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Abstract. We study variants of the Optimal Refugee Resettlement
problem where a set F of refugee families need to be allocated to
a set P of possible places of resettlement in a feasible and optimal
way. Feasibility issues emerge from the assumption that each fam-
ily requires certain services (such as accommodation, school seats,
or medical assistance), while there is an upper and, possibly, a lower
quota on the number of service units provided at a given place. Be-
sides studying the problem of finding a feasible assignment, we also
investigate two natural optimization variants. In the first one, we al-
low families to express preferences over P , and we aim for a Pareto-
optimal assignment. In a more general setting, families can attribute
utilities to each place in P , and the task is to find a feasible assign-
ment with maximum total utilities. We study the computational com-
plexity of all three variants in a multivariate fashion using the frame-
work of parameterized complexity. We provide fixed-parameter al-
gorithms for a handful of natural parameterizations, and complement
these tractable cases with tight intractability results.

1 Introduction

At the 2023 Global Refugee Forum, the UN High Commissioner for
Refugees reported that 114 million people are currently displaced
due to persecution, human rights violations, violence, and wars, and
made a direct appeal to everyone to join forces to help refugees find
protection.2 This immense number highlights the critical need for
effective resettlement strategies that cater to diverse populations.

Refugee resettlement involves not just relocating individuals
but also families, each with distinct needs and service require-
ments ranging from accommodation to education and medical assis-
tance. Delacrétaz et al. [15] and Ahani et al. [2] propose a multi-
dimensional and multiple knapsack model to address these chal-
lenges. Their model takes into account the specific needs of refugee
families who require a range of services, as well as the capacity con-
straints of potential hosting places that have specific upper and lower
quotas on the services they can offer. The goal is to determine a fea-
sible assignment from the families to the places which satisfies the
specific needs of the families while ensuring that no place is over-
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or under-subscribed according to its capacity constraints. Addition-
ally, the model may include a utility score for each family–place pair
which estimates the “profit” that a family may contribute to a place;
such profit could be for example the employment outcome. Optimiz-
ing the assignment means finding a feasible assignment that yields a
maximum total utility.

If we care about the welfare and choices of the refugee families,
we may allow them to express preferences over places which they
find acceptable [15]. A standard optimality criterion in such a case is
Pareto-optimality, which means that we aim for a feasible assignment
for which no other feasible assignment can make one family better
off without making another worse off.

Unfortunately, it is computationally intractable (i.e., NP-hard) to
determine whether a feasible assignment exists [8]. Similarly, it is
NP-hard to find a feasible assignment with maximum total utility or
one that is Pareto-optimal, even if there are no lower quotas [7, 18, 2].
To tackle these complexities, we examine the parameterized com-
plexity of the three computational problems for refugee resettlement
that we study, FEASIBLE-RR, MAXUTIL-RR and PARETO-RR, and
provide parameterized algorithms for them. We focus on canonical
parameters such as the number of places (m), the number of refugee
families (n), the number of services (t), and the desired utility (u∗).
We also consider additional parameters that are motivated from real-
life scenarios, including the maximum number rmax of units required
by a family per service and the maximum utility umax a family can
contribute. The service units can reasonably be assumed to be small
integers in practical situations when a family’s requirements describe
their need for housing (e.g., number of beds or bedrooms) or educa-
tion (e.g., the number of school seats or kindergarten places). Our
study provides new insights into the parameterized complexities of
these problems, presenting fixed-parameter (FPT) algorithms for sev-
eral natural parameterizations, and contrasting these with strong in-
tractability results. See Table 1 for an overview. We summarize our
main contributions as follows.

Single service. We develop an FPT algorithm w.r.t. rmax for FEASI-
BLE-RR; the algorithm also applies to MAXUTIL-RR and PARETO-
RR when all families have the same utilities for all places (equal
utilities) or are indifferent between all of them (equal preferences),
respectively; see Theorem 1. The main idea is to group all families to-
gether that have the same requirements, and group all places together
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with the same lower and upper quotas. Then, we observe that either
the upper quotas are small (i.e., bounded by a function in rmax) so
we can brute-force search all possible partitions of the families into
different places, or there is a so-called homogeneous ρ-block (see
Section 3 for the formal definition) that can be exchanged across the
places, which enables us to replace the upper quota of each place
with a value bounded by a function of rmax. In this way, we bound
the number of groups of families and places, and can use Integer
Linear Programming (ILP) to obtain an FPT algorithm for rmax.

We also propose an FPT algorithm for the combined parame-
ter m + rmax for the general case when families may have differ-
ent utilities or preferences (Theorem 3). The generalized algorithm
additionally uses the idea that homogeneous ρ-blocks can be ex-
changed across places, and combines dynamic programming with
color-coding [4] to find an optimal solution in FPT time.

Multiple services. In Theorem 6, we extend the FPT algorithm of
Theorem 1 for the setting of equal preferences or utilities to multiple
service types by combining the parameters rmax and t, the number of
services; we use the technique of N -fold integer programming [20].
We present a more general FPT algorithm for PARETO-RR with pa-
rameter rmax+t+m which also solves MAXUTIL-RR if the number
of different utility values is bounded (Theorem 7); this result relies on
Lenstra’s result on solving ILPs with bounded dimension [25]. Con-
trasting our algorithmic results, we prove that PARETO- and MAXU-
TIL-RR are both NP-hard already for three places, even if there are
no lower quotas, all upper quotas are 1, and families have equal pref-
erences or utilities, respectively; see Theorem 5.

Related work. The model we study is the same as that of Ahani et
al. [2]. They formulate MAXUTIL-RR via ILP and study its perfor-
mance. The same model without lower quotas has attracted previous
study: It was introduced in a working paper by Delacrétaz et al. [14]
(see also [15]). The paper provides an algorithm for finding a Pareto-
optimal matching when the preferences are strict, and also studies
other stability concepts. Aziz et al. [7] show that finding a Pareto-
optimal assignment is NP-hard even when the families are indiffer-
ent between places, and study a few other stability concepts. Nguyen
et al. [28] use fractional matchings to find group-stable assignments
which violate the quotas only a little. None of the works above fo-
cuses on parameterized complexity analysis.

As already mentioned by Ahani et al. [2], the MAXUTIL-RR
problem is a generalization of the MULTIPLE/MULTIDIMENSIONAL

KNAPSACK problem [2]. The parameterized complexity of the latter
has been studied by Gurski et al. [18], and several of our hardness-
results are obtained either directly from them or from modifications
of their reductions. MULTIPLE/MULTIDIMENSIONAL KNAPSACK

however has neither lower quotas nor different profits for items de-
pending on which knapsack they are placed in. They also assume
the sizes and profits are encoded in binary, whereas we assume
they are encoded in unary. Hence, their parameterized algorithms
are not directly applicable to our problems. FEASIBLE-RR gener-
alizes BIN PACKING [21] and hence SIMPLE MULTIDIMENSIONAL

PARTITIONED SUBSET SUM [16]; note that the latter two problems
are equivalent. Since BIN PACKING is W[1]-hard w.r.t. the number
of bins and the bins correspond to the places in our setting, W[1]-
hardness for FEASIBLE-RR follows; see Proposition 1.

The problem can be seen as an extension of different classical
matching problems. We can model MATCHING WITH DIVERSITY

CONSTRAINTS [11, 19, 12, 8, 1, 24] by using services as types. In
the case where we have a single service, the problem can be seen
as a variant of MATCHING WITH SIZES [10, 27], where the service

requirements correspond to the sizes.
Refugee resettlement has also been studied in the literature un-

der other types of models: Online setting [6, 3, 9], one-to-one
housing [5], preferences based on weighted vectors [30], hedonic
games [23], and placing refugees on a graph [22, 26, 29].

Paper structure. In Section 2, we formally define refugee resettle-
ment. We investigate the case when there is only one service and
when there are multiple services in Section 3 and Section 4, respec-
tively. In Section 4, we first look at FEASIBLE-RR, followed by
PARETO-RR, and finally MAXUTIL-RR. We conclude with a dis-
cussion on potential areas for future research in Section 5. Additional
results and the proofs for the statements marked with ⋆ are deferred
to the full version of the paper [13].

2 Preliminaries

For an integer z, we use [z] to denote the set {1, 2, . . . , z}. Given
two vectors x and y of the same length, we write x ≤ y if for each
coordinate i it holds that x[i] ≤ y[j].

An instance of REFUGEE RESETTLEMENT (RR) is a tu-
ple (F,P, S, (ri)fi∈F , (cj , c̄j)pj∈P ) with information:
– F denotes a set of n refugee families with F = {f1, . . . , fn},
– P denotes a set of m places with P = {p1, . . . , pm}, and
– S denotes a set of t services S = {s1, . . . , st}, such that
– each family fi ∈ F has a requirement vector ri ∈ N

t where, for
every service sk ∈ S, the value ri[k] determines how many units
of service sk the family fi requires, and

– each place pj ∈ P has two vectors cj , c̄j ∈ N
t, denoted as lower

quota and upper quota which indicate for every service sk ∈ S,
the minimum and maximum number of units place pj can pro-
vide. Non-zero lower quotas for places may for example follow
from an obligation for a place to house at least a certain number
of refugees. If the lower quota of every place is a zero-vector, then
we say that the instance has no lower quotas.

Assignments. Given an instance of RR, an assignment is a func-
tion σ∶F → P ∪ {⊥}; we say that fi ∈ F is assigned to a place
pj ∈ P if σ(fi) = pj , and fi is unassigned if σ(fi) = ⊥. We de-
fine the load vector of a place pj ∈ P under σ as load(pj , σ) ≔
∑fi∈σ−1(�j ) ri[k]; for each service sk ∈ S, load(pj , σ)[k] de-
notes the number of units that are required by the refugees that
are assigned to pj . An assignment is complete if it does not leave
any families unassigned. An assignment is feasible if for every
place pj ∈ P the load vector is within the lower and upper quota,
i.e., cj ≤ load(pj , σ) ≤ c̄j . Place pj can accommodate a set of
families F ′ ⊆ F if ∑fi′∈F

′ ri′[k] ≤ c̄j[k] for each sk ∈ S.

Utilities. Each family may contribute a certain utility to each place.
To model this, each family fi ∈ F expresses an integral utility vec-
tor ui ∈ Z

m, where for every pj ∈ P , the value ui[j] indicates the
utility of family fi if assigned to pj . Note that we also allow negative
utilities, but it will be evident that all hardness results hold even if
the utilities are non-negative. Given an assignment σ, we define the
(total) utility of the assignment as the sum of all utilities contributed
by the families, i.e., util(σ) = ∑pj∈P ∑fi∈σ−1(pj ) ui[j]. We con-
sider two special kinds of utility vectors. We say that the families
have equal utilities if all utility values ui[j] are equal and positive
over all families fi ∈ F and places pj ∈ P , and families have binary
utilities if each utility value is either zero or one.

Preferences and Pareto-optimal assignments. Each family fi ∈ F
may only find a subset of places acceptable and may have a prefer-
ence list ⪰i over the acceptable places, i.e., a weak order over a subset
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of P . For a family fi and two places p and p
′ in its preference list,

p ⪰i p
′ means that fi weakly prefers p to p

′. If p ⪰i p
′ and p

′ ⪰i p,
then we write p ∼i p

′ and say that fi is indifferent between p and p
′.

We write p ≻i p
′ to denote that fi (strictly) prefers p to p

′, meaning
that p ⪰i p

′ but p /⪰i p
′. If the preference list of fi contains p, then fi

finds p acceptable. We assume that each family fi prefers being as-
signed to some place in his preference list over being unassigned;
accordingly, we write p ≻i ⊥. An assignment is acceptable if every
family is either unassigned or assigned to a place it finds acceptable.

We also define equal and dichotomous preferences: If every family
finds every place acceptable and is additionally indifferent between
them, then the preferences are equal. If every family is indifferent
between every place it finds acceptable, then the preferences are di-
chotomous.

A feasible and acceptable assignment σ is Pareto-optimal if it ad-
mits no Pareto-improvement, that is, a feasible and acceptable assign-
ment σ′ such that σ′(fi) ⪰i σ(fi) for every fi ∈ F and there exists
at least one family fi′ ∈ F such that σ′(fi′) ≻i′ σ(fi′).

We present an example of our model in the full version [13].

Central problems. We are now ready to define our problems.
FEASIBLE-RR
Input: An instance I of REFUGEE RESETTLEMENT.
Question: Is there a feasible assignment σ for I?

MAXUTIL-RR
Input: An instance I of refugee resettlement, a utility vector
ui ∈ Z

m for each family fi ∈ F , and an integer bound u
∗.

Question: Is there a feasible assignment σ for I such that
util(σ) ≥ u

∗?

PARETO-RR
Input: An instance I of refugee resettlement and a preference
order ⪰i for every fi ∈ F .
Task: Find a feasible and acceptable Pareto-optimal assign-
ment σ for I or report that none exists.

We remark that there is a straightforward way to reduce PARETO-
RR to the optimization variant of MAXUTIL-RR in the following
sense. Suppose that an algorithm A finds a maximum-utility feasible
assignment for each instance of MAXUTIL-RR that admits a feasible
assignment. Such an algorithm can be used to solve an instance I the
PARETO-RR problem as follows.

Observation 1 (⋆). Given an instance I of PARETO-RR, construct
an instance I ′ of MAXUTIL-RR as follows. For each family fi ∈ F :
• for every place pj that fi finds acceptable, set ui[j] = ∣{pj′ ∈

P ∣ pj ⪰i pj′}∣;
• for each place pj that fi finds unacceptable, set ui[j] = −m ⋅ n.
Let σ be a maximum-utility feasible assignment for I ′. If util(σ) > 0,
then σ is a feasible, acceptable, and Pareto-optimal assignment
for I; otherwise there is no feasible and acceptable assignment for I .

Parameterization. We study the following parameters:
• number of places (m = ∣P ∣),
• number of refugee families (n = ∣F ∣),
• number of services (t = ∣S∣),
• maximum number of units required for all services and by all fam-

ilies (rmax = max{ri[k] ∶ fi ∈ F, sk ∈ S}).
We also study the following parameters for MAXUTIL-RR: the

total utility bound u
∗ and the maximum utility brought by a family

umax = max{ui[j] ∶ fi ∈ F, pj ∈ P }. Additionally, we con-
sider the highest upper quota any place has for a service cmax =
maxpj∈P,sk∈S c̄j[k], but discover that this parameter behaves very

Parameter FEASIBLE MAXUTIL PARETO

LQ=0 / LQ≠0 LQ=0 / LQ≠0

m W1h [P1] W1h
◦/W1h

◦ [P1] W1h
=/W1h

= [P1]
XP [P7] XP / XP [P7] XP / XP [P7]

rmax FPT [T1] NPh / NPh [T2] NPh / NPh [T2]
eq. util./pref. – – FPT / FPT [T1] FPT / FPT [T1]

m + rmax FPT [T3] FPT / FPT [T3] FPT / FPT [T3]
umax – – NPh◦/NPh◦ [18] – –
u
∗ – – FPT/NPh

◦ [T4]/[P1] – –

m + rmax NPh [P2] NPh◦/NPh◦ [18] NPh
=/NPh

= [T5]/[P2]
t NPh [P1] NPh◦/NPh◦ [18] NPh=/NPh= [7]
n FPT [P6] FPT / FPT [P6] FPT / FPT [P6]
m + t W1h [P1] W1h

◦/W1h
◦ [P1] W1h

=/W1h
= [P1]

XP [P7] XP / XP [P7] XP / XP [P7]
t + rmax FPT [T6] NPh / NPh [T2] NPh / NPh [T2]

eq. util./pref. – – FPT/FPT [T6] FPT / FPT [T6]
m + t + rmax FPT [T6] XP / XP,? [P7] FPT / FPT [T7]

binary util. – – FPT [T7] – –
u
∗ – – W1h◦/NPh

◦ [18]/[P2] – –
– – XP/NPh

◦ [P8]/[P2] – –

Table 1. All three problems are NP-hard in general; see [8], [18, T32],[7,
P7.1]. Above: Results for the single-service case (t = 1). We skip the param-
eterization by n since for this case it is FPT for the more general case. Below:
Results for the general case. We skip the parameterization by umax since
it is already NP-hard for the single-service case. Bold faced results are ob-
tained in this paper. LQ=0 (resp. LQ≠0) refers to the case when lower quotas
are zero (resp. may be positive). NPh means that the problem remains NP-
hard even if the corresponding parameter is a constant. All hardness results
hold for dichotomous preferences or binary utilities. Additionally, ◦ (resp. =)
means hardness results hold even for equal utilities (resp. preferences). The
results for the remaining parameter combinations are deferred to the full ver-
sion [13].

similarly to the smaller and better-motivated parameter rmax. Note
that we may assume that for each family there is at least one place
that can accommodate it, otherwise we can remove the family from
our instance; this implies that we can assume cmax ≥ rmax.

We obtain FPT results w.r.t. the sum of the capacities of the
places, that is, cΣ = ∑pj∈P,sk∈S c̄j[k], and the sum of the re-
quirements of the families rΣ = ∑fi∈F,sk∈S ri[k]. If there are no
lower quotas, we also have an FPT result w.r.t. the sum of utilities
uΣ = ∑fi∈F,pj∈S ui[j]. If the instance has non-zero lower quotas,
then the problem is hard even when all utilities are zero, and this pa-
rameter is not helpful. We also study the complexity w.r.t. the num-
ber n∼ of agents who have ties in their preference lists. Finally, we
observe that the parameter “the maximum length of the ties in prefer-
ence lists” does not help in designing parameterized algorithms since
it is upper-bounded by m, and most problems are already hard w.r.t.
m. Discussion on parameters cΣ, rΣ, uΣ, and n∼ are deferred to the
full version [13].

3 Single service

Let us assume that there is only a single service in our input instance.
Thus, we will simply refer to ri[1] as the requirement of a fam-
ily fi ∈ F , and we will write ri = ri[1] accordingly. Observe that
we may assume w.l.o.g. that each family has a positive requirement.
Similarly, we will refer to c̄j[1] and cj[1] as the upper and the lower
quota of a place pj ∈ P , writing also c̄j = c̄j[1] and cj = cj[1].

The reader may observe that when our sole concern is feasibility,
then the problem can be seen as a multidimensional variant of the
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classic BIN PACKING or KNAPSACK problems. On the one hand, it
is not hard to show that the parameterized hardness of BIN PACKING

w.r.t. the number of bins as parameter translates to parameterized
hardness of FEASIBLE-RR w.r.t. the number of places; see Proposi-
tion 1. On the other hand, the textbook dynamic programming tech-
nique for KNAPSACK was used by Gurski et al. [18, Proposition 34]
to solve the so-called MAX MULTIPLE KNAPSACK problem which
in our model coincides with the MAXUTIL-RR problem without
lower quotas. This approach can be adapted in a straightforward way
to solve the MAXUTIL-RR problem even for the case when there are
multiple services and lower quotas; in Proposition 7 we present an
algorithm running in O((cmax)mt

nm) time.

Proposition 1 (⋆). The following problems are W[1]-hard w.r.t. m
for t = 1:
• FEASIBLE-RR;
• PARETO-RR with no lower quotas and equal preferences;
• PARETO-RR when all families have strict preferences;
• MAXUTIL-RR with no lower quotas and equal utilities;
• MAXUTIL-RR with u

∗ = 0.

In spite of the strong connection between FEASIBLE-RR and BIN

PACKING (or between MAXUTIL-RR and KNAPSACK), the context
of REFUGEE RESETTLEMENT motivates parameterizations that have
not been studied for these two classical problems. One such parame-
ter is rmax, the maximum units of a service that any refugee family
may require. Theorem 1 presents an efficient algorithm for FEASI-
BLE-RR for the case when rmax is small; the proposed algorithm
can be used to solve PARETO- and MAXUTIL-RR as well, assum-
ing equal preferences or utilities, when the task is to assign as many
refugee families as possible.

Let us introduce an important notion used in our algorithms.
Let ρ denote the least common multiple of all integers in the set
{1, . . . , rmax}; then ρ ≤ (rmax)! is clear. We say that a set F ′ ⊆ F
of families is a homogeneous ρ-block, if all families in F

′ have the
same requirement, and their total requirement is exactly ρ.

Observation 2 (⋆). Suppose that the number of services is t = 1. If
F

′ ⊆ F is a set of families such that ∑fi∈F ′ ri > rmax(ρ − 1), then
F

′ contains a homogeneous ρ-block.

In the case where rmax is a constant and the families are indif-
ferent between the places, we can use Observation 2 to bound the
number of different possible places. The idea is to observe that while
the location capacities are unbounded, we can bound the “relevant
part” of them by a function of rmax. If the total requirement of fam-
ilies assigned to a place is more than rmax(ρ − 1), there must be
a homogeneous ρ-block among them. We can treat these homoge-
neous ρ-blocks separately from the places they originate from, and
thus bound the upper quotas by a function of rmax. The family re-
quirements are also trivially bounded by rmax.

Since we have now bounded both the maximum requirements of
the families and the capacities of the locations, we can enumerate
all the different ways families may be matched to places. We can
create an ILP that has a variable for each such way and additionally
variables for the homogeneous ρ-blocks. As the number of variables
and constraints is bounded above by a function of rmax, we can solve
this ILP in FPT time w.r.t. rmax [25].

Theorem 1. PARETO- and MAXUTIL-RR are FPT w.r.t. rmax when
t = 1 and families have equal preferences or utilities, respectively.

Proof. We start by showing that we can find an assignment that
matches the maximum number of families in FPT time w.r.t. rmax.

cj c̄j

res(c̄j − cj − rmax + 1)res(cj)

rmax − 1

Compulsory
homogeneous ρ-blocks

Optional
homogeneous ρ-blocks

Configuration

Figure 1. Illustration for the proof of Theorem 1. The bar shows the upper
and lower quotas of a place, and the green area represents the requirements of
the families matched to it.

Under equal preferences (resp. utilities) this assignment must maxi-
mize utility (resp. be Pareto-optimal).

We start by defining two functions which will be useful for typing
places by their service quotas: the function arg res∶N → N and the
function res∶N→ {0, . . . , rmax(ρ − 1)}:

res(x) = max
α∈N

{x − α ⋅ ρ ∶ 0 ≤ x − α ⋅ ρ ≤ rmax(ρ − 1)}
arg res(x) = argmax

α∈N
{x − α ⋅ ρ ∶ 0 ≤ x − α ⋅ ρ ≤ rmax(ρ − 1)}.

Observe that ∀x ∈ N, x = ρ ⋅ arg res(x) + res(x). (1)

Using the res function we can associate each place with a type τP .
Let τP (pj) = (res(cj), x), where

x={ res(c̄j − cj − rmax +1) + rmax− 1, if c̄j − cj ≥ rmax− 1,

c̄j − cj , otherwise.

The first element of the type tells us the lower quota of the place
after we have discounted all the homogeneous ρ-blocks that are used
to satisfy the lower quota. The second element tells us the size of
the “optional” quota c̄j − cj when we have again discounted all the
homogeneous ρ-blocks that this part may contain. We however only
compute the residue on the part of c̄j−cj that is larger than rmax−1.
This is because the total requirements of the families that are used to
satisfy cj may be slightly greater than cj , and thus there may be a
family whose requirement is partially counted for c̄j − cj , however
it may have been used for a homogeneous ρ-block. See Figure 1 for
intuition of how the lower and upper quotas of a place are divided
into homogeneous ρ-blocks and a reconfiguration; see below for the
definition.

Let T P = {0, . . . , rmax(ρ−1)}×{0, . . . , rmax(ρ−1)+rmax−1}
be the set of possible place types. It is clear that their number is
bounded above by r

2
maxρ

2, which is a function of rmax. We addi-
tionally know that every place must have arg res(cj) many homo-
geneous ρ-blocks assigned to it. We call these compulsory homoge-
neous ρ-blocks. Similarly, we may assign at most arg res(c̄j − cj −
rmax + 1) additional homogeneous ρ-blocks to pj , which we call
optional homogeneous ρ-blocks. Because the families are indiffer-
ent between the places, we do not need to keep track of the place
to which the compulsory and optional homogeneous ρ-blocks be-
long, and we only enforce that the families assigned to compulsory
homogeneous ρ-blocks create exactly the number of compulsory ho-
mogeneous ρ-blocks needed, and the families assigned to optional
homogeneous ρ-blocks create at most the number of optional homo-
geneous ρ-blocks.

Now with a bound on the upper and lower quotas of the places dis-
counting the homogeneous ρ-blocks, we can enumerate all possible
ways to satisfy these quotas. Let ρ̂ ≔ 2rmax(ρ − 1) + rmax − 1.
This is the maximum sum of requirements that may be assigned to
any place and that are not part of a homogeneous ρ-block. We cre-
ate configurations c

F ∈ {0, . . . , ρ̂}rmax that tell us the number of
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families of each requirement type. Let us denote the set of possible
configurations CF ≔ {0, . . . , ρ̂}rmax . It is clear that the number of
possible configurations is bounded above by (ρ̂+ 1)rmax , which is a
function of rmax.

We say that a place type τ
P is suitable for a configuration c

F if
τ
P [1] ≤ ∑r∈[rmax] c

F [r] ⋅ r ≤ τ
P [1] + τ

P [2]. This means that if
the families are assigned to a place according to the configuration, its
upper and lower quotas are satisfied.

We create an ILP with the following variables and constants:
• non-negative integer variables br and b̄r for each r ∈ [rmax],

representing the number of compulsory or optional, respectively,
homogeneous ρ-blocks filled with families of requirement r.

• non-negative integer variable x(τP
, c

F ) for every τ
P ∈ T P ,

c
F ∈ C

F such that τP is suitable for cF , counting the number
of places of type τ

P that are assigned families according to con-
figuration c

F .
• mτP is the number of places of type τ

P for each τ
P ∈ T P ;

• B = ∑pj∈P arg res(cj) (resp. B = ∑pj∈P arg res(max(c̄j −
cj − rmax + 1), 0)) is the number of compulsory (resp. optional)
homogeneous ρ-blocks;

• nr is the number of families fi ∈ F such that ri = r, for each
r ∈ [rmax].
We create the following ILP:

(ILP1)

max ∑
r∈[rmax]

⎛⎜⎜⎜⎜⎜⎜⎝
ρ
r (br + b̄r) + ∑

τ
P ∈T P

c
F ∈CF

c
F [r]x(τP

, c
F )

⎞⎟⎟⎟⎟⎟⎟⎠
s.t.

∀τ
P ∈ T P ∶ ∑

c
F ∈CF

c
F is suitable for τP

x(τP
, c

F ) = mτP (2)

∑
r∈[rmax]

br = B and ∑
r∈[rmax]

b̄r ≤ B (3)

∀r ∈ [rmax]∶ ρ
r (br + b̄r) + ∑

τ
P ∈T P

c
F ∈CF

c
F [r]x(τP

, c
F ) ≤ nr (4)

Constraint (2) enforces that every place has families matched to
it according to some suitable configuration. Constraint (3) enforces
that every compulsory homogeneous ρ-block is filled with refugee
families and that no non-existing optional homogeneous ρ-blocks
are filled with refugee families. Constraint (4) enforces that for each
service-requirement, only available number of refugees are used. The
objective function formulates the total number of families assigned.

It is clear that the number of variables is bounded above by
2rmax + (ρ̂ + 1)rmaxr

2
maxρ

2, and the number of constraints by
3r

2
maxρ

2 + rmax, which are functions of rmax. Thus the problem
can be solved in FPT time w.r.t. rmax [25]. The correctness of this
approach follows from Claim 1.

Claim 1 (⋆). ILP1 admits a solution with value u
∗ if and only if

there is an assignment of families with utility u
∗.

When preferences or utilities are not equal, parameterization
by rmax alone does not yield fixed-parameter tractability: as estab-
lished by Theorem 2, the case rmax = cmax = 2 is NP-hard even in
a very restricted case, when there are no lower quotas, families have
dichotomous preferences (or binary utilities), and each family finds
at most two places acceptable (or of positive utility).

Let us remark that a slightly weaker result (the statement with-
out the condition that each family finds exactly two places accept-
able, or has positive utility for exactly two paces) follows via a

fairly straightforward reduction from the MATCHING WITH COU-
PLES problem [10, 17].

Theorem 2 (⋆). PARETO-RR and MAXUTIL-RR for t = 1 are NP-
hard even when rmax = cmax = 2 and there are no lower quotas.
The result holds for PARETO-RR even if all families have dichoto-
mous preferences and find exactly two places acceptable, and for
MAXUTIL-RR even if utilities are binary and each family has posi-
tive utilities for exactly two places.

To tackle the computational intractability of Theorem 2, we focus
on the parameter m + rmax and propose an FPT algorithm with this
parameterization in Theorem 3.

To prove Theorem 3, we are going to present an algorithm for
MAXUTIL-RR that constructs a feasible assignment with maximum
utility, or concludes that no feasible assignment exists. By Obser-
vation 1, such an algorithm can be used to solve the PARETO-RR
problem as well. Let I denote our input instance of MAXUTIL-RR.

We use a two-phase dynamic programming approach based on the
following key idea: once we have obtained an optimal assignment σ
for a partial instance J , then a small modification to this partial in-
stance results in an instance J ′ that admits an optimal assignment σ′

that is “close” to σ. By guessing how σ
′ differs from σ, we can com-

pute σ
′ efficiently. Let us give a high-level view of our algorithm.

In the first phase, we disregard lower quotas, and starting from an
instance with only a single family, we add families one by one. For
each i ∈ [n], let Fi = {f1, . . . , fi} denote the set of the first i fami-
lies, and Ii the instance obtained by restricting I to Fi and setting all
lower quotas to zero. Starting from a maximum-utility feasible as-
signment σ1 for I1, we construct a maximum-utility feasible assign-
ment σi for i = 2, . . . , n by slightly modifying the assignment σi−1.

In the second phase, starting from the instance Î0 = In without
lower quotas, we define a sequence Î1, . . . , ÎcΣ of instances where
each instance is obtained from the previous one by raising the lower
quota of a single place by one in an arbitrary way so long as the
lower quotas for I are not exceeded; notice that this implies I = ÎcΣ
where cΣ = ∑pj∈P cj . Then starting from σ̂0 ∶= σn we compute a

maximum-utility feasible assignment σ̂q for Îq , q = 1, . . . , cΣ, from
the assignment σ̂q−1 by applying small modifications.

Theorem 3. MAXUTIL- and PARETO-RR for t = 1 are FPT
w.r.t. m + rmax.

Proof. We may assume w.l.o.g. that for all i ∈ [n], there exists a
feasible assignment for Ii with maximum utility that is complete. In-
deed, to ensure completeness, we can simply create a dummy place
whose upper quota is ∑fh∈F rh and towards which all families have
zero utility; this also shows that we can assume m ≥ 2. For brevity’s
sake, we say that an assignment is optimal if it is feasible and com-
plete, and has maximum utility among all feasible assignments.

Let ρ⋆m = m
m ⋅ ρ ⋅ rmax. Notice that since ρ is a function of rmax,

we know that ρ⋆m is a function of m and rmax only.
The first phase of our algorithm relies on Claim 2, which proves

that given an optimal assignment σi for Ii for some i ∈ [n − 1], we
can obtain an optimal assignment for Ii+1 whose distance from σi

is bounded by a function of m and rmax. We measure the distance
of two assignments σ and σ

′ as the sum of the requirements of all
families that are assigned to different places by σ and σ

′, that is,

Δ(σ, σ′) = ∑ {rh∶ fh ∈ F∩, σ(fh) ≠ σ
′(fh)} ,

where F∩ is the intersection of the domains of σ and σ
′.
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Claim 2 (⋆). Suppose that i ∈ [n − 1], and let σi ∶ Fi → P
denote an optimal assignment for Ii. Then there exists an optimal
assignment σi+1 ∶ Fi+1 → P for Ii+1 such that Δ(σi, σi+1) ≤ m ⋅
ρ
⋆
m.

The second phase of our algorithm relies Claim 3 which is an ana-
log of Claim 2 with a quite similar proof.

Claim 3 (⋆). Suppose that q ∈ [cΣ], and let σ̂q ∶ F → P denote
an optimal allocation for Îq . Then there exists an optimal alloca-
tion σ̂q+1 ∶ F → P for Îq+1 such that Δ(σ̂q, σ̂q+1) ≤ m ⋅ ρ⋆m.

We are now ready to present our algorithm for MAXUTIL-RR
based on Claims 2 and 3. We use a combination of dynamic pro-
gramming and color-coding.

Initially, we compute a maximum-utility feasible allocation σ1

for I1 by assigning family f1 to a place that can accommodate it,
and among all such places, yields the highest utility for f1. Then, in
the first phase of the algorithm, for each i ∈ [n − 1] we compute
an optimal assignment for Ii+1 by slightly modifying σi. In the sec-
ond phase, starting from the assignment σ̂0 ∶= σn for Î0 ∶= In, we
compute an optimal assignment for Îq by slightly modifying σ̂q−1 for
each q ∈ [cΣ]. In each step of the first and second phases, we apply a
procedure based on color-coding; the remainder of the proof contains
the description of this procedure and its proof of correctness.

Let Icurr be the instance of phase 1 or 2 for which we have al-
ready computed an optimal assignment σcurr, and suppose that Inext

is the next instance for which we aim to compute an optimal assign-
ment σnext. Thus, Inext is either obtained from Icurr by adding some
family fi ∈ F , or by raising the lower quota for one of the places
in P by one. Let Fcurr and Fnext denote the set of families in Icurr and
in Inext, respectively. Due to Claims 2 and 3, we can choose σnext so
that Δ(σnext, σcurr) ≤ m ⋅ ρ⋆m.

Guessing step. Let X(pj , pj′ , r) denote the set of all families with
requirement r that are assigned to pj by σcurr but are moved to pj′

by σnext. We guess the number x(pj , pj′ , r) = ∣X(pj , pj′ , r)∣ for
each pj , pj′ ∈ P and r ∈ [rmax]. By our choice of σnext, we have

∑
j∈[m]

∑
j′∈[m]\{j}

∑
r∈[rmax]

x(pj′ , pj , r) = Δ(σnext, σcurr) ≤ m ⋅ ρ⋆m.

Since we need to guess m ⋅ (m − 1) ⋅ rmax values that add up to at
most m ⋅ ρ⋆m, there are no more than (ρ⋆m)m⋅(m−1)⋅rmax possibilities
to choose all values x(pj′ , pj , r). Thus, the number of possibilities
for all our guesses is bounded by a function of m and rmax only.

Color-coding step. We proceed by randomly coloring all families
in Inext with m colors in a uniform and independent way. We say
that a coloring is suitable for σnext, if for each pj ∈ P , all families
in σ

−1
next(pj)\σ−1

curr(pj) have color j. Thus, in a suitable coloring, each
family whose assignment changes between σnext and σcurr must be
assigned by σnext to the place corresponding to its color. Considering
that Inext may contain one more family than Icurr, we get

∑
pj∈P

�����σ−1
next(pj) \ σ−1

curr(pj)����� ≤ 1 +Δ(σnext, σcurr) ≤ m ⋅ ρ⋆m + 1.

Therefore, the probability that the algorithm produces a suitable col-
oring is at least m−mρ

⋆
m+1.

Modification step. Assume that our coloring χ is suitable. In the
first phase, this implies that the unique family fi ∈ Fnext \ Fcurr must
be assigned by σnext to pχ(fi). Thus, we fix the assignment on fi
as pχ(fi). We proceed with the remaining families of Fnext as follows.

For each pj , pj′ ∈ P and r ∈ [rmax], we compute the set
D(pj , pj′ , r) ∶= {fh ∈ Fcurr ∶ σcurr(fh) = pj , χ(fh) = j

′
, rh = r};

the suitability of χ means that X(pj , pj′ , r) ⊆ D(pj , pj′ , r). With

each family fh ∈ D(pj , pj′ , r), we associate the value u
j
′

h − u
j
h

which describes the increase in utility caused by moving ah from pj
to pj′ . We order the families in D(pj , pj′ , r) in a non-increasing or-
der of these values, and we pick the first x(pj , pj′ , r) families ac-
cording to this ordering; denote the obtained set D̃(pj , pj′ , r). We
can now define σ

′
i+1 as follows for each fh ∈ Fcurr:

σ
′
next(fh) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
pχ(fh) if fh ∈ Fnext \ Fcurr;

pj′ if ∃j, r ∶ fh ∈ D̃(pj , pj′ , r);
σcurr(fh) otherwise.

Observe that the total requirement of all families assigned to some
place pj ∈ P is the same in σ

′
next as in σnext, due to the definition σ

′
next

and the correctness of our guesses. Therefore, σ′
next is feasible. Fur-

thermore,

∑
fh∈Fcurr,

pj=σ′
next(fh)

uh[j] = util(pj , σcurr) + ∑
∃j,j′,r∶

fh∈D̃(pj ,pj′ ,r)

(uh[j ′] − uh[j])

≥ util(pj , σcurr) + ∑
∃j,j′,r∶

fh∈X(pj ,pj′ ,r)

(uh[j ′] − uh[j]) = ∑
fh∈Fcurr,

pj=σnext(fh)
uh[j]

where the inequality follows from our choice of the sets D̃(pj , pj′ , r)
and the facts ∣D̃(pj , pj′ , r)∣ = ∣X(pj , pj′ , r)∣ and X(pj , pj′ , r) ⊆
D(pj , pj′ , r), which in turn follow from our assumptions that our
guesses are correct and that the coloring χ is suitable. Since σ

′
next

coincides with σnext on Fnext \Fcurr, the above inequality implies that
σ
′
next is a maximum-utility feasible assignment for Inext, proving the

correctness of our algorithm.
The presented algorithm can be derandomized using standard

techniques, based on (n,m ⋅ ρ⋆m + 1)-perfect families of perfect
hash functions [4]. Since both the number of possible guesses and
the number of families that we have to color correctly are bounded
by a function of m + rmax, the modification procedure applied in
the first or second phases of the algorithm runs in FPT time when
parameterized by m + rmax. As we have to carry out this procedure
n+ cΣ times and we can assume w.l.o.g. that cΣ ≤ n ⋅ rmax, the total
running time is FPT w.r.t. m + rmax.

We close this section by showing that if the desired total utility u
∗

is small and there are no lower quotas, then MAXUTIL-RR for t = 1
can be solved efficiently. Recall that with lower quotas, even the case
u
∗ = 0 is NP-hard by Proposition 1. The algorithm of Theorem 4,

presented in the full version [13], starts with a greedily computed as-
signment, and then deletes irrelevant families to obtain an equivalent
instance with at most (u∗)3 families that can be solved efficiently.

Theorem 4 (⋆). MAXUTIL- and PARETO-RR for t = 1 are FPT
w.r.t. u∗, the desired utility, if there are no lower quotas.

4 Multiple services

Let us now consider the model when there are several services, i.e.,
t > 1. We start with a strong intractability result for FEASIBLE-RR.
Then we focus in Pareto-optimality, and propose several algorithms
that solve PARETO-RR but not MAXUTIL-RR, contrasted by tight
hardness results. We close by investigating MAXUTIL-RR.
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Feasibility. When the number of services can be unbounded, a sim-
ple reduction from INDEPENDENT SET by Gurski et al. [18, Theo-
rem 23] shows that MAXUTIL-RR is NP-hard even if m = 1, there
are no lower quotas and the utilities are equal. With a slight modi-
fication of their reduction, we obtain Proposition 2 which shows the
NP-hardness of FEASIBLE-RR in a very restricted setting.

Proposition 2 (⋆). The following problems are NP-hard even if
cmax = rmax = 1 and m = 1∶
• FEASIBLE-RR;
• PARETO-RR with equal preferences;
• MAXUTIL-RR with equal utilities.

Pareto-optimality. The reduction from INDEPENDENT SET used
by Gurski et al. [18] and also in Proposition 2 can be adapted to show
the NP-hardness of PARETO-RR in the case when there are no lower
quotas, m = 2, and we allow cmax to be unbounded; see Propo-
sition 3. Notice that in instances without lower quotas, a feasible,
acceptable and Pareto-optimal assignment always exists. Hence, our
hardness results for PARETO-RR rely on the following fact.

Observation 3 (⋆). We can decide whether an instance I of
PARETO-RR with dichotomous preferences admits a feasible, ac-
ceptable, and complete assignment by solving PARETO-RR on I .

Proposition 3 (⋆). PARETO-RR and MAXUTIL-RR are NP-hard
even if m = 2, rmax = 1, there are no lower quotas, and families
have equal preferences or utilities.

In the reduction proving Proposition 3, the value cmax is un-
bounded. Next, we show a reduction from 3-COLORING proving that
even the case when cmax = 1 is NP-hard if there are at least 3 places.

Theorem 5 (⋆). PARETO-RR and MAXUTIL-RR are NP-hard even
when m = 3, cmax = 1, there are no lower quotas, and families have
equal preferences or utilities, respectively.

Contrasting the intractability result of Proposition 3 for m = 2, we
show that a simple, greedy algorithm solves PARETO-RR for m = 1
in polynomial time assuming that there are no lower quotas.

Proposition 4 (⋆). PARETO-RR for m = 1 is polynomial-time solv-
able if there are no lower quotas.

Our next results shows that PARETO-RR can be solved efficiently
if there are only a few families whose preferences contain ties, as-
suming that there are no lower quotas. Recall that in the presence of
lower quotas, PARETO-RR is NP-hard even if t = 1 and n∼ = 0,
i.e., all preferences are strict, as shown in Proposition 1. The algo-
rithm of Proposition 5 first applies serial dictatorship among families
whose preferences do not contain ties, and then tries all possible as-
signments for the remaining families.

Proposition 5 (⋆). PARETO-RR is FPT w.r.t. the number of families
with ties n∼, if there are no lower quotas.

Maximizing utility. Let us start with a simple fixed-parameter
tractable algorithm for MAXUTIL-RR w.r.t n, the number of fam-
ilies. Proposition 6 presents an FPT algorithm for parameter n based
on the following approach: We first guess the partitioning F of fam-
ilies arising from a maximum-weight feasible assignment, and then
we map the partitions of F to the places by computing a maximum-
weight matching in an auxiliary bipartite graph.

Proposition 6 (⋆). FEASIBLE-, PARETO-, and MAXUTIL-RR are
FPT w.r.t. n.

Let us now present a generalization of Theorem 1 for MAXUTIL-
RR restricted to equal preferences. The algorithm for Theorem 6 is
based upon an N -fold IP formulation for this problem. By Observa-
tion 1, the obtained algorithm also implies tractability for PARETO-
RR for equal utilities.

Theorem 6 (⋆). FEASIBLE-RR, PARETO-RR for equal preferences,
and MAXUTIL-RR for equal utilities, are FPT w.r.t. t + rmax.

Our next algorithm is applicable in a more general case than The-
orem 6 (which works only when preferences or utilities are equal)
at the cost of setting m + t + rmax as the parameter. Theorem 6 is
based on an ILP formulation that solves PARETO-RR for arbitrary
preferences as well as MAXUTIL-RR for a broad range of utilities.

Theorem 7 (⋆). The following problems are FPT w.r.t. parameter
m + t + rmax∶
• PARETO-RR,
• MAXUTIL-RR on instances where the number of different utility

values is at most g(m+t+rmax) for some computable function g.

Proof sketch. The main idea is that there is no need to distinguish
between families that have the same utilities and requirements. Since
the number of possible requirement vectors and the number of pos-
sible utility vectors are both bounded by a function of the parameter,
the number of family types will also be bounded. This allows us to
define a variable for each place and family type describing the num-
ber of families of a given type assigned to a given place. The resulting
ILP contains a bounded number of variables and constraints, and is
therefore solvable by standard techniques in FPT time [25].

Taking an even stronger parameterization than Theorem 7, namely
m + t + cmax, yields fixed-parameter tractability: in Proposition 7
we present an algorithm running in O((cmax)mt

nm) time. This al-
gorithm is a straightforward adaptation of the textbook dynamic pro-
gramming method for KNAPSACK. The same approach was also used
by Gurski et al. [18, Proposition 34] to solve a simpler variant of
MAXUTIL-RR without lower quotas and with a single service.

Proposition 7 (⋆). FEASIBLE-, PARETO-RR, and MAXUTIL-RR
are in XP w.r.t. m + t and are FPT w.r.t. m + t + cmax.

We close this section by mentioning that a simple XP algorithm ex-
ists for the case when the parameter is the desired total utility u

∗, and
there are no lower quotas (cf. Proposition 1 stating the intractability
of the case u

∗ = 0 when lower quotas are allowed).

Proposition 8 (⋆). FEASIBLE-, PARETO- and MAXUTIL-RR are in
XP w.r.t. the desired utility u

∗ if there are no lower quotas.

5 Conclusion

We provided a comprehensive parameterized complexity analysis for
three variants of REFUGEE RESETTLEMENT, which focus on ensur-
ing feasibility, maximizing utility, and achieving Pareto optimality.
There remain some interesting parameter combinations for which the
complexity of these problems is open, e.g., is MAXUTIL-RR FPT
w.r.t. parameter m + t + rmax for arbitrary utilities? Another excit-
ing line of future research is to explore the possibilities of tailoring
the proposed algorithms to efficiently solve practical instances, and
determining which parameterizations are the most relevant in differ-
ent real-world applications. We believe that our ILP algorithms could
perform substantially faster then their theoretical bounds, as the cur-
rent day ILP solvers are efficient. However, it could also be that a
straightforward ILP formulation with a variable for each family and
each place outperforms our specialized formulations.
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