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ABSTRACT
A popular approach to High-Recall Information Retrieval (HRIR)

is Technology-Assisted Review (TAR), which uses information re-

trieval and machine learning techniques to aid the review of large

document collections. TAR systems are commonly used in legal

eDiscovery and medical systematic literature reviews. Successful

TAR systems are able to find the majority of relevant documents

using the least number of manual assessments. Previous work typ-

ically evaluated TAR models retrospectively, assuming that the

system achieves a specific, fixed Recall level first and then measur-

ing model quality (for instance, work saved at r% Recall).

This paper presents an analysis of one of such measures: Preci-
sion at r% Recall (P@r%). We show that minimum Precision at r%

scores depends on the dataset, and therefore, this measure should

not be used for evaluation across topics or datasets. We propose its

min-max normalised version (𝑛𝑃@𝑟%), and show that it is equal

to a product of TNR and Precision scores. Our analysis shows that

𝑛𝑃@𝑟% is least correlated with the percentage of relevant docu-

ments in the dataset and can be used to focus on additional aspects

of the TAR tasks that are not captured with current measures. Fi-

nally, we introduce a variation of 𝑛𝑃@𝑟%, that is a geometric mean

of TNR and Precision, preserving the properties of 𝑛𝑃@𝑟% and

having a lower coefficient of variation.
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1 INTRODUCTION
High-Recall Information Retrieval (HRIR) focuses on identifying

nearly all relevant documents within a given collection. Technology-

Assisted Review (TAR) is a prevalent method in HRIR that combines

information retrieval and machine learning techniques to enhance

the review of large document sets. The primary objective of TAR is

to augment human effort by automating routine tasks and prioritis-

ing documents for review, thereby saving time and resources for

organisations.

Citation screening for systematic literature reviews is a key ap-

plication of TAR [20, 22, 23, 32]. In this task, researchers screen a

large number of publications initially identified through a literature

search to determine those relevant to the review. This process, tra-

ditionally manual, is time-consuming and demands extensive effort,

involving numerous eligibility decisions. Other TAR applications in-

clude legal electronic discovery [11, 40] or constructing evaluation

collections [28]. Initiatives such as TREC Legal [2, 11, 31, 36], TREC

Total Recall [16], and CLEF eHealth TAR [20–22], have facilitated

HRIR research by providing datasets and standardised evaluation

methods.

A critical metric for HRIR systems is Recall, indicating the frac-

tion of relevant documents retrieved. TAR aims to maximise rele-

vant document identification (True Positives,𝑇𝑃 ) while minimising

the inclusion of irrelevant ones (False Positives, 𝐹𝑃 ). By decreasing

𝐹𝑃 counts, TAR systems enhance efficiency for reviewers. Nonethe-

less, implementing TAR requires care, as subpar performance can

lead to legal repercussions, personal liability, and financial losses,

especially in legal discovery contexts [14].

Various evaluation measures have been proposed to assess the

effectiveness of TAR systems [37]. One prevalent approach is to

evaluate the system at a fixed Recall level. This approach has been

popularised by methods measuring work saved compared to the

random ordering of documents (e.g., Work Saved over Sampling,

𝑊𝑆𝑆@𝑟% [9]) and by counting True Negatives at an r% Recall

(𝑇𝑁𝑅@𝑟%) [25]. Evaluating TAR systems at a fixed Recall level

aids in determining the trade-off between Precision and Recall.

Traditionally, this has been particularly useful under the assumption

that a minimum acceptable level of Recall exists for a task.

As the number of potential applications for TAR grows, so too

does the need for enhanced evaluation techniques. In this paper,

we examine one of the measures used for evaluating TAR systems:

Precision at r% Recall (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑟%, 𝑃@𝑟%) [23, 26]. We find that

it does not fulfil the zero Axiom #3 introduced by Busin and Mizzaro
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[5]. To address this limitation, following the approach of the nDCG

measure [19], we propose to min-max normalise it.

Our contributions are as follows:

• We analyse the Precision at r% Recall measure and propose

a min-max normalised Precision at r% (𝑛𝑃@𝑟%), equating to

the product of 𝑃@𝑟% and 𝑇𝑁𝑅@𝑟%.

• We conduct experiments to investigate the differences in

evaluations and rankings using 𝑛𝑃@𝑟% compared to other

TAR metrics. We show that 𝑛𝑃@𝑟% is the least correlated

with the percentage of relevant documents in datasets among

considered metrics.

• We introduce 𝑠𝑛𝑃@𝑟%, a geometric mean of 𝑇𝑁𝑅 and Preci-

sion, preserving the properties of 𝑛𝑃@𝑟% and having lower

coefficient of variation.

We first briefly describe Technology-Assisted Reviews. Then,

we propose an analytical formulation of normalised Precision at

a Recall rate. Finally, we conduct experiments to compare 𝑛𝑃@𝑟%

and 𝑠𝑛𝑃@𝑟% with other popular TAR measures. The source code

for our experiments is publicly available.
1

2 BACKGROUND
All TAR automation models can be coarsely categorised into pri-

oritisation (ranking) or classification approaches [32]. An effective

TAR algorithm aims to maximise the number of relevant docu-

ments found and save the reviewers’ time by removing irrelevant

documents.

When treating the TAR as a ranking task (e.g., for the sub-task

of screening prioritisation or stopping prediction), then rank-based

measures and measures at a fixed cut-off are commonly used, e.g.,

𝑛𝐷𝐶𝐺@𝑛, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑛, 𝑅𝑒𝑐𝑎𝑙𝑙@𝑛, R-Precision [16], and last rele-

vant found.

When TAR is treated as a classification task, measures based on

the confusion matrix and the notion of Precision and Recall are

commonly used [32, 37]. Aside from Precision and Recall, measures

include variations of the harmonised mean between the two, i.e.,

F𝛽–score, Yield, Burden [39], Utility𝛽 [38], sensitivity-maximising

thresholds [12], and AUC [8]. Another measure, Work Saved over

Sampling (𝑊𝑆𝑆), measures the amount of work saved when using

machine learning models to screen irrelevant publications [9]. The

True Negative Rate (𝑇𝑁𝑅) was proposed as an alternative as it ad-

dresses some of the limitations of𝑊𝑆𝑆 regarding averaging scores

from multiple datasets [25].

Retrospectively evaluating models at different levels of Recall

takes into account the number of relevant documents found and the

trade-off between reviewing more documents and potentially find-

ing more relevant ones, versus stopping the review and potentially

missing some relevant documents.

Recall versus effort plots using the knee method [10] have been

proposed as a more generalised extension, plotting the scores over

the full range of values of Recall. However, these methods, similarly

to the ROC curve do not provide users with a single number score,

which might be crucial for some users.

Yang et al. [41] proposed a mathematical model that predicts how

varying document and reviewer costs affect total TAR workflows.

1
https://github.com/WojciechKusa/normalised-precision-at-recall

However this framework focuses on cost modelling for reviewing

one specific query.

Previous work used Precision at r% Recall as an evaluation mea-

sure for automated citation screening algorithms [23, 24]:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑟% = 𝑃@𝑟% =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, when 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑟% (1)

Researchers used 𝑃@𝑟% to evaluate also other tasks like classifi-

cation [7, 30, 33] or object detection [17]. Another application was

mining user query logs to refine component description [29]. In the

medical and healthcare domains, 𝑃@𝑟% is referred to as “PPV at

sensitivity level” and has been used for evaluation in several other

works, such as in [3, 4, 6, 13, 18].

Consider an example scenario in which a search for a review

returns a collection of 𝑁 = 2, 000 documents. Of these, 200 are

relevant to the study and should be included in the final review

(we call these ground truth relevant items includes, |I | = 𝑇𝑃 + 𝐹𝑁 ),

while the remaining 1, 800 are irrelevant and should be excluded (we

call them excludes, |E | = 𝑇𝑁 +𝐹𝑃 ). In manual screening, annotators

must review all 2, 000 documents to identify only the 200 relevant

ones. In the case of TAR systems, we consider that some of these

irrelevant documents will be correctly identified by the model.

The domain and characteristics of the review influence the choice

of Recall level. Past studies on the automation of citation screen-

ing in medicine typically used 95% Recall as the threshold to pre-

serve a satisfactory quality of the systematic literature review in

medicine [9]. In other technology-assisted review domains, Recall

levels might be lower, for instance, in eDiscovery, a commonly used

Recall is 80% [40, 42]. Sometimes the choice of Recall is influenced

by the time or money limitations of the task.

3 NORMALISED PRECISION AT 𝑟% RECALL
Defining a Recall level for assessing TAR systems assumes that

the number of true positive and false negative documents remains

constant. Achieving a specific 𝑟% Recall assumes that exactly (1 −
𝑟 )% of documents that should be included will be misclassified.

Therefore, for a specific 𝑟% Recall, the number of True Positives

(𝑇𝑃 ) and False Negatives (𝐹𝑁 ) will be equal to:

𝑇𝑃 = 𝑟 · |I |, (2)

𝐹𝑁 = (1 − 𝑟 ) · |I|. (3)

This means that these terms will also be a constant for every

model for the same dataset. For instance, from the example in

the previous section, a Recall of 95% is achieved when the model

accurately identifies 190 relevant documents (𝑇𝑃 ) and misclassifies

the remaining 10, i.e., these are False Negatives (𝐹𝑁 ). The Precision

of the model depends on the number of False Positives (𝐹𝑃 ), which

can range from zero (best score) to the number of all excludes (|𝐸 |,
worst score). Using the above equations, we can define maximum

and minimum Precision@r% values as follows:

𝑚𝑎𝑥 (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑟%) = 𝑟 · |I |
𝑟 · |I | + 0

= 1, (4)

𝑚𝑖𝑛(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑟%) = 𝑟 · |I |
𝑟 · |I | + |E | . (5)

44

https://github.com/WojciechKusa/normalised-precision-at-recall


Normalised Precision at Fixed Recall for Evaluating TAR ICTIR ’24, July 13, 2024, Washington, DC, USA

Maximum Precision@r% value will always be equal to 1. How-

ever, the minimum Precision value, similarly to WSS measure [25],

depends on the I/E ratio of the dataset:

lim

| E |→0

𝑚𝑖𝑛(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑟%) = lim

| E |→0

𝑟 · |I |
𝑟 · |I | + |E | = 1, (6)

lim

| I |→0

𝑚𝑖𝑛(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑟%) = lim

| I |→0

𝑟 · |I |
𝑟 · |I | + |E | = 0. (7)

For datasets highly imbalanced towards the negative class, the

minimum value of P@r% will be close to 0. On the other hand, with

a growing presence of the positive class, the minimum value of

P@r% will be growing towards 1.

Busin and Mizzaro [5] introduced an axiomatic approach to IR

evaluation measures proposing eight axioms that every effective-

ness metric should satisfy. Axiom #3 (Zero and maximum) states:

“An effectiveness metric should have a true zero in 0 and a maximum
value𝑀 . The theoretically worst (best) performances ⊥ should give
0 (𝑀) as the metric value. As a normalisation convention let 𝑀 = 1

such that ∀ metric, 𝑟𝑎𝑛𝑔𝑒 (metric) = [0, 1], metric(𝛼, 𝛼) = 1, and

metric(𝛼,⊥) = 0.”

The minimum Precision value, depending on the class imbal-

ance, violates the aforementioned Axiom #3. This becomes crucial,

especially in retrieval tasks, where the scores are almost always

averaged across several topics or datasets. 𝑃@𝑟% is favouring those

models underperforming on easier topics, which consequently nar-

rows the gap between good and poor models. Therefore, we argue

that this measure should not be employed for such evaluations. To

address this problem and facilitate averaging across datasets, we

propose defining a min-max normalised version of 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑟%

(𝑛𝑃@𝑟%):

𝑛𝑃@𝑟% =

𝑇𝑃
𝑇𝑃+𝐹𝑃 − 𝑇𝑃

𝑇𝑃+|E |

1 − 𝑇𝑃
𝑇𝑃+|E |

𝑛𝑃@𝑟% =

(
𝑇𝑃 · (𝑇𝑃 + |E | ) − 𝑇𝑃 · (𝑇𝑃 + 𝐹𝑃 )

)
/
(
(𝑇𝑃 + 𝐹𝑃 ) · (𝑇𝑃 + |E | )

)(
��𝑇𝑃 + |E | −��𝑇𝑃

)
/
(
𝑇𝑃 + |E |

)
𝑛𝑃@𝑟% =

𝑇𝑃 · |E | −𝑇𝑃 · 𝐹𝑃
(𝑇𝑃 + 𝐹𝑃) ·�����(𝑇𝑃 + |E|)

· �����(𝑇𝑃 + |E|)
|E |

𝑛𝑃@𝑟% =
𝑇𝑃 · ( |E | − 𝐹𝑃)
(𝑇𝑃 + 𝐹𝑃) · |E |

𝑛𝑃@𝑟% =
𝑇𝑃 ·𝑇𝑁

(𝑇𝑃 + 𝐹𝑃) · |E |

𝑛𝑃@𝑟% =
𝑇𝑃 ·𝑇𝑁

(𝑇𝑃 + 𝐹𝑃) · (𝑇𝑁 + 𝐹𝑃)

𝑛𝑃@𝑟% =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
· 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
, (8)

where the following equation can be resubstituted as:

𝑛𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑟% =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
· 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
= 𝑃@𝑟% ·𝑇𝑁𝑅@𝑟% (9)

𝑛𝑃@𝑟% = 𝑃@𝑟% ·𝑇𝑁𝑅@𝑟%. (10)

Equation (10) shows that 𝑛𝑃@𝑟% is interconnected with Preci-

sion and True Negative Rate. Interestingly, both measures relate to

type I error (𝐹𝑃 ). Achieving high normalised Precision requires a

balance between identifying relevant documents (Precision) and

disregarding irrelevant ones (Specificity). This relationship can

be important for evaluating and improving information retrieval

models, especially in contexts of high-recall search tasks.

In an extreme case when there are no non-relevant documents

(|E | = 0), 𝑛𝑃@𝑟% (and also the 𝑇𝑁𝑅 measure) would result in a

division by zero. However, this is a highly unlikely scenario in the

context of TAR tasks, where datasets are almost always strongly

skewed towards the non-relevant class.

As Precision scores tend to have high variance in comparison

with other measures, we propose to further introduce a variation

of the 𝑛𝑃@𝑟% which is a geometric mean of its components:

𝑠𝑛𝑃@𝑟% =
√︁
𝑛𝑃@𝑟% =

√︁
𝑃@𝑟% ·𝑇𝑁𝑅@𝑟% (11)

By introducing the square root, we intend to decrease the influ-

ence of Precision. The formulation in Equation (11) is analogous to

the Fowlkes–Mallows index [15], a clustering similarity measure,

where the 𝑇𝑃𝑅 term would be replaced with 𝑇𝑁𝑅. 𝑠𝑛𝑃@𝑟% also

preserves the zero Axiom #3.

4 EXPERIMENT SETUP
To assess the importance of our findings, we conduct experiments

comparing 𝑛𝑃@𝑟% scores (also abbreviated as 𝑛𝑃 in subsequent sec-

tions) with other measures.We select the task of ranking documents

for a systematic review search. We conduct the experiments using

100 systematic reviews (topics) from the CSMeD-Cochrane-dev

benchmark [27]. CSMeD-Cochrane is a meta-dataset combining

five different test collections [1, 20–22, 35]. CSMeD-Cochrane is

the most extensive collection of systematic reviews used to evaluate

document screening algorithms.

We select this dataset due to its extensive coverage of topics and

public availability of baseline runs.
2
We reuse runs described in the

original CSMeD paper, which includes five different models: two

statistical models (BM25 and TF-IDF), and three Transformer-based

models (MiniLM-L6-v2
3
, MPNet-base-v2

4
and BioBERT-snli

5
) from

the SentenceTransformers library [34]. Each of the five models uses

four different systematic review meta-data as input query represen-

tations: ‘title’, ‘abstract’, ‘eligibility criteria’ and ‘search strategy’.

This configuration results in a total of 20 different combinations of

runs.

We re-evaluate the runs at Recall of 95%, using 𝑛𝑃@𝑟%, 𝑠𝑛𝑃@𝑟%

and the two measures that are part of the equation: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑟%

and 𝑇𝑁𝑅@𝑟%. We also calculate two other commonly used TAR

evaluation measures: Mean Average Precision (𝑀𝐴𝑃 =

∑𝑄

𝑞=1
AveP(q)
𝑄

,

where 𝑄 is the number of queries), and average position at which

the last relevant item is found calculated as a percentage of the

dataset size (𝐿𝑎𝑠𝑡𝑅𝑒𝑙 = Position of the last relevant item

Dataset size
× 100) [20]. We

intentionally refrain from using𝑊𝑆𝑆 measure as previous work

highlighted its limitations and demonstrated that𝑊𝑆𝑆 is a special

version of 𝑇𝑁𝑅 [25].

2
Available from https://github.com/WojciechKusa/CSMeD-baselines

3
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

4
https://huggingface.co/sentence-transformers/all-mpnet-base-v2

5
https://huggingface.co/pritamdeka/S-BioBert-snli-multinli-stsb
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Table 1: Correlation matrix of selected metrics calculated us-
ing Spearman’s method. 𝑛𝑃@95% and 𝑠𝑛𝑃@95% have identical
correlation coefficients.

nP@95%

snP@95% P@95% TNR@95% LastRel MAP

P@95% 0.602 1. -0.027 0.140 0.910

TNR@95% 0.655 -0.027 1. -0.923 0.014

LastRel -0.533 0.140 -0.923 1. 0.097

MAP 0.570 0.910 0.014 0.097 1.

Dataset size (|E | + |I|) -0.299 -0.724 0.273 -0.249 -0.637

% Relevant 0.132 0.736 -0.570 0.652 0.639

nP@95% snP@95% TNR@95% MAP
0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Va
ria

nc
e

Figure 1: Coefficient of variation in evaluation measure
scores between topics presented as violin plots for nor-
malised measures.

5 RESULTS AND DISCUSSION
We first look at correlation between 𝑛𝑃 and other measures. Then

we investigate the change in run rankings for each measure and

finally we evaluate the impact of different levels of Recall.

5.1 Correlation between measures
Table 1 presents correlations between measures using Spearman’s

method. There is a moderate correlation between 𝑛𝑃@95% (and

𝑠𝑛𝑃@95%) and all other measures (between .655 and .533). Espe-

cially between 𝑃@95% and 𝑇𝑁𝑅@95% correlations are comparable

meaning a comparable influence of both components of the equa-

tion. Interestingly, 𝑛𝑃@95% (and 𝑠𝑛𝑃@95%) exhibits the weakest,

almost negligible, correlation between percentage of relevant exam-

ples, in contrast to all other considered measures. We also measure

a correlation with a dataset size defined as a total number of doc-

uments found by a Boolean search query (|E | + |I|). We find that

𝑛𝑃@95% shows a weaker correlation to dataset size when com-

pared to MAP. This difference highlights that 𝑛𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 focuses

on distinct aspects of the screening task. Detailed plots presenting

correlations between 𝑛𝑃@95% and 𝑃@95% and 𝑇𝑁𝑅@95% are in

Appendix A.

Figure 1 presents the coefficient of variation (CV) in evaluation

measure scores between topics as depicted through violin plots for

normalised measures. 𝑛𝑃@95% shows a high variance as their mean

CV from 20 runs is equal to 1.5. This behaviour is influenced by

Precision, which disproportionately favours better-performing sys-

tems.𝑇𝑁𝑅 and𝑀𝐴𝑃 exhibit comparably lower variances, might be

considered better metrics for discriminating between good and bad

Table 2: Ranking of runs based on each average score for
each measure for top 8 runs according to 𝑛𝑃@95% score.

Run nP@95% snP@95% P@95% TNR@95% LastRel MAP

MPNet𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡 1 1 1 1 1 1

MPNet𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 2 2 2 2 2 2

MiniLM𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 3 4 5 4 5 5

MiniLM𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡 4 3 4 3 3 3

MPNet𝑡𝑖𝑡𝑙𝑒 5 5 3 5 4 8

BioBert𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 6 7 7 6 6 4

MiniLM𝑡𝑖𝑡𝑙𝑒 7 6 6 7 8 9

BM25𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡 8 9 8 11 10 6

BioBert𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡 9 8 10 8 11 7

BM25𝑡𝑖𝑡𝑙𝑒 10 11 9 12 13 11

... ... ... ... ... ...

systems, as they show less sensitivity to variations across different

queries. However, we observe that the mean CV for 𝑠𝑛𝑃@95% falls

within the range of the mean CV for MAP, which is considered a

reliable evaluation measure. This validates our assumption to use

the geometric mean for reducing the impact created by the high

variance in Precision.

5.2 Change in run ranking
We can observe that the ordering of run changes when different

metrics are applied (see Table 2). Especially,𝑛𝑃@𝑟% offers a different

perspective for ordering when contrasted with all other measures

and, especially with the incorrect usage of 𝑃@𝑟%. However, these

differences are not statistically significant for the top 10 runs. We

hypothesise it is due to the large collection size, which contains

various topics of very different types and characteristics. Analysis

on a larger number of datasets and models could enhance these

findings.

5.3 Influence of Recall level
Figure 2 presents average evaluation measure scores across datasets

and runs depending on the selected Recall level. Notably, as the Re-

call threshold is increased, Precision predictably diminishes due to

the typical trade-off between these metrics—increasing the number

of True Positives often results in a proportional increase in False

Positives, thus reducing Precision.

The 𝑛𝑃 measure is sensitive to changes in both Precision and

TNR, and the trend in𝑛𝑃 indicates that it is likely beingmore heavily

influenced by Precision than TNR, given the shape of its curve in

relation to the other two measures. This observation underscores

the utility of the 𝑛𝑃 in scenarios where both False Positives and

False Negatives carry significant costs.

6 CONCLUSION
This paper analyses Precision at 𝑟% Recall behaviour as an evalua-

tion measures in a high-recall setting. We show the problems with

using Precision@𝑟% and propose its min-max normalised version.

nPrecision at 𝑟% is equal to the product of Precision and True Neg-

ative Rate, offering a comprehensive measure for benchmarking IR

systems, emphasising the need for models to optimise both True

Positives and True Negatives. We also introduced 𝑠𝑛𝑃 , a variation

of 𝑛𝑃 that is the geometric mean of Precision and TNR.
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Figure 2: Evaluation measure scores averaged across datasets
and runs depending on selected Recall level.

We presented empirical analysis of 𝑛𝑃@𝑟% and compared it to

other TAR measures. We showed how these evaluation measures

can be used to focus on models’ performance on different aspects

of the screening process. Notably, 𝑛𝑃@𝑟% and 𝑠𝑛𝑃@𝑟%, among all

tested measures, has the lowest correlation with the percentage of

relevant documents in dataset, making it more robust to evaluating

screening models. For Recall-oriented tasks, high TNR is desirable

but not sufficient on its own, as it does not account for the ranking

of retrieved items. 𝑛𝑃 and 𝑠𝑛𝑃 can be important measures since

they also assesses the quality of the ranking. We recommend using

𝑠𝑛𝑃 when a single measure is desired for practical comparisons, due

to its improvements over 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑇𝑁𝑅 and lower variance

when compared to 𝑛𝑃 . In future work, we will focus on evaluating

and estimating 𝑠𝑛𝑃 scores within legal eDiscovery workflows.
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A DETAILED CORRELATION PLOTS
Figure 3 presents scatter plots contrasting 𝑛𝑃@95% with 𝑃@95%

and 𝑇𝑁𝑅@95% scores across runs and datasets. The plot reveals a

range of values for both metrics across the tested models, indicating

variability in performance. The size of each marker represents the

relative percentage of relevant documents in the dataset with larger

markers meaning datasets with higher ratio of relevant documents.

Correlations mentioned in Section 5.1 can be observed for both com-

ponent measures of 𝑛𝑃@95%. For example, datasets consisting of a

larger number of relevant documents (represented by larger circles)

exhibit higher 𝑃@95% scores. However, this cannot be observed for

𝑛𝑃@95%.
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Figure 3: Scatter plots of normalised Precision (𝑛𝑃 ) versus Precision (top) and TNR (bottom) at 95% Recall across twenty tested
runs. Figures illustrate the trade-off between scores. The size of each marker represents the relative percentage of relevant
documents in the dataset. Average 𝑛𝑃@95%, 𝑃@95% and 𝑇𝑁𝑅@95% are indicated by dashed grey lines.
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