
Model-Based Systems Engineering for the Agile
Life-Cycle Management of IIoT Based on DevOps

Amirali Amiri
Institute of Computer Engineering

TU Wien, Vienna, Austria
amirali.amiri@tuwien.ac.at

Gernot Steindl
Institute of Computer Engineering

TU Wien, Vienna, Austria
gernot.steindl@tuwien.ac.at

Wolfgang Kastner
Institute of Computer Engineering

TU Wien, Vienna, Austria
wolfgang.kastner@tuwien.ac.at

Abstract—The domain of Industrial Internet of Things (IIoT)
contains a vast variety of standards, protocols, tool suites,
coding languages, etc. The Reference Architecture Model Indus-
try (RAMI) 4.0 provides an abstraction of the different views
involved in designing IIoT systems. However, the life-cycle model
of the reference architecture suggests a progression from the
development into production. This progression does not conform
well with the best practices of software engineering, e.g., DevOps,
where runtime data is given back to the design-time. In this
paper, we suggest an agile life-cycle management of the IIoT
systems, and propose an approach of Model-Based Systems
Engineering (MBSE) based on the System Modeling Language
(SysML) 2.0. We define metadata in the domain of event-driven
IIoT systems. Architects can create tagged model instances, which
are automatically validated against system requirements. The
validated models are passed to an artifact generator to create
code, test cases, or documentation. Our approach assists in the
development and commissioning of system assets. We feed the
runtime data to design-time to improve the quality of service.

Index Terms—Industrial IoT, MBSE, DevOps Life Cycle

I. INTRODUCTION

Nowadays, there are many different standards, protocols
and tools for the Industrial Internet of Things (IIoT) systems.
Architects and system designers must have a very deep exper-
tise to be able to cope with the complex scope of designing
such systems that include hardware, software, information,
communication, users, etc. The Reference Architecture Model
Industry (RAMI) 4.0 [9] presents an abstraction to assist
IIoT system designers. Despite being helpful, the life-cycle
model of the reference architecture does not match well with
the proven methods of the software-engineering domain. For
example, the DevOps practice [8] suggests a circular life-
cycle management that results in providing feedback from the
runtime to the design-time of the industrial applications.

Moreover, proven approaches such as Model-Based Systems
Engineering (MBSE) [11] make the design of IIoT systems
easier. This is done by providing abstractions of system models
and views. To the best of our knowledge, there exists no
approach in the literature that applies the MBSE to the life-
cycle management of the IIoT systems based on the DevOps
practices. Thus, we set out to answer the research questions:
RQ1: What is an agile life-cycle management of IIoT systems
using DevOps practices?
RQ2: How can model-based systems engineering assist the
agile management of IIoT systems during design- and runtime?

Fig. 1 shows the RAMI 4.0 three-dimensional model [9].
These dimensions are Interoperability Layers, Hierarchy Lev-
els, and Life Cycle and Value Stream. The Interoperability Lay-
ers provide different levels of abstractions from the business
processes down to the assets integration in an IIoT system.
The Hierarchy Levels consider an industrial application from
the IIoT devices (including sensors, actuators and controllers)
up to the cloud integration.

Asset

Integration

Communication

Information

Functional

Business

Product
Field Device

Control Device
Station

Work Centers
Enterprise

Connected World

Developm
ent

Maintenance

/ Usage

Production

Maintenance

/ Usage

Life Cycle and Value Stream
Type Instance

Hierarchy
Levels

Interoperability
Layers

Fig. 1: Reference Architecture Model Industry 4.0

The Life Cycle and Value Stream is based on the IEC
62890:2020 [1] standard providing models for a Product
Type life cycle, i.e., during development, and an Product
Instance life time, i.e., when operating. However, the agile best
practices of software engineering, e.g., DevOps [8], consider
a continuous development not reflected by the RAMI 4.0 life-
cycle model. Using DevOps, the runtime data is fed back to
the design-time to improve the Quality of Service (QoS).

 CreatePlan Verify Commi-
 ssion Build

Monitor

 Dev / Product Type DevOps / Product Instance

 Monitor

Fig. 2: Adapted DevOps Toolchain to RAMI 4.0 Life Cycle

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional

purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

II. AGILE LIFE-CYCLE MANAGEMENT

Fig. 2 shows the DevOps toolchain, adjusted to be compa-
rable to the RAMI 4.0 and applicable to the hardware infras-
tructure of IIoT systems. The Dev phases refer to planning,
creating and verification of software and hardware assets.
The Build phase considers the construction of a hardware
entity, or packaging of software artifacts. The Commission step
brings a hardware asset into operation, or deploys a software
component. The adapted DevOps matches with RAMI 4.0,
except for the Monitor step going back to the Plan phase.

Business

Functional

Information

Communication

Integration

Asset

Pr
od

uc
t

Fi
eld

 D
ev

ice
Co

nt
ro

l D
ev

ice
St

at
ion

W
or

k C
en

te
rs

En
te

rp
ris

e
Co

nn
et

ed
W

or
ld

Create
Verify

Plan

Interoperability
Layers

Hierarchical
Layers

Fig. 3: Dev Practices Applied to RAMI 4.0

Dev Phase Fig. 3 shows the Dev practices applied to the
RAMI 4.0 life-cycle model. The phases start with defining
the business processes, which are usually high-level activities
concerning the Connected World and Enterprise hierarchy

Define Requirements

Perform Requirements Validation
e.g., Graph-Based

Import Metadata
Definitions

Define the Tagged System Model
based on the RAMI 4.0

 Model Business Processes
 Refine into Functional Blocks (e.g., FBD)
 Define Information Model (e.g., OPC UA, UNS)
 Define Communication Schema (e.g., MQTT)
 Model Assets Integration (e.g., DT, AAS)
 Create System Assets

Go to Ops Phase

 Requirements
 Violated?

[No]

[Yes]

Fig. 4: The High-Level Activities regarding the Dev Phase

levels. As we refine the processes into Functional Blocks and
further down to the System Assets, we start to consider more
software and hardware infrastructure of the hierarchy levels.

Fig. 4 shows the high-level activities of our approach
regarding the Dev phase. Architects tag system components
using our pre-defined metadata definitions in SysML 2.0 (see
Section III). The tagging can be done on different levels,
e.g., business processes or assets, that correspond to different
RAMI 4.0 interoperability layers. Our approach validates
requirements and informs the architect or system designer of
the exact system part(s) violating the requirements. We convert
the system model into graphs automatically, and performed
graph-based validation of the requirements (see [3] and [4]).

Business

Functional

Information

Communication

Integration

Asset

Build

Commission
Monitor

Pr
od

uc
t

Fi
eld

 D
ev

ice
Co

nt
ro

l D
ev

ice
St

at
ion

W
or

k C
en

te
rs

En
te

rp
ris

e
Co

nn
et

ed
W

or
ld

Interoperability
Layers

Hierarchical
Layers

Fig. 5: Ops Practices Applied to RAMI 4.0

Ops Phase Fig. 5 shows the Ops practices applied to the
RAMI 4.0 life-cycle model. We deploy our system model

Commission System Model

Monitor the Running System

Build Hardware Entity /
Generate Software Artifacts

Define
Monitoring Schema

Define
Deployment Model

Go to Dev Phase

 Runtime
 Requirements
 Violated?

[Yes]

 [No]

Fig. 6: The High-Level Activities regarding the Ops Phase

on the available infrastructure, covering the Product to the
Connected World. We monitor the system assets, including
software and hardware, for any violation of QoS metrics.

Fig. 6 shows the high-level activities. In this phase, we
define a deployment model that maps the functional blocks
to the underlying execution environment. These environments
are modeled by the RAMI 4.0 Hierarchy Levels. We put all
together and add the connection from the Monitor back to
the Plan phase. This connection provides feedback from the
runtime, e.g., collecting monitoring data of an IIoT system,
back to the design-time to improve the QoS. Fig. 7 shows the
proposed agile life-cycle management.

Dev
Business

Functional

Information

Communication

Integration

Asset

Ops M
on

ito
r

Pr
od

uc
t

Fi
eld

 D
ev

ice
Co

nt
ro

l D
ev

ice
St

at
ion

W
or

k C
en

te
rs

En
te

rp
ris

e
Co

nn
et

ed
W

or
ld

Interoperability
Layers

Hierarchical
Layers

Fig. 7: Agile Life-Cycle Management of the RAMI 4.0

The agile practices are used in the software-engineering
domain extensively. In the industrial-automation domain, these
practices can be very beneficial to give feedback from runtime
to the design-time of applications. In addition to improv-
ing QoS metrics, system architects can detect requirement-
violations as early as possible at the design-time. It is costly
to adjust violations after an IIoT system is in production and
running. We present an MBSE approach, automating the use
of our concepts to some extent.

III. MODEL-BASED SYSTEMS ENGINEERING

This section proposes an MBSE approach. Fig. 8 shows
the MBSE workflow [11]. We use the SysML 2.0 textual
representation1 and define metadata in the IIoT domain. These
metadata are used as tags when creating a Model Instance. A

Model
 Validation

Artifact
 Generation

Model
Instance

Textual
 SysML 2.0

Artifact

Tagged with
Metadata

Metadata
Definitions

SysML 2.0
Metamodel

Parent
Concept

Child
Concept

Fig. 8: The MBSE Workflow

1https://www.omg.org/spec/SysML/2.0/Beta1

Model Validator verifies system requirements. The validated
models are passed to an Artifact Generator to generate arti-
facts, e.g., code, test cases, or documentation. We propose a
layered system model based on the interoperability layers of
the RAMI 4.0. This section details the layered model.

Metadata Definitions Our metadata definitions concerning
event-driven IIoT systems are shown in Fig. 9. A System
under Consideration consists of at least one Asset that can
be Information, Communication, User with different Roles, or
Infrastructure. A Base Node models Software and Hardware.
A Composite Node consists of base nodes, and can be Edge,
Fog, Cloud, Message Broker, Device Gateway, or IIoT Device.
An Execution Environment models the virtual or physical
environments, e.g., virtual machines, containers, or baremetal
servers. A Requirement models systems requirements. Counter
Measures are actions performed to fulfill the requirements. Test
Cases assess the effectiveness of counter measures. Architects
can easily extend our metadata, e.g., by defining user roles.

SysML 2.0 Metadata Listing 1 shows an excerpt of SysML
2.0 metadata. We perform the Plan and Create phases of the
Dev practices by tagging the system model using the metadata.

1 package Meta_EventDrivenIIoT {
2 enum def UserRole;
3

4 metadata def Asset ;
5 metadata def User :> Asset {
6 import Meta_EventDrivenIIoT::UserRole::*;
7 attribute Role : UserRole; }
8 metadata def Communication :> Asset;
9 metadata def Information :> Asset;

10 metadata def Infrastructure :> Asset;
11 metadata def BaseNode :> Infrastructure;
12 metadata def Hardware :> BaseNode;
13 metadata def Software :> BaseNode;
14 metadata def CompositeNode :> Infrastructure {
15 import Meta_EventDrivenIIoT::*;
16 metadata BaseNode; }
17 metadata def Edge :> CompositeNode;
18 metadata def Fog :> CompositeNode;
19 metadata def Cloud :> CompositeNode;
20 metadata def MessageBroker :> CompositeNode;
21 metadata def DeviceGateway :> CompositeNode;
22 metadata def IIoTDevice :> CompositeNode;
23 ...
24 }

Listing 1: Exceprt of Metadata Definitions in SysML 2.0

Layered System Model We follow the interoperability
layers of the RAMI 4.0 to refine our system model iteratively.
Our proposed steps are as follows, also visualized by Fig. 4.
First, we model high-level business processes based on system
requirements using SysML 2.0 activity diagrams. Second,
we refine each business process into functional blocks to
realize the business processes. Third, we consider functional
blocks that can be code-generated. Also, we consider black-
box functional blocks that need to be manually completed by
the developers. Next, we define information models to provide
semantics for the data exchange between functional blocks.
Then, we define the communication schema between func-
tional blocks. Also, we consider the digital integration of each
asset to run specific functional blocks and the communication
schema. Last, we define all system assets, including the cloud,
fog and edge nodes. Note that the order of the steps above is

https://www.omg.org/spec/SysML/2.0/Beta1

System under
Consideration

Edge

InfrastructureCommunicationUser

Requirement

Test Case Counter
Measure

Role

Asset

Information

CloudHardwareSoftware

Base Node Composite Node

Massage Broker

Execution
Environment

Device GatewayFog IIoT Device

 0..*

0..*0..*

1..*

1..*

 1..*

0..*

1..*

«inter-dependencies»

 0..*

1..*

 1..*

0..*

0..*

0..* 0..*

Fig. 9: Metadata of Event-Driven IIoT Systems

arbitrary. A validator verifies the model against requirements
automatically, e.g., by performing traversal algorithms on the
converted graph of the system model [3], [4].

Ops Phase Having validated the models, we focus on the
Ops practices, also visualized by Fig. 6. We define a monitor-
ing schema to check runtime QoS metrics, e.g., performance,
accuracy, etc. At this point, we have created different views
of the system model, i.e., structural, behavioral, and runtime
models. We can now generate artifacts based on pre-defined
templates. These templates map our metadata definitions to
code blocks or documentation. However, in some cases, the
application-specific code must be completed by developers to
have a fully-functional system.

We deploy the software artifacts, commission hardware
infrastructure into operation, and monitor the runtime metrics
continuously. In case of violation, we go to the Dev phase, and
adjust our models. This step is performed manually by an ar-
chitect or a system designer based on the recommendations of
our approach. Also, a self-adaptive system can automatically
update the system model using the Monitor, Analyse, Plan,
Execute and Knowledge (MAPE-K) loops [6], [7], [10].

IV. CONCLUSIONS AND WORK-IN-PROGRESS

In this paper, we set out to answer what an agile life-
cycle management of IIoT systems using DevOps practices is
(RQ1), and how model-based systems engineering can assist
the agile management of IIoT systems during design- and
runtime (RQ2). For RQ1, we proposed a continuous life-cycle
management based on DevOps practices [8], where runtime
data is fed back to the design-time to improve the quality of
service. For RQ2, we suggested an MBSE approach based
on SysML 2.0 textual representation. We defined metadata
concerning the event-driven IIoT systems that can be used
to created tagged system models.

Our work-in-progress includes generating code based on the
standard IEC 61131-3:2013 [2], and deploying our generated
artifacts on an experimental setting. We plan to evaluate our

concepts using empirical data on local and public cloud in-
frastructures. Our evaluation scenario is as follows: Architects
model an event-driven industrial system that includes mes-
sage brokers. The generated industrial control code based on
IEC 61131-3:2013 runs on Programmable Logic Controllers
(PLCs). These PLCs send data to the brokers for the edge-
cloud integration. We measure the response time of requests
and include a monitoring schema to adapt the system model
based on the runtime data. As mentioned, this adaptation
can be performed manually or automatically using MAPE-
K loops [6], [7], [10]. The self-adaptation usually requires
optimization (see, e.g., [5]).

REFERENCES

[1] Industrial-process measurement, control and automation - life-
cycle-management for systems and components, 2020-07-22,
https://webstore.iec.ch/en/publication/30583.

[2] Programmable controllers - part 3: Programming languages, 2013-02-20,
https://webstore.iec.ch/en/publication/4552.

[3] A. Amiri, G. Steindl, I. Gorton, S. Hollerer, W. Kastner, and T. Sauter.
Integrated safety and security by design in the IT/OT convergence of
industrial systems: A graph-based approach. In IEEE International
Conference on Software Services Engineering, 2024.

[4] A. Amiri, M. Thoma, G. Steindl, C. Klaassen, and W. Kastner. Model-
based systems engineering of the event-driven industrial internet of
things. In Annual Conference of the Industrial Electronics Society, 2024.

[5] A. Amiri and U. Zdun. Tool support for the adaptation of quality
of service trade-offs in service- and cloud-based dynamic routing
architectures. In European Conference on Software Architecture, 2023.

[6] P. Arcaini, E. Riccobene, and P. Scandurra. Modeling and analyzing
mape-k feedback loops for self-adaptation. In IEEE/ACM 10th Inter-
national Symposium on Software Engineering for Adaptive and Self-
Managing Systems, pages 13–23, 2015.

[7] P. Arcaini, E. Riccobene, and P. Scandurra. Formal design and
verification of self-adaptive systems with decentralized control. ACM
Transactions on Autonomous and Adaptive Systems (TAAS), 2017.

[8] N. Azad and S. Hyrynsalmi. Devops critical success factors — a
systematic literature review. Information and Software Technology, 2023.

[9] R. Heidel. Industrie 4.0: The reference architecture model RAMI 4.0
and the Industrie 4.0 component. Beuth Verlag GmbH, 2019.

[10] D. G. D. L. Iglesia and D. Weyns. Mape-k formal templates to
rigorously design behaviors for self-adaptive systems. ACM Transactions
on Autonomous and Adaptive Systems (TAAS), 10(3):1–31, 2015.

[11] A. L. Ramos, J. V. Ferreira, and J. Barceló. Model-based systems engi-
neering: An emerging approach for modern systems. IEEE Transactions
on Systems, Man, and Cybernetics, 42(1):101–111, 2012.

	Introduction
	Agile Life-Cycle Management
	Model-Based Systems Engineering
	Conclusions and Work-In-Progress
	References

