [101] who computed Standardized Residuals (SR)

0

o0 _ 50
=—"_ 2.
SR StDev(o9) (23)

where StDev (o) is the temporal standard deviation of ¢° for non-flooded conditions.
StDev(c") is computed from historic o time series for each pixel describing the variability
of the backscatter measurements due to changes in soil moisture, vegetation, or other
environmental factors for each location. Thereby, a pixel is considered to be flooded if SR
has a large negative value which indicates that ¢° is outside the expected signal range.
Note that because of the need to compute StDev(c?) from historic time series, the SR
model is substantially more input-data-demanding than the NDSI and SNDSI models that
can in principle be run with just two input images. Nonetheless, similar to NDSI and
SNDSI, one needs to chose a threshold.

2.3.4 Bayesian Inference

Instead of normalizing differences, another way of comparing flood and no-flood situations
is to use probabilistic approaches. The method adopted here is based on a pixel-based
Bayesian Inference (BI) method [8, 100] that considers the temporal SAR backscatter
information of a non-flooded pixel to estimate its non-flooded conditional probability
distribution, p(¢°|N). The conditional flooded probability distribution, p(¢°|F), can be
estimated from geographically distributed calm open water samples. The probability that

a 0¥ measurement over one pixel indicates flood conditions is calculated with [34, 94, 100]:

p(o®|F)p(F)
(0% F)p(F) + p(c®|N)p(N)

where p(F) and p(IN) are the prior probabilities of a pixel being flooded and non-flooded
(in short simply "priors"). Here we adopt non-informed priors, with both p(F') and p(NV)
assumed to have equal i.e. 0.5, prior probability. A pixel is labeled as a flood if the flood
probability p(F|o?) is greater than 0.5. For easy of discussion, we refer to the numerical
value of p(F|o?) as BI in the following sections. Note that in contrast to the other three
models, the final decision criterion is well defined, i.e. BI > 0.5. Like SR, the BI model
is input-data demanding, requiring a backscatter data cube to pre-compute p(c®|N) per
pixel.

Bl = p(F|o") = 5 (2.4)
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2.3.5 Thresholding Techniques

Except for the BI method, the change detection models introduced above require the
choice of a threshold to label a SAR pixel as flooded or non-flooded. The choices one can
make range from choosing one fixed threshold value for all SAR images and the entire
study domain to threshold values computed for each SAR image individually or even
subsets of a SAR image. Similar to the work of Landyut et. al [56] we test fixed threshold
values taken from the literature and thresholds dynamically selected using histogram-based
methods. In particular, we investigate the performance of global Otsu’s [84] and Kittler
and Illingworth’s (KI) methods [54] along with best performing fixed value from the source
materials.

2.3.6 Selection of No-Flood Reference

In principle, the selection of the no-flood reference ¢V has a great effect on all models
described above. When choosing a real SAR image as reference, one would like to choose
a scene that resembles — except for the inundation areas — the unflooded conditions as
good as possible in terms of land cover and environmental conditions. This may e.g.
be the latest pre-flood image or a SAR image acquired in the same season the previous
year. While automated methods for the selection of such real reference images have been
proposed [47, 139], the computation of synthetic no-flood reference is a viable alternative
approach when working with SAR backscatter data cube. Here we test the generation
of synthetic ¢¥ images by computing the mean backscatter and the expected seasonal

backscatter value for the day of year [101]. Median, as used by Clement’s work [18] was
left out in the analysis due to its similarity with the mean estimate for this study site.

2.4 Data and Study Site
2.4.1 Sentinel-1 Data Cube

The analysis was performed on a Sentinel-1 SAR backscatter data cube that includes all
imagery acquired over the study region from January 2018 to December 2020. The data
cube was generated with a dedicated preprocessing engine that ingests Sentinel-1A /B
Ground Range Detected (GRD) products, as outlined in detail in Wagner et. al [125].
The preprocessing workflow includes 1) application of precise orbit file, 2) border noise
removal, 3) thermal noise reduction, 4) radiometric calibration, 5) range-doppler terrain
correction, and 6) resampling and reprojection to the Equi7Grid tiling system [10]. The
data cube was abstracted from these hierarchically organized Sentinel-1 images using the
yeoda package developed by TU Wien [81]. The backscatter data cube was filtered for VV
polarization and Sentinel-1’S relative orbit, to obtain all images from the same observation
geometry.

2.4.2 Study Area

The study area is situated on Luzon, the largest and most populous island of the Philippines.
The study area extent is defined by the 100 x 100 km-sized tile "EO58N117T1" from the
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Fig. 2.1: Our study area in the northern Philippines under normal/no-flood conditions
as in July 2020. Left: A Sentinel-2 true color image of the tile’s area from July
2020. Right: Mean Sigma Nought backscatter value generated from Sentinel-1
data cube, filtered for the relative orbit used for this study’s flood event.

Equi7Grid tiling system, shown as the red footprint in Fig. 2.1. The area covers a part
of the Cagayan valley, where vast tracks of agricultural fields are situated. The Cagayan
River traverses the tile from south to north. Urban settlements can mostly be found
near the river, while most of the western portion of the tile is dominated by mountainous
terrain. All subsequent analysis in this work were performed at 10 x 10 m resolution native
to this data cube tile!.

The flooding event investigated in this study was caused by typhoon Vamco that hit
the northern Philippines from November 9 to 13, 2020. The typhoon affected more than
five million individuals [99], and many along the Cagayan River were flood-stricken. The
flood scene for the analysis was captured by Sentinel-1B on the ascending orbit 069 on 13
November 2020 around the time of peak flooding.

2.4.3 Reference Flood Maps

Due to the fleeting nature of floods ground truth is often lacking [40]. This is also the case
here, but two satellite-based reference flood maps are available. The first is a flood map
(in shapefile format) generated from the same Sentinel-1 flood scene from 13 November
2020 by experts working at the Sentinel Asia [51] who were well familiar with the study
area and the flooding caused by the typhoon Vamco?. From personal communication with

LAll collected data are rasterized (if needed) and reprojected to the OC010M__E058N117T1 of Equi7Grid
2Sentinel ~ Asia  Typhoon Vamco Activation — https://sentinel-asia.org/E0/2020/
article20201111PH.html
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the operators, we know that the Sentinel Asia product was created from the SAR intensity
difference, whereas the threshold was manually selected and optimized. However, it should
be noted that also the experts at Sentinel Asia did not have access to ground observations.

Sentinel-2 Scene Description

S2B_ MSIL2A  20200909T021609 N0214 R003_T51QUV_20200909T065335 No-flood reference
S2A_ MSIL2A_20201113T021941__N0214__R003_T51QUV__20201113T055836 Flood scene

Tab. 2.1: Sentinel-2 data for validation

We generated a second reference flood map, using a pair of optical multispectral images
from Sentinel-2 (Table 2.1), one acquired two months before (on 9 September 2020) and
one during the flood event (on 13 November 2020). Specifically, we used Level2A (Bottom
of Atmosphere) images downloaded from the Copernicus Open Access Hub? and processed
them using Sentinel-2 toolbox of SNAP v8.0 [27], applying a thick clouds and cirrus cloud
mask. Then we computed the Modified Normalized Difference Water Index (MNDWTI)
that was designed to delineate water and built-up areas [133]. The flood extent was finally
derived by comparing the two MNDWTI images and fine-tuning the threshold. Due to
the significant cloud cover on 13 November 2020, only a portion of the flood scene could
be mapped. Fortunately, the main channel of the Cagayan River is cloud-free and offers
sufficient samples. While the Sentinel-2 acquisition took place 7 h after Sentinel-1, no
major appreciable differences in the flood extent are visible (See Figure 2.2).

SENTINEL-1 FLOOD REFERENCE SENTINEL-2 FLOOD REFERENCE
(SENTINEL ASIA PRODUCT)
r

A& J:"" TP EI P s
it ] 7

Fig. 2.2: Reference flood maps. Left most flood maps shows the Sentinel-1 based flood
map from Sentinel Asia. Right most panels showing the Sentinel-2 derived
reference flood map, with cloud-covered areas in gray. Zoomed in map panels
showing the high agreement of the flood extents from both reference maps.

2.4.4 Auxiliary Data

The workflows implemented in this work require auxiliary information on topography and
geomorphology. In this study, we used the Height Above Nearest Drainange (HAND)
Index [82] and the Projected Local Incidence Angle (PLIA) as shown in Figure 2.3. The

3Copernicus Open Access Hub— https://scihub.copernicus.eu/
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HAND index data was derived from the Copernicus Digital Elevation Model (CopDEM
GLO-30)* upsampled to the resolution of the working tile. The PLIA map was generated
as a by-product of the Sentinel-1 pre-processing workflow and is thus stored in the same
tile’s projection system. The applicability of these auxiliary data - HAND and PLIA are
discussed in the following section.

121.500 121.500

18.?GD

121.500 PLIA 121.500
[m] [deg]

o 50 ] 50

Fig. 2.3: Auxiliary Data. Left panel: map showing the Height Above Nearest Drainange
(HAND) Index values. Right panel: map showing the the Projected Local
Incidence Angle (PLIA) of the used Sentinel-1 relative orbit.

2.5 Methods

To compare the performance of the four change detection models and their sensitivity to
changes in their parameterization, we follow a two step approach: In the first step, we
assess for each change detection model separately how different parameterizations impact
the results. As we are only interested in the relative performance of the parameterizations
when applying the models to Sentinel-1 data, the benchmark in this step is the Sentinel-1
flood map produced by the experts of Sentinel Asia. In the second step, we intercom-
pare the performance of the four change detection models with their best-performing
parameterizations by assessing their accuracy against the Sentinel-2 flood map.

The detailed workflow is shown in Figure 2.4. The starting point is the Sentinel-1
backscatter data cube from which all required VV backscatter images from relative orbit 69
and the corresponding projected local incidence angle (PLIA) are extracted. Furthermore,
a common set of geomorphological and exclusion masking post-processing steps are applied
to all flood maps. First, the Height Above Nearest Drainage (HAND) index is used to mask
for terrain distortions in the SAR data, such as radar shadow and layover [48] at a height

4Produced using Copernicus WorldDEM-30 © DLR e.V. 2010-2014 and © Airbus Defence and Space
GmbH 2014-2018 provided under COPERNICUS by the European Union and ESA; all rights reserved
—https://doi.org/10.5270/ESA-c5d3d65
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above 20 m (in this case) from drainage. Second, a PLIA mask is applied to remove pixels
which have PLIA outside the typical range of incidence angles for flat areas (where floods
are typically appearing), following the approach by Bauer-Marschallinger et al. These
masks helped to reduce the number of falsely classified flood pixels over the mountainous
parts of the study area—which are generally troubling SAR retrievals—thereby slightly
improving the accuracy of the flood maps. Lastly, 5 x 5 spatial majority filters are applied
as a morphological correction of salt-and-pepper-like classification coming from SAR signal
components unrelated to flood conditions.

model parameterization parameter assessment model intercomparison

Normalised Difference Thresholding Flood
Scattering Index |—| of algorithm maps ||| —
NDSI Fixed | Otsu | KI

Shannon’s Entropy Thresholding Flood
of NDSI |— of algorithm | — maps '! —
i SNDSI Fixed | Otsu | KI
Standardized Thresholding Flood
Residuals |— of algorithm | = | mapg " =
Sentinel-1 SR Fixed | Otsu | KI
SIGO vV
= Bayesian PDF Exclusion Flood
— Inference |- = | maps |{[—]
Bl yes | no \

datacube
Flood event Incidence
image | angle image [ itinel Asia
observered 5/G0 b refative orbiz relative hei A
+ PLIA PLIA abov

kil

Fig. 2.4: Workflow from Sentinel-1 datacube and derived parameters, joined by auxiliary
topography data, to generate and assess the flood maps. For four different
change detection models (NDSI, SNDSI, SR and BI), a multitude of different
parameterizations are assessed (determined by one out of three no-flood refer-
ences, as well as by algorithm settings for threshold and exclusion; results in
Section 2.6). Best-performing flood maps undergo model inter-comparison in
the final stage (see Section 2.7).

Final
accuracy
assessment

Parameter

i accuracy

assessment

Pre-flood
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2.5.1 Paramterizations

To test the NDSI, SNDSI, and SR models —and their parameterizations— we computed
a multitude of flood maps using different combinations of the no-flood reference and
the thresholding technique to parameterize the models. Here, we show the results for
the combination of three no-flood references and three different thresholds, yielding in
total 3 x 3 x 3 = 27 flood maps. With respect to the no-flood reference, the three used
parameterizations are:

e Mean Backscatter: We computed the mean and standard deviation of ¢° per
pixel over the three year long data record (2018-2020). Note, that while the NDSI
and SNDSI only require the mean as input, the SR requires both the mean and
StDev(a?).
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« Harmonic Model: To account for seasonal signal variations, we fitted a harmonic
model to the data record, yielding for each pixel and each day of year (DOY) an
estimate of the expected backscatter intensity and its standard deviation respectively.
For a detailed description of this Harmonic model formulation we refer the readers
to the recent work of Bauer-Marschallinger et al. [§].

o Pre-flood Image: A Sentinel-1 image acquired about two weeks before the flood
event on 1 November 2020 and from the same relative orbit was selected as no-flood
reference of the backscatter intensity. As the SR and BI models also require an
estimate of the backscatter dynamics, we compute StDev(c?), similar to harmonic
formulation, using the Root Mean of Square of the difference between backscatter in
the time-series data record and the expected no-flood backscatter (from pre-flood
image).

The three models NDSI, SNDSI, and SR require a threshold for label pixels as either
flood or no-flood. In the course of finding an optimal threshold, we apply the simple
pre-filtering technique applied by Schlaffer et al. [101] using the HAND index, where the
pixels of high HAND values i.e. HAND > 20, are removed from the histogram before
thresholds are determined.

We tested three different methods to determine the threshold:

» Fixed: Here we rely on published reports. Among the NDSI and SNDSI implmenta-
tions, thresholds from the work of Ulloa et al. [123] were adopted. These are -0.725
for NDSI and 0.78 for SNDSI. While for SR a fixed value of -1.5 was found by several
studies to provide good results [18].

o Otsu: In the method of Otsu [84], an assumption of bi-modality is followed by fitting
two distributions by minimizing intra-class intensity variance. Hence, we determine
the threshold from the intersection of the fitted distributions within our reference-
and flood-images.

 Kittler and Illingsworth (KI): As an alternative we also tested the KI method
[54]. Also known as the Minimum-Error thresholding method, it seeks to fit the two
distributions, using the minimum error criterion, to a given model histogram. Hence,
the threshold is similarly determined from the intersection of the fitted distributions
as with Otsu above.

To test the BI model, we employ the same three no-flood reference parameterizations
to derive the full conditional probability function p(¢°|N). While BI does not rely on
parameterized thresholds, we test the application (and non-application) of distribution-
based masking methods introduced in the previous work of Bauer-Maschallinger et al
[8]. Accordingly, the BI method is improved by excluding pixels with high classification
uncertainty, either from very similar a-priori distributions for flood and no-flood, or from
actual observation values that fall in-between the two. Consequently, the significant
probability density function (PDF) overlap between flooded and non-flooded classes, and
in this paper, we refer to this as PDF exclusion mask. Hence, for Bl we test 1 x 3x2 =6
parameterizations, and finally obtain a set of 33 flood maps for our experiment.
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2.5.2 Accuracy Assessment

The flood maps are evaluated by comparing them to the two reference flood maps described
in Section 2.4.3. Given that these two expert-produced reference maps also do not represent
an absolute "truth", the computed accuracy metrics must be interpreted with some caution.
Nonetheless, as we are mostly interested in understanding the relative performances of the
algorithms and their parameterizations, they represent a good benchmark.

We computed traditional land cover classification metrics: Overall accuracy (OA),
Producer’s Accuracy (PA), and User’s Accuracy (UA). OA was selected over chance
agreement corrected metric i.e. Kappa coefficient, from recommendation in the literature
[31, 66]. In addition, we calculate the Critical Success Index (CSI), which is often used
in data science and flood mapping work to address the inequality of the classes. CSI has
been specifically found to provide good insights for flood mapping accuracy assessments at
the same scale [56]. All of these metrics were computed from a binary confusion matrix
and its four elements: True Positive (TP), True Negative (TN), False Positive (FP), and
False Negative (FN), among classified pixels, according to the following formulas:

TP+ TN

O = P T TN+ FPFN (25)
UA— (TP:TFP) (2.6)
PA— (TPZPFM (2.7)

OS5I = (TP + Z«:J]j + FN) (28)

Following good practice examples and sampling size determination equations from
Foody’s work [32], we acquired a total of 5000 random samples. Independent random
samples per change detection model were taken to remove possible bias in the application
of model dependent exclusion masks. From this, we surmise that a difference greater than
2% in OA implies a consequential distinction between the results.

2.6 Model Parameter Assessment

In this section, we analyze the sensitivity of the four change detection models to changes in
their parameterization by comparing the derived flood maps to the Sentinel-1 reference flood
map produced by Sentinel Asia (Sections 2.6.1 to 2.6.4). Furthermore, we select the best
performing parameterizations for each method to be subject of our model inter-comparison
in Section 2.7.

To allow a well-founded interpretation of the performance of the four models, we first
examine their statistical bases used for the distinction between flood and no flood. Figure
2.5 shows the histograms and maps of the observed backscatter o together with the
calculated NDSI, SNDSI, SR, and BI with, as an example, the mean image as no-flood
reference. From this compilation, it can be observed that the histograms of the model values
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Compilation of Sentinel-1 flood scene and results from the four change detection
models, which are parameterized with the mean backscatter as no-flood reference
(selected as example in this illustration). Top row (a—d): Sentinel-1 flood image
acquired on 13 November 2020, followed by rows for NDSI, SNDSI, SR, and BI
values. Leftmost column (a, e, i, m, q): histograms for images in the second
column, plus relevant thresholds. 2nd column: maps for the whole extent of
the study area tile. 3rd column: corresponding maps zoomed to Tuguegarao
City. Rightmost panel: further zooming into the Cagayan River section that is
adjacent to the city.
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allow in most cases an improved distinction between flooded and non-flooded sections,
compared with the initial flooded " image. Generally, the decrease in backscatter during
floods is highlighted, and the change detection models show—as expected—increased image
contrast and more distributed histograms. The SR map (Fig. 2.5 m—p), however, appears
to highlight different signatures within the observed ¢ image while not transforming the
shape of the histogram. Another observation is that particularly the SR and BI data
manage to register the pattern from the permanent water surfaces along the river, thus
supporting the delineation against flood bodies.

For the whole area, NDSI (Fig. 2.5 e-h) provides the most considerable increase in the
relative spread of values. The SNDSI (Fig. 2.5 i-1) shows less improvement in this regard,
but reduces the spatial dispersion of these values compared with NDSI, which structurally
features a noise-like spatial pattern (see e.g. in Fig. 2.5 h). Meanwhile, SR shows the least
gain in contrast, and we would argue that there is no significant effect on the separability
of the classes in its histogram (see in Fig. 2.5 m). This is most apparent in permanent low
backscatter areas, such as the river pixels, that are not as well delineated as for the other
methods (see in Fig. 2.5 p).

Concerning the threshold parameters (indicated by colored lines in the histograms
of Fig. 2.5), speciffically for SR and ¢, we observe that the respective Otsu and KI
thresholds follow the same characteristics described by Landuyt et al. The results show
more liberal flood labeling for Otsu’s method and more conservative labeling using KI.
Meanwhile, the NDSI and SNDSI indicate significant variance and instability when it
comes to finding the respective thresholds. This could be attributed to the seemingly
non-Gaussian distributions of the non-flood class and flood class (as observed in Fig. 2.5 e
and 1), noting that these thresholding algorithms assume Gaussian distributions.

In the BI model data (Fig. 2.5 q-t), most of the visually perceived flooded areas were
successfully assigned with high flood probability. Overall, the Bayes probability values
show intriguing results, as the river pixels show a low flood probability in spite of the
locally significant distribution overlaps coming from the river/water signature. While this
is a positive result, this behavior could easily swing from non-flooded and flooded classes,
as seen in the salt and pepper appearance of probability values along the river (see in Fig.
2.5 t). This similar noise-like appearance is also apparent in the probability values found
in agricultural areas.

2.6.1 Parameterization of NDSI Model

We now examine the NDSI model and the performance of its different parameterizations.
As shown in Table 2.2, the harmonic approach performs best of the no-flood references,
while KI performs best of the threshold methods. Consequently, the combination of these
two (represented by parameterization no. 6) builds the favored parametrization. This
combination features a CSI value larger than 85%. One can observe the significant variance
in the UA, ranging from moderate (59%) to excellent performance (97%). In contrast,
the PA has smaller differences, with most showing excellent results above 90%. This
suggests that the models favor, in general, overestimation. Thus, KI thresholding is a
proper method to dampen this effect. One can also notice the erratic performance of the
tested thresholding methods for the NDSI model. We attribute this to the fact that the
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NDSI histogram does not form a Gaussian distribution, a precondition leading to previous
findings as e.g. by Ulloa et al.

PN No-flood Threshold User’s Producer’s Overall Critical

Refer- Accu- Accu- Accu- Success

ence racy racy racy Index
1 Mean Fixed 82.8% 96.0% 88.0% 80.0%
2 Mean Otsu 76.5% 97.6% 83.8% 75.0%
3 Mean KI 59.6% 99.4% 66.0% 59.3%
4 Harmonic Fixed 86.9% 95.4% 90.5% 83.5%
5 Harmonic Otsu 72.1% 97.8% 80.0% 71.0%
6 Harmonic KI 97.3% 87.7% 92.6% 85.6%
7 Pre-flood Fixed 77.2% 94.0% 83.1% 73.6%
8 Pre-flood Otsu 65.2% 96.6% 72.5% 63.7%
9 Pre-flood KI 94.8% 87.2% 91.2% 83.2%

Tab. 2.2: Accuracy metrics (in percent) for the nine different parameterizations of the
NDSI model. PN - Parameterization number.

2.6.2 SNDSI Parameterization

Similar to NDSI, the harmonic no-flood reference leads to the best performance (see
Table 2.3), followed by the pre-flood and the mean reference. The best-performing
parameterization combines the harmonic reference and KI thresholding method. However,
Otsu’s method appears to be the most stable among the thresholding methods, probably
due to the fact that SNDSI shows no propensity towards overestimation as the NDSI does.
Moreover, using Shannon’s entropy appears to be an effective spatial morphological filter
to reduce noise-like classification.

PN No-flood Threshold User’s Producer’s Overall Critical

Refer- Accu- Accu- Accu- Success

ence racy racy racy Index
1 Mean Fixed 95.0% 68.7% 82.5% 66.3%
2 Mean Otsu 81.9% 88.0% 84.3% 73.7%
3 Mean KI 98.3% 54.0% 76.5% 53.5%
4 Harmonic Fixed 99.7% 65.8% 82.8% 65.7%
5 Harmonic Otsu 98.4% 85.6% 92.1% 84.5%
6 Harmonic KI 95.1% 92.3% 93.8% 88.1%
7 Pre-flood Fixed 99.7% 63.3% 81.6% 63.2%
8 Pre-flood Otsu 97.8% 83.9% 91.0% 82.4%
9 Pre-flood KI 97.1% 85.9% 91.7% 83.7%

Tab. 2.3: Accuracy metrics (in percent) for the nine different parametrizations of the
SNDSI model. PN - Parameterization number.
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2.6.3 Standardized Residuals Parameterization

In general, aside from UA, SR shows a similar large variance in accuracy metrics of the
parameterizations(see Table 2.4). Concerning no-flood reference parameterization, also
here the harmonic outperforms mean and pre-flood references. The pre-flood reference
does not perform well for this method because of the larger standard deviations in the
temporal model for the three-year period we tested. The fixed SR = —1.5 threshold
shows the best performance for this model in this study site. It shows a slightly better
performance compared to Otsu’s method, while KI underperforms in this model. Overall,
the model leans towards improving UA rather than PA values. The reported propensity
towards underestimation by KI’s method is apparent for the SR model, as indicated by
the lower PA results.

PN No-flood Threshold User’s Producer’s Overall Critical

Refer- Accu- Accu- Accu- Success

ence racy racy racy Index
1 Mean Fixed 97.7% 83.5% 90.8% 81.9%
2 Mean Otsu 98.1% 81.8% 90.1% 80.6%
3 Mean KI 99.9% 63.0% 81.5% 63.0%
4 Harmonic Fixed 96.3% 85.9% 91.3% 83.1%
5 Harmonic Otsu 98.8% 81.6% 90.3% 80.8%
6 Harmonic KI 99.9% 64.9% 82.4% 64.9%
7 Pre-flood Fixed 98.5% 72.5% 85.7% 71.7%
8 Pre-flood Otsu 99.9% 44.8% 72.4% 44.8%
9 Pre-flood KI 99.6% 59.9% 79.8% 59.8%

Tab. 2.4: Accuracy metrics (in percent) for the nine different parametrizations of the SR
model. PN - Parameterization number.

2.6.4 Bayes Inference Parameterization

In the case of the BI method, no threshold needs to be found, and the general rule of
labeling is based on higher probability, i.e., > 50.0 %. Instead, Table 2.5 includes the PDF
exclusion (see Section 2.6) as an option. One can see that there are minimal variations in
the accuracy metrics for the BI method compared to the other change detection methods.
The BI consistently performed very well in terms of UA; almost no non-flooded pixels are
labeled as a flood. And slightly lower PA indicates minor underestimation. Furthermore,
all parametrizations reached a high CSI larger than 80 %. Overall, the best-performing
parameterization No.4 uses the harmonic no-flood reference and the PDF-based exclusion
masks from the Bayes model.

Based on the nominal values of OA and CSI, the BI method using harmonic reference
slightly outperforms the other no-flood references. It should be noted that these differences
are too marginal to conclude a significant distinction. Unlike in other methods, the
pre-flood image performs similarly well as the mean and harmonic no-flood reference. It is
also noticeable that the introduction of PDF exclusion masking consistently improves the
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PN No-flood PDF Ex- User’s Producer’s Overall Critical

Refer- clusion Accu- Accu- Accu- Success

ence racy racy racy Index
1 Mean No 98.8% 82.0% 90.5% 81.2%
2 Mean Yes 99.6% 84.9% 91.3% 84.6%
3 Harmonic No 98.8% 83.4% 91.2% 82.6%
4 Harmonic Yes 99.8% 84.9% 91.7% 84.8%
5 Pre-flood No 99.6% 82.9% 90.5% 82.6%
6 Pre-flood Yes 99.6% 83.7% 91.0% 83.4%

Tab. 2.5: Accuracy metrics (in percent) for the six different parametrizations of the BI
model. PN - Parameterization number.

BI model, albeit by small margins in CSI and OA. This, however, comes at the cost of
masking some areas that could not be reliably classified.

2.6.5 Parameterization Summary

Table 2.6 collects the best-performing parameterization for each change detection model.
All four models perform best with the harmonic model for the no-flood reference. The mean
and pre-flood no-flood references performed variably depending on the other parameters.
Concerning threshold method, KI's method performed the best for NDSI and SNDSI.
Despite KI's method being found to be more conservative in thresholding [56], it performs
best for certain instances due to improved separability of flood and non-flood pixels in the
models (see histograms in Figure 2.5). For the SR model, however, the fixed threshold was
found to provide consistently good results for this study site, while KI and Otsu depend
on the no-flood reference. While Otsu’s method is not present within the collection of
best-performing parameterizations, it shows less variance in performance compared to
KI. This result is consistent with reports of Otsu’s performance [56]; here, significant
flooding is apparent in the study site. Thus its propensity to overestimate floods is not
as pronounced. Lastly, the application PDF Exclusion step consistently improves the
accuracy metrics for BI, albeit by only small percentage points.

Tab. 2.6: Best Performing Method Parameterization.

Method No-flood Reference Threshold
NDSI 6 Harmonic KI
SNDSI 6 Harmonic KI

SR 4 Harmonic Fixed
Method No-flood Reference PDF Exclusion
Bayes 4 Harmonic yes

After comparing different parameterizations for each change detection method, we infer
the robustness of the methods for this study site given by the variability of the resulting
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accuracy metrics. The highest robustness is shown by the BI method. We suspect that
the use of statistical distributions instead of a particular threshold is responsible for the
superior robustness.

2.7 Model Intercomparison

The optimal parameterizations for each of the four change detection methods are identified
in Section 2.6 and are summarized in Table 2.6. These are considered in the subsequent
step, where the accuracy assessment metrics are computed against the Sentinel-2 flood
map (see Table 2.7).

Tab. 2.7: Method Comparisons Sentinel-2 flood result as reference.

Method Users Producers Overall Critical
Accuracy Accuracy Accuracy Success
Index
NDSI 6 92.6% 72.2% 83.2% 68.2%
SNDSI 6 87.7% 77.0% 83.1% 69.5%
SR 4 91.8% 69.8% 81.8% 65.7%
BI 4 95.9% 74.6% 85.3% 72.3%

After parameter optimization, there are generally few false positive pixels in the SAR-
based flood maps, as all selected flood maps show User’s Accuracy (UA) values greater
than 87%. The Bayes method used has the highest value of 95.9%. As expected, the PA of
all methods is significantly lower than UA. The PA results range from SNDSI with 77.0% to
SR with 69.8%. Based on our assumption that there is no significant difference in the flood
extent due to little time lag between the Sentinel-1 observation and the Sentinel-2-based
reference map, this result can be attributed to the limitation of SAR-based methods
over certain land cover types. As reported already by Bauer-Marschallinger et. al [8],
the SAR-based flood mapping is challenged in densely vegetated and urban areas, where
optical systems such as Sentinel-2 can detect floods under good circumstances and in the
absence of clouds.

The OA results indicate good or excellent general agreement between the tested flood
maps and the reference maps, which is also promoted by the overall large area and the
relatively large flooding event. Among the selected parameterizations, the Bayes method
shows the highest OA value with 85.3%, while the last-ranked method SR has only a
difference of 3.5%. Based on the little differences in OA, it can be said that BI has the
only noteworthy difference from the other methods tested based on 2% difference criteria
we established in Section 2.5.2. When examining the Critical Success Index (CSI) results,
the Bayes method is also ranked best with 72.3%, followed by the SNDSI with 69.5%,
NDSI with 68.2%, and SR with the lowest result at 65.7%. Only the BI method has
CSI greater than 70.0%, while all others are rated closely. However, in reflection of the
underlying differences in flood mapping mechanisms between optical and SAR-based maps,
we consider all methods to perform well.
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It should be noted that above’s statistical metrics show a generalized performance
description for the whole scene. Therefore, we have a closer look at the qualitative
differences for some selected areas. PA and UA relate to classification pixels of false
negatives (omission errors) and false positives (commission errors), which describe (dis-)
agreement well when zoomed in on particular areas of interest. Figures 2.6 and 2.7 show
representative subsets and their confusion maps between the tested model’s flood maps and
the Sentinel-2 reference map. These maps highlight the area near the city of Tuguegarao
with its meandering river channel and surrounding agricultural areas, respectively.

SENTINEL-1

121.750

17.750

17.500

. false negative
20 2.5 I false postive

I sig0 (dB) B flood agreement

Fig. 2.6: Spatial detail from model inter-comparison for the vicinity of Tuguegarao City.
Top left: Sentinel-1 scene from flood event on 13 November 2020 at larger
scale, with zoom-in-box for other panels. Bottom left: clear-sky, no-flood
Sentinel-2 image (for orientation). Other panels show, overlaid to the Sentinel-1
observation, the confusion maps for NDSI, SNDSI, SR, and BI, indicating areas
where algorithm classify false negatives (omission errors) and false positives
(commission errors) against the Sentinel-2 reference flood map.

The four methods successfully remove non-water areas of permanent low backscatter,
such as the Cagayan airport shown in the upper right edge of the maps in Figure 2.6,
fully exploiting the strength of the change detection concept. Moreover, the BI method
shows an excellent delineation of the permanent river courses, being excluded in the flood
result through the PDF exclusion approach. The SR method shows suitable results for
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permanent water exclusion but could be improved by further morphological operators as
only small patches are observed. The NDSI-based results, show poor performance in this
regard.

In contrast to the other models, SNDSI shows larger patches of false positives over
the built-up areas in the center and east of the zoom-in (Figure 2.6). In this area, high
backscatter from double bounce effects are clustered, which results in low entropy values
that lead to erroneous labeling. The observed improvement in the NDSI and SNDSI in
parameter transformation for thresholding does not significantly improve these methods
compared to the other tested methods. This degraded performance could be attributed
to the limitation of the parameter formulation to account for false positives, which are
clearly seen in the confusion maps. For example, low SNDSI values mainly refer to swaths
of water in an image, but are also likely for radar shadows which may have been missed by
the post-processing masks. Another observation is the NDSI, and SNDSI results have more
overestimation in flooded agricultural areas(Figure 2.7), while the SR and BI methods are
less prone to this type of commission error.

SENTINEL-T 121750

121.750

SENTINEL-2

T | sig0(dB) B flood agreement || false negative
=20 25 I false positive

Fig. 2.7: As Figure 2.6, but a spatial detail on agricultural areas.

As also seen in Table 2.7, SR has notably more false negatives. These are generally
observed in agricultural areas, as exemplified in Figure 2.7, and can be attributed to the
higher temporal variance from agricultural activities (in the historical time series), which
dampens the SR parameter. Surprisingly, the BI method performs better than the other



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

46 2 An Intercomparison of Sentinel-1 Based Change Detection Algorithms...

methods, considering that agricultural areas were recognized in need of improvement for
the BI method presented by Bauer-Marschallinger et al.

In terms of spatial cohesion of the flood maps, as inferred from the confusion maps in
Figures 2.6 and 2.7, the SNDSI and BI method show more cohesive overall results. For the
area of Tuguegarao, Figure 2.6, the NDSI map shows noisy or patchy results in terms of
higher rates of both FP and FN, while SR has the same concern to a lesser degree in the
specific regions. At the same time, Figure 2.7 show much noise in all methods, including
the BI result illustrating the challenges of such areas in flood mapping. It could be argued
that NDSI and SR methods could further be improved with better morphological filtering
during a post-processing step. Alternatively, by use of Shannon’s entropy as in the SNDSI,
a filter-like improvement is achieved, which slightly improves the overall result for this
case study.

However, notable in the BI result in Figure 2.7 are the patches of excluded areas. While
in most cases, these coincide with misclassifications in the other maps, thus highlighting
the PDF exclusion’s effectiveness. For example, some areas such as the old river meander
in the lower left corner of the BI map in Figure 2.6 were excluded rather than labeled
being as flood. Despite this and other things considered, the BI method generally performs
better than the other methods tested in this study.

2.8 Conclusions

This study tested and compared four automated SAR-based change detection flood
mapping methods and their parameterization against Sentinel-1-based expert data for
the case study in the northern Philippines. Our parameterization experiments comprise
the testing of different threshold and masking options, as well as the suitability of three
different methods to generate the no-flood-reference map, which is crucial to any change
detection approach. We further carried out an inter-comparison of the four best-performing
model parameterizations, with accuracy assessment against a Sentinel-2-based flood map
specifically generated for this study.

In our assessment of the model parameterizations against the semi-manual results
from Sentinel Asia (using Sentinel-1), the Bayes Inference (BI) method showed the most
consistent performance, regardless of the input no-flood reference. The BI model was found
to be robust in the sense that it does not require tailor-fitting, whereas the other change
detection methods were found to be more significantly impacted by one’s choice of input
non-flood reference and the thresholding method. Focusing on the latter, Otsu’s method
was found to work well with the SR and SNDSI methods. In contrast, KI’s method showed
a better result for NDSI and SNDSI, albeit showing highly variable results when the input
no-flood reference is changed. The published threshold of SR = —1.5 also showed a good
result for this study area. Lastly, considering that we applied a HAND-based prefiltering
before thresholding and the obtained variability of the results, it is recommended to explore
spatial prefiltering techniques with these models, which are driven by temporal parameters.

Concerning the no-flood-reference parameterization, the harmonic model lead to the best
results for all four change detection models, apparently profiting from the good fit of the
seasonally expected backscatter. The missing consideration of the backscatter’s seasonal
variability causes the lower performance of the mean. The pre-flood image is generally
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observed close to the flood event and hence is expected to represent actual conditions like
vegetation state or soil moisture most accurately. Nevertheless, results from the pre-flood-
parameterized models are less consistent compared to the harmonic model. We found that
the pre-flood image—as an actual single-time observation—still holds speckle that leads
to noise-like classifications, which is effectively removed in no-flood references made from
temporal aggregations. Therefore, we recommended that the datacube-derived no-flood
reference are further investigated, such as other time-series models, e.g., exponential filters,
or parameter tuning through, e.g., modulating the length of the contributing time-series.

The evaluation of the best-performing model parameterizations against the optical-
derived Sentinel-2 reference showed that the BI method performed best. Considering the
parameterization results and this final comparison suggest that the BI core concept is
generally more robust and possibly more adaptable to other study sites. Albeit computa-
tionally more demanding, the BI approach of taking the sample’s full distribution into
account proves to be more adaptive than the discrete thresholding in the other methods.

All tested datacube flood mapping methods show meaningful agreement with the
reference flood maps from Sentinel-2 and a semi-automatic expert product by Sentinel
Asia. The best-performing methods all achieved good to excellent results based on OA
and CSI. The four tested change detection methods show very satisfying User’s Accuracies,
mainly through a correct classification of permanent low backscatter areas. The Producer’s
Accuracies, on the other hand, also had reasonable performance but exhibit well-known
SAR-related deficiencies over challenging land covers.

To summarize, this study represents one of the first efforts to inter-compare several SAR
change-detection-based flood mapping methods and their parameterizations, with a view
on the feasibility of applying them in an operational fashion over large areas. Overall,
all four change detection models performed reasonably well considering that their input
parameters were neither locally optimized nor adapted by a human operator. Nonetheless,
the sensitivity of the NSDI, SNSRI, and SR models to parameterizations suggests the need
for further localized tests. On the other hand, the Bayesian Inference model coupled with
the harmonic model as no-flood reference seems to be relatively stable in its performance,
which is an important prerequisite for (global) automatic operations.
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Chapter 3

Improving Sentinel-1 Flood Maps Using
a Topographic Index as Prior in
Bayesian Inference

This chapter is a reformatted accepted version of:

Tupas, M. E., Roth, F., Bauer-Marschallinger, B., & Wagner, W. (2023). Improving
Sentinel-1 Flood Maps Using a Topographic Index as Prior in Bayesian Inference. Water,
15(23), Article 23. https: //dot. org/ 10. 3390/ w15234034

The original document is openly accessible at: https://www.mdpi.com/2073-4441/15/
23/4034 under the Creative Commons Attribution (CC-BY) license.
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3.1 Abstract

Sentinel-1-based flood mapping works well but with well-known issues over rugged terrain.
Applying exclusion masks to improve results is common practice in unsupervised and
global applications. One such mask is the Height Above the Nearest Drainage (HAND),
which uses terrain information to reduce flood look-a-likes in SAR images. The TU Wien
flood mapping algorithm is one operational workflow using this mask. Being a Bayesian
method, this algorithm can integrate auxiliary information as prior probabilities to improve
classifications. This work improves the TU Wien flood mapping algorithm by introducing
a HAND prior function instead of using it as a mask. We estimate optimal function param-
eters and observe the performance in flooded and non-flooded scenarios in six study sites.
We compare the flood maps generated with HAND and (baseline) non-informed priors with
reference CEMS Rapid mapping flood extents. Our results show enhanced performance
by decreasing false negatives at the cost of slightly increasing false positives. In utilizing
a single parametrization, the improved algorithm shows potential for global implementation.

Keywords: Synthetic Aperture Radar; Sentinel-1; Flood Mapping; Bayes’ Inference;
Hand Above Nearest Drainage

3.2 Introduction

In recent years, Earth-observation-based mapping and monitoring of floods has increasingly
utilized Synthetic Aperture Radar (SAR) data [2]. This situation can be attributed to
the excellent systematic acquisition capabilities of the Copernicus Sentinel-1 mission [79].
In the past two years alone, multiple large-scale flood events have been monitored and
analyzed in unprecedented detail using SAR-based methods. [1, 97]. These methods must
work on time and provide accurate results, giving decision-makers actionable information
for disaster relief, recovery, and reconstruction [21].

Previous studies have demonstrated SAR-based flood mapping workflows to work well
but with some well-known limitations [12, 73, 90, 105, 120, 132]. Problems arise in
areas where SAR data (only) flood retrievals become ambiguous. Examples are other
low backscatter areas, such as radar shadows regions; or no sensitivity areas like dense
vegetation. In some studies, localized parameterizations (e.g., changing thresholds) or
more complex methods [61, 65, 70, 114, 136] address these concerns but are seldom
near-real-time (NRT') or globally viable.

Other workflows rely on exclusion masking of these problematic areas [120, 140]. While
masking is a reasonable solution, over-application is a concern and should be minimized.
One commonly used masking method that minimizes misclassification of SAR flood look-a-
likes uses the Height Above the Nearest Drainage (HAND) index [82, 95]. HAND masking,
while known to work well in removing false positives based on topography [48, 120], often
affects significant portions of a flood scene rendering the mapping algorithm futile for
these parts. Despite this concern, HAND masking’s simple execution and robust global
performance make it an ideal inclusion to operational workflows [16].
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One flood mapping algorithm in operational use for the new Global Flood Moni-
toring service [98] of the Copernicus Emergency Management Service (CEMS, https:
//emergency . copernicus.eu/) is the TU Wien flood mapping algorithm. This method
is based on a probabilistic Bayesian method [8] that can integrate pre-existing information
(from auxiliary sources) to arrive at improved decisions or classifications. However, using
other information to form prior probabilities (or priors for short) is often overlooked
in SAR-based flood mapping efforts in favor of non-informed priors [34]. In doing so,
they miss the potential to improve areas where SAR backscatter alone is ambiguous or
problematic. With limited studies having shown success [21, 94] and others presenting
evidence to the contrary [34] a systematic study of priors in Bayesian SAR-based flood
mapping is needed.

This work aims to improve to the TU Wien flood mapping algorithm. To accomplish
this, instead of using it for masking, we leverage the HAND index to derive priors. We
introduce a HAND prior probability function, deriving globally applicable parameters,
and showing its performance on flooded and non-flooded cases in six study sites across the
globe.

3.3 Height Above the Nearest Drainage As A Prior

3.3.1 SAR flood mapping using Bayes Inference

Bayesian classifiers are probabilistic classifiers that apply Bayes’ Theorem. In Earth
observation applications, particularly flood mapping applications, these classifiers are
usually applied on the pixel level. Pixels are classified as flooded when the probability after
inference, or the so-called posterior probability, exceeds a pre-defined threshold (usually
50%). One can calculate the posterior probabilities from Bayes’ Inference using:

p(o°|F)p(F)
(0% F)p(F) + p(a®|N)p(N)
where p(c°|N) is the conditional probability for a pixel being non-flooded and p(c°|F)
for the flooded case, while p(F') and p(N) are the prior probabilities of a pixel being
flooded and non-flooded respectively. Most literature has focused on formulating the
conditional probability functions, using:

p(Flo’) = ’ (3.1)

o Observed SAR parameter: backscatter intensity [8, 34, backscatter difference [100],
or coherence [94];

e Probability distribution models: Gaussian [8, 94, 100, 106] against non-gaussian ([34];

o Data set used as a reference for flooded probability distribution: scene based [34, 94,
106], or historically sampled [8, 100];

o Data set used as a reference for non-flooded probability distribution: scene based [34,
94, 106], against time-series derived [8, 100].

In the case of the TU Wien algorithm [8] tested in this work, p(¢®|N) is derived from a
harmonic model describing the local VV backscatter, expressed as expected sigma-naught
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value (o or SIGO) for a given day-of-year. p(c°|F) is estimated from calm water samples,
taken at different locations over sea and lakes at times without strong winds.

On the other hand, prior probabilities are often reduced to the non-informative case
[100, 129] i.e., equal chance of being flooded and non-flooded. Giustarini et al. justified
this assertion by testing varying prior probability values without significantly affecting the
reliability metric of their flood maps [34]. Further testing priors based on flooded area
percentages from reference datasets also did not significantly improve the results in their
study. However, their study applied prior values uniformly across their study areas and
did not investigate priors that spatially vary.

Reffice et al. discuss the possibilities of such localized priors in their work [94]. Their
work demonstrates a prior probability distribution function from the inverse distance to
rivers. Moreover, their subsequent work with a Bayesian Network included a piece-wise
geomorphic-flooding-index-based function as an auxiliary input [21]. While both functions
offer simple solutions, their approach involves localized optimization of their proposed
functions.

3.3.2 HAND Based Prior Probability Function

HAND is a hydrological model derived from terrain data such as Digital Elevation Models
(DEMs) [82]. As an index, it is often utilized in SAR-based flood methods to exclude
improbable flooded pixels [86], specifically for low-backscatter pixels above a pre-defined
height threshold relative to the nearest drainage level. While in machine learning-based
flood mapping algorithms, it has also been used as an auxiliary input [62]. Notably, flood
modelers use HAND with synthetic rating curves for rapid inundation mapping [36, 49,
63], and has been touted for its performance despite its simplicity.

Our hypothesis is that the HAND index is an ideal candidate prior information in
the global operational context because: 1) as there are several (near-) globally DEMs
openly available it can be computed globally [29, 134], 2) it is a simple model (applied the
same way everywhere), and 3) it does not require regular updates (since most terrains are
primarily stable).

Considering this, we conceptualize a prior probability function that shares HAND’s
robustness and simplicity. Thus, only the HAND index is used as an input in our Bayes
Inference formulation to estimate flooded prior probabilities, p(F’), while the non-flooded
prior, p(N), is computed from 1 - p(F"). For p(F'), we propose an exponential function
p(F'|h) given as follows:

)

1

(h—p)

1+e <o

p(F|h) = (3.2)

where h = HAND index value per pixel
i = midpoint
o = steepness

The midpoint (u) defines the HAND value where the probability indicates a 50% chance
of the pixel being labeled as water. In contrast, the steepness parameter (o) dictates the
degree to which the resulting probability changes per increase in HAND value, essentially



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

3.4 Materials and Methods 53

controlling the function’s characteristic shape. A lower o value (e.g. 0 < 1) results in a
function behaving like a step(down)-function, while a higher o value (e.g. o > 30) leads
to an almost linearly decreasing function.

HAND Prior Probability Function Parameters
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Fig. 3.1: HAND prior probability function response to varying steepness (o) at mid-point
(1) = 20. Y-axis indicates the probability— p(F|h). X-axis indicates the HAND
values (h).

Figure 3.1 illustrates the response of the proposed function to varying steepness param-
eter, here centered at p = 20. This exponential formulation models a gentle decrease in
probabilities at lower HAND values where flooding is more likely to occur; while having
steeper decline towards the midpoint where floods are less likely to happen.

Similar exponential functions have been proposed by Refice et al. for their distance to
river function [94] and Jafarzadegan et al. for their log-normal flood probability function
used for HAND-based flood mapping [49]. The latter reports a similar function being
stable during parameter optimization —showing robustness to parameterization, a preferred
characteristic for global operations [117].

3.4 Materials and Methods

3.4.1 Study Sites

To test the performance of Bayesian flood mapping with HAND priors, we analyzed flood
events and no-flood cases at six test sites covering different geographical regions, climatic
conditions, and terrain properties. Details are described in Section 3.5.2. Table 3.1 shows
an overview of these six test sites.
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The flood events were identified from available Copernicus Emergency Management
Service (CEMS) [128] Rapid mapping activation covering flood events mapped with
Sentinel-1 as satellite data input from March to November 2022. This ensured having
reference flood extents for our analysis that matches our generated flood maps exactly
spatially (minimal resolution and sampling effects) and temporally (no time lags).

Tab. 3.1: Test Sites and Matching CEMS Activations with Flood Event Dates and No
Flood Dates.

CEMS Type Location Flood No-flood
Activation Event Date
Date

EMSR569 Flood Valencia, Spain 22/03/2022  21/03/2021
EMSR577 Flood Suriname 16/06/2022  09/06/2021
EMSR586 Flood New South Wales, Australia 05/07/2022  16/06/2021
EMSRG637 Flood New South Wales, Australia 24/10/2022 17/10/2021
EMSR639 Flood Belize 03/11/2022  27/10/2021
EMSR640 Flood Scotland, United Kingdom ~ 20/11/2022  25/11/2021

3.4.2 Materials
3.4.2.1 Sentinel-1 Datacube

The Sentinel-1 datacube curated and managed by TU Wien and EODC [125] serves as the
primary data source for the Bayesian flood mapping workflow [8] employed in this study.
This data cube was generated from Sentinel-1 Ground Range Detected (GRD) datasets
[113], which are sampled at 20m x 20m pixel size and and tiled at the T3 tiling level
(300km extents) of the Equi7Grid system [10]. The matching SAR images with the VV
polarization band for the six flood events were queried from this data cube. Harmonic
parameters were also derived from this datacube [115] to estimate the day-of-year no flood
reference for the pixel-based flood inference.

3.4.2.2 Height Above the Nearest Drainage

Deriving the HAND index is a reasonably straightforward raster-based methodology using
hydrologically conditioned Digital Elevation Models [82]. While several global HAND
datasets are openly available [26, 134], we computed HAND index datasets from 90m
SRTM [29] using a python script with ArcGIS "Spatial Analyst Tools.tbx’ and "Topography
Tools 10_2 1.tbx’. This dataset was resampled at 20m resolution and tiled to align with
the Sentinel-1 datacube.

Locally improving HAND by optimizing the contributing drainage area is recommended
[134]. However, good performance as an exclusion mask with global parameters [16] has
been shown to work for SAR-based flood mapping without such optimization. Thus no
localized optimizations were undertaken.
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3.4.2.3 Reference Flood Extents

Obtaining ground truth data for flood mapping is not always possible [40]. A reasonable
alternative is using existing, manually quality-controlled flood extent maps, such as
those made available through CEMS. Using the criteria described in Section 3.4.1, CEMS
reference vector flood extents and associated ancillary data (e.g. AOI, Hydrology) [50] were
downloaded from https://emergency.copernicus.eu/. The downloaded reference datasets
were subsequently rasterized, reprojected to the Equi7grid tiles, and masked to match
the Area of Interest (AOI) in preparation for the assessments. To better match the flood
maps generated with the CEMS flood reference, we use the same CEMS hydrology dataset
(rivers, lakes) as water mask to differentiate flood from permanently inundated areas [130].

3.4.3 HAND Prior Probability Function Parameter Estimation

First, we determine globally appropriate midpoint (u) and steepness (o) parameters for
the HAND prior probability function through the iteration and analysis of the average
Critical Success Index (CSI), Users Accuracy (UA) and Producers Accuracy (PA) of all
test sites relative to their CEMS counterparts.

CSI, defined by Equation 3.3, is used because it is a robust estimator of overall flood
map performance [56]. Furthermore UA and PA, defined by Equations 3.4 and 3.5, are also
used to discern over- and under-estimation tendencies of the proposed improvement. While
no assessment metric is without issues, these metrics were selected to reduce dependence
on the size of flood extents[107]. These metrics are computed from the binary confusion
matrix of a classified map versus a reference. All assessment metrics are defined by four
binary confusion matrix elements, namely: True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN).

TP

CST= (TP + FP+ FN) (3:3)
TP

UA=Tp5Fp) (34)
TP

PA= Gp L PN (33)

Given the definition of the midpoint (u), we selected our iteration range based on the
published values used as HAND exclusion mask thresholds. With typical optimization
ranges from 5 to 40 meters, and selected values range from 10m to 20m [49, 87, 114]. Value
ranges in the same magnitude are tested for the steepness (¢) to maintain reasonable
steepness of the resulting function.

For each combination of these two parameters, spatially varying HAND-based prior
probabilities are computed for flood map generation. Then the accuracy metrics (against
the CEMS reference) are computed, tabulated, and averaged per parameter combination for
all test sites. Finally, estimated optimal parameters are selected based on the maximization
of the three metrics.


https://emergency.copernicus.eu/
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3.4.4 Comparative Performance

Using the determined HAND function, we can compare the flood maps generated with
non-informed prior and HAND-derived prior probabilities cases to show their performance
in flooded and non-flooded scenarios. Fig 3.2 shows the TU Wien flood mapping flowcharts
of the two cases, highlighting the difference between the two workflows consisting of 1)
type of input priors and 2) (non-)removal of the HAND mask post-processing step.

Non-informed
Non-

informed prior case
prior
4
iti i Water masking
scow |, codtns || eme || Tuwer | QNESE oot /e
IHagE computation RUEECHER Masking ng F?lleringg ap
A A
Auxiliary HAND
Ll index
LAND HAND prior _HAND
index = ™ Probability prior case
function
Y
iti T Water masking
T e e S pi
Ll computation Hieioice Masking Fitering 2k
A
Auxiliary

inputs

Fig. 3.2: Simplified TU Wien Flood mapping flowcharts. Non-informed prior probability
case (above). HAND prior probability case (below). Details of the other
auxiliary inputs and the TU Wien no-sensitivity and probability distribution-
based masking workflow are detailed in the work of Bauer-Maschallinger et al.

8]-

As earlier described, raster-based prior probabilities are generated from the HAND
dataset using Equation 3.2. These prior probabilities are used for the first set of test
cases, which we refer to as the HAND prior cases. In contrast, a spatially uniform 0.5
prior probability is used for the second set of test cases for the non-informed prior cases.
HAND exclusion masks (using the matching p) are applied as a post-processing step for
non-informed prior cases, while this is skipped for the maps computed with HAND prior
cases.

Flood maps with both prior cases were generated for flooded scene scenarios, covering the
six flood events. We then compute the (above-mentioned) assessment metrics against the
matching pre-processed reference CEMS flood data. After this, we examine the differences
in the three metrics between the prior probability cases. Exemplary confusion maps of
each site are also created to qualify these differences.

In many cases, flood mapping algorithms are tailor-fitted to work for flooded scenes,
which may have a negative effect for monitoring non-flooded scenarios. If an algorithm
is applied to a non-flooded image, false positives should not be excessive to give the
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impression of a scene being flooded. This is important for global monitoring applications
where not all results can be manually vetted.

However, in non-flooded scenarios, we lack true positives; thus, the CSI, UA, and PA
metrics are not applicable. In their place, we calculate the False Positive Rate (FPR) [6]
defined by Equation 3.6 for maps using both prior cases on exemplary non-flooded images
for the same study sites. Here the binary confusion matrix is generated with a synthetic
all no-flood pixels as reference. In effect, all identified floods are false positives, while
non-flooded pixels are true negatives.

FP
FPR= ———— .
B=FpiTN (3:6)

The exemplary images are selected to match the same vegetation state as the flooded
images. Thus images approximately one year earlier are identified and matched by orbit
to ensure almost identical imaging geometry. These image acquisition dates are noted
in Table 3.1. While not explicitly screened, no extraneous SAR effects (abnormally high
or low backscatter for a scene caused by extremely wet, dry, or windy conditions) were
observed in the selected images.

3.5 Results and Discussions

3.5.1 Prior Probability Parameterization

We averaged the CSI, UA, and PA of all six sites across all the parameter iterations to
discern an optimal estimate of the function parameters p and o. As noted earlier, the
function response does not significantly change for small parameter changes; hence for our
purpose, the iteration by 5m of both parameters up to 40m —leading to 64 combinations—
is adequate to arrive at a reasonable estimate of the HAND prior probability function.
We plot the metrics for all the combinations for the HAND-based prior function and the
non-informed prior case as a reference.

As seen in Figure 3.3, panel (a), the best average CSI values were observed with p
between 20 - 35 meters and o between 5 to 10 meters. Moreover, the highest CSI was
observed with p = 30m and o = 10m. It should be noted that the CEMS rapid mapping
activation uses both VV and VH bands [50], while this study focuses on the existing TU
Wien workflow using VV polarization only, which could explain the low average CSI values.
(We scrutinize these further on a study site basis in Section 3.5.2.) In terms of thresholding,
VH polarization has a slight advantage in mapping complex floods or transition areas as it
more likely exhibits a decrease in backscatter intensity compared to VV polarization that
is more sensitive to complex scattering mechanism [46].

As our objective for this study is to improve the algorithm, the absolute CSI values
are less important than the observed difference compared with the baseline non-informed
prior case. For reference, overall accuracy values in all test cases for all sites exceeded
87%. They were not presented here for brevity, as the CSI is sufficient to highlight the
differences in the overall performance.

On the other hand, the HAND prior parameter combinations and reference non-informed
prior results have in general high UA values but show significantly lower values at low o
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Fig. 3.3: The average comparative metrics of the study sites versus the prior probability
function parameterizations. (a) Average Critical Success Index, (b) Average
the Users Accuracy, and (c) Average Producers Accuracy. Y-axis indicates the
mid-point (u). X-axis indicates the steepness (o). The lower left panel shows
the non-informed prior case for reference.

values. PA values, similar to CSI, are not ideal. Most combinations do not significantly
change the UA (b). Furthermore, a significant decrease in the UA is observed at o between
5 to 10, with a reasonable decrease at p less than 25. Lastly, the PA plot in panel (c)
show an increasing value with p but a decreasing value with o.

Since no combination shows a clear maximum for all three metrics, we can limit the
parameters selection to p = 25 and ¢ = 10 or ¢ = 20 and ¢ = 10 to minimize the
decrease in UA while retaining good CSI and PA improvement. We chose the latter as a
conservative estimate for the function parameters.

3.5.2 Comparative Results HAND prior

In the following, we describe in detail the performance of this selected parameterization.
From Figure 3.4, it can be observed that the overall performance in all test sites, except
the Suriname test site, has significantly improved CSI and PA at the expense of a slight
decrease in UA.

Interestingly, the study sites that showed the significant improvement in CSI are areas
with rolling terrain (Scotland) and low-lying wetland areas (New South Wales, Australia).
Improvements are small for urban terrain (Valencia, Spain) and relatively flat areas. This
result may be related to the limitation of HAND as a model for relatively flat areas [36],
which in turn is often traced to the discrepancies of the source DEM in these areas [33].

The following sections show confusion maps with water masks overlain for reference [130].
We look at the details of the confusion maps of both HAND prior cases and non-informed
prior cases to better understand the summarized findings.

3.5.2.1 Spain

The flood extent from Valencia, Spain, seen in Figure 3.5 primarily affected the river Turia
and the adjacent green areas. The flooded area visible in the SAR flood maps is centered
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Fig. 3.4: Differences between the comparative metrics. HAND prior case minus non-
informed prior case.

on its artificial channel. The channel is dotted with varying densities of vegetation. Dense
foliage act as a volume scatterer and block the impinging signal from reaching the water
surface. Thus sections of the flood along the channel are not visible in the SAR flood
maps.

False negatives along the edges of the channel (red arrows) are the most pronounced
issue for the flood maps generated, which results in very low CSI and UA. The channel is
characterized by the relatively steep embankment, acting as a transition area, resulting in
a complex scattering mechanism where the decrease in backscatter is not as pronounced.

The wider flood extent is better identified by the HAND prior case (b) than the non-
informed prior case (a), causing the improvement in PA and CSI. For the most part,
the HAND data reflects the low elevations of the channel. However, the resolution of
the HAND data (e) is too coarse to cope with the misclassified pixels at the edges. The
reference data and flood maps also miss the dense vegetation in the channel (yellow arrows);
in this case, even with the highest possible prior probability of being flooded, it is not
enough to overturn the non-flood result.

3.5.2.2 Suriname and Belize

The result for the Suriname test site is shown on the top row of Figure 3.6; the area is
near Grand Santi, French Guiana. The flood scene indicates overflow along the Marowijne
River at the border of Suriname and French Guiana at several small locations. For this
site, the HAND prior case does not seem to add value to the original method.

Only minor changes between the HAND prior case (a) and the non-informed prior case
(b) were observed for this study site. Since the area is densely vegetated, the quality of
the SRTM DEM to represent ground topography is in question [59, 91]. As observed,
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Fig. 3.5: Confusion map of a portion of the Spain study site. Top row: shows the confusion
maps for non-informed prior case (a) and HAND prior case(b). Bottom row: True
color Google satellite map (c), SIGO backscatter intensity at VV polarization
(d), and HAND index map(e)

most areas have relatively similar and relatively higher values HAND values (c) outside
the drainage network compared to the other sites, possibly confirming the tree canopy
height issue. Thus the method shows issues due to limitations of the input DEM affecting
HAND prior case performance.

The bottom row of Figure 3.6 features the Belize study area focusing on an area west
of Hattieville, Belize. Similar to the Suriname site, most of the area is covered by dense
vegetation but with noticeable patches of sparsely vegetated areas. The confusion maps
(e and f) show floods for low-lying clearings. Here possible flooded vegetation with less
considerable decrease in backscatter intensity and flood edges are the most common source
of false negatives in both prior case flood maps. Some of these areas are corrected in the
HAND prior case (white arrows). False positives are observed in the HAND prior case not
present in the non-informed prior (blue arrow) are pixels with higher backscatter values
compared with surrounding flooded pixels.

3.5.2.3 Australia

Located in different parts of New South Wales, the 05/07/2022 (Australia 1) and 24,/10/2022
(Australia 2) flood events share similar terrain characteristics. Both are located in low-lying
areas littered with swamps, creeks, and streams. The 05/07/2022 (Australia 1) event
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Fig. 3.6: Confusion map of a portion of the Suriname and Belize study sites. Top row:
Confusion maps for the Suriname study site overlain on Google satellite map for
non-informed prior case (a) and HAND prior case (b); HAND index map (c) and
SIGO backscatter intensity at VV polarization (d). Bottom row: Confusion maps
for the Belize study site overlain on Google satellite map for non-informed case
(e), and HAND prior prior case(f); HAND index map (g) and SIGO backscatter
intensity at VV polarization (h).

covered the swampy area north of Hunter River, while the 24/10/2022 (Australia 2) event
occurred further inland near the town of Gunnedah and Namoi River.

Both events cover substantial areas, as seen in Figure 3.7. False negatives along the
flood borders (or transition zones) are a common issue for both the HAND prior cases (b)
and (f) as well as the non-informed prior cases (a) and (e). The HAND prior case showed
superior performance in both flood events. Also worth noting are false positives (white
arrows) that suggest this area is within the swampy region that is most likely flooded.

3.5.2.4 Scotland

The Scotland test case shown in Figure 3.8 shows false negative issues around the border
areas (white arrows), and masking of dark SAR backscatter pixels at higher elevation
(green arrow).
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Fig. 3.7: Confusion map of a portion of the New South Wales, Australia study sites.
Top row: Confusion maps for the 05/07/2022 (Australia 1) flood event overlain
on SIGO backscatter intensity at VV polarization for non-informed prior case
(a), and HAND prior case(b); Google satellite map (c) and SIGO backscat-
ter intensity at VV polarization (d). Bottom row: Confusion maps for the
24/10/2022 (Australia 2) flood event overlain on SIGO backscatter intensity
at VV polarization for non-informed prior case (e), and HAND prior case(f);
Google satellite map (g) and SIG0O backscatter intensity at VV polarization (h).

Similar to other test sites, improvements along the flood edges are visible from comparing
the non-informed prior case (a) to the HAND prior case (b). As these edges or transition
zones may contain mixed pixels [40] and complex scattering mechanisms [46] that causes
lesser decrease in SAR (VV polarization) backscatter that the original algorithm [8] has
issues with that the HAND priors rectifies. Lastly, low backscatter pixels masked by the
HAND mask in the non-informed prior case (b) are labeled as non-flood in the HAND
prior case (a).
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Fig. 3.8: Confusion map of a portion of the Scotland study site. Top row: shows the non-
informed confusion maps for prior case (a) and HAND prior case(b). Bottom
row: True color Google satellite map (c), SIGO backscatter intensity at VV
polarization (d), and HAND index map(e)

3.5.3 No-flood Conditions

Table 3.2 shows FPR calculated from the exemplary non-flooded images. The HAND
column shows the FPR of flood maps using the HAND prior probability function, while
the No Prior column shows the FPR of the maps with non-informed priors. It can be
seen that the Valencia, Spain test site incurs both the largest FPR nominally for both
cases and the most significant increase between the two. At the same time, minimal FPR
was computed for Suriname. All study sites showed a small increase in FPR with the
HAND-based prior all below 1%.

To qualitatively describe the performance of the HAND prior case versus the non-
informed prior case in no flood scenarios, we present the case with the highest FPR (Spain
study site) shown in Fig. 3.9. The zoomed in area shown is located east of the Alarcon
reservoir. It can be observed that the false positives cover 1) reservoir areas that are not
normally inundated (black arrows) and 2) low backscatter areas covering agricultural fields
(white arrows). In the former, agricultural fields do not conform with the predicted seasonal
backscatter response (see difference between panel d and b), leading to over-estimation— a
known issue with the TU Wien algorithm [8]. At the same time, the latter is a similar case
and a common issue in EO flood mapping. Both issues appear to be slightly exacerbated
by the HAND prior.
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Tab. 3.2: False Positive Rates for No Flood Cases.

Location No Prior HAND Prior Difference
Spain 1.50% 2.43% 0.92%
Suriname 0.00% 0.00% 0.00%
Australia 1 0.03% 0.12% 0.09%
Australia 2 0.07% 0.66% 0.59%
Belize 0.04% 0.20% 0.16%
Scotland 0.14% 0.14% 0.00%
average 0.30% 0.59% 0.29%

LEGEND
[ No Flood in both
I Flood in both
o
| Flood in No prior only
B Flood in HAND prior only
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Fig. 3.9: Confusion map of a non-flooded scenario in a portion of the Spain study site.
Top row: shows the difference map between the non-informed prior case and
HAND prior case (a). SIGO backscatter intensity at VV polarization on 2023-03-
21 (b). Bottom row: True color Google satellite map (c), Day of year estimated
SIGO backscatter intensity at VV polarization from the harmonic model (d),
and HAND index map (e)

3.6 Summary and Conclusions

Our results demonstrate a noticeable improvement to the TU Wien flood mapping algorithm
by applying a HAND-based prior probability function compared to the baseline non-
informed prior. We introduced an exponential function and estimated globally applicable
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parameters to produce the HAND-based priors. We showed its performance on flooded
and non-flooded cases in six study sites.

Concerning the the HAND prior probability function, we have not found an optimum
for its parameters, as the observed improvement of CSI and PA comes at the cost of
UA. Thus, it is prudent to select a conservative estimate for the HAND prior probability
function parameters, which does not severely impact UA.

While empirically derived, the mid-point at 20m agrees with the assumption that this
value should be within the usual range of HAND threshold values. On the other hand, lower
steepness values proved to be useful, with 10m working well with the mid-points tested.
Further parameter optimization could still improve flood mapping with HAND-based
priors. However, given the close responses of the function to changes in parameters, we
find the estimated parameters already suitable.

The HAND prior probability function introduced and tested here showed promising
performance. Applying the HAND-based priors decreases false negatives at the expense
of a slight increase in false positives. In this regard, we observed less improvement in
relatively flat areas than areas with rolling terrain and low-lying areas. At the same
time, we have observed instances of similar masking effects when using the HAND prior
probability function, thus removing the dependence on HAND masking.

In terms of reducing false negatives, flooded areas with a lesser decrease in backscatter
intensities benefit from the HAND prior probabilities. The most common observed
occurrences of such areas are 1) floods in sparsely vegetated areas and 2) flood boundary
or transition regions.

On the other hand, added false positive areas are typically found in low lying areas
with minimal adverse effect of not masking at higher HAND values. Noting that the
CEMS reference flood maps used were also delineated from the same Sentinel-1 images,
we observed that some labeled false positives from the HAND prior test cases are most
likely true positives that the CEMS rapid mapping method misclassified. On this point,
we recommend further testing with independently sourced reference data.

For the no-flood scenarios, a slight increase in the false positive rates was observed for
all six study sites tested. This test showed reasonable performance, with no more than a
1% increase in FPR rates. We observe that the HAND prior slightly exacerbates existing
issues with deviations with the expected seasonal backscatter response. Nevertheless, it
should be pointed out that no extreme events (very dry or wet conditions) were captured
in the six sites tested. As certain extreme events result in low backscatter signals that
lead to wholesale false positives, testing the performance of the HAND prior probabilities
at such conditions is recommended.

To conclude, our flood mapping with HAND-based priors demonstrated improvements by
decreasing false negatives at low HAND values and preventing false positives at high HAND
values. The latter implies we removed the need for independent pre or post-processing
HAND mask. However, the improved algorithm has drawbacks: a slight increase in false
positive rates and noted limitations for densely vegetated areas. We showed the suitability
of applying a single parameterization to the six test sites, suggesting feasible application
of such priors to the TU Wien flood mapping algorithm at a global scale. With its simple
formulation and ubiquitous input, this prior formulation could potentially benefit other
Bayesian or probabilistic flood mapping workflows.
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Chapter 4

Assessment of Time-Series-Derived
No-Flood References for SAR-based
Bayesian Flood Mapping
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https://doi.org/10.1080/15481603.2024.2427304
https://doi.org/10.1080/15481603.2024.2427304
https://doi.org/10.1080/15481603.2024.2427304
https://doi.org/10.1080/15481603.2024.2427304

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

68 4 Assessment of Time-Series-Derived No-Flood References...

4.1 Abstract

The systematic mapping of flood events with Synthetic Aperture Radar (SAR) data is
an area of growing importance. One global flood mapping algorithm utilized within the
Copernicus Emergency Management Service is based upon a Bayesian Inference model that
compares a SAR image to a simulated reference image representing no-flood conditions.
This no-flood reference image is at present generated using a harmonic model trained using
historic time series, thereby producing a backscatter image representing mean seasonal
conditions. One known weakness of this approach is that it cannot account for changing
environmental conditions from year to year, potentially causing an overestimation of flood
extent during dry periods, snow and frost, or other effects causing lower-than normal
backscatter. To minimize this detrimental effect, we introduce an exponential filter to
estimate the no-flood reference image by weighting the most recent backscatter observa-
tions according to their time difference to the current SAR acquisition. We compare the
performance of the new exponential filter model against the harmonic model using a novel
time-series flood mapping assessment approach. First, we assess their predictions against
the actual SAR image time series for the year 2023. Then, we analyze the false positive
rate of the corresponding flood maps generated to ensure the robustness of the automated
algorithm outside of flood events. Furthermore, we perform qualitative and quantitative
analyses of flood maps matching with semi-automatic results from Copernicus Emergency
Management Services and Sentinel Asia as a reference. Our time-series analysis confirms
increased false positive rates due to well known environmental drivers and highlights
issues with agricultural overestimation. In this regard, the time-series comparisons of the
no-flood reference models show a clear improvement in the TU Wien algorithm with the
exponential filter, effectively reducing false positive rates on non-flooded scenes in most
study sites. The exponential filter performed better than the harmonic model in most
flooded scenes, where sites show generally improved Critical Success Index and User’s
accuracy. However, the exponential filter model has difficulties with sites with prolonged
floods in the time series, requiring further development. Overall, the exponential filter
no-flood reference model shows great promise for improved global near-real-time flood

mapping.

Keywords: Flood Mapping; Synthetic Aperture Radar; Sentinel-1; Bayes Theorem;
Harmonic Model; Exponential Filter

4.2 Introduction

Floods are among the most frequent natural disasters affecting an increasing segment
of the global population [13, 110]. A recent estimate suggests that 1.81 billion people,
or almost one in four persons are directly exposed to severe flooding [96]. Using remote
sensing for large-scale mapping of flood situations is invaluable for emergency response,
recovery, and reconstruction. Supporting these applications, Synthetic Aperture Radar
(SAR) based flood mapping is gaining prominence for systematic global operations due to
its spatio-temporal coverage and independence from weather and ligthining conditions [98,
102, 109].
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SAR-based flood mapping techniques that have proven effective include single-image
thresholding algorithms [39, 71|, parametric or tile-based thresholding schemes [15, 72,
120, 141}, and machine learning methods [53, 105, 132]. However, due to floods’ transient
and anomalous nature, most approaches employ some form of change detection. Therefore,
these algorithms highly depend on appropriate pre-flood baselines or no-flood references.
Careful selection of such images is a crucial — often manual — task in algorithms using
single pre-flood images [4, 123]. These selection procedures are challenging for systematic
flood mapping operations. As such, the automated selection of these no-flood references
from time series stacks has attracted attention in the literature [47, 60, 141].

Instead of selection algorithms, which often face problems in Near-real-time (NRT) oper-
ations, synthetic no-flood references can be produced from time-series analysis. Common
methods include using mean or median values [18, 24, 80], or employing harmonic models
with seasonally adjusted day-of-year estimates [101]. These synthetic references have the
advantage of speckle suppression [117] and ease of automation. However, while having
an essential impact on mapping performance, model selection and parameterization of
these underlying models (e.g., the period length of time-series analysis) are difficult to
generalize in the context of global application.

SAR change detection algorithms, where these no-flood references are used, may involve
differencing or index-based methods [101], time-series anomaly detection, to no-flood
probability functions in Bayesian methods [100]. An example of the latter is the flood
mapping algorithm developed at Technische Universitat Wien (TU Wien), which employs
a pixel-based Bayesian decision between flooded references from historical samples versus
a non-food reference based on a predefined harmonic model [8]. The algorithm is currently
deployed in an operational setup under the Copernicus’ Global Flood Monitoring service[98].
It has performed well in areas with well-defined seasonality but shows higher uncertainties
for areas with ill-fitting temporal patterns, leading to overestimation.

Time-series derived estimates deviating from the actual SAR measurements can result
from non-conformity with predefined parametric functions, leading to the proposal of
non-parametric approaches [19, 93|. Balancing algorithm robustness and computational
complexity is crucial. Rolling filters may provide an alternative. One such filter — the
exponential filter — weighted filter, has been effectively used for improving soil moisture
monitoring [126]. Unlike other filters, it features a near-real-time iterative formulation
[3, 9] that makes it enticing for systematic mapping operations. Here, we test its use for
improving flood mapping for the first time.

Most flood algorithms are tuned and tested for specific events, while mapping perfor-
mance on non-flooded scenes is often ignored. This optimization of algorithms for flood
scenes may disregard possible overestimation and false flagging of images as flooded where
there is none. In this contribution, we present a novel time-series flood mapping assessment
approach to the TU Wien algorithm to compare time-series derived no-flood references. We
analyze and compare the original harmonic model with a proposed exponential-filter model.
In seven study sites, we assess both non-flooded and flooded scenarios. First, we assess
the no-flood models” backscatter estimates against the actual SAR image time series for
2023. Then, we analyze the false positive rate of the corresponding flood maps generated.
Qualitative and quantitative analyses of flood maps are conducted using rapid mapping
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activations from Copernicus Emergency Management Services (CEMS) and Sentinel Asia
as references.

4.3 TU Wien Flood Mapping Algorithm

We present the TU Wien flood mapping algorithm’s theoretical foundation and the no-flood
references we intend to examine.

A Bayesian classifier, the TU Wien algorithm uses a pixel-based rule in labeling floods
dependent on the posterior probability p(F|c") surpassing a predefined threshold (e.g.,
50%). The posterior probability from Bayes’ inference from different authors (e.g.Bauer-
Marschallinger et al., Giustarini et al., Refice et al., Schlaffer et al., Westerhoff et al. ) is
computed using Equation 4.1:

p(o|F)p(F)
(0% F)p(F) + p(c®|N)p(N)

where the conditional probability, p(¢®|N), to be non-flooded, is computed using the
pixel’s incoming backscatter against a probability distribution defined by the expected
no-flood backscatter value and its temporal standard deviation (defined by the no-flood
references presented in Section 4.3.1 and 4.3.2). p(¢°|F) for the flooded case is computed
against the incidence angle-dependent water distribution derived from historical samples.
Lastly, p(F') and p(N) are the prior probabilities of a pixel being flooded and non-flooded,
respectively. Non-informed priors [34] were used for both.

(4.1)

p(F|o°) = 5

4.3.1 Harmonic Model

The current approach of the TU Wien algorithm defines the no-flood backscatter probability
distribution using the harmonic model. This model (shown in eq. 4.2) provides a practical
way to estimate backscatter using the sum of harmonic (sinusoidal) terms to characterize
its behavior over time. The presented algorithm builds upon the formulation of Schlaffer
et al., where the trend is neglected and applies three iterations of harmonic terms, i.e.,
k = 3. With this realization, the model fluctuates in the order of months. Therefore,
short-term backscatter variations, such as those caused by flooding, are smoothed, making
it a notable no-flood reference.

2mit, 2m'tn} (4.2)

k
(t,) = o0 + ; {cz- cos 365 + s; sin 36T

Here, 6" is the expected Sentinel-1 backscatter at day-of-year (DOY) ¢,, and is estimated
based on ¢; and s; representing the harmonic parameters. The first cosine coefficient is o9,
equivalent to the mean Sentinel-1 backscatter for the time series.

The harmonic parameters used for this model were precalculated using a linear least
squares estimation [115] using an input time series of three years. These are the same
parameters currently used for Global Flood Monitoring (GFM) operations. This three-year
formulation performs overall better than the original two-year parameters [74].
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The computational complexity of the harmonic model does not allow regular updating
and is best pre-computed to meet operational demands [115]. This limitation leads to
issues for areas with abrupt land cover change or areas deviating from the modeled seasonal
trend. The latter is typically observed in bare soil, grasslands, and agricultural areas,
which are more prone to backscatter fluctuations induced by vegetation and soil moisture
dynamics [124]. This leads to no-flood probability distributions inaccurately reflecting the
actual vegetation and soil moisture states that can lean towards flood labeling resulting in
overestimation [8].

4.3.2 Exponential Filter Model

To compensate for such overestimation, we seek alternative methods that could be updated
dynamically, allowing a more accurate and up-to-date representation of vegetation or
soil moisture dynamics. Consequently, we considered shorter moving averages or rolling
filters. One such filter applies exponential weights decaying through time. We present the
continuous formulation of the exponential filter model in equation 4.3 taken from Wagner
et al. but adopted to estimate backscatter, 5%, at some day in time: t,.

n -0 S
5_0(tn) _ Zz g (ti)iitiT (43)
e T

where ¢%(t;) is the observed Sentinel-1 backscatter at time ¢;. T is the equations’
characteristic time length parameter, representing the timescale of backscatter variation
in days.

Preliminary tests with other rolling filters (like mean and median) showed similar or
slightly worse performance than exponential filters and is presented in the Supplementary
material (Section 4.10.4) for brevity. Nonetheless, the practical prospect of the exponential
filter lies in its recursive formulation [9]. While mathematically giving the same result,
the recursive formulation allows updated estimates to be calculated at new time steps
with only incrementally updated gain value and new measurements, dramatically reducing
computational requirements compared other rolling filters where a recursive formulation is
not feasible. However, to better illustrate the effect of T" parameter and our current focus
on performance rather than efficiency, we only present the continuous form in this work.

To reduce the volume of datasets used in the continuous formulation, we excluded
measurements with effective weights of less than 0.05. This procedure roughly corresponds
to considering measurements within the time range of [t, — 3T t,) (excluding t,).

In soil moisture studies, the selection of T value is topic of ongoing investigation [3, 88],
where Paulik et al. established basic relations of T values to soil depth from correlation
analysis against in-situ reference measurements. As the optimal value of T" in flood
mapping is still unknown, we aim to determine a suitable T" parameter for robust flood
mapping by experimenting with different values. We test multiple T, i.e., T = 10, 20, 30,
40, 60, 90, and 120.

From preliminary tests, we found that exponential filter estimates with shorter time-
series inputs do not suppress speckle well. Therefore, input radar backscatter images for
exponential filter were de-speckled using Lee-Sigma Filter[57, 58] with 3x3 kernel size.
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4.3.3 Standard Deviation

To form the no-flood backscatter probability distribution, we assume its form as Gaussian
based on suggestions from the literature [94, 100, 106]. Thus, in addition to an expectation
value, a degree of dispersion (standard deviation) is required.

We compute the standard deviation using Equation 4.4 based on Bauer-Marschallinger
et al.’s approach, given by the square root of the time-independent sum of squared errors,
SSFE(a”), between the actual backscatter time-series and the estimated values from the
time-series models, divided by the models’ degrees of freedom v.

SSE(c)

14

std = [dB] (4.4)

Here v is the degrees of freedom and is solved by n — (2k + 1) for the harmonic model
and n — 2 for the exponential filter model, where n is the number of observations. For the
harmonic model, the standard deviations were computed from the same three-year period
used to estimate the parameters. In contrast, the exponential filter standard deviations,
regardless of T" values, were computed using the 2023 time series.

4.3.4 No-Sensitivity Masking and Post-processing

After inital labelling, the TU Wien algorithm applies a no-sensitivity masking procedure
that tags pixels where the BI is not feasible. This includes areas with 1) extreme local
incidence angle where the flood probability model is invalid, 2) conflicting flood and
no-flood probability distributions, and 3) measurement outliers. We refer the reader to
Bauer-Marschallinger et al. for further details on no-sensitivity masking. This study uses
the same no-sensitivity mask thresholds as the original algorithm.

Finally, we omit the majority filter-based post-processing step, as we found that it
results in undesired over- and under-labeling. Further exclusion masking (e.g., HAND
mask, and radar shadow masks) [140] were not applied to allow for comparisons and
observe possible improvements in these areas.

4.4 Materials and Study Sites

To give an overview of the materials and methods used in this study, Figure 4.1 shows
the different phases of analysis. The green panel explains derivation from the Sentinel-1
data cube (Section 4.4.1) of the TU Wien algorithm and the no-flood reference models, we
described in described in Section 4.3. To ensure a globally applicable analysis, we endeavor
to analyze as many sites as possible. The purple panel represents the site selection process
discussed in Section 4.4.4. We further ensure robustness in no-flood scenarios by extending
our analysis to understand temporal behaviors. The yellow panel shows the no-flood time
series analysis found in Section 4.5.1. Finally, we conduct traditional comparisons for a
reference flood event for each test site. The orange panel represents the flood mapping
accuracy assessment described in Section 4.5.2.
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Fig. 4.1: Methodological Flowchart and Phases of Analysis. Green panel: Site selection
procedure. Purple panel: Flood mapping algorithm. Yellow panel: No-flood
time-series analysis. Orange panel: Flood mapping accuracy assessment.

4.4.1 Sentinel-1 Data cube

To produce the flood maps and their corresponding no-flood reference images analyzed in
this study we use the VV polarized subset of Sentinel-1 [113] data cube maintained by
TU Wien and EODC [125]. The data cube comprises curated Sentinel-1 Ground Range
Detected (GRD) image tiles with 20 m x 20 m pixel size and organized using the T3
tiling level (300 km x 300 km extents) of the Equi7Grid system [10]. Spatial analysis
performed throughout this study were conducted in the same tiling and grid system using
the python based Yeoda software stack https://github.com/TUW-GEQ/yeoda (accessed
July 20, 2024).

4.4.2 Ancillary Data

To understand the environmental conditions and spatio-temporal backscatter dynamics
governing our flood mapping results, we cross-referenced several ancillary datasets that
were re-gridded and reprojected to the Equi7Grid tiles.

Soil temperature and water content are crucial factors in explaining overestimation [65],
and were used to rule out floods in images in which frozen and dry soils cause large swaths
of low backscatter. ERA5-Land [78] Daily Aggregated data accessed from Google Earth
Engine [37] were used to calculate the means of soil temperature and volumetric soil water
at the topmost level (0-7 cm).

Furthermore, we used the ESA WorldCover (2021) [135] to explain spatial patterns.
And, where available, EU Crop Map (2022) [22] for finer separation of crop types. Land
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cover and crop type (and their associated cropping practices) give further insights into the
flood maps and overestimation patterns.

4.4.3 Reference Flood and Water Maps

We use activation-based flood maps as a reference for accuracy assessments under the
premise that operational service relies on expert intervention in (semi-automated) map
generation and quality assurance. These maps are reasonable alternatives in lieu of actual
ground truth flood data.

In this regard, Copernicus Emergency Management Services (CEMS) [50] rapid mapping
vector flood extents and associated ancillary data (e.g., AOI, Hydrology) were retrieved
from https://emergency.copernicus.eu/ (accessed on 13 March 2024). Sentinel Asia
[51] vector flood extents were also downloaded from https://sentinel-asia.org/E0/
EmergencyObservation.html (accessed on 13 March 2024). The reference flood maps
were rasterized and reprojected to the Equi7Grid tiles.

To differentiate semi-permanent and permanent water bodies from flood results [130], we
use the CEMS hydrology dataset for the assessed flooded AOIs. For comparisons of entire
tiles and where CEMS data is absent, we use Copernicus DEM [28] Water Body mask.
Both datasets are used to mask out water areas for both qualitative and quantitative
assessments.

4.4.4 Study sites

All flood mapping activations listed in the CEMS and Sentinel Asia databases from March
2023 to November 2023 were considered in our study. The aim is to analyze a diverse
representation of environmental and climatic conditions, allowing for global generalization.
However, emergency response maps as reference data require careful inspection, selection,
and contextualization to obtain nuanced assessments. Thus, we implement a rigorous
matching and screening procedure.

A preliminary search of the two flood mapping services’ activations was screened for
flood maps delineated using Sentinel-1. This was done to ensure that our experimental
results and the reference match temporally and spatially. The reference flood maps and
corresponding Sentinel-1 images were scrutinized to ensure that there were no obvious
geolocation errors and that flood extents could be reasonably determined from VV polarized
data —for which the algorithm is tuned for. In cases with more than one area of interest
(AOI), we selected the AOI with the most prominent flood coverage. The final area of
interest for flooded assessments is selected based on the intersection of the Equi7Grid tile
that contains the most significant portion of the AOIs. In contrast, the whole data cube
tiles are used for non-flooded assessments.

Four test sites covered by CEMS are situated in Europe, where there is a noted increase
in flood anomalies [108]. The flooding incidents in Scotland [38], Slovenia [11] and Greece
were triggered by extreme precipitation, the latter noted for its exceptional rainfall duration
and intensity [25, 44]. Meanwhile, CEMS reports that the snow melt contributed to the
flood event in Latvia. The Sentinel Asia activations describe the events in Vietnam and
India as caused by heavy rainfall, while tropical cyclone Doksuri caused the Philippine
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Location  Rel. Orbit Source Activation Code AOI/Subset Est. Area(km?) Date GEnS zone*
Scotland A030 CEMS EMSR698 03 20 2023.10.08 E,J
Vietnam D091 Sentinel Asia FL-2023-000179-VNM  Nghe An & Ha Tinh 286 2023.09.30 M, R
Greece A102 CEMS EMSR692 01 730 2023.09.07 K, L
Slovenia A146 CEMS EMSR680 04 3 2023.08.05 G,J
Philippines D032 Sentinel Asia TC-2023-000121-PHL - 416 2023.07.28
India A027 Sentinel Asia  FL-2023-000112-IND - 537 2023.07.16 M, P
Latvia D080 CEMS EMSR657 01 55 2023.04.03 G

Tab. 4.1: Study Sites and Metadata on Equi7grid Tile Details, Reference Flood Maps
and Climate Zones.

2Global environmental stratification (GEnS) zones: E-cold and wet, G-cold and mesic,
J-cool temperate and moist, K-warm temperate and mesic, L-warm temperate and xeric,
M-hot and mesic, P extremely hot and arid, R extremely hot and moist

mapped event. The area was subjected to intense rainfall from a preceding tropical
depression [43].

Fig. 4.2: Location of study sites (Equi7Grid Tiles) colored based on available reference
flood maps overlain on global environmental stratification (GEnS) layer [76].

When plotted against global environmental stratification data [76], shown in Figure 4.2,
one can see that our test sites contain a good mix of climate types and different seasonality
inclinations. Metadata summary on the seven study sites is found in Table 4.1; these
include the reference flood activation information, and the dominant Global environmental
stratification (GEnS) zones per tile.
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4.5 Assessment Methodology

4.5.1 Reference Image and No-Flood Time-Series Assessment

To compare the performance of the no-flood time series backscatter models (and T
parameterization), we compute the root-mean-square deviation (RMSD) [6] between the
estimates and actual Sentinel-1 measurements per image acquisition date for 2023. RMSD
is computed using Equation 4.5:

RMSD(t,) = \/ o' (0 (t}z\; —5,(tn))?

where %(t,,) is the estimated Sentinel-1 backscatter per pixel for a given time tn, while
0°(t,,) is the observed Sentinel-1 backscatter for that pixel at the same time and N is the
total number of valid pixels.

Flood maps are then produced for every Sentinel-1 acquisition date irrespective of flood
occurrence. We create maps based on each no-flood reference for each date using the
harmonic model and the exponential filter at varying 7" values.

We limit our assessments to one relative orbit per tile, which is selected to match the
flooded reference maps’ source Sentinel-1 image’s relative orbit. At a specified relative orbit,
with a 12-day revisit time, there are about 30 acquisition days per study site for a year.
This mapping during each satellite pass simulates the automated procedure performed
in the flood monitoring operations. Up to 240 flood maps for 2023 were created for each
study site. We note actual flooded acquisition dates for each tile based on documented
reports and flood mapping service activations, while all other acquisitions are assumed to
be entirely non-flooded.

[dB] (4.5)

B FP
~ FP+TN
After masking permanent and seasonal water, we can compute the false positive rate
(FPR) using equation 4.6 based on the assumption that all remaining flooded pixels are
false positives (F'P) and non-flooded as true negatives (T'N) [6, 119]. The FPR and RMSD
are temporally plotted and cross-referenced with ERA5-Land data for soil temperature
and volumetric soil water for the uppermost soil layer. We do this to explore possible
overestimation through time and attribute its possible causes vis-a-vis the no-flood model
used for flood mapping. To confirm the difference in performance of the tested no-flood
models, we perform pairwise comparisons between all models. For each two no-flood model
comparison, we employ paired statistical tests between the aggregated FPR differences
from all study sites.

FPR (4.6)

4.5.2 Flood Map Assessment

In addition to the no-flood evaluations, we analyze the performance of our algorithm on
dates where reference flood maps are present, described in Table 4.1. Before quantitative
assessments, we harmonize our generated flood map with the reference data. First, the
maps are clipped to reference data AOIs. These are provided as a separate vector layer for
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CEMS results, while the bounding box of the Sentinel Asia vector results is used as AOls.
Then, we apply the corresponding water masks before creating confusion maps and tables.

Subsequently, we compute accuracy assessment metrics for all flood maps. The metrics,
Critical Success Index (CSI), User’s Accuracy (UA), and Producer’s Accuracy (PA), shown
in the equations 4.7, 4.8 and 4.9 below:

TP

CSI= TP FP+ N (4.7)
TP

UA= 5 FP) (4.8)
TP

where TP is the true positive, TN is the true negative, FP is the false positive, and
FN is the false negative counts derived from the binary confusion matrix. These metrics
are chosen to express the flooded maps’ overall performance via the CSI [56], while
over- and underestimations from UA and PA [6]. To compute these accuracy assessment
metrics for the flood maps against the vector reference data, we use ABCRaster https:
//github.com/TUW-GEO/ABCRaster (accessed June 20, 2024) to automate the procedure.
Relying solely on a few metrics may not fully capture mapping performance. Therefore,
we conduct a qualitative visual evaluation of the confusion maps.

4.6 Results

4.6.1 No-flood Time Series

The plotted RMSD and FPR against ERA5-Land surface soil temperature and moisture
shown in Figures 4.3, 4.4, and 4.5, are sample plots for the Latvia, Greece, and India
study sites, respectively. We include the time-series plots for the rest of the sites in the
Supplementary material for conciseness.

The figures present three horizontal panels depicting the performance of the no-flood
references using the harmonic and exponential filter models at various 7" values and soil
properties per Sentinel-1 acquisition per tile in a specific relative orbit. The top panel
shows the FPRs per flood map for every Sentinel-1 acquisition date for the tile, assuming
there is no actual flood. The middle panel shows the RMSDs for no-flood reference
estimates versus the actual Sentinel-1 data. The bottom panel shows the ERA5-Land
temperature and volumetric water content at the topmost soil layer (0-7 cm).

4.6.1.1 Latvia

We present the result for the Latvia test site (Figure 4.3)as a representative study site
with a cool temperate climate. Similar phenomena can be observed with the Slovenia and
Scotland study sites (in the Supplementary material).

Regarding FPRs, we observed peaks at the beginning and end of the year corresponding
to frozen soils at those specific dates. As frozen soils exhibit a similar significant drop in
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Latvia: False Positive Rate (2023)
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Fig. 4.3: Temporal Plots of False Positive Rate, Root Mean Square Deviation, and ERA5-
Land Soil Temperature and Volumetric Soil Water for the Latvia Study Site

backscatter [5] thus is easily mistaken as floods. A smaller peak in FPR was observed
during the flooding event in April. A prolonged peak is observed towards the summer
months, corresponding to relatively dry soils from the ERA5-Land data. This rise in
false positives relates to lower backscatter signals of drier soils being mistaken for the low
backscatter caused by specular reflection of inundated areas as radar backscatter increases
with soil moisture content [122] except for arid environments where subsurface scatterers
are present [127]. The scattering behavior of wet soil changes fundamentally once standing
water forms at the surface. The peaks in RMSD mostly correspond to the same peaks in
FPR. However, it was observed that there is a more prominent peak in RMSD compared to
FPR during the documented flood, which is the expected behavior for a no-flood reference.

For both the FPR and the RMSD, the HPAR performs less well than the exponential
filter. In terms of exponential filter 7" value, most perform similarly. Aside from T = 10
and 7' = 20, they have varied performances relative to the other 7' values, sometimes
getting the best and worst results in others.

4.6.1.2 Greece

Greece (Figure 4.4) is presented to show the behavior of a warm temperate study site.
Regarding the FPR, it is observed that the exponential filter model performs better than
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the harmonic model for most of the year. Like the previous plots, the lower T values
showed inconsistent performance compared to the other 7' values. The performance of
other T values is difficult to differentiate. A similar pattern is observed for the RMSD,
where the harmonic model consistently shows higher values than the exponential filter
model.

Greece: False Positive Rate (2023)
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Fig. 4.4: Temporal Plots of False Positive Rate, Root Mean Square Deviation, and ERA5-
Land Soil Temperature and Volumetric Soil Water for the Greece Study Site

A significant flooding event on this tile lasted from most of September to early October
[44]. We observed elevated RMSD and FPR values during this period.

In contrast, there is a significant increase in FPR from most of April to May, which
does not have a distinct rise in RMSD. Looking at the ERA5-Land plots, this April-May
increase does not correspond to frozen soils or dry conditions. Thus, the most likely cause
is the start of agricultural activity in the region, where bare ground or emergent vegetation
typically exhibits low backscatter [42] and is maybe mistaken for flooding.

The considerable spike in FPR here can be explained by the large proportion of the
agricultural area in the tile and the particular crops grown in this area. The more
significant difference in performance between the harmonic model and exponential filter
can be attributed to the same issue and is explained further in the spatial context in
Section 4.6.2).
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4.6.1.3 India
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Fig. 4.5: Temporal Plots of False Positive Rate, Root Mean Square Deviation, and ERA5-
Land Soil Temperature and Volumetric Soil Water for the India Study Site

The Indian study site (Figure 4.5) is in an arid climate. Therefore, dry soil conditions
primarily drive the temporal dynamics of FPR and RMSD. An increase in FPR and RMSD
is observed from April to May due to dry soil conditions. A larger increase in RMSD
was observed during the prolonged flood event in July. Compared to dry conditions, no
prominent increase in FPR was observed. For the India study site, the harmonic model
and all T" parameterizations of the exponential filter performed similarly for the second of
the year, with a noticeable difference from the start of the year until June.

4.6.1.4 Southeast Asia

The Vietnam and Philippines test sites have tropical climates and show less variation in
the FPR and RMSD. This observation can be attributed to relatively stable soil moisture
and temperature throughout the year.

In the case of the Philippines (Figure 4.11), a large percentage of the tile are dense
tropical forests; thus, backscatter variations are small [140], leading to stable tile-based
aggregates where no peaks were observed in RMSD and FPR. The harmonic model and
the exponential filter (regardless of the value T') are almost indistinguishable.
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For Vietnam (Figure 4.13), there is greater variance in terms of RMSD as the climate is
not purely hot and humid for the whole tile. Like Indian example, the harmonic model also
performs worse than the exponential filter for the year’s first half. Unlike the other test
sites, the harmonic model and exponential filter perform similarly for no-flood scenarios in
the Southeast Asian test sites.

4.6.1.5 General Perspective on False Positive Rates

To get a generalized perspective on the no-flood models’ FPR performance, we further
analyze the aggregated observations from all study sites. As observed in the time series
metrics plots, the no-flood models’ FPR performance show obvious similar trends following
known environmental drivers. Thus, to differentiate the models, we statistically test the
significance of the FPR differences per pair of no-flood models from all test sites.

The paired FPR differences between the various no-flood models showed significantly
skewed (non-normal) distributions. Hence, the non-parametric Wilcoxon test [89, 131] was
used instead of the paired t-test to test for significance. For this test, the null hypothesis
(HO) states that there is no significant difference between the compared no-flood models.
While the alternative hypothesis (H1) indicates a significant difference.
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Fig. 4.6: Box and whisker plots of the aggregated False Positive Rates Forwith the
significance level. ***: p-values < 0.001, **: p-values < 0.01, *: p-values < 0.05,
and ns: p-values >= 0.05

Figure 4.6 shows Box and whisker plots of the aggregated False Positive Rates of selected
no-flood reference model. Shown on top is the significance based on the pairwise Wilcoxon
test. Almost all no-flood models showed significant statistical difference compared to
others, except for T=60 compared to T=90 and T=120 (see Table 4.2). Notably, the HPAR
model against all Exponential model showed the highest (***) significance, while between



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

82 4 Assessment of Time-Series-Derived No-Flood References...

the exponential filter models per T values show lower significance as T values become
larger. On the box plots, we can see median FPR values of each no-flood model. The
harmonic model in general shows about 0.027 FPR to less than 0.013 for all exponential
filter models. Meanwhile, the differences in median FPR values between the exponential
filter model at various T values are very small (although statistically different).

4.6.2 False Positive Frequency Mappings

To delve deeper into the issue of overestimation, we shift our focus from analyzing the
time series data at the tile level to considering the spatial dimension. By generating
flood frequency maps [87] and excluding instances from flood dates, we can represent
the occurrence of false positives in each pixel. These maps enable us to assess how the
false positive rates align with land cover and crop type. We compare the false positive
(FP) frequency map based on the harmonic model and the exponential filter with 7" = 40
alongside the EU Crop map for specific locations as examples.

Consistent with the initial findings of Bauer-Marschallinger et al., we find further
evidence of overestimation due to agriculture. In the Greek study site, as shown in the
upper row of Figure 4.7, there is a noticeable variation in false positive frequency at
the level of individual agricultural plots. Many agricultural plots are falsely labeled as
flooded up to one-third of the year, some even exceeding 40%, and thus indicating a clear
disadvantage of the harmonic modeling at this location.

There are noticeable differences in FP count between plots growing maize and cereals
compared to industrial crop plots, the latter being more easily misinterpreted as flood
labels. He et al. identify cotton as the most prevalent industrial crop. The sensitivity
of cotton fields to false labeling can be attributed to agricultural practices (e.g., field
flooding) and the higher backscatter of the cotton plant in the middle of the cropping
stages, leading to a higher temporal model variance [68].

The grasslands of the Slovenian test site shown in the lower row of Figure 4.7 have
higher FP frequencies. From open optical satellite imagery, these areas appeared to be
seasonally flooded and were missed by water masks. In these regions, the exponential
filter shows fewer FPs. In the northeast corner of the map, some distinct agricultural plots
are also apparent in the frequency maps, such as rape. Maize has fewer FPs on this site
compared to Greece.

Bare soils, grasslands, and croplands show more FPs than other land cover types. In
terms of other specfic crops, we observed with elevated FPs from other test sites include
wheat, cereals, and rice (see Section 4.10.3). These crops have been shown to have low
backscatter periods during their growing stages [14, 42, 124]. However, there seems to be
a site variation in the FP frequency of most crops.

In both exemplar flood frequency maps, the spatial patterns of FP are similar. However,
the harmonic model shows significantly more FPs than the exponential filter, consistent
with the temporal FPR plots.

4.6.3 Flood Scenarios Quantitative Analysis

Next, we focused on flood mapping performance on flooded dates with reference flood maps.
The critical success index of the flood maps using the baseline harmonic no-flood reference
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Fig. 4.7: Flood False Positive (FP) Frequency Maps of Greece and Slovenia Study Sites.
Greece N=26, Slovenia N=29 where N is number of observations less actual
flooded images. EU Crop cover map is provided as reference.

where 60.87%, 44.02%, 56.38%, 41.90%, 58.08%, 68.04%, and 54.71% for the study sites
in Latvia, India, Philippines, Slovenia, Greece, Vietnam and Scotland respectively. On
average, the seven study sites got 67.12% for User’s Accuracy and 79.53% for Producer’s
Accuracy. These accuracy assessment results are consistent, but are nominally lower, with
the similarly sized events and same environmental conditions examined when using the
TU Wien flood mapping algorithm [119]. This study obtained lower values because of
non-application of external exclusion masks.

To differentiate the performance of harmonic model versus the exponential filter, we
show Figure 4.8 where we plot the differences in CSI, UA, and PA of all our test sites.

Regarding CSI, we compare the performance of the no-flood references within sites. The
varying sizes of flood extents, as shown in Table 4.1, influence the CSI [107]. Consequently,
we avoid direct inter-site comparisons based on the CSI. We focus on the comparison of
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Fig. 4.8: Heat Maps Summarizing Difference in Critical Success Index, User’s Accuracy,
and Producer’s Accuracy of Flood Maps Between the Harmonic Model and
Exponential Filter Models with Various T Parameters (y-axis) for the Seven
Study Sites (x-axis)

the no-flood models in regard to the original harmonic model method, thus we present the
differences relative to the HPARs shown in Figure 4.8. With this differencing, we reduce
the bias in CSI to be able to make more generalized observations.

The exponential filter performs better than the harmonic model in Latvia, Slovenia, and
India. In Vietnam, the harmonic model is comparable to the exponential filter. Meanwhile,
the exponential filter performs significantly better at the Scotland study site. The harmonic
model performs better than the exponential filter in the Greece and Philippine study sites.
We further discuss the cause of the poor performance of the exponential filter in section
4.6.4.3 on prolonged floods that are apparent in these two test sites.

In terms of the T" parameter, the CSI difference decreases as T increases for both study
sites in Southeast Asia. This observation is consistent with our initial results [117], where
the harmonic model outperforms the long-term means as a no-flood reference. Apart from
the Scotland study site, which shows slightly increasing performance at larger 7" values, all
other test sites show better performance at mid 7" values, most often peaking at T" = 40.
This is reflected by the mean of the differences for the tested sites also peaking at the
same 7', with a modest 3.06% in CSI.

The middle panel in Figure 4.8 shows the UA plots of all study sites. It should be
recalled that the UA is inversely related to the commission error. In most study sites, aside
from the Vietnam and Philippine study sites, we see that the exponential filter typically
shows less overestimation. Only the Scottish case showed a stark difference in UA values,
while most others showed minor improvements. On average, there was 5.75% increase in
the User’s accuracy at the same peak T' value of 40.

Commission errors increase with increasing exponential filter T" values in Scotland,
Vietnam, and the Philippines. In contrast, a middle peak is observed in Latvia and
India. Furthermore, we note an almost stable but slightly decreasing trend in Greece and
Slovenia.

In the rightmost panel in Figure 4.8, we plot the PA—the inverse of omission errors, of
the sites we tested. In general, the harmonic model flood maps show less underestimation.
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Greece is the only site with severe underestimation in the exponential filter. Most sites show
slightly fewer omission errors. The exponential filter 7" values show a mainly increasing
PA trend. Unlike the CSI and UA, PA of the exponential filter models had a decrease
compared to the harmonic model. The best performing 7" value in case is T' = 120 with
1.79% mean decrease, while at T' = 40 with 2.58% decrease on average was observed.

4.6.4 Flood Scenarios Confusion Maps

To put the comparative metrics discussed into spatial context, we show exemplary confusion
maps highlighting the benefits and issues with the no-flood reference models we tested.
4.6.4.1 T Parameter of the Exponential Filter

We present the study site in Scotland shown in Figure 4.9. Here, we show the eight
confusion maps pertaining to the harmonic model and the exponential filter at varying 7.
The harmonic model produces more false positives compared to the exponential filter.

EXPF(10) i EXPF(20) EXPF(30) EXPF(40) < EXPF(60)

56.070

-4.520

Fig. 4.9: Scotland study site confusion maps, computed from flood maps on 2023.10.08
generated using the harmonic model (HPAR) and exponential filter (EXPF) at
various T values against CEMS rapid mapping product. Legend: FN - false
negative, TN - true negative, TP - true positive, FP -false positive, WM -
reference water mask, NSM - TU Wien no sensitivity mask. Flooded SIGO
backscatter is presented as reference.

Although the flood delineations from the exponential filter remain relatively consistent,
intermediate values, such as T' = 40 to T = 90, visually perform better. We observed
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higher and lower T values to have more No-sensitivity masked (NSM) pixels in both
flooded and non-flooded areas. Similarly to most cases, this example shows more TP
pixels for the harmonic model, thus higher PAs. Based on these visual observations and
optimal performance indicated by the mean differences, T' = 40 is an appropriate initial
choice for the flooded scenario.

4.6.4.2 Reduced Overestimation

For conciseness, we show the exemplary performance of the harmonic model and the
exponential filter at 7" = 40 in Figure 4.10, as the performance based on the T values, in
most cases, reflects that of the Scotland site depicted above. We show insightful subsets
of the confusion maps for four other sites covering diverse environmental zones.
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Fig. 4.10: Flood confusion maps from Latvia (top row), India (2nd row), Philippines
(3rd row) and Greece (bottom row) study sites. Flood confusion maps from
flood maps using harmonic model (left most column) versus exponential filter
at T=40 (2nd column) with the flooded SIGO backscatter (3rd column) and
optical image from Google (rightmost column) as reference. Legend: FN -
false negative, TN - true negative, TP - true positive, FP -false positive, WM -
reference water mask, NSM - TU Wien no sensitivity mask.

The confusion maps for the study site in Latvia are shown in the first row of Figure
4.10. This study site suffers from high commission errors and is most apparent in sparse
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blobs of FP pixels. There are larger FP blobs from harmonic model flood maps compared
to the exponential filter maps. Some of the reduced FP patches in the exponential filter
model appear on dense vegetation and might be removed through exclusion masking. This
can be perceived both positively and negatively; it suggests potentially lesser dependency
on exclusion masking but also indicates that there might be limited improvement if they
were masked.

In contrast, the exponential filter maps have sparse no-sensitivity masked pixels within
the flooded area, thus missing TP pixels. Recall that the no-sensitivity mask covers pixels
with similar no-flood and flooded distributions. FNs are a minor issue for both maps
tested in this study site.

The second row of Figure 4.10 shows the confusion maps for the Indian tile. This map
shows reduced flood labels from the exponential filter for TP and FP areas. Consequently,
this reduces the commission errors but increases the omission errors similar to the temperate
study sites discussed above.

A subset of the Philippine test site is shown in the third row of Figure 4.10. A cursory
check of the Philippine Rice Information System (https://prism.philrice.gov.ph)[67]
reveals that this area is mainly cultivated for rice. The harmonic model showed more
prominent areas of omitted TP but consequently fewer FP. This area appears to be
problematic for the static harmonic model to estimate. We attribute this to year-to-year
variations in the rice planting season [41], which causes temporal shifting leading to higher
than usual variability in the temporal radar back scatter signature. While this issue occurs
for most land cover types, this is very pronounced in rice fields due to paddy flooding (very
low backscatter) at start of season. This results in ill fitting no-flood reference causing the
significantly large no-sensitivity masked area.

In contrast, the dynamic nature of the exponential filter is beneficial in this area. It
should be noted that the overall metrics of the whole Philippine site do not match this
sample area, as there are far more significant areas of missed TP from the exponential
filter from prolonged floods (further discussed below).

4.6.4.3 Long Floods

The test sites in Greece and the Philippines have lower exponential filter performance. We
consider it consequential that these test sites were documented to have had prolonged
floods [43, 44]. This points to a deficiency of the exponential filter in accurately modeling
the no-flood reference probability distribution.

This results in underestimation at the Greece test site is highlighted in the bottom
row of Figure 4.10. Prolonged flood results in lower backscatter estimates from the
exponential filter; thus, the no-flood probability distribution moves closer to the flood
probability distribution, causing conflicting distributions in some cases. As the exponential
filter standard deviation was computed from the 2023 time series, we observed elevated
variance which can be attributed to the prolonged floods in the area, thus exacerbating
the underestimation issue.


https://prism.philrice.gov.ph
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4.7 Discussion

4.7.1 No-flood conditions

As expected, most of the increase in FPR at the tile level can be attributed to frozen soil
[5] and dry conditions [83] supported by ERA5-Land data. Agricultural overestimation -
unrelated to these conditions - which has been observed mostly on local scales [8, 17] we
have now shown instances where they also cause a significant increase in FPR at the tile
level.

Although the case of overestimation due to frozen soils and dry conditions could be
effectively identified from auxiliary data (as is done in GFM [74]), the effect of low
backscatter due to agriculture is much more challenging to address due to local variations.
Our analysis of FP frequency reveals that this overestimation is influenced by the type
of crops and cropping practices, as evidenced by plot-level variation. This observation
suggests the possibility of seasonal and land cover class-based correction or reliability
metric; thus, it is recommended for future work.

Although these overestimation issues in no-flood conditions were not completely elim-
inated, switching to an exponential filter-based no-flood reference improves overall per-
formance. In most cases, the FPR of the exponential filter model is less than half of the
harmonic model. We observed that the FPR differences between the harmonic model
and the exponential filter is more pronounced in sites with clear seasonality. Temperate
and arid regions benefit more compared to the tropical areas where there is no clear
improvement.

In general, the FPR of the exponential model does not vary much based on 7' value. For
several test cases, T' values of 10 and 20 showed inconsistent results. There are instances
where they have the lowest FPR but more often have the higher FPRs. Even on the tile
level, all other T values were difficult to distinguish based on their performance FPR and
RMSD values. Thus, to safely limit FPR in cases without flood, we suggest T values
starting at 30.

The time series assessments were limited to the same Sentinel-1A relative orbit of the
reference flood data to remove effects due to changing imaging geometry [100]. This means
that for the 2023 time series per orbit, there were at most 30 samples per tile we analyzed.
We recommend that a longer time-series analysis, e.g. two years, be conducted in the
future. The flood time series and frequency analysis relies on the accuracy of the reference
water mask [92]. The seven locations examined in this study do not exhibit substantial
seasonally flooded regions; however, overlooking the possibility of localized genuine floods
might result in the extent of false positives to be overstated (see Figure 4.7). Although we
consider this a minor issue for the sites tested e.g., no big spikes in FPR in Slovenian case,
we suggest using a higher quality and more consistent mask in future research.

4.7.2 Flood conditions

Based on CSI, UA, and PA values, the TU Wien flood mapping algorithm showed good
performance relative to the reference flood maps for most of the seven validated flood
events. The confusion maps presented mainly corroborated the quantitative trends of
decreased FP from the exponential filter maps compared to the harmonic model maps.
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We find a similar result of reduced overestimation with the exponential filter for the
flooded scenes where reference flood maps were available. From the differences in the
CSI, UA, and PA trends based on the values of T', we found that 7' = 40 is a good choice
for most study sites. This selection corresponds to roughly nine Sentinel-1 observations
and about four months in the temporal range. This criterion is similar to the common
suggestion from literature to limit no-flood reference input to images near in time or season
(18, 47].

Further, the computational needs for this number of input images seem reasonable,
unlike higher T values which would be unmanageable at global scale. The number of
input images appears consistent with suggestions of five images minimum [52] as we see
T <= 20 with less than five inputs having degraded performance. These qualitative trends
are corroborated by confusion maps that point to the tested middle values T preferred
over the lower and higher values. As the T value is less significant in the non-flooded
scenes we select T' = 40 as our default choice.

However, unlike in soil moisture studies where the T" parameter has been well documented
[3, 85, 88] and uses higher temporal resolution inputs, we can only use comparatively
limited backscatter observations. Consequently, the number of observations used to make
a no-flood estimate depends on the T value. Distinguishing the effect of the model
independent of the number of observations is not possible from our experiments. Further,
while care was taken to match reference flood maps to our results to minimize external
differences (e.g., temporal and spatial mismatches), the reference data used are not actual
ground truth. Thus, over and under-detection due to the limitations of flood retrievals
from SAR backscatter are persistent in the analysis.

4.7.3 T-value selection

Based on the flooded and non-flooded test scenarios described previously, we have identified
T = 40 as a reasonable selection based on several considerations. First, while most T
values are quite similar, lower T values (<= 20) for specific test sites exhibited increased
variance, prompting us to limit our range to T' >= 30. Second, as shown in Figure 4.9,
mid-range T values (40 to 90) present a more favorable pattern with less noise and less
no-sensitivity pixels. Third, average metrics for flooded scenarios indicate a preference
for T = 40. Finally, higher T values (>= 90) are computationally expensive, even for
initializing the recursive formulation.

4.7.4 Long Floods and Exponential Filter Prospects

It is also clear that prolonged floods severely affect the performance no-flood references
using the exponential filter model. While this issue is localized to pixels with longer floods
and does not affect the overall performance in other regions a generalized solution is
needed. A simple solution is to remove flooded Sentinel-1 images as inputs. However, the
automated identification of images that contain floods is a significant scientific question
on its own. Some workflows suggest using auxiliary markers, such as precipitation [52], to
omit dates with a high probability of being flooded. Another possibility is the removal of
flooded scenes based on some (non-)similarity metric [47]. Although requiring significant
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infrastructure to execute, a recent method based on detecting time series anomalies by
Fichtner et al. is currently being used in GFM, showing promising results.

From our results in Section 4.6.1, there appears to be a potential to identify anomalies
based on the ratios of the FPR and RMSD. There is often a good correlation between
FPR and RMSD. When the FPR increases due to freezing soil conditions, a significant
proportion of the area changes, meaning the RMSD also increases. In contrast, the increase
in FPR due to dry (and, to an extent, cropping practices) has a longer duration but
proportional increase in RMSD.

Flood events appear as anomalies that do not follow this trend. Floods often cover a
small portion of a 300 km-wide Equi7Grid T3 scene; hence, FPR does not increase much.
Since RMSD is sensitive to outliers, a significant decrease in backscatter due to floods
increases the RMSD even in cases where floods are relatively small. However, there seems
to be inter-site variance; thus, it is unexplored here and left for future work.

4.8 Conclusions and Qutlook

In this study, we assessed the performance of different no-flood parameterizations of the
TU Wien flood mapping algorithm using a novel non-flooded time-series approach and
traditional qualitative and quantitative flood map assessments. We analyzed the algorithms
performance on varying environmental and climactic zones for one year time-series. In
doing so, we highlight spatio-temporal patterns of overestimation.

While the importance of a no-flood reference in SAR flood mapping algorithms has
been extensively covered [35, 47, 60, 101, 141], the impact it has on the overestimation of
automatically classified non-flooded scenes has not been given attention until now. We
find that flood overestimation at scale could be triggered not just by frost and dry soil
conditions but also by agriculture. Further, the degree of agricultural overestimation
depends on the crop type and agricultural practices.

Aside from limited testing we introduced in a previous work [119], to our knowledge
this concept of testing flood mapping methods on non-flooded times series scenes have
not yet been attempted before. This work sheds light on the frequency of these different
overestimation issues, thus highlighting the need for further studies to reduce them.

We compared the original harmonic and novel exponential filter models with no-flood
references, with the latter showing promising performance. Similar to observations from
recent studies [19] the enhanced modeling of the no-flood reference resulted in improved
flood maps. The exponential filter reduced overestimation in both flooded and non-flooded
conditions. This is supported by improved flood labeling in areas where dynamically
updated no-flood models are required. Reduced overestimation by switching to the expo-
nential filter can be complemented using topography-based priors [119], which improved
the underestimation.

We found that the exponential filter with T" = 40 provides a good balance in performance
for both flooded and non-flooded conditions. This 71" value requires a reasonable time series
input (allowing for application at a global scale) to achieve good initial results. However,
the recursive formulation is still a must for actual NRT operations. Provided computational
cost does not prohibit NRT application, more advanced updating of temporal models e.g.,
Kalman filters [23, 55] should be explored.
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Prolonged floods present an issue for the exponential filter based no-flood backscatter
estimate and generated standard deviation, the two parameters needed to estimate the
no-flood model probability distribution. Therefore, an automated screening of flooded
Sentinel-1 images as input is strongly recommended for operational implementation both
for the backscatter estimation and no-flood standard deviation calculation.

To conclude, we showed a holistic assessment of the TU Wien algorithm geared toward
automated deployment over multiple climatic zones for flooded and non-flooded cases.
As far as we are aware, analyses of flood mapping on this spatial and temporal extents
have not been conducted previously. Understanding of the algorithm’s limitations in the
temporal and environmental context opens new avenues for improvement. While further
development is needed, the exponential filter as a no-flood reference was shown to be
a feasible alternative to the harmonic model. Overall, the exponential filter no-flood
reference model shows great promise for improved global near-real-time flood mapping.
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4.10.1 No-Flood Temporal Plots
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0. T T
2023-01 2023-02  2023-03 2023-04 2023-05 2023-06 2023-07 2023-08 2023-09 2023-10
Philippines: Root Mean Square Deviation (2023)

—&— HPAR

-®- EXPF(10)
-®- EXPF(20)
~@- EXPF(30)
—@&- EXPF(40)
~@- EXPF(60)
—®- EXPF(90)
~@- EXPF(120)
=== flood extents

202311 2023-12

i 1
= wn

Roct Mean Square Deviation
=
w

—k- HPAR

~®- EXPF(10)
~®- EXPF(20)
~@- EXPF(30)
—-®- EXPF(40)
~@- EXPF(60)
-®- EXPF(90)
-@- EXPF(120)
-+ flood extents

1.0 — -
202301  2023-02 2023:-03  2023-04  2023-05  2023-06  2023-07 202308 202309  2023-10
Philippines: ERA-5 Land Mean Daily Temperature & Vol. Soil Water (2023)

202311 2023-12

yer_1 (%)
S
S

w

volumetric_soil_water_[a

2023-01 2023-02 202303 2023-04 2023-05 2023-06 2023-07 2023-08 2023-09 2023-10

.-.- Temp
i ® Freezing Temp

202311 2023-12

soil_temperature_level_1 (%C)

-10

Fig. 4.11: Temporal Plots of False Positive Rate, Root Mean Square Deviation, and
ERAb5-Land Soil Temperature and Volumetric Soil Water for the Philippines

Study Site
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Slovenia: False Positive Rate (2023)
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Fig. 4.12: Temporal Plots of False Positive Rate, Root Mean Square Deviation, and
ERAb5-Land Soil Temperature and Volumetric Soil Water for the Slovenia

Study Site
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Vietnam: False Positive Rate (2023)
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Fig. 4.13: Temporal Plots of False Positive Rate, Root Mean Square Deviation, and
ERAb5-Land Soil Temperature and Volumetric Soil Water for the Vietnam

Study Site
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Fig. 4.14: Temporal Plots of False Positive Rate, Root Mean Square Deviation, and
ERAb-Land Soil Temperature and Volumetric Soil Water for the Scotland
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Tab. 4.2: FPR Wilcoxon tests p-values.

4.10.3 False Positive Frequency Maps
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Fig. 4.15: Flood False Positive (FP) Frequency Maps of Latvia Study Sites. N=28 where
N is number of observations less actual flooded images. EU Crop cover map is
provided as reference.

EXPF (40)

CopDEM WBM
| water Body

False Positive
Frequency (%)
a0

0
ESA WORLD COVER

Bl Tree cover
Shrubland
Grassland
Cropland
I Built-up
" Bare/spare vegetation
Snow and Ice
Bl Permanent water bodies
Il Herbaceous wetland
Mangroves
Moss and lichen

0 % 2 km
| S—

Fig. 4.16: Flood False Positive (FP) Frequency Maps of Scotland Study Sites. N=29
where N is number of observations less actual flooded images. ESA Woldcover
map is provided as reference.
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Fig. 4.17: Flood False Positive (FP) Frequency Maps of India Study Sites. N=17 where

N is number of observations less actual flooded images. ESA Woldcover map
is provided as reference.
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Fig. 4.18: Flood False Positive (FP) Frequency Maps of Vietnam Study Sites. N=29

where N is number of observations less actual flooded images. ESA Woldcover
map is provided as reference.



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

4.10 Supplementary material 99

WORLDCOVER MAP EXPF (40)

oA\ g
- \\. _‘L, ¥ ,/_,
( o\

ok L
ﬁ,&"‘

17.800

CopDEM WBM
| water Body

False Positive
Frequency (%)
40

0
ESA WORLD COVER

Bl Tree cover
Shrubland
Grassland
Cropland
I Built-up
|| Bare/spare vegetation
Snow and Ice
B Permanent water bodies
I Herbaceous wetland
Mangroves
Moss and lichen

0 1 2km
| |

Fig. 4.19: Flood False Positive (FP) Frequency Maps of Philippines Study Sites. N=28
where N is number of observations less actual flooded images. ESA Woldcover
map is provided as reference.

4.10.4 Comparison of Mean and Exponential Filter

To establish the feasibility of using the exponential filter as a no-flood reference over other
time-series filters, we show a preliminary analysis of the mean and exponential filters
compared to the harmonic-derived no-flood reference at different parameterizations. These
baseline results were performed using the same SAR datacube for the CEMS (Greece,
Slovenia, Latvia, and Scotland) study sites without the speckle filtering step (thus slightly
varies with our main results). Mean and median filters had nearly identical results;
therefore, only the mean, the harmonic model, versus the exponential filter, is presented
here. The mean parameterizations presented are based on the temporal selection criteria
(i.e., in days prior to the backscatter image acquisition date) for the input backscatter
images.

In Figures 4.20, and 4.21, we compare the no-flood reference performance for flood
mapping using the mean filter using 90 days prior images, the baseline harmonic model,
and the exponential filter at T=30. These mean and exponential filters were selected to
make a fair comparison because these parameterizations effectively require the same input
images (see Section 4.3.2).
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Fig. 4.20: Flood False Positive (FP) Count Maps of Greece Study Site Comparing the
Mean and Exponential Filter versus the Harmonic Model as no-flood references.
N=26, where N is the number of observations of less actual flooded images.

In Figure 4.20, we see the stark contrast between the false positive counts from the
harmonic model versus the mean and exponential filters. On the other hand, the exponential
and mean filters show minor differences in total false positive counts between them.
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In Figure 4.20, we observe similar flood maps generated for the Scotland study site
using the mean filter (90 days prior) and the exponential filter (T=30). The harmonic
model results are included for reference.
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Figure 4.22 shows the average CSI, UA, and PA of the various parameterizations of
the mean filter and exponential filter versus the harmonic model for the European study
sites. It can be observed that the mean and exponential filters show similar improved
performance in terms of CSI. Both filters show similar responses to UA and PA, where
the time-series filter-based no-flood models perform better than the harmonic model in
terms of UA but slightly worse performance in PA. Similar to the exponential filter, the
mean filter also showed variations in performance based on its different parameterizations.
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Chapter 5

Conclusions and Outlook

5.1 Conclusions and Potential Impact

As the demand for timely and accurate flood maps increases, it is essential to enhance our
SAR-based algorithms continuously. While, more and more SAR flood mapping methods
have been shown to work well, most of them were tuned and tested on a few study sites,
and it is unclear whether they are viable for global NRT application. In this research
we sought to improve on the TU Wien flood mapping algorithm that is already running
operationally for the CEMS GFM. This thesis showed the viability of, and improvements
to, the Sentinel-1 data cube based algorithm done by incremental changes to its Bayesian
Inference framework.

Chapter 2 established the robustness of the TU Wien flood mapping algorithm compared
to other change detection algorithms. This work showed that the harmonic model gives
better results than individual prior images or long time-series means— indicating the
need for dynamically or seasonally corrected no-flood references. Further, we found that
the Bayesian algorithm is less affected by changes in its parameterization (unlike the
other methods tested) and firmly supports its usage for global NRT operations. With no
dependence on dynamically changing thresholds, it makes an excellent base algorithm that
we subsequently improved on. The initial parameterization analysis done here has guided
the ensuing improvement to the TU Wien algorithm and can be applied to other change
detection or Bayesian methods.

In Chapter 3, we found that spatially varying prior formulation impacts flood mapping
outcomes. We presented an improvement to the Bayesian algorithm achieved using HAND-
derived prior probability. This improvement reduced false negatives around transition
zones at the expense of a slight increase in FPR. Its simple input and formulation make it
a viable solution for most areas globally. These findings open the path for further research
on improving Bayesian algorithms by looking at the prior information, diverging from the
usual non-informed priors. These findings could be applied to other Bayesian algorithms
in this field.

Chapter 4 explored the potential of the exponential filter in place of the harmonic model
to estimate the non-flooded probability function, which is essential in Bayesian Inference.
We established that the proposed exponential filter improves the flood mapping result by
reducing the FPR. This chapter also showed a novel perspective in assessing flood mapping
results. We presented a time-series analysis of FPR through flooded and non-flooded
scenes. In this manner, we emphasized the well-known causes for false flood labeling, e.g.,
frozen soils and dry conditions, and highlighted agricultural overestimation. We showed
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that using the exponential filter helps to address this issue for the TU Wien algorithm.
This result is rooted in the premise that the exponential filter better models the dynamic
changes in the temporal backscatter signature. These insights is again useful for other
flood mapping algorithms.

This chapter also raised awareness that flood mapping algorithms should be tested for
non-flooding scenarios— in the context of fully automated workflows. This result implies
that research on so-called automated flood mapping methods should not be overfitted only
in flooded scenes. This suggested paradigm shift in assessing flood mapping methods is
critical in building more suitable and robust, fully automated deployments in the future.

Overall, this thesis has firmly established that the Bayesian Inference framework is
an excellent choice for flood mapping. We have shown significant improvements in the
TU Wien algorithm and various paths for further improvement most of which involving
manipulating data cube inputs. These key findings have directly contributed to the
operation of the TU Wien algorithm for the CEMS GFM.

5.2 Qutlook

Even after the conclusion of this thesis, several concepts and issues remained unresolved.
These recommendations and other possible future studies stemming from this thesis are
reiterated here.

A finding hinted at in Chapter 2 and further observed in Chapter 4 is the flood mapping
result’s dependence on the modeled standard deviation used for the no-flood reference
probability distribution. We have observed that this is ultimately related to the land
cover type, as areas with more diverse inter-annual change, such as agricultural fields,
were observed to have higher temporal backscatter variances—often resulting in worse flood
mapping performance. Compensation based on auxiliary information may be implemented
to improve this result. As highlighted in Chapter 4, agricultural overestimation is a
significant concern that needs further study— some algorithm refinement based on cropping
practices should be studied.

Further, this standard deviation observation could also pave the way for a simplified
Bayesian Inference implementation when dense data cubes are unavailable. For example,
with the upcoming NASA ISRO SAR (NISAR) mission, the expectation value of no-flood
references may be estimated from a handful of initial images. However, some estimation
of the variance taken from Sentinel-1 data or auxiliary information may be used to have a
simple solution at the onset of NISAR’s operations. Needless to say the flood mapping
insights gained here could be applied to other SAR missions.

Overall, gains were observed using the HAND-based prior proposed in Chapter 3. In a
follow-up work [118], we tested the applicability of other openly available (near-)global
HAND datasets as input to our proposed prior function. We found that using HAND
datasets computed with improved input DEM and finer detailed stream delineations
introduced more overestimation. In line with the suggestions of Refice et al., this leads us
to believe that the current formulation of the HAND prior function needs to be locally
tuned (e.g., based on watershed size) to get better performance. We intend to test this
further in the context of a localized flood mapping algorithm in the Philippines context.
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While the exponential filter method described in Chapter 4 already shows promise, an
improved, fully automated version can be implemented with the automated removal of
flooded images as input to the exponential filter. We look forward to the following work
using the RMSD and FPR as indicators for labeling scenes as flooded or non-flooded to
help in this regard.

Further improvement to the TU Wien algorithm and off-shoot methods will be explored
in the near future. As the Bayesian Inference framework is flexible and adaptable, two
directions are to be pursued. One involves a localized flood mapping algorithm in the
Philippine context. This involves, among other things, adapting localized priors. And the
other, further contribution to the globally applicable model. The foremost in this track is
the improvement of the exponential filter through the automated removal of flooded input
imagery.

Regardless of the work still to be done, we have established the TU Wien algorithm
using the Sentinel-1 data cube as a robust method compared with other change detection
algorithms. Further, we have shown improvements in the TU Wien algorithm from
incremental changes to its Bayesian Inference framework. These improvements are being
(and will be applied) to the TU Wien workflow under the CEMS GFM, thus impacting a
true fully automated near-real-time global lood mapping operations.
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