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Glossary

CAD Computer-aided Design
CAM Computer-aided Manufacturing
ML Machine Learning
DOE Design of Experiments
IPW In Process Workpiece
CNC Computerized Numerical Control
CAQ Computer-aided Quality
PMI Planning and Manufacturing Information
BOM Bill of Material
API Application Programming Interface
DSR Design Science Research

1. Introduction

Trial-and-error-loops, in the search for optimal manufactur-
ing parameters, are resource and time inefficient. For the use
case of investigating optimal CAM parameters, ML could be

applied. Quality or process data, like surface finish or energy
consumption, may be the target parameters to be optimized.
Planning data, like CAM settings, may be manipulated by an
optimization algorithm to achieve the predefined target value.
However, AI training requires a high effort in data collection,
data correlation and data cleaning, if parameter ranges of un-
certainty are not investigated specifically. The approach of this
work is generating data sets in a structured and traceable man-
ner that allow targeted data analysis. To enhance feature opti-
mization algorithm, planning, manufacturing and quality data
are correlated between different product live-cycle phases and
classified per feature.

2. Related Work

2.1. Knowledge Integration into Production Systems

According to Ansari [1], combining knowledge-based as-
sistance systems with AI in decision support systems can
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lead to improved productivity in the manufacturing industry.
Knowledge-based management can be addressed through ei-
ther organizational and individual knowledge (human-centric)
or data-driven strategies (technology-centered) [2]. Glawar et
al. [3] introduce a conceptual model for integrating knowledge
into production systems, called PriMA. Its primary objective is
to generate actionable and reusable information within CPPS.
Its architecture has three layers: The data management layer
collects planning and operational data from machines, products,
and processes.The recommendation layer provides actionable
suggestions for improving or optimizing future maintenance
plans.

2.2. Feature Technology for Process Optimization

As defined by [4], a manufacturing feature from the produc-
tion plan can be subdivided into one or more machining fea-
tures. Each machining feature represents a machining step exe-
cuted with the same tool. Feature recognition is already estab-
lished in commercial CAD/CAM software, like Siemens NX,
Esprit and TopSolid. From its initial role in production plan-
ning, Feature Technology became a universal tool for managing
information across different phases of the product life cycle by
integrating diverse tools like CAD, computer aided production
planning, CAM, and FEM, which is demonstrated by Schorcht
et al. [5]. Initiatives like ISO 10303 ”STEP” categorize features
by geometric properties but lack support for additional func-
tional or surface quality information and their standardization.

2.3. Manufacturing Parameter Optimization

ML methods have shown to minimize chatter vibrations or
surface roughness by optimizing machining parameters:

The ML model developed by Cherukuri et al. [6] is based on
an ANN and predicts the stability limit of a turning machine,
based on cutting depth and spindle speed data for improve-
ment. The ratio of correct chatter prediction to the number of
data points is at least 90% and depends on the number of neu-
rons and hidden layers. Tian et al. [7] applied a combination of
RSM with a teaching–learning-based optimization (TLBO) al-
gorithm. The effectiveness is shown by the increase of cutting
force and material removal rate by 2.7% and 49.4% respectively
and a decrease in the surface roughness of 6.6%.

2.4. DOE and AI

DOE allows simultaneous variation of multiple factors. In
situations where data is limited or expensive to obtain, DOE
can be employed to generate informative datasets for ML anal-
ysis.Concerning Arboretti et al. [8], the predominant type of
DOE + ML application involves applying ML algorithms to
analyse DOE data, referred to as the ”ML on DOE data”
strategy. In their literature survey, the distribution of publi-
cations over the years indicates a growing interest in the re-
search area.Engineering, particularly in mechanical, materials,
and chemical fields, constitutes the most influential application
area.

Fig. 1. In the data management layer, the generic design is included as CAM
extension between production planning and manufacturing. Together with the
analytical and recommendation layer, the design enhances feature-based pa-
rameter optimization.

In the study by Outeiro et al. [9], orthogonal cutting experi-
ments were conducted on Ti-6Al-4V titanium in a 2k̂ full facto-
rial DOE to explore the impact of cutting conditions, like speed
and edge radius, on forces, chip compression ratio, and residual
stresses.

3. Research Question and Contribution

• How to automate DOE in the manufacturing domain for
the generation of training data?

• Specifically, how to enhance the development of feature
optimization algorithms?

This work aims at realizing a CAD/CAM plugin for the au-
tomatic DOE generation and parameter variation according to
user defined levels per feature. It is fully integrated into the pro-
cess chain, as illustrated in Figure 1, thus extending the data
management layer of the PriMa model [2]. As an extension of
the CAD/CAM software, the application has access to the most
significant amount of process knowledge and is able to manipu-
late manufacturing artefacts for later data correlation. Its target
is a structured data basis for feature-based AI training using au-
tomatic planning data ingestion and accurate cutting depth cal-
culation in all axis. Through feature correlation from the plan-
ning to the quality evaluation phase, the aim of this research is
to enable actionable AI feedback, e.g., to the CAD/CAM soft-
ware.

As a research method, DSR is applied, which aims at in-
novative designs for actions, processes, and systems to solve
problems [10]. Its core product is a generic design, guided by
a design proposition for practical application. To assure the ef-
fectiveness of the CAM-DOE extension, which is the main ele-
ment, it is necessary to first create a prerequisite data extraction
tool that ensures a data basis suitable for AI training. Once the
data extraction tool is accomplished, the design of the DOE tool
takes place. The design of both, the prerequisite and the main
element, follow the six-step process for conducting design sci-
ence research by Peffers et al. [11]: (a) problem identification
and motivation; (b) objectives of a solution; (c) design and de-
velopment; (d) demonstration simulation; (e) evaluation; and (f)
communication.

This work is structured as follows: In Section 4, the generic
design of the prerequisite CAM data extraction tool and of the
proposed CAM-DOE extension is explained in detail. A gen-
erally applicable manual for implementing the design in manu-
facturing infrastructures is given in Section 5. Section 6 covers
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the instantiation of the designed tools in commercial CAM soft-
ware and their validation in a DOE for milled and drilled alu-
minium parts, with subsequent relation between surface rough-
ness and CAM parameters. In Section 8, the outcome of the
design validation and its implications for the manufacturing in-
dustry are discussed.

4. Integration of DOE into Feature-based Data Manage-
ment for AI Training

4.1. CAD/CAM Data Extraction

As a scope of this design element, the planning and meta-
data are automatically exported out of the CAM software and
their correlation to process and quality data is enabled in the
same step. The data schema in which the CAD/CAM data is
structured supports Feature Technology, as the operation set-
tings are stored in operation objects that are connected to the
manufacturing features.

To realize this structure, relevant entities of a CAM setup
and associated attributes are collected. The objects in Figure 2
define the classes of the object oriented software. Each entity
holds a collection of data points that specify the production
step. Additionally, the system handles the generation and up-
load of 3D-PDFs containing the work plan and gathers data for
the BOM. The BOM itemizes components in the clamping sys-
tem, aiding production planning for estimating setup times and
fixture availability. Essential information, including identifiers
and the CAM setup’s revision number, is stored. All other func-
tionalities, like logging management which is utilized by multi-
ple classes, are located in the base class. In CAM setups, where
operations, PMIs, machining parts, features, and tools may oc-
cur multiple times, collection classes are utilized for effective
management.

4.1.1. Optaining valid cutting depth for AI training
To obtain the cutting depths of milling operations, the vol-

umes of the IPW and toolpath are represented as triangular
facets usig the toolpath, IPW, face, edge and point class. Find-
ing the intersection points between the IPW and the toolpath
volume is achieved by cycling through the edges of the IPW and
checking for intersections with the triangular faces of the tool-
path volume. The resulting intersection points are evaluated in
terms of their distance from the toolpath volume’s surface, pro-
viding insights into the axial and radial cutting depths of planar
milling operations. Overall, this detailed methodology ensures
accurate assessments of these core values, contributing to the
optimization of milling processes.

4.2. DOE Generation Extension with Feature-markers

Our proposed design for generating DOE artefacts aims to
automate data correlation, involving the extraction and linkage
of data from diverse sources. To design the DOE extension for
commercial CAD/CAM software tools, the design element in
Section 4.1 is used, resulting in the architecture in Figure 3.

The feature technology used in CAx systems cannot be
seamlessly transferred to CNC machining, due to the interme-
diate translation into G-code, which follows a structure preset
by the machine tool. To nevertheless enable Feature-based Data
Management [12], the introduction of feature-markers in the G-
Code is the proposed solution. During post-processing, macro
variables (e.g., Fanuc) or message commands (e.g., Sinumerik),
depending on the CNC’s options for reading user defined CAM
information, are included as feature-markers into the G-Code
before and after an operation. If live data is collected during
machining, the feature-markers can be collected with other time
series data, enabling feature identification and, thus, an initial
basis for feature optimization.

5. Manual for Instantiation

5.1. CAD/CAM Data Extraction

• Access, gather and extract the required data, defined in Sec-
tion 4.1.
• Create a uniquely identified JSON document, including revi-

sions and the creation date of the document.
• Create relations between the entities of the extracted data

according to Figure 2 in Section 4.1 and add them to the
JSON document. Apart from the JSON document, also ex-
tract the following data: 3D PDFs of the machining parts,
including the views containing PMIs; 3D PDF of the CAM
setup showing the clamping situation and work instructions
for tool placement in the machine; Geometries of the con-
tained parts as STL files; G-code of the conducted machining
steps.

5.2. DOE Generation Extension with Feature-markers

• Establish operation parameter manipulation and verify its re-
liability.
• Add operation identifiers to the post-processed NC-Code,

either as macro variables, messages or other CNC specific
functions. They need to influence the CNC’s state in such
a way, that its value can be collected during manufacturing
with position and other data. Add the identifiers as start or
stop event to each operation, or manipulate the processed G-
Code afterwards by searching the document for comments
that indicate a new operation.
• Implement the function flow as described in Figure 3.
• For creating a full-factorial DOE, construct a set of all possi-

ble level combinations.
• During runtime, all dialogue windows should be neat and

consistent with the present GUI.
• Upload and store the data per experiment to an HTTP-

Endpoint or database.
• Show warnings and issues while gathering and exporting the

data within the user interface, and create and store appropri-
ate logging files.
• Provide a button for the user to trigger a callback function

within the CAM software’s GUI, initiating the runtime.
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Fig. 2. Illustration of the data entities including relations and relation types in an Entity-Relationship diagram. The blue fields are entities that are stored in their
specific document types. This includes STL files, the G-code, and the 3D-PDF. the storage directory must be used to point at these documents.

6. Instantiation in Siemens NX CAM

6.1. CAD/CAM Data Extraction

The instantiation of the proposed design was realized as ex-
tension of Siemens NX CAM, version 1953 using its applica-
tion programmable interface NX Open in Python version 3.8.
Siemens NX employs builder classes in NX Open to configure
complex objects like operations, which contain material stocks,
feeds and speeds, geometric limits and many more. The drilling
operations are defined using feature-based technology, specifi-
cally selecting the STEP1HOLE machining feature. However,
the milling operations are configured differently, with the re-
lationships between milling operations and machining features
requiring identification through mapping surfaces to obtain the
schema in Figure 2. The GUI ribbon in Siemens NX is consum-
able, enabling the addition of a button for executing the Python
script. By clicking the button, the serialized data in JSON for-
mat and the non-serializable data, like G-code and STL files,
are stored on an HTTP endpoint. MongoDB, a document-based
NoSQL database, was chosen to store the serialized JSON data
described in Section 4.1.

6.2. DOE Generation Extension with Feature-markers

The following scope has been set for implemented DOE
functionality: The response variable is the surface roughness;
operations to be analysed are face milling, end milling and
drilling, while the cutting parameters to be studied are spindle
speed (vc [m/min]), feed per tooth (fz [mm]), and cutting depth

Table 1. DOE Parameters

vc(m/min) fz(mm) depth(mm)
Feature Ø(mm) + - + - + -

Drilling 16 45 30 0.25 0.10 40 10
Drilling 12 30 15 0.32 0.20 40 10
Face mill. 16 200 60 0.25 0.025 2.0 0.5
Cont. mill. 16 200 60 0.15 0.035 1.5 0.5

[mm]. Cutting speed and feed per tooth can be related to spindle
speed [rpm] and feedrate [mmpm]. Two levels per parameter
were selected, resulting in 8 experiments in total (Table 1).

Each experiment’s data basis includes CAM planning data,
process data from an external sensor and the machine’s CNC,
and quality measurement data. Upon completion of the soft-
ware execution, Siemens NX data is stored in the MongoDB
server and the experiment artefacts on a network drive, using
the implementation of the requirement design element in Sec-
tion 6.1, with respective IDs. Two sets of valid experiments
were conducted, with eight experiments each, carried out ran-
domly. After completing the manufacturing of all experiments,
the surface roughness per part and manufacturing feature are
measured with a Waveline W912RC from Jenoptik. Macro vari-
ables play a key role in segregating the numerical control data
and acceleration values for the different manufacturing features.
In this instantiation, macro variables are used to segregate the
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Fig. 3. The flow within the DOE extension for commercial CAM software in-
cludes user input for the DOE’s factor level specification. For later tool wear
estimations, the function ”set tool IDs” waits for the user to state if any tool was
changed to allow tool wear estimations. ”Print QR-Code” calculates a unique
ID before printing a label to put on the blank.

data of the numerical control and accelerometer of the different
manufacturing features.

From within the CAM setup, start events per operation are
used to set a macro variable to the operation’s position number.
The variable is set back to zero via end events. Acceleration and
roughness data are collected solely within the time and position
domain respectively. They are correlated using the CNC’s live
data, which contains both, position and timestamp. Their rela-
tion is used to align acceleration data (which is collected with a
timestamp in the same time source as the NC data) and surface
roughness data (which is collected per position, known as offset
w.r.t. the position in the CNC).

Drilling operations are conducted through multiple passes.
The data gathered in this procedure encompasses exit and entry
movements designed for chip breakage. In this case, the accel-

Listing 1. Planning data export as JSON

” i d ” : ”2023 1 3 1 1 1 1 5 0 ” ,
” s e t u p I d ” : ”2022 6 1 4 1 1 4 0 j o h n ” ,
” r e v i s i o n ” : 1 ,
” c r e a t o r ” : ” John Doe ” ,
” e d i t o r ” : ” Jane Doe ” ,
”3DPDF ” : ” \ \ . . . \ 3 D PDF\ cam se tup name . pdf ” ,
”NCCode ” : ” \ \ . . . \G CODE . p t p ” ,
” machine ” : {

” mach ine Id ” : ”DMG DMU75 MONOBLOCK TEC LAB BYPS” ,
” camSetupId ” : ”2022 6 1 4 1 1 4 0 p l e s s ” ,
”name ” : ”DMG DMU75 MONOBLOCK TEC LAB BYPS” ,

” t o o l s ” : [
{
” t o o l I d ” : ”MILL PLANAR” ,
” mach ine Id ” : ”DMG DMU75 MONOBLOCK TEC LAB BYPS”
. . .

Table 2. Example of process data from the PLC of the CNC machine.

Timestamp Feature X Y Z F S

1.68146E+15 5 50965 -7500 -3200 1194 1193
1.68146E+15 5 48418 -7500 -3200 1194 1193

Num Timestamp xAcc

191 1.68146E+15 -3.1967652
192 1.68146E+15 -3.2272832

Table 3. Vibration data.

X Z

45.509 -7.345199
45.519 -7.487306

Table 4. Roughness profile.

eration data has been selectively filtered by phases of material
removal. Hence, the outcome of the hereby generated manufac-
turing experiments is a consistent set of planning, production
and quality data, each classified by manufacturing feature.

7. Validation

The implementation generates feature-based datasets, com-
bining planning-, process and quality data, which includes data
of the following artefacts:

• CAD/CAM software: The planning data including the calcu-
lated axial and radial cutting depth (a JSON file snippet is
presented in Listing 1).
• Numerical control of the machining centre: These files pro-

vide data about the machining processes (Table 2).
• myToolIT Sensory tool holder: This tool holder obtains the

vibration data in the radial direction of the tool through an
acceleration sensor at the tip of the inserted milling or drilling
tool. The data (Table 3) is stored in hdf5 file format at around
10Hz.
• Surface roughness measurement device: The raw profile data

(Table 4) were used to calculate Ra and Rz w.r.t. the ISO
Norm 25178.



1616 Lea Tonejca  et al. / Procedia CIRP 130 (2024) 1611–1616

Table 5. ANOVA Results; Contrast: a linear combination of the parameters based on the geometric code; Sums of Square: a measure of variation from the mean;
Mean Square: an estimator of the variance; F0 value: determines whether there is a significant difference in means between the group and the individual variability.

Factor Contrast Effect Estimate Sum of Squ. Contribution Mean Squ. F0

Vc (A) 1.63600 0.2045 0.167281 0.3071% 0.167281 0.06944162
fz (B) 23.19200 2.899 33.616804 61.7086% 33.6168 13.9549932
depth (C) 0.77000 0.09625 0.03705625 0.0680% 0.037056 0.01538277
AB -1.10000 -0.1375 0.075625 0.1388% 0.075625 0.03139342
AC -4.37400 -0.54675 1.19574225 2.1950% 1.195742 0.49637601
BC 0.03800 0.00475 9.025E-05 0.0002% 9.03E-05 3.7465E-05
ABC -1.34200 -0.16775 0.11256025 0.2066% 0.11256 0.04672596

The ANOVA analysis based on the DOE methodology re-
veals crucial insights for each machining operation. In face
milling, the feed per tooth has the most significant impact on
surface roughness (96.7%). For end milling, feed per tooth
dominates the impact (95.41%), followed by cutting speed and
their interaction. Ø16 mm drilling shows substantial effects
from feed per tooth and cutting speed, with a lower R2 value,
suggesting a less accurate fit for drilling. As shown in Table 5,
in Ø12 mm drilling, feed per tooth remains highly influential
(61.7%), especially when interacting with the depth of cut.

8. Conclusion and Outlook

In this paper, an approach to enhance experiment design and
execution in manufacturing processes is presented, which in-
cludes a DOE generation tool between CAM planning and post-
processing. The present design encourages the systematic in-
vestigation of optimal manufacturing parameters by introduc-
ing a fully integrated DOE generation tool between CAM and
manufacturing. Due to its automatic planning data extraction
presented in our design, extensive/inherent expert knowledge is
added to the data. Additionally, by automatically setting mark-
ers in the NC code for feature beginning and end, feature-based
data correlation from the planning phase to the production is en-
hanced, facilitating feature optimization tasks. In terms of CAQ
inspection, the features could be identified similarly but are not
discussed in this work.

In addition to the initial predictive maintenance tools, the
adapted data management layer allows process optimization.
The decision support system might be distributed over various
software tools within the recommendation layer. By implement-
ing the herein proposed design, they might have the form of
CAD or CAM planning software plugins, that help to achieve
specified PMI values automatically. Alternatively, simulations
in digital twin instances could enhance live simulations or sup-
porting decisions in evaluating critical surface areas for quality
inspection. Hence, in future advancements, we aim at knowl-
edge exploitation in response to the herein proposed knowledge
exploration tool.
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