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Welcome to CESCG 2024!

This book contains the proceedings of the 28th Central European Seminar on
Computer Graphics, short CESCG, which continues a history of very successful
seminars.

The long history of CESCG has started in 1997 in a medium-sized lecture room
in Bratislava, bringing together students from Bratislava, Brno, Budapest, Graz,
Prague, and Vienna. The idea found wide appraisal and the seminar moved to
the beautiful castle of Budmerice, where it was held for eight consecutive years,
constantly growing in size and attraction. It was just in the 10th anniversary year
2006 that CESCG had to take a detour to move to �Cast�a-Papierni�cka Centre, while
it was back in Budmerice castle since 2007. Budmerice castle ultimately closed
down for public in 2011. After spending that year in Vini�cn�e, in 2012 we moved
to the beautiful castle in Smolenice. During the COVID pandemics lock-downs in
2020 and 2021, CESCG switched to a virtual mode at Discord and YouTube.

Who are the CESCG heroes who made this year's seminar happen? In no
particular order { because many people were involved equally { we would like to
thank the organizers from Vienna: Annalena Ulschmid, Diana Marin, Michael

Wimmer and Max H�o�erer. Special thanks goes to Martin Il�c��k for extensive
event management, keeping the seminar alive for over 15 years. Ji�r�� Bittner from
�CV�UT in Prague and Zuzana Berger-Haladov�a from Comenius University took
care of the scienti�c process. We are very thankful to further CESCG organizers
from Bratislava, Martin Madaras, Luk�a�s Hudec and Andrej Ferko, always an
inspiration to CESCG. Simon Sadeger will produce professional promotion videos
and Viktoria Pogrebacz will take care of recording the talks in full length.

The main idea of CESCG is to bring students of computer graphics together
across boundaries of universities and countries. We focus on sustainable academic
and research development in the �eld of Computer Graphics in Europe. Our
mission is to support undergraduate talents in their future careers. We have 17
participating institutions and a tight time schedule of 18 student papers and 2
posters. For the �rst time at CESCG, a PhD Colloquium will host 8 interesting
work-in-progress graduate talks.

We welcome groups from Bratislava (Comenius and STU), Slovakia; Brno

(Masaryk and V�UT) and Prague (Charles and �CV�UT), Czech Republic; Budapest
(BUTE), Hungary; Cambridge (University), United Kingdom; Graz (TU) and
Vienna (TU and VRVis), Austria; Stuttgart (University) and Saarbr�ucken (Saarland
University), Germany; Paris (ESIEA), France; Sarajevo (University and SSST),
Bosnia and Herzegovina; Z�urich (University), Switzerland. Martin Il�c��k from TU
Wien led the virtual workshop on \Scienti�c Storytelling\ right after the students
received the �rst feedback to their papers. The keynote talk \Di�erent Perspectives
of Data Visualization" will be given by Barbora Kozl��kov�a from Masaryk University
University in Brno.

We have assembled an International Program Committee (IPC) of 15 members,
allowing us to have each paper reviewed by two IPC members during the informal



reviewing process. Students also cross-reviewed their papers. We would like to
thank the members of the IPC for their contribution to the reviewing process:

Wanda Bene�sov�a Martin Il�c��k Renata Raidou
Zuzana Berger Haladov�a Tom�a�s Iser Selma Rizvi�c
Ji�r�� Bittner Barbora Kozl��kov�a Dieter Schmalstieg
Daniel Cornel Rafal Mantiuk L�aszl�o Sz�ecsi
Adam Herout Rados law Mantiuk Michael Wimmer

The reviewing process was further supported by: Vlastimil Havran, Ji�r�� Hlad�uvka,
�Aron Samuel Kov�acs, Martin K�a�cerik, Miroslav Mac��k, Ivo Mal�y, Maath Musleh,
Daniel Pahr, David Sedl�a�cek, Annalena Ulschmid.

For the �rst time in CESCG history, this edition will feature a dedicated PhD
Colloquium where 8 graduate students will discuss their research ideas:

{ Tensor Decomposition for Fast Weather Prediction Data Rendering
Julian Croci. University of Z�urich

{ Working In Mixed Realities: 3D User Interfaces and Interaction Patterns to
Integrate Practices in Di�erent Perceptual Spaces
Marina Lima Medeiros. VRVis Research Center, Vienna

{ Human Emotion Recognition in VR Systems for Remote Telepresence and
Collaboration for Training and Education Purposes
Mamadi Dioubat�e. ESIEA Graduate School of Engineering, Paris

{ Procedural Modeling of Traversable Hierarchically Organized Layouts with
Interoperability between Di�erent Levels of the Hierarchy
Emir Cogo. University of Sarajevo

{ An Algorithm for Stochastic Progressive Re�nement of Large Meshes
Martin �Cavarga. Comenius University, Bratislava

{ Graphical Software Tool for Creating Standardized Cause-E�ect Graph Speci�cations
Ehlimana Cogo. University of Sarajevo

{ Learning Parametric Primitive Segmentation on 3D Point Clouds
Lizeth Fuentes. University of Z�urich

{ Domain Expert Centered Interface Design for AI-Infused System Development
Martin Dubovsk�y. Slovak Technical University, Bratislava

With the 20th anniversary of the seminar in 2016, Martin initiated the CESCG
EXPO project. This year we restarted the EXPO with companies and research
institutions specialized on visual computing presenting their innovative products
in an interactive exhibition. The exhibitors are:

Akular, Bratislava Procedural Design, Vienna
Canon, Bratislava Shadow Map, Vienna
Cognex, Bratislava VR Group, Brno
Escape Motions, Pie�s�tany WildRealm, Bratislava
Nanographics, Vienna

iv



For 2020 Martin initiated the ACADEMY project to o�er tutorials and lectures
by international experts to stimulate knowledge exchange in a way similar to a
summer school. The COVID pandemics interrupted these plans, so the zero-year
o�ered just a reduced set of workshops virtually. The �rst real ACADEMY took
place 2022, o�ering a day with 5 tutorials right after the seminar. The next year
the ACADEMY �nally got its intended shape with 12 tutorials and lectures given
in 4 parallel tracks over the course of 2 full days. This year we prepared a similar
schedule with 8 tutorials in 2 parallel tracks spanning over 2 days:

GPGPU

{ CUDA and Applications to Task-based Programming
Michael Kenzel. Saarland University

XR

{ Recent Trends in Augmented Reality
Dieter Schmalstieg. University of Stuttgart

Reconstruction

{ A Hands-on Introduction to Photogrammetry
Wallace Wainhouse. Epic Games, Bratislava

Music

{ Making Music with Code (In�nite Music for Games and More)
Peter Mindek, Nanographics, Vienna

{ Responsive Music Programming with D[

Martin Il�c��k, Procedural Design, Vienna

AI

{ Into the World of Generative AI
Luk�a�s Hudes and Maro�s Koll�ar, STU Bratislava

Geometry

{ Voronoi Diagrams and Their Applications
Martin Ma�n�ak, University of West Bohemia, Plze�n

Physics

{ Cloth Simulation for Video Games
Annalena Ulschmid, TU Wien
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The organization of such a large event requires additional funding. We are very
thankful to the partners of CESCG 2024 for supporting us �nancially and by
donating prizes for awarding the best student results:

{ KAUST, King Abdullah University of Science and Technology,
{ VRVis, Research Center for Virtual Reality and Visualization,
{ Canon, digital imaging solutions,
{ SISp, Slovak Society for Computer Science,
{ Escape Motions, developer of innovative visual tools,
{ IEEE Women in Engineering, promoting women engineers and scientists,
{ Procedural Design, adaptive content creation,

Please note that the electronic version of these proceedings is also available at
https://cescg.org/library/.

April 2024, Martin Il�c��k
Ji�r�� Bittner

Zuzana Berger Haladov�a
Michael Wimmer
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Keynote Talk





Different Perspectives of Data Visualization

Barbora Kozlı́ková

Masaryk University
Brno, Czech Republic

Abstract

In this talk, I’ll focus on presenting different aspects that play a role in data visualization. On
several use cases, mostly from the biomedical visualization, I will demonstrate the main challenges
that the visualization researchers are facing. We will also touch related aspects, such as visualizing
uncertainty and building a trust in visualization. I’ll also share experiences with interdisciplinary
research and collaboration with experts from other fields.

Bibliographical Details

]
Barbora currently holds the position of an Associate Professor at the
Faculty of Informatics, Masaryk University, Brno, Czech Republic.
She is heading the Visitlab research group focusing on diverse topics
in visualization. Her main research interests are visualization and
visual analysis with diverse application areas, with the largest focus
on biochemistry. In the past 15 years, she has been intensely
collaborating with protein engineering experts and together they
developed the CAVER and CAVER Analyst tools for exploration of
protein structures and their tunnels, where the temporal aspect of
proteins plays a crucial role.
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Computer Vision in Medicine
(addendum 2023)





Segmentation of Whole-Slide Images with Context-Aware Vision
Transformers

Michal Franczel*
Supervised by: Lukáš Hudec†

Faculty of Informatics and Information Technologies
Slovak University of Technology in Bratislava

Bratislava / Slovak Republic

Abstract

Histological examination is a crucial component of breast
cancer diagnostics. Analysis of whole-slide images (WSI)
is a time-consuming process due to their hierarchical na-
ture and size, resulting both in slower diagnostics and a
lack of annotations. Recent advances in vision transform-
ers have demonstrated potential within the field of com-
puter vision. However, their properties with hierarchical
gigapixel images, where contextual information is cru-
cial, remains underexplored. In this paper, we propose
a solution employing semi-supervised learning based on
a self-supervised pretraining and supervised fine-tuning
paradigm, utilizing these advancements. Our approach
modifies vision transformer encoders within the segmen-
tation network to incorporate contextual information from
lower magnification levels through late feature fusion.
The multi-scale model variant outperforms its single-scale
counterpart, improving the dice score by 6.2%. Further-
more, we examine the properties of features learned by
masked image modeling (MIM) and establish that vision
transformers trained with MIM can effectively learn mor-
phological phenotypes from unlabeled histopathological
images, thereby validating its use as a pretraining tech-
nique in this domain.

Keywords: Whole-Slide Images, Breast Cancer, Deep
Learning, Segmentation, Semi-Supervised Learning, Vi-
sion Transformers, Medical Imaging

1 Introduction

Breast cancer is one of the leading preventable causes of
death, accounting for more than 13 percent of all new
cancer cases and 28.7 percent of all cancer discoveries in
women in the European Union as of 2020. While the num-
ber of new cases has increased over time, the number of
deaths has decreased [9]. This can be explained not just
by increasing the quality of treatment but also by increas-
ing the rate of early disease diagnosis [7]. Histological

*xfranczel@stuba.sk
†xhudecl@stuba.sk

analysis is a vital, yet time-consuming and difficult, com-
ponent of breast cancer diagnosis. As part of the patho-
logical examination of the breast, a biopsy is performed.
The extracted tissue is sliced, and the slice is then stained
most commonly with hematoxylin and eosin (H&E). Sub-
sequently, it is placed on a glass slide, which is scanned
with a motorized microscope. Slides are scanned at mul-
tiple magnification levels, resulting in z-stacks. This en-
ables pathologists to switch between these magnification
levels, simulating classical microscopy. Pathologists ana-
lyze a variety of structures, not only at the level of cellular
morphology but also at the level of larger breast structures,
utilizing both contextual information from lower levels
and detailed information from higher levels of magnifica-
tion.

Deep learning has been an essential part of computer vi-
sion, and convolutional models have been successfully ap-
plied to the field of computational pathology. However, in
recent years, transformer-based vision models have gained
prominence, obtaining state-of-the-art performance across
numerous general vision tasks. The properties of these
transformers have, however, not yet been thoroughly ex-
amined within the field of histopathology, especially when
dealing with segmentation of hierarchical images. Due to
their size, Whole-Slide Images (WSI) must be split into
smaller patches. These patches, at the highest magnifica-
tion level, may not contain the necessary information for
segmentation models to make accurate predictions, as they
lack coarser-grained tissue features and their spatial orga-
nization. Additionally, the complex hierarchical nature of
WSI results in a lack of annotated datasets in terms of both
quantity and quality, especially when dealing with pixel-
level annotations.

In this work, we first assess the utility of vision trans-
formers on the BCSS dataset and then propose modifica-
tions to the segmentation network so that it uses multi-
ple magnifications and passes contextual information in
a top-down manner. We split methods of feature fusion
into three categories: early, intermediate, and late fusion.
Prior work on convolutional encoders used variations of
early and late feature fusion with linear and LSTM layers.
We examine early and late feature fusion with the use of

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)



the Swin Transformer [8] encoder and a modified Uper-
net [15] architecture, using both linear layers and cross-
attention mechanisms. Additionally, we expand these two
types of fusion through intermediate fusion, merging fea-
tures between individual blocks of the encoder. We find
that vision transformers, even though they lack the inher-
ent biases of convolutional networks, can achieve simi-
lar accuracy within the domain of histopathology. With
the introduction of late feature fusion, we surpass the ac-
curacy of single-scale single architectures, increasing the
dice score by 6.2%.

Additionally, to address the issue of the lack of anno-
tations, we explore the use of self-supervised pretraining
methods based on masked image modeling (MIM) utiliz-
ing the BRACS [3] dataset. Through qualitative analysis
of learned features, we find that transformer-based models
pretrained with MIM on the BRACS dataset can learn use-
ful representations of various types of tissues, confirming
that it can be used as a pretraining step within the domain
of histopathology.

2 Related Work

The segmentation task can be interpreted either as a pixel-
wise segmentation or a patch-wise segmentation, where an
image is split into patches, which are then classified and
combined to create a coarse segmentation mask. Numer-
ous approaches to pixel-wise segmentation have been pro-
posed, with the most prevalent being the convolutional U-
Net [12], featuring an encoder-decoder architecture with
a bottleneck and skip connections. Variants of this archi-
tecture have also emerged, including U-Net++ [18], which
employs a densely connected decoder subnetworks, and
R2U-Net [1], which incorporates recurrent modules within
both its encoder and decoder stages.

These architectures, frequently employed in cell and or-
gan segmentation tasks, do not take advantage of the hi-
erarchical structure of whole-slide images. To address
this limitation, a number of context-aware methods have
been introduced for the classification and segmentation
of histopathological images. Sirinukunwattana et al. [13]
studied the impact of providing contextual information to
the prediction algorithm. They approached the problem
of image segmentation as a patch-level classification and
compared three types of architectures: single-scale archi-
tecture, which operates at a single image resolution; early
fusion, which fuses information from multiple resolutions
before passing it through a neural network; and late fusion,
which uses separate networks for different magnifications
and combines the output to make a prediction. Out of the
three groups described, a single-scale design performed
significantly worse than architectures that used contextual
information. Feng et al. [6] proposed an end-to-end frame-
work that generates predictions at multiple magnification
levels and combines them using a voting process, adopt-
ing the late fusion approach. This approach was also used

by the multi-scale classification model proposed by Wette-
land et al. [14] to classify small patches, combining them
into segmentation mask of an entire WSI. One major ad-
vantage of the late fusion approach is its ability to utilize
contextual information from multiple resolutions, enhanc-
ing prediction accuracy. However, the main disadvantage
is the increased computational complexity compared to
single-scale architectures.

Chen et al. [5] proposed the Hierarchical Image Pyra-
mid Transformer (HIPT), a three-stage architecture that
performs bottom-up aggregation for slide-level representa-
tion, akin to hierarchical attention networks in long docu-
ment modeling. The model allows for self-supervised pre-
training methods to pretrain each aggregation layer sepa-
rately, which can then be fine-tuned with slide-level labels
for cancer subtyping and survival prediction tasks in the
TCGA. Since the attention is computed only within local
windows, learning long-range dependencies is tractable.
Even though this method of bottom-up aggregation is not
useful for image segmentation, it may be useful as a pre-
training step.

3 Data

Breast Cancer Semantic Segmentation (BCSS) [2] dataset
contains regions of interest derived from 151 WSIs stained
with H&E, collected from histologically confirmed cases
of breast cancer. Pathologists graded regions from 21 dif-
ficult slides that were annotated by trained non-pathologist
research participants. Masks, pixel-level annotations with
21 classes, were the resulting annotations. Within the
scope of our work, we opted for the use of the modified
version of this dataset with labels reduced according to
TIGER Challenge.

BReAst Carcinoma Subtyping (BRACS) [3] dataset is a
breast carcinoma subtyping dataset containing 547 H&E-
stained whole-slide images and 4539 extracted regions of
interest from these WSIs. Both WSIs and ROIs were an-
notated with lesion categories by the consensus of three
pathologists. Benign, malignant, and atypical lesions
are further subtyped into seven distinct categories. Even
though this dataset is one of the largest in its category, it
does not include annotations at the pixel level. However,
it can be used for unsupervised training.

4 Method

One of our objectives is to make use of current develop-
ments in transformer-based models. We decided to exploit
current breakthroughs in semi-supervised learning, focus-
ing on the paradigm of self-supervised pretraining and
fully-supervised finetuning, as training these transformer
models requires vast quantities of data. Thus, as shown
on Figure 1, training is divided into two stages, with each
of these stages being performed at the slide level using a

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
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patch generator. This generator generates a tissue mask
and patch stacks for the entire WSI. The resulting data is
subsequently used for training. Within the first stage of our
experiments, we compare various architectures that either
utilize input from a single magnification level or use cus-
tom architectures that make use of three separate magnifi-
cations. In the second stage of our experiments, we focus
on self-supervised pretraining with the BRACS dataset.
Since the dataset contains 547 WSIs, training is difficult
given the available computational resources. Therefore,
we have chosen to sample WSIs, and from these images,
we have chosen to sample 150,000 patches. In this phase,
we will evaluate method of masked image modeling.

Figure 1: Overall two-stage architecture of proposed
framework with self-supervised pretraining using MIM
and fully-supervised context-aware finetuning

4.1 Data Preparation

Upon reviewing slides included in the dataset, we have dis-
covered that a large part of all WSIs consist of background
material without any histopathological relevance. That is
why, firstly, a tissue mask is constructed employing simple
thresholding and morphological operations. As some of
the slides were labeled and contained artifacts, we created
a mask for artifacts we observed by applying thresholding
to the converted LAB image and deleting them from the
tissue mask.

Patches are generated based on the pixels per micron
(PPM) parameter of the slide, so that the generator can
be used on varying datasets. Patches at the greatest mag-
nification level containing tissue proportions below the
threshold are discarded. When dealing with the BCSS
dataset, patches with masks that include background levels
above threshold in their annotation at the greatest magnifi-
cation level are eliminated. When multiscale patch stacks
are required, the location of the patch at the highest magni-
fication level is determined first, and then the locations of
patches at lower magnification levels are calculated, with
higher magnification being at the central position. Stain
normalization is the final phase in the preparation process,

and we have decided to use the Macenko method of nor-
malization [10]. This method is frequently employed as a
preprocessing step, as it estimates hematoxilin and eosin
concentrations from color space distributions and normal-
izes input images based on these concentrations, given
some target image. Preprocessing flow is illustrated on
Figure 2.

Figure 2: Three stages of data preparation: tissue mask
retrieval with tresholding, patch tiling and background re-
moval, and the addition of contextual patches from lower
magnifications

4.2 Training Configuration

As per established and recommended training parameters,
the final training configuration for fully supervised train-
ing uses the ReduceLRonPlaeau scheduler for convolu-
tional networks and the cosine scheduler for transformer-
based networks. As for the optimizer, AdamW is used,
with betas set to 0.90 and 0.999, epsilon 1e-8, and a
base learning rate of 5e-4. Since we have observed that
this dataset is unbalanced and comprises disproportion-
ately greater stroma and tumor types, we used Dice Cross-
Entropy Loss, which includes squared versions of targets
and predictions in the denominator,

Loss =
(

1− 2∗∑C
c=1 pc p̂c

∑C
c=1 p2

c +∑C
c=1 p̂2

c

)
−0.5∗

C

∑
c=1

pc log p̂c

where, C is the number of classes or categories, pc is the
true probability of class c, and p̂c is the predicted proba-
bility of class c. Since the background class label in this
dataset reflects unannotated regions and offers no seman-
tic relevance in terms of training, it is not included in the
calculation of loss.

To improve model resilience and reduce susceptibility
to color pertubations, we employed augmentations. Ver-
tical and horizontal flips, random rotations, and Contrast
Limited Adaptive Histogram Equalization (CLAHE), ran-
dom brightness, and contrast were employed. Addition-
ally, we attempted to address the issue of class imbalance
by oversampling and undersampling patches based on the
classes present within its segmentation mask.

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
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As for patch extraction, we used patch size 224 and
overlap 112, as images of this scale contained sufficiently
complex structures both within images and masks. Using
our patch extractor, we used scale 1 as an input for single
scale experiments and 1, 4, and 8 for multi-scale experi-
ments. Within the scope of this work, the term scale refers
to the downsampling factor relative to the highest level of
magnification.

In the case of fully supervised training, the BCSS
dataset was divided into 133 training samples and 18 vali-
dation samples. To prevent training on validation data that
can be caused by overlap, patches were generated after this
partitioning. During the training and validation process,
metrics were computed patch-wise.

4.3 Single-Scale Architectures

First, we experimented with architectures based on U-
Net [12] in order to establish a baseline and test con-
figurations for data generation, as well as the properties
of transformer-based networks and their usefulness within
the domain of histopathology. For these U-Net-based de-
signs, both encoder and decoder blocks based on trans-
formers and convolutional blocks were utilized.

After these experiments, we focused on more complex
and recent architectures, which generally perform better
in multi-class semantic segmentation, with one of them
being SegFormer [16] and the other being Upernet. Ex-
periments on the SegFormer architecture were conducted
with only small deviations from the original publication.
The Upernet architecture was changed from multi-task to
single-task with a Swin Transformer backbone. Back-
bone, which we used as an encoder for Upernet, remained
the same. All the previously mentioned single-scale ar-
chitectures maintain their original parameters, with al-
terations limited to their training parameters and minor
implementation-related deviations. The transformer vari-
ants of these architectures employ the base size of the Swin
encoder.

4.4 Multi-Scale Architectures

After the first iteration of experiments with a single scale,
we focus on experiments combining multiple scales. Vi-
sion transformers have some different properties than con-
volutional neural networks, with the most important ex-
ample being that they lack their intrinsic biases. Addition-
ally, features of these two methods vary significantly [11],
with global features being present at much earlier network
stages. Simultaneously, various new layers and architec-
tural elements were introduced in vision transformers and
transformers in general, some of which do not have their
counterparts within convolutional architectures. We try
to improve the prediction accuracy of single-scale mod-
els evaluated in previous iterations using various methods,
which we have divided into three categories:

1. Early fusion, where a single encoder is used and im-
ages from three different scales are combined before
the first encoder stages

2. Intermediate fusion, where either three encoder
branches are used and features are combined between
stages from top to bottom, or a single encoder is used
sequentially

3. Late fusion, where three images are passed through
branches separately and fusion is performed on fea-
tures passed before passing them to the encoder

We chose the Upernet-based architecture for these ex-
periments involving multiple magnifications since it per-
formed significantly better than other segmentation net-
works.

4.4.1 Early Fusion

The first method involves using a single encoder and merg-
ing its input before its first stage, concatenating channel
dimensions. The number of blocks used was the same as
for the single-scale encoder, but we increased the number
of heads in the first two stages to 9 to match the complexity
of the network to the increased complexity of the input.

Our second method for early fusion, Upernet T3 is com-
prised of three encoder blocks, which process input triplets
sequentially in a top-down manner, passing contextual in-
formation to higher magnifications. The patch at the low-
est magnification level is processed by the first encoder.
The input for the first stage of the next encoder is the sec-
ond magnification level, and the first stage of this encoder
produces a feature map that is prepended to the feature
maps produced by the first encoder. This information is
then fed into the feature pyramid network (FPN), which
produces a single, combined feature map. This map is then
fed into the remaining stages of the second encoder. After
that, the same operation is carried out with the second and
third encoders, respectively. The feature maps produced
by the third encoder are subjected to processing with pyra-
mid pooling module (PPM) and FPN Fuse blocks, which
ultimately produce a segmentation mask.

4.4.2 Intermediate Fusion

The first model architecture, which we implemented with
respect to intermediate fusion, marked as Upernet T6, was
intermediate fusion with the use of cross-attention, visual-
ized on Figure 3. We used three separate Swin encoders.
Images taken at different scales are passed through en-
coder stages, with each stage being followed by a cross-
attention stage. The cross-attention stage is composed of
two cross-attention blocks followed by layer normaliza-
tion, where the first cross-attention blocks takes an in-
put low smallest magnification as context and intermediate
magnification as an input and the second one takes high-
est magnification as an input and result of previous cross-
attention as context. The intuition behind this idea was

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
10



that, using purely attention-based mechanisms, we could
pass information between the encoder stages of these three
branches in a top-down manner.

Contextual
Branch

Small
Branch

Linear
Mapper

K

V

Q

X Softmax

X +
Linear
Mapper

Linear
Mapper

Figure 3: Cross-attention module

The second architecture utilizing intermediate fusion,
with a designated label of Upernet T7, functioned in a
similar manner, but instead of cross-attention, we fused
class (CLS) token with patch tokens of higher magnifica-
tion using convolutional layers. First, since Swin does not
contain an explicit learnable CLS token, we compute it us-
ing an embedding layer, which takes input patch tokens as
input, passes them through layer normalization followed
by adaptive average pooling and a linear layer, produc-
ing a single class token representing all patches combined.
This token is concatenated with patch tokens from higher
magnification, and dimensions are reduced back to their
original size using point-wise convolution. This way, we
attempted to fuse features between three encoder branches
by passing an aggrieved CLS token to lower magnifica-
tions.

4.4.3 Late Fusion

As for late fusion, we experimented with two methods as
well. Our first method, named Upernet T2, was composed
of three swin encoders, each used for different magnifica-
tion level, all of them of same size. Since there are three
encoder branches, the outputs of these stages need to be
merged. For this, three outputs are first rearranged so that
the height and width dimensions are reshaped into a single
dimension, representing all tokens. Then we concatenate
these tokens and pass them through an MLP block with
the GELU activation function, which reduces their num-
ber to their original number. Finally, they are rearranged
back to their original shape, and the resulting feature map
is passed through the same PPM and FPN Fuse blocks.
This architecture is shown on Figure 4.

The second method, named Upernet T5, utilizes fea-
ture merging instead of linear layers with a single cross-
attention block, merging feature maps that are outputs
of the last encoder stages. First, images from three se-
lected scales are passed through all three encoders. Subse-
quently, the feature maps from the last encoder stages are
passed through a self-attention block. Cross-attention is
done twice, with the objective of passing contextual infor-
mation from the lowest to the highest magnification level.

The feature map produced by the second cross-attention
module is then passed through the FPN Fuse block, result
of which is then passed through the PPM block together
with other features from the lowest magnification level.
We hypothesized that the application of the self-attention
mechanism in this manner may prove useful for passing
high-level features at lower magnifications.

Linear

Swin Stage

2x Swin

Block

Swin Stage

2x Swin

Block

Swin Stage

2x Swin

Block

Swin Stage

2x Swin

Block

Parallel Swin Encoder Branches

Concat Concat Concat Concat

3 x H/4 x W/4 x C 3 x H/8 x W/8 x 2C 3 x H/16 x W/16 x 4C 3 x H/16 x W/16 x 4C

Rearrange Rearrange Rearrange Rearrange

Linear Mapper Linear Mapper Linear Mapper Linear Mapper

Rearrange Rearrange Rearrange Rearrange

PPM

Module
FPN FuseMask Head

Figure 4: Architecture of Upernet T2 with three encoder
branches and late future fusion

4.5 Masked Image Modeling

The effects of masked image modeling within the domain
of histopathology have not yet been thoroughly studied.
Thus, we focus on self-supervised training using masked-
image modeling with iBot [17], which obtained state-of-
the-art performance on various vision tasks outside of the
medical domain.

iBot, similarly to DINO [4], employs two views created
by augmenting the input image. Since it was not originally
trained on medical images, we changed several parame-
ters of these augmentations in order to accommodate the
medical domain. iBot first applies local and global trans-
forms, which produce local and global crops from the in-
put image. After a visual evaluation of augmented crops,
we changed the range of global crops to be between 0.7
and 1, from the original 0.14 and 1, and the range of lo-
cal crops to be between 0.2 and 0.4, increasing the orig-
inal values of 0.05 and 0.4, since such small patches did
not contain sufficient information. Additionally, we re-
moved color jitter and random grayscale from both local
and global transforms and reduced the probability of solar-
ization and Gaussian blur to 0.1. Experiments were done
on ViT backbones on three different scales. For highest
magnification, we used patch size 16, since we found it
generally delivered better self-supervised results than with
patch size 8. On intermediate and lowest magnification,
we used patch size of 4, since we found, that smaller patch
sizes on lower magnification levels provided necessary in-
crease in resolution of attention maps.
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5 Results

Within our single-scale experiments, we have found con-
volutional U-Net to be worse performing in comparison
with transformer-based U-Net with respect to dice score.
However, it obtained better IoU and per-class accuracy.
Thus, we evaluated, that Swin-based U-Net performs on
par with its convolutional counterpart, but with better in-
ference and training speeds. Even though Segformer is a
model with high throughput and efficiency, it performed
significantly worse than Upernet, which outperformed all
other evaluated models, as is shown within Table 1.

Table 1: Quantitative single-scale model evaluation

Models mIoU mDice Per-Class Acc
Conv U-Net 29.44 36.57 36.27
Swin U-Net 28.58 36.91 35.72
Segformer 36.80 44.15 43.73
Upernet 46.03 56.05 55.1

Similarily to single-scale models, we have obtained sev-
eral interesting results with multi-scale models. First,
attention-based feature merging performs better when im-
plemented as intermediate feature fusion rather than late
fusion. Second, it was overcome by a method combin-
ing linear layers with late fusion. However, despite the
fact that Upernet T6 with three encoder stages performed
worse than Upernet T2 of the same size, its counterpart
with a single encoder outperformed Upernet T6 of the
same size. Thirdly, both methods of early fusion per-
formed worse than their late and intermediate counter-
parts. Lastly and most importantly, all three best perform-
ing models outperformed their best performing single-
scale counterpart. This result is attributable to the use
of multiple contextual magnifications, which allowed the
model to be trained on a specific dataset. Table 2 dis-
plays the respective results of the five architectures with
the highest performance.

Table 2: Quantitative multi-scale model evaluation

Models mIoU mDice Per-Class Acc
Upernet T3 40.8 47.92 48.24
Upernet T2* 46.12 54.67 53.96
Upernet T6* 48.15 56.52 55.68
Upernet T6 49.42 58.34 57.96
Upernet T2 52.13 62.25 61.51

* Single encoder used sequentially instead of three parallel encoders

5.1 Masked Image Modeling

Our qualitative evaluation involved the analysis of atten-
tion maps within the last transformer block. We used

three different scales to measure how well these attentions
worked on all three transformers that were trained with
iBot. These were the same scales that were previously
used for multi-scale experiments: 1, 4, and 8.

We started our experimentation at the highest magni-
fication. Since the pretrained model was focusing only
on white regions and ignoring regions with tissue com-
partments, we found the results to be underwhelming af-
ter training with patch size 8 and examining the attention
maps of the model. However, when we increased the patch
size to 16, we noticed that the attention heads began to
concentrate more on the different kinds of tissue and small
structures within the images, particularly cells. Follow-
ing a qualitative analysis of attention, we discovered that
heads 4, 7, and 12 acquired the ability to tell surrounding
tissue from cells, which is particularly evident in images
of tissue devoid of bubbles or other white regions. Within
Figure 5 are visualized attention maps from heads 4, 3 and
2 of the last block of the encoder network, attending cells,
stroma and fatty tissue, respectively.

Figure 5: Visualized attention maps of cells (left), stroma
(center) and fatty tissue (right) from the last encoder block
with the highest magnification used

Secondly, we trained the same model with a scale of 4,
with the model patch size set to 8. Even though the model
did not focus on cellular structures as much as with higher
magnification, upon analyzing various tissue types, we ob-
served that it rather focused on differentiating between tis-
sue compartments. Within fatty tissue, we can see that the
attention map of heads 0, 1, 3, and 9 focused on mem-
branes, and heads 2, 4, 5, 7, and 8 focused more on the fat
itself, which resides within these membranes. Structures
recognized by head 6 were not as apparent. However, it
seems like model focused more on darker structures, in-
cluding cells and darker tissue material where membranes
meet. Within the darker patches that do not contain fat,
we observed that attention within heads 0, 1, 3, 6 and 9
focused on stroma tissue connecting various other com-
partments, and attention within head 11 focused on darker
regions of an image. On Figure 6, we can observe atten-
tion maps attending connective tissue and darker regions
within fatty patches, as well as darker regions and stroma
within patches containing tissue.

Finally, we trained a Swin transformer, which could be
utilized for additional fine-tuning experiments, following
the same approach as with ViT. We processed randomly
sampled images and extracted features from the final layer
of the encoder network. After applying T-SNE dimen-
sionality reduction, we clustered the points using K-Means
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Figure 6: Visualized attention maps of connective tissue,
dark regions and stroma from the last encoder block with
patches from lower level of magnification

and visualized two components in Figure 7, with images
representing the cluster centers. Figure 8 presents points
accompanied by their respective images. The formation
of clusters containing visually similar images is observed,
with the primary basis for similarity being their visual
characteristics.

6 Conclusions

First, we focused on the development of a full data pro-
cessing pipeline that prepares whole-slide images for ei-
ther training or analysis. Following a preliminary analy-
sis of available datasets, we focused on evaluating single-
scale models on the BCSS dataset and comparing convo-
lutional networks with transformer-based networks, which
have gained popularity in recent years. For the subse-
quent experiments involving multiple contextual magni-
fications, we chose the top-performing architecture based
on an evaluation of these models. Experimenting with var-
ious variations of Upernet, we discovered that our multi-
scale modification, Upernet T2, which is based on the late
fusion of features between three backbones, outperforms
its single-scale counterpart. We conclude, based on these
results, that contextual usage improves the performance of
the model.

Finally, we examined the effects of self-supervised
learning with masked image modeling and its applicabil-
ity in the medical field. After analyzing vision transform-
ers pretrained with iBot, we conclude that masked im-
age modeling is applicable to this domain and that models
trained with masked image modeling may prove useful in
future experiments.

Further research is required in the area of self-
supervised pretraining. We found that this pretraining
method is not appropriate for lower magnifications, but
we hypothesize that this pretraining process could be gen-
eralized to multi-scale image processing by changing the
training process so that all three encoders would learn rep-
resentations together rather than separately. This requires
changing the iBot head to accommodate the use of three
backbones and changing the loss function so that all three
encoders can be trained. Furthermore, we used only small
models and a limited number of pretraining samples, since
our evaluation of the self-supervised algorithm concen-
trated primarily on the analysis of feature maps. In order
to evaluate larger Swin models, which should perform bet-

ter with self-supervised pretraining, more training samples
are required.

Weakly supervised learning could be incorporated into
the fully supervised stage of our training pipeline. Since
the BCSS dataset contains whole-slide images, but only
ROI-level annotation, it is possible to use surrounding
regions progressively as a method of weakly-supervised
learning. As the segmentation model is trained from the
labeled data during training, it can also produce segmen-
tation masks for nearby regions, resulting in their weak la-
bels, which can subsequently be added to the training set.
Since the areas around labeled patches have some com-
monalities, we hypothesize that the model could use this
shared information to generate reliable weak predictions.
However, as training goes on, the factor of expansion must
decrease because patches farther away do not benefit from
proximity to the labeled patches.
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7 Appendix

Figure 7: T-SNE projection with K-Means clustering and
patches from cluster centers

Figure 8: T-SNE projection of features from 10,000 im-
ages, with images as points
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Abstract

Many deep learning applications are based on graph data
in order to explore relationships or to analyze structures.
Labeling this data is expensive and often requires ex-
pert knowledge. For the application of graph cluster-
ing to neuron data, the SOTA method GraphDINO gen-
erates self-supervised graph embeddings combined with
the downstream task of clustering these embeddings. We
observe on a particularly challenging neuron dataset that
this method does not lead to satisfying clustering results.
Therefore we use the graph embeddings generated by
GraphDINO as an initial starting point to improve the net-
work and to guide the network training. To achieve this,
we developed the visual analytics framework NetDive.
The user can analyze the graph embeddings and label sin-
gle neurons that are falsely clustered. This annotation in-
formation is then used to train a semi-supervised model.
To this end, we developed a network architecture, titled
GraphPAWS, that assembles components of GraphDINO
and of the semi-supervised network architecture PAWS.
The model training can be started from within the visual
analytics application NetDive and the resulting graph em-
beddings are available in NetDive as soon as the retraining
is completed. We demonstrate how we iteratively improve
the model performance using NetDive and GraphPAWS
and evaluate our model against the self-supervised SOTA
for our dataset.

Keywords: Visual analytics, Graph embeddings, Graph
transformer

1 Introduction

Many deep learning applications are based on graph
data, e.g. in the fields of anomaly detection in networks,
relationship analyses in social networks and in neuro-
science. The use case investigated in this paper is to
cluster unlabeled spatial graph data that represents unreg-
istered drosophila melanogaster larval level 1 neurons to
reproduce meaningful cell types, addressing the objective
of neuroscience to understand the correlation between
nerve cells, also named neurons, and behavior [17, 1, 23].
The cell type is an annotation that a neuron receives based
on predefined features. Depending on the feature set, the

cluster groups vary. Key features explored in the literature
are morphology, genetic markers, the neuron position
within the nervous system, connectivity and intrinsic
electrophysiological signatures [8]. We aim to cluster the
neurons solely based on their morphology and aim to find
correlations to meaningful cell type assignments as the
SOTA method GraphDINO does not produce satisfying
results.
This use case embeds in the broader challenge of clus-
tering data without initially having labels to train the
deep learning model with a supervised objective function.
Experts initially do not know what the network should
learn, but want to be able to steer the training while
gathering new knowledge about the resulting clusters.
This leads us to design a pipeline that addresses these
problems by steering the training of the graph network
through incremental analysis of the generated embeddings
and by incorporating the new knowledge back into the
training process.

Contribution: We develop a semi-supervised net-
work architecture GraphPAWS that adopts the graph
encoder of the self-supervised deep learning architecture
GraphDINO and the processing of support samples of the
semi-supervised deep learning architecture PAWS. The
support samples are sparse annotations for the input data
and the count of support samples is variable. The result-
ing graph latent embeddings are visualized in a visual
analytics (VA) web application we title NetDive that we
developed to analyze the embeddings, to iteratively add
new support samples if needed and to retrain a model
with this new information. For the evaluation we use
manually labeled neurons to compute the performance
analytically and we combine this with visual inspection
and comparative analysis enabled by the VA application.
The GraphPAWS architecture is applicable to a broader
range of graph clustering tasks and NetDive is partly data
type agnostic and therefore applicable also to embeddings
of other input data types.

2 Background and Related Work

Our work combines graph representation learning with VA
to utilize the human in the loop to incrementally improve
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the network performance. We use the labels generated
within the VA application as support samples for the semi-
supervised network architecture, whilst we make use of
contrastive learning to process the unlabeled input sam-
ples.

2.1 Contrastive Learning

Contrastive learning belongs to the most successful self-
supervised learning methods. It involves the derivation of
supervisory signals from the input data to guide the learn-
ing process [14].

Contrastive learning techniques optimize the model out-
put by embedding the latent representations of variations
of the same input sample close to each other, while in-
creasing the distance between the embeddings of differ-
ent input samples. The pairs of samples that are either
attracted or repelled by each other are titled positive pair
or negative pair respectively [14]. Phuc Le-Khac et al.
[12] explain, that contrastive learning is not about learn-
ing from individual samples, but instead from comparing
multiple samples. Positive pairs are generated by applying
data augmentations to an input sample to get variants of
input data that are considered similar.

The original non-augmented input sample is called an-
chor view and the augmented variant is referred to as the
positive view. Negative pairs are generally formed by com-
paring the anchor view with all the other input samples. If
contrastive learning is solely based on positive views [21],
the model architecture needs to ensure that the latent rep-
resentations do not collapse to a single node in the embed-
ding space. This phenomenon is called node collapsing.
Another force needs to increase the space between differ-
ent samples.

A contrastive model includes an encoder that maps the
input view x ∈ X to a representation vector v ∈ Rd and a
transform head h(v;Φh) : V → Z, where Φ represents the
model parameters, that are either used to aggregate fea-
tures from multiple representation vectors or to reduce the
dimensionality of a feature representation vector [12].

Prominent models that use contrastive learning to
learn image representations are SimCLR [6], MoCo [10],
BYOL [9], SwAV [4], PIRL [20] and DINO [5]. GraphCL
[24] and GraphDINO [21] are examples for contrastive
models that process graph data.

2.2 Visual Analytics for Latent Embeddings

There are in general two user groups in the field of visual
analytics (VA) for deep learning [3]: model-driven users
that compare model performances and data-driven users
that study properties of the underlying data. A crucial cri-
teria for VA applications is global check and local check.

Addressing this, a popular approach to compare embed-
ding spaces is the comparison of local neighborhoods of
individual objects in combination with a global compar-
ison of the embeddings [11, 3]. The global embedding

comparisons are typically implemented using scatter plots
that are interlinked with detail views of selected objects
[11]. Therefore dimensionality reduction algorithms are
used to map the high-dimensional data in 2D or in 3D.
The most common dimensionality reduction algorithms
are PCA, tSNE, and UMAP [19]. Boggust et al. [3] dis-
covered, that users prefer deterministic dimensionality re-
duction algorithms and that they distrust t-SNE and there-
fore use PCA dimensionality reduction as the default set-
ting for the global projection. The visual analytics tool
EmbComp [11] implements a binning feature for the scat-
ter plots to manage the scale of big datasets. The scatter
plots can be investigated using single object selection or
multiple object selection using for example a rectangle se-
lection tool [11, 15].

The investigation of local neighborhoods is built upon
varying metrics. EmbComp visualizes point-wise com-
parison metrics and distribution comparison metrics. The
metrics are visualized in bins which can be selected by the
user to select the corresponding objects. The Embedding
Comparator [3] visualizes metrics corresponding to the lo-
cal neighborhoods of a selected datapoint with a histogram
of scores, with color-encoding in the global embedding
plots and with local neighborhood dominoes, i.e. multiple
small visualizations. These small visualizations can be fil-
tered and linked views enable the comparison between vi-
sualizations. The Embedding Comparator highlights dat-
apoints with least and highest similarities to address the
concern of users stating that they make object selections
in an unprincipled way and might miss important correla-
tions between the embedding spaces. Emblaze [19] states,
that the Embedding Comparator lacks in finding relevant
neighborhoods and addresses this issue in their applica-
tion. The novel approach of Emblaze is comparison of em-
bedding spaces using Star Trail augmentation. The trails
connect the embeddings of the same object in different em-
bedding spaces and the transition between the spaces can
be animated using a slider. The connection lines, i.e. Star
Trails, between the object embeddings quickly reveal dat-
apoints that vary the most between multiple embedding
spaces.

While partly being data type agnostic, the Embedding
Comparator, EmbComp and Emblaze as well as many
other lines of research regarding visual analytics for em-
beddings focus on NLP use cases.

In the field of graph embeddings the tools Embed-
dingVis [13], CorGIE [15], GEMvis [7] and BiaScope [18]
were developed, which are focused on node embedding.

CorGIE [15] encodes the graph nodes and trains a GNN
to embed the nodes in the latent space. The user can inter-
act with the node embeddings and select clusters of nodes
using a rectangle selection tool. The selection leads to a
topology space and feature space analysis. Regarding the
topology space, the k-hop neighbors, i.e. the neighbors
that are reachable by walking along a path with k topo-
logical hops, of the selected nodes are visualized within
a visualization of the original graph. The user can evalu-
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Figure 1: Our pipeline including our visual analytics tool NetDive and our model architecture GraphPAWS.

ate whether the node embeddings corresponds to the topo-
logical closeness. The feature space analysis panel shows
histograms of feature value distributions of the selected
nodes.

GEMvis [7] also interlinks a visualization of the original
graph and the node embeddings. The selection of nodes
can be applied regarding predefined node metrics. Chen
et al. define 9 node metrics, including the node degree
and node eccentricity and the node closeness. The met-
ric values for each node are depicted in parallel coordinate
plots. The user can interact with these plots to select the
according nodes in the original graph and in the embed-
ding space.

While the aforementioned applications EmbeddingVis,
CorGIE, GEMvis and BiaScope are developed for node
embeddings, we implement an application for whole graph
embeddings. Advanced applications exist to leverage VA
to compare and analyze the embeddings generated with
deep learning models. We add the component of dynami-
cally adding new labels to retrain the model while explor-
ing the latent space that the input graphs are embedded in.
We focus the usage of VA for artificial intelligence (AI)
for the specific case, in which ground truth is difficult to
gather and can only be provided to nudge the training in
the right direction. We furthermore integrate detail views
specific to the use case of exploring graph embeddings.

3 Methodology

Figure 1 depicts the pipeline that we set up to incremen-
tally gain new knowledge in order to cluster graph data.

The preprocessed data serves as input data to train, val-
idate and test the GraphPAWS model. GraphPAWS is dis-
cussed in Section 3.1. The model outputs latent represen-
tations of the input graphs. We store the latent represen-
tations on the filesystem and the visual analytics applica-

tion NetDive, discussed in Section 3.2, accesses the data
and provides the user with visualizations and user interac-
tions to explore the latent embeddings and the associated
neurons. This leads to new knowledge that the user can
leverage to retrain the GraphPAWS model.

3.1 GraphPAWS

Our architecture GraphPAWS adopts the graph trans-
former components of GraphDINO and the semi-
supervised architecture of PAWS.

3.1.1 GraphDINO: Self-Supervised Learning for
Graph Data

The GraphDINO network [22] implements self-supervised
contrastive learning based on transformer networks to find
similarities between graphs based on the graph topology
and spatial node information. GraphDINO is an adaptation
of the DINO network for image data [5].

The GraphDINO model builds upon a student-teacher
architecture that is used to generate latent representations
of an input graph x. Both the teacher and the student pro-
cess variations of x. The variations x1 and x2 are sub-
sampled to a fixed number of nodes. Graph x2 is passed
to the teacher encoder and graph x1 is augmented before
being passed to the student encoder. The augmentations
that are used are subsampling, rotation, node jittering, sub-
graph deletion, cumulative jittering and a random transla-
tion of the soma depth.

The student and the teacher network are identically
initialized transformer networks that use the normalized
Laplacian for the positional encoding. The outputs of the
student and the teacher network are the latent represen-
tations z1 and z2 respectively. The multi-layer perceptron
(MLP) implements a normalization layer and a linear layer
to translate the latent representations z1 and z2 to p1 and
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p2. The objective of the network is to decrease the loss that
measures the similarity of p1 and p2, while not resulting
in node collapsing.

GraphDINO uses a cross-entropy loss to measure how
similar the latent embeddings of a sample p1 and p2 are.

3.1.2 PAWS: Semi-Supervised Learning for Image
Data

PAWS [2] implements a semi-supervised deep learning ar-
chitecture based on contrastive views and support samples
to assign one-hot encoded pseudo labels to input images.

PAWS implements three processing streams. Similar
to GraphDINO, it processes an input sample and an aug-
mented version of the input sample in order to train invari-
ances that lead to network generalization. PAWS imple-
ments the image augmentations random crop, horizontal
flip, color distortion and blur. Additionally a mini-batch
of labeled support samples is processed in the third stream.
The support samples are annotated samples that function
as prototype samples for a cluster. PAWS assigns a pseudo
label based on the similarity of the latent embeddings of
the anchor view and the positive view in relation to the
support samples. PAWS expects each mini-batch to be
composed by an equal number of instances for each sam-
pled class.

The objective function uses the cross entropy function
to measure the similarity of the pseudo-labels of the an-
chor view and the positive view. To avoid node collaps-
ing, PAWS uses sharpening in the objective function. The
sharpening function increases the confidence of the prob-
ability distributions, i.e. decreases the entropy.

Additionally the objective function adds a regular-
ization term, titled mean entropy maximization (ME-
MAX) that aims to increase the entropy of an unla-
beled training-batch, to ensure that each label is get-
ting predicted. More concretely, distributions like
[[1.,0.,0.], [1.,0.,0.], [1.,0.,0.]] are penalized and distribu-
tions like [[1.,0.,0.], [0.,1.,0.], [0.,0.,1.]] are favoured.

3.1.3 GraphPAWS: Semi-Supervised Learning for
Graph Data

Our architecture GraphPAWS, depicted in Figure 2, is an
adaptation of GraphDINO and PAWS. We adopt the PAWS
architecture that processes an anchor view x̂, a positive
view x̂+ and a support sample mini-batch x̂s. We replace
the encoder of PAWS with the GraphDINO graph trans-
former. The encoder generates the latent embeddings z for
input x̂ and respectively zs and z+ for the support sam-
ple mini-batch and the positive view. The support sam-
ples are fed into the similarity classifier to compute the
pseudo-labels p and respectively p+ for the anchor view
and the positive view. While PAWS expects the support
sample mini-batch to be balanced, we implement weight-
balancing in the GraphPAWS adaptation of the similarity

positive
view

support
samples

anchor
view π d

π d

^X z p

^X+ z+ p+

^X S zS

YS

H(p , p)+

graphs (soft) pseudo-labelsrepresentations

Transformer

Transformer
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Student-
transformer

PAWS:
Objective
based on target
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NetDive:
Labeled
samples

YS

PAWS:
Similarity
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Figure 2: The semi-supervised GraphPAWS architecture
for graph data.

classifier to compensate for class imbalances. This gives
the user more flexibility while annotating neuron graphs.

The objective function is denoted with H(p+, p) in Fig-
ure 2. It corresponds to the objective function imple-
mented by PAWS [2], which is based on cross entropy.
We additionally train on the mean-squared error (mse) ob-
jective function.

The regularization term ME-MAX, implemented in
PAWS, is added both to the cross-entropy and the mse
objective function. We add a second regularization term
that we title One-Hot-Enforcement, which enforces one-
hot encodings of the embedded vectors. While ME-MAX
operates over a batch of samples, One-Hot-Enforcement
is applied to single training samples and averaged over a
batch.

Equation 1 depicts the objective function in relation
to the hyperparameters λ and γ that determine the rele-
vance of the regularization terms ME-MAX and One-Hot-
Enforcement,

loss+λ ∗ME-MAX+ γ ∗One-Hot-Enforcement. (1)

After training the latent embeddings are evaluated by la-
tent space clustering through GMM or k-means and eval-
uated against ground truth labels.

3.2 NetDive

NetDive is developed for model engineers that design and
refine the model and for domain experts to explore the
graph data and to choose a model from the pre-trained
model database. NetDive consists of a backend server
to read and write data from and to the filesystem and a
React frontend that communicates with the backend. On
demand, i.e. using the refresh buttons in the user inter-
face, the backend applies dimensionality reduction to the
requested pre-computed latent embeddings. The frontend
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1 23

4

Figure 3: NetDive layout: (1) First 3D View, (2) Second
3D View, (3) Parameter Panel, (4) Detail View.

visualizes the dimensionality reduced latent embeddings
in three dimensions. We chose to visualize the data in
three instead of two dimensions to achieve a clearer clus-
ter separation. This can come with the downside of dis-
tortion and occlusion. As clustering is not dealing with
issues of length and angle preservation, and the points rep-
resenting our use case of neurons are not covering a lot of
space, which limits the issue of occlusion, we accepted
these downsides. The scatterplots are implemented with
THREE.JS. We use the clustering algorithms k-means and
GMM to display the cluster predictions by color coding
the datapoints in the scatterplots. The clustering algo-
rithms are applied in the backend to the k latent dimen-
sions that GraphDINO outputs before applying the dimen-
sionality reduction. The prediction labels support the user
to evaluate the quality of the latent embedding space.

3.2.1 User Interface

Figure 3 depicts the layout of NetDive. The user interface
(UI) consists of three panels. Two views, annotated with
(1) and (2), and a detail panel annotated with (3). The
two view panels provide the user with parameters embed-
ded in an accordion menu, annotated with (4), to select a
model and analyses values to load and explore the latent
embeddings in form of scatterplots in 3D generated by the
corresponding selected model.

The user can choose between UMAP, t-SNE and PCA to
reduce the 32 latent dimensions to three dimensions. Fol-
lowing Boggust et al. [3] we set PCA as default value. The
datapoints in the scatterplots are color coded. The color
of the datapoints is either assigned based on a selected
ground truth or based on the cluster predictions generated
with the selected clustering algorithm. The implemented
clustering algorithms are k-means and Gaussian Mixture
Models (GMM). The user can select the number of clus-
ters to generate. The color codes can be used to toggle be-
tween the ground truth and the predicted clusters in order

Figure 4: Selecting a lineage using the legend panel.

to detect similarities and dissimilarities. The color codes
further aid with the comparative analyses using the two
views, annotated with (1) and (2) in Figure 3.

Expandable legends, depicted in Figure 4, list the clus-
ter labels that represent the latent embeddings. The labels
are associated with the selected color codes. In Figure 4
the Hartenstein lineages, discussed in Section 4.1, are se-
lected as a ground truth and the color codes correspond to
the ground truth. The user can hide/show and select all
datapoints with specific color codes within the legends.

View (1), view (2) and the detail panel are linked, im-
plementing the concept of multiple linked views (MLVs),
displayed in juxtaposition. When a user selects single or
multiple latent embeddings, the corresponding datapoint
in the other view is highlighted, if present, and the detail
panel depicts a scrollable list of tiles depicting informa-
tion about the selected node(s). The tile headers show dat-
apoint identifier, a button to select the according datapoint
for a 3D graph rendering, which is displayed on top of the
detail panel, and a button to add or update the datapoint
label. The tile content shows pre-rendered images of the
selected datapoint.

3.2.2 Relabeling and Retraining

After initially activating the relabeling feature using the
Relabeling slider in the details panel, all datapoints are
rendered gray and the color coding is disabled.

The user can then select embedded points and relabel
them in the relabeling modal. The modal, i.e. the overlay,
is depicted in Figure 5. The user can either create a new
cluster group and add the selected id for the embedded
graph to that group or they can add it to an existing cluster
group.

The new labels are forwarded to the network training.
The training is triggered within NetDive and processed us-
ing a subprocess call. The default hyperparameters corre-
spond to hyperparameters of the currently loaded model
and the user can update the network hyperparameters for
the training within NetDive in the retraining modal. After
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Figure 5: Relabeling neurons in NetDive.

the training is completed, the embeddings generated with
the new model for the chosen inference set will be avail-
able in NetDive.

NetDive aims to make the analyses and the iterative
training fast and intuitive.

4 Experiments

We conduct a series of experiments to evaluate our dataset
(Section 4.1) on the self-supervised SOTA architecture
GraphDINO (Section 4.2) and on our architecture Graph-
PAWS (Section 4.3).

4.1 Data

The drosophila melanogaster neuron graphs extracted
from CATMAID, a platform for a collaborative recon-
struction and annotation of data, are represented as undi-
rected, acyclic graphs in three dimensions with the root
node representing the soma, i.e. the cell body of the neu-
ron.

We obtained the set of all available 7297 drosophila
melanogaster larval neurons from CATMAID and re-
stricted our analysis to a subset of 2970 neurons that was
annotated by Michael Winding [23], as this subset con-
tains more reliable neuron traces. We reduced this subset
to 2541 neurons by removing all neurons that do not con-
tain exactly one node annotated as soma and by removing
all neurons with less than 200 nodes. CATMAID provides
the neuron graphs as SWC files and we keep the (x,y,z) for
each node of the neuron graph.

For the ground truth we generated a file that stores mul-
tiple ground truth cell type labels for each neuron id. The
annotation files includes manually labeled cell types that
we hand-crafted based on visual inspection. Furthermore
it includes expert annotation by Dr. Volker Hartenstein
[16]. Dr. Volker Hartenstein analyzed lineages, that de-
scribe neurons deriving from the same stem cells called

neuropblasts. He states, that neurons within a lineage do
not only share the same stem cell, but are also alike re-
garding the morphology. The datasets we define in out
experiments are based on these lineages annotated by Dr.
Hartenstein. Lineage BAlc neurons are located in the lat-
eral surface of the antennal lobe and lineage CM4 in the
postero-medial brain cortex.

We conduct our experiments on two subsets of the
drosophila melanogaster dataset. We use the lineages
BAlc and CM4 that Dr. Volker Hartenstein specified and
divide these lineages in visually similar subgroups. Some
lineages are visually coherent, whilst the lineages BAlc
and CM4 fall into visually distinguishable groups. Lin-
eage BAlc consists of 26 neurons, 13 in each brain hemi-
sphere, and divides in three cluster groups. CM4 contains
66 neurons, 33 in each brain hemisphere, and divides in
four cluster groups.

4.2 Self-supervised Training

We train GraphDINO for the learning rates ∈ {0.001,
0.0001, 0.00001}. While Weis et al. train on batch size
∈ {32, 64, 128} we train on batch size ∈ {16, 32} due
to the smaller training dataset. We train with a 60-20-20
training-validation-test split on dataset BAlc.

We evaluate with 4 fold cross-validation for k-means
and for GMM on the validation data by averaging over
100 k-means / GMM adjusted random index (ARI) scores
per fold. ARI measures the similarity between two clus-
terings. We use the ARI computation of the python library
sklearn, which outputs values between -0.5 for especially
discordant clusterings and 1.0 for identical clusterings.

4.3 Semi-supervised Training

We trained 896 models using a grid-search on Graph-
PAWS for the dimensions loss function, ME-MAX in-
fluence λ , One-Hot-Enforcement influence γ , batch size
and learning rate. We used the values [’cross entropy’,
’mse’] for the loss, the values [0, 0.1, 0.5, 1] for λ
and γ , the values [0.001, 0.003, 0.006, 0.0001, 0.00006,
0.00003, 0.00001] for the learning rate and the values [4,
8, 16, 32] for the batch size. We ran the hyperparameter
search for 100 epochs. Accordingly to the self-supervised
GraphDINO training, we train with a 60-20-20 training-
validation-test split on dataset BAlc.

We evaluate with 4 fold cross-validation for k-means
and for GMM on the validation data by averaging over
100 k-means / GMM ARI scores per fold. We list the top
performing models and eliminate the models that suffer
from node collapsing and from an incapability to learn.
We therefore analyzed the feature distributions of the la-
tent embeddings and the loss curve. Figure 6 depicts a
loss curve with downwards trend on the top right side, in-
dicating that the model learns, while the loss curve on the
top left side does not decrease. On the bottom left Figure
6 depicts the feature distributions of the latent embeddings
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that have marginal standard deviations, indicating that all
latent embeddings collapse to the same representation. On
the bottom right side the features are well distributed.

Figure 6: Example loss curves and feature distribution
plots of a model suffering from node collapsing (left) and
a model showing decreasing loss trend and distributed fea-
tures (right).

5 Results and Evaluation

The GraphDINO model with learning rate 0.0001 and
batch size 16 has the overall best ARI performance on k-
means clustering with a score of 0.495.

The GraphPAWS model with learning rate 3e-05, batch
size 32, gamma 1 and lambda 1 has the overall best ARI
performance on GMM clustering with a score of 0.527.
We repeated the training for these hyperparameters five
times. The resulting ARI scores based on GMM clustering
varied between 0.379 and 0.591. We have to consider this
variance of performance when we evaluate the results.

Table 1 compares the ARI scores of the optimal
self-supervised trained model with the optimal semi-
supervised trained model.

Self-Supervised Semi-Supervised
Training Training

Loss cross entropy mse
Learning Rate 0.0001 3e-05
Batch Size 16 32
Gamma - 1
Lambda - 1
ARI 0.495 (k-means) 0.527 (GMM)

Table 1: Results of optimal self-supervised trained model
and semi-supervised trained model. The models are
trained on lineage BAlc.

After determining the optimal GraphPAWS model we
use the same model to train on a different lineage, i.e. lin-

Figure 7: Neuron graph embeddings after each iteration
denoted in Table 2.

eage CM4, to demonstrate the usage of NetDive to itera-
tively explore the data and to feed new knowledge into the
training.

For the NetDive evaluation instead of performing cross-
validation, we train on the whole dataset and evaluate us-
ing the manually annotated CM4 samples that were partly
also used as support samples during the semi-supervised
training.

Initially we simulate the case that no labeled data
is available and therefore train with the self-supervised
GraphDINO model. We load the dimensionality reduced
latent representations of the CM4 neuron graphs into Net-
Dive and analyze the embeddings.

We explore how the ground truth clusters differ from
the predicted clusters and label samples that are most dis-
tant from the visual cluster centroids. The ground truth we
generated is for evaluation purposes only and is not avail-
able in a real use case. We then retrain a model on the
GraphPAWS architecture with the annotated samples. We
do this in three iterations and we add additional support
samples in each iteration.

Figure 7 depicts the embeddings after each iteration,
colored based on the CM4 ground truth. We cannot recog-
nize a clear subdivision into clusters. We must therefore
be cautious in assessing the positive trend in the improve-
ment of ARI scores, reported in Table 2. Table 2 denoted
the ARI scores based on k-means and GMM clustering af-
ter each iteration and lists the neuron ids of the support
samples used for each iteration.

6 Discussion and Conclusion

In this paper, we established a workflow to address the
problem of clustering graph data without initially having a
ground truth for training whilst giving the user the possi-
bility to guide the training process with minimal effort.

After the grid search that we performed in order to find
the optimal GraphPAWS hyperparameters, we had to elim-
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Self-
Supervised
[22]

Iteration
1

Iteration
2

Iteration
3

ARI:
GMM

0.152 0.145 0.143 0.225

ARI: 0.117 0.211 0.191 0.317
kmeans
#Support
Samples

- 4: 1 per
class

8: 2 per
class

12: 3 per
class

Table 2: ARI scores of incremental training with NetDive.
The ARI computation is based on manual ground truth for
evaluation purposes only. The training is performed onlin-
eage CM4.

inate models that had good ARI scores but which suffered
from node collapsing and a lack of learning capability.
These models sometimes had high ARI scores per coin-
cidence.

While we used feature distribution visualizations and
the loss curve plots to evaluate the models, these effects
should also be visible in NetDive, as the embedding space
would not divide in distinct clusters.

The results we achieved with GraphPAWS are not yet
convincing. As documented in Section 5, we see an im-
provement reflected in the ARI scores (Table 2), but this
effect is not clearly reflected in the NetDive clustering
(Figure 7).

In order to address this, it would be an interesting fu-
ture work, to further investigate the model optimization of
GraphPAWS using NetDive, as we see indicators, that the
pipeline that involves labeling support samples and restart-
ing the training is intuitive and effective. We suspect that
training on bigger datasets would eliminate outlier mod-
els and reduce the variance of performance for models
trained on identical hyperparameters, reported in Section
4.3. Furthermore we want to experiment with fine-tuning
the model after adding new support samples, instead of
training new randomly initialized models, and therefore
reduce training times. We also want to employ alterna-
tive subsampling strategies to reduce the input graphs to
a fixed amount of nodes by evenly distributing the resam-
pled nodes.

The NetDive user interface can be improved by adding
simulations that visualize the cluster changes over time
during training with color updates. It is also possible to
add more characteristics of the neurons in the details Sec-
tion and provide interaction techniques like brushing and
linking over a feature space visualization for neurons to
understand correlations between clusters and the cluster
contents. We can extend the spatial representations and
use the properties size and opacity of each data point to en-
code additional information besides the cluster label, e.g.
the certainty of the cluster assignment in the opacity and
the variance over a sequence of models in the size of the
data point.

Regarding the evaluation we want to perform user stud-

ies with experts in the field of neuroscience to see how
users outside the domain of deep learning can use visual
analytics to refine pre-trained models and which features
they are missing in the current NetDive setup.
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Abstract

Electronic Health Records have the potential to enhance
service delivery in the healthcare sector, yet their com-
plexity frequently leads to inefficiencies and user resis-
tance. A major challenge in this context is the identifi-
cation and interpretation of correlations between disease-
specific parameters, requiring domain expertise. In re-
sponse to these challenges, a collaborative research ef-
fort with domain specialists is underway to develop a Do-
main Expert-Oriented Design of a User Interface for the
registry of Inflammatory Bowel Disease (IBD) patients.
This tool aims to be both a database and a basic statisti-
cal tool, designed in the physician’s natural working en-
vironment. The development of this tool is guided by a
modified Patient Experience Design framework that is tai-
lored to the specific requirements of healthcare profession-
als and uses a customized version of the Double Diamond
Design model to improve data collection from clinicians
and enhance effective interdisciplinary collaboration. This
research initiative represents a potentially important con-
tribution to the field of IBD, especially given the absence
of existing tools offering comparable functionality.

Keywords: User Experience, Domain Expert Centered
Design, Electronic Health Records, Inflammatory Bowel
Disease

1 Introduction

User Experience (UX) [3, 11, 13] in healthcare impacts
the efficiency and effectiveness of patient care, particularly
in managing complex diseases like Inflammatory Bowel
Disease (IBD). A well-designed UX is essential for im-
proving diagnostic precision and optimizing clinical work-
flows, leading to better health outcomes [6]. However, the
treatment and management of IBD are often challenged
by the limitations of existing Electronic Health Record
(EHR) systems, which usually struggle with usability is-
sues due to their complex designs, potentially impacting

*lucia.ondovcikova@gmail.com
†miroslav.laco@gmail.com

the decision-making processes of healthcare professionals.
This article aims to address these challenges by design-

ing a user interface for the EHR system, specifically tai-
lored for IBD management, involving domain experts dur-
ing the design process. It focuses on overcoming existing
problems by emphasizing explainability, which ensures
that the system’s data is easily understandable and inter-
pretable by healthcare professionals, thereby facilitating
more informed decision-making. The intention behind this
methodology centered on domain experts is to enhance the
management and understanding of IBD, ensuring an opti-
mal UX for the professionals involved in this domain.

2 Related work

To ensure that the result of our work is effective in deliver-
ing a positive user experience, it is important to select an
appropriate design methodology. Various approaches, in-
cluding the one introduced by Sedlmair et al.[14], provide
a foundational framework for the development of domain-
specific methodologies. In this context, our work aims to
explore the integration of a Domain Expert Centered De-
sign methodology, inspired by the principles of Patient Ex-
perience Design. Secondly, we need to highlight the im-
portance of data visualization consistency within EHRs.
Finally, we analyze the available solutions that have par-
tially attempted to address these issues.

2.1 Patient Experience Design

The standard double diamond approach [2, 1, 10], com-
monly used in domain-specific areas like medicine, proves
insufficient, leading to the development of the Patient Ex-
perience Design (PXD). This methodology represents a
major change in how healthcare services are designed and
delivered, focusing primarily on the needs of the patient. It
marks a significant shift from traditional healthcare mod-
els, where patient interactions were often secondary to
clinical procedures and operational efficiency.

Lisa K. Meloncon defines PXD as a systematic ap-
proach aimed at exploring the relationships between tech-
nology and human activities in healthcare [12, 9]. As
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Figure 1: Knowledge domains of PXD with primary con-
cepts [12].

demonstrated by Meloncon in Figure 1, PXD brings to-
gether 3 main domains of knowledge: Research method-
ology, Usability, and Technical communication. The au-
thor details them in her study as outlined below [12]. Re-
search methodology refers to the systematic methods and
approaches used to collect information and insights that
are subsequently applied in the next phases of develop-
ment. Usability domain emphasizes the need to create pa-
tient experiences that are intuitive, efficient, and satisfying.
Technical communication encompasses the communica-
tion of complex medical information to patients in a way
that is easily understandable for them. The author further
explains that the overlapping areas are the primary con-
cepts of PXD that are drawn from each domain of knowl-
edge [12]. Understanding the Context of use is important
for designing experiences that are relevant and tailored to
the patient’s needs. Embodied personas emphasizes a
more detailed understanding of personas - including the
physical and emotional state of the users. Usage of Inno-
vative methods (use of new technologies, unconventional
approaches to problem-solving) can affect the resulting ex-
perience with the product.

2.2 Design and Visualization Techniques in
EHR Systems

The usability and effectiveness of EHR systems are heav-
ily dependent on how data is visualized and interacted
with by domain experts [8]. Kenichiro Fujita et al. [6]
highlight the importance of identifying key attributes in
these records for effective processing and management.
The most common attributes are patient identifiers, times-
tamps of interactions within the EHR system, and the spe-
cific primary data types relevant to the current system,
which are subsequently broken down into more specific
elements, as shown in Figure 2. Decomposing complex

concepts into smaller, more manageable parts, facilitates a
deeper understanding of the data and enhances their visu-
alization.

Figure 2: The example tree structure of EHR data types
and primary types [6].

Based on the identified attributes, the author proposes
the following screen design principles for effectively dis-
playing EHR data: Displaying single patient data in one
view, Summarizing data for an overview and providing de-
tails on demand, Displaying data in a time-series format,
Categorizing data by primary type, and Displaying more
data simultaneously when the above principles are met.

By adopting specific principles such as categorization
by data type, time-series display, and summarizing data
with detailed views on demand, the author further pro-
poses three distinct screen designs, as shown in Figure 3.
All of them use color-coding as a visualization technique,
categorizing information by EHR primary types. Design
1 organizes data in a time-series format. Each data point
shows a title and expands to reveal details upon interac-
tion. Design 2 presents data in a matrix layout with two
axes - time-series and primary type. This design incorpo-
rates all the principles and displays the most data. Design
3 arranges data in time-series, where selecting a point dis-
plays detailed data.

Figure 3: Screen designs using proposed principles [6].

2.3 Research Registries in IBD EHR Sys-
tems

Research registries have become essential in advancing
medical knowledge, providing comprehensive databases
for systematic study. Regarding IBD EHR systems, the
only publicly accessible tool is the UR-CARE demo
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database1. The UR-CARE database [4], initiated by the
European Crohn’s and Colitis Organisation (ECCO), aims
to enhance patient care and support Inflammatory Bowel
Disease (IBD) research, standing out as a dedicated plat-
form in this area. Developed through the collaboration
of IBD specialists and contributors from national research
database projects throughout Europe, UR-CARE facili-
tates data collection on IBD symptoms and other key pa-
tient data. It covers disease characteristics, diagnostic tests
like endoscopy, treatments, and lab results. Additionally,
UR-CARE enhances user experience by automatically cal-
culating various indicators, such as the Simple Endoscopic
Score for Crohn’s Disease, from the data provided.

Aside from the patient’s health card management, UR-
CARE (demo version) consists of 3 other components:
Filters, Statistics, and Inboarding website. In the Filter
section, users can create filters using existing patient list or
use the already created ones, to aggregate interesting infor-
mation into different groups according to chosen attributes
and set conditions. Subsequently, in the Statistics section,
these custom filters are utilized to conduct a deeper anal-
ysis of the most important attributes. The statistics can be
visually represented using descriptive statistics or one of
the three available types of graphs: bar chart, pie chart, and
evolution chart. However, the data representation is not fo-
cused on usability, which makes it difficult for physicians
to make well-informed decisions.

3 Contribution

In this paper, we presented a new approach to the prototyp-
ing process called Domain Expert Centered Design, aris-
ing from the modified Patient Experience Design [12]. Our
year-long case study with medical professionals demon-
strated the efficiency of this approach, underscoring the
importance of a flexible methodology. An important com-
ponent of our method was the emphasis on contextualizing
information during the communication process, which sig-
nificantly enhanced the development workflow and led to
better feedback from domain experts.

As a contribution, we have created an intuitive user in-
terface for a research-oriented Electronic Health Record
(EHR) system, designed with a focus on IBD, using
our proposed framework. This system stands out for
its straightforward data organization and user-friendly de-
sign, which aligns closely with physicians’ daily routines,
aligning closely with their workflow. While the current
system contains only core functionality, its potential for
evolution into a comprehensive assistant tool for doctors
presents an exciting avenue for future development.

1Available online, accessed on 10/03/2024: https://perseed.
eu/urcare/index.html

4 IBD EHR System Design Proposal

The collaboration between domain experts in IBD, encom-
passing both clinical and surgical expertise, and IT pro-
fessionals is essential. Domain experts require analytical
skills to uncover hidden patterns and achieve effective data
matching for research insights, while IT specialists do not
have specific domain knowledge and depend on domain
experts to provide it. This collaborative approach led to
the creation of a research-oriented IBD EHR system.

4.1 Design Methodology

This system is designed using a Domain Expert Centered
Design methodology, integrated with an expanded Dou-
ble Diamond design process [1], to ensure the system is as
intuitive as possible. The main goal is to develop a proto-
type of the system aimed at assisting doctors in monitor-
ing the state of a patient’s disease more effectively, while
also enabling the aggregation of patient data for further re-
search of IBD. The topics discussed in Section 2 Related
Work primarily focus on Patient Experience Design, yet
this approach is almost equally applicable to physicians.
It is common for individuals to articulate a full idea more
effectively when the information’s context is visually rep-
resented, as is the case here. Hence, we decided to alter
the traditional Double Diamond framework [2, 10, 1]. The
main idea is that information gathered during each session
would be subsequently analyzed and incorporated into the
prototype. This means that the process does not follow a
predefined order of phases but instead transitions between
them as required. This adjustment not only enhances the
development process in terms of quality but also elevates
the domain expert experience design.

Figure 4: Modified diagram of the Double Diamond. The
red color represents the original Double Diamond, and the
green color represents extra steps.

During the first phase, Discover, the UX team tries to
develop a mutual understanding and a shared language be-
tween them and medical experts through collaborative in-
terviews and prototype demonstrations [5], which is more
challenging than the traditional prototype development,
due to the necessary knowledge and expertise in the medi-
cal domain. The Define phase focuses on information pro-
cessing. As described before, it’s common to find that not
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all necessary information is available at this stage. As a
result, the gathered information is processed, with previ-
ously collected data, and any gaps are addressed in the
next meeting. During this phase is also created a specific
type of persona called an embodied persona [12]. It en-
ables a deeper and more precise identification of the spe-
cific needs and objectives related to the problem, as de-
scribed in Section 2.1. Collaborating with a domain ex-
pert requires expertise in a given area that the average
person does not have, leading to the creation of a sec-
ond persona, the IT development team. The UX team then
serves as a mediator, facilitating the exchange of informa-
tion between the domain experts and the IT team. This
mediator approach is not typically observed in the tradi-
tional development process, highlighting a unique aspect
of our methodology. The rest of the second phase remains
the same as in the Double Diamond methodology. In the
third phase, Develop, the goal is to visualize and refine the
ideas generated in the previous meetings. Unlike the tra-
ditional approach, prototyping does not follow the usual
sequence of prototyping. In this specific case, the process
begins with basic layout sketches and quickly progresses
to more detailed wireframes-mockup hybrid prototypes.
The reason for moving directly to hybrids in this phase
is to enable doctors to provide effective feedback. Seeing
more detailed screens allows them to comment specifically
on what aspects of the design align with their workflow,
what differs from their current practices, and what ele-
ments might be unnecessary or unhelpful. Feedback ob-
tained from the following consultations is systematically
integrated into the design revisions, which is the Deliver
phase. These changes have to be integrated rapidly, in or-
der to provide better feedback at the next meeting with do-
main experts. Following multiple iterations of the proto-
type, when both sides are satisfied, the process progresses
to usability testing, which would be conducted according
to traditional methodologies.

4.2 IBD EHR System

The collaborative approach described in the previous Sec-
tion led to the creation of an intuitive user interface for the
IBD EHR system. The system proposal incorporates in-
sights gathered from the Section 2 Related Work. The IBD
data are systematically categorized as illustrated in Figure
5. Categories arise from the actual process of examination
in the IBD domain. Consultations are regular examina-
tions of the patient’s overall health, during which physi-
cians may request additional examinations to obtain a cur-
rent comprehensive overview. Decisions regarding treat-
ment or surgical operation are made during these consul-
tations, hence their inclusion within the consultation cate-
gory in the tree structure. Examinations like endoscopy or
magnetic resonance imaging are also part of the patient’s
overall condition, but they do not fall under the consulta-
tion itself.

In the prototype, the data is placed under the ”Consul-

Figure 5: Primary types of IBD data in our work.

tation and examinations” tab. Within this section, data is
presented in two ways: a table and a timeline. For do-
main experts, the timeline view is more important as it
provides a visual representation of the patient’s overall
condition over time. Our design, based on Design 3 [6]
(more in Section 2.2) with slight modifications, plots ex-
amination points along the time-series axis. These points
are coloured based on examination type, helping doctors
in visualization. Clicking on a point reveals detailed ex-
amination information, organized by primary types using
tabs. The interesting feature of our design is that the time-
line also incorporates additional sub-levels of IBD data,
including current treatment, surgery, and a specific index
for Crohn’s disease (pCD). This type of extended timeline
assists physicians in decision-making and planning further
treatment strategies.

Simplifying the process of adding examinations is made
more straightforward and user-friendly. In the ”Consul-
tation and examinations” section, simply selecting ”Add
new exam” enables the physician to input essential data
without navigating through multiple steps, as in the UR-
CARE registry [4]. Notably, our system stores only rele-
vant data to prevent system overload. The research part of
the register differs mostly in the study part. Filter creation
operates on a similar principle to UR-CARE [4], where
doctors specify a parameter and its expected value. In the
study part of our IBD registry researchers choose their fo-
cus - examining relationships between two variables in a
group or comparing a variable across groups. They use an
interface for dynamic variable adjustments and a graphi-
cal representation, limited to continuous graphs for consis-
tency in study evaluation. In contrast, the UR-CARE sys-
tem [4] is limited to using just one filter per study, enabling
users to choose and graph multiple variables. These are
then displayed sequentially, which may affect their read-
ability.
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Figure 6: Representation of a patient’s IBD data in our work using time-series. The C section represents primary data,
coloured by examination type. A Section represents treatment, the B section is for operations and D is the specific index
for Crohn’s disease. A, B and D sections offer complementary information to the C section.

5 Case Study

The methodologies and design process we proposed were
validated through a case study lasting over a year, during
which the design process for the research-oriented IBD
EHR system was applied to create the user interface de-
sign and specifications for iterative agile development.

5.1 Domain-specific Observation

The primary objective of the observation was to gain es-
sential knowledge for the project’s development. This
included establishing a shared language, identifying the
needs and goals of domain experts, and ensuring that be-
fore each meeting, the UX team had analyzed information
from previous discussions and outlined key points for the
upcoming session.

Focus groups with medical practitioners were sched-
uled twice a month. In the beginning, these sessions pri-
marily focused on doctors’ approach to patient examina-
tions, diagnostic processes, and treatment strategies, high-
lighting the important need for personalized care strate-
gies. The shared language was not immediately clear, it
required about 2-3 meetings for the UX team to under-
stand the complexities of the disease and also for domain
experts to understand our collaborative approach, includ-
ing data structuring, providing factual information, staying
on topic, etc. The sessions were not strictly moderated to
encourage a natural discussion flow. This approach was
adopted after realizing that structured moderation limited
the number of insights gained from doctors. Allowing the
conversations to develop more freely led to more compre-
hensive feedback from the medical professionals.

These interactions also provided insights into the tools
utilized in their practice, specifically the UR-CARE tool
and the hospital’s primary patient record system. It was

identified that exporting data from the system is difficult,
and the readability of medical reports is not appropriate.
Important information for doctors, such as patient’s medi-
cal history, treatment details, and screening examinations,
are either inadequately presented in the current system.
The system currently does not support efficient viewing of
screening examination snapshots or adding notes to them.
Furthermore, the meeting also highlighted the need for
better organization and accessibility of laboratory parame-
ters within the system, as well as the integration of medical
reports from various sources.

5.2 Domain-specific Ideation

The domain-specific ideation phase has its goals in defin-
ing Personas, Information Architecture, User Scenarios,
and User Flows in order to formalize and better understand
the knowledge transferred from the domain experts from
the observation phase.

Persona
The persona of Dr. Alice was derived from direct interac-
tions with three experienced gastroenterology physicians.
These interactions provided insights into the daily oper-
ational challenges and technological ”pain points” expe-
rienced in the field. Unlike common persona creation, a
domain-specific approach requires a deeper understanding
of the researched field, including technical aspects, spe-
cialized tasks, and the specific goals and challenges faced
by users within that context.
User Scenarios
Correct application of the proposed methodology in the
Observation phase required identifying user scenarios that
match the experiences of the doctors we spoke with.
This section enumerates only the most important scenar-
ios through motivators that have been identified, covering
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Figure 7: Persona of Dr. Alice.

all aspects of the proposed application.

1. Dr. Alice has examined the patient and needs to
record the examination results in the patient’s record.

2. Dr. Alice has to add new test results to a patient’s
record for further examinations.

3. Dr. Alice wants to review and analyze a patient’s
health trends for better medical assessment.

4. Dr. Alice needs to create a filtered group of patients
that meets her specific criteria for a more targeted
analysis in her research.

5. Dr. Alice wants to visually analyze the relationship
between different health parameters (using a chart)
for a specific patient group in her IBD study.

6. Dr. Alice needs to use the data for further analysis
outside the IBD research system. She wants to be
able to work with all relevant data from her study,
including charts, patient lists, and other related infor-
mation in an external statistic tool.

Information Architecture
The design of Information Architecture (IA) was inspired
by the UR-CARE registry (for consistency), enhanced us-
ing insights gained from the observation phase. Our pro-
posed system consists of 3 main sections - User manage-
ment, Electronic Health Records, and the Statistics sec-
tion. The core part of the IA is the IBD EHR system itself,
which can be seen in Figure 8. The User management part
of the IBD EHR system is not included, as it is out of the
scope of our research.

Since the doctors were already familiar with the UR-
CARE application, we tried to keep this structure in the
new one and modify it according to our needs. The statis-
tic part has the same structure as UR-CARE, it is divided
into 2 sections: one for filtering a group of patients and an-
other for descriptive statistics of studies. This division is
based on the insights from the Observation phase, where a
domain expert’s initial step in new research involves defin-
ing the study group. Within the registry, the patient man-
agement section is preserved, while the method of adding
patient examinations and other medical records differs in
many aspects. Based on the insights from observation, we

Figure 8: Information Architecture of research-oriented
IBD EHR system. Colors in the legend represent differ-
ent subsections of the Information Architecture.

organized the data and discovered that the entire data input
procedure revolves around patient examinations. For their
research, it’s important to attach a timestamp to each piece
of data, enabling them to efficiently filter and explore ad-
ditional correlations. Consequently, the primary tier is the
examination, which is then subdivided into specifics, sub-
sequent related examinations, and the patient’s therapy.

User Flows
After the scenarios were specified, the next step involved
defining User Flows to ensure precision in the subsequent
prototyping stage. These flows were based on already cre-
ated User scenarios, requiring minimal additional specifi-
cations. Within the EHR part, beyond managing patient
information, understanding the complex process of patient
examinations was essential to ensure the system matches
the real patient examination process. During the develop-
ment of User Flows for the Statistics module, it was also
important to consider findings obtained from user research
conducted in the Observation phase. They indicated that
doctors prefer initially to define a patient group for their
studies, followed by the need to monitor specific data in
the selected group. These insights were subsequently con-
verted into User Flows.

5.3 Prototyping

As outlined in Subsection 4.2 IBD EHR System Design
Proposal, the prototyping phase started with low fidelity
prototypes. They were not drawn on paper, but using an
online collaborative whiteboard. The primary purpose of
these low fidelity prototypes was to define the layout of the
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application and to illustrate the flow of information within
the proposed system.

In the subsequent phase, we started creating wireframe-
mockup hybrids, which was based on insights from meet-
ings with physicians and brainstorming sessions inside the
UX team. The prototype presentation revealed significant
gaps in our initial designs (mainly for domain knowledge
misalignments), leading to the rejection of approximately
60% of the very first design decisions. However, this pro-
cess was also valuable, because of providing important in-
sights from practitioners who highlighted the differences
between our proposed designs and their real-world prac-
tice, guiding necessary refinements. Design validation ses-
sions with doctors became more frequent, and all changes
were consulted continuously. Each session systematically
progressed through the defined user scenarios using vi-
sualized interactive high-fidelity prototypes for feedback
gathering, which was rapidly incorporated into the next it-
eration of the prototype.

Through a series of meetings and iterative revisions, we
developed our first workable mockups, containing mainly
the application’s core features. Scenarios that were suc-
cessfully validated, were transferred to the IT team for de-
velopment, including functional specifications, to ensure
delivery of the research-oriented IBD EHR system to the
domain experts in a reasonable amount of time. Mean-
while, the UX team continued to work on designing the
interface for the remaining user scenarios.

6 Discussion

Considering our methodology, it becomes evident that
our approach differs from the traditional double-diamond
model [2, 10, 1]. From the very beginning, we were over-
whelmed with plenty of information that required immedi-
ate and ongoing processing, which continued to grow and
evolve throughout subsequent meetings. Moreover, our
process incorporated prototyping at a much earlier stage
than what is typically observed in the classical double-
diamond model [2, 10, 1]. This unique approach to our
project is illustrated in Figure 4, which illustrates how we
navigated back and forth between different phases as the
situation demanded.

To bridge the language gap between domain experts and
the UX team, we established a shared language [12]. This
common language allowed the UX team to act as a me-
diator between domain experts and the IT team, facilitat-
ing effective communication and collaboration across dis-
ciplines. An additional aspect related to this was the ne-
cessity of validating the prototype through in-person meet-
ings rather than remotely. This approach allowed the UX
team to more accurately interpret feedback to the IT de-
velopment team, leveraging their understanding of the es-
tablished common language.

Another interesting aspect observed during the case
study is that in the traditional Double Diamond design ap-

proach [2, 10, 1], there’s a large accumulation of informa-
tion during the Discover phase. This information is then
processed to what is essential in the Define phase. Typi-
cally, in the Development phase, there is a second, smaller
peak in information volume as the design becomes more
concrete. In our case, as we can see in Figure 9, the reduc-
tion and refinement of information in our case did not oc-
cur during the first two phases, but rather during the proto-
typing stage. It was exactly as described in Section 5 Case
Study, because, at this point, the doctors were able to visu-
ally interact with our concepts of their daily workflows and
processes and provide us with concrete feedback, pointing
out what aspects were incorrect or beneficial.

Figure 9: Figure illustrates the volume of data collected
over time during prototype development. The black
line represents the traditional Double Diamond approach,
while the green line shows our domain expert-centered ap-
proach.2

7 Conclusion

In this paper, we present outcomes from a year-long col-
laboration with three specialists in IBD treatment research,
focusing on creating a user interface for an IBD EHR sys-
tem designed around their specific needs and workflows.
Using a modified double diamond design approach, we
emphasized the importance of incorporating domain ex-
perts throughout the design cycle. A key aspect of the de-
velopment process involved showing the context of the in-
formation being communicated at any given time. Once
this concept was applied to the defined design process,
the development process smoothed out, resulting in im-
proved quality of feedback. The structure of the proposed
EHR system is more straightforward and user-friendly
for physicians than the state-of-the-art IBD EHR system,
which was also confirmed by the physician: ”Finally,
managing my patient health records will become much
easier and less error-prone with the system being aligned
with my typical workflow. Also, I’ll no longer need to man-
ually extract the patients’ data from the system and use

2Graphical representation of the Double Diamond process, emphasiz-
ing the relationship between data volume and time, sourced from IDEO
Tools, https://www.ideo.org/tools. The black line represents
the State-of-the-art development of data amount (retrieved from the arti-
cle) and the green line represents the author’s.
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various complex tools for my IBD-related research stud-
ies”. The statistical section has been refined to remove un-
necessary details and simplify operations, making it more
suitable to the specific research practices of our domain
experts.

While the system is not yet fully developed, with numer-
ous potential enhancements remaining, one of the most
beneficial additions would be transforming the system into
an assistant tool for doctors. This would not only speed
up their daily tasks but also assist in diagnosing and iden-
tifying disease parameter correlations. Plans also include
conducting usability testing on fully functional prototypes.
Additionally, we intend to extend the proposed system in-
tegrating explainability support to reveal hidden trends in
the IBD EHR database without directly incorporating AI
algorithms[7].
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Abstract

This paper focuses on visualization and interaction with
a 3D scene in the Simulink 3D Animation tool for MAT-
LAB. Our goal is to improve its visual quality, physics
simulation capabilities, and performance. We propose
a new rendering component using Three.js, a JavaScript
3D graphics library. We describe an implementation of
the rendering component and its addition to the software.
Compared to its predecessor, the new renderer supports
some of the new visual features of the X3D format ver-
sion 4.0, mainly physically based rendering (PBR), image-
based lighting (IBL), and improvements in simple colli-
sion detection. We demonstrate the improvements and
changes using official examples from Simulink 3D Ani-
mation.

Keywords: MATLAB, Three.js, Simulink 3D Anima-
tion, physical simulation, physically based rendering

1 Introduction

In the last decades, 3D graphics have come a very
long way with new breathtaking improvements in visuals
promised and realized every year. In contrast, a MAT-
LAB software tool Simulink 3D Animation (SL3D) has
been missing an up-to-date look, not receiving similar vi-
sual improvements in years. Features we wanted to focus
on include physically based rendering (PBR), image-based
lighting (IBL), and casting of shadows. PBR aims to rep-
resent an interaction between light and the surface of an
object more accurately than empirical local illumination
methods [12]. Under such model, objects with defined ma-
terials should look consistent under any lighting setup in
the scene, which was not the case for the empirical model
that SL3D used. IBL produces realistic reflections and am-
bient lighting from images and makes the objects appear
as if they belong to a given environment. Casting of shad-
ows can help better understand locations of lights and the
scene and relative locations of 3D objects.

MATLAB development teams have been encouraged to
transition their user interface components of Simulink and
MATLAB tools using Java or other third-party technolo-
gies to web technologies. The main version of SL3D uses

OpenGL 1.2.1 to render the scene and Java for its inclu-
sion in the MATLAB graphical output displaying windows
called figures. An experimental JavaScript-based branch
of SL3D already existed before our work, so we analyzed
its differences from the main version. The experimental
version used a modified version of a JavaScript library
called X3DOM for rendering 3D content [18]. X3DOM
library does not support all the features that SL3D needs,
mainly a LinePickSensor node needed for Simulink mod-
els imitating lidars, and therefore further modifications to
the library were needed. Additions and modifications to
the library are not trivial because it is declarative and the
actual library functionality is mostly undocumented. The
experimental version also performed poorly at stress tests
frequently resulting at the scene not being loaded and ob-
ject parameters not being updated in the scene.

We overviewed possible different directions of the de-
velopment looking at three JavaScript 3D graphics li-
braries. We proposed a completely new implementation of
its visualization component. We implemented a new ren-
derer, interaction methods with the 3D scene and its inclu-
sion to the rest of Simulink 3D Animation. Improvements
in rendering quality are shown in Figure 1. The work
was developed under HUMUSOFT s.r.o. for The Math-
Works, Inc.

In section 2 we will describe SL3D and proposed mod-
ifications in more detail. The implementation is then
overviewed in section 3 and the results are presented in
section 4.

2 Background

In this section, we will introduce the Simulink 3D Anima-
tion tool for MATLAB software, describe its use, imple-
mentation, and proposed goals and modifications for this
work. MATLAB is a computing environment as well as
a programming language developed by The MathWorks,
Inc. It is widely used together with Simulink, a block di-
agram environment used to design systems with multido-
main models, simulate before moving to hardware, and de-
ploy without writing code [14].
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(a) vrmaze old example. (b) vrmaze updated example.

(c) vrmaglev old example. (d) vrmaglev updated example with SSR.

(e) vr octavia old example. (f) vr octavia updated example.

Figure 1: Scenes from official Simulink 3D Animation examples, old lighting model versus using PBR, IBL and shadow
casting.

2.1 Simulink 3D Animation

Simulink® 3D Animation™ is a tool under MATLAB
software that links Simulink models and MATLAB algo-
rithms to 3D graphics objects in virtual scenes [15]. With
this tool, the user can load a 3D scene into a scene editor,
modify its content, view the scene in a viewer, or connect
attributes of the scene to those of a Simulink model to vi-
sualize the scene and its updates in a viewer.

SL3D in the MATLAB release version R2024a works
with standardized scene formats VRML [3] and its suc-
cessor Extensible 3D - X3D, version 3.3 [4]. It supports
a list of features of the standard that are part of the Im-
mersive Profile of X3D version 3.3. Both are declarative
file formats describing 3D objects and scenes, as well as
their behavior and user interaction. They are designed by
the Web3D Consortium. The standards offer users a wide

range of built-in scene node types for transformations, ge-
ometry, material definitions, and a prototyping concept
used for creating new custom node types. To work with
a 3D scene in Simulink, the tool offers library blocks. The
blocks can write data into a 3D scene or read data from the
3D scene. This creates a connection between the fields of
the scene nodes and the parameters in Simulink blocks.

The software tool can be divided into four main imple-
mentation parts:

• MATLAB interface,

• internal scene representation,

• canvases,

• editor/viewer.

Proceedings of CESCG 2024: The 28th Central European Seminar on Computer Graphics (non-peer-reviewed)
38



The simplified software architecture outline can be seen
in Figure 2. Most of the interface is implemented in MAT-
LAB. The underlying functionality, scene storing and han-
dling, is implemented in C++. There, the loaded 3D scenes
are kept in an internal representation in classes loosely
based on the OpenVRML Library [11]. C++ functions can
be called from MATLAB functions with one main module
called vrclimex. The other direction of communication is
realized through callbacks. Users can either work directly
with prepared functions or they are able to interact with
the scene through virtual canvas classes, which maintain
up-to-date modifiable scene properties.

Figure 2: Simplified outline of Simulink 3D Animation
architecture. The highlighted components were modified
for the purposes of this work.

2.2 Proposed Modifications

The two SL3D versions take completely different ap-
proaches to the way the rendered images are produced and
delivered to the user. The main branch encapsulates ren-
dered frames directly to figures by performing traversal of
the scene graph loaded into the internal scene represen-
tation. The experimental branch maintains its own sep-
arate renderer running in MATLAB’s HTML UI compo-
nent. This component internally uses a Chromium browser
and displays HTML5 and JavaScript content. The HTML
UI component runs independently from the MATLAB pro-
cessing and offers a JSON-based communication channel
without any synchronization guarantees. We performed
stress tests on the experimental version before our imple-
mentation. In these tests, we periodically created a new
canvas and checked for correctly loaded scene properties
in the MATLAB canvas. Not a single instance out of 50
ensured the correct load of the chosen scene viewpoint.
Testing an animation of a sphere object on a circular tra-
jectory without any additional wait resulted in 1633 ig-
nored animation steps out of 2000. Based on that we con-
cluded that a communication protocol is needed to ensure
the delivery of scene updates and user requests between
the MATLAB interface and the renderer in the HTML UI

component.
For the rendering component itself, we considered

open-source 3D graphics libraries: the previously used
X3DOM, X ite [7], and Three.js [10]. The license of
X ite demands the source code of the software using it
to be publicly available and thus is not fit for commer-
cial use. X3DOM does not offer flexibility for the imple-
mentation of missing features or modifications in general.
We decided to completely re-implement the experimental
branch, adding a new renderer using the Three.js library. It
offers control over scene building, animating, and render-
ing and thus also the flexibility that X3DOM lacks. Possi-
ble support of real-time physics simulation in SL3D could
be also added this way in the future because Three.js is ca-
pable of including ammo.js [9], which is a direct port of
Bullet Physics Engine [6] into JavaScript. X3DOM offers
a physics simulation component [1] too, but there is no
user documentation, no official examples and we were not
able to produce working examples ourselves during test-
ing.

Rendering VRML and X3D version 3.3 worlds only ac-
cording to their standards would not use the wide variety
of features Three.js is capable of. In order to massively en-
hance the visual capabilities of SL3D we suggested imple-
menting new features also in the internal scene represen-
tation. A new X3D standard version 4.0 [5] was approved
in December 2023. Its additions and changes might be
crucial for this and future work. Possibly the most im-
portant addition is the inclusion of PBR through Physi-
calMaterial node and shadow casting through castShadow
field in a Shape node. We finished this work before the
official finalization of the standard version when also an
EnvironmentLight node was still a part of the standard as
well before being removed for the finalized release, which
included IBL.

3 Implementation

This section will describe the principles of the implemen-
tation of the most important modification decisions.

3.1 Architecture Changes

After solving X3D format version control in the internal
scene representation, new nodes and also new fields en-
hancing the existing nodes had to be marked accordingly.
After these modifications, the software was capable of
loading nodes and fields required for the Immersive pro-
file of X3D 4.0 specification into the internal scene.

A message ID confirmation system was needed to en-
sure that no exchanged information was outdated. We
implemented a new communication protocol between the
renderer’s code running in the HTML UI component and
the rest of the architecture - mainly regarding updates from
the internal scene but also requests from and to the MAT-
LAB interface.
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(a) Standard Java-based Simulink 3D Animation. (b) Experimental Simulink 3D Animation, newly implemented.

Figure 3: Modification of scene and canvas properties propagation.

In the main branch, the propagation of scene modifi-
cations into the rendered frame was ensured by calling a
drawnow function. It executes and flushes all scene mod-
ification calls. It is usually called by Simulink after every
simulation step or by the editor upon user interaction. For
updates in the scene event system, an internal idle timer
also executes the calls on a periodic basis. This propa-
gation of scene modification to the viewport in the main
branch is visualized in Figure 3a.

For the experimental branch, we implemented a virtual
canvas registration process for scene updates. The updates
get stored in update queues. Upon a drawnow call, an
update message is produced from all and sent back to all
canvases registered for the scene. The scene modification
propagation to the viewport in the new experimental ver-
sion can be seen in Figure 3b.

The scene has to be exported for the renderer of the ex-
perimental branch because it is run separately. For mes-
sages that describe a scene or part of the scene, we used
encoding into JSON format using a library called RapidJ-
SON [2]. Scene nodes are mapped to objects, and field to
object properties. The initial scene export into JSON for-
mat is built using a modified internal scene traversal which
effectively prints out all information deemed important for
the functionality of the external renderer. Scene modifi-
cation updates created upon a drawnow call also use the
same export functionality but are limited to the nodes they
relate to.

3.2 JavaScript Renderer

As stated before, we implemented the Javascript renderer
using the Three.js library. The main script starts after
MATLAB calls its initialization function. It sets up the
communication protocol control and constructs a render-
ing pipeline.

3.2.1 Scene Import and Updating

Three.js is not originally meant to work with VRML or
X3D files. Its own scene representation and overall li-
brary functionality differ from the said file format stan-
dards. It was important for us to use as much already ex-
isting functionality of this powerful library to fit the stan-

dards, but even with those efforts many node types did not
have matching Three.js equivalents, or at least not entirely.

The scene maintained in the renderer has to accept up-
dates from the internally maintained one while also fol-
lowing the VRML mechanisms of reusing nodes. Thus we
decided to use two main structures in the renderer. There
is a scene graph, which is rendered by Three.js, and all
its nodes are inherited from Three.js classes. Then there
is a map of nodes that holds references to all instances
under every node ID. Both structures are held in a scene
script that is also responsible for managing scene naviga-
tion, user interaction, and rendering settings propagation
to the scene nodes. It also provides a map of functions for
node building and updating out of the JSON representa-
tion.

Similarly to the internal scene class inheritance hierar-
chy, the JavaScript renderer code defines a class for every
supported scene node and the building function generates
their instances. Each node always implements a construc-
tor, a clone method possibly with a copy method, an init
method for creation, a set method for non-default values
during both scene import and scene updates, and a delete
method for proper disposal of resources both locally and
on the GPU. The classes either derive from native Three.js
classes, enhancing them to fit X3D concepts, or were im-
plemented anew.

The biggest difference between the X3D standard prin-
ciples and the Three.js approach to the representation of
the scene comes in the form of the X3D’s Shape nodes.
While the X3D standard specifies a Shape node capable of
holding any kind of geometry node and appearance de-
scriptions, Three.js provides different scene objects for
different geometry types they are able to present. This
forced us to divide some of the X3D node definitions from
objects actually used in the scene and keep them both,
which allowed for better control over shared resources and
scene updates.

The most important classes that hold X3D definitions
and manage separate Three.js objects are shape, all geom-
etry classes, and appearance classes containing material
classes and texture classes. All of them influence values
in (usually multiple) Three.js objects that actually play a
part in the scene rendering and manage re-referencing and
reusing the resources, or their disposal when they are not
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used anywhere anymore.

A source code example for a material update can be seen
below. It implements base/diffuse texture addition to all
required real materials in the Three.js shape objects:

/ / go t h r o u g h a l l r e g i s t e r e d x3d m a t e r i a l s
/ / w i th base o r d i f f u s e t e x t u r e
f o r ( c o n s t x3dmat o f a r r a y )
{

c o n s t newmap = t h i s . t e x t u r e . c l o n e ( ) ;
/ / go t h r o u g h a l l a p p e a r a n c e s u s i n g them
f o r ( c o n s t app of x3dmat . x 3 d a p p e a r a n c e s )
{ / / a p p l y appe a ran ce ’ s t e x t u r e t r a n s f o r m

app . s e t T e x t u r e T r a n s f o r m ( newmap ) ;
c o n s t mats = app . g e t R e a l M a t e r i a l s ( ) ;
/ / and a p p l y i t t o a l l r e a l m a t e r i a l s
/ / l i n k e d t o t h a t appe a ran ce ’ s shape
f o r ( c o n s t mat o f mats )
{

i f ( mat . map ) / / remove o l d t e x t u r e
mat . map . d i s p o s e ( ) ;

mat . map = newmap . c l o n e ( ) ;
mat . needsUpda te = t r u e ;

}
}
newmap . d i s p o s e ( ) ;

}

The implementation of the text rendering in particular
is non-trivial. This is due to the X3D standard being
more flexible than the text rendering methods offered by
Three.js (mainly the alignment, justification, direction,
UTF-8 fonts, and material application requirements). We
implemented it by rendering the text into texture from
an HTML canvas element, which we deemed flexible
enough. The texture is used as a mask on a plane shape
which can have a material applied to it. An example can
be seen in Figure 4. The downside of this approach is that
the resolution for the rendered texture is pre-set. Making
this dependent on the position of the camera could be a
topic for future work.

The new renderer’s supported nodes’ mapping to
Three.js classes can be seen in Table 1. Geometry gets
already triangulated in the internal scene, originally for
OpenGL, X3D geometry nodes missing in the table are ex-
ported for the renderer as pre-triangulated IndexedFaceSet.
Supported sensors are also not included in the table, they
do not derive from any Three.js class and are discussed in
the following paragraphs.

Three.js has an inbuilt loader for models of glTF for-
mat [13]. We have also allowed the inclusion of such mod-
els in inline nodes using the loader. However, their prop-
erties cannot be modified, because the internal scene does
not work with this format yet. The models are just inserted
into the scene and are influenced by the transformation hi-
erarchy.

Table 1: Overview of implementing X3D nodes using
Three.js.

X3D Node Three.js class relationship

Networking Component
Anchor Group inheritance
Inline Group inheritance

Grouping Component
Group Group inheritance
Switch Group inheritance

Transform Group inheritance
Rendering Component

IndexedFaceSet BufferGeometry inheritance
IndexedLineSet BufferGeometry inheritance

Shape Component
Material MeshPhongMaterial, encapsulation

LineBasicMaterial,
MeshUnlitMaterial

PhysicalMaterial MeshStandardMaterial, encapsulation
LineBasicMaterial,
MeshUnlitMaterial

Shape Mesh, encapsulation
LineSegments

Geometry3D Component
Box BoxGeometry inheritance
Cone BufferGeometry inheritance

Cylinder BufferGeometry inheritance
Sphere SphereGeometry inheritance

Text Component
Text PlaneGeometry inheritance

FontStyle [none] –
Lighting Component

EnvironmentLight Scene parameter
DirectionalLight DirectionalLight inheritance

SpotLight SpotLight inheritance
PointLight PointLight inheritance

Texturing Component
ImageTexture Texture, encapsulation

CanvasTexture
TextureTransform [none] –

Navigation Component
Billboard Group inheritance

NavigationInfo Object3D inheritance
Viewpoint Object3D inheritance

Navigation Component
Background Mesh/Scene encapsulation

/parameter

3.2.2 Sensor Nodes Functionality

Sensor nodes we have implemented in the new renderer so
far include ProximitySensor, TouchSensor, PlaneSensor,
LinePickSensor, and PrimitivePickSensor. When an en-
abled sensor is called to update on every simulation step, it
evaluates its state and when needed, adds its output infor-
mation to a message queue that gets sent over to MATLAB
after all sensors are evaluated. The messages are then pro-
cessed in the internal scene representation to be available
for reading by the user or Simulink model. Only one can-

Proceedings of CESCG 2024: The 28th Central European Seminar on Computer Graphics (non-peer-reviewed)
41



vas is chosen as the main and is responsible for producing
and sending back possible sensor updates.

We have used simple collision detection and intersec-
tion computation functions provided by Three.js for the
sensor activity evaluation. That includes ray-casting into
the scene, or triangle/sphere and triangle/box intersec-
tions. A special case was LinePickSensor, which uses
line geometry to detect hits with a chosen subtree of scene
graph objects. The line geometry does not have to be made
out of individual straight lines for every sensor but instead
can be a general line geometry with many line segments.
Thus we process every line segment individually during
the update. The pseudocode for processing an individual
segment can be seen below. LinePickSensor node in use is
shown in Figure 5.

ALGORITHM 1
Sensor line segment processing algorithm

startPoint← parent.localToWorld(startPoint)
endPoint← parent.localToWorld(endPoint)
length← startPoint.distanceTo(endPoint)
direction← endPoint.clone().sub(startPoint)
direction.normalize()
raycaster.set(startPoint, direction)
raycaster. f ar← length
intersects← raycaster.intersectObjects(...target)

Figure 4: Text rendering for the official example vr panel.

3.2.3 User Interaction and Navigation

A viewpoint binding mechanism was implemented di-
rectly according to the X3D specification. We wanted
to ensure quick and usable methods of navigation in the
scene, so we decided to implement the following princi-
ples:

• The camera can orbit around a selected target in the
scene.

• The camera can rotate around the center of its local
coordinate system.

• The camera can zoom in and out on a selected target
in the scene proportionally based on a distance to the
target.

• The camera movement can be controlled by keyboard
input.

• The camera is grounded under the WALK navigation
type of X3D specification.

Apart from navigation and some of the sensors, user is
also able to interact with the scene in edit mode. In this
mode, the sensor functionality is postponed, and picking
interaction is instead evaluated as node selection through
ray-casting. The clicked nodes in the scene get highlighted
and their fields are revealed in a world editor to modify as
shown in Figure 6.

3.2.4 Rendering Pipeline

For post-processing management, we have used post-
processing add-on to Three.js developed by Raoul van
Rüschen [17]. Apart from the normal render pass, outline
pass for highlights is added in edit mode. Subpixel mor-
phological anti-aliasing pass can be added through can-
vas settings. A custom screen capture pass renders to a
buffer on screenshot request. As an experimental feature,
we have also added screen space reflections implementa-
tion from Realism Effects developed by 0beqz [8] in two
additional passes - velocityDepthNormal pass and SSREf-
fect pass.

4 Results

Most of the examples used for testing, comparisons, and
showcase are the official examples of Simulink 3D Ani-
mation [16].

4.1 Communication Protocol

Before our work, the experimental X3DOM-based viewer
did not use any message confirmation protocol and did not
guarantee to offer up-to-date information on its virtual re-
ality canvas properties. Furthermore, being independent
on drawnow calls from the scene meant that modifications
of multiple simulation steps were applied at the same time,
resulting in the loss of visible changes and also an inability
to reasonably measure performance.

Now, the implemented communication protocol does
guarantee waiting on load events, and confirmation of
messages when a renderer-dependent property value is re-
quested. Due to the object nature of the new protocol,
screen capture image data transfer from the renderer to the
canvas was made possible and implemented as well. The
same communication stress tests, which failed before the
implementation, all passed with this new implementation.
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Figure 5: Simulink 3D Animation vrcollisions lidar official example showing the functionality of the LinePickSensor
node with the new renderer. There is a robot with many sensors on its body. If a sensor detects a collision with a wall, the
point of collision is visualized by color of the sensor beam. The blue beam has not yet hit anything, the green part of the
beam is occluded by a wall.

Figure 6: Example of highlights rendering for editing
mode made with Outline rendering pass.

4.2 Supported Nodes

Current scene export and import for the experimental ren-
derer supports most of the nodes the internal scene by itself
does with the exceptions of points-related nodes, a Movi-
eTexture node, a PixelTexture node, sound nodes, and the
rest of the sensor nodes, which have not been implemented
yet. Most of the scenes used by Simulink 3D Animation
official examples are able to fully load with minor visual
differences. Loading times of the scenes vary, the offi-
cial examples taking a maximum of seconds, but scenes
heavy on detail with millions of vertices do not get loaded

in a reasonable time, similar to how the previous X3DOM-
based viewer performed, or even the standard Java-based
viewer in some cases does.

Upon modification and enhancement of the internal
scene’s supported node types and implementing support
for given scene node representation in the JavaScript-
based renderer, new visual features are now possible to
use. This has allowed us to update old official Simulink
3D Animation examples, comparisons are shown in Fig-
ure 1. Performance measurements can be seen in Table
2. The example vr octavia is simpler than the other two
in number of animated objects and sensor activity. From
the visible difference between FPS of Java-based viewer
and JavaScript-based viewer in this example we can con-
clude that the bottleneck of the process is the implemented
communication protocol and communication channel of
HTML UI component. The Java-based viewer not limited
by the communication management performs better.

Table 2: Results of tests done on the standard and the
experimental version of Simulink 3D Animation. Each
example was run under a Simulink profiler tool. Exam-
ples used for testing are from official software examples
vrcollisions lidar, vr octavia and vr octavia 2cars. Per-
formance measurements are given in frames per second.

Example Java-based viewer Three.js viewer
vr octavia 75 44

vr octavia 2cars 44 44
vrcollisions lidar 40 44

LinePickSensor node functionality needed for Simulink
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3D Animation official examples of vrmaze and vrcolli-
sions lidar is fully implemented in the experimental ver-
sion. It does not cover the full functionality specified
by the X3D specification yet, but it does improve on the
main version of SL3D. The intersection computation using
Three.js ray-casting is more precise than that of the main
version of SL3D where only intersections with bounding
boxes and bounding spheres are implemented.

5 Conclusions and future work

Upon exploring the current implementation of Simulink
3D Animation, we proposed modifications to the commu-
nication protocol, supported nodes, and renderer itself. We
implemented the changes, compared the software tool to
its previous state, and showcased the results.

The experimental version of SL3D is now able to render
the scenes of most of the official examples provided by
the software. Its functionality was significantly enhanced
as well as the spectrum of rendering features. Although
throughout the implementation testing was done and the
transition to a new renderer based on the library Three.js
has been fairly successful so far, some issues might still be
addressed during future development.

Missing implementation of certain node types will need
to be implemented in the new renderer as well. For the pur-
poses of using the Three.js visual capabilities to the fullest,
Simulink 3D Animation will probably allow exporting of
its own file format of scene description, which will be an
enhanced variant of the X3D file format.

In the future, it could be interesting to integrate a full
physics engine either into the renderer or even directly into
the internal scene representation in MATLAB.
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[17] Raoul van Rüschen. Post Processing for Three.js.
https://pmndrs.github.io/postprocessing/public/docs/.

[18] X3DOM. Official X3DOM Documentation.
https://doc.x3dom.org/gettingStarted/index.html.

Proceedings of CESCG 2024: The 28th Central European Seminar on Computer Graphics (non-peer-reviewed)
44



Medical Imaging





Domain Expert in the Loop of Digitized Histopathology Education
and Artificial Intelligence

Erika Váczlavová*
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Abstract

In this paper, we propose a way to use a graphical user
interface to present digitized multi-modal data in the field
of medicine for specific domain experts. Our data con-
sisted of digitized histopathology specimens, subject to
expert examination. As the digitization of histopathology
for educational purposes is only in its beginning stages,
we explore how to present the data to experts in a way to
encourages them to build up their confidence in digitized
workflow. As part of this research, we are working on
streamlining the workflow by designing assistance tools
based on artificial intelligence (AI). While presenting the
results of AI to specific domain experts in medicine, it is
important to choose the right explainability of the results
of black-box algorithms, and how to present the outputs in
the user interface. We found out that the implementation
of functionalities driven by artificial intelligence depends
on the level of expertise of the domain expert. The differ-
ences are observed in a case study with cooperation from
medical students and doctors, who got access to digitized
multi-modal data with AI-powered functionalities in iter-
atively designed prototypes of the specialized system for
education in the field of histopathology. We present out-
comes from the aforementioned case study to serve as a
base for the future development of specialized interfaces
in the field of digitized histopathology.

Keywords: Histopathology, User Experience, Artificial
Intelligence

1 Introduction

Histopathological specimens are samples obtained
through biopsy or surgical procedures and subjected to
histological processing. Histological processing involves
the fixation of the sample, cutting it into thin sections,
and staining with specific dyes that allow for microscopic
tissue analysis. To digitize these glass specimens are used
special scanners with whole slide imaging technology

*xvaczlavova@stuba.sk
†miroslav.laco@stuba.sk

(WSI). WSI produces high-resolution digital images at
multiple magnifications and focal planes. These types
of images are highly suitable for educational purposes
as the WSI is more interactive, it is easy to share them,
and provides the opportunity to convey the same infor-
mation to each student, which is not possible with glass
slides, because none of them are identical. Hence, it
is not surprising that WSI is increasingly being used in
examinations[8].
During the examination of a slide, pathologists carefully
observe and interpret the histological characteristics of the
case within the context of clinical information. Through
this process, they identify regions of interest, that are per-
tinent to the specific cases[10]. The whole process of an
examination of slides and annotation is time-consuming
and inefficient because areas of interest cannot be marked
directly into glass slides and to determine the area of
interest the specialist must go through the whole specimen
in multiple zoom views.
Higher accuracy, capability, and efficiency are some of
the many reasons why to transform the workflow to a
digital one, through the digitization of specimens. By
digitization, WSI images replace the glass slides. These
WSI images are accessible by annotation tools provided
in a digital platform. These tools typically provide a menu
of markup shapes including measured lines, polygons,
rectangles, circles, and free-form lines, which can be
applied in a wide range of colors. Some systems allow
text labeling of the annotation[10].
Another method to enhance the efficiency of histopathol-
ogist’s work in annotating individual WSI images is
by integrating AI algorithms into the process. These
algorithms can automatically identify areas of interest
within the images using different approaches, thereby
accelerating the workflow of experts. Subsequently, ex-
perts would review the outputs of the artificial intelligence
system and make adjustments as needed.
We aim to leverage the benefits of digitized image
annotation processes into the teaching process at medical
universities. Our endeavor involves developing a spe-
cialized tool equipped with diverse educational features,
and functionalities supported by AI to the extent that its
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results are presented according to the target audience.

2 Human-in-the-loop of Artificial In-
telligence

Human-in-the-loop Artificial Intelligence (HITL), refers
to a process addressing concerns of individuals regarding
the negative impacts of the artificial intelligence revolu-
tion, such as output accuracy and interpretability. This
process integrates the operation of artificial intelligence
with the human factor based on domain knowledge. In the
case of supervised learning, the AI can learn and make de-
cisions based only on the supplied data, along with tags as-
sociated with the data, which we call annotations. AI’s de-
cisions are based on statistics and connections, abstracted
at both lower and higher levels from the supplied data.
But these decisions do not contain domain knowledge,
which often does not appear in the data [4]. While train-
ing models of AI, human input is often important, which
corrects the results and thereby helps improve algorithms.
HITL also addresses ethical questions about ownership
of knowledge on which artificial intelligence models are
trained since the models they learn from data created by
ordinary workers [13].

3 Artificial Intelligence and User Ex-
perience

Artificial Intelligence (AI) holds a pivotal role in im-
proving human-computer interaction and optimizing user
experience. However, the design and innovation of such
interactions pose multifaceted challenges. AI’s potential
for introducing unforeseen errors can adversely impact
both reputation and user experience in collaborative
settings. Designing cooperation between humans and AI
is particularly demanding [12].
In iterative prototyping and testing of user experience
without the use of AI, it is possible to address and
test further iterations of shortcomings. However, when
prototyping and testing with AI features, this becomes
challenging as the AI may introduce unforeseen errors.
Another challenge for designers is setting user expecta-
tions regarding what can be expected from the AI. Since
the AI lacks legal and ethical awareness, there is concern
over incorrect outputs potentially causing frustration. Ad-
ditionally, for user experience professionals, collaborating
with artificial intelligence experts can be challenging due
to the distinct domains involved. Moreover, by priori-
tizing explainability in AI, users can develop a deeper
trust in the system, as it allows them to comprehend the
inner workings and decision-making processes, thereby
ensuring an optimal balance of complexity in presented
results. [12, 5].

Various methods exist for presenting AI model output
data. Designers must consider scenarios like true posi-
tives, false positives, true negatives, and false negatives.
These are addressed in two result generation approaches.
One prioritizes output precision, aiming for accuracy even
if the output set is smaller, potentially overlooking some
true positives. The other approach, called recall, aims for
a broader set of outputs to maximize the presence of true
positives, even if not all results are relevant or correct.[2].

4 State of the Art in Education Pro-
cess

We focused on analyzing various educational and annota-
tion tools for digitized multi-modal data that can be used
in both teaching and practice in medical universities. In
these tools, we look at functionalities that are useful in the
study of pathology, as well as in the analysis of medical
image data. In the realm of medical imaging and educa-
tion, several tools have emerged, each with its own set of
advantages and limitations.

QuPath stands as a platform for the analysis of medical
image data. Its ability to handle diverse formats and pro-
vide a range of marking tools empowers users to annotate
and manipulate areas of interest directly onto digital spec-
imens. However, the absence of a comment feature and
a somewhat complex user interface may pose challenges,
particularly for those with limited computer literacy. In
contrast, AMBOSS represents a commercially driven ap-
proach, offering a repository of educational materials in a
sleek, user-friendly interface. Its virtual library and note-
taking functionalities enhance the learning experience, al-
lowing users to create and share annotations with ease.
Nonetheless, its closed nature restricts the ability to mod-
ify or expand the content of medical knowledge for people
in medical field study. Meanwhile, The Human Protein
Atlas serves as a valuable supplementary resource, provid-
ing a wealth of high-resolution images showcasing protein
distribution across various human tissues and cell lines.
While its predefined pathways and detailed descriptions
offer structured learning experiences, the inability to in-
sert custom images or annotate specimens may restrict its
utility for interactive study. In essence, each tool brings
unique strengths to the table. However, navigating their
respective limitations is crucial in harnessing their full po-
tential for medical education and research in the modern
era.

5 Our Approach

Recent studies recommend that for working with data
in the field of medicine and health, it is necessary to
develop new usability methods and theories on how to
work with them [6]. Based on these recommendations,
various new procedures began to emerge as to how to
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perceive the user during the design of the system and
also that this user needs to be specified more closely ac-
cording to the domain area in which the design is be-
ing created. One viewpoint entails the adaptation of the
conventional user-centered design principle, particularly
within the medical domain, where it has been redefined as
patient-centered design[6]. Based on the state-of-the-art
in patient-centered design, we decided to modify this prin-
ciple and work on histopathology-expert-centered design
and medic-centered design.

5.1 Design Centered on the Domain Expert
in the Field of Medicine

Before creating a functional system design, it is essen-
tial to consider all stakeholders involved in the creation
process, ensuring that the trust of the domain expert, for
whom the system is designed, is gradually established. All
of these stakeholders are visualized in Fig.1. Additionally,
the system should be designed in such a way that the do-
main expert can naturally utilize all its functionalities and
extensions without hesitation after its creation.

Figure 1: Visualization of 3 components and their cooper-
ation in design centered on the domain expert in the field
of medicine methodology. Each area overlay represents an
area to focus on. Adapted from Meloncon et al. [6]

During the system development process, the role of this
principle is to ensure that the domain expert generates
data required for the technical aspects of the system, while
the system provides data to the domain expert in an un-
derstandable format. The presentation format of the data
is examined by a user experience expert, who explores
how to create a reliable and usable system. Findings are
obtained through interaction with the domain expert and
translated into technical language for the development.
To create a design focused on the domain expert in
medicine, it is important to build the entire collabora-
tion thoroughly and approach the design as a continuously
evolving relationship between stakeholders. To be able to
design the cooperation and the system to the satisfaction of

the domain expert, it is important to get the collaboration
right from the initial stages steered properly.

5.2 Annotation Enhanced Educational Tool

As a second important contribution of this paper, we have
designed an annotation tool that will be part of a com-
prehensive educational system in cooperation with domain
experts from the medical university. The proposed proto-
type focused on functionalities related to annotating digi-
tized histopathological specimens. In this prototype, indi-
vidual images can be viewed and annotated using various
tools. These tools are divided into those not supported by
AI and those simulating real results of AI models.
The design was based on user needs of real users, which
we generalized into 2 personas. These personas served to
better understand the mental model of end users. Among
these personas is an expert who teaches histology and
pathology at the university and practices in the clinical
sphere, aims to teach modern methods at the university,
and provides feedback to students on their work while also
sharing extra materials. The second persona is a student
who seeks hands-on experience in annotation and desires
access to materials even after classes to further educate
themselves in the field of diagnosis determination.

5.3 Presentation of the Artificial Intelligence
Outputs in Histopathology

While designing the user interface for the annotation tool,
our focus was on deliberating upon the most suitable
presentation of artificial intelligence. Two principal
approaches were considered: automation characterized
by AI-driven task execution devoid of human interven-
tion, and augmentation which entailed AI providing
recommendations to users of the annotation tool, who
subsequently validated or dismissed its outputs within the
context of our work[9].

We proposed three functionalities aimed at simulating
AI results in various forms. Automation was represented
by a tool that upon triggering the workflow, automatically
highlighted all areas of interest on the annotated image.
Augmentation was depicted through two tools: one grad-
ually revealed areas of interest in the annotated image,
requiring user confirmation or rejection with each anno-
tation. The second tool offered the option of displaying
hints, outlining regions on the image where areas of inter-
est could potentially be found, without showing the actual
annotation. Our contribution includes comparing the us-
ability and the explainability of AI outputs using user ex-
perience methods such as usability testing and contextual
interviews.
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5.4 Reward Function and Explainability

A reward function is a component of reinforcement
learning of AI algorithms. It defines the objective or goal
that the AI is trying to maximize or minimize in order to
receive rewards or punishments, guiding the AI’s behavior
toward achieving desired outcomes. This approach may
be considered from the UX point of view when working
with all NNtypes, not only reinforcement-learning-based
NNs.

Figure 2: Reward function for AI used in annotation tool.

In Figure 2, errors arise in two cases. False Positives
occur when AI provides inaccurate annotations, especially
troubling in fields like education or medicine due to poten-
tial user impact. False Negatives happen when AI fails to
provide accurate annotations, leading to increased manual
work for users and posing challenges in maintaining focus
during correction. We consider this as a concern for appli-
cations in the field of medicine where it is crucial for the
user to receive accurate outputs. Therefore, our proposal
offers the user more benefits in minimizing False Positives
(where AI generates inaccurate annotations), hence it is
appropriate to optimize the function for precision. We ac-
knowledge that opting for this method entails a compro-
mise, meaning our model will lean more towards abstain-
ing from creating any annotation rather than producing an
inaccurate one. We prioritize refraining from displaying
any annotation to the user over presenting an inaccurate
one. We propose to verify this approach and evaluate our
proposal using pre-generated annotations as AI’s results
against manually created annotations.

6 Approach Validation and Testing

Based on contextual inquiry and observation of domain
experts we prepared four user scenarios, which were,
according to the good practice in the field of UX and
usability testing, tested by five participants (more in [7]).
These participants corresponded to the personas created

in earlier stages of the project. The group of participants
consisted of four students with low expertise and one ex-
perienced expert from the medical field. Despite varying
IT skills, all possess sufficient knowledge to effectively
annotate the data.
The usability testing was focused on evaluating the
necessity and form of implementing AI. We measured
quantitative outcomes such as task completion rate, error
rate, and time needed for tasks. We also collected qual-
itative data from user feedback and suggestions. During
this testing phase, we also examined the explainability of
artificial intelligence outcomes and how to present them
to end users, as represented by the testers. The entire
testing process was conducted using the thinking-aloud
method [1].

We defined four tasks. The tasks were created in
cooperation with the domain expert. One of them was
designed for the user not to utilize tools supported by
AI. The remaining tasks simulated various ways of
utilizing the outcomes of AI. The outcomes from AI were
simulated by pre-created annotations, created by domain
experts, and served to participants using the Wizard of Oz
methodology [3, 11]. All tasks were about annotation in
real digitized specimen. The specimen was from cardiac
tissue and contains the endocardium. All tasks were based
on the same annotations on the same data. The tasks were:

1. Please annotate the endocardium in the image using
the drawing function - This task was designed be-
cause its results will serve as a baseline for evalua-
tion.

2. Please annotate the endocardium in the image using
the Annotation proposals function - This task was de-
signed for observing the user behavior and the impact
of augmentation on performance in simple tasks.

3. Please annotate the endocardium in the image using
the Automated annotation function - This task was
designed for observing the user behavior and the im-
pact of automation on performance in simple tasks.

4. Please annotate the endocardium in the image using
the Hints function - This task was designed for ob-
serving the user behavior and the impact of augmen-
tation on performance in simple tasks.

7 Results

During the testing, we monitored various metrics, and af-
ter evaluation, we divided the results into quantitative and
qualitative outcomes. Each relevant feedback obtained
during testing helped us understand how to implement AI-
supported features properly.
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7.1 Quantitative Results

The typical procedure involves observing task completion
success. In this case, participants were able to complete
all tasks, with the assistance of a facilitator required only
once. Task assignments were straightforward, and the
prototype was designed to be trivial to users, as the end
user is not proficient in information technology.

Task completion time

Partici-
pant
(Experti-
se)

Manual
anno-
tation
(Task 1)

Anno-
tation
pro-
posal
(Task 2)

Automa-
ted
anno-
tations
(Task 3)

Hints
(Task 4)

P1 (low) 145 98 70 52
P2 (low) 150 80 60 40
P3 (low) 180 96 60 69
P4(high) 185 75 50 39
P5 (low) 180 110 57 42
Average 168 91.8 59.4 48.4
Std 16.91 12.71 6.43 11.28

Table 1: Task completion time in seconds ”Std” - Standard
deviation

Time needed for one annotation

Partici-
pant
(Expertise)

Manual
anno-
tation
(Task1)

Annotation
proposal
(Task 2)

Automated
annota-
tions
(Task 3)

P1 (low) 7 13 6
P2 (low) 8 7 5
P3 (low) 10 7 5
P4 (high) 12 7 10
P5(low) 11 10 4
Average 9.6 8.8 6
Std 2.07 2.68 2.10

Table 2: Time needed for one annotation in seconds;

In Table 1, we can observe the trend in user per-
formance evolution within the proposed tool with the
assistance of AI-generated results. As evidenced, tasks
utilizing artificial intelligence were completed faster.
These values must also consider a slight bias introduced
by participants gaining experience with the tool and
gradually acclimating to its use with each task. However,
this bias is not high enough to preclude the assertion that
the application of artificial intelligence in any form has
increased work efficiency.

In Table 2, we can compare the time required for creat-
ing a single annotation in a digitized image. These results
may be influenced by biases stemming from prototype lim-
itations. However, this bias is not significant and applies

to each annotation, so it does not need to be taken into
consideration. In Table 2, it is evident that creating an-
notations without tools incorporating AI assistance takes
longer than creating annotations with their use. Based on
the numerical values, it is therefore most suitable to im-
plement AI in the form of automation to reduce the time
required for each annotation.

7.2 Qualitative Results

We conducted a qualitative evaluation based on participant
observations during testing, and analysis of video record-
ings obtained during testing with the participant’s consent
to anonymously participate in the research, as well as the
facilitator’s questions or questionnaire inquiries.

Technical design of the prototype
All inquiries regarding the simplicity of application
usage were responded to by participants with a positive
sentiment. Considering that the prototype was designed so
that participants meeting the parameters of our personas
had no issues with its utilization, we deem it a suitable
environment for testing the prototype with functions
working with AI’s results.

Automation
In the prototype, we represented automation through
the functionality of displaying automatic annotations
being simulated outputs of the AI for the given whole
slide image instantly with the image itself as an overlay.
All participants appreciated having a large number of
annotations quickly using this approach. Regarding the
facilitator’s question about whether this functionality
could pose any negative impact on their work or study,
responses varied depending on the level of expertise.
Participants with lower levels of expertise stated that they
appreciated such functionality as it speeds up their review
of individual images during study or in their potential
future work.
Participants with higher levels of expertise exhibit more
skepticism towards this functionality. When using it,
they are concerned that the system may offer incorrect
annotations which they may not have time to verify and
could potentially lead to errors. They also emphasize the
importance, particularly in teaching contexts, of reviewing
images to determine whether the area annotated is correct,
which may not occur when a large number of annotations
are displayed.

Augmentation
In the prototype, we represented augmentation of the
manual annotation process with the AI outputs relevant
to the given whole slide image through two different
functionalities. One of them was Hints which displayed
regions in the image where an area of interest might
be located, prompting the creation of an annotation.
Regardless of expertise, all participants appreciated this
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functionality and claimed they would commonly use it.
Participants with lower levels of expertise would utilize
this functionality during study sessions, where it would
assist them in orienting themselves in the image and
guiding them to create their own annotations.
Domain experts with higher levels of expertise liked this
tool and claimed it would facilitate their manual and labo-
rious examination of specimens. They also appreciated its
potential for use in the educational process.

The second functionality representing augmentation
is the Annotation proposal, where annotations gradually
appear on the image, allowing the user to confirm or
remove them with a click. After approval, they can
continue to edit them. This functionality was perceived
by all participants as faster than manual annotation but
slower than automation. Regardless of expertise level, this
functionality was perceived most positively, as domain
experts felt they had control over individual annotations.

Augmentation or Automation
When asked which annotation functionality they would
prefer, domain experts with lower levels of expertise
agreed that automation seemed practical and fast. Con-
versely, domain experts with higher levels of expertise
recommend augmentation, both in clinical practice and in
teaching and study.

The level of trust in AI results
When asked whether they trust the system that recom-
mends annotations, participants expressed skepticism.
None of them confirmed that they would fully trust the
system. However, this fact is positive because they would
all verify the majority of annotations, thus reducing the
risk of error.
The level of expertise of the domain expert, in this
case, the participant, also influences their trust in the
system. Participants with lower levels of expertise stated
that if they had more knowledge in the respective field,
they might be able to trust the system more. They also
expressed that they would trust the system if they knew it
didn’t make errors frequently.
Participants with higher levels of expertise state that it’s
not possible to trust the tool 100 percent, but that’s also
true for humans. However, an individual who is still learn-
ing about the subject must have input on which to build.
Such utilization of artificial intelligence would be credible
only if an expert intervenes in the learning process to
correct any misinformation provided to students. The use
of such a system in clinical practice and trust in it would
likely require time to build. The longer the tool is used,
the more an expert would know which potential errors to
focus on.
One of them stated:
”Even though I have the opportunity to intervene, the
human mind tends to seek simpler paths. So, in that case,
I wouldn’t have trust in the system because ultimately

I no longer trust myself. Comparing what I know with
the information provided by the system can lead to a
situation where two pieces of information confront each
other. And now it’s about which of those personalities
is more confident to say ’but this is how it is,’ even
though it hasn’t looked at, for example, 80,000 slides like
artificial intelligence has. Because it will have a greater
opportunity to feed its head than the human.”

Explainability
During testing, we also asked our participants how their
trust in the system could be supported. Their trust could
be enhanced through explainability features, which would
justify the individual outcomes of artificial intelligence.
Explainability could assist domain experts in understand-
ing highlighted areas and provide additional information
necessary to confirm or decline AI results.
From the interviews, we learned that domain experts
would prefer explainability in written form. This ex-
plainability should clarify the reasons why the annotation
was created using medical terminology. Test participants
did not prefer explainability in the form of percentages
indicating AI’s confidence in the annotation, nor did they
favor heat-maps or other numerical ratings. Similarly,
they did not prefer explainability in the form of a similar
case shown in a tooltip.

8 Discussion

In the realm of the user experience in digitized histopathol-
ogy, it is imperative to meticulously consider and
accommodate the varying levels of expertise among
domain-specific experts. This entails a conscientious
approach to integrating the insights and contributions
of experts from diverse domains, ensuring that each
individual’s specialized knowledge and proficiency are
fully present the AI results in a proper way and leveraged
to adapt the processes and outcomes within the digital
histopathology framework.
Prioritizing expertise levels among domain experts in
designing the frameworks for digital histopathology
is fundamental for driving innovation and enhancing
medicine study field improvements.

Assuming that the proposed tool will be utilized by
experts with a lower level of expertise and also by experts
with a high level of expertise, it is essential to design it in
a manner that caters to the specific needs of both groups.
The limitation of the usability study was introduced
by participants gaining experience with the tool and
gradually acclimating to its use with each task. However,
we claim this bias does not contradict the basal finding
that the application of an AI-assisted approach in any
form increases work efficiency when introduced in the
tool after the user gets familiar with the manual annotation
workflow.
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8.1 Phases of Design Focused on the Do-
main Expert in the Field of Medicine

Figure 3: Visualization of phases of design focused on the
domain Expert in the field of medicine.

Before creating a design focused on a domain expert
in the field of medicine, it is important to build the entire
collaboration thoroughly and approach the design as a
continuously evolving relationship between stakeholders.
To be able to design in a way that achieves satisfaction for
the domain expert, it is important to grasp the collabora-
tion correctly from the initial phases. All detailed steps of
collaboration is depicted in Fig.3.

The first half of the collaboration ends with the creation
and understanding of the mental model of the domain
expert in the field of medicine. Only at this stage can
we create specific personas and design to reference
real user needs. This phase is preceded by observing
domain experts. Observing domain experts also includes
contextual interviews, obtaining a concrete picture of
their needs. When it comes to a specific domain, such
as in this case the domain of medicine, it is important to
conduct observations and meetings with domain experts
in their own working environment. Observing the home
environment helps us understand the typical flow of
activities, and the domain expert appears more confident
in their familiar environment, with their behavioral model
not being distorted by various external factors.

The second half of the collaboration begins with the
most important phase, which is building trust. Trust
from the domain expert in the field of medicine towards
the technical domain expert is crucial due to significant
differences in focuses. Trust needs to be built gradually
through dialogue and openness. With such an approach,
the domain expert gains confidence and begins to col-
laborate with technical domain experts as colleagues
without the need to distinguish or underestimate either
side. After gaining trust, it is necessary to reinforce it by
involving the domain expert in the development process,
making it clear that their opinion is important even in the
technical domain. The involvement of the domain expert
can take various forms, from the initial stage of prototype
development during sketching, through testing or data
creation, to feedback.

The final phase of the collaboration is the outcome. The
outcome consists of multiple goals from each party in-
volved in the collaboration. The outcome includes the
developed prototype, product, and system, as well as the
satisfaction of the domain expert in the field of medicine.
The final phase may define various outcomes in different
cases, but it is important for these outcomes to meet the
goals and bring benefits to both domain experts in the field
of medicine and the technical domain. Among the out-
comes, we also include associated partial goals such as
gained trust or expanded knowledge in the domain.

8.2 Application of Automation and Augmen-
tation Based on the Level of Expertise in
the Field of Medicine

It is crucial to focus on the implementation of intelligent
features into tools used for educating domain experts in the
field of medicine to streamline the work of medical profes-
sionals and generate a wealth of valuable study materials
that will be more readily available to all students compared
to current educational methods. Through collaboration,
testing, and observation, we have found that how artificial
intelligence is implemented into applications in the field
of medicine should be on the expertise level of individual
domain experts who will be using the proposed tools.

Figure 4: Visualization of the relationship between the
benefits of using AI and levels of expertise in 2 types of
AI implementation

There is a relationship between the expertise level of the
domain expert and the number of benefits that can be de-
rived from using AI-supported functionalities. As we can
observe, the higher the expertise level, the greater the ben-
efits provided by such functionalities. The reason is that
experts with higher levels of expertise can critically evalu-
ate the results of AI, whereas, without domain knowledge,
there could be negative influences on the outcomes of AI.

As visualized in Fig.4, there are some differences
between the methods of implementing AI and the benefits
these methods yield to domain experts with varying levels
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of expertise.
The first method of presenting AI outputs in the user
interface, depicted in blue in the figure, is automation.
This curve commences at the origin of the coordinate sys-
tem, signifying that in the absence of domain knowledge,
automation yields no discernible benefits either in the
learning process or in clinical practice. This is because
the user attempting to educate themselves through the
application loses a crucial part of the learning process,
namely analysis. The magnitude of benefits conferred by
automation increases gradually with the accumulation of
domain knowledge.

The second curve depicted in Fig.4, represented in
purple, has its benefit value with near-zero domain knowl-
edge obviously higher than the automation approach. As
evident, this curve does start at a higher point, indicat-
ing that this method of AI implementation is suitable
even in the educational process, where it can provide
recommendations and help experts with lower levels of
expertise navigate through digitized preparations. With
increasing levels of expertise, the number of benefits that
augmentation can bring also increases. In this method
of AI implementation, domain experts have significant
control over the AI results, which gives them a greater
sense of comfort and increases trust.

9 Conclusion

In this paper, we targeted the identified research problem
of domain experts in the loop of digitized histopathology
education and artificial intelligence. We addressed these
open research questions with our approach proposal in-
cluding histopathology-expert-centered design and medic-
centered design. We validated and examined the proposed
approach in a case study in cooperation with domain ex-
perts from a medical university. Our main contribution is
the phases of design focused on the domain expert in the
field of medicine and the proposal of application of au-
tomation and augmentation based on the level of expertise
in the field of medicine.
In our future work, we plan for medical faculty students
to adopt the annotation tool in their education process as
an extensive usability study while evaluating their interac-
tions. The study on interactions will supplement the study
on Design Focused on the Domain Expert in the field of
medicine.
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Faculty of Informatics and Information Technologies
Slovak University of Technology

Bratislava / Slovakia

Abstract

Deep neural networks have become important in the re-
search of medical applications, particularly in histology.
One of the important research areas is the usage of deep
neural networks in the diagnostics of diseases such as
Crohn’s disease and Ulcerative Colitis. In these types of
diseases, the correct detection of specific cell types and
cell features is crucial. To integrate this domain-specific
knowledge directly from pathologists, we propose a cus-
tomizable system made of three connected modules: seg-
mentation, filtration, and classification.

The segmentation module uses the AttentionUNET [11]
architecture to find cell boundaries. The filtration module
contains a stack of filters suitable to specific cell features,
such as color, shape, and area. These filters are used to
eliminate irrelevant cells from the predicted segmentation
mask. The classification module uses the ResNet34 [4] ar-
chitecture for multi-class classification tasks. Through ex-
perimentation involving custom loss functions and atten-
tion modules, we found that the filtration module is well-
suited for elimination of irrelevant cells from the predicted
mask. The segmentation module achieves a Dice score of
84.18% and an F1-score of 90.08%. However, the clas-
sification module exhibits an accuracy of approximately
72%, primarily due to limited annotated data. Nonethe-
less, our solution proves effective in scenarios with con-
strained training data, as the filtration module aids with
process of prediction by filtering out irrelevant cells.

Keywords: Deep Learning, Cell Segmentation, Cell
Classification, Computer Vision, Medical Image Analysis,
Feature Extraction, Histopathology

1 Introduction

In recent years deep learning started to be involved pro-
gressively more in histology. Histology images contain
a vast number of features and objects, which need to be
precisely detected by doctors. An example of a histology

*xkozlik@stuba.sk
†vanda benesova@stuba.sk

image of the colon can be seen in fig. 1. These images
are in a different resolutions in a range from 61440x73728
to 134400x82944 pixels. Because of these resolutions it
is sometimes hard to detect abnormalities in them. Be-
cause of this, deep neural networks (DNN) came in handy.
With the help of DNN, mostly convolution neural net-
works [10], pathologists can save days of work. Spe-
cific types of diseases, where deep neural networks can
be used is Ulcerative Colitis and Crohn’s disease. The
symptom presented in these diseases is inflammation of
the colon and small intestine. Starting and long-lasting in-
flammation can be detected in histology images. In the last
50 years occurrence of these diseases increased 10 to 15
times. This means it became a modern-age disease, which
occurs more and more often [9]. Indeed, the complexity
of diagnosing diseases in the colon arises from the diverse
range of cell types and tissues present in this region. Un-
like some other diseases that may affect more homoge-
neous tissues, conditions affecting the colon often involve
interactions between various cell types and tissues, each
with its own distinct characteristics and functions. Diag-
nostic and prediction of disease is extremely important.
When a doctor can predict the development of a disease,
he can establish less invasive treatment earlier. This can in
some situations save a patient’s life.

The training of neural network-based system requires
a sufficient amount of annotated cell images. However,
annotating these cells is time-consuming and can only be
done by pathologists. Since creating annotations is not
a common task for pathologists, it is crucial to expedite
the annotation process. Only pathologists know the exact
rules regarding which cells are most important and which
features to focus on. This underscores the importance for
pathologists to have the option to interact with and modify
the annotation tool, as well as access an annotation tool ca-
pable of extracting cells based on specific features. Hence,
they require an annotation tool capable of minor modifica-
tions by individuals who aren’t AI professionals.

The contribution of this papers is to provide a system,
which is able to perform segmentation and classification of
specific areas of histology images chosen by pathologists,
with the additional option of modifications of the system

Proceedings of CESCG 2024: The 28th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 1: Example of histology image

by the user. Due to the scarcity of training data, the model
is pre-trained on the CoNIC dataset [2]. The whole system
is meant to be implemented into the custom annotation ap-
plication as a tool for the acceleration of the pathologist’s
work. The advantage of this custom annotation applica-
tion is that it would be easily expandable based on specific
requirements.

Mentioned system is made of three connected modules:
segmentation, filtration, and classification. These modules
work as a pipeline. The main part is the filtration mod-
ule, which provides necessary modifiability. Implemen-
tation of the module into the custom annotation applica-
tion can increase the speed of histology image examina-
tion by a pathologist. Furthermore, it offers the option
to implement active learning based on the visualization of
predicted masks within the annotation application.

2 Related work

Numerous applications have been developed for cell seg-
mentation and classification [17], yet only a limited num-
ber specifically target Crohn’s disease and Ulcerative Col-
itis. That is the reason why, it is hard to compare this spe-
cific task to other state-of-the-art solutions. Most of the
similar solutions focus on the incorporation of additional
features with attention mechanisms [14] or adjustments
to neural network architectures. This is a advantageous
option when we want a precisely functioning black box
that requires infrequent modification. However, it also in-
creases the system’s complexity, making optimization and
management more challenging and model less explain-
able.

Yildiz et. al [18] work with the same CoNIC dataset
[2] as used in this paper. However, the paper provides a
whole different approach to cell segmentation and classi-
fication. The UNET architecture mentioned in the paper is
used for multi-class segmentation which means they used
one model to predict and classify segmentation mask. Val-
idation was performed on five different subsets of images.

The average metrics of these tests are 57,08% dice score
and 48,57% IoU. At first glance, this approach may appear
to offer a superior and simpler solution. However, a issue
may arise. One model needs to learn how to perform seg-
mentation and also classify individual pixels into correct
classes. Handling complex data such as cells can indeed
present challenges in this regard. The problem also can be
seen in the paper, where the test accuracy metric showed
that some of model is not that robust. This is beneficial
in situations, when model needs to have fast performance
and take up less disk space. Due to the previously men-
tioned challenges associated with the complexity of per-
forming classification and segmentation on similar types
of data such as cells, we opted to use separate models for
segmentation and classification.

Iacucci et. al [8] provide neural network architecture ad-
justed to distinguish between remission and inflammation
phases. This can be predicted from histology images based
on specific types of cells located in tissue. The method
which is used for this problem is a modification of VGG16
architecture by use of attention mechanism [8], which re-
sults in better focus on neutrophils. Input to the attention
mechanism is the annotation of the corresponding whole
slide image. This modified architecture provides 79% ac-
curacy and 71% F1-score for classification. The imple-
mentation offers techniques for prioritizing specific types
of cells over others.

Zeng et. al [19] provide different sights on the prob-
lem and different approaches. In this proposed solu-
tion architecture detects the position, shape, scale, and
contour of cells. The architecture used in the paper
is called Residual-inception-channel attention-Unet (RIC-
Unet) [19]. It brings the advantage of residual blocks,
which helps to extract more representative features. The
Inception block [19], also present in this architecture, is
renowned for its computational efficiency and its ability to
manage large receptive fields. On top of this, an attention
mechanism is added for better focus on regions of interest.
The combination of these blocks creates the architecture
of RIC-Unet. This architecture provides an 80,08% dice
score and 82,78% F1-score. The biggest advantage of this
architecture is its ability to extract features of single cells.

Aziz et. al [3] used different method for feature ex-
traction. In this proposed solution is chosen five differ-
ent neural network based architectures for feature extrac-
tion, following algorithms for feature selection and classi-
fication itself. Specific architectures used for feature ex-
traction are VGG16, VGG19, Xception, ResNET50 and
ResNET121. Proposed method outperforms state of the
art solutions by 95,5% accuracy for multi-class classifi-
cation and 99,49% accuracy for binary classification. It
shows exceptional results, but one problem still persists.
The system is challenging to interpret, making it difficult
to ascertain which specific features are the most relevant
and whether they align with the primary decisive features
identified by pathologists.

The mentioned papers [8, 18, 19] are based on attention
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mechanism [6]. However, these mechanisms can be mod-
ified only by AI specialists, due to their complexity. This
could be beneficial in some situations, but when a model
needs to be set up for each task specifically, it becomes
crucial for the model to be user-adjustable.

3 Proposed method

The whole concept of developing an AI system for
medicine, which we want to follow can be seen in fig.
2. The starting point is often a pathologist who presents
the problem to a UX expert. This UX expert later in-
troduces the problem to the AI expert in a more techni-
cal manner. Afterward, AI experts try to implement so-
lutions and discuss results with pathologists through UX
experts. This process is repeated a few times, creating a
loop [13]. In our specific problem, pathologists need ar-
chitecture, which can accurately classify selected classes
of cells in colon histology images. These types of cells
are often common in Crohn’s disease and Ulcerative Col-
itis. To take advantage of communication with patholo-
gists, we aim to create an architecture, which will be easy
to modify. These modifications will enable the integration
of additional information provided by pathologists directly
into the architecture. The blue part of the diagram in fig. 2
represents the AI system of our proposed solution, which
is described in the next chapter.

Figure 2: Human in the loop cycle for developing of new
AI histology tool

3.1 System architecture

The whole system, which can be seen in fig. 3, can be di-
vided into three main modules. Each of these modules is
responsible for a different part of the process. The process
starts with the extracted histology image patch, which is
inserted into the first module. This module is called the
segmentation module, which is responsible for predicting
segmentation masks. The next module is called the fil-
tration module. This module is the most flexible part of
the system. It contains a stack of filters used for the fil-
tration of the created segmentation mask. It serves as the
second module to expedite the process. By filtering out
irrelevant cells before passing them to the classification
module, we can streamline the validation process and save
time. The last module, called the classification module is
applied for extracting of specific classes of single cells. By
combining these modules, we obtain a classified and seg-
mented mask for a specific patch, which is then filtered

based on the required cell features. All of these modules
are integrated and implemented within the PyTorch [15]
framework to optimize the performance of the deep neural
network-based application.

Figure 3: Architecture of system

3.2 Segmentation module

The first part of the system is the segmentation module,
which can be seen in fig. 4. This module is responsible
for the creation of a segmentation mask. The module is
consists of two parts: data preparation and cell segmen-
tation. In the data preparation part, data loading, splitting
images into the same size patches, and data preprocessing
are performed. The preprocessing stage involves resizing
of data and the conversion of data into tensors. Following
data preparation, cell segmentation is performed using the
AttentionUNET [11] architecture, recognized as the state-
of-the-art approach for cell segmentation. In our evalua-
tion, we compared Ordinary UNET, AttentionUNET, and
Residual AttentionUNET architectures. Despite similar
dice scores averaging around 83%, the AttentionUNET
architecture outperformed others in accurately segment-
ing cells and their edges. This determination was made
through visual comparison by a pathologist.

The AttentionUNET architecture consists of a combi-
nation of two components: the conventional UNET and an
attention module. UNET architecture [16] is a convolution
neural network-based structure, based on encoder-decoder
architecture enriched by skip connections for enhanced
feature extraction. These connections aid in retaining fine
details during upsampling by concatenating feature maps
from corresponding encoder and decoder layers. Further-
more, an attention gate consisting of two inputs is also in
the UNET architecture. The first input is from the layer be-
fore and the second is from the encoder part. These inputs
are then concatenated and passed through ReLU, convo-
lution layer, sigmoid, and then resampled. This model is
trained based on transfer learning on CoNIC [2] dataset.
CoNIC dataset is used due to small amount of annotated
data provided by the pathologist.

3.3 Filtration module

The second part of the system, which can be seen in fig.
5, is the filtration module. This module is the main part
of our proposed solution. The primary objective of this
module is to offer pathologists options for interacting with
the system and modifying the results based on their prefer-
ences. It aims to preserve the accuracy of the outcomes as
much as possible. This module is separated into the data
preparation and cell filtration parts. The data preparation
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Figure 4: Components of the segmentation module

part is phase involves merging image and mask patches
into a single mask and image. This facilitates the sub-
sequent step, which is the usage of a contour analyzer.
A contour analyzer, implemented using the OpenCV [5]
Python library, is utilized to extract single cells from the
mask. When we have contours and their positions, we can
extract these contours from images. After the extraction
of cell contours, we can easily perform filtration. In this
stage of development are implemented three filters.

The first filter detects an area of specific cells. At first,
the area is calculated over each contour. After that, the
value of the area is compared to the threshold, and is de-
cided whether the contour passes the test or not.

The second implemented filter is the shape filter. This
filter also iterates over each contour of the mask and calcu-
lates the aspect ratio of elliptic approximation [7]. Using
of this calculation solve problem of different cell rotations,
because of which cannot be used simple ratio of width and
height. The calculation creates value that is used to de-
cide whether the contour is valid or not. Decision is also
made by comparison of threshold and calculated ratio, like
before.

The third filter is a color filter, which is the most com-
plex one. For this filter three input data are crucial. Image,
segmentation mask, and sample image. Sample image is
one color image, which is set to specific color, based on
observations of cells. The first step of the color filter is
to extract contours from the mask. Once contours are ob-

tained, specific color pixels of the contour need to be ex-
tracted from the image. The next step involves calculating
the color ratio by leveraging the difference between two
colors in the form of CIE Lab, specifically utilizing the
CIE 2000 method, across both the image and color sam-
ple. This method is implemented with color-science [12]
Python library. As the last step, all calculated pixels of the
contour are added up and divided by all pixels of the con-
tour. This creates an average color difference value, which
is used for filtration.

Mentioned earlier, each of the filters is implemented to
work with a specific threshold value. The value tells which
cells need to be filtered and which need to be kept. Setting
these thresholds directly inside of the annotation tool in
which the presented system will be implemented provides
the required variance for pathologists. The filtration mod-
ule is not limited to the mentioned filters; it is designed to
allow easy modification and addition of new necessary fil-
ters based on the extraction of cell features. The choice of
these three specific filters is guided by the observations of
pathologists during annotation sessions, which highlighted
the most important cell features. Further identification
of additional filters will involve additional sessions with
pathologists.

Figure 5: Components of the filtration module

3.4 Classification module

The final component of the system is the classification
module (fig. 6) tasked with classifying single cells. These
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cells must be categorized into six distinct classes: neu-
trophil, epithelial, lymphocyte, plasma, eosinophil, and
connective. Module is divided into two main parts: data
preparation and cell classification. In the data preprocess-
ing part all patches need to be merged into one image, be-
cause of the contour analysis. Following this, single cells
can be extracted and prepared for classification. These
single cells are then passed to the cell classification part,
which is made of ResNET34 architecture [4]. Variations of
ResNET and VGG16 architectures with single and multi-
input configurations were explored. Despite the similari-
ties in results across the models, attributed to insufficient
training data, the ResNET34 architecture currently yields
the best performance. However, as more training data be-
comes annotated, additional experiments with diverse ar-
chitectures will be conducted.

ResNET34 architecture can be divided into three parts.
The first part is residual blocks with skip connections.
These residual blocks contain convolution, batch normal-
ization, and ReLU activation function. Between each of
these residual blocks are skip connections. The number
of residual blocks defines what type of ResNET architec-
ture it is. When increasing the number of residual blocks,
the model is able to get more fine-grained features, but on
the other hand, it needs bigger computational resources.
Global average pooling is located after residual blocks. It
is used for reducing of output’s spatial dimension to 1x1,
which is then fed to the last layer. The last layer is the
fully connected layer, which is used for probabilities and
prediction extraction. This model is used for the classifi-
cation of cells and output labels for single cells.

Based on visualization of class activation map (CAM)
[1], which can be seen in fig. 7, it is evident that the neural
network model is sometimes not focusing on important ar-
eas. In fig. 7a can be seen CAM of the correct prediction
and in fig. 7b can be seen CAM of the incorrect prediction.
From the images, it can be observed that the model some-
times encounters difficulties in determining which pixels
to focus on. Because of this problem, a custom attention
module is added to ResNET34 architecture. This module
is implemented into the architecture after the convolution
layers extract weights from the segmentation mask, pro-
viding additional information to the model. This adds to
the model information about the position of important cells
and indicates which pixels are important.

3.5 Training process

The system contains segmentation and classification mod-
ules, which need to be trained. Both models are exclu-
sively trained on the CoNIC dataset, which contains colon
histology images. Therefore, because of the same type
of data in the dataset, it could be used for transfer learn-
ing. The training process for each of them is slightly dif-
ferent. The segmentation model is trained with dice loss
function and Adam optimizer for 100 epochs. On the other
hand, the classification model is trained with cross entropy

Figure 6: Components of the classification module

loss and with Adam optimizer, which was trained for 20
epochs. Both of the trainings were performed on Tesla
V100-SXM2-32GB with 8 GPU.

3.6 Evaluation methods

Evaluation methods used in the proposed solution can be
separated into three parts: quantitative evaluation, visual
inspection, and validation by pathologists.

Numeric metrics evaluation can be divided into the seg-
mentation and classification parts, as each task requires
distinct metrics for evaluation. For segmentation, dice
score, intersection over union, and F1-score are used. On
the other hand, classification uses precision, recall, and
accuracy. These numeric metrics interpret performance
precisely with easily interpretable numeric values.

Visualization, on the other hand, represents graph plots
of the training process or exact generated segmentation
masks. These can be used as simple methods whether the
model is performing well. Another visualization method
used in the paper is class activation mapping, which is used
for classification. This one is useful to check if the trained
neural network is correctly focusing on the important and
the most representative areas of the image.

The last evaluation metric used is direct validation by
a pathologist. Pathologists review the generated predicted
mask and provide feedback on its accuracy and quality.
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(a) Class activation mapping of a correct prediction

(b) Class activation mapping of an incorrect prediction

Figure 7: Class activation mapping (CAM)

While this approach is the most informative and useful,
its execution frequency is limited by the availability of
pathologists’ time. The evaluation process can be seg-
mented into two tests: qualitative and quantitative. The
first test involves feature extraction for qualitative analysis,
where pathologists explain the most significant features
during cell annotation. The outcome of this test provides
information about important features. The second test is
active learning. In this evaluation method, a proposed so-
lution can be also directly integrated into the annotation
application, expediting the validation process. For optimal
results, specific cells that pose challenges for the classifi-
cation model need to be provided to the pathologist in an
iterative process. The outcome of this approach is a refined
predicted mask for our model, which can subsequently be
retrained on this problematic data.

4 Results

The results of experiments can be categorized into two
parts, one is numerical metrics results and the second one
is visualization of results. A combination of these two
gives the best insight into the evaluation of computer vi-
sion solutions, especially the proposed one.

Numeric value metrics provide results of two different
modules. These modules are previously mentioned seg-
mentation and classification modules. Results of the seg-
mentation module can be seen in a table 1. These results
provide the difference in dice IoU and F1-score metrics be-
tween CoNIC dataset and the custom dataset. The custom
dataset is made up of converted raw data, directly from
the pathologist. Data is in a format of ndpi, which was
converted and used to extract around 600 annotated cells.
These cells are then used as previously mentioned custom
dataset. Metrics shown in the table 1 indicate promising
results both on CoNIC and on the custom dataset. The
fact that the model is trained only on CoNIC and yet, we
can achieve sufficient results without additional training
on custom data is great. The second evaluated module
is the classification module. The results of this module
also provide calculated metrics over CoNIC and custom
dataset. The metrics used for this experiment are accu-
racy, precision, and recall. Based on these results, it can
be observed that the model performance is not optimal,
but it is satisfactory considering the limited availability of
annotated data. Increasing of accuracy will be part of the
active learning implementation. On the other hand, the fil-
tration module cannot be evaluated like this because only
a pathologist can say if cells in the filtration module are
correctly removed.

Segmentation task
Dataset Dice IOU F1-score
CoNIC 84,18% 72,69% 90,08%
Custom Data 75,22% 66,74% 79,13%

Table 1: Results of segmentation module

Classification task
Dataset Accuracy Precision Recall
CoNIC 93,00% 93,00% 93,50%
Custom Data 72,00% 66,00% 70,05%

Table 2: Results of classification module

The second result of the visualization of data can be
seen in fig. 8. Prediction is performed on histology im-
ages never seen by the model. These images have been
provided directly by a pathologist. In a comparison of pre-
diction without filter in fig. 8a and prediction with filter in
fig. 8b, it can be observed, that adding of filtration mod-
ule filtered a significant number of irrelevant cells. When
focusing especially on small and oblong cells on a left and
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bottom part of the image, it can be seen that in fig. 8b
is much less of these cells then in fig. 8a. This filtration
is provided with only filters and thresholds, which can be
later modified. Modifications can be done anytime without
changing neural network model architectures or retraining
of models. The advantage of visualization of data is that
it is more interpretative. Few results of prediction masks
were evaluated directly by pathologists who noted good
results, especially with neutrophils. These neutrophils are
important in the diagnosis of Crohn’s disease and Ulcera-
tive Colitis, which makes them one of the most important
types of cells for our solution.

The proposed solution of filtration architecture shows
that the system can be modified by changing the values
of thresholds in specific filters. This creates the required
modifiability of the system by the user. It shows that it is
possible to handle the creation of a prediction mask easily
and fast, which was exactly the objective of the research.

(a) Prediction mask without filter module

(b) Prediction mask with filter module

Figure 8: Predicted masks

5 Conclusions

Due to the differences and complexity inherent in histol-
ogy tasks, it is crucial to develop a system that is user-
friendly and capable of accommodating modifications by
pathologists. It is important in situations when a patholo-
gist need to find cells based on their features. Sometimes
pathologists need to find all specific features in areas of
histology image. In such scenarios, challenges arise when
the prediction system generates a mask with a large num-
ber of cells. Lots of the cells are irrelevant for pathologists
who need to search in them for specific cells. The pro-
posed solution helps exactly with this. The contribution
shows in results that the difference with and without us-
ing of filtration module is significant. The filtration mod-
ule can focus on specific features based on filters. What’s
more, it is designed to be easily expandable by more fil-
ters, based on pathologist needs. Tests have demonstrated
that merely adjusting thresholds can result in significant
changes to prediction masks. With a correct setting of
threshold and correct knowledge, it is able to extract indi-
vidual classes of cells, which are sometimes hard to find.
The second advantage that comes with this solution is the
fastening of the validation process. Directly after the seg-
mentation module, the filtration module removes lots of
contours, which significantly decreases the number of sin-
gle cells prepared for classification. What is more, it can
be beneficial for some pathologists, who have problems
with using neural networks as black boxes. When they ob-
tain the feeling that they can modify the model by them-
self, it can build greater trust in the system.

6 Future work

Implementation of a filtration module into the system has
shown advantages in the classification task of single cells.
However, pathologists need to be able to use this system.
This involves implementing the system into the custom an-
notation tool, which is currently in development at the fac-
ulty. Following the implementation of the system in the
annotation tool, the next intriguing approach is to adapt
the system for active learning. This active learning will
be based on output from the pathologist directly using a
custom annotation tool. This could help the model with a
better understanding of data and enhance the performance
of the system. Also, the implementation of new types of
filters and new methods of feature extractions into the sys-
tem might be beneficial to try. By offering pathologists a
wider array of filters, the system becomes more versatile
and adaptable, ultimately enhancing its utility and efficacy
in medical image analysis.
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Abstract

Deep learning methods have recently found applications in
several fields, including the processing of medical imag-
ing data. We explore the application of convolutional neu-
ral networks (CNN) for automatically processing magnetic
resonance imaging (MRI) scans in ceT1- and T2-weighted
modalities to assist doctors with executing accurate and
time-efficient tumor diagnostics.

The main challenge of the work is the multimodal regis-
tration of coronal and axial scans, which are perpendicular
to each other and, therefore, cannot be registered directly.
We use a generative adversarial network (GAN) architec-
ture to convert between modalities, making it easier to reg-
ister them. The resulting registered scans can be used for a
wide variety of further tasks, utilizing the complementary
information contained in different MRI modalities, i.e. im-
age segmentation.

Keywords: Multimodal Image Registration, Deep Neu-
ral Networks, Generative Adversarial Networks, Medical
Imaging

1 Introduction

In recent years, there has been a substantial rise in novel
techniques used for diagnostics in medicine. The introduc-
tion of artificial intelligence (AI) can speed up most of the
tasks that doctors perform daily.

Despite legal and ethical challenges, it can still greatly
aid the doctor. The most influential advantage of using AI
is the reduced time it takes to diagnose a patient since, in
general, the AI can process more data quicker than even
an experienced doctor could.

One of the main problems in the learning process of AI
is the need for a lot of data. Many tasks require using an-
notated data that must first be created by a domain expert,
which is very tedious. By creating an intelligent assis-
tant based on a neural network, we could simplify the pro-

*xvighn@stuba.sk
†vanda benesova@stuba.sk

cess of data annotation and thus help create larger datasets
available for future usage.

In many cases, doctors need to work with multiple
modalities, providing complementary information, some-
times even acquired by using several different diagnostic
devices. Due to this, we see a new research possibility in
intermodal conversion. Although intermodal conversion
is not able to synthesize information that is not present in
the original imaging data, it can be sometimes useful, for
example for our presented co-registration method. By cre-
ating a tool that could convert images between modalities,
we could reduce the time needed to scan the patient mul-
tiple times, thus enormously reducing the waiting times to
get diagnosed.

To achieve this, we first need to be able to register
modalities correctly in the same space. Afterward, we
can add the provided labels from one modality to the sec-
ond modality. This enables the creation of neural networks
that could be trained on a compacted dataset. This could
possibly create a tool that could classify into classes that
are not that visible in the actual modality provided to the
doctor, but the neural network could pick up on this.

Our contribution lies in creating a multimodal 3D im-
age registration tool using a GAN network. The core
problem we try to overcome is the perpendicularity of
the available dataset, which makes this problem even
harder. Unfortunately, most real-world MRI data uses an
anisotropic voxel grid. The spacing of the scans is dif-
ferent on the third axis, which motivates the creation of
a custom-made image registration algorithm. To make the
problem more graspable, we reduce the complexity of reg-
istering two modalities by introducing a GAN network that
converts images between MRI modalities, making the reg-
istration process more straightforward.

2 Background

Pituitary adenomas (PA) are a type of benign tumor affect-
ing the pituitary gland, with a prevalence of 96±20 cases
per 100,000 population [8]. Despite being benign, PA can
exert pressure on surrounding tissues, necessitating cau-
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tious surgical intervention or they can cause abnormal hor-
monal production [18]. A precise diagnosis and character-
ization of PA is crucial for treatment planning and patient
care. The segmentation mask can be used for further sta-
tistical analysis of the tumor, such as classification based
on its diameter [16, 4] and shape relative to surrounding
tissues [12], or radiomics analysis, which extracts quanti-
tative features from medical images to predict patient out-
comes [9, 15].

Medical imaging plays an essential role in tumor diag-
nosis. Techniques such as X-rays, CT scans, MRI, and
ultrasound provide detailed scans for analysis. MRI scans,
in particular, offer high-resolution images acquired in dif-
ferent planes, allowing for better visualization of anatom-
ical structures and abnormalities. Different MRI modali-
ties, like T1-weighted and T2-weighted, offer varying tis-
sue contrast and information about tissue composition and
structure, aiding in the detection and characterization of
tumors [16, 4, 3].

Computer vision techniques are increasingly employed
in medical image processing for tasks such as image regis-
tration and segmentation. Image registration aligns images
from different modalities or time points, enabling accurate
comparison and analysis. Segmentation identifies and la-
bels regions of interest within images, facilitating quan-
titative analysis and diagnosis. Evaluation metrics such
as mutual information and the Dice similarity coefficient
(DSC) assess the accuracy and performance of these tech-
niques, guiding their optimization and application in clin-
ical settings [14].

The rise of deep neural networks, particularly convolu-
tional neural networks (CNNs), has revolutionized medi-
cal image analysis by enabling automated feature extrac-
tion and classification. Architectures like U-net [17] ex-
cel in segmentation tasks, accurately delineating tumor
boundaries and aiding in treatment planning. Generative
models like variational autoencoders (VAEs) [11] and gen-
erative adversarial networks (GANs) [10] offer novel ap-
proaches for data generation and augmentation, enhanc-
ing the availability and diversity of training data for deep
learning models.

2.1 Related Work

The fundamental problem with multimodal registration is
that most models try to find a good mapping between the
different intensities in the fixed and moving images. De-
pending on the actual modalities, it might be problematic
to find such mappings in some cases. However, with the
recent advancements in CNNs, there have been attempts to
facilitate the registration process by applying segmen-
tation to both modalities and subsequent image registra-
tion in the space of the segmented images.

One such work was published by Blendowski et al. [2]
The authors suggest using a convolutional autoencoder
architecture to extract shape features of both modalities.
Using the encoder part on the input volume, they extract

a 1584-dimensional shape space describing the objects in
the volume. They propose that by applying linear inter-
polations between the moving and fixed image encodings,
they can achieve iterative guidance of the image registra-
tion process. This should help the registration process by
eliminating large non-linear deformations that could oc-
cur when the algorithm tries to register the moving image
directly onto the fixed image. Their results confirm this,
since when applying direct registration, they only achieved
a DSC of 0.526, while when using the approach with iter-
ative guidance, they achieved a DSC of 0.653 [2].

Another work by Cao et al. [5] is focused on the regis-
tration of CT and MRI using models that can synthesize
images of either modality from the other image. The sub-
sequent image registration is then much more manageable.
However, especially synthesizing MRI from CT is a com-
plicated, non-linear task. The authors do not use a neural
network but rather a Multi-Target Regression Forest since,
this way, they arguably needed less training data. The for-
est synthesizes both modalities, so the registration algo-
rithm has two images (one original and one synthesized)
in both modalities. The calculations can then be done in
both modalities, where one way of transformation is in-
verse to the other way. The paper by Cao et al. [5] was used
for MRI and CT pelvic image registration. However, there
have been other papers about synthesizing other modalities
for brain-related data, even by using neural networks. In a
paper by Li et al. [13], the authors try synthesizing MRI
from CT of brains using deep learning methods. They
compare approaches based on a CycleGAN, Pix2Pix (con-
ditional GAN) model, and the U-net architecture. Unex-
pectedly, the best results were achieved using the U-net
architecture with L1 and L2 regularizations [13].

In a paper by Zheng et al. [20], the authors propose a
method for multimodal image registration using a GAN
network. Compared to the CycleGAN model used for im-
age synthesis in the previous section, the authors propose a
Symmetric registration GAN model, which also creates
a cycle-consistent mapping between the two modalities.
However, a transformation is also applied to the images,
which transforms them into the same space as an image
from the other modality. This way, even though the images
are not aligned, they can be directly compared, and the
loss can be calculated more precisely [20]. The transfor-
mation is done using Affine Transformation Regressors,
which try to predict the affine transformation parameters
between the two images they receive as input. There are
also non-linear transformation regressors, which try to pre-
dict the non-linear transformation parameters using a Vox-
elMorph model [1]. These regressors are pre-trained on
a dataset of artificial transformations with known parame-
ters. Ultimately, the proposed model generates two sym-
metric transformations, which can be applied to register
the images in either way [20].
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3 Our solution

The main contribution of our work lies in the way we use
data from multiple modalities by creating a registration al-
gorithm that could enable the usage of labels of classes
from multiple modalities, which are not greatly visible on
only a scan from one modality. A neural network can still
detect such cases, meaning full diagnostics could be pos-
sible by providing only one modality.
We have the following goals:

• to help the process of creation of new more robust
datasets,

• to register MRI scans in multiple modalities, which
could generate a dataset with labels from both modal-
ities,

• to prove the possibility of precise segmentation of
classes even if provided with an input consisting of
only one modality,

• facilitate further research in segmentation using only
one modality by providing a tool to create a dataset
with labels from both modalities.

In summary, we aim to aid the diagnostics of pituitary
adenoma by providing a tool that should enable the cre-
ation of more extensive datasets and incite more research
in this field.

To make the next sections more followable, we intro-
duce a notation of different kinds of scans. Letters C and
A show whether the scans are coronal or axial respectively.
These letters can be followed by an apostrophe ′, indicat-
ing that the image was crated by inference through the
GAN network.

3.1 Dataset

We obtained the dataset based on cooperation with a doc-
tor from the Military University Hospital in Prague, It con-
sists of Axial T2-weighted (AT 2) and Coronal contrast-
enhanced T1-weighted (ceT1, CceT 1) MRI scans in the
Nifti format. The dataset is anonymized and contains no
personal information about the patients.

In total, we have MRIs of 928 patients. However, the
label masks in both modalities are only available for 330
patients, which makes the base of our dataset. The other
340 patients scanned in both modalities have annotations
on neither (or just one) of the modalities. Annotating many
MRI scans is very time-consuming, so even in the anno-
tated samples, only a handful of 2D scans are annotated,
and others are left untouched.

Axial scans are scans in the horizontal plane. They con-
sist of 22 to 52 cross-sections with resolutions between
a quarter and a half millimeter. On the contrary, coronal
images are cross-sectional and consist of 12 to 24 cross-
sections with a resolution of half to one millimeter.

Figure 1: Comparison of axial (A) and coronal (B) scans.
Axial scans shown in coronal plane (C) and coronal scans
shown in axial plane (D)

There are several crucial problems with the dataset that
we need to solve:

• The third axis of the resolution is always significantly
worse and can be around 2 to 5 millimeters. Doctors
only create a few slices, showing key brain areas that
must be examined. This makes the MRI sampling
faster, more convenient for the patient, and more eco-
nomically feasible. Minimizing the examination time
can also decrease the spatial shift between subsequent
scans caused by patient movement.

• Another problem is that the axial and coronal slides
may not be precisely perpendicular. Therefore, no
clear transformation is available that could align these
two modalities, and thus, it has to be calculated using
image registration methods.

Label masks are available for both modalities; however,
the classes are not equivalent. It is impossible to distin-
guish some tissue types with certainty in the respective
modalities. The modality will be selected based on the
tissue type the doctors want to examine. For example, ar-
teries marked on ceT1-weighted scans may be poorly dis-
tinguishable from the surrounding tissue on T2-weighted
scans.

In addition, we use another dataset of registered coro-
nal MRI scans. This dataset consists of scans of 1157 pa-
tients, all of which were scanned in the coronal plane, half
of which are contrast-enhanced T1-weighted and the other
half T2-weighted slices. In total, this represents 10802
slices of each modality. Each sample is paired with a cor-
responding sample from the other modality, meaning that
each patient was scanned in both modalities.
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3.2 Challenges

There are several problems that we need to face:

• The moving image are just approximately perpendic-
ular to the fixed image (can differ up to 5 degrees).

• The spacing of AT 2 is too large, so we cannot inter-
polate them to an isotropic space, instead we can in-
terpolate CceT 1 scans with a smaller spacing.

• CceT 1 scans stick out of the space of the AT 2 scans, ne-
cessitating the need to find the correct subset of CceT 1.

Spacing in FI

is too large

to interpolate

Fixed image (FI) Moving image (MI)

MI is sticking

out of the FI

Figure 2: The core problems of the used dataset. (blue)
axial slices, (orange) coronal slices, (pink) expected trans-
formation of coronal slices into the space of axial slices.

3.3 Proposed pipeline

Figure 3 shows an overview of the proposed pipeline for
processing the data.

1. Transformation of

modalities using the

Nice-GAN network

AT2

3. Apply

transformation and

combine into one

space.

Two

channel

registered

dataset

Transformation

parameters

2. Image Registration

2.1 Identify the spacing and shape/size of the scans.

2.2 Interpolate C'T2 to the spacing of AT2.

2.3 Generate subsets of C'T2 with the spacing of AT2.

2.4 Identify the subset that was registered best based

on MSE.

CceT1 C'T2

2.4 Register all C'T2 subsets with AT2.

Figure 3: The data-flow chart of the processing pipeline.
Green blocks show data that is used as input, blue blocks
are data generated by the pipeline.

3.4 GAN network for intermodal conversion

The first step of our pipeline is to convert one of the modal-
ities into the other modality.

We use the Nice-GAN architecture [7, 6], an improved
version of the CycleGAN architecture. Compared to the
CycleGAN, this architecture reuses the results from the
Encoder part of the generator, which are then further pro-
cessed in the Discriminator network. This makes the train-
ing process more stable and allows the generator to learn
more complex mappings [7].

Moreover, this architecture tries to get to the same hid-
den vector (latent space) from both modalities, which
makes the mapping more consistent. This is achieved by
using a shared latent space, which is then used to recon-
struct the original image since they can switch the de-
coders to generate the other modality. So, there are two
loss functions. The first one is the reconstruction loss,
which is calculated by comparing the original and recon-
structed images of the same modality. The other loss is the
cycle loss, calculated by comparing the original image and
the image obtained by converting the original image to the
other modality and then back to the original modality [7].

We train this network on the datatest mentioned in the
last paragraph of Section 3.1.

The training was done on a machine with an NVIDIA
RTX4090 desktop GPU with 24GB of VRAM. It ran for
40,000 iterations and took about 10 hours to complete.
The results were saved after every 10,000 iterations, and
visualization was generated for the intermediate results
after every 1000 iterations. The learning rate was set to
1∗10−4 with a batch size 1 and Adam optimizer.

We used the results of our GAN to convert CceT 1 into
C′

T 2 in a slide-by-slide manner.

3.5 Our registration algorithm

The steps of the registration algorithm are indicated in
Fig. 3. In this section we describe these steps in detail.

3.5.1 Transformation of coronal to axial slices

The images were first loaded to read the Nifti files, in-
cluding their metadata. The metadata includes information
about the spacing of the scans, which is crucial for the reg-
istration process. Based on the spacing, we were primarily
interested in the third axis, which had the largest spacing.

The C′
T 2 scans were then interpolated to the same spac-

ing as the AT 2 scans. The interpolation was done by calcu-
lating the expected slice dimensions based on the spacing
of AT 2 scans and then interpolating C′

T 2 scans to the same
spacing.

We have created a helper function to rotate C′
T 2 scans by

a given angle.
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3.5.2 Slice selection

From the interpolated C′
T 2 slices, we can extract subsets

of the slices with the same spacing as AT 2 scans. We cal-
culate the number of slices that must be skipped between
each slice to achieve the desired spacing. Then, starting
from the first slice, we extract subsets of slices separated
by the calculated number of slices. This process is re-
peated until we reach the end of the C′

T 2 scans. We are
left with about 500 subsets of C′

T 2 slices, which are not
disjoint.

To optimize the registration process, we can remove
about 50% of the subsets since the C′

T 2 scans overflow
from AT 2 scans as depicted in Fig. 2.

3.5.3 Registration

The registration algorithm itself is based on finding the
best transformation of the C′

T 2 scans into the space of the
AT 2 scans. We use the Mean Squared Error metric. This
algorithm is run on each subset of C′

T 2 slices separately,
and the MSEs and transformations used to achieve them
are saved for each subset.

The registration is initialized by creating a transforma-
tion where the C′

T 2 slides are placed in the middle of the
image. Since we are working with pituitary adenoma,
which is located in the sellar region of the brain, we can
assume that the tumor is approximately located in the mid-
dle of the image. This is a good starting point for the reg-
istration process. We calculate the MSE of the C′

T 2 scans
nudged by a few pixels in each direction as well as rotated
by one degree in each way. We choose the direction with
the lowest MSE, creating a simple gradient descent algo-
rithm. The transformation is then updated in the chosen di-
rection by a number of pixels dependent on a learning rate
defined as a hyperparameter of the algorithm. However,
the learning rate decays during the registration process to
prevent the algorithm from overshooting the optimal trans-
formation.

We apply a function that calculates a new learning rate
based on the index of the current iteration and the total
number of iterations. The function is defined as seen in
Eq. 1, where i is the index of the iteration, n is the total
number of iterations, lr0 is a hyperparameter of the train-
ing process.

lri =
lr0

i
n + lr0

(1)

The best transformation is identified by comparing the
achieved MSEs of all the subsets. The subset with the low-
est MSE is chosen as the best one, and the transformation
used to achieve it is saved.

Upon successfully identifying the best subset, we can
apply the transformation to the original CceT 1 scans, and
the result can be saved as a 3D tensor with multiple chan-
nels, each representing one of the modalities.

4 Results and evaluation

In this section we present the results of our registration
pipeline. To fairly evaluate the results, we used a baseline
method to compare the results with.

4.1 Baseline multimodal registration

Figure 4: Results of image registration using the BSpline
interpolation method. The first image shows a successful
registration, while the second image was unsuccessful.

The registration was performed by an accommodated
version of the sample code from the SimpleITK image-
analysis notebooks collection [19] adjusted for 3D image
registration. First, it was necessary to interpolate the CceT 1
slices to achieve isotropic voxels via BSpline or linear in-
terpolation. Subsequently, we registered CceT 1 scans using
the Mutual Information metric since we were dealing with
multimodal images.

Regardless of the interpolation method, the registration
was unsuccessful in many cases. The results of the reg-
istration using BSpline interpolation are shown in Fig. 4.
Changing the interpolation method to linear interpolation
did not improve the results significantly. To visualize the
registration results, we overlapped the original AT 2 scans
with the CceT 1 scans (a dark horizontal rectangle).

4.2 GAN evaluation

The GAN network was trained to convert the input images
between the two domains of MRI scans. The training setup
is described in Sec. 3.4.

Since the GAN network is trained on a paired dataset,
we can directly compare the original and generated im-
ages. Fig. 5 compares the input and output images. The re-
sults are of high quality, especially for the generated ceT1-
weighted scans. For generated images of both modalities,
the overall position of the whole head and all the structures
inside the head are preserved. This is crucially important
for the registration method to succeed. The contrast and
lightness of the images are also very similar to the original
images. There seems to be more difference in the lower
part of the scans, but this is not a problem since the regis-
tration method only uses the upper part of the scans.

Proceedings of CESCG 2024: The 28th Central European Seminar on Computer Graphics (non-peer-reviewed)
67



I(P) - I(P') = 0I(P) - I(P') =  -1 I(P) - I(P') = 1I(P) - I(P') > 0

generated is lighter

I(P) - I(P') < 0

original is lighter

CceT1 C'ceT1 CceT1 - C'ceT1 CT2 C'T2 CT2 - C'T2

Figure 5: Comparison of original and GAN-generated coronal slices. Column 1 - CceT 1. Column 2 - C′
ceT 1 generated from

CT 2 in column 4. Column 3 - difference between CceT 1 and C′
ceT 1 scans using the depicted colorscale. Columns 4 to 6

show the same for the T2 scans. I(P) and I(P′) are the intensities of pixels in original and generated images respectively.

Figure 6: Comparison of histograms of the original and
generated scans. Left column - original scans CceT 1 and
CT 2, Right column - generated scans C′

ceT 1 and C′
T 2.

MSE of C′
ceT 1 MSE of C′

T 2

Mean 547.00 856.25
St. Dev. 181.11 292.48
Min 244.16 434.10
Lower quartile 437.74 724.79
Median 520.95 823.96
Upper quartile 612.72 931.70
Max 2969.93 4578.64

Table 1: Overview of the distribution of achieved MSEs
by the GAN network over the paired dataset.

Based on the histograms displayed in Fig. 6, we can
see that the intensity distribution of the generated images
is very similar to the intensity distribution of the original
images. This is a good sign since it means that the GAN

network can preserve the intensity distribution of the in-
put images as the generator network is trained to produce
images that are indistinguishable from the original images.

Additionally, we compared the original and generated
slices using the MSE metric. The distribution of these val-
ues is shown in Table 1. Similarly to our previous observa-
tions, we can see that the differences are more significant
when generating T2 scans.

4.3 Registration method evaluation

The registration method described in Sec. 3.5 uses coronal
slices converted from CceT 1 slices to C′

T 2 slices. We use
the MSE of the C′

T 2 and the original AT 2 slices to identify
the correct subset of C′

T 2 slices.

Figure 7: Cumulative MSEs over the subsets: Simple nor-
malization (left) vs. Histogram matching (right). We can
use this to identify the correct subset of matching images.

In Fig. 7, we can see the MSEs of all the subsets. We
omitted the MSEs of the subsets that were removed from
the registration process due to sticking out of the fixed im-
age, as shown in Fig. 2. These subsets would show an even
higher MSE than the ones shown in the chart.

The chart shows the cumulative MSEs of the subsets,
which are calculated as the mean of the MSEs of the indi-

Proceedings of CESCG 2024: The 28th Central European Seminar on Computer Graphics (non-peer-reviewed)
68



vidual slices in the subset. As seen in Fig. 7, we can effort-
lessly identify the correct subset of C′

T 2 slices by looking
at the global minima of the cumulative MSEs.

The correct subset has an index of about 100. The reg-
istration results are shown in Fig. 8 over several slices of
the selected subset.

Figure 8: Registration results. Four AT 2 slices of the same
patient overlaid with the generated C′

T 2 slices.

The registration method was able to align the two im-
ages very well. The structures of the brain are aligned al-
most perfectly. The only visible differences are the graini-
ness and lightness of the images. The interpolation of C′

T 2
slices to the same spacing causes graininess, which could
be solved by applying some denoising techniques.

We opted for using just a simple normalization to the
images, which converts the intensities of the produced im-
ages to the same range of intensities as the original im-
ages. Additionaly, we tried using a more sophisticated nor-
malization technique, such as histogram matching, which
matched the intensity distributions of the generated and
original images over the area where we have both modal-
ities. However, as depicted in Fig. 7, this approach didn’t
yield results that would make the process of the global
minima identification clearer, and the registration algo-
rithm took significantly longer to complete. Due to these
reasons, we see no real benefit in a better normalization
process.

Finally, we evaluate the achieved MSEs over a set of 77
patients. The registration process yielded in most of the
cases relatively low MSEs as seen in Table 2 and Fig. 9.
There have been some results that didn’t converge to the
correct results. Upon inspecting results of all 77 patients,
we have found only 4 results that were noticeably mis-
aligned, all of which were in the top 6 results with high-
est MSEs. We therefore evaluated, that the results with
an MSE higher than 6× 106 should be discarded as non-
successful. This leaves us with 73 successful registrations
meaning a 94,81% success rate.

MSE of the registration

Mean 2.811766×106

St. Dev. 1.980013×106

Min 5.884174×104

Lower quartile 1.464993×106

Median 2.275179×106

Upper quartile 3.716739×106

Max 1.037747×107

Table 2: Overview of the distribution of achieved MSEs
over the registered dataset.

Figure 9: Histogram of achieved MSEs over the registered
dataset.

5 Conclusions

We managed to create a comprehensive review of the main
challenges of this field and gain an overview of the re-
lated state-of-the-art works. We ran several experiments
that directed our research toward solving the most press-
ing issues. Moreover, we have employed a GAN network
to convert images between MRI modalities. This helped
to create a more robust image registration algorithm that
yields respectable results of an acceptable accuracy.

Creating an excellent multimodal image registration is
an important step that enables the fusion of the masks from
the axial and coronal slides and, thus, the training of a seg-
mentation network to segment tissue classes only marked
for the other type of modality. As part of future work, we
aim to create a segmentation CNN trained on the created
registered dataset as a proof-of-concept of segmentation
capabilities beyond what is possible when using scans of
multiple modalities separately.
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Abstract

Automatic processing of digital histology images can
greatly benefit from the utilization of deep learning meth-
ods. The development of such methods requires large
amounts of annotated histological images. However, cur-
rently available annotation tools often have very poor us-
ability, resulting in ineffective annotation processes. We
aim to address the urgent need for a simplified approach to
annotating histopathology images, a task that is crucial for
advances in automated diagnosis and analysis. By com-
bining our expertise, we strive to develop a user-friendly
annotation tool integrated with state-of-the-art deep learn-
ing techniques. This tool is designed to alleviate the bur-
den on pathologists during the annotation process by lever-
aging artificial intelligence models adapted to the various
challenges in the field, such as the Nottingham Grading
System of breast cancer. Through a comprehensive analy-
sis of breast cancer and existing annotation tools, we pro-
pose a solution in the form of a multiplatform annotation
tool powered by AI, developed in close cooperation with
medical domain experts. By combining our knowledge
and resources, we aim to bridge the gap between manual
annotation processes and the potential of AI-based solu-
tions, which will ultimately improve patient outcomes and
advance medical research in breast cancer diagnosis.

The annotation tool is available at: annotaid.com.
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1 Introduction

Artificial intelligence has affected many areas of human
life; one of them is the field of medicine, where the au-
thors of various studies are trying to help doctors in their
work by creating intelligent tools to help doctors diagnose
multiple diseases. Annotated data plays a crucial role in
training deep neural networks, yet acquiring it can be par-
ticularly challenging, especially in domains like healthcare
where data may be scarce or costly to procure [3]. This
entire process is not only arduous and time-consuming
but also prone to errors, significantly affecting patient out-
comes. Moreover, engaging domain experts in the annota-
tion process can incur substantial expenses. Thus, annota-
tion tools with excellent usability represent invaluable as-
sets that streamline the process and optimize the efficiency
of domain experts.

QuPath [7], ASAP [9], Orbit [6], or Cytomine [5] are
annotation tools commonly employed for annotating his-
tological images. Feedback from our domain experts indi-
cates that the majority of these tools, particularly QuPath,
possess a low learning curve and need training for profi-
cient use.

In this work, we introduce AnnotAid, a user-friendly
annotation tool that utilizes deep learning methods to
facilitate the annotation creation process and to support
the diagnosis of Nottingham Grading System (NGS)
criteria in breast cancer, which are jointly developed
along with our annotation tool. It was developed in close
collaboration with medical domain experts. To create An-
notAid, we introduced a novel communication concept in-
volving domain experts, UX experts, and AI experts. This
concept draws inspiration from the methods and princi-
ples of User-Centered Design (UCD), aiming to achieve an
optimal User Experience (UX) while adhering to Human-
Computer Interaction (HCI) principles consistently. The
annotation tool serves to streamline communication be-
tween domain experts and development teams.

The paper is organized as follows: Section 2 presents an
overview of existing annotation tools and approaches for
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Nottingham Grading System (NGS) evaluation. In Sec-
tion 3, we delve into the architecture, user interface, and
functionality of the developed annotation tool. Prelimi-
nary results are provided in Section 4. Finally, Section 5
outlines the conclusions drawn from our work and dis-
cusses avenues for future research.

2 Related Work

In section 2.1 the approaches to solve each criterion of
NGS are reviewed, and section 2.2 provides an overview
of existing annotation tools.

2.1 Nottingham Grading System

Nottingham Grading System (NGS) [8] is a modified ver-
sion of the Bloom & Richardson method used for grad-
ing breast cancer. This modification aims to introduce
more objectivity into the criteria. The NGS involves a
semiquantitative evaluation of three morphological crite-
ria: nuclear pleomorphism (NP), mitotic count (MC),
and tubular formation (TF). Each criterion is assigned a
score from 1 to 3, resulting in a final score ranging from 3
to 9.

2.1.1 Nuclear Pleomorphism

Xu et al. [21] proposed a deep-learning framework for
nuclear atypia scoring, consisting of two stages: epithe-
lial and stromal segmentation model and nuclear atypia-
scoring models (x10, x20, x40 magnification). In the first
stage, the relevant areas are segmented from images (ep-
ithelial and stromal), from which smaller patches are ex-
tracted and classified into 1-3 classes. For each magni-
fication, the nuclear atypia score is determined with ma-
jority voting and then the final score is determined with
plurality voting among all magnifications. On the other
hand, Mathew et al. [15] proposed a framework for the
extraction and classification of individual cells into nu-
clear atypia scores classified with the DenseNet121 model.
The main idea of the proposed framework is to redesign
the three-class problem (score 1-3) of slide image classi-
fication as a six-class problem (score 1-3, lymphocytes,
necrotic cells, stroma cells) on nuclei classification. The
final atypia score is assigned after aggregation of the nu-
clei classification results via plurality voting. The authors
argued that the problem reformulation as a six-class prob-
lem and no four-class problem helped to increase perfor-
mance. Sreeraj M. et al. [13] and Mercan et al. [16] used
YOLO and RetinaNet detection models respectively, to de-
tect and classify individual cells or patches into nuclear
atypia scores.

2.1.2 Mitotic Count

Wang et al. [20] proposed a deep learning solution named
FMDet, designed for the detection of mitotic cells. The

authors tackled the problem as a segmentation task, where
SE-ResNeXt50 encoder and an SK-based decoder were
used. To address the domain shift problem, the authors
proposed Fourier-based data augmentation where the low-
frequency spectrum of the source domain is replaced by
the low-frequency spectrum of the target domain. Jahani-
far et al. [10] and Venugopal et al. [19] adopted a two-stage
approach where the initial model detected cell candidates
and a subsequent model classified them as mitotic or non-
mitotic cells.

2.1.3 Tubular Formation

During our in-depth analysis of tubular formation, we
identified only one approach by using segmentation mod-
els. There is a big scarcity of relevant papers addressing
the tubular formation problem. Tekin et al. [18] proposed
a deep learning framework designed for tubule segmenta-
tion. The paper introduces a novel in-house dataset com-
prising 51 Whole-Slide images (WSI). The authors em-
ployed reflection padding to tackle the challenge of incom-
plete tubules within patches. EfficientNetB3 demonstrated
superior segmentation results, achieving a dice score of
95.33%.

2.2 Annotation Tools for Histology Images

LindvaN et al. [12] presents a comparative study between
manual annotation and TissueWand, revealing a signif-
icant increase in annotation speed with the tool. Tis-
sueWand, designed for histopathological sample annota-
tion, garnered preference from pathologists for its im-
proved user experience. The research methodology com-
prised user observations, prototyping, and interviews
to achieve a balance of manual control and automatic sup-
port, enhancing feedback speed and annotation assistance.

Several tools have emerged in the field of bioimage
analysis, of which QuPath [7] stands out. This open-
source desktop software is widely used in digital pathol-
ogy for its ability to retrieve and navigate large, high-
resolution whole slide images (WSI), along with its ver-
satile annotation tools complemented by a range of avail-
able plug-ins. Another tool is ASAP [9] (Automatic Slide
Analysis Platform), which stands out for its speed of im-
age analysis. It provides users with tools to calculate area,
perimeter, and other morphological measurements of an-
notated structures; Orbit [6] is a multi-platform open-
source tool that can perform various image analysis algo-
rithms from Orbit or other platforms. It facilitates real-
time collaborative annotation, allowing multiple users to
work simultaneously on the same image; Cytomine [5], an
open-source RESTful web platform, operates via Docker
containers and emphasizes remote collaboration. It fa-
cilitates data model organization, semantic annotation of
high-resolution images, and image quantification via ma-
chine learning algorithms.
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MONAI [4] is an open-source framework tailored for
healthcare deep learning, leveraging PyTorch. It com-
prises three main components: MONAI core, MONAI
label, and MONAI deploy. This framework facilitates
integration with other annotation tools, such as QuPath,
through a plugin architecture. Our goal is to provide
users with instant visualization of the result using AI,
and MONAI is a framework that supports such func-
tionality.

3 Our Proposed Annotation Tool

Section 3.1 outlines the communication concept design
within our team, while Section 3.2 elaborates on the sys-
tem architecture. The user interface is detailed in Sec-
tion 3.3, and available annotation methods are described
in Section 3.4.

3.1 Proposed Concept of Communication

In Figure 1, we present our proposal for the design of
communication concept within our team, where the pro-
cesses and procedures of the individual actors are also in-
cluded. Our team comprises a domain expert, a UX ex-
pert, and an AI expert. The process involves two main
stages: the first focuses on specifying and understanding
the requirements, while the second evaluates the design
and implementation against these requirements. In the
subsequent paragraphs, we will outline the responsibilities
of each team member.

Figure 1: Concept of Communication

(1) Domain Expert: The domain experts take the lead
in specifying the requirements and functionalities
of the annotation tool under development. Through-
out the development process, the UX expert collabo-
rates with them to discuss each requirement and en-
sure their validation. Additionally, the domain expert
provides their expertise and actively engages in data
annotation, which is essential for training and en-
hancing the artificial intelligence methods employed
by the annotation tool. In general, the domain expert
serves as a potential user of the annotation tool.

(2) UX Expert: The UX Expert is responsible for com-
municating with the domain expert to gain clar-

ity on the specified requirements. When necessary,
they collaborate with the AI expert to define the re-
quirements precisely and validate their fulfillment.
Their primary objective is to incorporate the domain
expert’s requirements effectively into the annotation
tool and guide the AI expert based on those needs.

(3) AI Expert: The AI expert is tasked with analyzing
and implementing the requirements put forth by
the UX expert. They focus on developing deep learn-
ing methods that support the annotation process.

3.2 System Architecture

The architecture diagram 2 delineates two main parts,
where the implementation of the blue part is the responsi-
bility of the UX expert and the implementation of the grey
part is the responsibility of the AI expert. The goal of
the UX expert is to create the interface of the tool and
integrate the AI API created by the AI expert. This
architectural view highlights the interaction and commu-
nication between the different components of the system.
One of the main components of this architecture that we
can highlight is the local server to support the reading and
manipulation of WSI, which acts as an application mod-
ule. The components of the system will be introduced in
the paragraphs below.

Figure 2: System Architecture

3.2.1 AI API

The AI API is developed using the FastAPI framework, fa-
cilitating communication between the annotation tool and
the AI API through a REST API. The overall AI API
architecture comprises distinct components, as illustrated
in Figure 3: the FastAPI backend, Redis message bro-
ker, and Celery worker. Each component is encapsulated
within a separate Docker container.

FastAPI1 is a Python framework used to build mod-
ern and fast APIs. The FastAPI API utilizes an annotation

1fastapi.tiangolo.com
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Figure 3: AI API Architecture

engine to make predictions using deep machine-learning
models. Upon receiving a request, the backend inserts
the request into the message queue of the broker. Sub-
sequently, the client receives a unique task ID and uses
the polling technique to query the task status and obtain
the prediction result. The polling technique involves the
client querying at regular intervals (e.g., every second) for
the task result. If the task is completed, the client re-
ceives the prediction result; otherwise, they are notified
to continue waiting. This architectural choice enables the
asynchronous execution of a large number of prediction
requests, treating them as background jobs to avoid block-
ing the server thread.

Redis message broker, acting as an intermediary and
implemented as a Redis database, facilitates communica-
tion between the triggering application and the worker pro-
cesses. FastAPI inserts prediction tasks into this queue,
and the Celery worker picks up and executes these
tasks based on its workload. The results are stored in the
Redis database, allowing FastAPI to retrieve and provide
them to the client.

Celery is an open-source distributed task queue system
for Python that allows you to run tasks asynchronously. It
offers high availability and easy horizontal scaling. The
Celery worker continuously checks the queue for pending
tasks. When a task is identified, it is executed by the Cel-
ery worker, which houses all the deep learning models nec-
essary for task execution. The outcome of the task is writ-
ten to the Redis database for further retrieval by FastAPI.

3.2.2 Annotation App

The system is primarily centered around an annotation
tool, which is presented as a cross-platform desktop ap-
plication. This tool connects to both a backend and third-
party services to provide additional functionality. The
backend consists of an API and a database, which man-
age user data, tool settings, and annotations. This setup
promotes portability and facilitates modifications.

Installation files for various platforms are available on
the annotation tool’s website. Additionally, there is a re-
lease server that offers automatic updates for the annota-
tion tool.

At the core of the system lies a local image server,
which is initiated as a child process when the annotation

tool launches. It is compiled into an executable file for
each supported operating system and operates without re-
quiring additional support software to be installed. During
the tool’s build process, this executable is integrated into
the resulting installation files, tailored to the selected target
platform.

(1) Annotation Tool: The foundation of the system is
constructed using the Electron framework, operat-
ing on the NodeJS runtime. This setup enables the
development of cross-platform desktop applications,
utilizing the Vite2 tool for efficient building pro-
cesses. Moreover, the complete implementation is
crafted in TypeScript, employing the React library for
user interface design. This architecture is further en-
hanced by the integration of various libraries includ-
ing: OpenSeadragon3: Used as a high-resolution
zoomable image viewer; Annotorious4: Function-
ing as an extension for the OpenSeadragon library,
this tool facilitates image annotation through draw-
ing, commenting, or labeling. It supports a wide
range of plugins and offers a high degree of customiz-
ability.

(2) Local Image Server: The solution is developed in
Java, primarily due to the requirement of the Bio-
formats5 library, which is essential for reading and
writing various life sciences image file formats.
Additionally, an HTTP Server, crafted using the
HttpServer library, facilitates communication with
the application.

(3) Website: The website for the tool is developed using
the Next.js framework, leveraging the React library
and TypeScript for crafting a user interface. In ad-
dition to other libraries, the inclusion of the Stitches
library simplifies the styling process.

(4) Release Server: The release server connects to
GitHub to provide the latest versions and includes
an interface for checking updates and downloading
them. It’s a modified version of the Hazel6 update
server for Electron apps.

The tool integrates with an AI API via HTTP requests,
facilitating seamless communication. This architecture en-
sures modularity that makes it easy to modify or add ad-
ditional methods, allowing independent development and
offloading resource-intensive tasks to a robust server. The
API offers two types of methods: ”instant” and ”pro-
cess”. Instant methods yield immediate results, ideal for
operations requiring quick responses. On the other hand,
process methods involve user-triggered actions, initiating

2electron-vite.org
3openseadragon.github.io
4annotorious.github.io
5openmicroscopy.org/bio-formats
6github.com/vercel/hazel
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a sequence where necessary information is gathered, in-
cluding image cropping. This data is then sent for analysis
and queued for processing. Periodically, the tool checks
for result availability, upon reception, the information un-
dergoes parsing, storage, and display tailored to the spe-
cific process type. This communication style is selected to
accommodate the longer processing time associated with
the input of these methods.

3.3 User Interface

In the first step, wireframes were created to define the lay-
out of various interface elements. These wireframes un-
derwent consultation with domain experts, and after inte-
grating their feedback, a high-fidelity prototype was cre-
ated. Our design process embraced rapid prototyping by
directly implementing tool functionalities, as our project
timeline made it impractical to conduct separate prototype
testing in Figma and subsequent implementation phases.
The layout of this screen as well as other settings of the
tool, which include changing the language, can be modi-
fied according to the user’s preferences.

Figure 4: User Interface

Figure 4 shows 7 key parts and functionalities of the
annotation tool, the intent and focus of which we will dis-
cuss in the following sections:

(1) Toolbar: The Toolbar serves as the primary control
hub for the tool, offering functions to manipulate
images such as ”Zoom to fit”, a default ”Hand”
tool for navigation and annotation selection, and a
”Zoom” tool for adjusting image magnification. The
”Zoom” tool primarily utilizes the mouse wheel for
control. Additionally, there’s a tool to toggle anno-
tation mode, facilitating seamless switching between
browsing and annotation modes. Users can swiftly
transition between annotation and navigation modes
by holding down a key.

(2) Annotation Tools: When the annotation tool is se-
lected from the toolbar, the interface switches to an-

notation mode, displaying all available tools along
with the default class automatically assigned to newly
created annotations. Depending on the selected tool,
the cursor’s appearance changes to reflect the tool
icon. Keyboard shortcuts facilitate seamless tool
switching.

(3) Annotation List: This panel primarily displays and
allows searching of annotations, comprising a text
input field for filtering annotations shown in a hi-
erarchical tree structure. Each annotation includes
basic information such as name, shape, and associ-
ated class. The tree structure also groups annotations
based on visual hierarchy. Positioned on the left, it
adheres to the principle of maintaining a familiar de-
sign for users.

(4) Annotation: Annotations appear as bounded shapes
that become editable when clicked, enabling users
to adjust the shape or position using handles. When
hovered over, the border and shape colors reflect the
selected class color for improved identification. The
default border color is blue, chosen for its visibility
in this image type.

(5) Image Properties: The right panel adapts dynami-
cally based on selected functionality, annotation, or
user state. Initially, it displays image information and
workspace settings. Its placement on the right signi-
fies it as an additional section linked to actions on the
left side of the screen.

(6) Annotation Properties: Upon annotation creation or
selection, the right bar transforms into an annotation
detail panel, presenting information, parameters, pre-
views, and additional functionalities. Key param-
eters include the annotation name and descrip-
tion, facilitating communication between domain
experts and the development team. Automatic cal-
culations such as position, size, or area are shown
at the bottom of the panel. An annotation preview
aids in identification and illustrates potential changes
users can make within the panel.

(7) Annotation classes: The tool offers predefined
classes for annotation categorization, with users
able to create custom classes, each with a unique
name and color. These user-defined classes are
stored within the image settings for future reference
and editing. Assigned classes are indicated on
each annotation’s top left corner, matched with
corresponding colors for easy identification. When
exporting annotations, class definitions are included,
enabling the transfer of both annotations and their
associated class information between projects. This
feature enhances utility, ensuring consistency and
facilitating collaborative work across images.
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3.4 Annotation Methods

To streamline and enhance the annotation process of his-
tological images, we have devised various approaches tai-
lored to specific requirements and observations. These
methods are categorized into two groups, delineated by
user complexity and the degree of artificial intelligence as-
sistance, to manual and (semi)automated which contains
specialized subsection targeting the use case of Notting-
ham Grading System.

3.4.1 Manual Methods

Manual approaches can be defined as those that do not
use any form of AI assistance in the process of creating
the annotation. This means that the user is responsible for
the overall result. In most cases, these forms of annotation
must be performed before running the automated annota-
tion method as a way of specifying the domain or input
needed for the automated methods.

These manual methods include: Rectangle annotation:
A basic shape to define boundaries or regions of inter-
est (ROI), is most commonly used in defining regions for
automated methods; Circle annotation: Circular annota-
tion with the possibility to change the radius of the cir-
cle; Ellipse annotation: Similar to circular annotation
with the possibility of changing two radii; Polygon an-
notation: Annotation with the possibility of adding more
points, which results in a closed shape. It is used as a result
of several automated annotation methods; Free-hand an-
notation: Freehand annotation that creates open shapes
without points; Point annotation: An annotation point
that indicates coordinates without the possibility of defin-
ing shape or size. Also used in defining the click position
for automated methods.

3.4.2 (Semi)Automated Methods

Automated or semi-automated annotation methods (Fig.
5) can be defined as annotations where only minimal user
input is required to specify the domain or interaction that
is used as input for the AI models. Once the image and
the specified input parameters have been analyzed, the re-
sult is returned in the form of a specified class (after clas-
sification), a modified annotation (as a polygon, for seg-
mentation), or multiple annotations created (in the form of
bounding boxes or polygons) with possible classification
into multiple classes. These methods include:

(1) Nuclei Segmentation: NuClick [1] model is used for
single-click cell segmentation. We acquired the
model weights from the nuclick torch7 repository.
The prediction outcome is a segmentation map which
is subsequently adjusted using various postprocess-
ing techniques aimed at enhancing the segmentation
mask’s quality. Postprocessing methods include re-
moving objects smaller than a specified threshold,

7github.com/mostafajahanifar/nuclick torch

filling empty holes, and reconstruction. The refined
segmentation mask is then converted into a polygon
of points and transmitted to the annotation tool.

(2) Bbox Nuclei Segmentation: Nuclei segmentation
from Bbox is a similar method to Nuclei Segmenta-
tion. It is a modified method where the user can get
a more accurate annotation from the nuclei boundary
by segmenting the nuclei from the selected Bbox.

(3) Segment Anything: SAM [11] is employed in the an-
notation tool for interactive segmentation of struc-
tures beyond the scope of the previously specified
models. This model facilitates segmentation using
bounding boxes and foreground/background clicks.
Foreground clicks mark the desired segmentation
area, while background clicks exclude it. The vit b
variant of the model is used for prediction, obtained
from the segment-anything8 repository. The pre-
dicted segmentation mask is subsequently adjusted
using various postprocessing techniques identical to
the NuClick model.

Figure 5: (Semi)Automated annotation methods

3.4.3 Use Case: Nottingham Grading System

Our objective was to develop methods that facilitate the
scoring of the Nottingham grading system (Fig. 6). These
methods have been incorporated into the automated anno-
tation processes. These methods include:

(1) Mitosis Detection: Mitotic detection is employed to
identify mitoses and hard-negative mitoses. The
AI API utilizes a one-stage version comprising
a YOLOv8 detector trained on the MIDOG++
dataset [2], see Table 1. The focus is solely on detect-
ing mitoses and hard-negative mitoses, without evalu-
ating the Nottingham Grading System’s mitosis count
criterion. The main reason behind this approach is
rooted in the limitations of the developed annotation
tool, which currently cannot accurately reflect the

8github.com/facebookresearch/segment-anything

Proceedings of CESCG 2024: The 28th Central European Seminar on Computer Graphics (non-peer-reviewed)
76



real state of the score. This is due to the neces-
sity of evaluating the score from an area equivalent
to 10 High Power Fields (HPFs) or approximately
2mm2 [14]. We trained the model to detect hard-
negative mitoses, aiming to provide domain experts
with a definitive decision on whether a given instance
is a mitosis or not. Its input is an ROI that delimits
the area from which the analysis can give the user an
annotated mitosis with an assigned class.

The most favorable outcomes were obtained with the
medium variant of the pre-trained YOLOv8 model,
developed by ultralytics9, and employing FFTStain-
Augmentation [20]. These results yielded an F1 score
of 0.643, precision of 0.592, recall of 0.703, mAP50
of 0.664, and mAP of 0.476 on the test set.

Dataset Mitotic figures Hard-negative figures
train 17216 20944
val 862 961
test 2467 2916

Table 1: Number of mitotic and non-mitotic figures per set
in FFT augmented MIDOG++ dataset

(2) Nuclear Pleomorphism: Another criterion for the
Nottingham Grading System is Nuclear Pleomor-
phism. The EfficientNetB4 model aims to predict
the nuclear atypia score based on images received by
the AI API from the annotation tool. During image
processing, the input is divided into patches, and a
nuclear atypia score (1, 2, or 3) prediction is gener-
ated for each patch. The ultimate score is determined
through a majority voting mechanism. This approach
draws inspiration from the methodology outlined in
the article [21]. MITOS-ATYPIA-2014 dataset [17]
was used to train the model, see Table 2.

Dataset Score 1 Score 2 Score 3
train 1941 13017 2150
val 88 2472 394
test 3078 4582 1747

Table 2: Number of patches per nuclear atypia score

The most favorable outcomes were obtained with
the EfficientNetB4 model, pre-trained on the Ima-
geNet dataset. These results yielded an F1 score of
0.349, accuracy of 0.511, precision of 0.480, recall
of 0.382, and AUC of 0.547 on the test set. The
results achieved are unsatisfactory, which forces us
to look for improvements through annotations of our
own data.

(3) Tubular Formation: We did not address this criterion
because we could not find any public dataset.

9https://github.com/ultralytics/ultralytics

Figure 6: NGS Annotation methods

4 Results

Our preliminary user-testing with domain expert resulted
in UI changes related to behaviour of the annotation tool
based on user expectations and their feedback. Addition-
ally, in near future we plan to conduct A/B testing of the
AnnotAid and QuPath. The main goal of this user test-
ing is to simulate real-word scenario of evaluation mitotic
count criterion of Nottingham Grading System. We plan
to compare efficiency of manual (in both tools) and semi-
automated methods (in AnnotAid).

Based on the results obtained from developing models
for evaluation individual criteria of the Nottingham Grad-
ing System, it is evident that there is a requirement for
additional data and improvement of these models. This
can be accomplished through the utilization of the an-
notation tool we have developed.

5 Conclusion and Future work

In our work, our primary focus centered on developing
an annotation tool in close cooperation with domain ex-
perts. We conducted multiple user testing sessions where
valuable feedback was incorporated into the functionality
of the annotation tool. Our research primarily revolves
around the creation of deep learning methods to sup-
port the diagnosis of Nottingham Grading System cri-
teria.

Moving forward, we aim to integrate active learning
into our annotation tool, prioritizing methods to improve
model performance and user experience, alongside en-
hancing model explainability. Additionally, we plan to
introduce new annotation methods and collaboration fea-
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tures, informed by regular user tests to ensure ongoing re-
finement of the tool’s functionality and usability, aligning
with user expectations and preferences.
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Abstract

Individuals with vision impairments (VI) require specific
methods to acquire spatial knowledge of the environment
they need to orientate themselves. Such knowledge is
called a cognitive map of the spatial environment and has
multiple components (landmarks, distances, directions,
routes, etc.). The performance of interaction methods
varies in the acquisition of different components of spa-
tial knowledge. Our research focuses on the employment
of Virtual Reality adapted for VI as a novel method for
acquiring cognitive maps. We leverage a combination of
interaction modalities (vibrations, haptic feedback through
a modified white cane, and in the future even spatial audio)
to provide spatial knowledge of indoor environments.

Keywords: Virtual Reality, Haptics, Tactile, Spatial ori-
entation, Visually impaired.

1 Introduction

Visually impaired (VI) individuals deal with more difficul-
ties when exploring a new environment than users without
visual impairment. Depending on the environment, it may

Figure 1: The virtual preliminary testing area - due to real
space limitations, the participant was exploring only this
part of the room

take them more time and effort to orientate themselves, or
in some cases, it may even be dangerous. The creation of
even basic cognitive maps (CMs) beforehand may lead to
a significant improvement during their first real experience
with said environment.

We reflect this issue in our research question, which for
this work is: If we implement a simple haptic feedback
source via a white cane, is it enough information for a VI
individual to create at least a rough CM in a safe and con-
trolled environment?

To provide VI individuals with the option above, we
have created virtual environments – scenes made in the
Unity game development engine with the inclusion of Vir-
tual Reality (VR) libraries needed. We have created so
far two environments that, in one case, represent a singu-
lar room with basic boundaries and an obstacle, as can be
seen in Figure 1. The other scene (shown in Figure 2) rep-
resents a more complex scene based on a real environment.
It comprises a study room and a section of an adjacent cor-
ridor. There are more obstacles than in the basic scene. It
contains both hallways, doors, and furniture and is accessi-
ble to us on demand. Modeling part of a real environment
will allow for more complex evaluation based on the test
procedures where it is involved.

These environments are then projected into a VR head-

Figure 2: A screenshot of the Unity scene with the study
room and halls
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set, which the VI participant is wearing. The participant is
also provided with a modified white cane, with which they
can then explore the created environment.

The paper is structured as follows. In Section 2, we
summarize the related work, including examples of meth-
ods that utilize VR for purposes of creation of CMs by
VI individuals. In Section 3, we discuss the details of
two developed prototypes that implement the aforemen-
tioned scenes. Section 4 presents only preliminary evalu-
ation that, however, provides strong indications that even
simple interaction methods can be utilized for the creation
of a CM for VI participants in VR conditions. We describe
the testing process for the preliminary evaluation as well
as for the more advanced tests we have planned for the
near future. Finally, in Section 5, we focus on the results
of this work and evaluate the preliminary results.

2 Related work

This section focuses on the cognitive maps and means for
their acquisition as an important contributing factor for ef-
ficient spatial orientation of VI individuals. Later, we list
examples of methods that leverage VR for the VI.

Cognitive map refers to the internally represented model
of a spatial environment [9], which contains knowledge of
landmarks, route connections, distance and direction rela-
tions, and non-spatial attributes. Cognitive maps comprise
more types of spatial knowledge: locations, layout, routes,
distance, and directions between locations [7]. Two ba-
sic frames of reference related to spatial knowledge exist
– allocentric (object-to-object) and egocentric (subject-to-
object) [2]. Well-developed cognitive maps contribute to
good spatial orientation and efficient navigation through
both indoor and outdoor environments [3].

Interaction methods that employ different sensory
modalities can contribute to the acquisition of cognitive
maps. For sighted individuals, the natural method is a di-
rect experience in the visited environment, but in many
cases, different kinds of topographical maps are used
(classical, digital, 2D, 3D) [4]. In some cases, Virtual Re-
ality and Augmented Reality are useful to increase effi-
ciency safety (training of movement in dangerous areas)
or provide specific information that would be less accessi-
ble using other methods (i.e., the spatial position of elec-
trical wires or plumbing) [5]. In the case of VI individu-
als, the situation is similar; however, they (VI individuals)
have specific needs, abilities, and preferences. For them,
it is more complicated to get information in the allocentric
frame of reference. For this purpose, (interactive) tactile
maps are usually employed [1].

The formation of cognitive maps is a challenging pro-
cess for VI individuals as it requires substituting vision
with other sensory modalities or their combination. Ot-
tink et al. [7] provide a literature overview of methods for
cognitive map acquisition based on non-visual modalities,
with a particular focus on the auditory, haptic, and multi-

modal approach for the VI. The authors conclude that VI
individuals can form cognitive maps using more sensory
modalities or their combination. However, some modali-
ties are better suited for building different types of spatial
knowledge in cognitive maps. Navigational strategies that
affect the formation of cognitive maps are the route and
survey strategies. Survey strategies require map-like (al-
locentric) representations of the spatial environment in a
cognitive map and are usually connected with a better ori-
entation performance.

Kunz et al. [6] and Siu et al. [8] provide examples of ap-
proaches that utilize walkable VR for purposes of creation
of cognitive maps for the VI.

Kunz et al. [6] focus on implementing and testing a
purely auditory method for the navigation and orientation
of non-VI blindfolded users, who then navigated a virtual
maze based on the audio feedback that has been supplied
to them via headphones. The main source of feedback
— audio — is spatial, so the participant can change his
movement according to where the obstacle is detected.
From the results of this study, it is apparent that audio
feedback by itself, while definitely providing enough in-
formation about the environment to improve the partici-
pant’s awareness of their surroundings, is not enough to
sufficiently improve the participant’s orientation capabili-
ties for it to be the only source of information about the
environment. This is an important takeaway for our work,
as while not being completely sufficient, the auditory feed-
back nevertheless improved the creation process of CMs.

The work of Siu et al. [8], however, is closest in both
its aim and realization to this work. The authors devel-
oped and created a wearable harness connected with pul-
leys and motors to a physical white cane, which was then
controlled accordingly by collisions with VR objects by
the pulleys. This served mainly as an inspiration as to what
the end goal of the work may be while focusing on a more
straightforward and less complex solution in terms of the
hardware (HW) used.

The aforementioned approaches are focused on a simi-
lar goal as this work, albeit they utilize slightly different
means of implementation than what is done in this prelim-
inary work or planned for future work (Section6). We uti-
lize these works as points of reference, sources, and inspi-
rations during the design and implementation of our work,
and they also help us to orientate ourselves more in the
area of interest and understand the issues that may arise
during our own development.

3 Prototypes

As mentioned in Section 1, the whole setup for our work
consists of a single Virtual Reality headset (Oculus Quest
2), one prototype white cane consisting of a VR controller
coupled with an actual white cane, and two virtual envi-
ronments, which can be switched to at will through the
Unity editor on a computer connected to the headset.
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The real-world prototype white cane is coupled with the
controller via a 3D-printed holder, as shown in Figure 3,
which affixes the controller near the handle of the white
cane so as not to overly affect the balance, which would
impact the overall handling. This placement with a direct
fixation on the cane serves to transmit the controller vibra-
tions directly into the cane, from where the participant can
comfortably feel them. Also, the holder can be rotated to
customize the placement of the controller according to the
participant’s preference.

Figure 3: Implementation of the real world cane with a
controller coupled via a 3D-printed holder, mounted right
at the end of the cane next to the handle

The participant wears the Virtual Reality headset, and
even though the visual information it provides is redun-
dant, it is necessary for the tracking of the participant’s
body and head in the virtual environment. This procedure
is similar to the approach used in articles by Kunz et al. [6]
or Siu et al. [8] – both of which served as the initial inspi-
ration for this approach.

Where our approach differs is the implementation of
the way we provide feedback to the participant about his
surroundings. The aforementioned articles either had a
custom-built harness with a white cane or only audio feed-
back. The virtual cane used in this preliminary state is still
only an actual adjustable white cane coupled with a Virtual
Reality controller, and the haptic feedback is provided via
the vibrations of the controller and its intensity. This is, at
the current state, a limited fidelity haptic feedback that can
be provided by the available hardware. It is important for
this and the following works so that we can determine if
even this is enough for the creation of cognitive maps and
then follow up on it by adding more and better feedback to
the participant.

The vibrations themselves are set up so they trigger dur-
ing the contact of the virtual white cane with any obstacle -
be it a wall or a piece of furniture - excluding the floor. The
floor is excluded, as the cane is supposed to be in contact
with it during the whole test. Therefore, it would provide
no additional information during these tests. The interac-
tion method also leverages a variable intensity of the vi-
brations. The vibrations are set up in a way that they get

more intense and faster as the participant pushes the cane
deeper into objects. This is supposed to provide the partic-
ipant with stronger feedback in case they miss the initial
vibrations or get so far into an object that they are unsure
which way to go into open space.

The last part of the physical setup, the computer, is op-
tional since the virtual environments may be compiled and
entirely run inside the specific headset we are using - that
being Oculus Quest 2, as mentioned above. For our pre-
liminary test, however, it is still necessary to fine-tune and
calibrate the virtual cane and the position of the participant
in the virtual environment, so at this stage, we can not omit
a computer as a part of the setup.

The virtual part of our setup includes the two virtual en-
vironments running in the Unity game development engine
and its associated editor. The first scene, as seen in Fig-
ure 1, serves mostly as a proof of concept with the main
purpose being to check the validity of our methods and
whether they are at all suitable for the most basic of ob-
stacles, such as walls and bigger obstacles with uncompli-
cated bounding boxes.

The second environment, as seen in Figure 2, is a virtu-
alization of a real-world study room (as shown in Figure 4
and Figure 5) and in short, it is a square room contain-
ing multiple obstacles such as chairs, tables, counters and
shelves, with the associated hallways being obstructed by
plants, slight nooks in walls, again desks and chairs along
with some other obstacles as well (fire extinguishers etc.).
This is a more intermediate environment, containing many
obstacles, and should be a little harder to navigate. And
since it is a virtual copy of a real-world environment, the
participant who will test this room has the option of ex-
ploring the real-world counterpart as well, so we could
evaluate whether the cognitive map he or she has created
during the virtual exploration has helped in any way.

4 Evaluation

This section focuses on experiments to evaluate the utility
and usability of our method. The primary aim is to answer
our research question, whether or not our current imple-
mentation of haptic feedback is enough for a VI partici-
pant to create at least a rough CM in a safe and controlled
environment.

4.1 Preliminary Test

The implemented prototype used for the preliminary eval-
uation does not employ multi-modal interaction. It uses
only haptic feedback and is focused primarily on an ego-
centric orientation in a virtual environment.

4.1.1 Procedure

The testing that has been done so far has a clearly defined
procedure that will be adhered to during the testing if pos-
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Figure 4: A comparison of the real and virtualized study
room

sible. The procedure is as follows:

Preparation: The participant will be familiarized with
how the VR setup works, how they will use it, and what he
or she should expect going into the testing. This will pre-
pare the participant for the actual testing phase and should
limit any unnecessary confusion that may arise from the
possible inexperience with VR.

Calibration: The participant will stand in one place,
will put on the VR headset, and will be handed the real-
world white cane with an attached VR controller. The par-
ticipant will then point the cane straight down and touch
the floor with the tip of it. Then, the supervisor of the test
will adjust the size and orientation of the cane in the VR
application so it corresponds with the real-world place-
ment.

Test walk-trough: This phase is self-explanatory. The
participant will have the option to explore the VR environ-
ment using the provided HW. In the beginning phases, this
will be without specific goals to check the whole proof of
concept. In later stages, this will include objectives, such
as finding specific objects or navigating to a specific place.

Feedback gathering: This will be the last phase, during
which the participant will describe his experience with the
application and provide feedback.

Figure 5: A comparison of the real hallway and the vir-
tualized version of the view from approximately the same
spot

4.1.2 Measures:

During the experiment, we focused on subjective qualita-
tive feedback (obstacle and boundary detection, the usabil-
ity of the interaction method) and the ability of the partic-
ipant to describe the explored virtual environment.

4.1.3 Participants

One participant with vision impairment was involved in
the experiment. He has no previous experience with work-
able Virtual Reality based on wearable devices. He is
male, has been late blind for more than 20 years, and is
40–50 years old.

4.1.4 Test setup and execution

For the preliminary evaluation, we used a simple virtual
environment – a room with a nook as depicted in Figure 1.
The experiment was conducted in a room with an avail-
able empty space 2.5× 2.5 meters. The participant used
a prototype white cane with the attached controller, as de-
picted in Figure 3. Two members of the project team were
present to ensure the participant’s safety (avoid possible
collisions with objects in the real environment).

The preliminary testing followed the procedure de-
scribed above, with the repetition of the test walk-through.
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One instance has adhered strictly to the description above,
so the participant explored the virtual environment with-
out additional interference from the supervisor’s side us-
ing the cane. The second instance of the testing was done
on demand by the participant, as he wanted to explore the
environment more. He has now included a discussion with
the supervisors about the mechanics and features of the
prototype. We will discuss the mentioned feedback along
with our observations in Section 5.

4.1.5 Results

After we received the participant’s feedback, the main
takeaway points were these:

• The main goal – orientation in a room is possible,
as even in the current prototype, implementing only
vibrations of various intensities, the participant was
able to use them to quickly and efficiently find his
bearing. He was able to find walls and navigate along
them without much of a problem, even finding ob-
stacles. The participant, however, perceived different
dimensions of the obstacles he found, so much so that
he determined a narrow space between the pillar seen
in Figure 1 to be too narrow to move through. This
may be a result of inaccuracies in calibration, but for
future work, it may need to be accounted for.

• The lack of feedback for the participant being in an
object or obstacle sometimes caused problems, as the
participant’s virtual body has no collision detection
in place, and the participant can step outside of the
current boundaries, which then severely complicates
navigation and will end up needing intervention from
a supervisor.

• What seemed to be a problem, in general, was the per-
ception of the vibrations caused by the room having a
carpet. Even this very slight roughness of the ground
sometimes caused the participant not to be able to feel
the vibrations, and after a while, he resorted to using
the cane raised slightly in the air to counteract this.

• An unexpected discovery was the fact that the partic-
ipants can and will use audio queues in the real world
to center themselves in the virtual environment, as
static audio sources can be used as an anchor of sorts.

4.2 Evaluation of complex environment

In this section, we describe the planned evaluation of the
prototype that will comprise the complex environment as
depicted in Figure 6.

4.2.1 Procedure

The test procedure regarding the VR setup will be simi-
lar to the preliminary evaluation with further differences.

However, the advanced prototype, as described in this sec-
tion, resembles a real environment (as depicted in Fig-
ure 6) and allows for the creation of a simple 3D printed
tactile map as depicted in Figure 7. This evaluation will
be done mainly to explore the boundaries of how far we
can go with just basic haptic feedback in a more compli-
cated and cluttered virtual environment. Furthermore, dur-
ing this testing, the users will have a clear goal – that is to
navigate into the study room, with a start in the hallways
outside of it. Once in the room, they should explore it and
be able to describe the layout of the room at least approx-
imately – they will probably not be able to differentiate
between objects themselves, but what is the main goal is
to be able to determine obstacles in general and their rough
placements. During the feedback-gathering phases of this
evaluation, the users will have either the tactile map (Fig-
ure 7) or the real-world environment at their disposal – we
plan to utilize both.

Figure 6: A photo of the real world environment around
the study room area

Figure 7: A photo of a tactile map printed according to the
virtual environment seen in Figure 2
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The preparation and calibration phases will be similar
to the preliminary evaluation.

Test walk-trough: As mentioned at the beginning of
this subsection, the procedure during this evaluation will
differ both in the environment the users will be exploring
and the goal. The users will begin in the empty hallways
connected to the study room, with the goal of navigating
to it. For this purpose, they will be given a rough verbal
description of where the room is supposed to be (e.g., at
the end of this hallway, there is a door, on the left side, go
through it and a few meters after the door on your left, you
should expect the entry to the room). After they have suc-
cessfully navigated to the study room, they will now begin
the free exploration of the room with the goal of remem-
bering the layout and creating a CM of it and preferably of
the environment around it.

Feedback gathering: This will be the last phase, dur-
ing which the participant will both describe his experience
with the application and provide feedback verbally, but
also will be asked to describe or show the landmarks, ob-
stacles, and objects encountered during their exploration,
along with the path they took.

4.2.2 Measures

As in the preliminary evaluation, we will focus on subjec-
tive qualitative feedback. Moreover, we will evaluate the
quality of the acquired cognitive maps by requesting the
participants to:

• Show/describe the position of objects and landmarks
encountered in the VR using the tactile map.

• Show/describe the position of objects and landmarks
encountered in the VR using the real environment.

4.2.3 Participants

We plan to recruit six participants with vision impairment.
The inclusion criterion is that they are capable of indepen-
dent orientation in simple indoor environments other than
their own flat (i.e. workplace, nearby convenience store,
etc.). We plan to sample the audience by selecting at least
two congenitally blind and two late blind participants.

5 Discussion

The preliminary evaluation indicates that even a simple in-
teraction method based on tactile feedback provided by vi-
brations allows for the creation of CMs. This is alongside
the results of Kunz et al. [6] a somewhat expected, but
nonetheless significant result, as it proves that even basic
tactile feedback is enough of a foundation that can be built
upon with further enhancements with auditory feedback
and further refining of tactile feedback.

However, there were also drawbacks discovered that
were not observed by Kunz et al. [6] or Siu et al. [8] as

they were exclusive to our testing environment and imple-
mentation. There were difficulties with calibration, where
a white cane – if set up in such a way that its length does
not correspond to the height of the VR participant per-
fectly, will go through the floor. Therefore, it will interact
with obstacle hitboxes/boundary boxes under the floor if
they are present or will not collide with the tip of the white
cane but with its body. This causes slight but perceiv-
able changes in obstacle placement and, therefore, pro-
vides spatial information different from what the virtual
environment depicts.

Another problem was, as mentioned in the previous Sec-
tion 4, the floor surface of the real-world testing envi-
ronment. In our case, it was covered by a carpet, which
caused vibrations in the white cane, interfering with the
tactile feedback from the vibrations of the controller. This
is of great importance for future testing, as flooring with
as smooth a surface as possible will be needed. But once
again, the participant was able to explore the environment
even with this disadvantage, which only further confirms
our conclusions on the viability of this feedback method.

The last takeaway for discussion is actually not much
of a problem and has been mentioned by Siu et al. [8] as
well. This takeaway is the mechanic of an auditory an-
chor of sorts. Siu et al. [8] utilize virtual audio sources as
checkpoints through which the users travel and which help
them to put their surroundings into perspective and center
themselves around them and in relation to them. We unin-
tentionally provided the participant with a real-world audi-
tory anchor in the form of the computer, through which the
virtual environment was running, which had noisy ventila-
tors and, as such, provided the participant with a point of
reference he then automatically used for orientation. This
is a feature that we plan on using in the future, most prob-
ably in the form of a virtual auditory source along with
headphones for the participant so as to filter out outside
influences.

6 Conclusions and Future work

In this paper, we described the results of a project that
aims to employ VR for the purpose of the creation of CMs.
These CM are used for the improvement of the spatial ori-
entation of those with visual impairments in indoor set-
tings. Our preliminary results show that VR is a promising
method to achieve this goal.

It is the subject of future work to evaluate the advanced
prototype as described in Section 4.2. Along with this, we
will construct more complicated virtual environments that
will incorporate different goals and exploration methods.
We also plan on enhancing our current form of haptic feed-
back by itself with proprietary hardware and further white
cane prototypes, along with adding auditory feedback in a
few different forms (auditory anchor and also obstacle or
collision detection). This will also warrant further evalu-
ation in relation to our results gathered so far. In the end,
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we will further explore how to combine different methods
for the acquisition of CM to achieve optimal results for
specific environments and individuals with specific needs,
abilities, and preferences.
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Abstract

Virtual reality (VR) holds the potential to positively im-
pact mental well-being by transporting individuals to
serene environments, such as a calming forest or a con-
trasting cityscape plagued by urban challenges. This study
investigates the therapeutic effectiveness of VR experi-
ences utilizing Head-Mounted Display (HMD), body po-
sition tracking and heart rate tracking.

By implementing full-body tracking users transition
seamlessly to contrasting environments — a tranquil ”For-
est” with animals, the sound of wind, or a challenging
”City” with rats, trash, and the cacophony of urban noise.

Our preliminary findings indicate a significant differ-
ence in relaxation levels between the ”Forest” and ”City”
scenarios, highlighting the potential of VR to elicit dis-
tinct emotional responses. The incorporation of heart rate
monitoring, emerged as a valuable component for estima-
tion of the stress level of the participants. This research
not only underscores the potential of VR applications in
promoting relaxation but also contributes to a nuanced un-
derstanding of the emotional impact of contrasting virtual
environments.

Keywords: Forest therapy, Full body tracking, immersive
environments, Virtual reality

1 Introduction

In recent years, virtual environments have garnered in-
creased attention as a promising tool for mental health in-
tervention. Inspired by the calming effects of Japanese
Forest Therapy, our paper aims to explore the efficacy
of virtual environments in enhancing psychological well-
being. Specifically, we focus on comparing the impact of
virtual forests and virtual cities on key variables such as
self-compassion, self-care, self-criticism, and stress lev-
els.

Moreover, our study delves into the comparison be-
tween 360-degree videos depicting forests and cities and
fully immersive 3D scenes. This broader exploration al-
lows us to assess the nuanced differences in therapeutic
outcomes between these modalities, contributing valuable
insights to the evolving landscape of virtual interventions
in mental health.

*rusyn1@uniba.sk
†haladova@fmph.uniba.sk

Drawing from the therapeutic potential of nature-based
interventions, particularly Shinrin-yoku[3] principles, our
research plan involves developing an application to assess
the broad applicability and therapeutic value of virtual en-
vironments in non-clinical and clinical populations. This
work is done in collaboration with applied psychology re-
searchers from Faculty of Social and Economic Sciences
Comenius University Bratislava. Its aim is to understand
whether a virtual forest, compared to a virtual city, can
effectively promote key psychological variables.

To conduct our research, we will employ Virtual reality
setup consisting of HMD and position trackers to connect
participants to the virtual world and record their move-
ments. Heart rate measurement devices was used to col-
lect accurate data throughout the intervention, stored for
detailed analysis.

The paper is organized as follows. In the next section
the review of previous work is presented. In the third part,
we will address various aspects of developing our applica-
tion, including technologies, devices, and programs.

2 Previous Works

In the area of virtual reality forest therapy, several works
were published.

In 2022, the study by Leung et al. [5] examining the
impact of VR exposure on nature connection and affec-
tive states in individuals with low affinity for nature. Two
studies were conducted to test this hypothesis. In the first
study, participants experienced three VR sessions, each
with a unique 360-degree video, while the second study
included a control group exposed to a virtual urban en-
vironment. Results showed increased nature connection
and positive affect in the virtual nature group. The sec-
ond study aimed to replicate these findings with fewer
and shorter sessions. Both studies utilized HTC Vive Pro
headsets and statistical analyses for evaluation. Partici-
pants completed the intervention over two weeks, with ses-
sions spaced approximately 3,9 days apart, in a controlled
environment. The VR system presented nine ultra-high-
resolution 360° VR videos in a fixed order, demonstrating
positive impacts on nature connection and emotional well-
being.

Second article by Wang et al.[10] explored the impact of
various forest settings on stress levels through virtual re-
ality (VR) videos. Seven forest recreation sites in Beijing
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were tested, with stress levels monitored using physiolog-
ical and psychological indicators. Participants aged 18-35
with good health were enrolled. Before the experiment, an
introduction covered its purpose, process, risks, and con-
fidentiality. Subjects’ baseline heart rates were measured,
followed by the Trier Social Stress Test (TSST), induc-
ing stress through a public speech and mental counting
task. Pre-tests measured blood pressure, heart rate, sali-
vary amylase, and mood. Subjects then viewed a 5-minute
VR video of a forest environment to potentially reduce
stress. Post-tests mirrored pre-tests. The UCVR EYE-01
camera captured images in seven forests, and videos were
recorded in 33 areas. The HEM-7111 electronic sphyg-
momanometer measured blood pressure and heart rate.
Results revealed varying stress-alleviating effects among
forest scenes, with aquatic environments notably reducing
stress. This study contributes to understanding forest ther-
apy use.

The next study by Chia-Pin Yu et al. [11] utilized the
HTC Vive VR system. 360-degree videos recorded by re-
searchers were played on the HMD in this study.

For the urban environment, researchers selected Xi-
mending in Taipei, Taiwan, known as a shopping par-
adise. The recorded video in Ximending captured urban
elements such as crowds, noise, traffic, and low green-
ery coverage. To showcase the forest environment, re-
searchers filmed in the recreational area of Aowanda Na-
tional Forest in Nantao City, Taiwan. This area features
water protection zones, coniferous and deciduous trees,
and diverse wildlife. The video presented natural elements
of Aowanda, including double waterfalls, a maple path, a
pine zone, cypress trees, a spruce forest observatory, and
the Cingshuei River.

A Kodak Pixpro SP360 4K camera was used for video
recording in this experiment. Notably, this camera can
capture 360-degree views in high resolution. With two
lenses, each capturing 235 degrees, researchers created
360-degree videos by merging footage using Kodak-
provided software. Two videos were generated, simulat-
ing urban and forest environments, each containing seven
clips with associated sounds.

Study by Takayama et al. [9] explored the physiological
and psychological benefits of a digital Shinrin-yoku envi-
ronment indoors in an urban facility. It observed changes
in 25 subjects physical and mental states before, during,
and after exposure to digital elements replicating a forest
setting. Results indicated increased parasympathetic nerve
activity and decreased heart rate during exposure, along-
side reductions in negative mood states and increased feel-
ings of restorativeness.

However, virtual reality (VR) experiences, while im-
mersive, may be inaccessible to certain demographics,
such as older individuals, those with dementia, and chil-
dren with attention-deficit hyperactivity disorder. Addi-
tionally, VR experiences tend to be solitary, limiting the
opportunity for shared experiences, which is essential for
human connection.

For the experiment, two rooms were prepared: a waiting
room and an experimental room. The experimental room
simulated a forest environment with visual, auditory, and
olfactory cues projected using five projectors, aiming to
provide an immersive forest bathing experience within an
indoor urban setting.

Another work, by Lopes et al. [7] discuss an experi-
ment which was conducted in the SENSIKS multisensory
booth (SENSIKS, The Netherlands), where participants
experienced a multisensory nature walk synchronized with
a 360-degree video through an Oculus Quest VR headset.
The setup included fans, heating elements, high-resolution
speakers, an under-seat subwoofer, and a scent device. The
experience lasted approximately one minute and involved
participants immersed in a forest environment. Physiolog-
ical data were collected using a BioHarness3 chest belt and
an E4 wristband. The AV sessions included a main sound-
track with a whispering voice encouraging self-reflection.
Participants experienced visual, auditory, olfactory, and
tactile stimuli corresponding to elements in the video, such
as leaves changing, sunlight streaming, and wind sound,
with corresponding sensations like air currents and seat vi-
brations.

All of the aforementioned texts discussed the utilization
of 360-degree video for various forms of therapy. Our
project endeavors to adopt a similar concept, albeit with
enhancements through the incorporation of a full-body
tracking system.

3 Specification of the proposed VR
system

In the following section, we will focus on choosing virtual
reality devices, including a body tracking system.

Virtual reality (VR) is a simulated experience that em-
ploys 3D near-eye displays and pose tracking to give the
user an immersive feel of a virtual world. Applications
of virtual reality include entertainment (particularly video
games), education (such as medical, safety or military
training) and business (such as virtual meetings). VR is
one of the key technologies in the reality-virtuality con-
tinuum. As such, it is different from other digital visu-
alization solutions, such as augmented virtuality and aug-
mented reality.[8]

3.1 Headsets for Virtual Reality:

VR headsets are equipped with high-resolution displays
for each eye, projecting images or videos to create the il-
lusion of a 3D environment. These displays offer a wide
field of view, enhancing immersion. Modern VR headsets
typically prioritize high frame rates, at least 80 frames per
second (FPS), for a smooth and comfortable experience.
Some newer headsets push the boundaries with a frame
rate of 120 Hz or higher, improving realism and reducing
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motion sickness and eye strain. VR headsets usually fea-
ture high-resolution displays, often OLED or AMOLED
screens. Each eye sees a slightly different perspective,
mimicking how human vision works. Lenses placed be-
tween the user’s eyes and the displays bend and focus light,
ensuring proper image display and creating a wide field of
view. Modern VR headsets come with various sensors, in-
cluding accelerometers and gyroscopes, tracking the user’s
head movements. This tracking is crucial for real-time up-
dates of visuals based on user’s head movements, main-
taining the illusion of a consistent virtual world. Some
headsets also use external sensors or cameras to enhance
tracking accuracy. Many VR headsets feature integrated
headphones or spatial audio technology, providing a 3D
sound experience. Precise audio feedback enhances the
sense of presence and immersion. VR headsets often come
with handheld controllers or gloves, allowing users to in-
teract with objects and navigate in the virtual space. These
input devices are tracked in the virtual reality environment,
enabling accurate interaction. They are also equipped with
sensors to track their position and movements. Depending
on the type of VR headset, it may connect to a computer
(tethered), operate independently (standalone), or use a
smartphone (mobile) as its computing unit.

VR headsets come in various forms, each with its ad-
vantages and limitations, generally divided into the fol-
lowing categories:

Tethered VR Headsets: Connected to a powerful com-
puter or gaming console using cables, providing high-
quality graphics and immersive VR experiences but lim-
iting user mobility.

Standalone VR Headsets: Have built-in computing
power, eliminating the need for external devices. They of-
fer portability and convenience but may have processing
limitations compared to tethered headsets.

Mobile VR Headsets: Utilize smartphones as display
and processing units. They are affordable and easily ac-
cessible but typically provide less immersive experiences
compared to tethered and standalone headsets.

Main Differences Between Types Performance: Teth-
ered VR headsets generally offer the best performance and
graphic quality, followed by standalone headsets, while
mobile headsets provide the least powerful experience.

Mobility: Standalone and mobile VR headsets offer
greater mobility and can be used in a broader range of en-
vironments.

Cost: Mobile VR headsets are often the most cost-
effective, followed by standalone and tethered headsets,
which tend to be more expensive due to advanced hard-
ware.

Selected Model: HTC Vive Pro 2 The HTC Vive Pro 2
was chosen for its exceptional performance and features,
representing an advanced tethered VR headset suitable for
various applications.

3.2 Body tracking in virtual reality

Tracking body movements in virtual reality allows trans-
ferring movements from the real world to the virtual
environment, creating a more authentic experience. In
our project, we integrate advanced body motion tracking,
including optical motion sensing technology with HTC
Tracker 3.0.

In virtual therapy, often only headsets and controllers
are used, limiting tracking to the upper body. Our ad-
vanced method incorporates full-body tracking, enhancing
the authenticity of the virtual experience.

There are several body tracking technologies in VR, in-
cluding IMUs[1], depth sensors[4], optical motion sens-
ing, EMG, magnetic tracking[6], ultrasound tracking, and
camera-based systems.

For a comprehensive experience, we chose optical mo-
tion sensing technology with HTC Tracker 3.0, which en-
ables full-body tracking with high accuracy and low la-
tency.

HTC Tracker 3.0 offers a compact and lightweight de-
sign with wireless connectivity and infrared LEDs for pre-
cise tracking. The base station transmits infrared rays and
uses triangulation for accurate position and orientation cal-
culations.

Line-of-sight between tracking devices and base sta-
tions, optimal station placement, and accurate calibration
are key to successful optical motion tracking in VR. HTC
Tracker 3.0 with optical motion sensing delivers high ac-
curacy, low latency and an immersive virtual reality expe-
rience.

3.3 POLAR H10: Heart Rate Monitoring

Heart Rate Variability (HRV) is crucial in psychology, of-
fering insights into the autonomic nervous system. Psy-
chologists use HRV to understand emotional states and
stress levels, enhancing diagnostic accuracy. Integrating
HRV into virtual reality therapy allows real-time monitor-
ing of emotional reactions. Among heart rate monitoring
devices, Polar H10 stands out for its accuracy and versa-
tility.

4 Avatar tracking

Virtual reality enables users to embody virtual avatars
from a first-person perspective, adapting their body im-
age to various shapes, sizes, ages, ethnicities, or genders.
Research in cognitive neuroscience reveals that this illu-
sion of embodiment stems from multisensory correlations
between real and virtual bodies, akin to the rubber hand
illusion (RHI)[2]. When visual cues from the virtual body
match physical sensations, such as touch and propriocep-
tion, the brain attributes them to a common source, leading
to embodiment of the avatar. Spatial correspondence be-
tween virtual and physical bodies, even with static avatars,
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can induce strong illusions, but dynamic replication of
movements in real-time enhances the effect. Embodiment
in virtual avatars improves performance in VR scenarios,
reducing cognitive load and offering potential applications
in therapy, rehabilitation, education, and recreation.

We employ full-body tracking using 8 trackers: HTC
Vive Pro 2 for the head and 7 HTC trackers for the legs,
waist, and arms (2 on each arm and 2 on each hand).

We have obtained details on the Manus Dashboard, fo-
cusing on Manus Core 1.9.0—a tool for configuring track-
ing devices1. After connecting all devices and integrating
them into Steam VR, we launched the Manus application.

On the ”Polygon” page, we create a user profile and
ensure device connectivity in the ”Tracker” section. The
interface simplifies this process, labeling inputs for body
part identification.

4.1 Avatar creation

We then adjust avatar parameters to match user dimen-
sions. Calibration involves two methods: step-by-step
guidance or mimicking a white robot avatar’s movements
in VR. Users navigate using a hand-controlled button.

Different methods and software are used to create 3D
avatars - 3D Laser Scanning, which uses laser triangula-
tion, time-of-flight, etc.

In our efforts to use photogrammetry to create cus-
tomized avatars for individual users within virtual reality
(VR), we encountered problems that hindered the effec-
tiveness of our system. Despite our best efforts, the pro-
cess of generating avatars for each user proved to be time
and resource consuming.

In order to optimize our approach, we made a strate-
gic decision to streamline the creation of avatars. Instead
of individual avatars for each user, we took a more prac-
tical approach and used only two avatars - one designed
for male users and one designed for female users. To in-
crease the realism and detail of these avatars, we sourced
high-quality realistic models.

Utilizing pre-existing, carefully crafted avatars con-
tributes to the overall efficiency and user satisfaction in
our VR environment.

5 Recording video with 360-degree
cameras

The essence of 360-degree videos lies in their ability to
overcome the limitations of flat screens and immerse users
into a truly surrounding experience. From the comfort of
a VR headset, users can turn their heads in any direction
and explore the intricacies of the captured moment as if
they were physically present. This transformative capabil-
ity has profound implications in various domains, ranging
from entertainment and education to travel and training.

1MANUS Knowledge Center

In recent years, monoscopic 360-degree cameras have
found new applications in the emerging field of virtual
reality (VR). While stereoscopic 3D is often preferred
for creating immersive VR experiences, monoscopic 360-
degree cameras are valuable for capturing environments
where depth perception is less critical. They are com-
monly used for VR video content creation, virtual tours,
and live streaming of events in VR.

Advancements in camera technology have led to the
development of compact and high-resolution monoscopic
cameras capable of capturing stunning imagery in various
conditions. These cameras are equipped with features such
as image stabilization, high dynamic range (HDR), and
advanced autofocus systems, making them suitable for a
wide range of professional and consumer applications.

The Insta360 X3 is a monoscopic compact and versa-
tile 360-degree camera designed for immersive panoramic
recording. Its supplemented by two cameras positioned
on opposite sides, it captures a complete view of the sur-
roundings simultaneously, delivering high-quality video
footage.

The integration of 360-degree video content into the
Unity platform necessitates careful consideration of opti-
mal methodologies. Upon thorough investigation, two vi-
able approaches have surfaced. The initial method entails
the creation of a spherical entity within the virtual envi-
ronment, wherein the video content is mapped onto the
surface material. Within this construct, the user assumes a
position enveloped by the sphere, thereby facilitating im-
mersive engagement with the content. However, a better
alternative appears to be to set the video scene as a sky-
box, because then we have less visual artifacts.

6 VR application

6.1 Main Menu

The main menu scene serves as the initial interface vis-
ible only to the psychotherapist. Within this scene, the
psychotherapist is offered the option to select an avatar,
choosing between a male and female representation. A
button to switch between avatars increases the flexibility
of avatar selection. In addition, this scene facilitates the
connection of a Bluetooth heart rate measurement device,
namely the Polar H10, to the laptop running the app.

6.2 Preparation Room

The training room scene is designed with a dual view
of both the psychotherapist and the user. The scene in-
cludes two distinct parts: one visible to the psychothera-
pist, which contains the menu, and the other experienced
by the user.
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Figure 1: Main Menu scene

Figure 2: Preparation room scene: psychotherapist view

6.2.1 The psychotherapist’s perspective

In the psychotherapist’s interface, check figure 2, the menu
offers basic functions:

Back button: Allows the psychotherapist to seamlessly
return to the main menu scene.

Hide Menu Button: Facilitates the ability to hide the
psychotherapist’s menu, providing the user with an unob-
structed view of their experience.

Scene overview image with arrow buttons: A visual dis-
play of the scene along with arrow buttons allows the psy-
chotherapist to navigate between different perspectives.
Clicking on the image loads the corresponding scene, of-
fering a simplified selection process.

6.2.2 User experience

Upon entering the training room, the user finds themselves
in a bedroom with various details, figure 3. Distinctive el-
ements include a chair and a table that are decorated with
various objects. To increase user engagement and adapt-
ability, the user can touch and interact with the objects on
the table, even throwing them.

The immersive environment encourages users to ex-
plore and gradually acclimate to the virtual reality environ-
ment. As the user engages with the room, the psychother-
apist has ample time to reflect and select the next scene,
which is consistent with the therapeutic process.

Figure 3: Preparation room scene: user view

Figure 4: Forrest scene

The thoughtful incorporation of interactive elements not
only promotes user adaptation, but also serves as a valu-
able tool for the psychotherapist to gauge the user’s com-
fort level before beginning a therapeutic intervention.

6.3 Forest Scene 3D

The forest scene is a relaxing place where the user can
feel free in the forest, surrounded by nature, animals and
pleasant weather with the sound of the wind.

Various pre-made elements from the Unity Asset Store
were used to prepare the scene in the forest. A forest area
with lots of different details and plants has been created,
and the skybox has been changed. Other added details
were rocks, stumps and altered forest sounds to add to the
authenticity of the environment. Figure 4

One of the distinctive elements is the time dynamics.
A script was created that steadily moves the light in the
scene, creating a simulation of the progression of the day.

Another distinctive element is the addition of animals to
the scene, which makes the environment even more real-
istic. Birds, squirrels, and butterflies were integrated into
the scenery, which were obtained from the Unity Asset
Store. Each of these assets had basic animations that were
then used to create movement scenarios and animations for
these animals.

To make it easier to write the paths that the animals
move along, an object containing the script was created
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in the scene. This script is associated with a pre-made
animal, for example a squirrel with a ”move” animation.
The script contains variables such as x, y, z position, ro-
tation, clear time, and command line. The command line
can be used to write commands to move the animal, for
example: [L, 10, 4], [R, 90, 10]. These commands make
two changes to the squirrel’s movement, with each square
bracket representing one command. The command [L, 10,
4] means to turn 10 degrees to the left in 4 seconds.

Another addition is the ability to create new animals at
the same location with the same commands. This means
that in a 30-minute intervention, a squirrel can take the
same path as many times as we want.

6.4 City Scene 3d

The city scene, check figure 5, is designed with a more
depressing atmosphere and depicts the drawbacks of an
urban environment. This city scene is expected to be less
comfortable compared to the forest scene.

Various pre-made elements from the Unity Asset Store
were used to prepare the city scene, specifically the ”Ur-
ban Construction Pack” which contains a large number of
urban-themed elements. The visual content is dominated
by buildings and elements typical of the urban outdoor en-
vironment, such as streets and traffic lights. Shades of
grey predominate in the image, both in the foreground and
in the background. The user sits close to the wall, from
where he can see a road that extends straight ahead of him
and another road that runs in a perpendicular direction.

The first important step was to add parked cars and cars
moving further away. The various cars were obtained from
the Unity Asset Store. To efficiently display the traffic in
the city scene, a script was written that was able to cre-
ate cars in positions at random time intervals from 7 to
15 seconds. These cars moved along the road, giving the
impression of a realistic urban traffic flow.

The goal of adding the moving cars was to increase the
dynamism and authenticity of the city scene. In this way,
the user experiences the city not only as a static environ-
ment, but also as a place with a vibrant urban movement.
The cars, which appear and move according to random
time intervals, add an element of unpredictability to the
scene and at the same time enliven the overall impression
of the urban environment.

Another detail was the addition of trash cans, which
were also obtained from the Unity Asset Store. Rats were
also added; some are ”static” and simulate that they are
looking for something next to the trash cans. There is also
another type of rat that spawns at some intervals and runs
a certain route. As with the squirrels, a script was used
with the same approach, in which the animal’s position,
rotation and movement commands could be entered. An
array of strings was also added to indicate the times when
the rat was to be created in the scene.

It is important to mention that all these created scenes
were in accordance with psychologists from the Faculty of

Figure 5: City scene

Social and Economic Sciences (FSEV), who will conduct
interventions with VR therapy designed in this paper.

6.5 Forest Scene 360-degree video

We employ an Insta360 camera system. Resulted in a
thirty-minute long panoramic video, crafted to encapsu-
late the serene beauty of the ancient forest. Subsequently,
employing Adobe Premiere Pro 2020, we enhanced the vi-
brancy and contrast of the video, enriching the viewer’s
immersive experience. Finally, the video was integrated
into a skybox of scene.

6.6 City Scene 360-degree video

Utilizing an Insta360 camera, we got a 30-minute long
video encompassing the city’s center. Subsequently, the
preparatory steps undertaken to integrate this footage into
Unity mirror those employed for the creation of our forest
360-degree video.

7 3D scene vs. 360 video

In this section, we will undertake a comparative analysis
between 360-degree video and 3D scenes.

First, we will discuss the disadvantages associated with
360 video technology. First of all, it is worth emphasizing
the significant file size due to the high resolution inherent
in such videos. Rendering these videos can be a computa-
tionally intensive task, often requiring around 5-10 hours,
even when using high-performance eight-core processors.
However, this temporary investment becomes trivial if we
have the necessary time to prepare.

The primary concern lies in the recorded resolution, typ-
ically set at 5.7K, and the perceived quality experienced
when using Head Mounted Displays (HMDs). Despite
the seemingly high resolution, the visual fidelity observed
through HMDs frequently fails to meet expectations. Ad-
ditionally, the inherent monoscopic nature of these videos
precludes the simulation of depth perception, thereby di-
minishing the immersive potential. While the integration
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of stereoscopic cameras offers a potential remedy to this
issue, the high associated with such equipment, ranging
from 5000 to 6000 EUR, present a significant barrier to
widespread adoption. Moreover, even with the deploy-
ment of these advanced cameras boasting resolutions up
to 8K, the resultant quality remains suboptimal, failing to
fully capture the desired immersive experience.

Furthermore, initial tests revealed a problem regarding
the integration of three-dimensional models into the spher-
ical structure of 360-degree videos. If a 360-degree video
is within a sphere or created as a skybox, discrepancies
arise when incorporating avatar bodies, where the spa-
tial alignment of rendered elements appears incongruous
within the scene. It seems as if the legs are not touch-
ing the ground. Additionally, perceptual anomalies arise
when viewers direct their gaze downwards, wherein vi-
sual distortions lead to objects appearing disproportion-
ately larger than anatomical elements, further compromis-
ing the immersive fidelity. These discrepancies are in-
dicative of challenges inherent between two-dimensional
video elements and three-dimensional objects within the
context of a spherical environment.

In preliminary study we have tested both 360 and VR
forest scenes with 5 participants. All of the 5 participants
perceived the VR scene as more immersive, calming and
possessing higher resolution. We are planning to carried
out a user study with more participants to further validate
our findings and assess any potential differences in the per-
ception of different types of natural scenes in virtual reality
environments.

8 Rotating chair for scenes

For better quality testing, psychologists added a chair on
which the user can turn around. So then in each scene, the
user will be situated in a chair capable of full 360-degree
rotation. Consequently, it is imperative to incorporate this
functionality within the application. Initially, we identi-
fied a suitable 3D chair model from the Unity Asset Store
for seamless integration into the interactive environment.
With the chair model now integrated into our scene, the
primary challenge lies in enabling its rotation to coincide
with the user’s movements, thus simulating realistic be-
havior.

To address this challenge, we devised a solution lever-
aging two box colliders. The first collider is strategically
positioned at the avatar’s posterior, aligning with the opti-
mal location for chair alignment. Subsequently, the second
collider is placed on the chair itself. The mechanics oper-
ate as follows: upon collision detection between these two
colliders, indicative of the user’s seated position, the chair
emulates rotational orientation along the y-axis of the col-
lider situated at the avatar’s posterior. This method facil-
itates seamless synchronization between the user’s move-
ments and the chair’s rotation, thereby augmenting the re-
alism of the simulation.

Figure 6: Chair & Avatar with colliders

The actual chair is virtually aligned during the initial
calibration of the system and is positioned and rotated
identically at the start of each intervention.

9 Future work

The developed therapy application is been currently used
in interventions with participants across diverse demo-
graphics by doctoral students of the Faculty of So-
cial and Economic Sciences COMENIUS UNIVERSITY
BRATISLAVA (FSEV UK) for their applied psychology
research. The undergoing study will include more than 50
participants and the results will be available in late 2025.

10 Conclusions

In this study, we embarked on an exploration of virtual
reality (VR) environments and their potential implications
for mental well-being. By contrasting 3D scenes with 360-
degree videos, we aimed to shed light on the nuanced dif-
ferences between these modalities in eliciting emotional
responses and promoting relaxation.

Our preliminary investigation revealed several key find-
ings. Firstly, while 360-degree videos offer immer-
sive panoramic experiences, their limitations in capturing
depth perception and spatial relationships challenges in
delivering truly immersive environments. The integration
of stereoscopic cameras may present a solution, albeit at a
considerable cost. Conversely, 3D scenes afford greater
flexibility and dynamic control over environmental ele-
ments, albeit with computational demands and potential fi-
delity limitations. Additionally, it’s imperative to validate
these findings through more extensive user studies. While
our research underscores the importance of interactive el-
ements within 3D scenes for fostering user engagement
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and immersion, further investigation is necessary to con-
firm these observations. Additional research is warranted
to substantiate these claims and refine our understanding
of their impact.

Unlike previous approaches/articles, we have added
full-body tracking for better immersion.

The completed application has been forwarded to the
researchers at FSEV UK.
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Abstract

Virtual manuals for the usage of different procedures re-
quire a certain set of steps, for the users to familiarize
themselves with the procedures required to use a set of de-
sired objects. Apart from the textual information, it is also
important to present different types of spatial information
at the same time, while also including the direction of this
type of information. Usually, a set of operations needs to
be visualized by presenting the key locations of the oper-
ations, the order of operations, and their motion. Some
operations require pulling, twisting, pushing, pressing, or
some combination of these motions in different places at
the same time. It is often important to test how much
the user learned about all of the presented operations, to
verify that the user can operate the procedure safely and
successfully without supervision. In this paper, we ana-
lyze different visualization methods for multiple types of
information by using animated 3D arrows. These arrows
can present information by using gradient colors, shapes,
sizes, and rotations of shapes, as well as shape animations
in the desired direction. The proposed approach was suc-
cessfully applied to create a virtual usage manual for a
set of operations of a procedure. A virtual quiz that veri-
fies whether the user learned all of the required steps was
created. The quiz also requires the user to visually show
the required operation motion. A small user survey was
conducted, indicating that younger, highly educated age
groups are more open to the usage of virtual manuals and
that users find virtual quizzes helpful but are not confident
that they possess the digital skills necessary for undertak-
ing them.
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1 Introduction

The fast advancement of technology has enhanced our
everyday lives in multiple aspects, from the near-instant
availability of huge amounts of data to the complex user
interfaces of web-applications offering business and cus-
tomer service. One such aspect is the virtualization of
objects and the development of simulation environments
[2] that allow users to execute safety-critical programming
code without endangering themselves, the objects of op-
eration, or their surroundings. Apart from being able to
design, implement, and test various products virtually, it
is also possible to learn how to use them without owning
or having access to the physical copy of the given product,
which eliminates the possibility of breaking the product or
getting hurt due to misuse. This can be especially useful
for rare or very expensive products that require long train-
ing time (e.g. flight simulators) or are very fragile and re-
quire special care (e.g. chemistry or medical equipment).

User manuals [13] contain detailed information about
products and their functionalities, as well as sets of in-
struction steps for their operation. The high amount of
details, however, makes user manuals very long and there-
fore hard to perceive by customers, which is why the usage
of visual information conveyed by images is very impor-
tant for customer satisfaction [18]. The quality of the user
manual is correlated with the quality of the product by cus-
tomers [6], which is why companies need to properly con-
vey important information about the usage of the product
for the product to be accepted well. The study conducted
by Tsai et al. [16] showed that a very high number of
older adults often use product manuals and are willing to
learn new technologies and use additional training materi-
als. This indicates that the usage of the newest trends to
convey information about the correct usage of products in
a fast and straightforward way is suitable for all age groups
and should be adopted to improve customer satisfaction.

In recent years, virtual reality (VR) and augmented re-
ality (AR) technologies were introduced into training and
assistance systems [9] as help and support to technicians.
Different types of solutions have different strengths and
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weaknesses, as discovered in a study by Laviola et al. [8],
enabling the production companies to choose the type of
technological solution that suits the type of their product
the most. However, virtual product manuals usually con-
vey information textually, without using the full poten-
tial of the technologies used to create them. This work
presents a new approach that takes into consideration the
type of information users are expected to learn through dif-
ferent product manuals. A method that uses various types
of arrows for visualizing multiple types of information at
the same time successfully is presented, without confusing
the user with lots of text that is difficult to understand and
hard to memorize.

The proposed approach was applied to a use case that
simulates various types of instructions for the usage of an
example product a user is expected to learn, to demonstrate
the ease of presenting information by visualizing them in-
stead of by using textual fields. A quiz mode in the vir-
tual environment is also proposed to test the knowledge
of the user about the learned procedure. However, in or-
der to avoid the user mechanically learning the answers to
the questions, randomization and different difficulty lev-
els are used, utilizing the strengths of parametrizing the
proposed virtual arrows and hand objects. This approach
entirely removes the textual information from virtual prod-
uct manuals and quizzes about their usage to reduce their
complexity and improve the ease of their understanding by
customers.

This paper is structured in the following way: Section
2 describes the background and related work for virtual
product manuals, Section 3 introduces the proposed ways
of visualizing different types of information in virtual en-
vironments, Section 4 contains the results of applying the
proposed approach on an example use case containing a
set of ten steps for operating a procedure, whereas Section
5 summarizes the achieved results and gives directions for
future work.

2 Background

Several works propose the usage of VR applications as
an alternative to traditional training manuals, mainly due
to safety concerns and a possible lack of required equip-
ment. Tichon and Scott in [15] compared the use of VR in
safety training to a PowerPoint presentation. They showed
that the usage of VR might provide more effective train-
ing because the group of users that was trained by us-
ing VR materials gained higher performance scores af-
ter their knowledge and skills in identifying manual han-
dling hazards were tested. AlAwadhi et al. [1] presented
a VR application for educational purposes such as prac-
tical learning and performing live experiments in engi-
neering and science. This application was meant to help
students practice dangerous experiments safely, avoiding
risks and problems due to lack of access to equipment.
De Lorenzis et al. [10] presented a Virtual Reality Train-

ing System (VRTS) designed to train first responders in
the high-capacity pumping procedure. Participants reacted
positively to the application and the overall quality of the
training experience improved, as shown by the scores of
the quiz session that showed a knowledge gain associated
with the use of the VRTS. Kind et al. [7] presented an ar-
chitecture that enables engineers to perform virtual assem-
bly simulation with force feedback in a VR environment.
This architecture is the basis of a testbed for conducting
virtual assembly simulations.

The previously mentioned approaches rely on the usage
of VR technologies that are expensive, require specialized
equipment, and mostly cannot be used from home by most
customers. Several approaches have therefore turned to
AR technologies that are much easier to use and available
to a large number of customers, such as Ferrati et al. [5]
(for assembling hydraulic hoses for cherry picking) or Xue
et al. [17] (for assembling and maintaining avionics equip-
ment). A study by Dorloh et al. [4] showed that when
comparing the usage of printed manuals, video guides, and
AR technology, the speed of using an AR-enhanced man-
ual was slow, but the quality of the performed task was
the best. However, regardless of whether AR or VR tech-
nologies are used for enhancing the product manuals, the
information is mostly textually presented, or at best by us-
ing highlight colors and shapes, as well as virtual hands
to depict the user that operates the product. In a study
conducted by Pekerti [12], the usage of pictures and ar-
rows in an operation instruction set improved the success
of performing the given task, indicating that arrows con-
vey unique types of information and need to be used as
instructional objects in user manuals.

3 Proposed approach

The proposed approach for creating virtual manuals con-
tains two modes that will be described in detail in the fol-
lowing paragraphs.

3.1 The procedure presentation mode

In the presentation mode, the user cycles through all steps
of the procedure to learn the information about each step.
The scene for the presentation contains a single procedure.
The procedure is composed of procedure steps. One step
can be composed of several operations. One operation can
have multiple hand objects and arrow objects, depending
on the number of users who participate in the procedure
and the number of required operations. The scene con-
tains two virtual hand objects for each user participating
in the procedure and they are arbitrarily separately config-
urable. The hand objects can be configured to use the left
hand, right hand, or both hands. Both hands can be rotated
and each finger part can be rotated to mimic the real-world
pose of the hand, as shown in Figure 1. In this example,
two operators participate in the procedure (Operator 1 -
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green virtual hand objects, Operator 2 - blue virtual hand
objects). Both hands of Operator 1 are rotated upwards,
enabling the operator to push an object forward. The left
hand of Operator 2 has the index finger pointing forward,
enabling the operator to push a button, whereas the right
hand is rotated towards the left with slightly bent fingers,
enabling the operator to lift an object by the handle from
the left side. This example shows that different operators
can perform entirely different operations within the same
procedure step. Moreover, a single operator can use dif-
ferent hand gestures to do two different things in parallel,
mimicking the necessary operations that need to be per-
formed in real life.

Figure 1: Proposed types of two-handed gestures for mul-
tiple operators in the virtual environment

The arrow objects of the presentation scene can con-
tain multiple pieces of information. The different types of
arrows are shown in Figure 2. The shape of each arrow
shows the path of the required operation (e.g. the green
arrow follows a straight path, then turns towards the left,
and then follows a straight path again), the tip of the arrow
shows the direction of the operation (e.g. the red arrow
rotates upwards and then downwards in a clockwise man-
ner), whereas the color of the arrow shows the operation
group. The operation group is used to differentiate steps
that require multiple simultaneous operations performed
by multiple operators at the same time. If multiple opera-
tors participate in a single operation step, a single operator
is designated a color and all objects that require the assis-
tance of that operator are marked in the designated color.
The body of the arrow can also have different configura-
tions along its path. The normal body (the green arrow
in Figure 2) is used to show the path of a moving object
linked to the starting point of the arrow. A dashed body
with animated moving dashes (the blue arrow in Figure 2)
is used to show the speed of the operation in addition to its
path. A twisted arrow body (the orange arrow in Figure 2)
is used to show an operation where pulling and twisting at

the same time is required. A circular arrow body (the red
arrow in Figure 2) is used to show a rotational operation. If
an operation has a circular motion larger than 360 degrees,
multiple arrow objects are used for each full circle and a
leftover circle if the last circle is not complete. Some op-
erations can also contain information about the operation
result, depicted by using color changes or position changes
of other objects after the operation has been performed.

Figure 2: Proposed types of arrows in the virtual environ-
ment (red - circular, green - normal, blue - dashed, orange
- twist and pull)

3.2 The procedure quiz mode

After the user learns all the steps of the procedure, they can
switch to the procedure quiz mode. The quiz mode con-
tains the same number of steps as the presentation mode.
Each step contains all objects related to the step from the
presentation part (i.e. the correct set of operations) and
additional objects that contain incorrect operations. Each
question of the quiz is related to a single procedure step
where the user is required to choose the right answer by
using multiple parameters (the path, direction of the opera-
tion, and the operation group, as well as the speed, circular
motions, or the operation result if necessary). To answer
the question correctly, the user must choose the correct lo-
cations where the operations of the given procedure step
will be performed, the correct operation types, the cor-
rect operators and simultaneous operations, as well as the
correct directions and gestures. Throughout the quiz, the
user can cycle through each location in the virtual scene.
An operation is shown at each location and the user can
change its parameters in the desired way or delete the op-
eration so that the location has no operations. It is possible
to cycle through all hand and arrow objects of the opera-
tion of a single location. When an arrow object or hand
object is selected, the color can also be changed in order to
choose the correct operators and simultaneous operations.
The gestures of the virtual hands can be changed to pick
their correct positioning. Multiple dimensions contribute
to the difficulty of each question. After each step, the user
is informed of whether their answer is correct or incorrect.
Only visual ways of describing the outcome are used, as
shown in Figure 3, where the user is informed of answer-
ing the question wrong by using the X mark colored in red
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and shown above their answer on the product. At the end
of the quiz, the user is presented with the overall number
of incorrect answers and whether they passed the quiz or
not.

Figure 3: Visualization of the wrong answer in the quiz
mode

4 Results

In order to demonstrate the proposed approach, a virtual
scene was created by using the Unity real-time devel-
opment platform [14]. The Procedural indicators Unity
Asset Store plugin [3] was used for creating the 3D ar-
row models that allow for dynamic parameter modification
required for the previously described operation changes.
The quiz, all manipulated objects, and the sequence of
operation steps were assembled in Unity Editor without
importing any data from external sources in the runtime
build. The application contains the question templates, op-
eration steps, and the programming logic of the quiz. The
operation of the application and the results of a conducted
user study are explained in the following paragraphs in de-
tail.

4.1 The procedure presentation mode

The user is first shown the presentation of the procedure
that is visualized on the virtual scene in Figure 4. It is
visible that the procedure contains four different objects,
indicating that the procedure for their usage is very com-
plex. This was intentionally done so that all the differ-
ent capabilities of the proposed approach can be demon-
strated. However, it is important to note that most con-
sumer products would require a much lower level of diffi-
culty, and the procedure from the created use case is more
fitting for an industrial or experimental setup. The user
can cycle through all of the procedure steps and view the
correct operations and all the relevant information about
every operation. This process can be repeated until the
user successfully learns all operation steps and is satisfied
with their level of knowledge.

All steps of the operation are shown in Figure 5 and are
described as follows:

Figure 4: The virtual environment containing the 3D
model of the example product

• Step 1: Push the button next to the handle and pull
the handle down all the way.

• Step 2: Do the same operations as during Step 1 on
the other side of the box.

• Step 3: Two persons need to grab the box by the han-
dles and lift it onto the cart.

• Step 4: Pull and twist the pin on the cart so that the
wheels unlock.

• Step 5: Bring the cart to the scan area.

• Step 6: Slowly turn the crank for two full circles in
a clockwise manner, until the cart reaches the scan
finish area.

• Step 7: Bring the cart to the loading area.

• Step 8: Lift the box onto the device.

• Step 9: Turn the range selector knob full circle in a
clockwise manner.

• Step 10: Push the button so that the red light turns to
green.

Step 1 (Figure 5a) demonstrates an action composed of
two simultaneous operations because the handle can be
moved only while the button is pushed down. Steps 3
(Figure 5c) and 8 (Figure 5h) demonstrate actions that are
performed by two operators. Step 4 (Figure 5d) demon-
strates the twist and pull operation. Steps 5 (Figure 5e)
and 7 (Figure 5g) demonstrate different movement opera-
tions. Step 6 (Figure 5f) demonstrates the operation speed
and circular operations. Steps 9 (Figure 5i) and 10 (Figure
5j) demonstrate operations on a smaller scale. Step 10 also
introduces an indicator for the color change that visualizes
the result of the operation after it is successfully finished.
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(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

(e) Step 5 (f) Step 6

(g) Step 7 (h) Step 8

(i) Step 9 (j) Step 10

Figure 5: Visualization of all steps for operating an example procedure
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4.2 The procedure quiz mode

The quiz mode of the virtual scene contains the correct
answer, as well as misleading information to test the cer-
tainty of the user that the procedure they chose is correct.
Each step contains several incorrect locations and opera-
tions, and the user must also set the proper groups and
directions. The initial setup of the directions and groups is
randomized. Each answer also contains different hand po-
sitions in the operation, to ensure knowledge of the proper
operation type and the correct hand gesture required to cor-
rectly perform the operation. The difficulty of the test can
be configured by lowering or increasing the number of in-
correct locations, incorrect operations, and their similar-
ity to the correct answer. Several possible scenarios that
might confuse the user are shown in Figure 6. To ensure
the proper understanding of the order of the steps, infor-
mation from future steps is included as the answers to a
given step. For example, all potentially correct and incor-
rect answers for step 4 are included as answers for step 1 as
well (Scenario 1 on Figure 6a). This is used to test the user
if they are certain that they should unlock the cart first, or
put the box on the cart instead. Loading the box on the cart
that has unlocked wheels is a potentially dangerous oper-
ation and it is important to teach the user the proper order
of the operations. In step 1, the user is also provided with
the locations of the two handles and one button. The user
must choose only one handle linked to the same button for
that handle and a button operation linked to the opening of
the handle, as well as the proper directions of the opera-
tions and the proper operation group. Step 2 contains in-
correct answers from step 3 that include only a single oper-
ator with the open handle (Scenario 2 on Figure 6b). This
might mislead the user that the box can be lifted without
a second operator, which is not possible. Movement oper-
ations in steps 5 and 7 contain answers with wrong paths.
Step 6 contains answers with the wrong operation speeds
of different movements of the cart during the crank-turning
operation. One of the variants also shows the user turning
the crank once instead of two times and in the wrong direc-
tion (counter-clockwise instead of clockwise), as shown in
Scenario 3 in Figure 6c.

4.3 User evaluation

A user survey was conducted by using Lyssna [11] to eval-
uate the proposed approach. The survey was completed
by a total of 15 users from different countries around
the world with different characteristics (53.33% male and
46.67% female; 20% high school graduates, 46.67% col-
lege graduates, and 33.33% postgraduates; 26.67% inter-
mediate and 73.33% advanced computer users; 20% aged
20-24, 20% aged 25-29, 26.67% aged 30-34, 20% aged
45-49, 6.67% aged 50-54 and 6.67% aged 60-64). The
users were presented with the image of a single step of
the virtual procedure manual and the image of the tex-
tual description of the step, after which they chose one or

multiple statements that they agreed with. The results of
the survey are summarized in Table 1. A total of 46.67%
users chose the virtual manual image as their preferred de-
sign, with the maximum age group of 45-49 years. The re-
sults indicate that a significant number of users do not read
product manuals and that younger users are more open to
the usage of virtual product manuals than older users, who
rarely chose the virtual manual as their preferred one and
agreed with the proposed statements.

Statement Agrees Age group Education level

When I buy a product, I usually
read and use the product manual
supplied with it.

9

22.22% (20-24)
11.11% (25-29)
33.33% (30-34)
11.11% (45-49)
11.11% (50-54)
11.11% (60-64)

11.11% (High school)
44.44% (College)
44.44% (Postgraduate)

I would like to use the virtual
manual that was shown on the
image to learn how to operate
the device.

6
50% (20-24)
33.33% (25-29)
16.67% (30-34)

16.67% (High school)
66.66% (College)
16.67% (Postgraduate)

The visual description of the
procedure by using virtual
arrows is simple to understand.

6
50% (20-24)
33.33% (25-29)
16.67% (45-49)

16.67% (High school)
50% (College)
33.33% (Postgraduate)

The usage of virtual arrows
and hands makes it easier to
perceive the required action
for handling the device.

6
50% (20-24)
16.67% (25-29)
33.33% (45-49)

33.33% (High school)
50% (College)
16.67% (Postgraduate)

It is easier to understand the
visual than the textual
description of the operation.

3
66.67% (20-24)
33.33% (25-29)

33.33% (High school)
33.33% (College)
33.33% (Postgraduate)

Table 1: The results of the preference test of the user eval-
uation survey

An example quiz question was shown to the users to
evaluate the procedure quiz mode, depicting a step of the
procedure and what the user needs to choose to perform
the procedure correctly. The results are summarized in
Table 2. The achieved results indicate that the maximum
age group that was familiar with the usage of AR or VR
technologies is 30-34. A high number of users would be
willing to undertake the quiz, but they did not feel that
they possessed a high enough level of digital skills to do
it. This is contrary to the perceived level of computer skills
that the users selected at the beginning of the survey, which
was advanced for a total of 86.67% users.

5 Conclusion

In this paper, we proposed an approach in a virtual envi-
ronment that can be used in product manuals to teach users
about the handling of different products or procedures. Af-
terward, the user’s knowledge about the presented proce-
dure steps can also be tested by using a virtual quiz. The
usage of virtual arrows and hand objects makes it possible
to show a large scope of potential operations including in-
formation that is hard to understand or memorize textually,
which makes this general approach applicable to many dif-
ferent types of procedures. The usage of our approach also
makes it possible to show all steps of a procedure without
using textual information at all. The created quiz has con-
figurable difficulty levels by using different parameter val-
ues of the virtual arrows and hand objects. In this way, a
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(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

Figure 6: Visualization of different scenarios containing incorrect information during the quiz mode

Statement Agrees Age group Education level
I have previous experience with the usage of virtual
reality (VR) or augmented reality (AR) technologies. 5

20% (20-24), 40% (25-29)
40% (30-34)

60% (College)
40% (Postgraduate)

I would be able to undertake this virtual quiz because
I have enough digital skills. 6

50% (20-24), 16.67% (25-29)
16.67% (30-34), 16.66% (45-49)

33.33% (High school)
50% (College)
16.67% (Postgraduate)

I would be willing to undertake this virtual quiz to
check my level of knowledge. 8

12.5% (20-24), 25% (25-29)
25% (30-34), 12.5% (45-49)
12.5% (50-54), 12.5% (60-64)

62.5% (College)
37.5% (Postgraduate)

The virtual quiz questions are straightforward and
understandable. 4

75% (20-24)
25% (30-34)

25% (High school)
75% (College)

I believe that this quiz would help me memorize
the correct operation for handling the device. 6

33.33% (20-24), 33.33% (25-29)
33.34% (30-34)

16.67% (High school)
33.33% (College)
50% (Postgraduate)

It is more difficult to answer the questions correctly
when choosing the correct arrow than by choosing
one of the provided textual answers.

4
25% (25-29), 25% (30-34)
25% (45-49), 25% (60-64)

50% (College)
50% (Postgraduate)

I do not agree with any of the above. 1 100% (45-49) 100% (High school)

Table 2: The results of the design test of the user evaluation survey

large set of potential answers can be created automatically,
without needing to design large textual answers. The time
needed to describe the path is faster and more straightfor-
ward when using arrow objects than by merely describing
the whole path with words. The multidimensional nature
of the questions furthermore reduces the need to mention
every variant that would otherwise need to be described by
text, or by using still images. The starting configuration
of each question is randomized and answers for multiple
steps are intertwined, which removes the possibility of the
user learning the questions mechanically, without under-
standing the procedure or investing the effort to learn the
correct order of procedure steps. A small user survey was
conducted and it showed that the virtual manuals should
mainly target younger age groups with a higher level of
education. The number of users that found the usage of
virtual arrows helpful is promising, however it was not at
a satisfying level for age groups over 34 and users who did
not go to college. Most users considered virtual quizzes
as helpful, however they were not confident in their digi-
tal skills to undertake them. This indicates that additional
training needs to be performed to encourage the users to
start using modern technologies to familiarize themselves
with the desired products.

Our approach presents only the beginning idea for mak-
ing virtual product manuals more interactive and educa-
tional. VR and AR technologies were not utilized in our

approach to make the virtual environment as simple as
possible. The strengths of these technologies can be in-
corporated to improve the quality of the virtual manual
presentation and quiz scenes. Existing virtual manuals can
be adjusted to include interactive arrows, with the purpose
of improving their quality and the level of understanding
of the required operation steps by customers. A bigger
user survey could then be conducted, requiring the users
to learn the procedure by using the first version of the
virtual product manual (that contains textual information
about product usage) and the improved version of the vir-
tual product manual (that contains interactive virtual ar-
rows and hand objects). The results of the survey could be
used to further improve the proposed approach and pos-
sibly integrate the two approaches for achieving the best
results and a high level of customer satisfaction.
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Abstract

In this research paper, we present an empirical analysis
of interaction methods in virtual reality (VR) simulations
of extreme sports, with a specific focus on a rock-climbing
simulation developed in Unity. Leveraging the Meta Quest
controllers, hand tracking technologies, and TactGloves by
bHaptics, this study aims to identify the most effective
VR interaction modality that enhances user engagement,
realism, and safety in simulated extreme sports environ-
ments. Through a comparative analysis of these interac-
tion methods, the research investigates the potential of VR
technologies to deliver immersive and realistic extreme
sports experiences without the associated risks. The study
employs a mixed-methods approach, combining quantita-
tive performance metrics with qualitative user feedback to
evaluate the efficacy of each interaction method in terms
of immersion, usability, and user satisfaction. Prelimi-
nary results indicate that, contrary to initial expectations,
hand tracking technologies provided users with a height-
ened sense of immersion compared to the advanced hap-
tic gloves. This unexpected outcome, emerging from
challenges encountered during the integration of bHaptics
software, suggests that hand tracking might offer more
promising avenues for training, rehabilitation, and enter-
tainment in the realm of extreme sports VR simulations,
and that more research is needed in field of haptic gloves.
This paper contributes to the growing body of literature
on VR interaction methods by providing insights into the
benefits and limitations of various technologies, thereby
informing future developments in VR simulations for ex-
treme sports and beyond.

Keywords: VR Interaction, Extreme sport simulation,
Virtual Reality Hand tracking, VR gloves, Haptic feed-
back
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1 Introduction

Virtual Reality (VR) has ushered in a new era of digital
interaction, enabling users to experience immersive envi-
ronments with unprecedented realism. Specifically, in the
context of climbing—one of the extreme sports—VR of-
fers a safe yet exhilarating platform to mimic the intricate
movements and psychological aspects associated with the
sport. This research focuses on the climbing experience
within VR, employing a simulation developed in Unity [1]
to investigate how different interaction methods affect user
engagement and performance.

In our climbing simulation, players can interact using
VR controllers, hand tracking, and TactGloves by bHap-
tics [2]. Each method offers a distinct mode of interac-
tion: VR controllers provide a standard, familiar inter-
face; hand tracking offers intuitive, natural movements;
and TactGloves deliver tactile feedback, simulating the
texture and resistance one would feel when gripping real
climbing holds.

Our primary aim is to determine which interaction
method most effectively enhances the climbing experience
in VR. We posit that a more immersive and interactive
method can significantly improve the user’s skill acqui-
sition, strategy planning, and overall enjoyment. This is
particularly relevant in a sport like climbing, where tactile
feedback and precise movements are crucial.

The value of VR in simulating risk-laden sports like
climbing extends beyond entertainment. It provides a plat-
form for athletes to train, experiment with strategies, and
refine their skills without the physical dangers associated
with the sport. This aspect has been highlighted in pre-
vious studies, such as those by Döllinger et al. [3] and
Sawade [4], who emphasize VR’s potential to transform
training and performance in extreme sports.

The haptic feedback provided by TactGloves is of par-
ticular interest due to its ability to replicate the tactile sen-
sations of climbing, which are essential for a realistic and
beneficial training experience. Studies by Lee et al. [5]
and Patel et al. [6] support the notion that haptic feed-
back can significantly enhance spatial awareness and user
interaction in VR, an idea further reinforced by the Haptic
Fidelity Framework proposed by Muender et al. [7].
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This research is structured to meticulously evaluate the
different interaction methods within VR climbing simula-
tions. After an in-depth review of VR technologies and
their application in simulating extreme sports, we will an-
alyze the specific contributions of VR controllers, hand
tracking, and haptic feedback gloves. A comparative anal-
ysis, supported by a user study with our rock climbing sim-
ulation, will follow. We will conclude with discussions on
our findings and their implications for future VR applica-
tions in extreme sports training and simulation.

2 Literature review

VR technologies, through their evolution, have sought to
bridge the gap between virtual experiences and real-world
sensations, a pursuit that has seen the development of var-
ious interaction methods aimed at enhancing user engage-
ment and realism. This section delves into the related work
surrounding extreme sports VR simulations, focusing on
the interaction methods employed, their inherent advan-
tages and drawbacks, and briefly compares these with the
our approach.

2.1 Extreme Sports VR Simulations Projects

The application of VR in simulating extreme sports has
grown in popularity, driven by the desire to safely repli-
cate the thrill and challenge of sports like rock climbing
within a virtual setting. Projects like the rowing simula-
tion developed by Shoib et al. [8] and the robotic disas-
ter response simulation by Agüero-Durán et al. [9] ex-
emplify the diverse applications of VR in creating com-
plex, interactive environments. Steindl’s exploration of
hybrid tracking technology [10] targets the accuracy and
realism needed for virtual rock climbing simulations. The
VreeClimber project, which combines a movable climbing
wall with VR, offers a notable example of how VR can
enhance the realism and safety of climbing simulations,
by integrating hand tracking to maintain a realistic repre-
sentation of the climber’s movements [11]. This approach
aligns with the principle that VR can significantly enhance
skill acquisition and performance in complex tasks, as ev-
idenced by Seymour et al. [12], directly applicable to ex-
treme sports VR simulations. Pagé et al. utilized VR to
improve decision-making skills in basketball, showcasing
VR’s potential in enhancing cognitive aspects of sports,
which are crucial in navigating the challenging terrains in
rock climbing [13].

2.2 Hardware Technologies in Use

In VR simulations, the hardware technologies range from
traditional controllers to hand tracking and haptic gloves,
each offering different levels of interaction fidelity. Con-
trollers provide precision but may not replicate the natu-
ralistic feel of climbing. Hand tracking technologies offer

an intuitive interface, enabling users to maneuver in the
virtual space in a more lifelike manner. However, they can
sometimes be inaccurate and do not provide tactile feed-
back. Haptic gloves, particularly the bHaptics TactGloves
[14], represent a significant leap forward by delivering de-
tailed tactile responses, mirroring the textures and resis-
tances encountered in actual rock climbing.

2.3 Drawbacks and Advantages

Each interaction method comes with its set of advantages
and drawbacks. Traditional controllers are lauded for their
reliability and precision but fall short in immersive qual-
ity. Hand tracking offers a more natural interaction expe-
rience but can suffer from inaccuracies and lacks tactile
feedback [6]. Haptic gloves bridge these gaps by deliv-
ering precise tactile feedback, although they are not with-
out challenges, including high production costs and inte-
gration complexities [6, 14]. The tactile feedback tech-
nology, particularly as implemented through devices like
the TactGloves, provides a compelling solution to these is-
sues by offering a more immersive and intuitive interaction
method that closely mimics real-world sensations.

2.4 Comparison with Our Method

Our study employs the bHaptics TactGloves within a VR
rock climbing simulation, diverging from previous studies
that predominantly used controllers or hand tracking. Our
approach capitalizes on the haptic gloves’ advanced feed-
back mechanisms to enhance the climbing experience, of-
fering a tactile dimension that closely resembles the real-
world activity. This research aims to discern how tactile
feedback influences user interaction and realism in VR,
contrasting the experiences provided by TactGloves with
those from other hardware technologies.

3 Case study

This section delves into the specifics of how our VR climb-
ing simulation was constructed, detailing the creation of
an immersive environment, the choice of location for the
simulation, and how various elements were integrated to
provide a realistic climbing experience.

3.1 Application design and structure

In our study, we developed an immersive VR environment
based on Babin Zub, a towering, slender, and spiky rock
formation that emerges into view after exiting an old Aus-
trian tunnel near Sarajevo. Utilizing Unity, we employed a
360-degree camera image to construct a realistic skybox.
Additional elements like foliage and grass were sourced
from the Unity Asset Store [15], while rocks were custom
modeled in Blender to enhance realism (see Figure 1).
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Figure 1: The Babin Zub VR environment in Unity.

Figure 2: Climbable ball meshes.

Figure 3: Hovering over climbable mesh using VR Con-
trollers.

To accurately model the rock surface, Blender [16] was
utilized to sculpt the virtual representation of Babin Zub.
The integration of the XR Interaction Toolkit enabled lo-
comotion and interaction through various user actions.
Climbable objects (see Figure 2), marked as meshes, were

Figure 4: Grabbing the climbable mesh using Hand Track-
ing.

strategically placed to designate interactive points on the
rock, guiding users through their virtual climbing experi-
ence.

The interaction with these points is visually represented
by color changes in the climbable ball meshes: white in-
dicates an inactive state with no user interaction, blue ap-
pears when a user hovers over the climbable object, signal-
ing readiness for interaction, and orange denotes that the
user is actively engaging with the object, either by pressing
and holding the trigger button or by using hand tracking to
grasp the object (see Figures 3 and 4).

The bHaptics SDK is a pivotal component of the ap-
plication, enabling haptic feedback inside the Unity edi-
tor. This SDK allows the application to communicate with
bHaptics TactGloves, sending precise feedback based on
users hand location within the virtual environment.

3.2 Implementation

The implementation phase involved integrating various
components to enable a comprehensive VR climbing ex-
perience. The XR Toolkit facilitated the creation of an
XR Rig, providing foundational support for locomotion
methods such as continuous movement, teleportation, and,
crucially, climbing. Hand tracking capabilities were in-
troduced, allowing users to interact with the environment
not only through VR controllers but also via natural hand
movements, enhancing the immersive quality of the sim-
ulation (see Figure 5). Following the integration of these
interaction functionalities, our attention turned to the en-
vironment’s design. We implemented a procedural terrain
system. This system allowed us to automate the placement
of foliage, enabling us to distribute various trees and plants
across the terrain seamlessly. By utilizing this procedural
approach, we gained the flexibility to easily manipulate the
ecosystem’s composition, adjusting the density and variety
of the vegetation to achieve the desired level of realism and
environmental complexity (see Figure 6). After the addi-
tion of climbable objects, we advanced to the integration
of haptic feedback in the VR environment. We imported
the SDK from bHaptics and utilized their scripts to estab-
lish a connection between the climbable objects and the
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Figure 5: Grab activation using a)Hand Tracking and
b)TactGloves.

VR controllers/hand tracking system. This was achieved
by adding specific tags to the climbable meshes, which,
when interacted with by the controllers or hands, would
trigger haptic feedback, simulating the sensation of touch-
ing or gripping the objects.

Figure 6: Showcase of the realistic skybox and back-
ground.

Our next step focused on refining the user experience by
implementing a heads-up display (HUD). This HUD plays
a crucial role in guiding the player through the climbing
experience, providing real-time feedback on their progress
toward the goal or indicating if they have failed to com-
plete a specific challenge. Recognizing the limitations
of hand tracking technology, particularly the inability of
cameras to detect hands covered by gloves, an experimen-
tal approach was taken to adapt the TactGloves. We devel-
oped custom scripts intending to enable the gloves to func-
tion akin to VR controllers, with simplified hand motions
designated for ’grab’ and ’move’ functions. However,
these adaptations faced challenges, as the responsiveness
of the scripts did not meet the project’s requirements. One
of the most challenging aspects of the implementation was
the integration of bHaptics TactGloves. The lack of readily
available tutorials necessitated a deep dive into older doc-
umentation to locate the SDK for bHaptic products. The
primary goal was to achieve haptic feedback upon inter-
action with climbable objects, simulating the tactile sen-
sation of touching or gripping the rock surface. However,

initial attempts to provide direct feedback to the specific
hand engaging with an object encountered technical hur-
dles. Ultimately, a compromise was reached where both
gloves would activate upon interaction, offering a uniform
haptic response that, while not individually targeted, sig-
nificantly enhanced the overall sense of touch within the
simulation. Additionally, the experiment explored the han-
dling of gravity within the VR environment. A glitch was
identified wherein the physics engine did not consistently
calculate falling gravity across interaction methods, lead-
ing to the disabling of fall mechanics during certain builds.
Notably, the gravity fall feature functioned only when us-
ing the VR controller’s joystick. This inadvertent design
consequence had a silver lining: beginner VR users expe-
rienced a less discouraging introduction to VR climbing,
as the absence of fall consequences reduced frustration and
the likelihood of early cessation of the activity.

3.3 Interaction in application

The simulation’s interaction design leverages various in-
put methods, including VR controllers, hand tracking, and
haptic gloves, to create a comprehensive and engaging
user interface. The use of VR controllers is a standard
mode of interaction, allowing users to navigate the vir-
tual environment and interact with objects through familiar
button presses and joystick movements. Specific actions,
such as grabbing or initiating movement, are assigned to
designated buttons (see Figure 7). The trigger button, for
instance, is used to simulate the act of grasping climbable
points on the rock, while the left joystick facilitates move-
ment within the virtual space. The right joystick enables
snap turn, and the B button (secondary button) is used for
the restart function.

Figure 7: Manual for movement.

Hand tracking introduces a more naturalistic layer of in-
teraction, enabling users to engage with the environment
using their hand movements and gestures. This method
allows for intuitive actions like pinching or reaching out
to simulate grabbing and climbing without the need for
physical controllers. Specifically, the pinch gesture is em-
ployed as the primary interaction mechanism for ’grab-
bing’ in the virtual environment. This choice is under-
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pinned by the gesture’s distinct visibility to the headset’s
cameras. The pinch motion, characterized by bringing the
thumb and a finger together, creates a clear and recogniz-
able signal for the hand tracking system. The hand track-
ing system translates these real-world gestures into cor-
responding virtual actions, enhancing the immersion and
realism of the climbing experience.

The integration of bHaptics TactGloves provides tactile
feedback that corresponds to the user’s virtual activities.
The gloves are designed to deliver vibrating sensations that
mimic the tactile experience of touching or gripping the
rock surface. When a user interacts with a climbable mesh,
the gloves activate, delivering feedback that enhances the
perception of contact and grip. This haptic response is
crucial for creating a convincing and immersive climbing
experience, as it bridges the gap between visual input and
physical sensation.

4 User experience evaluation

The simulation tasked participants with ascending a vir-
tual model of Babin Zub, engaging with climbable objects
via each interaction method. To ensure a systematic anal-
ysis, participants were instructed to utilize the interaction
methods in a specific sequence: initially with VR con-
trollers, subsequently through hand tracking, and finally
employing hand tracking with the TactGloves. This se-
quence was intended to standardize the experiment’s pro-
cedure and minimize any potential learning effects. No-
tably, the climbing task was not time-constrained, allow-
ing participants to proceed at their own pace, thereby fa-
cilitating a more authentic assessment of each method’s
immersive quality and user-friendliness.

4.1 User study description

A total of 29 participants engaged in a sequential trial of
the three interaction methods within a VR rock climbing
simulation (see Figure 8). They started first with VR con-
trollers, hand tracking and then hand tracking using Tact-
Gloves. The average testing lasted around 10 minutes per
person. Following the interaction, participants completed
a questionnaire assessing various aspects of their experi-
ence, including immersion, realism, ease of use, and phys-
ical comfort.

The user study was conducted in the VR laboratory at
SSST[17], designed to ensure consistent conditions for all
participants. The environment was equipped with a stan-
dard VR setup, including a high-performance computing
system and a designated play area with adequate space
for movement. Lighting and acoustics were optimized to
minimize external distractions, ensuring that participants’
experiences were solely influenced by the VR simulation.
At the outset of the testing session, participants were thor-
oughly briefed on the rules and procedures. They were
informed that they would be participating individually,

which allowed for a focused and undisturbed experience.
Additionally, they were assured of their autonomy during
the experiment, with the explicit option to terminate their
participation at any point should they experience discom-
fort, dizziness, or any other adverse effects, thereby prior-
itizing their safety and well-being.

Figure 8: The testing process for each user from using VR
Controllers, Hand Tracking to TactGloves.

4.2 Results

Regarding immersion, participants’ feedback highlighted
a clear preference for hand tracking as the most immersive
interaction method, with 48.7% of participants favoring it,
compared to 35.1% for VR controllers and 16.2% for hap-
tic gloves (see Figure 9). Despite the technological im-
provement of haptic gloves, their current implementation
was less immersive for the majority of users, potentially
due to the existing challenges in their integration and re-
sponsiveness.

Figure 9: Distribution of participant preferences for im-
mersive interaction methods.

The evaluation of interaction methods revealed distinct
user preferences and experiences. While VR controllers
were considered the most immersive by nearly half of the
participants, the ease of use was notably higher for hand
tracking, with 56% of participants finding it very easy to
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Figure 10: Rated ease of use for all three interaction methods using the Likert Scale.

use. In contrast, haptic gloves, despite their potential for
enhanced tactile feedback, were rated as difficult by 48%
of the participants (see Figure 10).

Haptic feedback, a core aspect of our study, showed
promising yet mixed results. The majority of participants
acknowledged the realism of haptic feedback when using
controllers (66.7%) and gloves (64%). However, the feed-
back from gloves did not universally translate to a more
immersive or preferred experience, highlighting the com-
plexity of integrating tactile sensations in a manner that
consistently enhances user experience (see Figure 11).

Figure 11: Graphic illustration of participant responses on
the realism of haptic feedback using VR controllers and
TactGloves.

Looking ahead, the majority of participants (90%) ex-
pressed interest in using haptic gloves for other simula-
tions, suggesting a strong perceived potential for this tech-
nology, provided that issues related to responsiveness and
tracking accuracy are addressed. This enthusiasm aligns

with our focus on refining the gravity mechanics and de-
veloping more precise TactGlove implementations in fu-
ture iterations of the simulation. By improving these as-
pects, we aim to enhance the realism and user engage-
ment, potentially making haptic gloves a preferred method
for interaction in VR simulations beyond rock climbing.
Participants appreciated the overall experience, suggesting
minor adjustments for enhanced realism and interaction
quality. There were mentions of the potential for com-
petitive elements and a desire for further development of
the haptic gloves.

5 Conclusion and future work

The research conducted provided valuable insights into
user experiences with different VR interaction methods
in a rock climbing simulation. Through a comprehensive
study the investigation shed light on the comparative ef-
fectiveness, realism, and user preferences associated with
VR controllers, hand tracking, and bHaptics TactGloves.
The findings indicated a general preference for hand track-
ing in terms of immersion and realism, though the hap-
tic gloves offered unique tactile feedback that some users
found more realistic and engaging.

Despite the innovative approach, the study unveiled
challenges, particularly with the TactGloves and gravity
mechanics within the simulation. The attempt to integrate
the gloves as functional controllers highlighted the current
technological limitations, affecting user experience and in-
teraction precision. Furthermore, inconsistencies in grav-
ity simulation revealed areas where the VR environment’s
realism could be enhanced. As for the future work we will
concentrate on refining the gravity mechanics within the
VR simulation to enhance realism and consistency. This
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improvement is essential for a more immersive and au-
thentic rock climbing experience. Additionally, the de-
velopment will focus on improving the precision and re-
sponsiveness of the TactGloves. The aim is to achieve
a more intuitive interaction, where users do not need to
consciously adjust their hand positioning for the gloves to
function effectively. Enhancing gesture recognition and
sensor technology will be key to this advancement.

These enhancements, verified through further user test-
ing, will not only elevate the user experience in the rock
climbing simulation but could also inform interaction de-
signs in other VR applications, expanding the impact of
this research in the field of virtual reality.
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Abstract

This paper presents a solution for processing footage fea-
turing human subjects to generate videos of optimal di-
mensions, focused on the individual, and eliminating re-
dundant background. Utilizing computer vision models,
the program identifies and tracks human positions in the
input videos, then applies a specialized cropping algorithm
to generate output frames. The solution offers customiza-
tion options for aspect ratio, crop mode, and graphic over-
lay in the output video. Thus, it eliminates the necessity
for capturing multiple videos to meet varied technical or
aesthetic requirements, allowing the creation of diverse
outputs from a single high-resolution video using prede-
fined cropping parameters.

Keywords: computer vision, cropping algorithm, video
processing

1 Introduction

Capturing videos of individuals in motion is challenging
due to potential issues of exiting the frame or being dis-
proportionately small compared to their environment [11].
The objective is to simplify the filming process by al-
lowing users to capture one extensive video, and subse-
quently process it to meet diverse specifications, including
adjusted frame size, aspect ratio, or focusing on specific
segments of the human body. Such functionality enables
generation of multiple customized video outputs from a
single source file.

The solution requires developing an algorithm for pre-
cise Region of Interest (ROI) identification within each
frame and a cropping strategy that ensures consistent posi-
tioning of the ROI across frames. The quality output video
should appear stable from frame to frame, without visible
jumps, that can be induced by frame cropping [12].

Existing video cropping solutions lack automation and
comprehensive coverage of the human body (as discussed
in Section 2).

*xlebed11@vutbr.cz
†herout@fit.vut.cz

The developed automated program, discussed in this pa-
per, offers multiple cropping parameters and modes, en-
suring the output video is stable and visually appealing.
The solution eliminates the need for specialized recording
equipment.

2 Existing Solutions

Incorporating the essential feature of cropping entire video
clips, a number of video editing platforms, such as Fi-
nal Cut Pro, extend the functionality to manually modify
cropping parameters for individually segmented portions
of video [6].

Adobe Premiere Pro employs an automatic AI-powered
Auto Reframe feature [5], which crops footage to fit spec-
ified aspect ratios. This tool leverages motion tracking to
accurately identify and maintain the visibility of the ROI
throughout changes in frame resolution, ensuring critical
elements remain within view in the output video. The pro-
cess is predominantly automated, users are given the op-
tion to fine-tune the result by selecting among three prede-
fined levels of camera motion intensity.

Apple’s Center Stage feature [7] is a solution for real-
time video crop. Available on select devices with an ultra-
wide camera, it dynamically centers people on the camera
preview, e.g. during video calls.

A state-of-the-art solution is Cloudinary API [2], that
offers a large variety of crop modes as well as AI tech-
nology to gravitate video crop to the pre-determined ROI:
faces or other user-specified objects. Despite its capabili-
ties, this solution does not prioritize achieving an optimal
frame size, which is the key feature of the proposed pro-
gram. Moreover, it does not guarantee consistent inclusion
of the entire subject within the frame or accommodate spe-
cific body capture orientations, such as portrait mode.

Reliance on AI for video processing, as highlighted in
Adobe’s documentation [5], may introduce artifacts upon
recurrent processing of identical footage. Moreover, there
currently exists no commercial or open-source program
that replicates the unique approach of combining machine
learning with direct mathematical cropping. The proposed
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program offers a high degree of customization of process-
ing parameters without the risk of significant artifacts.

3 Proposed Optimal Crop Algorithm

The proposed video processing algorithm, as shown in
Figure 1, utilizes a two-phase architecture. In the scope of
the initial video processing, it extracts body landmarks to
generate bounding and frame box coordinates, and stores
these 3 types of coordinates in separate JSON files with
uniform structure, shown in Figure 1. This step, crucial
due to its resource-intensive nature, ensures that landmark
detection is only conducted once per video, thereby opti-
mizing the cropping process for repeated crops of the same
footage.

3.1 Detection

The program uses two MediaPipe detection solutions:
Pose Landmark detection [9] and Object detection [8].

The program uses two MediaPipe detection solu-
tions: Pose Landmark Detection and Object Detection.
BlazePose, the underlying technology for Pose Landmark
Detection, employs a lightweight convolutional neural net-
work (CNN) architecture [1]. It combines heatmaps and
regression to keypoint coordinates, enabling the detection
of up to 33 body landmarks and the generation of a seg-
mentation mask for a single person.

During inference, BlazePose adopts a detector-tracker
setup. Initially, a body pose detector identifies the person
in the frame. This is followed by a pose tracker network
which predicts keypoint coordinates and refines the region
of interest for accurate pose tracking. The detector focuses
on detecting a relatively rigid body part, like the torso, us-
ing a fast on-device face detector as a proxy. This innova-
tive method overcomes the limitations of traditional Non-
Maximum Suppression algorithms, which often struggle
with the complexity of human poses. The pose estimation
network then predicts the location of 33 keypoints based
on the alignment provided by the detector, effectively cap-
turing complex human movements with high precision.

While segmentation mask is redundant in terms of hu-
man detection, it aids to more precise result, comparing
to other human detection solutions, that return bounding
boxes with excessive space on the edges [4, 10]. The land-
marks are useful for cropping video based on the body
capture orientations. Moreover, the chosen API succeeds
in differentiating the most prominent person on the frame,
which is useful for videos, where individual sport is per-
formed with audience in the background. On the other
hand, this mechanism is not fit for partner sports, as the
set of landmarks will be calculated for just one person.

For partner sports, e.g. dancing, the MediaPipe Object
Detection API is used. Detector output includes a name
of object category e.g “human” and dimensions of the de-
tected bounding box. The API also proved useful in the

experiments with cropping a video of a person together
with sporting equipment (e.g. cycling - the output video
was cropped based on the combined position of the person
and bicycle)

3.2 Bounding Box Calculation

In one-person mode, the bounding box is a rectangle that
encloses the contour of the segmentation mask, returned
by the detector, as shown in Figure 2. In case only a part
of body is needed for the crop, the lower boundary of the
segmentation mask bounding rectangle is cropped based
on the y-coordinate of the relevant body landmark (Figure
3).

In case of partner sports, the final bounding box is ob-
tained by summing up the bounding boxes of the rele-
vant classes (“human” is default, classes with the names
of sporting equipment are optional).

3.3 Frame Box Calculation

As the human moves, the dimensions of the corresponding
bounding box can change from frame to frame. To ensure
all video frames in the cropped output maintain constant
dimensions, calculating the frame boxes is crucial. The
exact size of the frame box depends on the chosen crop
mode (Section 3.4). In case of a fixed frame, the output
video size is defined by the coordinates, that enclose the
area where a human was present at some point throughout
the whole video. Otherwise, the largest width and height
value among all bounding boxes define the size of an out-
put video, with regard to if a specific aspect ratio was cho-
sen. As per Figure 4, the frame box coordinates are cal-
culated such that the bounding box is centered inside it.
Figure 5 showcases the example of such positioning on a
sample video frame.

Aspect Ratio

Adjusting to specific aspect ratios during cropping can in-
deed present a complex challenge, necessitating a variety
of methods as noted by existing research [3]. Nonetheless,
presented program simplifies this process significantly. It
allows for selective inclusion of the surrounding environ-
ment by altering the dimensions of the frame box around
the bounding box, thus eliminating the need for the com-
plex methodologies typically required. This approach pro-
vides flexibility in determining the extent and specific ar-
eas to be included around the subject, facilitating a more
intuitive and efficient cropping process.

Edge Cases

For frames like in Figure 6a, when person is moving to-
wards the edge of the frame, bounding box centering re-
sults in frame box values exceeding the dimensions of in-
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Figure 1: Architecture of the proposed solution. The first phase (Initial Video Processing) is executed once per unique
video, and saves the output of processing (landmarks, bounding and frames boxes’ coordinates). The second phase (Video
Crop) utilizes the processed data to crop the original video based on the user-defined cropping parameters.

Figure 2: Segmentation mask with overlaid rectangle,
which coordinates were calculated based on the edges of
mask’s contour. As a result, an optimal bounding box
around the entire human body is found.

Figure 3: Bounding box, derived from the segmentation
mask, cropped based on the y-coordinate of hips pose
landmark.

put video. In this case, centering constraint is not included
in the calculations.

For frames to be cropped and extracted from input
video, each frame has to have frame box values defined.
As shown in Figure 6b, if frame n+1 is missing frame box
coordinates, these values are iteratively propagated from
frame n and vice versa.

Stabilization

To ensure stable output video, crop-out values are filtered
using Savitzky-Golay filter from SciPy library [13]. An

array of each frame box coordinate’s values in each frame
is processed by savgol filter( ) function.

3.4 Crop Modes

Crop modes are special crop settings implemented in the
program, appropriate for specific type of movements in
the input footage. Yoga videos, where person remains on
the same place, could be cropped by fixed frame, which
signifies the border, inside which all action is happen-
ing. For movements, that are primarily up and down,
or left to right, one-direction cropping mode eliminates
frame fluctuations in the secondary direction. Default two-
direction mode can be combined with zoom option: in
footage, where person distances from the camera, such
mode zooms the frame in and out, so that person appears
to be in the same distance.

4 Desktop Program

The solution is a Python-based desktop application that
operates via a command-line interface, facilitating the
cropping of video files through various parameters: input
video(s) path, cropping mode, aspect ratio, body capture
orientation (ranging from head-shot to full body), and op-
tional graphical overlays (including detected landmarks,
bounding, and frame boxes). Capable of batch process-
ing entire directories, the program is designed for efficient
handling of extensive video datasets.

5 Conclusion and Future Work

The solution effectively executes video cropping tasks
across a wide array of video types, including scenarios
featuring single or multiple subjects, with or without back-
ground activity. The qualitative evaluation of the desktop
program is still in progress, with a primary focus on gath-
ering user feedback regarding the appropriateness of dif-
ferent crop modes for different sports.

Proceedings of CESCG 2024: The 28th Central European Seminar on Computer Graphics (non-peer-reviewed)
117



Figure 4: The dimensions of the frame box are determined by the largest values of width and height observed across all
bounding boxes. For every frame that is cropped, the frame box is strategically positioned to ensure the bounding box
remains centered within it.

Figure 5: Bounding box and frame box on a sample frame.

frame n

p1 p3

p2 p4

Figure 6a: Bounding box
on the edge of input video,
removal of centering con-
straint.

p1 p3

p2 p4

frame n+1

Figure 6b: Landmarks not
detected, duplicate of pre-
vious frame box used.

While the program excels in its primary function of
video cropping tailored to body dimensions, it lacks the
comprehensive features of a full-fledged video editor, po-
sitioning it as a single-purpose tool ideal for batch pro-
cessing, particularly in research contexts. It accepts user
inputs through command-line arguments without provid-
ing a graphical user interface (GUI).

For convenient crop of videos, captured on smartphone,
a logical improvement of the solution is development of a
mobile application. Efforts will concentrate on integrat-
ing video cropping functionalities as well as devising a
user-friendly interface that addresses the challenges of dis-
playing complex cropping parameters on limited screen
sizes, ensuring intuitive and visual editing workflows. Ad-
ditional considerations include automatic video selection
from device galleries, personalized cropping recommen-

dations based on the video’s characteristics or previous
user settings, aiming to streamline the video cropping ex-
perience for end-users.
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Abstract

We introduce a pretext task for self-supervised learning of
feature extraction on an unlabeled dataset of football im-
ages. The task is based on predicting the relative distance
between two random crops from the same image, which
requires the model to understand the spatial positioning
of the objects and players in the image. We evaluate the
feature extractor trained with the proposed pretext task on
the SoccerNet action spotting challenge and compare it to
the existing self-supervised method SimCLR. We demon-
strate the effectiveness and generality of the proposed pre-
text task for learning relevant features of the football do-
main.

Keywords: Self-supervised, Feature extractor, Football

1 Introduction

Football arguably belongs among the most favorite sports
in the world with millions of fans and players. With tech-
nological advances and improvements in machine learn-
ing algorithms, the tasks performed by humans have been
automatized and simplified and this applies also to the
football domain. There were many attempts to create a
model that would understand the game to predict the win-
ner [31, 32, 2], analyze the players [24, 23], or even sub-
stitute the role of a referee [3].

The recent works in self-supervised learning methods
made huge advances in the field of computer vision by
closing the gap to supervised learning [20], some of them
even surpassing the supervised method [5]. The self-
supervised methods like MoCo [21] and MoCov2 [8]
proved to be very effective in extracting relevant features
from the image by contrasting the features. Other works
showed that the missing annotations in the dataset can be
replaced by introducing a pretext task such as image rota-
tion [19] or temporal frames shuffling [27]. The purpose
of the pretext task is to force the model to learn relevant
features on the prior layers that can then be transferred to
other downstream tasks.

*xbaranm@stuba.sk
†igor.janos@stuba.sk

We introduce a pretext task for self-supervised feature
extractor learning on the unlabelled dataset. The task is
based on the spatial understanding of the image and does
not rely on the batch size. We apply this task by training a
feature extractor for the football domain on the unlabeled
dataset and validate it by transferring the trained model to
the downstream football task.

We consider the action spotting challenge from Soccer-
Net [15] as an appropriate task to evaluate our feature ex-
tractors. The goal of the task is to identify 17 football ac-
tions like a goal, foul, ball out of play, etc. in broadcasted
football videos. The task allows us to exchange the used
feature extractor while preserving the rest of the solution
architecture. So by substituting the feature extractors, we
can evaluate them with the resulting performance of the
task.

To show the effectiveness of our method we compare
the lightweight feature extractor model trained with our
pretext task to the lightweight model trained with the exist-
ing self-supervised method SimCLR, and also to a bigger
pre-trained model with substantially more parameters.

Our contributions are as follows:

• We introduce a pretext task based on the spatial un-
derstanding of the image content by predicting the
relative distance between two random crops for the
self-supervised learning of the feature extractor.

• We trained multiple feature extractors using the exist-
ing self-supervised method SimCLR and our method
which we evaluated and compared using the Soccer-
Net action spotting challenge.

2 Related work

Many previous works focused on creating a pretext task
that would replace the missing annotations. Noroozi and
Favaro [28] created a pretext task inspired by the puzzle
game jigsaw in which the original image is divided into
nine evenly big crops and shuffled. The goal of the model
is to solve the jigsaw puzzle by which the model learns fea-
tures that are as representative and discriminative as pos-
sible.

Another pretext task which is based on the nine-part
grid is defined as predicting a relative position of the crops
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[14]. The nine crops are taken from the original image
while preserving the grid structure with a little variance.
The model is always given the central middle crop with
one of the eight remaining neighbor crops. The model then
has to predict the relative position of the second crop by
specifying one of the eight directions represented by the
numbers one to eight. It is therefore a classification task
where only one option is correct. The distance between
the crops is always relatively small as the crops are next to
each other in contrast to our method where the crops are
randomly sampled. This prevents learning features that are
spread along the whole image from one end to another.

The contrastive methods SimCLR [6] and SimCLRv2
[7] rely on attracting the positive pairs represented by aug-
mented views from the same image and repelling the neg-
ative pairs represented by augmented views from differ-
ent images. This is done by applying the contrastive loss
on the features extracted from the views while maximiz-
ing the similarity of the features from positive pairs and
minimizing the similarity of negative pairs. The effective-
ness of this method highly relies on big batch sizes which
require adequate computational power and resources. As
Lin et al. mentioned [26], there are cases where negative
pairs from different images can be more similar than the
positive pairs from the same image. For example, the two
crops from opposite corners of the same image can both
capture diametrally different content, and forcing them to
have similar feature representations could be misleading.

Giancola et al. [15] proposed a benchmark dataset for
football action spotting. Later the authors extended the
SoccerNet dataset [11] and provided a baseline using their
own NetVLAD++ [18] model. The authors provide the
annotated dataset along with annual challenges [16, 10]
doing which they promote the use of neural networks in
the football domain.

Action spotting is a challenge to identify certain football
actions within the temporal window of their occurrence in
the video. It is a popular challenge with many submissions
[30, 22, 13, 9] competing for the best result. We consider
the action spotting task as the appropriate form of eval-
uation of our feature extractor as it focuses on the most
interesting and common actions in football.

3 Data collection

Despite the recent advances in football dataset annotation
[17], manual annotations are still needed. Therefore we
decided to attack the problem of insufficient size and num-
ber of annotated datasets in the football domain by using
a self-supervised method and train the model on unlabeled
football data. As the process of annotating is often costly
and always very time-consuming, there will be no need
for the dataset to contain the annotations. In this case, we
trade off the missing annotations for a larger dataset size.

When training an unsupervised or self-supervised
model, a large dataset is a must. Therefore getting as much

Figure 1: Illustration of our pretext task that is used for
self-supervised training.

valid data as possible was our top priority. We focused on
the replays of professional football matches and extracted
the frames from these videos. Football is a dynamic sport
where a lot can happen in a nick of time so we choose
the frequency of the extraction to be two frames per sec-
ond. This resulted in the final 12,085,293 images in the
unlabeled dataset. As the main source of the videos was
YouTube, we named the dataset YF (YoutubeFootball).

The images in the dataset do not strictly have to be con-
secutive as there is no additional information about which
image is the start or the end of some video. So image N
+ 1 does not have to be subsequent to image N. This fact
constrains the pretext task to not rely on any temporal in-
formation which makes the pretext task more generic and
applicable to other domains.

As we do not possess the author rights to the videos we
can only publish the scripts for the image extraction and
not the whole dataset.

4 Our pretext task

Most of the existing methods are trained and benchmarked
on datasets [12, 25] that have very little in common with
football. The fact that the YF dataset consists of football
images only can be used as an advantage when creating
the new self-supervised method.

Our pretext task focuses on understanding the spatial
positioning of the objects in the images by predicting their
relative distance from each other. This is done by extract-
ing two random crops of the same size from the same im-
age and measuring the relative distance between their cen-
ters.

Before the crops are taken from the image, the image is
rotated by a random degree. For each crop, a new random
number is used from the interval from -10 to 10 degrees.
The rotation is done around the center of the image. After
the rotation is applied, the resulting image is still rectan-
gular, but a dark background is created to fill the blank
spaces around the rotated edges. To end up with the image
containing only the valid content of the image a crop that
represents the largest possible rectangle that excludes the
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Figure 2: After the rotation is applied, corner spaces around the image are filled with default dark color. To end up purely
with valid data containing the content of the image a crop is performed, representing the largest possible rectangle with
content omitting the filled spaces created by rotation.

Figure 3: Architecture of our pretext task. The features
are concatenated into the dense layer which outputs the
relative distance.

dark background from the rotation needs to be performed.
To better understand this process, figure 2 visually shows
the adapted solution to effectively end up with valid data
after augmenting the original image.

After the images are rotated and cropped to contain the
biggest possible content, random coordinates are selected
to represent the center of the final crop in each of the ro-
tated images. The range that the coordinates are taken
from is calculated so that the randomly taken coordinate
is not located near the edge of the image which would re-
sult in an incomplete image crop since the part of the crop
could exceed the rotated image. This technique ensures
that the final crop will always contain valid data. On the
other hand, the rotation of the image and the aforemen-
tioned cropping result also in omitting some valid parts of
the original image that will not be used when performing
the final crops. While this is true in most cases, in a case
when the rotation degree is zero the full image is available
for the final crop and no data is omitted before the final
crop.

Since both of the crops are extracted from the images
that could be rotated by a different degree, the coordinates
of their centers are recomputed to match the exact same
points in the original non-rotated image. The relative dis-
tance between the crops is computed as the distance be-
tween the centers of the crops divided by the size of the
crop, all in pixel units. So if two crops were both from the
non-rotated images(rotation angle zero degrees) and were
right next to each other meaning they have one common
edge, their relative distance would be exactly one.

This relative distance is created for every image during
the training so the pseudo-labels are created on the fly and

the task for the model is to predict this relative distance.
Figure 1 illustrates our pretext task and figure 3 illustrates
the architecture of the model using our pretext task.

Our method is different from the previous position pre-
diction pretext task [14] as it offers more variations in the
resulting pseudo-label because the predicted value is not
limited by some set of values. Also, the crops are taken
randomly and there is no restriction on their positioning,
meaning that they can be next to each other, or one un-
der the other, or anywhere in the image. The gap between
them also varies so the model must learn not only local
similarities when the crops are right next to each other but
also be aware of the global context when the crops are on
the opposite corners of the image. There is also no restric-
tion on whether the crops can overlap or not.

To be able to accurately predict the distance between
two parts of the image some knowledge about the context
must be known that can be derived from the content of
the two crops. In football, the positioning on the pitch is
very important. It can say a lot about the style of the play
of one team or the current situation in the game, whether
is the team attacking or defending. The positioning of the
players is very important also because of the football rules.
Mainly because of one particular rule, which is offside [4].
In football, a player is offside if they are closer to the op-
ponent’s goal line than both the ball and the second-last
opponent when the ball is played to them. So the under-
standing of the positioning is even more important in the
football domain.

Therefore using our proposed pretext task the model
should learn to understand the complex positioning of the
players and the ball on the pitch. This however applies not
only to the game itself but also to replays from other per-
spectives and other actions connected to the game as sub-
stitutions, in-game medical treatment, and many more. So
when the model is trained to be relatively accurate when
predicting the relative distance between two crops from the
football image, it must possess some deeper knowledge
and understanding of the football positioning itself. This
implies selecting more valuable features from the early
layers and in the end better feature extraction.

To make the task more challenging the rotation of the
image by up to ten degrees is applied. When looking at
the images in the figure 2 we can visually understand what
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Figure 4: Illustration of possible placement of the crops,
where d represents the distance and c represents the coef-
ficient.

is happening in the picture even if it is slightly rotated. In
convolutional neural networks, however, even a slight ro-
tation can cause different outcomes as the convolutional
filters are very sensitive to rotated input [29, 1]. By ro-
tating the input crops, this sensitivity is attacked and the
neural network is forced to learn and understand the im-
ages more in a way that humans understand them.

Another advantage of our pretext task is its generality.
Since it does not rely on any particular information related
directly to football it can be applied to other datasets as
well.

4.1 Customised loss function

Predicting the relative distance of the crops from the image
can be a demanding task when the crops are from opposite
parts of the image since the content on one side could be
wholly different than the content on the other side. There
could be not so many if any clues in the crops for predict-
ing the right distance between such crops. On the other
hand, it is much easier to predict the distance if the crops
are overlapping and have some common parts. The parts
in common could hint that the crops are close to each other
and by the size of the overlapping part, it could easily be
determined how far away are the centers of the crops.

Because it is not always the same difficulty to predict the
distance of the crops based only on the content of the crops
without any context, we scale the loss calculated from the
predicted distance based on the distance of the crops. If
the crops are close to each other or even overlapping, the

Figure 5: Action spotting pipeline with various feature ex-
tractor models. The classification head predicts the per-
class probabilities for each action.

neural network should easily determine their relative dis-
tance and therefore it will be additionally penalized if it
makes a mistake in such an ”easy” case. If the crops are
far away from each other it is way more difficult to predict
the exact distance between the crops and therefore if the
neural network makes a mistake in such a ”hard” case the
resulting mistake will be reduced.

Figure 4 shows three scenarios that can occur when cre-
ating the crops from the image. In the first case, the crops
are overlapping and their relative distance is less than

√
2.

In the second case, the crops have exactly one corner in
common and their relative distance is equal to

√
2. In the

third case, the crops have no area in common and their
relative distance is greater than

√
2.

To adjust the loss or the mistake that the neural network
makes, a coefficient is used which is calculated with the
formula 1. The coefficient is dependent on the distance of
the crops. The α and β are coefficients with default values√

8 and
√

2 respectively and d is the relative distance of
the crops. The final loss (l) is calculated as the product
of the distance error (e) and the coefficient (c) as can be
seen in the formula 2. The smaller the distance between
the crops is the bigger the coefficient is and therefore the
final loss will be also bigger. When the distance is bigger,
the coefficient and the final loss will be smaller.

c =
√

α
d +

√
β

(1)

l = e∗ c (2)

The default values for the coefficients are set according
to the illustration in the figure 4. In the second case when
the crops are diagonally next to each other, the computed
coefficient will have value 1 and therefore will not affect
the final loss. This serves as a reference scenario where it
should be reasonably difficult to predict the distance of the
crops. If the crops are closer to each other, the coefficient
will be greater than 1 and if the crops are further from each
other the coefficient will be less than 1.
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5 Evaluation metric

To be able to evaluate the trained feature extraction models
and compare our method to the existing self-supervised
method we need a qualitative metric that will give us some
score for both models. As the pretext tasks used in these
methods were different we could not use the training or
validation loss as a valid metric for comparison. Instead,
we used the action spotting task from SoccerNet which
takes the broadcast videos of professional football matches
and evaluates the precision of identifying specific football
actions.

The model must predict the exact timestamp when the
action occurs and the prediction must land within a tol-
erance δ around the ground truth anchor. The tolerance
varies from 5 to 60 seconds with 5-second steps. Recall,
precision, and Average Precision (AP) are computed for
each given class and a mean Average Precision (mAP) is
computed across all classes. An average-mAP is com-
puted across all δ tolerances. The average-mAP metric,
together with the average-mAP visible for visible actions
and average-mAP unshown for actions that happen out of
the camera range, are used for the evaluation of the mod-
els’ performances in the SoccerNet action spotting.

The process of training a classification model for ac-
tion spotting is illustrated in figure 5. The process consists
of extracting the features from the videos and training the
classification head on the extracted features. The feature
extraction is a separate process that allows for modifying
it by substituting the feature extractor which then yields
different feature vectors.

No architectural or other changes are needed for the
classification head which is every time trained from
scratch on the given features. The result achieved by the
classification head therefore relies on the extracted fea-
tures. So when the result of a classification head trained
on features extracted by one model is better than the result
of a classification head trained on features extracted by the
second model, we can say that the first feature extraction
model is better than the second.

Figure 5 shows the integration of feature extractors
trained with the SimCLR method and also our pretext task
into the SoccerNet training pipeline. The values of per-
action probabilities on the output of the two figures are il-
lustrative but they symbolize that the classification head
trained on different features yields different predictions
which end up in different accuracy and precision.

By comparing the average-mAP of the classification
heads, which is the metric used in SoccerNet action spot-
ting, we were able to compare the performance and abil-
ity of the feature extractors to extract the relevant features
from the football videos. As the architecture of the clas-
sification head remains always the same, its average-mAP
is used as the qualitative metric for evaluating the feature
extractors.

6 Results

We trained multiple feature extractors on the YF dataset
using the existing self-supervised method SimCLR and
our pretext task. The augmentations used in the SimCLR
method were random horizontal flip, random resized crop,
color jitter, random grayscale, and Gaussian blur, similar
to the original paper. We trained the SimCLR models with
a learning rate of 10-4, batch size of 120, and cosine an-
nealing scheduler without restart. We used the NT-Xent
loss with a temperature of 0.7.

As for our pretext task, we used the same batch size
as with SimCLR, but we used a constant learning rate of
10-4 together with adjusted MSE loss as discussed in the
section 4.1.

The training time of one feature extractor trained on the
subset of the YF dataset was about one week for both the
SimCLR and our method. Training on the whole dataset
took two to three weeks for each feature extractor. All
training runs were executed using one NVIDIA RTX3090
GPU.

Throughout the training, we performed evaluations on
the SoccerNet action spotting task, which we used as a
metric for the evaluation of feature extractors for the foot-
ball domain.

As can be seen in table 1, the feature extractors trained
on the YF dataset did not outperform the pretrained fea-
ture extractors from the ImageNet, however, the feature
extractor trained with the SimCLR method did not get be-
hind by much, as the difference between the best model
is only 2.71%. The feature extractor trained with our pre-
text task did not perform badly neither. The a mAP score
of 41.13% did prove that the method helps to learn to ex-
tract relevant features for the football domain, however,
it does not reach the level of the existing self-supervised
method. Further research focusing on finding the optimal
hyperparameters of our pretext task could improve its per-
formance.

In table 2 we show the per-class results of the
NetVLAD++ model trained on features extracted by the
best extractor trained with the SimCLR and our pretext
task. For reference, we show also the results of the
model trained on the features provided by SoccerNet that
were extracted using ResNET-152 and features extracted
with the pretrained Efficient-B0 model. The table shows
that the model trained on the features extracted with the
SimCLR model outperformed the pretrained EfficientNet-
B0 in 4 classes and even outperformed the pretrained
ResNET-152 in one class. The feature extractor trained
with our method did not reach the best result in any class
and the result margins were similar to the a mAP results.

7 Future work

Our pretext task uses the customized loss function that
contains two hyperparameters alpha and beta, which in-
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Backbone # params Dataset Train method # Images seen / unique Head a mAP all a mAP visible a mAP unshown
ResNET-152* 60M ImageNet pretrained - / - NetVLAD++ 52.73 59.07 36.59

EfficientNet-B0 5.3M ImageNet pretrained - / - NetVLAD++ 52.17 58.79 35.61
EfficientNet-B0 5.3M YF[000-002.sqsh] SimCLR 110 625 000 / 375 000 NetVLAD++ 49.02 53.87 33.38
EfficientNet-B0 5.3M YF SimCLR 69 806 310 / 11 634 385 NetVLAD++ 48.84 54.63 33.00
EfficientNet-B0 5.3M YF[000-002.sqsh] Our pretext 56 625 000 / 375 000 NetVLAD++ 39.13 44.74 29.96
EfficientNet-B0 5.3M YF Our pretext 255 956 470 / 11 634 385 NetVLAD++ 41.13 46.14 30.41

Table 1: Best results of various feature extractors. The first run(marked with an asterisk *) is executed on the provided
features from the SoccerNet. Other runs are executed with the use of a smaller model EfficientNet-B0. YF[000-002.sqsh]
represents a small subset of the YF dataset.
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ResNET-152
[pretrained] 60M 52.7 59.1 36.6 74.9 58.5 73.4 69.2 36.0 39.2 40.0 56.7 70.1 68.5 64.5 43.8 57.9 79.7 54.9 3.9 5.2

EfficientNet-B0
[pretrained] 5.3M 52.2 58.8 35.6 70.2 58.7 66.7 67.3 38.7 36.5 40.0 54.2 68.7 67.5 63.2 44.3 58.4 80.9 62.8 5.4 3.4

EfficientNet-B0
[SimCLR] 5.3M 49.0 53.9 33.4 62.4 51.8 65.6 69.1 29.0 36.6 39.0 56.3 68.9 63.6 61.9 43.5 52.0 79.3 39.3 13.3 1.7

EfficientNet-B0
[Our pretext] 5.3M 41.1 46.1 30.4 36.0 39.6 49.5 60.3 22.0 33.6 36.6 52.2 66.3 58.9 54.0 38.3 39.7 77.0 33.6 0.6 1.0

Table 2: Mean average precision of the NetVLAD++ model on features extracted by various feature extractors on Soccer-
Net action spotting.

fluence the training process of the model. Initial values
of these hyperparameters that were used are not optimized
and future work could include finding the optimal values
of these hyperparameters, which could lead to better per-
formance of the method. Identically the optimal value
for the maximal rotation of the image could improve the
method and lead to better results.

The comparison of a lightweight feature extractor
trained with our pretext task to the existing self-supervised
method and a substantially bigger model showed the po-
tential of our method. Models with more parameters tend
to achieve better results because of their higher learning
capacity, so possible future work includes training a big-
ger feature extractor using our method and comparing it to
the ResNET-152 originally used in SoccerNet.

Since our pretext task does not rely on any information
about the dataset or the football domain, it can be used in
other domains and downstream tasks as well. An example
can be the replay grounding task from SoccerNet which
also uses extracted features from the SoccerNet dataset to
identify replayed actions in broadcasted football matches
or another non-football-related downstream task such as
image classification benchmark in ImageNet.

All feature extractors in this work were evaluated on
the SoccerNet action spotting using only the NetVLAD++
classification head. Using other models as a classification
head can yield even better results in the SoccerNet action
spotting challenge.

8 Conclusion

In this paper, we introduced a pretext task for self-
supervised learning on an unlabelled dataset that is based

on the spatial understanding of the image content. We
trained multiple feature extractors with both our and an
existing self-supervised method SimCLR which we eval-
uated on the SoccerNet dataset using the action spotting
task.

With the same model representing the classification
head and only varying the backbone, we showed that our
method achieved an a mAP of 41.13% in the action spot-
ting task, which is 7.89% less compared to the existing
self-supervised method SimCLR. The performance gap
between the lightweight EfficientNet-B0 model trained
with both SimCLR and our pretext task and a substantially
bigger ResNET-152 model is relatively small compared to
the number of parameters and learning capacity that they
dispose of.

We hypothesize that using a bigger model together with
our method can achieve even better results and overcome
the pretrained ResNET-152 in the action spotting task. We
show that our pretext task does not rely on any informa-
tion about the dataset and therefore can be applied to other
domains as well.
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Salah, Ido Yerushalmy, Iftikar Muhammad, Ikuma
Uchida, Ishay Be’ery, Jaonary Rabarisoa, Jeongae
Lee, Jiajun Fu, Jianqin Yin, Jinghang Xu, Jongho
Nang, Julien Denize, Junjie Li, Junpei Zhang, Jun-
tae Kim, Kamil Synowiec, Kenji Kobayashi, Kexin
Zhang, Konrad Habel, Kota Nakajima, Licheng Jiao,
Lin Ma, Lizhi Wang, Luping Wang, Menglong Li,
Mengying Zhou, Mohamed Nasr, Mohamed Abdel-
wahed, Mykola Liashuha, Nikolay Falaleev, Norbert
Oswald, Qiong Jia, Quoc-Cuong Pham, Ran Song,
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Abstract

This paper presents a new technique for locating a pho-
tograph within a larger one, with the aim of enhancing
the speed and accuracy of conventional methods. The
proposed technique utilises a CNN architecture to ex-
tract multiple embeddings from the query image1, which
are then used to perform an approximate search within a
database of embeddings from the large photograph. Two
main models were trained on a large dataset. The first
model used a triplet loss function, while the second model
used a cross-entropy loss function. Conventional methods
were used to determine the location of the images in the
training set and to generate a large image. A database of
embeddings was created by partitioning the large photo-
graph with a certain sampling frequency (in pixels) using
the trained model. The database is queried for K-nearest
sub-query2 embeddings. These embeddings are generated
by partitioning the query image into equal-sized pieces as
CNN inputs. The optimal homography model is deter-
mined through random sampling based on the positions of
four sub-query images and their corresponding positions
in the large image. The model homography with the low-
est harmonic mean embedding distance is selected as the
resulting position. The method demonstrates satisfactory
accuracy and good speed on the generated test datasets.
The best model achieved a top-1 accuracy of 97.71% and
a top-3 accuracy of 99.17%. Future research will inves-
tigate the method’s performance with increasing surface
heterogeneity, the potential for automating video retrieval
to obtain a large dataset of photos, and its effectiveness
for photo localization in cases where conventional meth-
ods fail due to a lack of key points.

Keywords: Image Localization, Homography Estima-
tion, Approximate Search

*xdubov02@stud.fit.vutbr.cz
†herout@fit.vut.cz
1query image – image to be localized
2sub-queries – patches of query image with same size as inputs of NN

1 Introduction

This article discusses solutions to two common problems
in computer vision and graphics: image localization and
image stitching. The conventional method for address-
ing the localization problem involves detecting keypoints,
extracting local features (descriptors) around these key-
points, matching the extracted features from the query
image with features from a large image (map), and then
using the matched keypoints to estimate homography.
This homography can then be refined using bundle ad-
justment, which minimises the reprojection error. The
methods themselves are explained in the sections 2 and
4. These methods rely on handcrafted keypoints and ho-
mography matrices, which use robust fitting methods such
as RANSAC[7] or LMS[20]. However, they may perform
poorly when the percentage of inliers falls below 50%
[13]. These methods often use Hough transform [11, 2] to
overcome this problem. This problem is particularly sig-
nificant in cases where it is necessary to locate a very small
picture within a much larger one, especially when there
are very few common features.The aim of this study is to
explore a novel approach to determine position based on
a CNN-generated model to create an embedding database
for a large image. This database is then used to locate
a photography within the large photography. The process
involves dividing the input image into smaller sub-queries,
determining the embedding for each sub-query, and us-
ing a random sampling algorithm to create a homogra-

Faiss embedding DB
Homography estimationImage files

Pytorch model

Video files Training pipeline
Localisation pipeline

Input
Output

Input videos

Query image

Large
stitched
image

Large image
embedding
database

Small frame
fragment
images

sampling

subqueries
creation

stitching
fra

gmen
tin

g

Trained
model

train
in

g

index creation

calculate fitting score

divisioncalculate potential corresponding embeddings

find closest
 K-embeddings

subquery images
localisationCustom

RANSAC

estimate homography for best model
Localised

image
ca

lcu
lat

e

su
bq

uer
y

em
be

ddin
gs

 

Subquery
images

Sampled
images

Figure 1: Model of training and localisation pipelines.
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phy model. Preliminary results indicate that this method is
both feasible and efficient, demonstrating promising speed
and accuracy. Section 2 provides a comprehensive review
of the relevant literature. The used methodology for the
creation of the dataset is explained in Section 3. The pro-
cess of stitching to create a large photograph is clarified
in Section 4. Section 5 describes the architecture of the
trained neural network models. The construction of the
large image embedding database is explicated in Section
6. The procedure for localizing the query image is detailed
in Section 7, followed by a presentation and discussion of
the results in Section 8. The paper concludes in Section
9, where a summary of the findings is provided along with
potential avenues for future research.

2 Related Work

The main focus of this paper is on image localization, lo-
cal feature descriptors, and image retrieval, all of which
are discussed below. This paper aims to apply these three
methods to the localisation of query photography within
large photography.

2.1 Homography Estimation

Homography estimation is a technique used in computer
vision and image processing to find the relationship be-
tween two images of the same scene, but captured from
different viewpoints. We can divide this process into few
cathegories mainly by number of sources:

• Single-source homography estimation – source im-
ages are usually acquired by the same device from
different viewpoints or at different times.

• Multi-source homography estimation – source im-
age data with two or more different types of imaging
mechanisms for the same scene or object.

The focus of this work is to work with a single camera so
that we can focus on single source homography estimation
techniques. These techniques can be divided into two main
groups: feature-based and deep-learning methods.

2.1.1 Feature-Based Methods

In the feature-based homography estimation method, the
feature points in the image are first detected by a feature
extraction algorithm and then the similarity metric for the
matching is calculated. The parameters of the homography
matrix are then solved using the mapping relationship of
the matched feature points.

1. Conventional – Conventional homography estima-
tion methods rely on hand-designed feature extrac-
tors. The process conventional homography estima-
tion is divided into three main steps:

(a) feature detection – In this step, distinctive fea-
tures are identified in both images. These fea-
tures could be corners, edges, or other notable
structures in the image,

(b) feature matching – Finds matches between
these features. This involves comparing each
feature in one image with all features in the
other image and finding the best match. The re-
sult of this step is a set of corresponding feature
points between the two images,

(c) homography matrix estimation – Using cor-
responding feature points the homography ma-
trix 3 is estimated.

Common conventional descriptors include:

• SIFT[13] – A descriptor that is invariant to im-
age scale and rotation, and robust to changes in
viewpoint, noise, and illumination. It detects
and describes local features in images based
on the histograms of the gradient orientations
within a local region around the feature.

• BEBLID[22] – an efficient binary descriptor. It
represents a small part of an image using a bi-
nary string of zeros and ones. In various bench-
marks, it has been shown to significantly en-
hance other binary descriptors, such as ORB or
BRISK, while maintaining the same level of ef-
ficiency.

2. Learning-Based – These methods utilise neural net-
works to replace feature extraction or matching in
traditional algorithms. Traditional methods are then
used to estimate the homography transformation pa-
rameters at subsequent steps. Common learning-
based descriptors include:

• LIFT[25] – A novel Deep Network architecture that
implements the full feature point handling pipeline,
that is, detection, orientation estimation, and feature
description. This technique implements hard nega-
tive mining techniques over the entire image to obtain
more accurate descriptors.

• SuperGlue[21] – Introduces a flexible context aggre-
gation mechanism based on attention, enabling it to
reason about the underlying 3D scene and feature as-
signments jointly. Matches two groups of local fea-
tures by collectively finding correspondences while
rejecting non-matchable points.

• MatchFormer[24] – Hierarchical extract-and-match
transformer. Interleave self-attention to extract fea-
tures and cross-attention to match features.

33x3 matrix that describes the transformation from one image to an-
other
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2.1.2 Deep Learning-Based Methods

Methods with a unified homography estimation pipeline,
handled by a deep neural network model. Network un-
derstands and handles complex image correspondences.
Common deep learning-based methods include:

• RHWF 4 [4] – Supervised method. Combines
homography-guided image warping and the focus
transformer. Image warping improves feature con-
sistency. Focus Transformer uses the attention fo-
cusing mechanism to aggregate the intra-inter cor-
respondence into global, non-local and local. Has
a relatively small number of parameters. There is
an increase in computational cost due to the use of
homography-guided image warping and attentional
manipulation.

• MS2CA-HENet 5 [10] – Unsupervised method. The
method uses different input sizes at different stages to
deal with different scales of homography transforma-
tions between images. Lower error can be achieved
when there are large changes in displacement be-
tween corresponding points.

2.2 Image Retrieval

Image retrieval is the process of retrieving relevant images
from a large database based on a query image or query
terms. Image retrieval methods can be divided into 2 cate-
gories:

• Content-Based Image Retrieval (CBIR)

• Text-Based Image Retrieval (TBIR)

This paper focuses on content-based image retrieval
(CBIR). This technique uses the visual content of a picture
like colours, shapes, textures and spatial layout to repre-
sent and index the picture. In CBIR, the features of each
image stored in the database are extracted and compared
with the features of the queried image. It involves two
steps:

1. Feature extraction – In this step, features such as
colour histogram, texture, shape, etc. are extracted
from the image.

2. Similarity measurement – After extracting the fea-
tures, the similarity between the extracted features
and the features of the query image is calculated.

The current focus of research is on deep learning methods.
We can divide them into two main categories [18]:

4Recurrent Homography Estimation Using Homography-Guided Im-
age Warping and Focus Transformer

5Multiscale Multi-stage based Content-Aware Homography Estima-
tion method

• Off-the-Shelf models – Pre-trained deep learning
models which are used as-is for image retrieval with-
out further training or modification. However, they
may not perform optimally for specific retrieval tasks
due to domain shifts-differences between the data
they were trained on and the new target data.

• Fine-tuned models – Pre-trained models that are fur-
ther fine-tuned on a specific dataset related to the
retrieval task. The model’s weights need to be ad-
justed to better suit the particular characteristics of
the new dataset, which will improve retrieval perfor-
mance. However, this requires additional data and
computational resources.

On the off-the-shelf side Mohedano et al. [15] proposed
that both fully-connected layer and last convolutional layer
can be used as feature extractors. Fully-connected layer
method lack spatial information and a lack local geomet-
ric invariance. A. Razavian et al. [18] proposed very ef-
ficient single feed forward pass technique where features
are used for direct similarity measurement without further
processing. The need for more accurate image retrieval
has led to a surge of multiple feed forward pass techniques.
Although these techniques are more time-consuming, they
can lead to more accurate results. Also discriminative fea-
tures from the image patches better retain spatial informa-
tion [18]. Multi-scale image patches could be obtained
using sliding windows Y.Gong et al. [8] or spatial pyra-
mid Y. Liu et al. [12]. These methods have problems
with retrieval efficiency so Cao et al. [3] introduced merg-
ing image patches into larger regions with different hyper
parameters. Random or dense creation of image patches
may not be ideal so Zitnick et al. [29] proposed method
where region proposals can be generated using object de-
tectors instead. The last convolutional layer method pre-
serves more structural details, which is particularly advan-
tageous for instance-level retrieval [19]. The convolutional
layer effectively organizes spatial information and gener-
ates location-specific features [28]. Razavian et al. [19]
were the first to attempt spatial max pooling on the feature
maps of an off-the-shelf DCNN model. They also apply
max pooling on the convolutional features for retrieval to
improve the discrimination of deep features. Yue et al.
[17] and are the first to encode local features into VLAD
[26] features. R. Arandjelović et al. [1] used VLAD as a
layer plugged into the last convolutional layer. In addition
to pooling agregation techniques, it is possible to embed
the convolutional feature maps into a high-dimensional
space to obtain compact features. Commonly used em-
bedding methods include Bag of Words (BoW can be used
with other metrics, such as Hamming distance [23]), Vec-
tor of Locally Aggregated Descriptors (VLAD [26]), and
Fisher Vector (FV [7]).
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3 Dataset creation

The study utilises a large collection of photographs depict-
ing various indoor surfaces. The carpet dataset is the most
extensive and commonly used dataset, and is considered
the reference due to its 11 possible light conditions (data
was collected at various times throughout the day and/or
under artificial lighting). The dataset contains 21457 /
68961 / 142489 images based on the output size of the
image used. It can be used to test independence for re-
flection symmetry in both directions of the axis. Other
datasets include: laminate1, laminate2, carpet2, stone1,
stone2, rusty sheet metal and wood. These are smaller
(5000 – 10000 images). The dataset was created with sev-
eral assumptions that made it easier to create, including:

• The camera scanning the ground is parallel to it,

• The camera scanning speed is constant,

• The objects to be captured should not move,

• The diversity of the dataset was mainly achieved by
changing the lighting conditions.

The process of capturing the desired material or object
involves using a custom-built cart that is designed to hold
the camera parallel to the ground. This process must be
repeated several times to capture the object in different
lighting environments. By doing so, the dataset becomes
more generalised and less impacted by lighting changes.
The process of extracting fragments out of video frames
consist of:

1. Sampling of videos by given sampling size,

2. Dividing large image into smaller fragments,

3. Localising fragments in sampled frames using con-
ventional methods.

If a classification approach is used, the fragments will be
grouped into classes based on their spatial position within
the image. This means that there is a limiting factor to this
approach, which determines how many surface datasets
can be used for training (the number of classes should be
finite and not very large). In the classification method, the
name of the fragment file also means the class to which it
belongs, and the two numbers are the x and y coordinates
of the midpoint of that class. For triplet loss, each sample
is created as a triplet. This triplet consists of an anchor, a
positive image (from the same class) and a negative image
(from a different class). Triplets are created by generat-
ing csv file from all image files that consists of paths to
files and index of this file and class. This information is
then used in semi-/hard negative mining. All fragments
in datasets undergo custom augmentations, like shown in
table 3.

Figure 2: GUI application for visualising the homography
of frames in a large image. This application is able to show
the frames of the dataset in their correct positions.

Custom augmentations
translation ±25px
rotation ±180◦

homography ±25◦

center crop 224×224 pixels

4 Image stitching

To locate a query image in a large image, the first step is
to retrieve the large image (map). The images for this map
were created during the dataset creation process, explained
in Section 3, specifically in the sampling section. This
map is created using the image stitching technique, which
involves the following steps:

1. Keypoint Detection and Matching – To detect the
key points in each image, algorithm SIFT [13] is
used. This is followed by the FLANN [16] key point
matching algorithm, which allows the identification
of correspondences between key points in different
images.

2. Homography Estimation – RANSAC [7] algorithm
is used to estimate the homography between pairs of
images. Homography maps points in one image to
corresponding points in another image.

3. Image Warping and Blending – Images are trans-
formed to align them for stitching once homography
has been estimated. Then, multiband image blend-
ing [27] is used to create one seamless large image.

4. Extraction of Largest Inner Rectangle – identifies
and extracts the largest possible rectangle within the
stitched image.

Numerous experiments have been conducted using various
subdatasets to optimize image blending quality. Although
most of the process has produced satisfactory results, a
few minor artefacts require further investigation for refine-
ment.
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Figure 3: Examples of fragments from the same class.

5 Models architecture

The architecture of the models used in this study is based
on the ResNet50 [9] model. The models are as follows:

• Classification model – The first model uses
ResNet50 for classification tasks. The final layer
is a fully connected layer with a softmax activation
function, which outputs the probabilities for each
class. In addition to the class probabilities, the
model also returns the embeddings from the forward
method. These embeddings are the output of the layer
before the final fully connected layer. They represent
high-dimensional learned features of the input data
that the model uses for classification.

Model details for classification model
Dimensions of embeddings 2048
Linear layers – carpet in=2048, out=231
Linear layers – all in=2048, out=914
Trainable parameters 24108389

• Triplet model – The second model also uses
ResNet50, but it’s trained with a triplet loss function.
A triplet consists of an anchor, a positive, and a neg-
ative sample. The batch of data is used to extract the
anchor, positive, and negative images. The anchor
and positive images belong to the same class, while
the negative image belongs to a different class. The
model is used to obtain embeddings, which are vec-
tor representations of the images. Finally, the dis-
tances between the anchor and positive embeddings,

and the anchor and negative embeddings, are calcu-
lated using a distance function. The model should
select either hard or semi-hard negatives based on the
chosen method. The valid triplets’ embeddings are
then selected for further processing. The calculation
of the triplet loss involves the chosen embeddings.
Finally, the loss is backpropagated and the model pa-
rameters are updated. The purpose of this design is
to learn embeddings in such a way that the distance
between an anchor image and a positive image (be-
longing to the same class) in the embedding space is
smaller than the distance between the anchor image
and a negative image (belonging to a different class).

Model details for triplet model
Dimensions of embeddings 512
Linear layers – carpet / all in=2048 out=512
Trainable parameters 24675111

6 Large image embedding database

A database of embeddings is created from the large image
by traversing the entire image with a specified step in pix-
els and extracting the image to obtain its embedding. Cur-
rently, a step of 5 pixels in both axis directions is used. The
created embeddings are then utilised to generate a Feiss in-
dex with the Feiss [6] library. In addition, the JSON file
also stores the bounding box position of each index used
in the matching process. Although this process is compu-
tationally and time-consuming, it is only performed once
for a single large image.

Figure 4: Feiss index creation process.

7 Localization

The final stage of the localisation pipeline is the localisa-
tion process. Its purpose is to identify a specific image
within a larger one. The process begins by dividing the
query image into smaller sub-queries, each of the same
size as the inputs to our CNN model. If the image is large
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Figure 5: Image showing all valid hypotheses for image
patches, where small solid coloured squares are patches in
the query image, dotted squares represent potential patch
positions and the solid coloured squares in the large im-
age represent the K-nearest embedding patch. The solid
red rectangle represents the resulting homography without
optimisations.

enough to contain four non-overlapping sub-queries, the
non-overlapping method is selected. This method divides
the space between all the sub-queries equally. Otherwise,
a method is selected where the sub-queries may overlap.
It is important to ensure that the query image is smaller or
at worst the same size as the large image to avoid comput-
ing homographies where the large image is inside a black
area, resulting in missing information. For each sub-query,
embeddings are extracted using one of the trained mod-
els. These embeddings capture the essential features of
the sub-query. They are then used to search our database
of embeddings from the large image. The user chooses K-
nearest subquery embeddings to query the database. This
allows us to find the most similar embeddings in a large in-
dex of FAISS large image embeddings for each sub-query.
A random sampling algorithm with neighbourhood sup-
pression is used to determine the best homography model
based on the positions of four sub-query images and their

Figure 6: Result of the localisation. The red line is the
original homography, while the pink line is the refined one.
The solid squares are the sub-query inliers. The dotted
ones are their localised potential correspondences.

corresponding positions in the large image. This gener-
ates a given number of homography hypotheses. Invalid
homography hypotheses are marked to make the process-
faster, including those with unwanted properties such as
area change, angle change, and scale ratio change. The
cosine distance is computed between the sub-query im-
age embeddings and the potential homography hypothe-
sis embeddings. The harmonic mean of all distances is
then calculated to evaluate the hypotheses. This process is
repeated for all valid hypotheses, and the homography hy-
pothesis with the lowest global distance is selected as the
best model. This homography represents the location of
the query photo within the large image. The homography
is refined by applying LK optical flow to the best hypothe-
sis. Inliers are searched for within the potential sub-query
centers. The potential midpoints and their corresponding
closest real point are found using the second Feiss index
with midpoints, this time with L2 distance. This process
allows for the computation of a new refined midpoint po-
sition for each inlier sub-query, which can be used to com-
pute a better homography. Homography refinement can
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be performed multiple times to improve accuracy. If the
new homography has a better distance, it will be chosen as
the new one. Otherwise, the original homography will be
selected. Despite the best possible training of the neural
network, there are still inconsistencies that cannot be cor-
rected even with a higher number of nearest neighbours.
Further work will aim to improve the localisation model
to avoid such inconsistencies.

8 Results

For clarity, the results are illustrated with figures and ta-
bles. All results are based on test data sets. Homographies
were mainly tested with a these metric techniques: Aver-
age Corner Error [5] and Point Matching Error [14]. The
main problem with them is that the points where the ho-
mographies are given have to be given manually.

Percentage accuracy of models
classification model triplet loss model

train val test train val test
99.21 97.78 97.71 98.72 95.35 94.11

Table 1: Accuracy of the trained models for each dataset.

query:(899x1599)
map:(4800x3600)

This
solution

SIFT +
RANSAC

Create index database
(once per new map)

9-21h
(size dep.) 0s

Processing time
(once for all of images) 7.9s 0s

Query time
(for every query) 5,131s 0s

Localization
(for every query) 5.471s 111.7s

Table 2: Average time in each part of localization pipeline.

Figure 7: Examples of 10 misclassified images (CE). The
two numbers represent the midpoint (x,y) of that particular
fragment class.

9 Conclusions

In conclusion, this research presents a novel method for
locating a specific photograph within a very large photo-
graph. This method uses a convolutional neural network to
extract embeddings from the query image, which are then
used to perform an approximate search within a database
of embeddings from the large photo. The results of this re-
search demonstrate the effectiveness of this method, which
is comparable to state-of-the-art localisation methods.

Figure 8: Query image next to the localised part of the
large image after inverse homography transformation.

Figure 9: Examples of 25 images from testing dataset.
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Abstract

Animation consists of sequentially showing multiple single
frames with small mutual differences in order to achieve
the visual effect of a moving scene. In limited animation,
these frames are drawn as semantically meaningful vec-
tor images which could be referred to as clean animation
frames. There are limited animation workflows in which
these clean animation frames are only available in raster
format, requiring laborious manual vectorization.

This work explores the extent to which line-art image
vectorization methods can be used to automatize this pro-
cess. For this purpose, a line-art image vectorization
method is designed by taking into account the structural
information about clean animation frames. Together with
existing state-of-the-art line-art image vectorization meth-
ods, this method is evaluated on a dataset consisting of
clean animation frames. The reproducible evaluation shows
that the performance of the developed method is remark-
ably stable across different input image resolution sizes and
binarized or non-binarized versions of input images, even
outperforming state-of-the-art methods at input images of
the default clean animation frame resolution. Furthermore,
it is up to 4.5 times faster than the second-fastest deep
learning-based method. However, ultimately the evaluation
shows that neither the developed method nor existing state-
of-the-art methods can produce vector images that achieve
both visual similarity and sufficiently semantically correct
vector structures.

Keywords: vectorization, line-art, animation, deep-
learning

1 Introduction

In principle, animation consists of sequentially showing
single frames in order to achieve the visual effect of a
moving scene. Limited animation is an animation technique
in which frames are not completely redrawn (like in full
animation), but where the moving parts (also called cels)

*calvin.metzger@student.tuwien.ac.at
†wimmer@cg.tuwien.ac.at

are reused over frames.
The hand-drawn limited-animation production process

is composed of four phases. Based on the storyboard pro-
duced in the first phase, animators repeatedly draw and
improve rough key frames in the second phase. These
keyframes are line drawings only drawn for critical mo-
ments in a scene and contain mostly cels. In the third phase,
the rough keyframes cleaned of any spurious lines or ob-
solete text markers and vectorized. To achieve the visual
effect of fluidity, a large number of frames in between the
keyframes are drawn. Finally, in the fourth phase, the clean
frames are colored and enriched with special effects and a
background image.

In order for the limited animation production process
to proceed as quickly and as accurately as possible, clean
frames need to be drawn as vector images. In the event of
clean animation frames being only available in raster for-
mat, it is necessary to manually vectorize the images before
they can be used efficiently. Automatizing this process is
challenging, as the resulting line-art vector image needs to
be semantically meaningful, i.e., the arrangement, topology
and parameterization of graphical primitives (i.e., Bézier
curves) need to make sense and be close to how artists
would draw. An example of such a process is depicted in
Figure 1

In order to alleviate this issue, this work will attempt to
answer the Research Question 1 (RQ1): To what extent
is it possible to automatically vectorize clean animation
frame line art in a manner that is semantically meaningful?

To answer RQ1, the Research Objective 1 (RO1) is to
create a method for line-art vectorization that takes clean
animation frame raster images as input and outputs the
corresponding semantically meaningful vector image. This
method is based on a deep learning model tailored to the
qualitative structure of clean animation frames as input and
output images, as traditional heuristics-based algorithms
[15, 19, 11] tend to produce vector images that visually
resemble the raster image closely, but contain semantically
meaningless vector primitives.

Accordingly, the Research Objective 2 (RO2) is to per-
form an evaluation that ascertains the extent to which the de-
veloped method and existing state-of-the-art line-art image
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input: raster image output: vector image

deep learning
model

Figure 1: Overview of the research objective. The objective is to automatically convert clean animation frame line-art raster
images into vector images. Zooming into the figure reveals the structural difference between the input and the output image.
Input and output images are provided by Tonari Animation. Note that the output image is taken from the gold standard test
dataset. For a genuine reconstruction result of the developed line-art vectorization method, refer to Figure 5.

vectorization methods are able to vectorize clean animation
frames.

The code for this work is publicly available at
https://github.com/nopperl/marked-
lineart-vectorization.

2 Related Work

This section details existing work on image vectorization,
specifically for the case of line art. Since there is a non-
injective relation between vector images and raster images,
converting a raster image into a vector image is a non-trivial
task. Hence, state-of-the-art methods primarily utilize
learned models to achieve this. While there exist methods
based solely on heuristic optimization [15, 19, 11, 1, 21],
they do not produce the intended output for this task, as the
resulting vector primitives rarely resemble the primitives
an artist would draw. Additionally, they require manual
hyperparameter tuning for each individual image. Further-
more, each method relies on strong assumptions on the
input image, such as exceeding a specific resolution, a low
signal-to-noise ratio or containing only specific junctions.

While image vectorization is not yet a solved task, there
have been some recent advances in deep learning for vector
images. Reddy [13] introduce Im2Vec, an encoder-decoder
architecture consisting of a Convolutional Neural Network
(CNN) encoder and a Recurrent Neural Network (RNN)
decoder. The CNN encodes the image into a latent feature
vector, while the RNN is used to decode this feature vec-
tor into a fixed-length sequence of vector shapes based on
multiple Bézier curves. It can be trained to vectorize raster
images without vector supervision. This would be very
useful in the context of line-art vectorization. The ability
to train the model without vector supervision stems from
its usage of a differentiable rasterizer [8]. In the general
case, there are two main limitations of Im2Vec: The pixel
resolution has to be defined at training time and the model
does not scale well to higher resolutions. Additionally, the
outputs sometimes contain degenerate features or seman-
tically useless parts. Furthermore, Im2Vec only works on

a specific type of image, such as emojis or icons. Finally,
there were no experiments in the paper to output more than
4 shapes. Hence, it is doubtful whether it is possible to
train the RNN decoder to output the large number of Bézier
curves required for a clean animation frame.

The virtual sketching framework introduced by Mo et al.
[10] is similar to Im2Vec in that it is trained without vector
supervision to vectorize raster images. Other than that, it
differs from Im2Vec in multiple ways. The main difference
is that it constrains the output to only produce quadratic
Bézier curves. Also, it is an iterative model, i.e. the curves
are sequentially added to a canvas in a differentiable man-
ner. After a given number of curves is drawn, the loss
is computed and propagated through all the steps. These
two differences make the model more suitable for profes-
sional line art. However, since the iterative model is trained
mainly by computing a perceptual loss [6] of the whole
output image with the input image, the results are not se-
mantically meaningful vector images.

A different approach is to incorporate parts of traditional
optimization-based methods. Based on earlier work [1],
the state-of-the-art method by Puhachov et al. [12] uses a
learned ensemble model to detect curve keypoints (such as
junctions, start/end points and corners). Together with the
input image, these keypoints are used by a geometric flow
algorithm to find connections between keypoints and com-
pute their geometry. It achieves remarkably good results,
but has a more narrow aim than the proposed work. The
algorithm focuses on retaining the correct stroke connectiv-
ity in the presence of noise, in their case for scanned pencil
drawings. However, clean animation frames are not noisy
and the curves are more narrow and densely connected,
forming one large connected component for curves.

On the other hand, there do exist works that attempt to
fully learn a line-art vectorization model using (partially)
vector supervision, which makes it easier to produce seman-
tically meaningful vector images [18, 4, 2]. Of note is a
method to generate technical drawings by Egiazarian et al.
[3]. It uses the Transformer [16, 14] architecture and is
constricted to only handle 10 curves per image. To handle
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(a) The method unrolled at time step t + 1

Figure 2: Overview of the proposed method. The method
iteratively reconstructs a given raster line-art image as a
vector image. At time step t = 0, an algorithm identifies a
new curve to reconstruct and places a marker on it. This
information is then passed to a learned marked-curve recon-
struction model to reconstruct the curve in vector format
using cubic Bézier curve parameters. This output is added
to a canvas, which is taken into account when identifying
the curve to reconstruct at t + 1.

images with a larger amount of curves, each image is split
into fixed-size tiles. The tiles are processed independently
by using the Transformer model to predict vector primitives
to match the curves in the image. The resulting primitives
are then refined using a physics-inspired algorithm by align-
ing them to the black pixels in the raster image. Afterwards
the primitives of all tiles are merged using a simple heuris-
tic algorithm. While the model produces good results on
technical line drawings, the authors also demonstrate that
it generalizes to other line art. It is limited by the assump-
tion that there are less than 10 curves within a tile and the
reliance on the heuristic merging algorithm.

3 Method

This section describes a method to automatically convert
line-art raster images into vector images. The method is
visualized in Figure 2 and consists of two parts: the main
part is a learned model that takes as input a raster line-art
image and a mark on a curve in this image and outputs a
cubic Bézier curve which fits the marked curve, which is
described in Section 3.1. The second part is a lightweight
algorithm that uses this model iteratively to reconstruct all
curves in an image, which is described in Section 3.2.

The method is designed in an iterative manner in order
to handle the large amount of Bézier curves in the consid-
ered line-art images. Additionally, this structure is more
amenable to manual fixing of the output, since missing
curves can easily be reconstructed by invoking the curve
reconstruction part with a marker on the curve in question.

3.1 Marked-Curve Reconstruction Model

The marked-curve reconstruction model architecture is de-
picted in Figure 3 and was designed by following the princi-
ple that reducing the complexity of the task the model needs
to solve increases the probability that the model actually
converges to a suitable state.

This is achieved by three design decisions. The most
important design decision is to have the model reconstruct
only a single curve instead of all curves per invocation. The
other two decisions are based on the input and the output
of the model and are explained below.

3.1.1 Input and Output

The input of the model is a line-art raster image. Addition-
ally, this image contains one marker pixel placed on a curve
to reconstruct. Importantly, this means that the location
of the curve is already established. This information can
be used to reduce the task complexity for the model by
centering the input image on the mark.

The raster input images are represented using the Red-
Green-Blue (RGB) color model, i.e., each pixel is repre-
sented using three floating-point numbers in [0,1].

The output of the model is defined as the parameters
of a cubic Bézier curve with a fixed stroke width. The
parameters are defined by the start point, the end point
and two control points, resulting in a vector of length 8.
This output structure is sufficient to represent the output
data domain considered in this work, i.e., clean animation
frames.

3.1.2 Model Architecture

The architecture of the marked-curve reconstruction model
is depicted in Figure 3. It consists of an encoder neural
network that turns the input image x into a latent vector z
of length L, and a decoder neural network that turns this
latent vector into cubic Bézier curve parameters o.

Since the input is an image, the encoder is a convolu-
tional neural network. A global average pooling layer [9]
is used at the end to produce a latent vector of predefined
length L independent of the input image size. The hyperpa-
rameters of the encoder layers are displayed in Table 1.

Note that, as described above, the encoder architecture
is designed to handle variably sized input, with these vari-
ables being denoted in Table 1. The batch size B is used
to process multiple observations in parallel and increase
the effectiveness of batch normalization by decreasing the
variance. The image width W and height H need to be a
multiple of 2, but can be otherwise freely chosen. The la-
tent vector length L needs to correspond to the length used
for the input vector of the decoder. For this work, the hyper-
parameters are set to B = 32, W = H = 512 and L = 128.
L = 128 was chosen after early experiments with smaller
resolutions. W and H are set to a square multiple of 2 ap-
proaching the maximum clean animation frame resolution
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Figure 3: Architecture overview of the marked-curve reconstruction model. Note that for brevity, lines with two points are
shown instead of cubic Bézier curves with four points.

of 1280×720 pixels. Note that the width and height delib-
erately do not correspond to the exact resolution of clean
animation frames in the dataset to show that the model does
not overfit to a specific resolution. B is maximized under
the constraint of a limited amount of Graphics Processing
Unit (GPU) memory.

The decoder is summarized in Table 2 and is a 2-layer
multi-layered perceptron (MLP), which turns the latent
vector of length L into a vector of length P ∗ 2, where P is
the number of cubic Bézier curve parameters. Since cubic
Bézier curves are parameterized by a start point, an end
point and two control points, P = 4. Hence, the output
is restricted to [0,1] using the sigmoid function. The x-
coordinates of the cubic Bézier curve points are then scaled
with the image width, while the y-coordinates are scaled
with the image height.

3.1.3 Training

The model is trained using supervised learning with a com-
bination of a raster-based loss for visual similarity and
a vector-based loss for semantic correctness. This task-
derived loss combination is an important distinction from
related work [13, 10, 3].

The vector loss follows Egiazarian et al. [3] and is an
even combination of mean absolute error (MAE) and mean
squared error (MSE). Defining a raster-based loss is more
difficult, since the model outputs the cubic Bézier curve
in vector format, which needs to be rasterized in a differ-
entiable manner. The differentiable rasterizer introduced
by Li et al. [8] is used for this. The raster output image is
then compared to the rasterized ground truth image, with
all curves aside from the marked curve removed. Using
this, the dice loss function in Equation (1) can be used as
loss. Note that o is the model output and y is the ground
truth raster image.

dice(o,y) = 1 − 2yo + 1
y + o + 1

(1)

The model is trained using the widely used Adam [7]
optimizer with a learning rate of η = 5 ∗ 10−4.

3.2 Iterative Curve Reconstruction Algorithm

The marked-curve reconstruction model introduced in Sec-
tion 3.1 is the main part of the line-art image vectorization
method, but reconstructs only a single curve without color
or stroke width information given a marked curve on the
line-art raster image. In order to vectorize an entire line-art
raster image, an algorithm has to be defined around the
model that performs three tasks detailed in the following
sections.

3.2.1 Color and Stroke Width

For the first task, recall that the marked-curve reconstruc-
tion model does not output color information. Since color
carriers significant meaning in clean frames, it is necessary
for the algorithm to produce the correct color information
for all predicted curves.

This can easily be done for clean animation frames as
they are drawn according to a color scheme which is known
a priori. Hence, the image can be simply segmented ac-
cording to these colors. For the dataset considered in this
paper, these segments already exist. Then, the curve colors
of each segment are set to black and each segment is indi-
vidually input into the marked-curve reconstruction model.
The color of its output can then be set to the segment color.

In the same vein, the marked reconstruction model does
not output stroke width information. However, in clean
animation frames, all curves share the same stroke width
by design. Hence, it is possible to assume a constant stroke
width for the input image and to apply it to all reconstructed
curves.

3.2.2 Curve Identification

In order to indicate to the marked-curve reconstruction
model which curve needs to be reconstructed, the second
task consists of sampling a pixel lying on a curve not al-
ready reconstructed given the input image (more specifi-
cally an input image segment, as described in Section 3.2.1)
and a canvas image containing already reconstructed curves.
In the case of clean line-art images considered in this work,
this can simply be done by sampling a random black pixel.
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layer output shape # params filter size kernel size stride padding
2-d conv (B, 32, W/2, H/2) 896 32 3 2 1
2-d conv (B, 64, W/4, H/4) 18496 64 3 2 1
2-d conv (B, 128, W/8, H/8) 73856 128 3 2 1
2-d conv (B, 256, W/16, H/16) 295168 256 3 2 1
2-d conv (B, 512, W/32, H/32) 1180160 512 3 2 1
2-d conv (B, L, W/32, H/32) 589952 L 3 1 1

avg pool + squeeze (B, L) 0 L W/32 - -

Table 1: Summary of the layers of the encoder neural network of the marked-curve reconstruction model.

layer output shape # params size
linear (B, L/2) 8256 L/2

batch norm (B, L/2) 2(L/2)
Rectified Linear Unit (ReLU) (B, 2P)

linear (B, 2P) 520 2P
sigmoid (B, 2P) 520

Table 2: Summary of the layers of the encoder neural
network of the marked-curve reconstruction model.

3.2.3 Marked-Curve Reconstruction Model Invocation

In order to vectorize the entire line-art image, the marked-
curve reconstruction model has to be invoked iteratively
until all curves are reconstructed. This is done in multiple
steps, which are laid out in Algorithm 1.

Note, that Line 5 in Algorithm 1 constitutes an intuitive
stopping criterion enabled by the progressive canvas image
subtraction from the remaining image. Since missing a few
curves is not a significant issue and errors in the model
output are to be expected, the stopping criterion is set to
T = ⌊B ∗ 0.1⌉, where B is the number of black pixels in the
original image.

4 Dataset

The dataset used in this work consists of two parts: a
human-generated dataset of 20,564 clean line-art images
and a synthetic dataset. The human-generated dataset con-
sists of 139 vector images provided by Tonari Animation,
425 vector images from the SketchBench benchmark, and
20,000 amateur sketches from the TU Berlin collection.
The size of this dataset is increased using four data augmen-
tation techniques: curve mirroring, curve rotation, curve
reversion and curve dropout. The synthetic dataset is used
to further increase the size of the training data. For that,
images with a low number of randomly sampled cubic
Bézier curves are generated and combined with the human-
generated dataset at a 1:5 ratio. The entire dataset consists
of Scalable Vector Graphics (SVG) vector images and cor-
responding rasterized Portable Network Graphics (PNG)
images, with a uniform color for the background (white)
and the curves (black).

5 Evaluation

To answer the RQ1, this section provides a quantitative and
qualitative evaluation of the extent to which the line-art vec-
torization method developed in this work and comparable
state-of-the-art methods are able to automatically vectorize
clean animation frame line art. It is performed on a held-
out portion of the dataset consisting of 10 Tonari animation
frames.

5.1 Quantitative Evaluation

To perform the quantitative evaluation, the methods are
applied to vectorize a test dataset consisting of evaluation
dataset images and their results are compared using metrics
which quantify the difference between the ground truth (i.e.,
the gold standard) and the vectorization results.

In detail, the vectorization methods are given a raster
image Xraster as input and produce an output vector im-
age Ŷ, where Ŷ = (ŷ j)n

j=0 is a sequence of cubic Bézier
curves of arbitrary length n and each cubic Bézier curve
ŷ = (ŷi)8

i=1 is a sequence of 8 numbers, which represent the
curve parameters (i.e., the start point, end point and two
control points). The metrics measure how well Ŷ matches
the ground truth vector image Y corresponding to the input
image Xraster, where again Y = (y j)m

j=0 is a sequence of
cubic Bézier curves of length m.

Intersection-over-Union (IoU) Following related works
[3, 10, 5], the visual similarity of the output image to the
ground truth image is measured using the IoU defined in
Equation (2). Note, that T P refers to the true positives, FP
to the false positives and FN to the false negatives, which
are calculated by binarizing the rasterized output image
Ŷraster and input image Xraster.

J = T P
T P + FP + FN

(2)

Curve error One method of measuring the correctness
of the vector structure of the output Ŷ is to calculate its
distance to the ground truth image Y. This curve error
is defined in Equation (3) as the sum of the distance of
each curve in the output image to the corresponding ground
truth curve. Hungarian ordering is used to establish curve
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correspondence, i.e. the ground truth curve with the mini-
mum distance is paired to each output curve. The sum of
absolute errors defined in Equation (4) is used as distance
function d(ŷi,y j).

curve error(Ŷ,Y) = meann
i=0

(
m

min
j=0

d(ŷi,y j)
)

(3)

d(ŷ,y) =
8

∑
i=0

|ŷi − yi| (4)

Curve ratio Given an output image Ŷ that visually re-
sembles the ground truth Y, a simple measure of matching
vector structures is to consider the ratio number of output
curves and ground truth curves n/m ∈ [0,n]. In the case of
perfectly matching vector structures, n = m and n/m = 1.

Curve length Another method to measure how well the
output vector structure matches the ground truth is to cal-
culate the average curve length in pixels and compare it to
the ground truth.

Curve distance Following Yan et al. [20], holes be-
tween curves are measured using the the minimum distance
of each curve endpoints to each other curve endpoints.
In detail, the metric is defined by Equation (5), where
E = [0,1,6,7] defines the indices of the start and the end
point parameters of a curve. The closer the value is to the
ground-truth baseline, the closer the vector structure can be
considered to match the ground truth, while values that are
higher than the baseline indicate more unintentional holes.

meann
i=0

(
n

min
j=0

∑
k∈E

|ŷi
k − ŷ j

k|

)
(5)

Efficiency Furthermore, the runtime (in seconds) and
GPU memory usage is measured to evaluate the efficiency
of the algorithms.

5.1.1 Results

Table 4 shows the performance of the following line-art
image vectorization methods: the method developed in
this work (marked), the traditional algorithm by We-
ber [19] (autotrace), the vectorization algorithm com-
bining deep learning and heuristic optimization by Puha-
chov et al. [12] (polyvector-flow), the deep learning-
based algorithm using raster supervision by Mo et al. [10],
(virtual-sketching), and the deep learning-based
algorithm using vector supervision by Egiazarian et al. [3]
(deepvectechdraw).

The methods are applied on the Tonari clean animation
frame test dataset rasterized at a resolution of 512px, while
preserving the aspect ratio. The Intersection-over-Union

(IoU), curve error and runtime metrics can be easily in-
terpreted: While the arrow in the column name indicates
whether larger or smaller numbers represent better per-
formance, the results of the best and the second-best per-
forming method on the metric are indicated using bold and
italics fonts, respectively.

For the remaining metrics, recall that the average curve
length and the average curve distance should be close to
the ground truth values, which are listed in Table 3. The
curve ratio is calculated with the number of curves listed in
the same table.

Table 4 shows that the line-art vectorization method de-
veloped in this work outputs vector images that resemble
the input raster image the closest. It achieves this with the
second-smallest curve error behind the method by Puha-
chov et al. [12] and with a curve distance that is close
to the ground truth, just behind the method by Mo et al.
[10]. Interestingly, it uses roughly half the curves of the
ground truth, with curves on average being nearly twice
as long. Finally, it is also the fastest deep learning-based
method, while requiring the least amount of dedicated GPU
memory.

Note that the traditional method by Weber [19] signifi-
cantly outperforms all other methods on the runtime. On
the other hand, it has the highest curve error and lowest
IoU, suggesting ill-fitting outputs. The method by Puha-
chov et al. [12] also achieves a surprisingly low IoU, but
also the best curve error.

The two deep learning-based methods by Mo et al.
[10], Egiazarian et al. [3] approach the IoU of the method
developed in this work, albeit with a significantly higher
curve error and runtime. Additionally, the method by
Egiazarian et al. [3] outputs the lowest amounts of curves,
but the curves of the method by Mo et al. [10] are still
longer on average, suggesting that this method produces
more curves that do not fit the ground truth curves.

In general, most methods produce output images that sur-
prisingly do not cover the input image well. This suggests
that no method reproduces clean animation frames to the
extent required by the task considered in this work.

5.1.2 Results with higher resolution input images

The methods by Weber [19], Puhachov et al. [12] per-
formed unusually low on the evaluation in Table 4. A
potential cause for this was identified as the low resolution
of input images at 512px. To investigate this hypothesis, the
evaluation was rerun with input images rasterized at twice
the resolution, i.e., 1024px, while preserving the aspect
ratio. Keep in mind that this is significantly higher than the
standard resolution of clean animation frames considered in
this work. Hence, performance increases of methods at this
resolution will likely not materialize when they are applied
to real-world clean animation frames, which usually will
only be available at a lower resolution.

Figure 4 compares the evaluation results of the two reso-
lutions sizes. Note that, since metrics measured in pixels
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curves curve length curve distance
median median median

tonari 512-0.512 205.00 2.56 1555.82
1024-1.024 205.00 5.12 1725.81

sketchbench 512-0.512 208.00 12.43 2355.22
1024-1.024 208.00 24.85 2726.03

Table 3: Selected metrics of the vector images in the test dataset. This information can be used as baseline for the
corresponding metrics in Table 4.

autotrace polyvector-
flow

virtual-
sketching

deepvec-
techdraw

marked (ours)

IoU ↑ median 0.02 0.12 0.29 0.28 0.30
curve ratio median 0.23 1.35 0.30 0.19 0.43
curve length median 1.00 0.55 11.16 9.06 8.19
curve distance median 891.00 439.18 1442.91 917.50 1361.28
curve error ↓ median 20.37 14.05 20.08 17.58 16.76
runtime ↓ median 0.35 14.82 22.99 97.73 9.49

Table 4: Comparison of the performance of the marked line-art image vectorization method and four prior works on the
Tonari test subset at a resolution of 512px. If possible, the result of the best and the second-best performing method for the
metric is indicated using bold and italics fonts, respectively.

scale linearly with the resolution size, they are normalized
by the resolution size. It is clear that all prior methods
except AutoTrace [19] perform significantly better than at
512px resolution. The method by Puhachov et al. [12] even
reaches an IoU well over 0.5, i.e., its outputs cover more
than half of the input image correctly on average. This is
dampened by a high curve error and curve distance, indicat-
ing incorrect vector structures. The method by Egiazarian
et al. [3] performs similarly well, with a lower IoU but
better curve error and curve distance, seemingly striking a
different balance between visual resemblance and semanti-
cally correct vector structures.

Interestingly, the metrics of the method developed in
this work stay remarkably stable at the increased resolu-
tion. This is especially remarkable for the runtime, which
significantly and predictably changes for all other methods.

One potential reason for this remarkable input image
resolution invariance of the method developed in this work
is the selection of reconstruction curves using marks, which
explicitly forces the model to reconstruct curves which
other methods might not have detected. This can be the
case for curves that are too thin or contain some spots at
low resolutions.

5.2 Qualitative Evaluation

For a visual comparison, Figure 5 shows the best output
of each method for an example clean animation frame
by Tonari Animation. The input image has a resolu-
tion of 512px and is binarized for the methods by Weber

[19], Puhachov et al. [12], Mo et al. [10], since that leads
to higher-quality outputs. Since the main objective is to not
only achieve visual similarity but also match the seman-
tically correct vector structure of the ground truth vector
image, Figure 5 attempts to visualize the underlying vector
structure. Following Guo et al. [5], Mo et al. [10], Puhachov
et al. [12], this visualization is achieved by representing
curves using mutually exclusive colors. Furthermore, the
images are zoomed in to lay bare minute differences. Indi-
cations for a correct vector structure are a constant color
for continuous curves and a similarity to Figure 5a.

All methods appear to be visually correct at first glance,
with varying quality and the methods by Egiazarian et al.
[3], Mo et al. [10] not performing favourably. However,
looking into details reveals significant deficiencies. The
method developed in this work arguably produces the most
closely matching vector structure, with most curves faith-
fully reconstructed following their appearance. On the
other hand, curves are often slightly too short, leaving un-
desirable holes. Furthermore, there is a bias towards low
curvature.

The method by Mo et al. [10] is similar to the method de-
veloped in this work in that it faithfully reconstructs curves,
but fails to preserve the constant stroke width. The methods
by Weber [19], Puhachov et al. [12] do not faithfully re-
construct curves, with multiple curves often merged into a
single curve or altogether missing. This leads to a visually
clean output – even without a significant amount of holes in
the case of AutoTrace [19]. However, the produced vector
structure is far from the ground truth in Figure 5a.
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Figure 4: Metrics for the line-art image vectorization methods evaluated on images with 512px and 1024px resolution,
respectively. Points denote the median of the metric, while vertical bars denote the inter-quartile range (IQR). Horizontal
lines show the trend of the metric. The metrics for the method developed in this work are emphasized. Note that they are
not significantly affected by the image resolution and none decreases with lower resolutions.

6 Conclusion

The objective of this work was to ascertain to what extent it
is possible to automatically vectorize clean animation frame
line art in a semantically meaningful way. In order to an-
swer the RQ1, Section 3 proposed a clean animation frame
line-art image vectorization method and Section 5 evalu-
ated it together with prior work on an evaluation dataset
provided by Tonari Animation. It could be shown that
while the proposed method outperforms prior work at the
default input image resolution, ultimately no line-art im-
age vectorization method is able to satisfactorily vectorize
clean animation frames, especially failing to properly re-
construct details and primitives with high curvature. Hence,
no method studied in this work is of practical use in the
limited-animation workflow. In order to achieve the goal
of automatizing the tedious step of vectorizing clean ani-
mation frames, the curve reconstruction needs to be signifi-
cantly more accurate.

Advantages of the developed method include remark-
able robustness to input image resolution and binarization,
resource efficiency and flexibility for manual fixing. Lim-
itations include a significant amount of small holes in re-

constructed curve sequences, limited semantic correctness
and a bias towards lower curvature.

6.1 Future Work

There are numerous opportunities to improve on the pre-
sented work. The dataset could be improved by collecting
a larger amount of high-quality data or performing more
advanced data augmentation or feature extraction. A fur-
ther promising improvement is to finetune a large vision-
language model such as CogVLM [17] instead of training
a small CNN based encoder-decoder model from scratch in
order to utilize their emergent capabilities.

Furthermore, there exist other tasks to which the devel-
oped model could be extended. These include the gener-
ation of inbetween frames based on keyframes or clean
animation frame colorization. Moreover, the model output
could be constrained to exhibit temporal consistency, i.e.,
to consist of curves that remain consistent across frames of
the same scene.
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(a) Ground truth. (b) Output of the developed method.

(c) Output of AutoTrace [19]. (d) Output of Egiazarian et al. [3].

(e) Output of Puhachov et al. [12]. (f) Output of Mo et al. [10].

Figure 5: The output vector image given a Tonari clean animation frame in raster format as input of each line-art image
vectorization method studied in this work. The vector structure behind the images is revealed by representing each curve
with a mutually exclusive color and a high zoom level.

Proceedings of CESCG 2024: The 28th Central European Seminar on Computer Graphics (non-peer-reviewed)
147



References

[1] Mikhail Bessmeltsev and Justin Solomon. Vectoriza-
tion of line drawings via polyvector fields. ACM Trans.
Graph., 38(1):9:1–9:12, 2019. doi: 10.1145/3202661.
URL https://doi.org/10.1145/3202661.

[2] Ayan Kumar Bhunia, Pinaki Nath Chowdhury,
Yongxin Yang, Timothy M. Hospedales, Tao Xiang,
and Yi-Zhe Song. Vectorization and rasterization:
Self-supervised learning for sketch and handwriting.
In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2021, virtual, June 19-25, 2021,
pages 5672–5681. Computer Vision Foundation /
IEEE, 2021. doi: 10.1109/CVPR46437.2021.00562.
URL https://openaccess.thecvf.
com/content/CVPR2021/html/Bhunia_
Vectorization_and_Rasterization_
Self-Supervised_Learning_for_
Sketch_and_Handwriting_CVPR_2021_
paper.html.

[3] Vage Egiazarian, Oleg Voynov, Alexey Artemov, De-
nis Volkhonskiy, Aleksandr Safin, Maria Taktasheva,
Denis Zorin, and Evgeny Burnaev. Deep vector-
ization of technical drawings. In Andrea Vedaldi,
Horst Bischof, Thomas Brox, and Jan-Michael Frahm,
editors, Computer Vision - ECCV 2020 - 16th Eu-
ropean Conference, Glasgow, UK, August 23-28,
2020, Proceedings, Part XIII, volume 12358 of Lec-
ture Notes in Computer Science, pages 582–598.
Springer, 2020. doi: 10.1007/978-3-030-58601-
0 35. URL https://doi.org/10.1007/978-
3-030-58601-0_35.

[4] Jun Gao, Chengcheng Tang, Vignesh Ganapathi-
Subramanian, Jiahui Huang, Hao Su, and Leonidas J.
Guibas. Deepspline: Data-driven reconstruc-
tion of parametric curves and surfaces. CoRR,
abs/1901.03781, 2019. URL http://arxiv.
org/abs/1901.03781.

[5] Yi Guo, Zhuming Zhang, Chu Han, Wenbo Hu,
Chengze Li, and Tien-Tsin Wong. Deep line draw-
ing vectorization via line subdivision and topology
reconstruction. Comput. Graph. Forum, 38(7):81–
90, 2019. doi: 10.1111/cgf.13818. URL https:
//doi.org/10.1111/cgf.13818.

[6] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Per-
ceptual losses for real-time style transfer and super-
resolution. In Bastian Leibe, Jiri Matas, Nicu Sebe,
and Max Welling, editors, Computer Vision - ECCV
2016 - 14th European Conference, Amsterdam, The
Netherlands, October 11-14, 2016, Proceedings, Part
II, volume 9906 of Lecture Notes in Computer Sci-
ence, pages 694–711. Springer, 2016. doi: 10.1007/
978-3-319-46475-6\ 43. URL https://doi.
org/10.1007/978-3-319-46475-6_43.

[7] Diederik P. Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

[8] Tzu-Mao Li, Michal Lukác, Michaël Gharbi, and
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A Appendix

This section contains additional information related to the
implementation of the vectorization algorithm.

Algorithm 1: Iterative Curve Reconstruction.
Input: A raster line-art image.
Output: A vector line-art image.

1 Segment input image by color;
2 foreach image segment do
3 canvas = an empty vector image of the same size

as the input image;
4 remaining = image segment;
5 while number of black pixels in remaining > T ;

do
6 Compute marker by applying curve

identification on the remaining image;
7 Centered image = center the remaining

image on the marker;
8 reconstructed curve = invoke the

marked-curve reconstruction model using
the centered image;

9 Inverse the center location of the curve by
using the mark location;

10 Add the reconstructed curve to the canvas
image;

11 remaining = remaining - rasterized canvas
image;

12 end
13 Set color of all curves in the canvas image to the

segment color;
14 end
15 Merge the canvas images;
16 return Merged canvas images
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Abstract

In quantum mechanics, the wave function describes the
state of a physical system. In the non-relativistic case,
the time evolution of the wave function is described
by the time-dependent Schrödinger equation. In 1982,
D Kosloff and R Kosloff proposed a method to solve
the time-dependent Schrödinger equation efficiently us-
ing Fourier transformation. The computational physics re-
search group, led by Géza I. Márk in the Nanotechnol-
ogy Department, Institute for Technical Physics and Ma-
terials Science, Centre for Energy Research, located in
Budapest, in collaboration with Belgian researchers, de-
veloped a simulation method based on three-dimensional
wave packet dynamics for the study of electron dy-
namics in nanosystems. A simplified, interactive, two-
dimensional version for educational purposes was pub-
lished in 2020. In this work, we demonstrate two improve-
ments of the wave packet dynamical simulation software:
(i) the use of the Graphical Processing Unit (GPU), which
results in a vast (up to 50x) increase in simulation speed,
and (ii) the introduction of advanced visualization tech-
niques which are helpful to correctly interpret massive 4D
space-time wave function data sets obtained from the sim-
ulation.

Keywords: Quantum Mechanics, Wave Packet Dynam-
ics, Ray Tracing, Simulation

1 Introduction

In the first quarter of the 20th century Quantum Mechan-
ics (QM) opened a whole new window to understand our
universe. Tamás Geszti, in his book [18] writes: ”learn-
ing QM is part of the process of understanding the world,
and the person who masters it, understands the world bet-
ter”. QM can be used efficiently to model the behav-
ior of atomic particles. It describes how electrons be-
have in the orbitals around the atomic core and explains
chemical reactions. It can be used to model the struc-
ture of molecules. In nanotechnology, it is crucial to make

*zoltan.simon@edu.bme.hu

quantum mechanical calculations to predict –and, in many
cases, explain– the behavior of different nanostructures.
One exciting field of study is the science of single-layer
materials [23]. These are also known as 2D materials.
One such carbon structure is called graphene [5, 16, 14].
This single-layered structure conducts heat and electricity
very efficiently, thus raising high hopes in many when it
comes to possible use-cases. Inspired by the previously
enumerated fields of application, we set the goal to study
the behavior of quantum systems by computer simulation.
Such simulations are beneficial for scientists. They use
such methods to accurately model the interaction between
particles and various potential fields. In order to accom-
plish this goal, we choose a method that uses the Fast
Fourier Transform (FFT) to efficiently calculate the time
development of the quantum mechanical wave function.
In QM, the wave function describes the state of a physi-
cal system. In the non-relativistic case, the time evolution
of the wave function is described by the time-dependent
Schrödinger equation [15]. In 1982, D Kosloff and R
Kosloff proposed a method [8] to solve the time-dependent
Schrödinger equation efficiently using Fourier transforma-
tion. In 2020, Géza István Márk published a paper [11]
describing a computer program for the interactive solu-
tion of the time-dependent and stationary two-dimensional
(2D) Schrödinger equation. Some details of quantum phe-
nomena are only observable by calculating with all three
spatial dimensions. Géza István Márk and his colleagues
have already used 3D calculations in their research work
[19, 9]. The difference is that their implementation uses
solely the Central Processing Unit (CPU) of a computer.
For visualization of the resulting probability density so far,
they used the isosurface method. Our contribution mainly
lies in leveraging the parallelization potential of the mod-
ern Graphical Processing Unit (GPU), thus significantly
boosting the calculation speed by approximately a factor
of 50 on our test hardware. We also apply state-of-the-art
volumetric visualization techniques to create pleasing and
comprehensible visuals to analyze the probability density
evolution in 3D space.
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2 Theoretical background

By examining atomic particles, scientists have observed
that such particles exhibit wave-like behavior, and in
bounded systems, they can absorb or release energy only
in discrete quanta. These matter waves have complex am-
plitudes, and can interfere with themselves.

Equation 1 is called the Schrödinger equation. It is a
linear partial differential equation, and it is the governing
equation of QM published by Erwin Schrödinger [15] in
1926. Linearity is a requirement for matter waves since,
by the definition of superposition, a general equation that
aims to describe the behavior of matter waves must be sat-
isfied not only by simple waves but also by the linear com-
bination of these waves.

d
dt

Ψ(⃗r, t) =− i
h̄

ĤΨ(⃗r, t) (1)

In equation 1, we can see that on the left side, we ba-
sically take the first derivative of the wave function with
respect to the time and on the right side we let the Ĥ =

− h̄2

2m ∆ +V (⃗r) Hamiltonian operator [6] affect the wave
function. h̄ is the reduced Planck constant. By specify-
ing an initial state and solving this differential equation,
we can predict the time development of a quantum me-
chanical wave function.

The wave function is a complex valued function. Ex-
periments show that the square of the absolute value of
the complex amplitude is the probability density associ-
ated with the particle being found in a given infinitesimally
small portion of space at a given time. For convenience
and to be sound with probability theory, we normalize
the amplitude of the wave function so that the probability
of the particle being found ”somewhere” in space equals
IP = 1. ∫

V
|Ψ(⃗r, t)|2 d3r = 1 (2)

3 Calculation method

Back in 1982, D Kosloff and R Kosloff proposed a method
[8] to solve the time-dependent Schrödinger equation ef-
ficiently using Fourier transformation. The advantage of
this algorithm compared to the Finite Difference in Time
Domain (FDTD) methods[22, 10] is the high numerical
stability of the time evolution step. In the adopted FFT
method, no signs of divergence are present even after a
large number of simulation steps. The time development
step of the algorithm has a time complexity of O(N logN)
since it only uses six FFT runs (O(N logN) each) and three
element-wise multiplication between tensors (O(N) each).
The amount of FFT runs and multiplications can be re-
duced further if we do not want to read the results of the
time development in each step. A significant speed-up can
be reached by using a parallelized implementation of the
FFT algorithm as we did by using an efficient GPU imple-
mentation. In the following part, we would like to explain

the FFT method in detail. The formal solution of equation
1 can be written in the form of equation 3.

Ψ(⃗r, t) = e−
i
h̄ Ĥ(t−t0)Ψ(⃗r, t0) (3)

where Ψ(⃗r, t0) is a specified initial state and Ψ(⃗r, t) is the
state after some δ t = t − t0 time. The problematic part
is the Hamiltonian operator in the exponent. The kinetic
and potential operators can not be commuted in general.
Hence, the exponential can not be factored. We can de-
compose the exponential by the symmetrical unitary prod-
uct [4, 3] as shown in the form 4.

e−
i
h̄ Ĥδ t = e−

i
h̄ (K̂+V̂ )δ t ≈ e−

i
h̄ K̂δ t/2 e−

i
h̄ V̂ δ t e−

i
h̄ K̂δ t/2 (4)

The error of this approximation is O(δ t3); therefore, we
have to be careful with selecting a small enough time res-
olution. When the potential energy is localized, the V̂ op-
erator is a simple multiplication by V (⃗r) function; thus the
middle part of the product can be calculated in the form of
equation 5.

e−
i
h̄ V̂ δ tΨ = e−

i
h̄V (⃗r)δ tΨ (5)

The K̂ kinetic operator involves calculating the spatial
derivative of the wave function. We can use the Fourier
transform, to make the conversion between real space and
momentum space. Relation 6 holds for the derivative of an
arbitrary f function and its Fourier transform.

ikF{ f}= F{ f ′} (6)

Taking the derivative in real space means multiplication
by ik imaginary wave number in momentum space. We
work with the ∆ = ∇ ·∇ Laplace operator, so we have to
multiply by (ik)2 =−k2. By exploiting the linearity of the
Fourier transform, we arrive at formula 7 for the kinetic
energy part of the Hamiltonian function.

K̂Ψ =
p2

2m
Ψ =− h̄2

2m
∆Ψ =− h̄2

2m
F−1{−k2F{Ψ}} (7)

where F−1 is the inverse Fourier transform. In momen-
tum space, the k wave number is trivially given as it can be
thought of as the very coordinate the function is parame-
terized with.

Actually, in equation 4, the K̂ kinetic energy operator is
in the exponent multiplied by − i

h̄ δ t/2. Using the knowl-
edge gathered from equation 7, we can now write equation
8.

e−
i
h̄ K̂δ t/2Ψ = F−1

[
e−

ik2 h̄δ t
4m F [Ψ]

]
(8)

Having a discrete data set, Discrete Fourier transform
(DFT) can be efficiently implemented using the Fast
Fourier Transform (FFT) algorithm. The output of the
simulation is the wave function. The probability density
can be obtained by calculating the square of the absolute
value of the wave function for each grid cell. Making use
of formulas 4, 5, and 8 and plugging them into the formal
solution of the Schrödinger equation we can create algo-
rithm 1 for the time development of the wave function.
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Algorithm 1 Time advance algorithm
Ψ← initial state of the wave function
V ← localized potential
δ t← time resolution
Nt ← number of time steps
PV ← e−

i
h̄V (⃗r)δ t

PK ← e−
ik2 h̄δ t

4m

for i ∈ [0,Nt) do
Ψ(1)← FFT−1 [PK FFT [Ψ]]
Ψ(2)← PV Ψ(1)

Ψ← FFT−1
[
PK FFT

[
Ψ(2)

]]
Visualize |Ψ|2

end for

3.1 Defining Gaussian wave packets

In the algorithm, first, we have to specify an initial state of
the wave function. Erwin Schrödinger introduced the con-
cept of the Wave Packet (WP). A WP is a wavefront that
propagates and reflects as a classical particle would do and
also exhibits all the wave-like behavior described by QM.
It bridges the gap between classical and quantum physics.
The term Wave Packet Dynamics (WPD) refers to the pro-
cess of modeling QM systems by initializing WPs and ob-
serving the propagation, reflection, scattering, and inter-
ference of the WP. In our work, we use Gaussian WPs. In
this case the probability density of the WP has Gaussian
distribution [21], hence the name. The definition of such
wave function can be written in the form of equation 9.

ψ (⃗r) =
[

2
πa2

]D
4

exp
[
ik⃗0 · r⃗

]
exp

[
−|⃗r− r⃗0|2

a2

]
(9)

where r⃗0 is the initial position (with the highest probability
density), k⃗0 is the initial wave vector, and D is the dimen-
sion, which is D := 3 in our simulation. We can obtain the
width of the Gaussian WP as ∆r = a

2 .
If we do not want to visualize the probability density in

each iteration, we can further optimize the calculation by
merging the first step of the nth iteration and the last step
of the (n−1)th iteration. If we omit the visualization step,
we can do one forward FFT then perform a multiplication
between the moment space wave tensor and the P2

K kinetic
propagator calculated for a whole δ t interval, instead of
the one used in Algorithm 1 calculated for δ t/2 interval.

4 Our implementation

Using the Fourier method, we created a Python applica-
tion simulating the time development of the quantum me-
chanical wave function. We use ray tracing to visualize
the resulting volumetric probability density. The visual-
ization requires the sampling of a 3D data set on a dis-
cretized grid. This makes it impossible to fully reconstruct

the wave function that we simulated using only a finite res-
olution to begin with. In order to fight sampling artifacts,
we deploy a state-of-the-art triquadratic reconstruction fil-
ter recently proposed by Balázs Csébfalvi [2].

4.1 GPU parallelization and Just-In-Time
compilation

The Fourier method described in section 3 opens up the
possibility to implement the simulation on the GPU. Us-
ing GPU acceleration is one of our contributions to the
already existing implementation used at the Nanotechnol-
ogy Departement, Institute for Technical Physics and Ma-
terials Science, Centre for Energy Research. The Compute
Unified Device Architecture (CUDA) toolkit is often used
for parallel computational tasks implemented on the GPU
[12]. It comes with a powerful GPU based FFT imple-
mentation. To use CUDA with Python, we selected the
CuPy wrapping library [13] that provides abstraction over
CUDA. We have used Numba to access Just-In-Time com-
pilation (JIT) features. JIT means that for some parts of the
otherwise interpreted source code, the compiler performs
a runtime translation to native code. This feature is espe-
cially useful when iterating over large arrays.

4.2 Performance test

We measured the performance of our application. We used
a personal laptop to run and test the program. The sys-
tem specification of our computer is summarized in figure
1. First, we tried a CPU-only version of our simulator to

CPU AMD Ryzen 5 6600H 3.30 GHz
GPU NVIDIA GeForce RTX 3050 Ti Laptop GPU
RAM 16 GB
OS MS Windows 11 64-bit

Figure 1: System specification of the used test hardware

compare the results with the GPU accelerated implementa-
tion. The results of the comparison can be found in figure
2. Here, we tested three different configurations with vary-

Input size CPU only [iter/s] GPU accel. [iter/s]
1283 1.1 11.5
2563 0.09 6.5
5123 0.01 0.5

Figure 2: Results of a performance test using a CPU-only
and the GPU accelerated version

ing resolutions. We measured the average iteration count
per second. The test shows that by using GPU accelera-
tion, we obtained significant speed up over the CPU-only
implementation.
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5 Results

5.1 General approach and the system of
units

We used our software to perform various WPD simula-
tions. In this section, we present the results of some of
these simulations. Our simulator uses Hartree atomic units
[7]. Every quantity in the upcoming part should be inter-
preted as such. This unit system makes it convenient to
deal with quantities at atomic scale.

5.2 Double-slit experiment

First, we simulated electron scattering experiments. Scat-
tering of a particle happens when the WP of the particle
passes through some kind of a barrier with holes in it. In
our simulation, we can model the barrier as a localized
potential. The WP arrives from one side of the barrier.
While passing through this barrier, it scatters, and some of
the WP gets reflected. The portion of the WP that passed
through –suffering scattering– continues forward and con-
sequently arrives to a measuring device1. In our simula-
tion, our measuring device is a virtual canvas where we
measure the probability density. A simple scattering sce-
nario is the double-slit experiment. Here the barrier is
a potential wall with two narrow parallel slits. The WP
passes through these slits.

We performed the simulation using a distance between
the barrier and the measuring canvas of L = 30 Bohr radii,
a distance between the two slits of d = 4.0 Bohr radii, and
a WP wavelength of λ = 2π

3 ≃ 2.1 Bohr radii. The width of
each slit was a small enough value of 1.0 Bohr radii. Snap-
shots of the double-slit simulation can be seen in figure
3, where we used ray tracing to visualize the probability
density and the potential. The corresponding interference
pattern is visualized in figure 4 on a canvas of size 60×60
Bohr radius.

5.3 Diffraction by optical grating-like poten-
tial

Many different forms of diffraction can be explained using
QM. The scale at which diffraction happens ranges from
the scale of subatomic particles to larger molecules. Mea-
suring diffraction patterns is a useful tool in the hands of
scientists. It provides information about the object that
caused the diffraction. The previously presented double-
slit experiment is a 2D phenomenon because the localized
potential is independent of the z coordinate. In the third
dimension, there is free propagation. To make use of all
three simulated dimensions, we also modeled diffraction
on diffraction gratings. In optics, a diffraction grating is
a periodic 2D structure that diffracts light [17]. In QM,

1In scattering and diffraction experiments we can make the distinction
between a near field and far field solution.

Figure 3: Double-slit experiment: the wave packet passes
through the slits in the potential barrier

similar gratings can also be utilized to diffract wave pack-
ets. The holes between the potential nodes behave like
the holes in the double-slit experiment. We put 11 nodes
in each direction, forming a rectangular grid. Each node
has a Gaussian potential distribution and a maximal po-
tential of Vmax = 8 Hartree. The distance between adja-
cent grid points is d = 4 Bohr radii. The canvas distance
is L = 30 Bohr radii, and the wavelength of the WP is
λ ≃ 2.1 Bohr radii. Note that the kinetic energy of the
WP E = p2

2m = h2

2λ 2 ≃ 4.5 Hartree is less than Vmax. Oth-
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Figure 4: Simulated interference pattern of double-slit ex-
periment

erwise, the grating would not impact the propagation of
the WP sufficiently. In figure 5, we visualize subsequent
stages of the scattering.

During the simulation, many interesting interference
patterns arise. We show some of these for the 4 Bohr radii
lattice constant case in figure 6, and for the 8 Bohr radii
lattice constant case in figure 7.

5.4 Many-body interactions

One interesting use case of a higher-dimensional WPD
simulator is that the higher-dimensional space can be
used to model the interactions between multiple lower-
dimensional particles. For example, our 3D simulation is
capable of the simulation of three 1D particles. To do this,
we have to define a special interaction potential. To cre-
ate such potential, we have to think about the coordinates
in the higher-dimensional configuration space as the co-
ordinates of multiple lower-dimensional particles. If the
potential energy affecting all particles can be expressed as
a V (xa,xb,xc) function of the location of particle A and B
and C, then we can reinterpret this function as the V (⃗r) lo-
calized potential function used in the potential propagator
in equation 5. Note that here r⃗ becomes (xa,xb,xc). To
model the interaction between the three 1D particles, we
initialized a hard interaction potential that takes its maxi-
mum inside an ε radius around each particle otherwise it
is constant zero. To prevent blotting of the Gaussian WP
we also added a harmonic oscillator potential. This helps
because the Gaussian WP is the eigenstate of the harmonic
oscillator. The potential for a harmonic oscillator is given
in the form of equation 10.

V (x) =
mω2

2
x2 (10)

Here m is the oscillating mass and ω is the angular fre-
quency of the oscillation. We created a scenario where
particle A starts at 25 Bohr radii away from the center of

Figure 5: Diffraction grating experiment: the grating has a
lattice constants of 4 Bohr radii

the oscillator where the potential energy is maximal; thus,
it accelerates towards the other two particles (B and C),
consequently transferring the momentum to particle C on
the far right. The angular frequency of the oscillator was
selected to be ω = 2π

40 ≃ 0.1571 rad·Hartree
h̄ .

We placed a finite potential barrier in the middle of the
oscillator. We chose the thickness of this barrier so that ap-
proximately half of the wave packet of particle B tunnels
through the barrier, giving its momentum to particle C on
the next side of the wall. This causes C to start moving
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Figure 6: Interference pattern forming on the measure-
ment canvas during diffraction grating simulation using
lattice constant of 4 Bohr radii

with a probability of approximately 1
2 . What we just de-

scribed is called the entanglement of the states of particles
A, B, and C. Let’s perform a measurement to determine
the location of particles A, B, and C right after the pre-
viously described sequence of interactions! If we would
measure particle A to be located in the middle of the har-
monic oscillator, that means that it gave its momentum to
particle B and B has tunneled through the finite potential
barrier. If B tunneled, that also means that beyond the bar-
rier, it collided with particle C, consequently transferring
all of its kinetic energy to C. On the contrary, if the result
of the measurement determining the location of particle A
would have shown that particle A bounced back from B,
that means that B did not tunnel through the barrier. This
also means that particle C did not receive any kinetic en-
ergy and stayed stationary right beyond the barrier. The
measurement of the state of one entangled particle deter-
mines the outcome of the measurement of the other entan-
gled particles. Real-life experiments are sound with this
thought experiment [20]. The probability density plot can
be observed in figure 8.

Figure 7: Interference pattern forming on the measure-
ment canvas during diffraction grating simulation using
lattice constant of 8 Bohr radii

6 Discussion

In our work, we wrote about simulating the time devel-
opment of the quantum mechanical wave function in 3D
space. Our accomplishments are the following

• We adopted a simulation method that uses the Fourier
transform as a subroutine to efficiently calculate the
solution of the time-dependent Schrödinger equation.

• As an improvement over Géza István Márk’s imple-
mentation, we ported the Fast Fourier Transform to
the Graphical Programming Unit, thus reaching a ma-
jor speed-up of a factor of 50 for some cases.

• We combined state-of-the-art volume visualization
techniques to enhance the visual quality of the result-
ing probability density images.

• We used our simulator software to run various
Wave Packet Dynamical simulations ranging from
basic diffraction scenarios up to simulation of lower-
dimensional particles in configuration space.
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Figure 8: Stages of interactions between 1D particles in
harmonic oscillator with finite potential barrier: initial
state; particle A colliding with particle B; particle C reach-
ing maximal potential on the right side of the oscillator
with approximately 0.5 probability while it’s in superposi-
tion with the state of staying stationary next to the central
barrier

We see our work as a successful entry into the quantum
mechanical wave packet dynamics world and a good start-
ing point for further research. In the future, we want to
make it possible to calculate the eigenstates of the local-
ized potential. This would require the calculation of the

Fourier transform in the time domain to obtain the energy
state of the system. Then, iteratively converge towards
the eigenstate. There is also a possibility of incorporat-
ing electromagnetism into the Hamiltonian operator. As
we have simulated 1D particles in configuration space, we
could use a higher-dimensional space to model the inter-
action between multiple multidimensional particles. One
interesting path to go down on is to build a machine learn-
ing solution that is able to initialize a localized potential
field that guides the wave function into a desired state.
This particular idea is inspired by the marvelous work of
Barnabás Börcsök, who presented his paper about control-
ling 2D laplacian eigenfluids [1] at the Central European
Seminar on Computer Graphics in 2023. From a visualiza-
tion point of view, there are also many possibilities to im-
prove. There is room for even better reconstruction filters.
We are very hopeful about the future research potential of
this topic and are very eager to continue the fruitful work.
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Kvashnin, Leonid Chernozatonskii, Andrey Chaves,
Khamdam Rakhimov, and Philippe Lambin. Wave
Packet Dynamical Calculations for Carbon Nanos-
tructures, pages 89–102. 01 2016.

[10] Frederick Ira Moxley, Tim Byrnes, Fumitaka Fu-
jiwara, and Weizhong Dai. A generalized finite-
difference time-domain quantum method for the n-
body interacting hamiltonian. Computer Physics
Communications, 183(11):2434–2440, 2012.
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[19] Péter Vancsó, Géza I. Márk, Philippe Lambin,
Alexandre Mayer, Yong-Sung Kim, Chanyong
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Abstract

Having an appropriate reflectance model is a crucial part
of achieving realistic rendering. Currently, the vast major-
ity of renderers rely on physically-based analytic models
with a few parameters. In this paper, we consider another
approach and explore the possibility of using measured
reflectance data to render 3D objects covered with real-
world materials in real-time graphics. Specifically, we cre-
ated an implementation for two major game engines, Unity
and Unreal Engine 5, and compared it with the analytic
model. For these purposes, more than 200 samples of ma-
terials were measured, and an application was developed
to process the measured data.

Keywords: Bidirectional reflectance distribution func-
tion, real-time rendering, game engine, direct lighting

1 Introduction

One of the main tasks in computer graphics is to com-
pute realistic images. This task can be achieved using the
rendering equation, which incorporates a bidirectional re-
flectance distribution function (BRDF, see Section 1.2).
This function is often described as an analytic model,
a polynomial with certain parameters.

In the following sections, we present a different method
for expressing a BRDF, which involves an interpolation of
values obtained from real-world materials. We describe
a workflow that consists of measuring the reflectance of
a material, processing the measured data, and rendering
the surface with these BRDF values.

1.1 Spherical coordinate system

The spherical coordinate system represents a vector v⃗ =
(x,y,z) using two angles θ ,φ and a radial distance r = ||⃗v||.
The angle θ is characterized as the angle between the vec-
tor v⃗ and the basis vector z, while φ denotes the angle be-
tween the basis vector x and the projection of the vector v⃗

*cezneluk@fel.cvut.cz
†havran@fel.cvut.cz

on the xy plane. The conversion between a Cartesian and
a spherical coordinate system can be described as:

x
y
z

=

r · sinθ · cosφ
r · sinθ · sinφ

r · cosθ

 ,

θ
φ
r

=

arccos
(

z√
x2+y2+z2

)
arctan( x

y )√
x2 + y2 + z2

 .

(1)
On many occasions, we used the spherical coordinate

system to describe the direction ω⃗ (a unit vector, r = 1).
An illustration of this situation is shown in Figure 1.

x
y

z

ω⃗

φ

θ

Figure 1: A direction vector ω⃗ in spherical and Cartesian
coordinate system.

1.2 Bidirectional Reflectance Distribution
Function

The bidirectional reflectance distribution function (BRDF)
is a mathematical representation of how light is reflected
from the surface of an opaque material. For a spe-
cific wavelength of light, this is a function of two di-
rection vectors ω⃗in, ω⃗out in spherical coordinates (ω⃗in =
(θin,φin), ω⃗out = (θout ,φout)) that represent the incoming
(light) direction l⃗ and the outgoing (view) direction v⃗. The
value of the BRDF is determined by the ratio of the re-
flected radiance Lout in direction ω⃗out to the incoming ir-
radiance Ein from direction ω⃗in [14]:

f (ω⃗in, ω⃗out) =
dLout(ω⃗out)

dEin(ω⃗in)
=

dLout(ω⃗out)

dLin(ω⃗in) · cosθin
[sr−1],

(2)
Physically plausible BRDFs must obey two restric-

tions: Helmholtz reciprocity and energy conservation.
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Helmholtz reciprocity defines the relationship between
a light ray and its corresponding reverse ray that the value
of the BRDF function must be the same:

∀ω⃗in, ω⃗out ∈ Ω : f (ω⃗in, ω⃗out) = f (ω⃗out , ω⃗in). (3)

Energy conservation is a requirement that the overall
outgoing energy cannot exceed the incoming energy:

∀ω⃗in ∈ Ω :
∫

Ω
f (ω⃗in, ω⃗out) · cosθout dω⃗out ≤ 1. (4)

1.3 Rendering equation

The rendering equation [8] describes the total outgoing ra-
diance in direction ω⃗out at a specific point on the surface:

Lout(ω⃗out) = Lemit(ω⃗out)+∫
Ω

f (ω⃗in, ω⃗out) ·Lin(ω⃗in) · cosθ dω⃗in. (5)

where Lemit ,Lin are the emitted and the incoming radiance.
Due to the integral over a hemisphere and an incoming ra-
diance in it (resulting in the need of a recursive evaluation
of the equation), the exact value of this function is com-
putationally demanding. Therefore, this function must be
approximated, even more so with real-time rendering.

2 Related work

In this section, we will describe two fields of study that
are related to this work: BRDF data sets and analytical
representation of BRDF.

2.1 BRDF data sets

The most well-known data set of measured BRDFs is the
MERL BRDF database, produced by Matusik et al. [11]
They used a spherically homogeneous sample, a station-
ary camera, and a light on a turntable. MERL database
contains 100 different isotropic materials, each of which
consists of 1,458,000 samples.

One of the newer data sets worth mentioning was pro-
duced by Dupuy and Jakob [4]. They invented an adaptive
parameterization, using which they can measure and store
only important parts of the BRDF 4D domain. By em-
ploying this method, their database currently includes 62
various materials.

2.2 Analytical models of BRDF

Currently, the vast majority of renderers rely on analytic
models. One of the fundamental models is the Phong il-
lumination model [15], which lacks both energy conserva-
tion and Helmholtz reciprocity. These problems were later
solved by Lafortune and Willems [10], who represent the
model as:

f (ω⃗in, ω⃗out) =
kd

π
+ ks ·

n+2
2π

· (max{⃗v · r⃗,0})n, (6)

where kd ∈ [0,1], ks ∈ [0,1] (kd +ks = 1) are coefficients
of the diffuse and specular part, r⃗ is a vector of ideal re-
flection of l⃗, and n ∈ [0,∞) is a parameter that defines the
shininess of the material.

Today, more complex models are used. A frequently
used model is, for example, the model developed by Wal-
ter et al. [21] It is based on the Cook-Torrance model,
which, unlike Walter’s model, does not satisfy energy con-
servation.

f (ω⃗in, ω⃗out) = kd · fd(ω⃗in, ω⃗out ,λ )+ ks · fs(ω⃗in, ω⃗out) (7)

The specular part of the model is based on microfacet
theory and is decomposed into three parts: Fresnel func-
tion F , geometric attenuation G, and distribution function
D:

fs(ω⃗in, ω⃗out) =
F ·G ·D

4 · (⃗n · l⃗) · (⃗n · v⃗)
, (8)

where n⃗ is a normal of the surface. For Fresnel function
F in real-time graphics, the Schlick approximation [16]
is used. Geometric attenuation G is influenced by the cho-
sen distribution function F , for which several variants have
been introduced. The most used is GGX:

D =
α2 ·max{0,⃗h · n⃗}

π · cos4 θh(α2 + tan2 θh)2 , (9)

G ≈ G1(⃗v) ·G1(⃗l), (10)

G1(⃗x) = max
{

0,
x⃗ · n⃗
x⃗ · h⃗

}
· 2

1+
√

1+α2 · tan2 θx
, (11)

where h⃗ is a half vector (⃗h = l⃗+⃗v
||⃗l+⃗v||

), θh is an angle be-

tween h⃗ and normal n⃗, and θx is an angle between x⃗ and
normal n⃗. The parameter α defines the roughness of the
material.

3 BRDF Measurements

Acquiring measured BRDF data is the first step in the
workflow. We used MiniDiff v2 [17] (shown in Figure 2),
a portable contact scatterometer created by Synopsys (pre-
viously LightTec). It supports the measurement of BRDF
for isotropic materials at four angles of incidence for light
sources: θin ∈ {0◦,20◦,40◦,60◦}. For each angle of light,
it produces measurements of the RGB reflectance values
in the range of φout ∈ [0◦,360◦) and θout ∈ [0◦,75◦] with
a precision of 1◦. Therefore, the measurement of a single
sample consists of 324,000 BRDF values.

A limited number of material samples can be properly
measured as a result of the construction of this instru-
ment. Any sample that is not solid, is not homogeneous, is
squashy, has bumps (such as plaster), contains tiny holes
(like most fabrics), or is partially transparent (like certain
types of plastic) will produce invalid results.

With these constraints, 216 measurements of materi-
als were produced, mainly papers and swatches, but also
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Figure 2: MiniDiff v2 with calibration samples.

metal, plastics, felt wool, and stiff foam. Some sam-
ples are wood (plywood, chipboard, planed wood), cloth,
and leather. Anisotropic materials were measured for two
φin angles of light that are approximately perpendicular
and stored as independent measurements. The miniatures
of all material samples are shown in Figure 9.

4 Processing

During the processing stage, two primary tasks need to be
performed: extrapolation and export to the look-up table
(LUT) image data. For this reason, we have created an
application that also enables us to visualize data and ver-
ify its validity. This application was developed as modular
and general as possible: internally it works with measure-
ments as a point cloud, and loading data from a new file
format can be easily added.

4.1 Extrapolation

BRDF data for grazing angles (θout > 75◦) are unavailable,
so we must extrapolate them from the measured range.
Specifically, for each 3D texture slice corresponding to
a particular θin, the values f (θe) are calculated from the
value f (θb) of the nearest known measurement (in our sce-
nario θb = 75◦) as an interpolation of the scale of f (θb)
from 1 to the parameter r ∈ [0,∞):

f (θe) = f (θb) · ((1−α)+α · p),

α = b
(

min
{

θ −θb

m
,1
}
, l
)
,α ∈ [0,1],

(12)

where m represents the maximum expected distance be-
tween the known measurement at θb and the calculated
value at θe (in our scenario m = 90◦−75◦ = 15◦). Figure
3a shows an example of extrapolated BRDF values. The
function y = b(x, l) can be described as finding the coor-
dinate y of a point with the specific coordinate x on the
restricted quadratic Bezier curve, illustrated in Figure 3b,

specified by l ∈ [0,1]. This curve has a fixed starting point
P⃗0 = (0,0), an ending point P⃗2 = (1,1), and a parameter-
ized control point P⃗1 = (l,1− l):

y = b(x, l) if ∃t :
[

x
y

]
= 2 · (1− t) · t ·

[
l

1− l

]
+ t2. (13)

The equation for this function is solved by testing the
roots of the variable t.

0

f (θ)

θ

p · f (θb)

f (θb)

θb θb +m

(a) Chart of BRDF values by θ (extrapola-
tion area is orange).

x

y

P0

P1

P2

1− l

l

(b) Used Bezier
curve.

Figure 3: Extrapolation of BRDF data with the parameters
p = 0.2 and l = 0.3.

This extrapolation was developed to be easily com-
puted. If parameter p = 1, this extrapolation produces
the same results as clamping values outside the measure-
ment region, which is preferable for materials that exhibit
mainly diffuse reflection, because it is expected that the
BRDF value will not depend much on the outgoing direc-
tion ω⃗out . For glossy materials, it is recommended to set
the parameter p < 1, because decreasing the value of the
BRDF with increasing θout (consequently increasing the
distance from the direction of ideal reflection) will roughly
estimate the shape of the reflection lobe.

4.2 Export to LUT image

During rendering, the isotropic BRDF data are stored as
a 3D texture constructed from several 2D textures, slices
with the fixed third texture coordinate. The isotropic
BRDF has three independent parameters and has φin = 0.
Therefore, each slice represents the BRDF values for
a specific θin in an equirectangular projection with a spher-
ical coordinate system ω⃗d = (θd ,φd) aligned with the di-
rection of specular reflection, i.e. the direction θd = 0◦,
φd = 0◦ corresponds to θout = θin,φout = φin+180◦. Slices
are arranged in row-major order in an image file with as-
cending θin in a single composite image.

For rendering in Unreal Engine, it is necessary to gener-
ate a single texture (referred to as an atlas) that merges all
measured BRDF samples being used (see Section 5.3). An
example of an atlas is illustrated in Figure 5. The layout of
an atlas is the same as that for a single BRDF, but instead
of the slice itself, the atlas contains a regular grid. Each
cell in the grid corresponds to a slice of a single BRDF tex-
ture with the same θin. Cells within the grid are organized
similarly to slices in 3D texture, following a row-major
order.
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φd

θd

θin = 0◦ θin = 20◦

θin = 40◦ θin = 60◦

Figure 5: An example of an exported atlas image for 9 dif-
ferent materials.

4.3 Previewing BRDF data

The developed application supports two ways of preview-
ing the measured BRDF data: as a reflection lobe for a spe-
cific angle of light ω⃗in and rendering of a 3D object illu-
minated by an environment map.

The reflection lobe, illustrated in Figure 4a, can be de-
scribed as a deformed sphere where the distance between
the points from the origin corresponds to a specific BRDF
value in a particular direction. This visualization method
is beneficial for verifying the validity of specific values
and gaining insight into the general form of a BRDF.

In contrast, rendering of a 3D object illuminated by
an environment map, shown in Figure 4b, can be practi-
cal for comparing the real-world and rendered versions of
the material. It is computed as a numerical integration of
the rendering equation over a hemisphere, where the input
radiance is sampled from the environment map in a partic-
ular direction.

5 Rendering in game engines

We implemented a shader for two major game engines,
Unity and Unreal Engine 5, which compute direct lighting
using a 3D LUT image created in the previous step.

5.1 BRDF evaluation

In practical terms, we assume that the initial slice of the
texture corresponds to θin,0 = 0, with each subsequent
slice increasing its angle linearly (i.e. θin,i+1 = θin,i +∆;
∆ ∈ R+, specifically in our case ∆ = 20◦). Consequently,
the value of a BRDF point in a normalized texture coordi-
nate can be represented as:u

v
w

=


φd
2π
θd
π

θin
θin,m

 , (14)

where θin,m is an angle of the last 2D slice in the 3D tex-
ture.

To read the BRDF data from the texture, native trilinear
interpolation is used. In the selected coordinate system de-
scribed in Section 4.2, two points with the same (u,v) in
a different 3D texture slice (different texture coordinate w)
describe the change of the lobe around the specular reflec-
tion, which is more valuable information than the linear
interpolation of the BRDF values with fixed ω⃗out , because
it is expected that the main difference between the 3D tex-
ture slices will be in the specular part of the BRDF. For ex-
ample, in Figure 6, interpolation with fixed ω⃗out produces
two smaller lobes, which does not represent the correct be-
havior.

θ0

θ1

θ0.5

(a) Interpolation between slices
parameterized with ω⃗out .

θ0

θ1

θ0.5

(b) Interpolation between slices
parameterized with ω⃗d .

Figure 6: Comparing of interpolations of BRDF values
(dotted line) of the cosine lobe (⃗r · v⃗)20 (⃗r is a direction of
ideal reflection) between slices with specified θin.

(a) A reflection lobe. (b) 3D object illuminated by an environment map.

Figure 4: Implemented methods for previewing BRDF data.
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This approach is inappropriate for materials that exhibit
substantial retroreflective properties, but such cases are not
within the scope of this work.

BRDF is evaluated in a tangent space of the specified
point on a 3D object surface. This tangent space, illus-
trated in Figure 8, is derived from the normal vector n⃗ and
the tangent vector t⃗, which is formed by projecting the in-
coming direction ω⃗in onto a plane perpendicular to the nor-
mal n⃗.

To evaluate the BRDF values from the 3D texture, it is
necessary to transform the view direction ω⃗out into ω⃗d in
the texture coordinate system. This can be done through
the rotation matrix from normal n⃗ to the direction of spec-
ular reflection ω⃗r = (θin,π):

S = (Rz(π) ·Ry(θin))
T =

−cosθin 0 −sinθin
0 −1 0

−sinθin 0 cosθin

 .

(15)
After rotation, the spherical coordinates of the view di-

rection v⃗ are related to ω⃗r, therefore they are ω⃗d . Hence,
the normalized texture coordinates are calculated using
this formula: u

v
w

=


fφ (S·⃗v)

2π
fθ (S·⃗v)

π
fθ (⃗l)
θin,m

 , (16)

where the function f maps Cartesian coordinates to
spherical, l⃗ and v⃗ represent the light and the view direc-
tion in the introduced tangent space.

To perform testing and performance evaluations, the
same testing scene was established in both game en-
gines. This scene contains six models (specifically Stan-
ford Bunny [18], Stanford Armadillo [9], Phlegmatic
Dragon [7], Stanford Dragon [3], Utah Teapot [13] and
Spot [2]) with six different materials. The rendered image
from this scene is shown in Figure 7.

b⃗

t⃗

n⃗

ω⃗in

θin

ω⃗r

θin
ω⃗out

φd

θd

Figure 8: The tangent space used for BRDF evaluation.

5.2 Unity

Unity [20] has three rendering pipelines: build-in, univer-
sal (URP), and high definition (HDRP). The shader for
rendering measured BRDF was implemented for the built-
in render pipeline because modifying a BRDF evaluation
in other pipelines is not officially supported and requires
a bit of reverse engineering [22].

The built-in rendering pipeline uses forward rendering
by default, and therefore the implementation of the shader
was straightforward. Each material has an input texture
with BRDF data and evaluates the lighting in the fragment
shader for each light that affects the object [19].

5.3 Unreal Engine 5

Unreal Engine [6] has a pipeline based on deferred shad-
ing. A shader, editable by a user, writes the necessary data
for lighting (such as position, normal, and BRDF param-
eters) to the G-buffer (an off-screen framebuffer) [12]. In
the G-buffer, it is not feasible to store the whole texture
with measured BRDF data. Instead, it is necessary to store
only an index of a sample in the atlas.

(a) Render with measured BRDF materials. (b) Render with the Lafortune-Phong materials.

Figure 7: The test scene rendered in Unity (it appears almost identical in Unreal Engine). Differences between the ana-
lytical model and measured BRDFs are mostly noticeable in a specular part, where the highlights of the Lafortune-Phong
model do not have soft endings.
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During the second pass, lighting is calculated for every
pixel on the screen based on data stored in the G-buffer.
This pass is a part of the rendering engine, and making
changes to the BRDF evaluation requires directly editing
the source code of the engine. It involves modifying the
shader and structure of the G-buffer, editing the UI compo-
nents in the material editor, and incorporating some logic
for manipulation with the atlas [1].

6 Discussion

6.1 Performance

The rendering speed was evaluated in the test scene in
both game engines. The shader using measured BRDF
was compared with the shader using the Lafortune-Phong
analytic model [10]. This choice was determined due to
differences in default shader models between game en-
gines. Additionally, default shaders provide support for
indirect lighting, which the current shader implementation
does not offer.

Performance measurements were performed on a Linux
PC with Intel i5-9600K @ 4.5 GHz CPU and Nvidia
GeForce GTX 1660 GPU. Both game engines use the
Vulkan API for rendering. The measured BRDF shader
is slightly slower (approx. 2−3%).

Unity
2022.1.19f1

Unreal
Engine 5.1.1

Measured BRDF 10.05 ms
(99.5 fps)

12.37 ms
(80.9 fps)

Lafortune-Phong 9.72 ms
(102.9 fps)

12.12 ms
(82.5 fps)

Table 1: Average rendering time of the test scene with
three directional lights on 4K resolution. The average was
calculated from 15 seconds run with 5 seconds warm-up.

6.2 Drawbacks

The primary disadvantage of this method is the increased
memory usage caused by the requirement to store the LUT
texture. Each measurement from the created dataset took
around 1 MB of VRAM (361 · 181 · 4 pixels in RGB9 E5
format, 4 bytes per pixel), but a LUT texture with denser
measurements (which means higher resolution of the tex-
ture) will require significantly larger amounts of memory.

Another drawback is the restriction of rendering only
direct lighting. For performance reasons, game engines
make some assumptions that cannot be easily fulfilled with
tabularized BRDF data. For example, Lumen Global Illu-
mination in Unreal Engine uses a single simplified analytic
model [5].

Figure 9: Miniatures of all measured samples in the dataset.
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6.3 Future work

One of the possible improvements is to expand the imple-
mented shader to support anisotropic materials. It will re-
quire manually rotating the scatterometer or another scat-
terometer with anisotropic support and extending the LUT
texture to four dimensions. Because 4D textures are not
generally supported, performing linear interpolation along
a single axis needs to be realized within a shader by addi-
tional steps. Furthermore, memory consumption will in-
crease even further, necessitating the implementation of
some form of data compression.

7 Conclusion

In the preceding sections, we explained the utilization of
measured reflectance for real-time rendering in computer
graphics. We described the process from acquiring mea-
sured BRDF data, and processing them, to computing the
radiance of a pixel in a shader. A total of 216 material
samples were measured, and a tool was developed to pro-
cess and visualize the data. Although the method outlined
may have some limitations, in specific scenarios, it may be
more appropriate than a generic analytic model.
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Abstract

A multiresolution mesh is a structure that allows multiple
levels of resolution of a mesh to be sampled in different
regions. They are used to accelerate the construction of
view-dependent Levels of Detail (LODs) for real-time ren-
dering, generally for complex objects that may span large
depths (e.g. terrain). Nanite, introduced in Unreal En-
gine 5, is an example of a full multiresolution pipeline.
We describe our mesh-shader based multiresolution ren-
dering engine in Vulkan, with two implementations to ex-
tract view dependent LODs. The first implementation is
based on the approach established by Nanite. Our alterna-
tive implementation has no intermediate buffers at the cost
of less fine-grained control over regions of the multires-
olution we explore. We finally evaluate the two methods
against each other and traditional LOD chains, emphasis-
ing practicality and performance.

Keywords: Modeling and Geometry processing, Real-
time Graphics, Rendering

1 Introduction

A common desire for higher-fidelity scenes in modern ren-
dering engines has brought higher and higher resolution
meshes to real-time applications. Handheld photogram-
metry applications have made sourcing such meshes sim-
pler and more commonplace. Varying mesh resolution is
typically used in real-time rendering engines to maintain
performance in complex scenes. This is traditionally im-
plemented with a series of coarser and coarser approxima-
tions of the mesh, a Level of Detail (LOD) chain. How-
ever, LOD chains are limited in flexibility. Each object can
only be rendered at a single resolution, despite the possi-
bility that the same object spans large depths (e.g., terrain),
and, therefore, there is no single optimal LOD.

A multiresolution mesh is a data structure that stores
geometry information at multiple levels of resolution. It
is an alternative to, and generalisation of, LOD chains,
with fine-grained control over rendering that can tackle
their disadvantages. However, fidelity improvement may

*mp2015@cam.ac.uk
†rafal.mantiuk@cl.cam.ac.uk

LOD3 LOD2 LOD1 LOD0
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Figure 1: View-dependent LOD generated from the Stan-
ford Lucy model (28 million source polygons) [11]. The
statue’s base is visibly lower quality than the top.

Figure 2: Figure 1’s view from the camera. Note that clus-
ter sizes are mostly uniform, excepting those close to the
camera which have reached maximum resolution.
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be deemed too expensive if the cost to calculate the view-
dependent LOD is higher than that of rasterisation at a
higher mesh resolution, so methods to render multireso-
lution meshes must be fast and scalable. Our main point
of comparison as a modern multiresolution pipeline is Un-
real Engine 5’s Nanite, which is embedded in the engine
and so difficult to study or extract.

This work leverages the introduction of mesh shaders on
modern hardware, which operate by emitting small clus-
ters of triangles rather than vertices. This paper opens
with background on multiresolutions, the error functions
required to generate view-dependent LODs, and mesh
shaders. The implementation section then describes two
methods for rendering view-dependent LODs. Our first
implementation, DAG Explore, is based on ideas Nanite’s
persistent threads[7]. In contrast, the second implemen-
tation, Task Select, is developed in this work. It relies
on mesh shading to insert LOD logic into our draw calls,
without a compute pass or intermediate data. We then
evaluate their performance and practicality.

2 Background

Many forms of multiresolution exist with different char-
acteristics and drawbacks. Hoppe introduced progressive
meshes [6] in 1996. A progressive mesh is a multiresolu-
tion mesh encoded as a low-resolution base mesh, and the
vertex splits required to raise resolution. Quick-VDR [12]
expanded on progressive meshes with an initial coarse-
grained selection before vertex local transformations.

Further techniques, such as BDAM [2], or Adaptive
Tetrapuzzles [3], focus more on the coarse-grained selec-
tion, using spatially based partitions for 2D and 3D sur-
faces, respectively. Their partitions contain geometry in
patches that can be substituted, moving further from ver-
tex transformation and decimation techniques. Batched
Multi Triangulation [1] extends geometry patches to a
generic framework for multiresolutions based on a Di-
rected Acyclic Graph (DAG) of patches, the approach our
renderer will be based on. Ponchio’s thesis is an excellent
comparison of the above methods [10].

2.1 The Multiresolution DAG

This section introduces the multiresolution mesh as a DAG
of clusters, uniformly sized patches of triangles, described
in detail in [1]. Figure 1 shows clusters selected from a
multiresolution of a high-resolution mesh. A requirement
of a multiresolution scheme is to ensure that clusters of
neighbouring resolution levels can be interleaved without
seams introduced by mesh simplification. To illustrate the
difficulty of this problem, let us consider a simple scheme:

1. Start from a set of clusters that partition a mesh.

2. Recursively, merge pairs of clusters together and sim-
plify their contents. Edges on the boundary of the
pairs are locked, so are not moved by the simplifier.

Edges X Edges Y Edges Z

Clusters X +Y Interleaving Clusters Y +Z

Figure 3: Example of locked edges forming clusters al-
lowing for interleaving. 3 sets of locked edges (X ,Y,Z)
are merged into 2 sets of clusters (X +Y,Y + Z), which
can be interleaved using their shared locked edges (Y ).

This scheme would form a tree of variable resolution
clusters of the mesh. However, in doing this it will lock
some edges from the highest resolution to the lowest, re-
stricting the flexibility of mesh simplification. At the ex-
treme, it will bisect the mesh with a high-resolution ring of
edges, harming the quality of lower resolution clusters. To
avoid this artifact, we need an alternate method that allows
edges to be unlocked.

The multiresolution mesh scheme we use contains two
sets of locked edges at each level of detail, one set for com-
patibility with each of the lower and upper levels. Figure 3
shows two adjacent levels and a selection of clusters from
both, made possible due to their shared set of locked edges.

Such selections can only be made if we can guarantee
they will approximate the original mesh, so containing no
overlaps or holes. We use a DAG to encode relations be-
tween clusters to allow us to make confident selections.
Nodes in the DAG represent clusters in the multiresolu-
tion, from all levels. Edges represent dependence between
clusters, a relation of mutual exclusion, i.e. overlap. This
property is transitive, therefore we only include depen-
dence between adjacent levels on our DAG [1].

Our method of generating DAGs follows the Nanite
Cluster - Group - Simplify - Recluster scheme [7]:

1. Start from a set of clusters that partition a mesh.

2. Partition clusters into groups, collections of around 4
adjacent clusters.

3. Simplify within groups, locking border edges.

4. Partition each group into two new clusters, which be-
come the two parents of the group. Return to 2.

This is a generalisation of the previous method, re-
placing a one-parent-two-children relationship with two-
parents-four-children. A DAG for a small mesh generated
with our program is shown in Figure 4, in which these
structures can be identified. Smaller clusters are more flex-
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Figure 4: A DAG for a multiresolution encoding of a simple sphere mesh. Nodes represent clusters, edges represent
dependencies between clusters. Nodes of the same colour share the same two parents, and so make up a group.

ible, but maintain a worse area to perimeter ratio, result-
ing in more locked edges at each stage and less efficient
simplification; we choose to use clusters of around 300
triangles. There is a chance the new parent clusters do
not overlap with all child clusters, resulting in some false
dependencies in the DAG. However, parents sharing iden-
tical sets of children allows for efficient DAG traversal.

A valid selection of clusters will cover the area of the
mesh, with no clusters overlapping. Ensuring the selec-
tion contains no overlapping clusters requires that no two
clusters in the selection are dependent on each other. To
cover the full mesh area, every path from a root to a leaf
must contain a single selected node. Our DAG structure
guarantees this selection will contain no seams [1].

A dicut is a cut into two subsets such that any cut edges
connecting the two subsets share the same direction. If we
select the leaf nodes of a dicut subset that includes the root,
we have a valid set of clusters. This is due to two factors.
First, the selected clusters will not contain overlapping ge-
ometry, as they satisfy all dependency relations. Second,
we have no holes, as our selected clusters descend from
the (two) roots. The root clusters cover the entire mesh
area, so the sum of all descended clusters (satisfying de-
pendency relations) area must also cover it [1].

The easiest DAG to imagine is a traditional LOD chain.
Each layer’s node is dependent on the next, as they overlap
in area (the entire mesh), and we sample by selecting a leaf
of a dicut set (any single node).

2.2 View-dependent LOD from a DAG

To generate a view-dependent LOD, it is useful to define
an error function on clusters that allows us to estimate
their screen-space errors. We then can compare this error
to a user-defined threshold, , that defines the target mesh
resolution. This screen-space error is projected from an
object-space error δ of a cluster. The exact definition of
the object-space error varies per-implementation, but we
will use the average edge length of a cluster, similar to
batched multi-triangulation [1]. This represents triangle
density within a cluster, and is comparable between clus-
ters as their triangle counts are roughly constant.

To convert error from object-space to screen-space, we
assign each cluster a bounding sphere, with centre c and
radius r, a spherical volume in object-space that bounds
the cluster. We then use a method similar to [2] to project

the object-space error of some cluster i to screen-space,
err(i), for eye position e.

err(i) =
(δi + ri)

2

||ci− e||2
, (1)

An important feature of the error function is that it is
monotonically decreasing down the DAG.1 To ensure the
screen-space area of clusters is monotonic, we assign each
cluster’s bound such that it contains all bounds of their
children, turning the DAG into a nested boundings vol-
ume hierarchy [1]. Object-space error, clusters’ average
edge length, also monotonically decreases as clusters dou-
ble their triangle density at each level.

2.3 Mesh Shaders

This paper references mesh shaders, a concept shared be-
tween modern graphics APIs that readers may not be fa-
miliar with. We will use the Vulkan implementation and
terminology. Mesh shaders attempt to solve some short-
comings of using the traditional graphics pipeline for pro-
cedural geometry. The traditional pipeline includes tes-
sellation, geometry, and vertex stages, that can be used
for procedural geometry, but each with a limited view and
control of parts of the source data.

The common way to program procedural geometry has
shifted away from the graphics pipeline with the wide
adoption of compute shaders, due to their flexibility and
good support. Mesh shaders attempt to bring this flexi-
bility to the graphics pipeline by stripping out everything
other than the fragment stage of the pipeline, and adding
a mesh stage. The mesh stage has all the semantics and
capabilities of a compute shader, with the additional abil-
ity to emit triangles, up to a maximum primitive limit per
workgroup [8]. These will output our clusters, and save
writing to an intermediate index buffer.

Additionally, a similar task stage2 is added, which, in-
stead of emitting triangles, can emit mesh shaders. We will
utilise this to insert LOD logic directly into the draw call.
This grants us a large amount of flexibility for program-
ming procedural geometry, although it is not as powerful
as the ability to generically launch threads on the GPU.3

1Root nodes have the highest error, as they have the least polygons.
2Known as the Amplification stage in DX12.
3See Work Graphs [9], that will allow generic kernel invocation.
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· · · ci · · · c j · · · ck ck+1 ck+2 · · ·

spouse min-child

max-child

Figure 5: A diagram of our cluster structure. Pointers
within the diagram from cluster c j correspond to a clus-
ter c j = [spouse = i, min-child = k, max-child = k+2].

3 Implementation

This section will look at the two approaches described and
examined in this paper. Older view methods sample their
multiresolutions on a separate CPU core, referred to as out
of core [2, 1], however compute and task shaders allow us
to do this work efficiently on a GPU.

Both implementations to render a view dependant LOD
of a mesh are supplied with:

• A cluster buffer, containing the DAG of clusters that
make up the multiresolution (Fig. 5).

• Instance information, containing the model matrix of
the instance of a multiresolution we are drawing.

• Camera information, the view-projection matrix.

• A screen-space error target, τ , the maximum screen-
space error a cluster can have to be drawn.

The first approach, DAG Explore (§3.1), aims to output
all clusters that should be drawn into a buffer, searching
the DAG for suitable clusters recursively from the root.
DAG Explore is similar to Nanite’s Persistent Threads im-
plementation for generating a view dependent resolution.

The second approach, Task Select (§3.2), aims to use
the programmable task stage of the mesh pipeline (§2.3)
to eliminate the need for intermediate memory.

3.1 DAG Explore LOD Generation

A typical instance of a multiresolution in a scene will have
most of its area filled with lower resolution clusters. Se-
lecting a low resolution cluster will instantly invalidate the
many higher resolution clusters that descend from it. Test-
ing these clusters would be wasted time, so we want to
avoid exploring the entire DAG. This method will traverse
the DAG recursively, starting from the roots. As we are
searching for leafs of a dicut subset, this must encounter
all clusters that should be drawn.

Traversing the DAG requires care. It is not a tree, so
there are clusters that share children, but to traverse the
DAG efficiently we should not explore the same cluster
twice. Our DAG is, however, shaped similarly to a tree; it
is formed of pairs of clusters that share identical children;
we say clusters in such a pair are spouses. We can then

Figure 6: A group of clusters whose parents are in separate
groups. Solid lines represent the edges traversed to explore
the DAG as a tree.

view the DAG as a tree by only regarding the children of
one cluster in each of these pairs, illustrated in Figure 6.
In Alg. 1, we only explore the children of the spouse with
the smaller index.

Algorithm 1 DAG Explore, breadth first search
queue← root-nodes
draw-buffer← []
draw-count,head← 0
tail← |root-nodes|
while queue not empty do

i← queue[head]
head← head+1
clusteri← clusters[i]
if err(i)< τ then ▷ Cluster should be drawn

draw-buffer[draw-count]← cluster
draw-count← draw-count+1

else if i < clusteri→ spouse then ▷ DAG as tree
for c in clusteri→ children do

queue[tail]← c
tail← tail+1

end for
end if

end while

3.1.1 Multiqueue

Algorithm 1 does not appear GPU-friendly, as it leverages
a single shared queue. We must allow multiple invocations
synchronised access to the queue to maintain parallelism.
Atomic buffer operations are too slow for this use case.

Our solution relies on subgroup4 arithmetic (introduced
in Vulkan 1.1) to synchronise queue access. In Vulkan ter-
minology, a subgroup is a set of invocations executing in
lockstep on the GPU. Subgroups will always be part of the
same workgroup, a set of invocations with shared memory,
but a workgroup may maintain multiple subgroups. Invo-
cations in a subgroup may be active or inactive depending
on factors such as dynamic branching, and an inactive in-
vocation will not contribute to subgroup arithmetic results.

Subgroup arithmetic allows invocations to communi-
cate via reductive operations, with each invocation sub-
mitting data. The most straightforward subgroup opera-
tion we use is subgroupAdd(1), which will return the

4the Vulkan term; in AMD these are waves, in Nvidia, warps.
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Figure 7: The subgroup operations subgroupAdd(1)
(left) and subgroupExclusiveAdd(1) (right). Each
block is a invocation within a single subgroup, with reduc-
tion operations linking inputs to results.

number of active invocations, as shown in Fig. 7 (left).
To implement DAG Explore, we limit the size of our

workgroups to ensure they only contain one subgroup,
which is generally 32 or 64 invocations, ensuring we can
rely on subgroup arithmetic. This is the main source of
difference from Nanite; persistent threads share work be-
tween workgroups, which relies on undefined GPU for-
ward progression scheduling behaviour [7], while ours is
limited to a single workgroup per instance. This will limit
our latency of rendering a scene to processing the largest
mesh, however, we assume scenes are highly populated
and so parallelizable.

Algorithm 2 Synchronised Queue Pop
int idx = gl_LocalInvocationID.x;
int cluster = queue[head + idx];
head += subgroupAdd(1);

Algorithm 2 uses subgroup arithmetic to synchronize
invocations each taking a cluster from the queue. To pop
a unique item for each invocation, we can offset the queue
head pointer by each of their local invocation IDs, their
indices starting from 0 within the workgroup. This, how-
ever, leaves us with conflicting information about the true
head of the queue across invocations. The queue may con-
tain a number of clusters fewer than the size of our sub-
group, which will result in some number of invocations
being inactive. We solve this by incrementing the head
pointer by the number of active invocations using sub-
group arithmetic, ensuring the data is synchronized.

The more complex operation is appending children to
the queue. We do not know how many children each
node has, so we cannot simply offset by our local in-
vocation ID when pushing. We know the number of
items each invocation will add onto the queue, so we
can allocate blocks in the queue upfront. To allocate
blocks, we can use a more advanced subgroup command,
subgroupExclusiveAdd (see Fig. 7 (right)), which
will perform an exclusive addition across all active threads
in one call. The return value for this will be an allo-
cated index for each invocation to write to, used in Algo-
rithm 3. We synchronize the queue afterwards by taking

· · · · · · · · · · · ·

Head Tail

· · · · · · · · · · · ·

Head+0
Head+1

Head+k−1 Tail

· · · · · · · · · · · ·

Head Tail

k-invocations

Figure 8: The positions of head and tail indices through
Algorithm 2. After adding idx, each head points to a
unique cell, then adding subgroupAdd(1) (= k), the
head returns to being synced.

subgroupMax(tail).

Algorithm 3 Synchronized Queue Push with Subgroup
Arithmetic
cluster_t c = clusters[i];
int children = c.max_child_index

- c.min_child_index + 1;
tail += subgroupExclusiveAdd(children);
for (int child_i = c.min_child_index;

child_i <= c.max_child_index;
child_i++) {

queue[tail] = child_i;
tail += 1;

}
tail = subgroupMax(tail);

3.1.2 Emitting clusters

Clusters with sufficiently low error must be emitted to be
drawn. We push them to a draw buffer similarly to Alg. 3,
but with a maximum of 1 cluster pushed. In our implemen-
tation, the draw lists for DAG Explore has enough space
for the worst case (full resolution) of every instance. As
future work, this size could likely be optimised, as we do
not expect the worst-case full draw for every instance.

A task shader will then then emit mesh shaders for each
cluster in the draw buffer. The number of clusters DAG
Explore has emitted at this point is only recorded on the
GPU, but must be communicated to our draw call to ren-
der, as invoking a task for each item in the buffer when
many are empty would be wasteful. Indirect Dispatch is
a common technique to allow some parameters of com-
mands to be supplied by the contents of a buffer in the
GPU, which mesh shaders support. This saves possible
wasted bandwidth and latency sending the same counter
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back and forth from the GPU. After filling our draw buffer,
we set the group count parameter of DrawMeshTasks in
our indirect buffer to the exact number of clusters to draw.

Extending this to drawing many instances is not com-
plex. Using atomics, we can assign each instance’s emitted
clusters a space in a shared draw buffer. Each instance’s
draw call can then be instructed to read clusters from that
range. DrawMeshTasks also supports the multidraw
extension, which allows us to store the indirect arguments
for multiple draw calls in a single buffer. A single buffer
for draw data means we can additionally invoke the com-
pute stages of all instances in a scene in a single command.

3.2 Task Select LOD Generation

DAG Explore does a lot of work and requires shared mem-
ory in picking which clusters to draw, queuing no further
clusters once the boundary of the cut has been found. We
present an alternative method that does not require shared
memory and is simpler to implement.

The task shader allows us to integrate computations
within the graphics pipeline. Integrated computation al-
lows us to select view-dependent LOD without intermedi-
ate buffers, a method we will call Task Select LOD. This
method invokes a task invocation on the GPU for every
cluster and emits geometry to draw if the cluster has an er-
ror below the threshold, but parents with errors too great,
with additional care to ensure the result has no holes.

3.2.1 Local Cut Selection

DAG Explore explores the DAG recursively, aiming to find
the cut, made up of clusters whose error is just low enough
to pass the threshold value τ . However, to enable the most
parallelism, it is preferable to be able to test if a cluster
should be included in the cut based on only itself and lo-
cal neighbours. This is possible as our DAG has a sin-
gle unique cut, as the screen-space error we compare de-
creases monotonically through clusters.

Algorithm 4 Local Cut
parent-err←min(err(ci→ parent0), err(ci→ parent1))
this-err←min(err(i), err(ci→ spouse))
draw← (this-err≤ τ)∧ (parent-err > τ)

Each cluster’s task invocation must make the decision
of what fills its group’s area; the group, or the two parents
(if either), and draw the cluster if appropriate. This should
be agreed by each cluster in the area implicitly, with no
communication. This is done by assigning each cluster
the error and bounding volume of the group as a whole,
similarly to the bounding volume hierarchy of [2].

Algorithm 4 determines if a cluster is on the edge of the
cut, and so should be drawn, based on the relation of its
parent’s errors to its own. The two parents are likely mem-
bers of different groups, so likely have differing screen-
space error. To compensate, Alg. 4 takes the minimum

of the two. Comparing this against the error of this clus-
ter would then leave a hole if err(ci → parent0) > τ >
err(ci → parent1), as only one of the two parents would
be drawn. To resolve this, Alg. 4 takes this-error to the
minimum of the cluster’s own error and that of the spouse.
This fills the hole described above, as the previously miss-
ing parent will now draw based on its spouse’s lower error.

Finally, some nodes in the DAG have no children or no
parents, being the leaves and the roots. In these cases, we
assume the error of the root’s parent is ∞, and the error of
the leaves children are−∞. This ensures that for any finite
value of τ , we will select a complete cut.

3.2.2 Task Shader Indirect Dispatch

A major issue with this approach would be wasted work
in clusters that are too high resolution to be drawn. Such
high-resolution clusters will make up the majority of most
instances. For example, drawing a mesh at the first level
of simplification in DAG Explore will, on average, only
check half of a multiresolution’s clusters, as the source
mesh represents 50% of total triangles.

This method uses the same indirect dispatch draw call as
§3.1.2. Task shaders can write to buffers just as compute
shaders can, so, if we bind our indirect arguments buffer
to the task shader, we allow ourselves to alter the number
of tasks we invoke on the next dispatch.

We arrange our cluster buffer such that lower indices
represent clusters at lower resolutions, meaning dispatch-
ing fewer tasks than there are clusters will cap the max-
imum resolution view that can be selected. Because we
are able to control our dispatch count inside the shader, we
can then cap this resolution dynamically depending on the
current view of the instance. It is clear then that dispatch-
ing tasks for indices above the maximum that is selected
is futile, so this maximum index is the value we wish to
estimate, and set the indirect dispatch count to.

We say the maximum requested index for a cluster,
based on the error values calculated in Alg. 4, is:

max-idx(i) =


max-parent(i) if parent-err < τ
max-child(i) if this-err > τ
i else

(2)

Intuitively, bringing an instance closer to view yields a
greater error for clusters, which may require replacing a
cluster with its children, so we increase max-idx and the
tasks invoked for the instance. Inversely, moving an in-
stance away from view will reduce its tasks invoked. A
cluster only views local data, so does not request drawing
clusters beyond the scope of its parents or children, so we
set our next dispatch count to the maximum requested in-
dices of all clusters. This brings with it a single frame of
latency to apply the requested index if it increases, so we
need some small additional logic when selecting clusters
in case the resolution we wish to draw at is not available.
Simply, if our cluster has too high an error to draw, but our

Proceedings of CESCG 2024: The 28th Central European Seminar on Computer Graphics (non-peer-reviewed)
172



children are out of range of current workgroups (and so are
not being processed), we should draw ourselves anyway.

Once we have determined a cluster should be drawn,
the task shader code is identical to the previous method;
see §3.1.2.

3.3 Cluster Culling

An engine based around instances and LOD chains may
utilize instance culling to save time in rasterisation. This
can be improved; instance culling has some of the same
flaws as LOD chains, being based on arbitrary-sized ob-
jects. If we instead focus on culling clusters, we end up do-
ing work on much more uniformly sized items5, which re-
sults in finer-grained culling [5]. This technique was used
in industry before cluster based multiresolutions, as the
GPU friendliness of clusters makes them ideal for GPU-
driven rendering systems.

A simple culling technique we apply is frustum culling,
not drawing a cluster if it is outside the camera frus-
tum. The frustum can be represented by six planes, which
we extract from the model-view-projection matrix as de-
scribed by [4]. These planes will then exist in object-
space, and, from error calculations, each cluster contains a
bounding sphere in object-space. We then cull clusters if
their bounds are on the negative side of any plane.

This requires testing every cluster that may be drawn;
DAG explore can be optimised further. The DAG is a
nested bounding hierarchy, so a bound of a cluster con-
tains the bounds of all children. A successful cull check
on a cluster’s bound would then rule out the entire hierar-
chy of clusters descending from it. DAG Explore can then
stop exploration early if a cluster can be culled, as we then
know no child may be rendered, culling as early as pos-
sible. At the coarsest grain, a successful cull on the root
cluster is equivalent to instance culling.

4 Evaluation

We evaluate on two benchmarks on a GTX 1660 and r5
3600. The first has almost optimal conditions for LOD
chains (LOD efficient), and the next demonstrates their pri-
mary limitation (LOD deficient).

Our LOD efficient benchmark moves a camera back
from the scene origin, revealing a large 2D grid of in-
stances. The benchmark uses the Stanford Dragon model
[11], which contains 1 million source triangles, meaning
our scene of 1000 instances contains 1 billion triangles.
These instances will occupy a narrow slice of depth on
the screen, so are suitable for traditional LOD rendering.
Frame times are plotted in Figure 9.

5Uniformly sized in screen-space if done after LOD generation, mak-
ing this take time proportional to target error.

Figure 9: LOD efficient: Results combining benchmarks
for 500 up to 2500 instances in the scene.

Instance Count 500 1000 1500 2000 2500
LOD Chain 2.58 3.49 3.85 4.01 4.10
Task Select 1.41 1.88 2.09 2.21 2.27

DAG Explore 1.39 1.89 2.13 2.27 2.37
% Change 1.42 -0.53 -1.93 -2.79 -4.40

Table 1: LOD efficient: Mean frame times (ms) for the
different methods across instance counts. Our CPU based
LOD chain uses an error function equivalent to the mul-
tiresolutions.

Task select achieves very similar performance across the
board to DAG Explore while saving intermediate memory.
For context, the full resolution 2000 instance scene takes
a median of 472ms to render. The 2500 instance scene
uses 38.82MB of GPU memory to store the draw buffer for
DAG Explore, but just 29.31KB of intermediate memory
for Task Select’s indirect dispatch parameter buffer.

At relative camera distances of less than 0.4, the
benchmark’s screen is filled with instances, with varying
amounts of culling. In these ranges, we can see in Figure
9 that task select is a bit slower per instance. This is due
to its more fine-grained culling doing more work to cull an
entire instance, while the variable-grained culler DAG Ex-
plore culls as early as possible while searching the DAG,
and has an almost negligible slowdown per instance.

The cost per instance of a CPU cull check and draw

Method GPU
Time (ms)

Profiler samples (% + ms)
Task Mesh/Vert Frag

Task Select 1.28 66% 29% 5%
0.85 0.37 0.064

LOD Chain 9.15 97.5% 2.5%
8.92 0.23

Table 2: LOD deficient: Frame time analysis of a single
frame for the viewpoint from Fig. 2, Lucy, using NVIDIA
Nsight. Fragment stages for both methods are identical.
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call is clearly visible for our traditional LOD chain in Ta-
ble 1, so we would expect improvements from a GPU im-
plementation. In contrast, Table 2 shows a large efficiency
gain from Task Select over the LOD chain that results from
their limitations; the instance is both close and far from the
camera, but the LOD chain renders at full resolution.

Our method optimises more effectively given more in-
stances, as more instances give us more fine-grained con-
trol over the indirectly dispatched clusters. This is, how-
ever, slightly contrary to the original problem, the ren-
dering of small numbers of massive meshes. We expect
DAG explore to perform better in these cases. However,
our method is still competitive due to its low reliance on
memory bandwidth; massive multiresolutions would re-
quire more working space for the queue than is commonly
available as workgroup shared memory.

5 Conclusions

Cluster-based rendering engines already give way to GPU-
driven pipelines that excel at high-fidelity scenes. In such a
pipeline, the practicality of multiresolutions is clear. They
are generated automatically, sampled based on concrete
metrics, and can be integrated into existing workflows.

The methods demonstrated in this paper are all limited
by the rate of rasterisation, which is held roughly constant
within a scene. This means multiresolutions are likely to
fit into the frame budget of a high-fidelity renderer. This
is a key goal of the method; a good error function should
keep the screen-space triangle density roughly constant.
In doing so, we grant complete flexibility on the source
resolutions of any mesh in any scene, a major advantage
for renderers targeting photorealism.

This renderer still relies on having enough VRAM to
store a massive multiresolution, something that cannot be
taken for granted within a large engine. As such, future
work includes data streaming, which would load segments
of the multiresolution into memory only on demand [7].

Nanite is a monolithic pipeline, making the methods
used for generating and rendering multiresolutions hard
to extract for general use. This paper has instead pre-
sented viable generic algorithms for rendering in this new
paradigm. In future, we hope to see these help push mul-
tiresolutions as a standard tool in contemporary engines.
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The demand for realistic human avatars has increased
in various industries, including gaming, virtual and aug-
mented reality, fashion, and healthcare. Therefore, it is
crucial to accurately replicate anthropometric measure-
ments on the body model of a human.

We create an accurate representation of the human body
using anthropometric measurements. Our tool is able to
take up to 16 input measurements of different parts of the
body and generate shape parameters that are used to con-
struct a body mesh using the SMPL model. To generate
a training dataset, we used the SMPL Anthropometry tool
developed by David Bojanić [1], which allowed us to mea-
sure the generated SMPL meshes. Our tool then takes a
vector composed of measurements as input and produces
10 SMPL shape parameters that define the shape of the
final body mesh. We researched the optimal model for
deriving shape parameters and found that using linear or
second-degree polynomial regression produces the most
accurate results.

This approach was previously used in The Virtual
Caliper [2]. Unlike our solution, it only uses up to 5 in-
put measurements and is more resource-intensive. An-
other tool employing this approach is Meshcapade Me 1.
While Meshcapade Me offers better accuracy with up to
13 input measures, it is a paid commercial tool.

We created a dataset that includes images of standing
humans. The dataset includes front and side images of
humans with and without backgrounds, as well as joint lo-
cations in 3D space and meshes of corresponding avatars.
We generated this dataset for 100,000 avatars, resulting
in over half a million files. We adapted the SURREACT
framework to create this dataset [3].

This dataset is designed to complement datasets com-
posed of real data. Typically, datasets like this do not con-
tain a large amount of data due to various reasons, such as
the complexity of capturing numerous people or concerns
regarding the privacy of individuals involved. In our work,
we aim to extend these datasets with synthetic data for the
purpose of training CNNs capable of extracting anthropo-

*halaj21@uniba.sk
†dana.skorvankova@fmph.uniba.sk
‡martin.madaras@fmph.uniba.sk
1https://me.meshcapade.com/

metric measures from images.

Figure 1: Example of clothed avatars.

Figure 1 shows two avatars wearing shirts generated by
our tool we are developing. The tool adds procedurally
generated skin to avatars and allows for adjusting skin tone
to promote diversity in dataset. Additionally, it can gener-
ate some clothing items and add texture to enhance the
model’s realism.

In summary, our proposed framework addresses the
challenge of automatic mesh generation based on provided
anthropometric measurements and provides training data
for CNNs focused on extracting measurements from im-
ages.

Keywords: Human Body, Synthetic Data, SMPL
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the Austrian Kplus program to bridge the gap 
between academic research and commercial 
development as well as to supply the necessary 
transfer of knowledge between the academic 
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VRVis is funded by BMVIT, BMDW, the Vienna 
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