
Quantifier Shifting for Quantified Boolean
Formulas Revisited

Simone Heisinger1(B) , Maximilian Heisinger1 , Adrian Rebola-Pardo1,2 ,
and Martina Seidl1

1 Institute for Symbolic Artificial Intelligence, JKU Linz, Linz, Austria
{simone.heisinger,maximilian.heisinger,adrian.rebola_pardo,

martina.seidl}@jku.at
2 Institute for Logic and Computation, TU Vienna, Vienna, Austria

Abstract. Modern solvers for quantified Boolean formulas (QBFs) pro-
cess formulas in prenex form, which divides each QBF into two parts: the
quantifier prefix and the propositional matrix. While this representation
does not cover the full language of QBF, every non-prenex formula can
be transformed to an equivalent formula in prenex form. This transfor-
mation offers several degrees of freedom and blurs structural information
that might be useful for the solvers. In a case study conducted 20 years
back, it has been shown that the applied transformation strategy heavily
impacts solving time. We revisit this work and investigate how sensitive
recent QBF solvers perform w.r.t. various prenexing strategies.

Keywords: Quantified Boolean Formulas · Prenexing · Normal Form
Transformation

1 Introduction

Quantified Boolean formulas (QBFs), the extension of propositional formulas
with quantifiers over the Boolean variables, have many applications in formal
verification, synthesis, and artificial intelligence [28]. Over the last 25 years,
many efficient QBF solvers have been developed [2], with clear tendency towards
QBFs in prenex conjunctive normal form (PCNF). A QBF in PCNF has the form
Q1x1 . . . Qnxn.φ where Qi ∈ {∀,∃} and φ is a propositional formula in conjunc-
tive normal form. In general, encodings do not result in formulas of this structure,
because of recursive definitions in the encoding or from optimizations that try
to minimize the scope of variables. Origins for a non-CNF structure can be for
example the use of equivalences or xors in the encoding. Therefore two transfor-
mations are required: (1) prenexing which shifts the quantifiers outside of the
formula, and (2) transformation of the quantifier-free formula to CNF. The lat-
ter is efficiently achieved by applying the QBF-variant of the well known Tseitin
transformation [30] or the optimized Plaisted-Greenbaum transformation [24].
In this work, we focus on the prenexing.

*This work was supported by the LIT AI Lab funded by the state of Upper Austria
and by the Vienna Science and Technology Fund (WWTF) [10.47379/VRG11005].
c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14739, pp. 325–343, 2024.
https://doi.org/10.1007/978-3-031-63498-7_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63498-7_20&domain=pdf
http://orcid.org/0009-0000-7630-2791
http://orcid.org/0000-0001-7297-6000
http://orcid.org/0000-0001-9234-4377
http://orcid.org/0000-0002-3267-4494
https://doi.org/10.1007/978-3-031-63498-7_20

326 S. Heisinger et al.

Without loss of generality, formulas can be assumed to be in negation normal
form (i.e. negation symbols only occur in front of variables) and cleansed (i.e.
no variable occurs both bound and free, and every variable is quantified at most
once). Under these conditions, prenexing is achieved by the following two rules:

(Qx.ϕ) ◦ ϕ′ ⇔ Qx.(ϕ ◦ ϕ′) ϕ ◦ (Qx.ϕ′) ⇔ Qx.(ϕ ◦ ϕ′)

with Q ∈ {∀,∃} and ◦ ∈ {∧,∨}. The formula structure imposes an ordering of
the quantifiers based on the subformula relation. Quantifiers from independent
parts of a formula can be freely ordered. For example, the formula ∀x.(∃y.(y ∨
x)) ∧ (∀z.(z ∨ ¬x)) has prenex forms ∀x.∃y.∀z.φ or ∀x.∀z.∃y.φ where φ = (y ∨
x) ∧ (z ∨ ¬x). Hence, a prenex form is not uniquely determined.

Egly et al. [6] suggested four different prenexing strategies that minimize
the number of quantifier alternations in the prefix. Empirically, they showed
that the selected prenexing strategy impacts solving performance. In this work,
we revisit those prenexing strategies and give a concise formalization, which the
original work lacked. We show that the original four strategies disambiguate into
six unique prenexing strategies when enforcing a minimal number of quantifier
alternations, and we present a tool that implements those strategies. To evaluate
the impact of prenexing on modern solvers we reimplemented the generator for
encoding nested counterfactuals and performed extensive experiments with these
formulas and formulas from the QBFEval’08 in which a non-prenex track was
organized.

2 Preliminaries

The set of quantified Boolean formulas QF (X) over variables X is defined as
follows: (1) 	,⊥, x,¬x,¬	,¬⊥ ∈ QF (X) if x ∈ X, (2) ϕ ∨ ϕ′, ϕ ∧ ϕ′ ∈ QF (X)
if ϕ,ϕ′ ∈ QF (X), (3) if ϕ ∈ QF (X), then ∀x.ϕ,∃x.ϕ ∈ QF (X) with x ∈ X.1 In
QBF Qx.ϕ with Q ∈ {∀,∃}, the subformula ϕ is called the scope of variable x ∈
X and x is said to be bound by quantifier Q. If variable x occurs in QBF ϕ, but ϕ
does neither contain ∃x nor ∀x then x is free in ϕ. The set of all free variables of a
QBF ϕ is denoted by free(ϕ). A QBF without free variables is called closed. In the
following, we assume that each variable is in the scope of at most one quantifier
and that each variable occurs either free or bound, but not both in a formula.
We call such formulas cleansed. The semantics of a QBF ϕ is defined by the
interpretation function [.]σ : QF (X) → B where B = {1,0} and σ : free(ϕ) → B

is an assignment to the free variables of ϕ. Then []σ = 1, [⊥]σ = 0, for any
x ∈ X, [x]σ = σ(x) and [¬v]σ = 1 − [v]σ for v ∈ X ∪ {	,⊥}. Furthermore,
[ϕ1 ∧ ϕ2]σ = min{[ϕ1]σ, [ϕ2]σ}, and [ϕ1 ∨ ϕ2]σ = max{[ϕ1]σ, [ϕ2]σ}. Finally,
[∃x.ϕ]σ = max{ϕ[x|], ϕ[x|⊥]} and [∀x.ϕ]σ = min{ϕ[x|], ϕ[x|⊥]} where ϕ[x|t]
denotes the QBF obtained by substituting a variable x by a truth constant
t ∈ {	,⊥} in ϕ. Two QBFs ϕ,ϕ′ ∈ QF (X) are equivalent if [ϕ]σ = [ϕ′]σ for any
assignment σ.
1 For simplicity, we assume negations only in front of variables and truth constants.

Quantifier Shifting for Quantified Boolean Formulas Revisited 327

Definition 1. The propositional skeleton ϕpsk of QBF ϕ ∈ QF (X) is defined
as follows:

ϕpsk =

⎧
⎪⎪⎨

⎪⎪⎩

x if ϕ = x, x ∈ X ∪ {	,⊥}
¬x if ϕ = ¬x, x ∈ X ∪ {	,⊥}
ϕ′

psk ◦ ϕ′′
psk if ϕ = ϕ′ ◦ ϕ′′, ◦ ∈ {∧,∨}

ϕ′
psk if ϕ = QV.ϕ′, Q ∈ {∀,∃}

We say that a QBF ϕ is of the form QV.ϕ′ for a set of variables V whenever
ϕ = Qx1.Qxn.ϕ′ for some enumeration x1, . . . , xn of V . A QBF ϕ ∈ QF (X)
is in prenex form if it is has the structure Π.φ where Π = Q1x1 . . .Qnxn is a
quantifier prefix with Qi ∈ {∀,∃}, xi ∈ X and xi = xj for i = j and φ is a
propositional formula. If φ is also in conjunctive normal form (CNF), then ϕ is
in prenex conjunctive normal form (PCNF). A propositional formula is in CNF
if it is a conjunction of clauses. A clause is a disjunction of literals and a literal
is a variable or a negated variable. Obviously, (Π.φ)psk = φ for a PCNF formula
Π.φ.

Proposition 1. Consider QBFs ϕ,ϕ′, a quantifier Q ∈ {∀,∃}, a connective ◦,
and variables x, y.

1. If ϕ ◦ (Qx.ϕ′) is cleansed, then Qx.(ϕ ◦ ϕ′) is cleansed, and both formulas are
equivalent.

2. If Qx.Qy.ϕ is cleansed, then Qy.Qx.ϕ is cleansed, and both formulas are equiv-
alent.

Forests, trees and partial orders. We will oftentimes regard trees and forests as
partially ordered sets. In particular, we define a forest as set T equipped with a
partial ordering ≤ such that for all elements x ∈ T , the subset {y ∈ T | y ≤ x}
is totally ordered. When T is finite, this definition appropriately models the
recursive concept of a forest: the elements of T are nodes, and x ≤ y if y is a
descendant of x. We say that x is covered by y whenever x ≤ y and there is no
z ∈ T with x < y < z. When regarding T as a forest, this means that x is the
parent of y. A forest T is a tree if, additionally, for any two elements x, y ∈ T
there is another element z ∈ T with z ≤ x and z ≤ y. For a finite T , this implies
that T has a least element, which corresponds to its root.

Given a forest T , we call a list x1, . . . , xn a path in T if for all 1 ≤ i < j ≤ n
we have xi, xj ∈ T and xi < xj . The height of a forest T is defined as

ht(T) = max{n ≥ 0 | there is a path x1, . . . , xn in T}.

For a node x ∈ T , we define its lower bounds as T x = {y ∈ T | y ≤ x} and its
upper bounds as Tx = {y ∈ T | y ≥ x}.

Parity-based functions. We will use a parity-based version of the floor and ceiling
functions. Intuitively, �n�k (resp. �n�k) rounds n down (resp. up) to the closest
integer with the same parity as k. Formally, for integers n, k ∈ Z we define:

�n�k = max{m ∈ Z | m ≤ n and m − k is even}
�n�k = min{z ∈ Z | z ≥ y and m − k is even}

328 S. Heisinger et al.

Direction-parametric operators. At several points our ordering-based definitions
will depend on a direction parameter † ∈ {↑, ↓}. Intuitively, ↑-labeled operators
use a reverse ordering, while ↓-labeled operators use an unmodified ordering. In
particular, we define the following operators:

≤↑ is ≥ ≤↓ is ≤ (and similarly for ≥†, <†, >†)

min↑ is max min↓ is min (and similarly for max†)

�. . . �↑
k is �. . . �k �. . . �↓

k is �. . . �k (and similarly for �. . . �†
k)

T ↑
x is T x T ↓

x is Tx (and similarly for T x
†)

3 Related Work

Already 20 years back it has empirically been shown that quantifier shifting has
a severe impact on the solving performance [6] of QBF solvers. In this work,
four different prenexing strategies were introduced that intuitively result in the
smallest number of possible quantifier alternations. The authors noted that the
presented strategies “leave room for different [prenexing] variants”. In this work,
we close this gap by providing a concise formalization of quantifier shifting.

The observation that the prenexing strategy impacts solving performance
motivated development of several non-prenex non-CNF solvers [7,8,15,29]. With
the rise of efficient preprocessing for PCNF formulas and a focus on applica-
tions with few quantifier alternations, however, solver development focused on
formulas in prenex form. To deal with the information loss induced by quan-
tifier shifting, solvers were introduced that employ dependency schemes [27]
to (re-)discover and exploit variable independencies [16,22], i.e., those solvers
recover information on quantifier dependencies that is hidden in the prefix.
Reeves et al. presented an approach to move Tseitin variables from the inner-
most quantifier block to the outer-most possible position in the quantifier pre-
fix [26]. The exact position is determined by the variables occuring in the formula
defined by the Tseitin variable. With this reordering, they observe a consider-
able speed-up in solver performance. Lonsing and Egly evaluated the impact of
the number of quantifier alternations on recent QBF solvers [18]. In their exper-
iments, they established a correlation between different solving paradigms like
expansion or QCDCL (see [2] for a detailed discussion of such proof systems) and
the number of quantifier alternations. Also, proof-theoretical investigations [1]
identify the number of quantifier alternations as source of hardness for practical
solving. However, to the best of our knowledge, there is no recent study that
investigates the impact of quantifier shifting on the solving behavior of state-of-
the-art solvers for formulas in prenex normal form.

Nowadays there is also much interest in dependency quantified Boolean for-
mulas (DQBF) which allow for an explicit specification of quantifier dependen-
cies. The decision problem of these formulas is NEXPTIME-complete [23], in
contrast to the PSPACE-completeness of QBFs.

Quantifier Shifting for Quantified Boolean Formulas Revisited 329

4 Quantifier Shifting

In this work we aim to transform arbitrary QBF formulas ϕ (which are not in
general prenex or in CNF) into equivalent prenex QBF formulas of the form
Q1x1. . . .Qnxn.ϕpsk. The formula ϕpsk is not necessarily in CNF, although this
can be easily achieved through the well-known Tseitin procedure.

The method we propose can be roughly summarized as follows. First, a quan-
tifier tree reflecting the scope hierarchy of quantifiers in ϕ is constructed. Each
node in this quantifier tree will then be assigned a rank with some restrictions
to guarantee soundness; we call this assignment a linearization. Finally, the for-
mula Q1x1. . . .Qnxn.ϕpsk is constructed by enumerating the bound variables
x1, . . . , xn by rank; thanks to the restrictions on linearizations, this formula will
be equivalent to ϕ.

Example 1. Throughout our work we will use the following QBF η as a running
example:

∃x1.x1 ∧
((

∀y1.
(∃z1. (¬y1 ∨ z1) ∧

∀u1.∃v1.(y1 ∨ ¬u1 ∨ v1) ∧ (¬y1 ∨ u1 ∨ ¬v1)
) ∧

(∀z2.(∃u2.¬z2 ∨ u2) ∧ (∀u3.x1 ∨ z2 ∨ u3)
)
)

∨
(

∃y4.(y4 ∧ ∀z4.∃u4.z4 ∧ u4) ∨ (¬y4 ∧ ∃z5.∀u5.z5 ∧ u5)
))

Its propositional skeleton ηpsk is then given by:

x1 ∧
((

(¬y1 ∨ z1) ∧ (y1 ∨ ¬u1 ∨ v1) ∧ (y1 ∨ u1 ∨ ¬v1) ∧
(¬z2 ∨ u2) ∧ (x1 ∨ z2 ∨ u3)

) ∨
(y4 ∧ z4 ∧ u4) ∨ (¬y4 ∧ z5 ∧ u5)

)

Consider the following two quantifier shifts for η:

η′ = ∃x1.∃y4.∃z5.∀y1.∀z2.∀u3.∀z4.∀u5.∃z1.∃u2.∃u4.∀u1.∃v1.ηpsk

η′′ = ∃x1.∃y4.∃z5.∃v1.∀y1.∀z2.∀u3.∀z4.∀u5.∃z1.∃u2.∃u4.∀u1.ηpsk

While η′ is equivalent to η, the QBF formula η′′ is not. The intuitive reason
is that in η′′ the quantifier ∃v1 has been pushed across quantifier alternation
boundaries. This is exactly the situation our formalization will prevent.

Our formalization associates to each QBF a forest obtained by removing from
its syntax tree all non-quantifier nodes. The remaining nodes are thus uniquely
determined by a bound variable and a quantifier, and this forest contains all
the information needed for quantifer shifting. Hence, we first define the abstract

330 S. Heisinger et al.

concept of quantifier forests, and then we will show how to construct a quantifier
forest from a QBF as above.

A quantifier forest is a triple (T,≤, q) where (T,≤) is a finite forest regarded
as a partially ordered set (see Sect. 2) and q : T → {∀,∃}. We call it a quantifier
tree or quantree whenever (T,≤) is a tree. If (T,≤, q) is a nonempty quantree,
we also define q�(x) = 1 if q(x) = q(min(T)) and q�(x) = 0 otherwise. Given a
QBF formula ϕ, its associated quantifier forest is a triple (Tϕ,≤ϕ, qϕ), where Tϕ

is the set of bound variables in ϕ, and ≤ϕ and qϕ are defined recursively:

– If ϕ is either 	, ⊥ or x ∈ X, then ≤ϕ = ∅ and qϕ = ∅.
– If ϕ = ¬ϕ0 where ϕ0 ∈ X ∪ {	,⊥}, then ≤ϕ = ∅ and qϕ = ∅.
– If ϕ = ϕ1 ◦ ϕ2 with ◦ ∈ {∧,∨}, then ≤ϕ=≤ϕ1 ∪ ≤ϕ2 and qϕ = qϕ1 ∪ qϕ2 .
– If ϕ = Qx.ϕ0 for a quantifier Q, then ≤ϕ=≤ϕ0 ∪{(x, y) | y ∈ Tϕ} and

qϕ = qϕ0 ∪ {(x,Q)}.

Proposition 2. Let (Tϕ,≤ϕ, qϕ) be a quantifier forest of QBF ϕ. If ϕ = Qx.ϕ0

for a quantifier Q, then (Tϕ,≤ϕ, qϕ) is a quantree.

Example 2. Figure 1 shows the quantree associated to the QBF η from Exam-
ple 1. In general, we can only guarantee that the quantifier forest associated to
a QBF is a tree when the QBF is of the form Qx.ϕ. For example, the quantifier
forest associated with (∀x.x)∧ (∃y.y) is a forest with two incomparable elements
x and y.

4.1 Linearizations over Quantrees

We now formalize the main object of this paper, namely the different ways
the quantifiers in a formula can be rearranged into a quantifier prefix to an
equivalent prenex formula. Given a QBF of the form Qx.ϕ for a quantifier Q,
we consider its associated quantree T . We aim to construct an equivalent prenex
QBF Q1Vi. . . .Q

NVN .ϕpsk where Qi = Qi+1 for 1 ≤ i < N . To do so, each node
in T (i.e. each bound variable in Qx.ϕ) must be mapped to a single quantifier
block QiVi. We call this i its rank. However, as shown in Example 1, assigning
arbitrary ranks is unsound (i.e. the obtained prenex QBF is not equivalent to
Qx.ϕ). We show how bound variables can be ranked while preserving soundness.

Let us consider an arbitrary quantree T . A map f : T → {1, . . . , N} for some
N ≥ 0 is called a linearization if:

1. f(x) ≤ f(y) for all quantree nodes x, y ∈ T with x ≤ y.
2. For all quantree nodes x ∈ T , f(x) is odd if and only if q�(x) = 1.

Consider now a QBF of the form Qy.ϕ where Q is a quantifier and y is a variable,
and its associated quantree (T,≤, q). In this case, since T is the set of bound
variables in Qy.ϕ, a linearization f : T → {1, . . . , N} maps each bound variable
x ∈ T to an integer f(x) we call its rank. A QBF ψ is called a prenexation of
Qy.ϕ via f if ψ is of the form Q1V1. . . .Q

NVN .ϕpsk where Vi = {x ∈ T | f(x) = i}
and Qi = Q (resp. Q) if i is odd (resp. even) for 1 ≤ i ≤ N .

Quantifier Shifting for Quantified Boolean Formulas Revisited 331

Fig. 1. Above, the quantree associated to the formula η from Example 1. Below, opti-
mal linearizations for this quantree for each strategy. In each column, the variables
mapped to each rank are shown; the quantifier of each block appears in the header.
Note that the optimal linearizations for strategies Q†↑ and Q†↓ assign the same rank
to Q-quantified variables; this is a consequence of Lemma 2.

Theorem 1. Let T be the quantree associated to a QBF of the form Qy.ϕ.
Consider a prenexation ψ of Qy.ϕ via some linearization f : T → {1, . . . , N}.
Then Qy.ϕ is equivalent to ψ.

To guarantee this form Qy.ϕ for an arbitrary QBF ϕ, we can simply introduce
a fresh variable y that does not occur in ϕ. Obviously, ϕ is equivalent to Qy.ϕ.

Example 3. Figure 1 shows six linearizations for the quantree associated to the
QBF η from Example 1 and Example 2. In that example, the quantifier shift η′

is the prenexation of η via the linearization f1. Note that the mapping f that
would produce η′′ is not a linearization, since that would violate Theorem 1. In
particular, u1 ≤ v1 but f(v1) < f(u1).

4.2 Alternation Height of Quantrees

So far we have not shown that linearizations even exist. Given the theoretical
and empirical impact of the number of quantifier alternations on QBF solving,
we are not just interested in their existence, but rather on linearizations that
minimize the maximum rank N . We will now show how to compute the minimal
value of N for which linearizations exist; in fact, this value will be extremely
useful to extend the ideas from [6] to arbitrary QBFs in Sect. 5.2.

332 S. Heisinger et al.

Consider an arbitrary quantree T , and a path x1, . . . , xn in T . We call this
path alternating whenever q(xi) = q(xi+1) for 1 ≤ i < n. Then we can define
the alternation height of T as

aht(T) = max{n ≥ 0 | there is an alternating path x1, . . . , xn in T}.

Intuitively, the alternation height of T is the height of the tree that results from
“clumping” together all adjacent nodes with the same quantifier. It then becomes
apparent that any linearization f over T must have N ≥ aht(T), since for any
alternating path x1, . . . , xn we have f(x1) < · · · < f(xn). The following result
shows that this lower bound can indeed be realized:

Theorem 2. Let T be a quantree. Then, a linearization f : T → {1, . . . , aht(T)}
exists. Furthermore, there exists no linearization g : T → {1, . . . , N} such that
0 ≤ N < aht(T).

Observe that the number of quantifier alternations in a prenexation via a
linearization grows with the value N . In the following sections, we will restrict
our scope to linearizations that minimize this value, i.e. linearizations in the set

Lin(T) = {f : T → {1, . . . , N} | f is a linearization and N = aht(T)}.

5 Linearization Strategies

We now follow up on the ideas from [6] and formalize them. In particular, we
aim to obtain a formal definition of when does a linearization follow a given
strategy, to ascertain whether strategies determine a unique linearization for
each quantree, and to find simple algorithms to compute this linearization.

5.1 Strategies as Preferences over Linearizations

Here we take a non-constructive approach. For each prenexing strategy, we define
a preference relation between the linearizations in Lin(T); linearizations that
follow the strategy “better” than others are preferred. As we will show, this
induces a strategy-based partial order between linearizations. The desired output
of a strategy must then be a maximal element w.r.t. this partial order.

The strategies from [6] are based on the idea of pushing quantifiers of a given
polarity as high or as low as possible in the quantifier hierarchy. This lends itself
to a natural definition of preference.

Consider an arbitrary quantree T . Given a direction † ∈ {↑, ↓} and a quanti-
fier Q, we define the semi-preference relation �Q† over Lin(T) given by f �Q† g
iff f(x) ≤† g(x) for all x ∈ T with q(x) = Q. In other words, g is preferred over
f whenever g assigns ranks to Q-nodes further in the direction † than f does.

Example 4. Consider the linearizations f1, f2 and f6 from Fig. 1. All universal
variables are assigned lower ranks by both f1 and f2 than by f6, so f6 �∀↓ f1
and f6 �∀↓ f2 hold. Note also that f1 and f2 assign the same ranks to universal
variables, so both f1 �∀↓ f2 and f2 �∀↓ f1 hold. Note that this does not imply
f1 = f2.

Quantifier Shifting for Quantified Boolean Formulas Revisited 333

Example 4 shows that the antisymmetric property of partial orders does
not hold for �Q†. This is intuitive: two linearizations might be just as good as
each other regarding Q-nodes, while wildly differing for other nodes. Hence, for
strategies to uniquely determine linearizations we need to provide preferences
for both quantifiers. While this was proposed by [6], it was also noted there that
uniqueness is not attained.

Example 5. The linearizations f2 and f3 from Fig. 1 are both good candidates for
linearizations for the strategy ∃↓∀↑ from [6]: both assign high ranks to existential
variables and low ranks to universal variables. However, there is no apparent
criterion why f2 should or should not be preferred to f3 under that strategy.

We solve this problem by giving one quantifier priority over the other. Our
strategies are of the form Q†‡, where Q is a quantifier and †, ‡ are directions.
A good linearization under this strategy pushes quantifiers Q in the † direction,
and quantifiers Q in the ‡ direction; when in conflict, the former should prevail.

To formalize this idea, we liberally borrow from the somewhat similar notion
of lexicographic orderings. Let us define f ≈Q g whenever f(x) = g(x) for all
x ∈ T with q(x) = Q. In other words, f ≈Q g holds whenever both f �Q† g and
g �Q† f hold, regardless of the choice of direction †. We define the preference
relation �Q†‡ over Lin(T) given by f �Q†‡ g iff f �Q† g holds, and whenever
f ≈Q g holds then f �Q‡ g holds as well.

Proposition 3. �Q†‡ defines a partial order on Lin(T).

It is easy to check that �∀†† and �∃†† are the same preference relation for † ∈
{↑, ↓}. Hence, our approach defines 6 unique strategies, while [6] only proposed
4 strategies. On the one hand, the ∃†∀† strategy from [6] corresponds to our ∃††
(or, equivalently, ∀††) strategy. On the other hand, our strategies ∃†‡ and ∀‡†
with † = ‡ are both covered by the ∃†∀‡ strategy from [6], which is not uniquely
determined.

Example 6. Although we cannot yet convince the reader of this, the lineariza-
tions given in Fig. 1 are the maximum element of Lin(T) for each of the six
(unique) preference orderings �Q†‡; the corresponding strategy is shown in the
rightmost column. For now, we can foreshadow that strategies Q†↑ and Q†↓
assign the same ranks to Q-nodes. As shown later in Lemma 1, this holds in
general.

5.2 Optimal Linearizations over a Strategy

Proposition 3 suggests this is a good direction to formalize the idea of strategies:
since Lin(T) is finite, there exist optimal linearizations w.r.t. the preference
ordering �Q†‡. We call these linearizations Q†‡-optimal ; linearizing a quantree
T through the strategy Q†‡ then means computing a Q†‡-optimal linearization
in Lin(T).

334 S. Heisinger et al.

Some hurdles remain unsolved, though. For one, we have not determined if
Q†‡-optimal linearizations are unique (i.e. if maximal elements w.r.t. �Q†‡ are
maxima as well). This is of interest because to empirically test the performance
effect of quantifier shifting strategies, the outcome of applying a strategy must be
reproducible at worst, and uniquely determined by definition at best. A second
issue is a consequence of our non-constructive approach: we are yet to provide a
procedure that computes a Q†‡-optimal linearization for a given quantree.

The rest of this section is devoted to computing a closed-form expression
for Q†‡-optimal linearizations. Since this expression is deterministic and com-
putable, this solves both aforementioned issues.

Overview. As we mentioned above, �Q†‡ is somewhat similar to a lexicographic
ordering in two components where the first component is ordered by �Q† and
the second component is ordered by �Q‡. We exploit this intuition to construct
Q†‡-optimal linearizations: we will first optimize the first component (in our
case, the ranks of Q-nodes), and then optimize the second component (the ranks
of Q-nodes) while keeping the first component fixed.

To optimize the first component, we find a linearization Γ†, defined below
in (1), that is optimal for �Q†. This is more precisely expressed in Lemma 1: Γ†
pushes Q-nodes further in direction † than any other linearization.

Interestingly, Γ† does not depend on Q: Γ† actually optimizes all nodes in
the † direction. The second part of our method optimizes the ranks assigned
to Q-nodes in the ‡ direction while keeping Q-nodes constant. For a general
linearization f , this procedure results in a new linearization [f]Q‡ defined below
in (2). Lemma 2 shows that [f]Q‡ is optimal for �Q†‡ among the linearizations
that assign the same ranks as f to Q-nodes. These two results are combined in
Theorem 3: the unique Q†‡-maximal linearization is [Γ†]

Q‡.

Theoretical Results. Let us consider a quantree (T,≤, q) and a strategy Q†‡. We
define the mapping Γ† : T → {1, . . . , aht(T)} given by

Γ†(x) =
⌊|max†{1, . . . , aht(T)} − aht(T †

x)| + 1
⌋†

q�(x)
. (1)

Furthermore, we define the mapping [f]Q‡ : T → {1, . . . , aht(T)} for f ∈ Lin(T)
given by

[f]Q‡(x) =
⌊
min‡{f(y) | y ∈ T ‡

x and q(y) = Q}⌋‡
q�(x)

. (2)

In (2), min‡ is taken over a subset of {1, . . . , aht(T)}; we follow the convention
that min‡(∅) = max‡{1, . . . , aht(T)}.

Lemma 1. Γ† ∈ Lin(T). Furthermore, for any g ∈ Lin(T), we have g �Q† Γ†.

Lemma 2. [f]Q‡ ∈ Lin(T) for all f ∈ Lin(T). Furthermore, [f]Q‡ ≈Q f , and
for any g ∈ Lin(T) with g ≈Q f , we have g �Q†‡ f .

Theorem 3. Let f ∈ Lin(T) be a Q†‡-optimal linearization. Then, f = [Γ†]
Q‡.

In particular, [Γ†]
Q‡ is the maximum element in (Lin(T),�Q†‡).

Quantifier Shifting for Quantified Boolean Formulas Revisited 335

Example 7. Let us check that [Γ↓]
∃↑ is indeed f3 for the quantree in Fig. 1 for a

few values. First note that [Γ↓]
∃↑ only depends on the values of Γ↓ for existential

nodes, so we only need to compute these. In this case, max†{1, . . . , aht(T)} =
aht(T) = 5, q�(x) = 1, and aht(T ↓

x) = aht(Tx) is simply the maximum number
of quantifier alternations below x. Γ↓ respects the tree ordering, so we obtain

[Γ↓]
∃↑(z1) = Γ↓(z1) = �|5 − aht(Tz1)| + 1�1 = �4�1 = 3 = f3(z1).

Furthermore, we can compute [Γ↓]
∃↑(u1) by checking only Γ↓(z1), since z1 real-

izes the min↑ operator in (2). Then,

[Γ↓]
∃↑(u1) = �Γ↓(z1)�q�(u1)

= �3�0 = 4 = f3(u1).

Example 7 suggests that [f]Q‡ can be computed recursively. Indeed, the rank
of a node can be computed based on the ranks of its children or parent.

Corollary 1. Let x ∈ T such that q(x) = Q. Then,

[f]Q‡(x) =
⌊
min‡{[f]Q‡(y) | x is covered by y ∈ T w.r.t. ≤‡}.

⌋‡

q�(x)

6 Implementation and Evaluation

We implemented the optimal linearization [Γ†]
Q‡ for each strategy Q†‡ described

in Sect. 5. Our implementation uses the Booleguru framework [10], designed for
efficiently working with propositional formulas and QBFs. Booleguru provides
a convenient parsing and serialization infrastructure for widely used formats,
as well as helper functions to write formula transformations. Our extension is
licensed under the MIT license and publicly available2.

Our implementation computes a quantifier shift on an input QBF ϕ based on
a strategy Q†‡ by traversing twice the abstract syntax tree of the parsed QBF ϕ
in a depth-first fashion. In the first pass, the propositional skeleton ϕpsk and the
quantree T are extracted. Furthermore, the values aht(T x) and aht(Tx), which
we call height and depth of x, are computed for each node x ∈ T .

The second pass is applied only to the quantree. For each node x ∈ T , we
compute its rank [Γ†]

Q‡(x). For Q-nodes, this rank is given by Γ†(x), which is
trivial to compute from the height and depth of x; for Q-nodes, Corollary 1 allows
a recursive computation. Based on their rank, quantifier nodes in the quantree
are collected in a quantifier prefix which is appended to ϕpsk.

To apply a linearization strategy to an arbitrary formula, Booleguru needs
to be called with the options :linearize-quants-{E,A}{up,down}-{up,down}
using the quantifier E (∃) or A (∀) and the two directions up (↑) and down (↓).
Overall, there are eight different combinations that we evaluate in the follow-
ing. However, from the discussion above, it becomes obvious that only six of
2 https://github.com/maximaximal/booleguru.

https://github.com/maximaximal/booleguru

336 S. Heisinger et al.

those eight strategies are different. In the implementation, all quantifiers are
first extracted from an expression and processed in a separate tree. Each node
contains the quantifier type, the quantified variables, and dependent quantifier
nodes.

After computing the linearization, the extracted quantifiers are inserted
piecewise as new expressions that wrap the originally transformed expression.
This ensures the ordering of variables within the quantifier blocks stays the same.
The fully quantified expression is then returned from the transformer and can
either be printed using one of Booleguru’s serializers, or processed further.

6.1 Benchmarks

As most solvers only process formulas in prenex (conjunctive) normal form,
hardly any non-prenex benchmarks are currently available. To test our imple-
mentation, we considered the benchmark set from the QBFEval 2008 and we
reimplemented a generator for nested counterfactuals as described below. All
used formulas and corresponding experimental logs are available at [11].

Nested Counterfactuals. We developed a novel generator for nested counterfactu-
als (NCFs) based on a Lua script, which is integrated into Booleguru. The full
encoding is described in [6]. To generate NCFs, five arguments must be provided:
numbers of formulas in the background theory, numbers of variables, clauses per
formula, variables per clause, nesting depth. Optionally, a sixth argument to fix
the seed value for random choices. A counterfactual φ > ψ is true over a back-
ground theory T iff the minimal change of T to incorporate φ entails ψ. In a
nested counterfactual, also φ or ψ are allowed to be (nested) counterfactuals.
For details see [6]. We chose the range of arguments based on the description
mentioned in Egly et al. [6]. We assume that the background theory T always
consists of 5 randomly generated formulas. Each of these formulas consists of 2 to
10 clauses where each clause is a disjunction of 3 variables. The clauses contain
randomly chosen atoms from a set of 5 variables. These atoms have a 50 percent
chance of being negated. No clause may contain the same literal more than once
and the clauses are non-tautological. The nesting depth of the counterfactuals
ranges from 2 to 6. All possible combinations of these selected parameters result
in 45 different classes. For each of these classes, 100 instances were generated to
ensure that both, satisfiable and unsatisfiable results are represented. With the
8 strategies we obtain 36 000 prenexed formulas either in the non-CNF QCIR
format or in QDIMACS.

Non-Prenex-Non-CNF Benchmarks from QBFEval 2008. In the QBFEval 2008,
a non-prenex, non-CNF track was organized [19]. The benchmarks are available
at the QBFLib.3. This set consists of 492 formulas in the outdated Boole for-
mat. To transform these formulas into prenex form, we first rewrote them into

3 http://www.qbflib.org.

http://www.qbflib.org

Quantifier Shifting for Quantified Boolean Formulas Revisited 337

Table 1. Number of solved formulas per strategy and solver of QBFEval’08 set (QCIR).
Diff indicates the difference between the best and the worst strategy. Each strategy has
492 formulas.

Solver ∃↑↑ ∃↓↓ ∃↑↓ ∃↓↑ ∀↑↑ ∀↓↓ ∀↑↓ ∀↓↑ Diff. Rel. diff. (%)

QuAbS 380 398 405 366 380 400 376 406 40 8.13
QFUN 340 409 360 339 340 407 341 361 70 14.23
CQESTO 436 451 430 442 436 450 447 429 22 4.47
Qute 455 464 465 452 455 464 454 465 13 2.64

the related Limboole4 format that is processable by Booleguru. Again, we
considered all eight options resulting in 4936 prenexed formulas.

6.2 Experimental Setup

All experiments were run with a timeout of 15 minutes on a cluster of dual-
socket AMD EPYC 7313 @ 3.7GHz machines running Ubuntu 22.04 with a
8GB memory limit per task. We split the experiments into two parts: on the
one hand, we consider solvers that process formulas in prenex conjunctive normal
form (PCNF) and on the other hand, we consider solvers that process formu-
las in prenex non-CNF. For the first group of solvers that accept formulas in
the QDIMACS format, we consider the following solvers: The solver DepQBF

(version 6.03) is a conflict/solution driven clause/cube learning (QCDCL) solver
that integrates several advanced inprocessing techniques and reasoning under
the standard dependency scheme [17]. Also Qute [21] is a QCDCL solver that
employs dynamic dependency learning. This solver is also able to process QCIR
formulas, i.e., it is also included in the second group. The solver CAQE [25]
(version 4.0.2) implements clausal selection. The solver RAReQS [14] (version
1.1) implements variable expansion in CEGAR style. Finally, dynQBF [4,5]
(version 1.1.1) is a BDD-based solver. For pre-processing, we used Bloqqer [3]
and HQSpre [31]. For testing the encodings in the non-CNF QCIR format, we
include the solvers QuAbS [9,29] and CQESTO [13] (version v00.0) (sic) that
lift clausal selection to circuits, QFUN [12] (version v00.0) (sic), a solver that
employs machine learning techniques, and Qute which was already mentioned
above.

6.3 Experimental Results

In the following, we first discuss the results of the solvers that process formulas
in QCIR, (i.e. formulas in prenex form but not in CNF). Second, we report on
our experiments with QDIMACS formulas for the PCNF solvers.

4 http://fmv.jku.at/limboole/.

http://fmv.jku.at/limboole/

338 S. Heisinger et al.

Table 2. Number of different prefixes generated from of the 2008 non-CNF benchmark
set with all strategy combinations. Each strategy has 492 formulas.

∀
∃ ↓↓ ↓↑ ↑↓ ↑↑

↓↓ 0 4500 4500 4500
↓↑ 4500 4500 0 4500
↑↓ 4500 0 4500 4500
↑↑ 4500 4500 4500 0

Prenexed formulas in QCIR. The nested counterfactual benchmarks were easily
solved by QCIR solvers, i.e., they could exploit the formula structure to quickly
solve these formulas (all were solved in less than a second). Therefore, we focus
on the formulas of the QBFEval’08 benchmark set in the following. Table 1 shows
the results for the QCIR solvers and Table 2 shows the number of different pre-
fixes that were generated with all strategy combinations. For QuAbS, QFUN,
and CQESTO we see a clear difference between the best and worst shifting
strategy. In contrast, Qute seems to be less sensitive regarding the prenexing,
which might be related to its dynamic dependency learning. The detailed solving
behavior of QFUN and CQESTO is shown in Fig. 2. For QFUN we observe
that ∃↑↑ and ∀↑↑ clearly perform best, while ∀↓↑ and ∃↑↓ seem to be less bene-
ficial.

Prenexed Formulas in QDIMACS. Table 3 shows the results of the QDIMACS
solvers on the encodings of the nested counterfactuals and Table 4 shows the
number of different prefixes that were generated between all strategy combina-
tions. DepQBF solves all formulas from 4 of the 8 strategies and most of the
others, dynQBF is able to solve most of the formulas and Qute solves about
one quarter of the formulas. Meanwhile RAReQS and CAQE hardly solve any of
those. These could be connected with the observation that those solvers perform
better on formulas with few quantifier alternations. For all solvers we observe

Fig. 2. Solving time of the QBFEVAL’08 set with QFUN (left) and CQESTO (right).

Quantifier Shifting for Quantified Boolean Formulas Revisited 339

Table 3. Number of solved formulas per strategy and solver of NCFs. Diff indicates the
difference between the best and the worst strategy. Each strategy has 4500 formulas.

Solver ∃↑↑ ∃↓↓ ∃↑↓ ∃↓↑ ∀↑↑ ∀↓↓ ∀↑↓ ∀↓↑ Diff. Rel. diff. (%)

DepQBF 4500 4495 4497 4500 4500 4495 4500 4497 5 0.11
CAQE 37 86 88 37 37 86 37 88 51 1.13
RAReQS 21 12 19 16 21 12 16 20 9 0.2
Qute 1012 731 724 1010 1012 731 1010 724 288 6.4
dynQBF 4274 4456 4318 4467 4279 4469 4474 4316 200 4.44

Table 4. Number of different prefixes generated from of the NCF benchmark set with
all strategy combinations. Each strategy has 4500 formulas.

∀
∃ ↓↓ ↓↑ ↑↓ ↑↑

↓↓ 0 4500 4500 4500
↓↑ 4500 4500 0 4500
↑↓ 4500 0 4500 4500
↑↑ 4500 4500 4500 0

Fig. 3. Solving time of nested counterfactuals with DepQBF (left) and dynQBF
(right).

that the chosen shifting strategy impacts the number of the solved formulas.
Details of the runs of DepQBF and dynQBF are shown in Fig. 3. For DepQBF,
we observe that strategies ∃↓↓ and ∀↓↓ are clearly less preferable than strate-
gies ∃↑↑ and ∀↑↑, while dynQBF prefers to have existential quantifiers shifted
down. The QBFEval’08 benchmarks are very challenging for recent QDIMACS
solvers with our encoding. Out of the 492 formulas, DepQBF solves up to 128
formulas with the best strategy (∀↓↑). dynQBF solves around 60 formulas. The
other tools solve less than 30 formulas. Enabling preprocessing is beneficial for
all solvers. When preprocessors Bloqqer or HQSpre simplify the formulas,
then almost all formulas can be solved. With and without preprocessing, the

340 S. Heisinger et al.

shifting strategies have only little impact on this benchmark set. Note that more
than two third of these formulas have five or less quantifier alternations.

7 Conclusion and Future Work

This paper analyzes and extends previous work from 2003 on quantifier shifting
for quantified Boolean formulas. Since then, much progress has been made in
the development of QBF solvers by introducing novel solving paradigms, apply-
ing efficient preprocessing techniques, and exploiting quantifier (in-)dependence.
However, most of those approaches assume formulas in prenex normal form. As
a consequence, most encodings are provided in this form, which unnecessarily
restricts solvers with a certain design choice. In this work, we not only formalized
prenexing in a concise manner, but we also provide an efficient, publicly available
tool that implements the discussed prenexing strategies and Tseitin transforma-
tion. In extensive experiments with state-of-the-art prenex CNF and non-CNF
solvers, we showed that in many instances prenexing strategy selection impacts
solving runtime. We showed that different solvers perform differently on differ-
ent strategies, hence it was not possible to uniquely identify the best strategy.
Therefore, we think it is important that solver developers and also the develop-
ers of QBF encodings exploit information available in the problem structure and
do not introduce artificial restrictions.

In future work, we plan to design and evaluate further prenexing strategies
and we will also revisit more non-prenex QBF encodings to obtain larger bench-
mark sets. At the moment, hardly any formulas in non-prenex form are available
which we changed by providing the generator for encodings of nested counter-
factuals. But this is a first step only. Many of the considered formulas are either
too hard or too easy for recent solvers, hence more effort is necessary to obtain
a larger variety of interesting benchmarks (also in the light of next QBF evalua-
tions). Finally, we want to explore how prenexing strategies affect the generation
of certificates and solutions in terms of Herbrand and Skolem functions. From
first-order logic, it is well known that it is beneficial to move quantifiers as far
inwards as possible to minimize the arity of the first-order Skolem functions [20].

References

1. Beyersdorff, O., Hinde, L., Pich, J.: Reasons for hardness in QBF proof systems.
ACM Trans. Comput. Theory 12(2), 10:1–10:27 (2020). https://doi.org/10.1145/
3378665

2. Beyersdorff, O., Janota, M., Lonsing, F., Seidl, M.: Quantified Boolean formulas.
In: Handbook of Satisfiability – Second Edition, Frontiers in Artificial Intelligence
and Applications, vol. 336, pp. 1177–1221. IOS Press (2021). https://doi.org/10.
3233/FAIA201015

https://doi.org/10.1145/3378665
https://doi.org/10.1145/3378665
https://doi.org/10.3233/FAIA201015
https://doi.org/10.3233/FAIA201015

Quantifier Shifting for Quantified Boolean Formulas Revisited 341

3. Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: Bjørner,
N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp.
101–115. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22438-
6_10

4. Charwat, G., Woltran, S.: BDD-based dynamic programming on tree decomposi-
tions. Technical report, Technische Universität Wien, Institut für Informationssys-
teme, Technical report (2016)

5. Charwat, G., Woltran, S.: Dynamic programming-based QBF solving. In: Proceed-
ings of the 4th International Workshop on Quantified Boolean Formulas (QBF
2016) co-located with 19th International Conference on Theory and Applications
of Satisfiability Testing (SAT 2016), Bordeaux, France, July 4, 2016. CEUR Work-
shop Proceedings, vol. 1719, pp. 27–40. CEUR-WS.org (2016)

6. Egly, U., Seidl, M., Tompits, H., Woltran, S., Zolda, M.: Comparing different
prenexing strategies for quantified Boolean formulas. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 214–228. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3_17

7. Egly, U., Seidl, M., Woltran, S.: A solver for QBFS in nonprenex form. In: ECAI
2006, 17th European Conference on Artificial Intelligence, August 29 - September
1, 2006, Riva del Garda, Italy, Including Prestigious Applications of Intelligent
Systems (PAIS 2006), Proceedings. Frontiers in Artificial Intelligence and Appli-
cations, vol. 141, pp. 477–481. IOS Press (2006)

8. Goultiaeva, A., Bacchus, F.: Exploiting circuit representations in QBF solving. In:
Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 333–339. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14186-7_29

9. Hecking-Harbusch, J., Tentrup, L.: Solving QBF by abstraction. In: Proceedings
Ninth International Symposium on Games, Automata, Logics, and Formal Verifi-
cation, GandALF 2018, Saarbrücken, Germany, 26-28th September 2018. EPTCS,
vol. 277, pp. 88–102 (2018). https://doi.org/10.4204/EPTCS.277.7

10. Heisinger, M., Heisinger, S., Seidl, M.: Booleguru, the propositional polyglot. In:
Benzmüller, C., Heule, M., Schmidt, R. (eds.) Automated Reasoning - 12th Inter-
national Joint Conference, IJCAR 2024, Nancy, France, July 3-6, 2024, Proceed-
ings. LNCS, vol. 14739, p. 315–324. Springer (2024). https://doi.org/10.1007/978-
3-031-63498-7_19

11. Heisinger, S., Heisinger, M., Rebola-Pardo, A., Seidl, M.: Artifact for “quantifier
shifting for quantified Boolean formulas revisited” (2024). https://doi.org/10.5281/
zenodo.10634925

12. Janota, M.: QFUN: towards machine learning in QBF. CoRR abs/1710.02198
(2017)

13. Janota, M.: Circuit-based search space pruning in QBF. In: Beyersdorff, O., Win-
tersteiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp. 187–198. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-94144-8_12

14. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with coun-
terexample guided refinement. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012.
LNCS, vol. 7317, pp. 114–128. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-31612-8_10

15. Klieber, W., Sapra, S., Gao, S., Clarke, E.: A non-prenex, non-clausal QBF Solver
with game-state learning. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS,
vol. 6175, pp. 128–142. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14186-7_12

https://doi.org/10.1007/978-3-642-22438-6_10
https://doi.org/10.1007/978-3-642-22438-6_10
https://doi.org/10.1007/978-3-540-24605-3_17
https://doi.org/10.1007/978-3-642-14186-7_29
https://doi.org/10.4204/EPTCS.277.7
https://doi.org/10.1007/978-3-031-63498-7_19
https://doi.org/10.1007/978-3-031-63498-7_19
https://doi.org/10.5281/zenodo.10634925
https://doi.org/10.5281/zenodo.10634925
https://doi.org/10.1007/978-3-319-94144-8_12
https://doi.org/10.1007/978-3-642-31612-8_10
https://doi.org/10.1007/978-3-642-31612-8_10
https://doi.org/10.1007/978-3-642-14186-7_12
https://doi.org/10.1007/978-3-642-14186-7_12

342 S. Heisinger et al.

16. Lonsing, F., Biere, A.: Integrating dependency schemes in search-based QBF
solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 158–
171. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14186-7_14

17. Lonsing, F., Egly, U.: DepQBF 6.0: a search-based QBF solver beyond traditional
QCDCL. In: de Moura, L. (ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp. 371–
384. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63046-5_23

18. Lonsing, F., Egly, U.: Evaluating QBF solvers: quantifier alternations matter. In:
Hooker, J. (ed.) CP 2018. LNCS, vol. 11008, pp. 276–294. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-98334-9_19

19. Marin, P., Narizzano, M., Pulina, L., Tacchella, A., Giunchiglia, E.: Twelve years
of QBF evaluations: QSAT is PSPACE-Hard and it shows. Fundam. Informaticae
149(1–2), 133–158 (2016). https://doi.org/10.3233/FI-2016-1445

20. Nonnengart, A., Weidenbach, C.: Computing small clause normal forms. In: Hand-
book of Automated Reasoning (in 2 volumes), pp. 335–367. Elsevier and MIT Press
(2001). https://doi.org/10.1016/B978-044450813-3/50008-4

21. Peitl, T., Slivovsky, F., Szeider, S.: Dependency learning for QBF. In: Gaspers,
S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp. 298–313. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66263-3_19

22. Peitl, T., Slivovsky, F., Szeider, S.: Dependency learning for QBF. J. Artif. Intell.
Res. 65, 180–208 (2019). https://doi.org/10.1613/jair.1.11529

23. Peterson, G., Reif, J., Azhar, S.: Lower bounds for multiplayer noncooperative
games of incomplete information. Comput. Math. App. 41(7–8), 957–992 (2001)

24. Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form transla-
tion. J. Symb. Comput. 2(3), 293–304 (1986). https://doi.org/10.1016/S0747-
7171(86)80028-1

25. Rabe, M.N., Tentrup, L.: CAQE: a certifying QBF solver. In: Formal Methods in
Computer-Aided Design, FMCAD 2015, Austin, Texas, USA, September 27-30,
2015. pp. 136–143. IEEE (2015). https://doi.org/10.1109/FMCAD.2015.7542263

26. Reeves, J.E., Heule, M.J.H., Bryant, R.E.: Moving definition variables in quantified
Boolean formulas. In: TACAS 2022. LNCS, vol. 13243, pp. 462–479. Springer,
Cham (2022). https://doi.org/10.1007/978-3-030-99524-9_26

27. Samer, M., Szeider, S.: Backdoor sets of quantified Boolean formulas. J. Autom.
Reason. 42(1), 77–97 (2009). https://doi.org/10.1007/s10817-008-9114-5

28. Shukla, A., Biere, A., Pulina, L., Seidl, M.: A survey on applications of quantified
Boolean formulas. In: 31st IEEE International Conference on Tools with Artificial
Intelligence, ICTAI 2019, Portland, OR, USA, November 4-6, 2019, pp. 78–84.
IEEE (2019). https://doi.org/10.1109/ICTAI.2019.00020

29. Tentrup, L.: Non-prenex QBF solving using abstraction. In: Creignou, N., Le Berre,
D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 393–401. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-40970-2_24

30. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Siek-
mann, J.H., Wrightson, G. (eds.) Automation of Reasoning. Symbolic Computa-
tion, pp. 466–483. Springer, Berlin, Heidelberg (1983). https://doi.org/10.1007/
978-3-642-81955-1_28

31. Wimmer, R., Reimer, S., Marin, P., Becker, B.: HQSpre – an effective preprocessor
for QBF and DQBF. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol.
10205, pp. 373–390. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
662-54577-5_21

https://doi.org/10.1007/978-3-642-14186-7_14
https://doi.org/10.1007/978-3-319-63046-5_23
https://doi.org/10.1007/978-3-319-98334-9_19
https://doi.org/10.3233/FI-2016-1445
https://doi.org/10.1016/B978-044450813-3/50008-4
https://doi.org/10.1007/978-3-319-66263-3_19
https://doi.org/10.1613/jair.1.11529
https://doi.org/10.1016/S0747-7171(86)80028-1
https://doi.org/10.1016/S0747-7171(86)80028-1
https://doi.org/10.1109/FMCAD.2015.7542263
https://doi.org/10.1007/978-3-030-99524-9_26
https://doi.org/10.1007/s10817-008-9114-5
https://doi.org/10.1109/ICTAI.2019.00020
https://doi.org/10.1007/978-3-319-40970-2_24
https://doi.org/10.1007/978-3-319-40970-2_24
https://doi.org/10.1007/978-3-642-81955-1_28
https://doi.org/10.1007/978-3-642-81955-1_28
https://doi.org/10.1007/978-3-662-54577-5_21
https://doi.org/10.1007/978-3-662-54577-5_21

Quantifier Shifting for Quantified Boolean Formulas Revisited 343

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Quantifier Shifting for Quantified Boolean Formulas Revisited
	1 Introduction
	2 Preliminaries
	3 Related Work
	4 Quantifier Shifting
	4.1 Linearizations over Quantrees
	4.2 Alternation Height of Quantrees

	5 Linearization Strategies
	5.1 Strategies as Preferences over Linearizations
	5.2 Optimal Linearizations over a Strategy

	6 Implementation and Evaluation
	6.1 Benchmarks
	6.2 Experimental Setup
	6.3 Experimental Results

	7 Conclusion and Future Work
	References

