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ABSTRACT
Looking back at seven decades of highly extensive application in the semiconductor industry, silicon and its native oxide SiO2 are still at
the heart of several technological developments. Recently, the fabrication of ultra-thin oxide layers has become essential for keeping up
with trends in the down-scaling of nanoelectronic devices and for the realization of novel device technologies. With this comes a need for
better understanding of the atomic configuration at the Si/SiO2 interface. Classical force fields offer flexible application and relatively low
computational costs, however, suffer from limited accuracy. Ab initio methods give much better results but are extremely costly. Machine
learning force fields (MLFF) offer the possibility to combine the benefits of both worlds. We train a MLFF for the simulation of the dry
thermal oxidation process of a Si substrate. The training data are generated by density functional theory calculations. The obtained structures
are in line with ab initio simulations and with experimental observations. Compared to a classical force field, the most recent reactive force
field, the resulting configurations are vastly improved. Our potential is publicly available in an open-access repository.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). https://doi.org/10.1063/5.0220091

I. INTRODUCTION

Silicon has played a major role in semiconductor device tech-
nology for more than half a century and continues to find a broad
range of novel applications spanning from single-electron devices1

to spintronics2,3 and semiconductor spin qubits.4
One of the most important reasons for the extensive use of

Si is that its native oxide SiO2 allows the production of semicon-
ductor/insulator interfaces of exceptional quality.5 Highly optimized
devices such as MOSFETs benefit from low defect densities at the
interface and convenient growth of the oxide directly onto a Si sub-
strate by thermal oxidation.6 Although pure SiO2 is being gradually
substituted as a gate dielectric by other materials possessing signif-
icantly higher dielectric constants,7,8 commonly termed as high-k
dielectrics, the inclusion of an ultra-thin SiO2 passivation layer on
the Si substrate prior to the application of the high-k film remains
crucial. In this regard, the SiO2 passivation layer greatly enhances
device performance, making it an essential component also in mod-
ern devices.9–11 Contemporary trends in the fabrication and down-
scaling of device dimensions have redirected research focus toward
chemical-based bottom-up fabrication methods.12–14 Among these

methods, the creation of ultra-thin SiO2 layers holds paramount sig-
nificance. Furthermore, as a testbed for innovative device technolo-
gies, the material system Si/SiO2 offers an appropriate environment
for long-lived spins that can be controlled coherently.15,16

Ultra-thin layers of SiO2 (on the order of a few nm) are
typically fabricated through thermal oxidation of silicon. The under-
lying mechanisms of this process have been examined extensively
over decades, through both experimental and theoretical means.17–23

Earlier modeling approaches, such as the seminal Deal–Grove
model,17 yield good results in a progressed stage of oxidation
(>15 nm oxide thickness), however, fail to describe the initial oxida-
tion regime,24,25 which is important for state-of-the-art technologies
that require layered materials with thicknesses on the order of a
few nm. Consequently, the intricacies of the initial oxidation phase
require more sophisticated models. In a previous study, based on
the results of the dynamic ab initio molecular dynamics (AIMD)
calculations, we proposed a multi-stage oxidation scheme that
combined all previous experimental and theoretical insights into a
comprehensive model.26

In the present work, we extend our first-principles based mod-
eling approach by a machine learning force field (MLFF). From the
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FIG. 1. Simulation procedure. (a) Reconfigurated Si(100) surfaces or (b) Si nanowires are exposed to gaseous oxygen within molecular dynamics calculations. (c) The
O2 molecules spontaneously react with the surface and dissociate to form an oxide coating around the surface. After every 10 000 steps (Δt = 1 fs), the structure is optimized
to avoid heating (each dissociation event releases energy), and O2 molecules in the gas phase are refilled to maintain the pressure according to an ideal gas law.

methodological perspective, the process of thermal oxidation offers
an interesting use case for machine learned interatomic potentials,
as our MLFF is universally suitable for gaseous oxygen, crystalline
Si, and amorphous SiO2. Machine learning (ML) techniques enable
overcoming the strong limitations on cell sizes and simulation times,
the typical drawbacks of ab initio calculations, while keeping the
accuracy of the results practically unchanged.27,28 The ability to
enlarge the system size and for simulating on larger time scales
allows for the investigation of the growth kinetics of the oxida-
tion process and for the generation of even more realistic models
of Si/SiO2 interfaces, including long-range disorder and interface
roughness. Furthermore, we extend our investigations from flat
Si surfaces to more complex surface structures, such as cylindri-
cal Si nanowires. As shown in Fig. 1, our ML approach allows
modeling of the thermal oxidation process within dynamic simu-
lations starting from entirely oxygen-free silicon surface structures.
Within the MD simulation, these structures are exposed to an O2
gas, which reacts with the surface and forms a coating layer of
amorphous SiO2.

II. METHODOLOGY
Training of an MLFF typically requires the combined use of

descriptors,29 machine learning algorithms,30 and training data.
Methods and computational techniques employed in this work are
described in the following.

A. Machine learning force field
Our MLFF is implemented within the Gaussian approxi-

mation potential (GAP) method.30 Similar to other ML models
employed in the context of interatomic potentials, GAP completely
neglects the electronic structure of a given system and assumes
that the potential energy can be determined solely from the atomic
configuration.

The usage of unbiased metrics is essential for the training data
of a ML model. For this purpose, so-called descriptors are used to
generate abstract representations of the input structures. A descrip-
tor maps the atomic structure to a mathematical object (typically
a vector) and this description is invariant to rotation, translation,
or the permutation of identical atoms. This approach allows reduc-
ing the size of the training dataset drastically by only providing
the essential information to the ML model. Within the scope of
this work, we employed the frequently used smooth overlap of
atomic positions (SOAP) descriptor29 in conjunction with two-body
descriptors.31 User-defined parameters are given in Appendix A.

Our trained MLFF is available in an open-access repository,
together with several oxidized interface structures and the training
dataset.32

B. DFT training data
Our MLFF is trained on data from more than 1400 density

functional theory (DFT) calculations. Underlying structures include
single atoms, dimers, bulk structures of Si and SiO2, and oxidized
Si surfaces and nanowires with various oxygen coverages. Data for
the initial training set are obtained by using the stepwise oxida-
tion process, as presented in Ref. 26. In this approach, the starting
points are oxygen-free Si surface structures, which become gradually
oxidized within AIMD calculations. Oxygen is provided by placing
O2 molecules in the vicinity of the Si surface. This simulation pro-
cedure yields amorphous interfaces that are much more realistic
than crystalline structures used in earlier computational studies.33–36

A comprehensive overview of the structures contained in the train-
ing dataset together with a detailed description of their generation
can be found in Appendix B.

All density functional theory calculations are carried out using
the CP2K package,37 a code that uses the mixed Gaussian and plane
waves approach (GPW). We use a double-ζ Gaussian basis set for
all atom types and the well-established Goedecker–Teter–Hutter

J. Chem. Phys. 161, 144706 (2024); doi: 10.1063/5.0220091 161, 144706-2

© Author(s) 2024

 21 D
ecem

ber 2024 13:17:13

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

(GTH) pseudopotentials to represent closed-shell electrons.38,39 The
electron density is expanded using a plane-wave basis with a cut-
off of 650 Ry. The exchange–correlation energy is obtained by
means of the semilocal generalized gradient approximation (GGA)
functional PBE. Atomic relaxations were carried out with a force
convergence criterion of 15 meV/Å. Within the AIMD simulations,
the total energy was conserved (microcanonical or NVE ensemble)
and the total spin was restricted to 0. The two spin channels were
allowed to have different spatial orbitals (unrestricted Kohn–Sham
calculations).

III. RESULTS
In the following, we give an overview of the capabilities of our

MLFF. To this end, we employ the MLFF to run molecular dynam-
ics simulations of the oxidation of the Si surface. In contrast to the
AIMD calculations,27 where single O2 molecules were placed above
the Si surface, we now expose the Si surface to an oxygen atmosphere
containing many oxygen molecules (see Fig. 1). Similar to the AIMD
runs, the number of particles, the total energy, and the simulation
volume are conserved (microcanonical or NVE ensemble).

A. Comparison with DFT
Validation of the ML model is done on a set of structures that

are similar to the training dataset, i.e., structures of oxidized sur-
faces and nanowires. We compare the energies and forces predicted
by DFT to the values from the ML model, as shown in Fig. 2. The
deviations are estimated by the mean absolute error (MAE) between
both methods. The MAE in energy is below 10 meV/atom, and the
forces are predicted with an accuracy of 0.16 eV/Å. The clear lin-
ear correlation for systems with 200–5000 atoms indicates a very
good agreement between DFT and the MLFF and allows ruling out
systematic errors between the two.

Furthermore, our MLFF correctly reproduces the spontaneous
O2 dissociations at the Si surface27 with an energy gain of around
7 eV per dissociation.

FIG. 2. Comparison between DFT and the ML model for 400 Si/oxide structures.
(a) The values of the energies show excellent correlation over the full range of
structures, as indicated by the dashed blue lines with slope 1. The blue and gray
points shown in the insets correspond to oxidized Si(100) surfaces and oxidized
nanowires, respectively. The MAE is below 10 meV/atom. (b) Good agreement
between the two methods is also obtained for the inter-atomic forces with an MAE
below 0.16 eV/Å.

B. Structural properties
The ML model can be further validated by the structural

qualities of the resulting structures, as shown in Fig. 3. The pre-
sented results refer to a flat, oxidized Si surface,40 which measures
6 × 6 nm2 in plane and exhibits an oxide thickness of around 1 nm.
While the mean Si–O bond length of 1.63 Å is in line with the experi-
mental values of bulk SiO2,41,42 there are a number of strained bonds
with a length of more than 1.8 Å. These bonds are exclusively found
at the interface indicating a considerable strain in this region.

An important result is the formation of SiO4 tetrahedrons, the
building blocks of SiO2, indicating that even ultra-thin oxide layers
already exhibit the structural properties of bulk SiO2.26 The mean
O–Si–O bond angle [Fig. 3(b)] matches the ideal tetrahedral bond
angle of 109.47○, which means that the tetrahedrons are rigid and
already form in an early stage of oxidation. The tendency to find
enlarged O–Si–O bond angles (the angles between two tetrahedrons)
at the interface (up to 140○) agrees with the previous observations of
such interface structures.26,43 Further evidence for the formation of
SiO2 is provided by a coordination number analysis, as shown in
Figs. 3(c) and 3(d). Most of the Si atoms in the oxide are fourfold
coordinated by oxygen. Lower O-coordination can only be found at
Si atoms close to the Si/oxide interface. The interface is not sharp,
but represented by a transition region of 0.5 nm thickness. Within
this region, the amount of oxygen increases steadily such that the
O-coordination of the Si atoms increases from 0 to 4 in growth

FIG. 3. Geometric measures indicating the quality of the Si/SiO2 structures. The
results are shown for a representative interface structure with an effective oxide
thickness of 1 nm. (a) The Si–O bond lengths (average 1.65 Å) agree reason-
ably well with experimental values (dashed line) of 1.62 Å of bulk SiO2.41,42 (b)
Similar agreement is found for the O–Si–O bond angles, which match the opti-
mal tetrahedral bond angle of 109.47○ (dashed line). (c) The O-coordination for Si
atoms ranges from 1 to 4, as expected for interfacial structures. (d) Position of Si
atoms with one O neighbor (CN = 1) and four O neighbors (CN = 4). Fourfold O-
coordinated Si is found in SiO4 tetrahedrons in the oxide, while lower coordinations
correspond to Si atoms close to the interface.
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direction. Above the transition region, all Si atoms are fourfold
O coordinated and integrated in a SiO4 tetrahedron. Following the
transition region is the crystalline Si substrate. We define the thick-
ness of the interface/transition region dIF as the distance between
the first Si atom with one O neighbor to the last Si atom with less
than four oxygen neighbors. These results are not only in line with
the AIMD simulations from Ref. 26, they also agree with transmis-
sion electron microscope (TEM) images,41,44 electron-energy-loss
spectroscopy (EELS),45,46 and photoemission studies.41,47

C. Growth kinetics
As found experimentally24 and confirmed theoretically by

means of AIMD calculations,26 the oxidation rate decreases strongly
as soon as an oxide layer has formed on the initially clean Si surface.
As long as the Si surface is only sparsely oxidized, that is, the surface
still shows unoxidized Si dimers, O2 molecules can spontaneously
adsorb and dissociate at the surface. During this phase, the oxida-
tion rate is limited only by the amount of oxygen interacting with
the surface.

In a later stage, in which the surface is fully covered by an oxide
film, the oxidation rate decreases as the limiting factor is now the
diffusion of O into deeper layers of Si. The diffusion is necessary
in order to make room for further dissociative surface reactions.
This behavior is also captured by the MLFF. We evaluate the posi-
tion of the Si/SiO2 interface zi and oxide surface zs by averaging
the z-position of the five lowest and the five highest oxygen atoms,
respectively. The oxide thickness t is then the difference between
surface and interface t = zi − zs. Evaluating the thickness of the oxide
layer by using this procedure in an MD run that simulates the ther-
mal oxidation starting from a clean Si surface allows estimating
t as a function of time, as shown in Fig. 4.48 The oxidation rate has a
maximum at the beginning and decreases significantly as soon as the
surface is saturated with oxygen. At this point, O2 molecules cannot
dissociate spontaneously anymore but adsorb onto the surface where
they eventually dissociate after a few ps. This behavior explains the
experimentally observed decrease in oxidation rate24 and is in line
with previous observations from Refs. 26 and 49–51.

FIG. 4. Oxide thickness during dynamic oxidation of Si as a function of simulation
time. Initially, fast oxidation is enabled by spontaneous surface reactions. After the
surface is saturated with O, the dominant reaction mechanism changes to molec-
ular precursor mediated dissociation, a process associated with slower oxidation
rates.49

FIG. 5. Interface roughness resulting due to the dynamic oxidation process gov-
erned by random adsorption trajectories. The RMS roughness of the interface is
found to be Rq = 0.79Å.

D. Interface quality
Numerous experiments have shown that the growth of SiO2

on a Si substrate results in a significant interface and surface
roughness.52,53 In the initial oxidation regime, the roughness
increases with the oxide thickness but saturates after the oxide layer
exceeds 10 nm. At this point, the oxidation rate becomes constant
and the process is governed by O2 diffusion,53 as assumed within the
Deal–Grove model,17 instead of O2 surface reactions, which enable
a faster oxidation in the early oxidation stages.26

In order to investigate the interface roughness, we oxidize a
6 ×6 nm2 Si surface by means of the MLFF and depict the roughness
of one representative Si/SiO2 interface resolved in the in-plane direc-
tions shown in Fig. 5. For this analysis, we take the z-position of the
lowest oxygen atom in each lateral 2D bin and connect their coordi-
nates. The interface deviates from the average interface position z̄i by
up to 2.5 Å with an average deviation of Ra = 0.57 Å. Typically, the
interface roughness is characterized by the root mean square devi-
ations for which we find Rq = 0.79 Å in reasonable agreement with
the measured values between 0.4 and 0.9 Å reported in Ref. 53.

Furthermore, we find a mass density of around 2.5 g/cm3 in
the oxide layer, which slightly overestimates experimental values of
ultra-thin a-SiO2 reported in the range of 2.24–2.36 g/cm−3.41 On
the other hand, the mass density in the interface region complies
with the experimental values from Ref. 41.

E. Comparison with the classical force field
In order to further validate our force-field, we compare it to one

of the most commonly used classical force fields, namely, the reactive
force field (reaxFF) from Ref. 54. A comparative dataset is generated
by dynamically oxidizing a 3 × 3 nm2 Si surface with the same initial
parameters of position and velocity from identical starting configu-
rations. The simulation time is set to 1.4 ns integrated over 1.4 × 106

time steps. As before, after every 104 steps, new oxygen molecules
are added to the vacuum above the surface, such that the pressure
(as obtained from the ideal gas law) in the oxygen atmosphere equals
50 bar. Again, we assume a microcanonical or NVE ensemble for the
dynamic simulations.

Analyzing a number of geometric properties gives the results
presented in Table I. In terms of two- and three-body geometric
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TABLE I. Comparison between a classical reactive force field,54 AIMD simulations,
the herein presented MLFF, and (if available) experimental values. Basic two- and
three-body measures such as Si–O bond lengths and O–Si–O angles are relatively
well captured by all approaches, with slightly deviating values from reaxFF. In terms
of volumetric mass density, we compare the density in the interface region ρIF and
in the oxide layer ρOX. Clear differences in the interface properties are indicated by
the thickness of the interface dIF and oxide thickness dOX obtained after 1.4 ns of
dynamic oxidation at 1000 K and 50 bar.

reaxFF AIMD26 MLFF Expt.41,44,45

Si–O length (Å) 1.57 1.66 1.68 1.62
O–Si–O angle (○) 112.28 ≈109 109.45 109.47
ρIF (g/cm3) 2.45 2.34 2.37 2.36–2.41
ρOX (g/cm3) 2.65 2.5 2.5 2.24–2.36
dIF (nm) 1 0.5 0.5 0.5
dOX (nm) 0.4 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅

measures, our MLFF performs slightly better than the reaxFF poten-
tial. While the mean O–Si–O bond angles are close to the ideal
tetrahedral angle, the reactive force field gives mean Si–O bond
lengths of 1.55 Å (compared to the MLFF value of 1.68 Å and
the experimental value of 1.62 Å41,42). Furthermore, we compare the
volumetric mass density in the interface region ρIF and in the oxide
layer ρOX. As mentioned before, our MLFF slightly overestimates
the density in the oxide layer but reproduces the density in the inter-
facial transition region. ReaxFF on the other hand, gives densities
about 10% larger than experimental values,41 in line with implica-
tions from shortened bond lengths, in both the interface and the
oxide regions of the interface structure.

The growth kinetics, however, differ substantially between the
two force fields. The number of oxygen molecules that dissolved at
the surface is 15% lower when using reaxFF. On the other hand,
reaxFF overestimates the diffusion of oxygen, which leads to a low-
density distribution of O atoms among the Si atoms in the crystal.
The result is a very large interface (the transition region dIF measures
about 1 nm and the oxide thickness dOX is only 4 Å), with lower than
expected Si–O coordination, as shown in Fig. 6. To summarize, the
structures obtained by reaxFF are in strong contrast to the experi-
mental findings of Refs. 41 and 44–47, while the MLFF—similar to
AIMD—reproduces much more realistic interface structures.

F. Comparison with pretrained MLFFs
Another exciting development employing ML for interatomic

potentials is the rise of pretrained universal MLFFs, such as
MACE-MP-0.55 In order to compare the abilities of our MLFF to the
pretrained MACE-MP-0, we conducted a simulation of the dissoci-
ation of an O2 molecule at a Si surface. This test case already shows
that the pretrained force field is not capable of modeling the oxida-
tion process. The O2 molecule does not move toward the Si surface
and yet dissociates spontaneously 4 Å above the surface (where it was
placed) without any visible interaction56 with the Si surface. After
400 fs, one of the O atoms leaves the surface while the other one
adsorbs onto the surface.

Other (simpler) test cases such as a single O2 molecule in a
box or the clean Si(100) surface can be reasonably simulated by
MACE-MP-0. From this, we conclude that the pretrained ML model

FIG. 6. Structural properties of a Si/SiO2 interface generated by the reactive force
field from Ref. 54. The plot is analogous to Fig. 3. For comparison, the experimen-
tal and averaged MLFF values for the bond lengths and the tetrahedral angles
are represented by the blue and red dashed lines, respectively. With respect to
the MLFF and experiments,41 reaxFF slightly underestimates bond lengths, while
the tetrahedral angles are well captured. The properties of the interface, how-
ever, do not match experimental expectations, as O diffusion is overestimated by
reaxFF. The number of fourfold O-coordinated Si is very low; on the other hand,
there are many Si atoms with only one O neighbor. This results in a wide interface
and a thin oxide layer.

has problems with treating the complex interplay between gaseous,
crystalline, and amorphous materials, a use case that necessitates the
training by hand.

G. Dangling bond density
Finally, the last test that we subject our model to is the deter-

mination of the dangling bond density resulting from the oxidation
process. In the simplest definition, a dangling bond corresponds to a
missing neighbor, that is, every Si atom with less than 4 and every
O atom with less than two neighboring atoms are identified as a
dangling bond.

By means of this simple analysis, we detect at least one dan-
gling bond in 96% of the obtained interface structures. Typically,
these dangling bonds do not vanish if the structure is relaxed within
a subsequent DFT optimization, as this requires the breaking of
other bonds, which is unlikely to happen. On average, we find 2.9
dangling bonds in structures grown on a 1.5 ×1.5 nm2 Si sur-
face area, corresponding to a dangling bond density of 1.3/nm2

(130 × 1012 cm−2).
Compared to the experimentally determined defect density of

0.05/nm2 (5 × 1012 cm−2),57 our MLFF seems to overestimate the
number of defects by almost two orders of magnitude. However,
only electric spin resonance (ESR) active defects (depending on the
applied bias and the location of the defect in the bandgap) appear
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in the ESR measurement of Ref. 57. Another important difference
between simulation and experiment is the presence of hydrogen,
which is unavoidable in reality, however, completely absent in our
structures. Since atomic hydrogen passivates dangling bonds58 and,
therefore, reduces the dangling bond density, a significant impact
on the experimentally obtained value cannot be ruled out. Fur-
thermore, we suspect that the density of dangling bonds in the
simulated structures could be reduced by equilibrating the struc-
ture at elevated temperatures for some μs. Given these uncertainties,
we conclude that our MLFF produces structures with significantly
increased dangling bond density, although a direct comparison with
values inferred from ESR measurements is not valid.

A detailed analysis of the dangling bonds in the simulated
structures that goes beyond the simple coordination analysis above
requires thorough investigations by means of DFT. Within DFT,
one can determine trap levels and relaxation energies59 and thereby
investigate whether the defects are ESR-active. We leave such
extensions for the future.

IV. CONCLUSIONS
In this study, we have introduced a Gaussian approximation

potential (GAP) tailored for generating ultra-thin oxide layers on a
Si substrate, including amorphous interfaces between silicon and its
native oxide SiO2. The atomic structures are obtained by oxidizing
an initially oxygen-free Si surface by means of molecular dynam-
ics simulations. Starting from entirely O-free Si surfaces, the (dry)
thermal oxidation process is simulated by exposing the surface to an
oxygen atmosphere at 50 bar. The MLFF is capable of reproducing
the intricacies of thermal oxidation in its initial stage (up to about
10 nm oxide thickness), that is, the transition from spontaneous
O2 surface reactions to molecular precursor mediated dissociations.
Furthermore, the experimentally expected atomic configuration at
the interface is reproduced accurately showing a 0.5 nm thick tran-
sition layer with increasing O density between the Si crystal and the
oxide layer.

The credibility of our simulation framework is validated by
comparison of several geometric qualities of the interface struc-
ture with experimental values, which is remarkably good in terms
of bond properties and atom coordination. However, the obtained
defect (or dangling bond) density significantly exceeds the exper-
imental values, an effect that could be related to the relatively
short simulation times (a few ns) compared to the experimental
conditions.

Furthermore, the applicability and usefulness of our ML model
is highlighted by comparison with the highly successful reactive
force field (reaxFF) in its most novel version54 as well as with the
pretrained ML model MACE-MP-0.55 In this respect, the interfaces
generated by the ML model are much closer to the experimental
expectations.
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APPENDIX A: DESCRIPTOR PARAMETERS

The descriptors can be tuned by the user via a number of para-
meters, as presented in Table II. The weight of each descriptor is con-
trolled by δ, and rcut is a cutoff radius, which defines a sphere within
which neighboring atoms are considered. rΔ is the cutoff transition
width, which defines the distance needed for the descriptor cutoff
to smoothly go to zero. nmax and lmax are the number of angular

TABLE II. Parameters of the employed SOAP and two-body descriptors, based on
values from Ref. 28. The meaning of the parameters is given in the text (with detailed
description for SOAP in Ref. 29).

Parameter SOAP Two-body

δ 0.4 4
rcut 5 4
rΔ 1 ⋅ ⋅ ⋅

nmax 8 ⋅ ⋅ ⋅

lmax 4 ⋅ ⋅ ⋅

ζ 4 ⋅ ⋅ ⋅
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TABLE III. Structures in the training dataset of the GAP force field. The type of
structure is given along with the number of atoms in the structure and the num-
ber of individual structures. The associated parameters σE and σF represent the
regularization in the GAP corresponding to energies and forces, respectively.61

Structure type
Number
of atoms

Number
of structures σE σF

single atoms 1 3 0.0001 0.001
Si dimers 2 97 0.01 0.1
O dimers 2 57 0.01 0.1
Si–O dimers 2 23 0.01 0.1
Si–H dimers 2 52 0.01 0.1
Si bulk 192 201 0.002 0.02
SiO2 bulk 216 64 0.002 0.02
Clean Si surface 224 93 0.002 0.02
Ox. Si surface 232–5258 502 0.002 0.02
Si nanowire 576–1680 200 0.002 0.02
Ox. Si nanowire 1682–2063 174 0.002 0.02

and radial basis functions for the SOAP descriptor, respectively, and
ζ is the power the kernel is raised to.

APPENDIX B: GENERATION OF THE TRAINING
DATASET

One of the main challenges when developing an MLFF is
finding suitable training data. Among the problems that can be
encountered are overfitting,60 data quality issues (incomplete or
biased data), and imbalanced data (some classes of structures in the
training dataset appear more frequently than others, resulting in a
bias or poor performance). A detailed overview of the data used
for our MLFF is presented in Table III. The dataset contains single
atoms, dimers, periodic bulk structures (crystalline and amorphous),
surfaces and (oxidized) nanowires (starting from Wulff-constructed
3D nanowires), and gaseous O2. In a first step, we tried several data
compositions and chose the MLFF that gave the best results (based
on evaluation of the properties from Fig. 3 and Table I). This ini-
tial ML model was then used to generate new structures that were
recalculated by DFT. These additional data were then implemented
into the training dataset presented in Table III. With these data, we
obtain the final MLFF.

Our efforts to further improve the MLFF by including more
data into the training dataset gave the opposite result: the perfor-
mance decreased. From this, we conclude that the model is prone
to overfitting. One of the ways to avoid overfitting is the so-called
“early stopping strategy.”60 Since the MLFF already gave satisfying
results in its second iteration, with decreasing performance for larger
training sets, we decided to stop at this point.
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3I. Žutić, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004).
4F. A. Zwanenburg, A. S. Dzurak, A. Morello, M. Y. Simmons, L. C. L. Hollenberg,
G. Klimeck, S. Rogge, S. N. Coppersmith, and M. A. Eriksson, Rev. Mod. Phys. 85,
961 (2013).

5M. Razeghi, in Technology of Quantum Devices, 1st ed. (Springer US, 2010),
Chap. 2, pp. 41–82.
6S. T. Pantelides, S. Wang, A. Franceschetti, R. Buczko, M. Di Ventra, S. N. Rash-
keev, L. Tsetseris, M. Evans, I. Batyrev, L. C. Feldman, S. Dhar, K. McDonald, R. A.
Weller, R. Schrimpf, D. Fleetwood, X. Zhou, J. R. Williams, C. C. Tin, G. Chung, T.
Isaacs-Smith, S. Wang, S. Pennycook, G. Duscher, K. Van Benthem, and L. Porter,
Silicon Carbide and Related Materials 2005, Materials Science Forum (Trans Tech
Publications Ltd., 2006), Vol. 527, pp. 935–948.
7M. M. Waldrop, Nature 530, 144 (2016).
8Y. Illarionov, T. Knobloch, and T. Grasser, Nat. Electron. 3, 442 (2020).
9R. de Almeida and I. Baumvol, Surf. Sci. Rep. 49, 1 (2003).
10C. Mahata, I.-K. Oh, C. M. Yoon, C. W. Lee, J. Seo, H. Algadi, M.-H. Sheen,
Y.-W. Kim, H. Kim, and T. Lee, J. Mater. Chem. C 3, 10293 (2015).
11A. Nakajima, Q. D. Khosru, T. Yoshimoto, and S. Yokoyama, Microelectron.
Reliab. 42, 1823 (2002).
12O. Nur and M. Willander, “Chapter 4—New emerging nanofabrication
methods,” in Low Temperature Chemical Nanofabrication, Micro and Nano Tech-
nologies, edited by O. Nur and M. Willander (William Andrew Publishing, 2020),
pp. 87–147.
13Q. Yao, X. Ma, H. Wang, Y. Wang, G. Wang, J. Zhang, W. Liu, X. Wang, J. Yan,
Y. Li, and W. Wang, Nanomaterials 11, 955 (2021).
14C. Krzeminski, G. Larrieu, J. Penaud, E. Lampin, and E. Dubois, J. Appl. Phys.
101, 064908 (2007).
15M. Veldhorst, J. C. C. Hwang, C. H. Yang, A. W. Leenstra, B. de Ronde, J. P.
Dehollain, J. T. Muhonen, F. E. Hudson, K. M. Itoh, A. Morello, and A. S. Dzurak,
Nat. Nanotechnol. 9, 981 (2014).
16L. Cvitkovich, P. Stano, C. Wilhelmer, D. Waldhör, D. Loss, Y.-M. Niquet, and
T. Grasser, “Coherence limit due to hyperfine interaction with nuclei in the barrier
material of Si spin qubits,” arXiv:2405.10667 [cond-mat.mes-hall] (2024).
17B. E. Deal and A. S. Grove, J. Appl. Phys. 36, 3770 (1965).
18A. Bongiorno and A. Pasquarello, Phys. Rev. Lett. 93, 086102 (2004).
19A. Pasquarello, M. S. Hybertsen, and R. Car, Nature 396, 58 (1998).
20F. J. Himpsel, F. R. McFeely, A. Taleb-Ibrahimi, J. A. Yarmoff, and G. Hollinger,
Phys. Rev. B 38, 6084 (1988).
21T. Akiyama and H. Kageshima, Surf. Sci. 576, L65 (2005).
22E. P. Gusev, H. C. Lu, T. Gustafsson, and E. Garfunkel, Phys. Rev. B 52, 1759
(1995).
23E. Rosencher, A. Straboni, S. Rigo, and G. Amsel, Appl. Phys. Lett. 34, 254
(1979).
24M. A. Hopper, R. A. Clarke, and L. Young, J. Electrochem. Soc. 122, 1216
(1975).
25K. Ohsawa, Y. Hayashi, R. Hasunuma, and K. Yamabe, J. Phys.: Conf. Ser. 191,
012031 (2009).
26L. Cvitkovich, D. Waldhör, A.-M. El-Sayed, M. Jech, C. Wilhelmer, and T.
Grasser, Appl. Surf. Sci. 610, 155378 (2023).
27O. T. Unke, S. Chmiela, H. E. Sauceda, M. Gastegger, I. Poltavsky, K. T. Schütt,
A. Tkatchenko, and K.-R. Müller, Chem. Rev. 121, 10142 (2021).
28D. Milardovich, C. Wilhelmer, D. Waldhoer, L. Cvitkovich, G. Sivaraman, and
T. Grasser, J. Chem. Phys. 158, 194802 (2023).
29A. P. Bartók, R. Kondor, and G. Csányi, Phys. Rev. B 87, 184115 (2013).
30A. P. Bartók, M. C. Payne, R. Kondor, and G. Csányi, Phys. Rev. Lett. 104,
136403 (2010).
31V. L. Deringer and G. Csányi, Phys. Rev. B 95, 094203 (2017).
32The files are available for download in an xml format, https://github.com/lukas-
cvitkovich/MLFF-SiOx.
33H. Kageshima and K. Shiraishi, Phys. Rev. Lett. 81, 5936 (1998).
34F. Fuchs, W. G. Schmidt, and F. Bechstedt, Phys. Rev. B 72, 075353 (2005).
35N. Takahashi, T. Yamasaki, and C. Kaneta, Phys. Status Solidi B 251, 2169
(2014).
36N. Salles, N. Richard, N. Mousseau, and A. Hemeryck, J. Chem. Phys. 147,
054701 (2017).
37J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, and
J. Hutter, Comput. Phys. Commun. 167, 103 (2005).
38J. VandeVondele and J. Hutter, J. Chem. Phys. 127, 114105 (2007).

J. Chem. Phys. 161, 144706 (2024); doi: 10.1063/5.0220091 161, 144706-7

© Author(s) 2024

 21 D
ecem

ber 2024 13:17:13

https://pubs.aip.org/aip/jcp
https://doi.org/10.1126/science.275.5300.649
https://doi.org/10.1038/nmat3293
https://doi.org/10.1103/revmodphys.76.323
https://doi.org/10.1103/revmodphys.85.961
https://doi.org/10.1038/530144a
https://doi.org/10.1038/s41928-020-0464-2
https://doi.org/10.1016/s0167-5729(02)00113-9
https://doi.org/10.1039/c5tc01890k
https://doi.org/10.1016/s0026-2714(02)00095-1
https://doi.org/10.1016/s0026-2714(02)00095-1
https://doi.org/10.3390/nano11040955
https://doi.org/10.1063/1.2711764
https://doi.org/10.1038/nnano.2014.216
https://arxiv.org/abs/2405.10667
https://doi.org/10.1063/1.1713945
https://doi.org/10.1103/PhysRevLett.93.086102
https://doi.org/10.1038/23908
https://doi.org/10.1103/physrevb.38.6084
https://doi.org/10.1016/j.susc.2005.01.001
https://doi.org/10.1103/physrevb.52.1759
https://doi.org/10.1063/1.90771
https://doi.org/10.1149/1.2134428
https://doi.org/10.1088/1742-6596/191/1/012031
https://doi.org/10.1016/j.apsusc.2022.155378
https://doi.org/10.1021/acs.chemrev.0c01111
https://doi.org/10.1063/5.0146753
https://doi.org/10.1103/physrevb.87.184115
https://doi.org/10.1103/physrevlett.104.136403
https://doi.org/10.1103/physrevb.95.094203
https://github.com/lukas-cvitkovich/MLFF-SiOx
https://github.com/lukas-cvitkovich/MLFF-SiOx
https://doi.org/10.1103/physrevlett.81.5936
https://doi.org/10.1103/physrevb.72.075353
https://doi.org/10.1002/pssb.201400068
https://doi.org/10.1063/1.4996206
https://doi.org/10.1016/j.cpc.2004.12.014
https://doi.org/10.1063/1.2770708


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

39S. Goedecker, M. Teter, and J. Hutter, Phys. Rev. B 54, 1703 (1996).
40 We assess the quality of flat surfaces because they allow for simpler analysis.
Nevertheless, the results for the oxidized nanowire are similar.
41A. C. Diebold, D. Venables, Y. Chabal, D. Muller, M. Weldon, and E. Garfunkel,
Mater. Sci. Semicond. Process. 2, 103 (1999).
42R. L. Mozzi and B. E. Warren, J. Appl. Crystallogr. 2, 164 (1969).
43K. Hirose, H. Nohira, T. Koike, K. Sakano, and T. Hattori, Phys. Rev. B 59, 5617
(1999).
44N. Miyata, H. Watanabe, and M. Ichikawa, Phys. Rev. B 58, 13670 (1998).
45D. A. Muller, T. Sorsch, S. Moccio, F. H. Baumann, K. Evans-Lutterodt, and G.
Timp, Nature 399, 758 (1999).
46D. A. Muller and G. D. Wilk, Appl. Phys. Lett. 79, 4195 (2001).
47J. H. Oh, H. W. Yeom, Y. Hagimoto, K. Ono, M. Oshima, N. Hirashita, M.
Nywa, A. Toriumi, and A. Kakizaki, Phys. Rev. B 63, 205310 (2001).
48 We artificially enhance the growth rate by exposing the Si surface to a large
number of O2 molecules, corresponding to a pressure in the O2 gas of p = 50 bar.
This is necessary as the actual oxidation time (in the range of seconds) is still well
outside the scope of feasible calculations even when using the MLFF.
49Y.-C. Liao, A. M. Nienow, and J. T. Roberts, J. Phys. Chem. B 110, 6190
(2006).
50Y. Tsuda, A. Yoshigoe, S. Ogawa, T. Sakamoto, and Y. Takakuwa, e-J. Surf. Sci.
Nanotechnol. 21, 30 (2022).
51B. Schubert, P. Avouris, and R. Hoffmann, J. Chem. Phys. 98, 7593 (1993).
52A. H. Carim and R. Sinclair, J. Electrochem. Soc. 134, 741 (1987).

53K. Ohsawa, Y. Hayashi, R. Hasunuma, and K. Yamabe, Jpn. J. Appl. Phys. 48,
05DB02 (2009).
54N. Nayir, A. C. T. van Duin, and S. Erkoc, J. Phys. Chem. A 123, 4303 (2019).
55I. Batatia, P. Benner, Y. Chiang, A. M. Elena, D. P. Kovács, J. Riebesell, X. R.
Advincula, M. Asta, W. J. Baldwin, N. Bernstein, A. Bhowmik, S. M. Blau, V.
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