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Abstract
This is the first of two papers devoted to the proof of
conformal invariance of the critical double random cur-
rent model on the square lattice. More precisely, we
show the convergence of loop ensembles obtained by
taking the cluster boundaries in the sum of two indepen-
dent currents with free and wired boundary conditions.
The strategy is first to prove convergence of the asso-
ciated height function to the continuum Gaussian free
field, and then to characterise the scaling limit of the
loop ensembles as certain local sets of this Gaussian free
field. In this paper, we identify uniquely the possible
subsequential limits of the loop ensembles. Combined
with Duminil-Copin et al., this completes the proof of
conformal invariance.
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1 INTRODUCTION

1.1 Motivation and overview

The rigourous understanding of conformal field theory (CFT) and conformally invariant random
objects via the developments of the Schramm–Loewner evolution (SLE) and its relations to the
Gaussian free field (GFF) has progressed greatly in the last 25 years. It is fair to say that once
a discrete lattice model is proved to be conformally invariant in the scaling limit, most of what
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mathematical physicists are interested in can be exactly computed using the powerful tools in
the continuum.
A large class of discrete lattice models are conjectured to have interfaces that converge in the

scaling limit to SLE𝜅-type curves for 𝜅 ∈ (0, 8]. Unfortunately, such convergence results are only
proved for a handful of models, including the loop-erased random walk [57] and the uniform
spanning tree [40] (corresponding to 𝜅 = 2 and 8), the Ising model [15] and its FK representation
[65] (corresponding to 𝜅 = 3 and 16∕3) and Bernoulli site percolation on the triangular lattice [64]
(corresponding to 𝜅 = 6). Known proofs involve a combination of exact integrability† enabling
the computation of certain discrete observables, and of discrete complex analysis to imply the
convergence in the scaling limit to holomorphic/harmonic functions satisfying certain boundary
value problems that are naturally conformally covariant.
To upgrade the result from conformal covariance of these ‘witness’ observables to the con-

vergence of interfaces in the system, one needs an additional ingredient. In some cases, when
properties of the discrete models are sufficiently nice (typically tightness of the family of inter-
faces, mixing-type properties, etc.), a clever martingale argument introduced by Oded Schramm
enables to prove convergence of interfaces to SLEs and CLEs. This last step involves the spatial
Markov properties of the discrete model in a crucial fashion. We refer to the proofs of confor-
mal invariance of interfaces in Bernoulli site percolation, the Ising model, the FK Ising model
or the harmonic explorer for examples. Unfortunately, the discrete properties of the model are
sometimes not sufficiently nice to implement this martingale argument and there are still many
remaining examples for which the scaling limit of the interfaces cannot be easily deduced from
the conformal invariance of certain observables — most notably for the case of the double dimer
model, for which an important breakthrough was performed by Kenyon in [37], followed by a
series of impressive papers [8, 18].
In this paper, we prove convergence of the nested inner and outer boundaries of clusters in

the critical double random current (DRC) model with free boundary conditions, as well as in
its dual model with wired boundary conditions, to level loops of a GFF. In particular, the outer
boundaries of clusters in the critical DRCmodel with free boundary conditions converge toCLE4.
The randomcurrentmodel has proved to be a very powerful tool to understand the Isingmodel. Its
applications range from correlation inequalities [29], exponential decay in the off-critical regime
[1, 23, 26], classification of Gibbs states [54], continuity of the phase transition [3], and so on.
Even in two dimensions, where a number of other tools are available, new developments have
been made possible via the use of this representation [4, 21, 45]. In particular, as mentioned at
the end of this Section 1.2, the scaling limit of the DRC gives access to the scaling limit of spin
correlations in the Ising model. For a more exhaustive account of random currents, we refer the
reader to [20].
Convergence to SLE4-type curves were previously proved for the harmonic explorer [61], zero

contour lines of the discrete GFF [58] (also in the cable-graph representation [5]), the zero contour
lines of the Ginzburg–Landau ∇𝜙 interface model [46, 47] and cluster boundaries of a random
walk loop-soup with the critical intensity [10, 44].
As mentioned above, our proof does not follow the martingale strategy. Instead, it relies on a

coupling between the DRC and a naturally associated height function, and can be decomposed
into three main steps (see the next sections for more details).

(i) Proving the joint tightness of the family of interfaces in the DRC model and the height
function, as well as certain properties of the joint coupling.

†Only approximately for site percolation on the triangular lattice.
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(ii) Proving convergence of the height function to the GFF.
(iii) In the continuum, identifying the scaling limit of the interfaces using properties of the GFF

and its local sets.

Each of the three previous steps involves quite different branches of probability. The first one
extensively uses percolation-type arguments for dependent percolation models. The second one
concerns a height function studied already by Dubédat [17] and Boutilier and de Tilière [9]. How-
ever, unlike in [9, 17], it harvests a link between a percolation model (the DRC) and dimers.
Moreover, it uses techniques introduced by Kenyon to prove convergence of the dimer height
function, but with a new twist as the proof relies heavily on fermionic observables introduced
by Chelkak and Smirnov to prove conformal invariance of the Ising model, as well as a delicate
result on the DRCmodel (see Section 2) helping identifying the boundary conditions. Finally, the
last step relies on properties of the local sets of the GFF introduced by Schramm and Sheffield
[59], and in particular on the two-valued local sets introduced by Aru, Sepúlveda and Werner [7].
This step crucially uses the spatial Markov properties of the interfaces and the associated height
function deduced from step (ii), but also establishes a certain spatial Markov property of the outer
boundaries of the clusters in the continuum limit (which turn out to beCLE4 of the limiting GFF)
which is unknown in the discrete.
Part (i) of the proof is postponed to the second paper [22]. In this paper, we focus on (ii) and

(iii).
In the reminder of this introduction, we state the results of the convergence of the interfaces

in the DRCmodels with free and wired boundary conditions (Section 1.2) and the convergence of
the height function associated with the DRCs (Section 1.3). In reality, the DRCs with free and
wired boundary conditions can be coupled on the primal and dual graphs and be associated
with the same height function, so that these three objects converge jointly. In particular, we have
more precise descriptions on their joint limit, but we postpone these further results to Section 6
for simplicity.

Notation
Throughout the article, we work with planar graphs embedded in the plane. We will consider
Jordan domains 𝐷 ⊊ ℂ, that is, simply connected domains whose boundary 𝜕𝐷 is a Jordan curve.
In certain situations, we will impose a regularity condition on 𝜕𝐷, namely that it is a 𝐶1 curve.
Below, we will speak of convergence of random variables taking values in families of loops

contained in 𝐷, and distributions (generalised functions). While the latter is classical and has a
well defined associated topology, we provide some details on the former. To this end, letℭ = ℭ(𝐷)
be the collection of locally finite families  of non-self-crossing loops contained in 𝐷 that do not
intersect each other. Inspired by [2], we define a metric on ℭ,

𝐝( , ′) ⩽ 𝜀 ⟺ ∃𝑓 ∶ 𝜀 →  ′ one-to-one s.t. ∀𝛾 ∈ 𝜀, 𝑑(𝛾, 𝑓(𝛾)) ⩽ 𝜀
and similarly when exchanging  ′ and  , (1.1)

where 𝜀 is the collection of loops in  with a diameter larger than 𝜀, and for two loops 𝛾1 and 𝛾2,
we set

𝑑(𝛾1, 𝛾2) ∶= inf sup
𝑡∈𝕊1

|𝛾1(𝑡) − 𝛾2(𝑡)|, (1.2)

with the infimum running over all continuous bijective parametrisations of the loops 𝛾1 and 𝛾2
by 𝕊1.
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4 of 68 DUMINIL-COPIN et al.

Wewill say that simply connected graphs𝐷𝛿 ⊂ 𝛿ℤ2 approximate𝐷 if 𝑑(𝜕𝐷𝛿, 𝜕𝐷) → 0 as 𝛿 → 0,
where 𝑑 is as in (1.2).

1.2 Convergence of interfaces in double random currents

Consider a finite graph 𝐺 = (𝑉, 𝐸)with vertex set𝑉 and edge set 𝐸. A current 𝐧 on𝐺 is a function
defined on the undirected edges {𝑣, 𝑣′} ∈ 𝐸 and taking values in the natural numbers. The current
set of sources is defined as the set

𝜕𝐧 ∶=

{
𝑣 ∈ 𝑉 ∶

∑
𝑣′∈𝑉∶𝑣′∼𝑣

𝐧{𝑣,𝑣′} is odd

}
, (1.3)

where 𝑣′ ∼ 𝑣 means that {𝑣, 𝑣′} ∈ 𝐸.
Let Ω𝐵 be the set of currents with the set of sources equal to 𝐵. When 𝐵 = ∅, we speak of a

sourceless current. We associate to a current 𝐧 the weight

w𝐺,𝛽(𝐧) ∶=
∏

{𝑣,𝑣′}∈𝐸

(𝛽𝐽{𝑣,𝑣′})
𝐧{𝑣,𝑣′}

𝐧{𝑣,𝑣′}!
, (1.4)

which comes from the associated Ising model on 𝐺 [29] (which also has coupling constants 𝐽 and
inverse temperature 𝛽). For now, we focus on the critical parameters on the square lattice

𝛽 = 𝛽𝑐 =
1
2
ln(

√
2 + 1),

and 𝐽{𝑣,𝑣′} = 1 for every {𝑣, 𝑣′} which is an edge of 𝐺, and 0 otherwise, and drop them from the
notation. General models will be considered in Section 3.
We introduce the probability measure on currents with sources 𝐵 ⊆ 𝑉 given by

𝐏𝐵𝐺(𝐧) ∶=
w𝐺(𝐧)
𝑍𝐵
𝐺

, for every 𝐧 ∈ Ω𝐵, (1.5)

where𝑍𝐵
𝐺
is the partition function. The randomvariable𝐧 is called a random current configuration

on 𝐺 with free boundary conditions and source-set 𝐵.
We define 𝐏𝐴,𝐵

𝐺,𝐻
to be the law of (𝐧1, 𝐧2), where 𝐧1 and 𝐧2 are two independent currents with

respective laws 𝐏𝐴
𝐺
and 𝐏𝐵𝐻 . The DRC (model) is the law of 𝐧1 + 𝐧2 under 𝐏

𝐴,𝐵
𝐺,𝐻

. We call a cluster
of any current 𝐧 a connected component of the graph with vertex set𝑉 and edge set 𝐸(𝐧) ∶= {𝑒 ∈
𝐸 ∶ 𝐧𝑒 > 0}. To a given cluster , we associate a loop configuration made up of the dual edges 𝑒∗
where 𝑒 = {𝑣, 𝑣′} is such that 𝑣 ∈  and 𝑣′ ∉ . Note that this loop configuration is made up of
loops on the dual graph corresponding to the different connected components ofℤ2 ⧵ . The loop
corresponding to the unbounded component is called the outer boundary of the cluster, and the
loops corresponding to the boundaries of the bounded ones (sometimes referred to as holes) are
called the inner boundaries. We define the (nested) boundaries interface configuration 𝜂(𝐧) to be
the collection of outer and inner boundaries of the clusters in 𝐧. We note that the inner and outer
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CONFORMAL INVARIANCE OF DOUBLE RANDOM CURRENTS I: IDENTIFICATION OF THE LIMIT 5 of 68

F IGURE 1 . 1 Left: We depict the outermost clusters in a double random current with free boundary
conditions. The outer boundaries of these clusters are in red (they form a CLE4). The inner boundaries of the
clusters are in black. Right: We depict the unique outermost cluster in a double random current with wired
boundary conditions. The inner boundaries of this cluster are in black. For both: In each domain encircled by an
inner boundary loop, one has (the scaling limit of) an independent double random current with free boundary
conditions. This allows us to iteratively sample the nested interfaces.

boundaries of different clusters may share edges (but they do not cross). We will often refer to the
elements of 𝜂(𝐧) as the interfaces of 𝐧.
As before, we fix a simply connected Jordan domain 𝐷 ⊊ ℂ and consider the DRC on 𝐷𝛿. To

state the following theorem, we will need the notion of two-valued sets 𝔸−𝑎,𝑏 introduced in [7],
which is the unique thin local set of the GFF in 𝐷 with boundary values −𝑎 and 𝑏. In this work,
we use −𝑎,𝑏 to denote the collection of outer boundaries (which are SLE4-type simple loops and
level loops of the GFF) of the connected components of 𝐷 ⧵ 𝔸−𝑎,𝑏. We refer to Section 5 for more
details on two-valued sets and related objects. We define

𝜆 =
√
𝜋∕8.

Theorem 1.1 (Convergence of DRC clusters with free boundary conditions). Let 𝐷 be a Jordan
domain, and let𝐷𝛿 approximate𝐷. Moreover, let 𝜂𝛿 be the nested boundaries interface configuration
of the critical DRC on𝐷𝛿 with free boundary conditions. Then, as 𝛿 → 0, 𝜂𝛿 converges in distribution
to a limit whose law is invariant under all conformal automorphisms of 𝐷. More precisely, we have
that (see Figure 1.1 Left)

∙ The outer boundaries of the outermost clusters converge to a CLE4 in 𝐷.
∙ If the outer boundary of a cluster converges to 𝛾, then the inner boundaries of this cluster converge
to 

−2𝜆,(2
√
2−2)𝜆

in the domain encircled by 𝛾.

This picture repeats iteratively in each hole of every cluster. In particular,

∙ If a loop in the inner boundary of a cluster converges to 𝛾, then the outer boundaries of the
outermost clusters enclosed by 𝛾 converge to a CLE4 in the domain encircled by 𝛾.
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6 of 68 DUMINIL-COPIN et al.

We will also work with the random current model with wired boundary conditions on 𝐺. For the
purpose of the statement below, we define it explicitly for the critical model on the square lattice
without referring to the dual model. Later, in Section 3.1, a version for a general planar graph
will be stated. Let 𝐺 ⊂ ℤ2 be a simply connected subgraph of ℤ2 that is a union of square faces
(in particular does not have vertices of degree one). Let 𝜕𝐺 be the set of vertices of 𝐺 that lie on
the unbounded face of 𝐺 and are of degree 2 or 3. We define 𝐺+ to be the graph with vertex set
𝑉+ ∶= 𝑉 ∪ {𝔤} where 𝔤 is an additional vertex that lies in the unbounded face of 𝐺, and 𝐸+ ∶=
𝐸 ∪ {{𝑣, 𝔤} ∶ 𝑣 ∈ 𝜕𝐺}, where vertices of degree two contribute two edges. This condition comes
from the fact that 𝐺 is a weak dual graph of some subgraph of the dual square lattice, and in this
case, 𝐺+ is the full dual graph. The coupling constants on the new edges are the same as on all
other edges, and are critical. Accordingly, we introduce the measures 𝐏𝐵

𝐺+
and 𝐏𝐴,𝐵

𝐺+,𝐻+
as before.

Theorem 1.2 (Convergence of DRC clusters with wired boundary conditions). Let 𝐷 be a Jordan
domain, and let𝐷𝛿 approximate𝐷. Moreover, let 𝜂𝛿 be the nested boundaries interface configuration
of the critical DRC on 𝐷𝛿 with wired boundary conditions. Then, as 𝛿 → 0, 𝜂𝛿 converges in distribu-
tion to a limit whose law is invariant under all conformal automorphisms of 𝐷. More precisely, we
have that (see Figure 1.1 Right)

∙ The inner boundaries of the unique outermost cluster converge to 
−
√
2𝜆,

√
2𝜆
in 𝐷.

∙ If the inner boundary of a cluster converges to 𝛾, then the outer boundaries of the outermost clusters
enclosed by 𝛾 converge to a CLE4 in the domain encircled by 𝛾.

∙ If the outer boundary of a cluster converges to 𝛾, then the inner boundaries of this cluster converge
to 

−2𝜆,(2
√
2−2)𝜆

in the domain encircled by 𝛾.

Remark 1.3. The values of 𝑎 and 𝑏 in −𝑎,𝑏 that we obtain in our results are combinations of√
2𝜆 and 2𝜆. The mechanism for the generation of each of these gaps in the scaling limit is very

different, and this realisation is one of themain (and possibly surprising) insights of thiswork. The
appearance of multiplies of

√
2𝜆 is directly related to the value of the multiplicative constant in

front the GFF that arises as the scaling limit of the associated height function (see Section 1.3 and
Theorem 1.4 therein). This is the same constant as the one in the scaling limit of height functions
in the dimer model [35]. Moreover, the inner boundaries of clusters possess a Markov property
already at the discrete level as can be easily seen from the definition of the DRC. This means that
the gap

√
2𝜆 is in some sense present already in the discrete. On the other hand, 2𝜆 is the height

gap between the two sides of a level line in the GFF [58], which only emerges in the continuum.
We have identified it using properties of two-valued sets [6, 7] (see Section 5) and properties of
the scaling limit of the model (in particular, how the interfaces intersect in the continuum, which
we derive in our companion paper [22]). Also, the outer boundaries do not have any apparent
Markov property at the discrete level, and hence, one can think of the value 2𝜆 as an emergent or
effective gap.

Theorems 1.1 and 1.2 have the following applications.

∙ TheHausdorff dimension of aDRCcluster in the scaling limit (for both free andwired boundary
conditions) is 7∕4 [56].

∙ (Difference in log conformal radii) The difference of log conformal radii between two successive
loops that encircle the origin in the scaling limit of DRC interfaces is equal to 𝑇1 + 𝑇2, where
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CONFORMAL INVARIANCE OF DOUBLE RANDOM CURRENTS I: IDENTIFICATION OF THE LIMIT 7 of 68

𝑇1 is the first time that a standard Brownian motion exits [−𝜋, (
√
2 − 1)𝜋] and 𝑇2 is the first

time that a standard Brownian motion exits [−𝜋, 𝜋] (see [7, Proposition 20]).
∙ (Number of clusters) Let 𝑁(𝜀) be the number of DRC clusters in the unit disk surrounding the
origin such that their outer boundaries have a conformal radius w.r.t. the origin at least 𝜀. We
will show in Lemma 6.11 that almost surely,

𝑁(𝜀)∕ log(𝜀−1)⟶
𝜀→0

1√
2𝜋2

.

∙ (Scaling limit of the magnetisation in domains) With a little bit of additional work, one may
derive from our results the conformal invariance of the 𝑛-point spin–spin correlations of the
critical Ising model already obtained in [14] as these correlations are expressed in terms of
connectivity properties of 𝐧𝛿1 + 𝐧

𝛿
2 . The additional technicalities would consist in relating the

point-to-point connectivity in 𝐧𝛿1 + 𝐧
𝛿
2 to the probabilities that the 𝜀-neighbourhoods of the

points are connected. Such reasonings have been implemented repeatedly when proving con-
formal invariance, and we omit the details here as it would lengthen the paper even more.
Even though the result is already known, we still wished to mention this corollary as our paper
uses only the convergence of certain fermionic observables to obtain convergence of the nest-
ing field height function to the GFF. Unlike the spinor observables used in [14], these are local
functions of the Kadanoff–Ceva fermions. The convergence of such fermionic observables has
been obtained for the critical Ashkin–Teller model (which is a combination of two interacting
Ising models) in [28] via renormalisation arguments using the crucial fact that the observables
are local. Notoriously, the spin–spin correlations are not of this kind, which makes renormali-
sation arguments much more difficult to implement. We believe that the strategy of this paper
may be of use to extend the universality results from [28] to non-local Grassmann observables.

Finally, we remark that Theorems 1.1 and 1.2 are simplified versions of more detailed results
(see Theorems 6.4 and 6.2) that we will prove in Section 6. We do not include all details in the
introduction in order to facilitate the reading, but let us make some comments on the additional
properties that we can obtain:

∙ The proofs of Theorems 1.1 and 1.2 rely on the coupling of the models with a height function
that we will present in the next subsection. In fact, the primal and dual DRCs can be coupled
together with the same height function (see Theorem 3.1). Consequently, the limiting interfaces
of the primal and dual models are also coupled with the same GFF, so that we fully understand
the nesting and intersecting behaviour of their limiting interfaces.

∙ Theorems 1.1 and 1.2 state the convergence of the boundaries of DRC clusters. To identify the
cluster of a current, one only needs to know the edgeswhere the current is strictly positive.How-
ever, apart from the shape of the clusters, we also have an additional information on whether
the current is even and positive or odd on each edge. A hole of a DRC cluster is called odd if
the flux of the cluster around this hole is an odd number, and otherwise it is called even. Here,
the flux is the total current flowing across any dual path that connects any face in the hole to
the boundary of the graph. In the discrete, given the shape of the clusters, there is additional
randomness to determine the parity of the holes. However, in the continuum limit, as we will
show in Theorem 6.4, the parity of each hole in a DRC cluster with free b.c. is a deterministic
function of the shape of the cluster.
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8 of 68 DUMINIL-COPIN et al.

1.3 Convergence of the nesting field of the double random current to
the Gaussian free field

As mentioned above, a central piece in our strategy is a new convergence result dealing with the
so-called nesting field of the DRC introduced by two of the authors in [21]. Let 𝐺 = (𝑉, 𝐸) be a
generic planar graph. For a current 𝐧, let

∙ 𝐧odd be the set of edges with an odd value in 𝐧 (called the odd part of 𝐧),
∙ 𝐧even be the set of edges with an even and strictly positive value of 𝐧 (called the even part of 𝐧).

We clearly have 𝐧odd ∪ 𝐧even = 𝐸(𝐧), and hope that no confusion will arise from the fact that
the zero values are not included in the even part of a current. In what follows we will often
identify a current 𝐧 with the pair (𝐧odd, 𝐧even) as it carries all the relevant information for
our considerations.
A non-trivial connected component of the graph (𝑉, 𝐧odd)will be called a contour. In particular,

each contour 𝐶 is contained in a unique cluster of 𝐧, and each cluster𝒞 is associated to a contour
configuration 𝒞 ∩ 𝐧odd. Each contour configuration gives rise to a ±1 spin configuration on the
faces of 𝐺, where the external unbounded face is assigned spin +1, and where the spin changes
whenever one crosses an edge of a contour. We call a cluster 𝒞 odd around a face 𝑢 if the spin
configuration associated with the contour configuration 𝒞 ∩ 𝐧odd assigns spin −1 to 𝑢 (this is
the same as asking for the total flux of the current in the cluster to be odd across any dual path
connecting 𝑢 to infinity).
For a current 𝐧, letℭ(𝐧) be the collection of all clusters of 𝐧, and let (𝜖𝒞)𝒞∈ℭ(𝐧) be i.i.d. random

variables equal to +1 or −1 with probability 1∕2 indexed by ℭ(𝐧). These random variables are
called the labels of the clusters. The nesting field with free boundary conditions of a current 𝐧 on 𝐺
evaluated at a face 𝑢 of 𝐺 is defined by

ℎ𝐺(𝑢) ∶=
∑

𝒞∈ℭ(𝐧)

𝟏{𝒞 odd around 𝑢}𝜖𝒞 . (1.6)

Analogously, the nesting field with wired boundary conditions of a current 𝐧 on 𝐺+ evaluated at a
face 𝑢 of 𝐺+ is defined by

ℎ+
𝐺+
(𝑢) ∶= (𝟏{𝒞𝔤 odd around 𝑢} − 1∕2)𝜖𝒞𝔤 +

∑
𝒞≠𝒞𝔤

𝟏{𝒞 odd around 𝑢}𝜖𝒞 , (1.7)

where 𝒞𝔤 is the cluster containing the external vertex 𝔤, and where the sum is taken over all
remaining clusters of 𝐧. Here, whether𝒞𝔤 is odd around a face of𝐺 or not depends on the embed-
ding of the graph 𝐺+. However, one can see that the distribution of ℎ+

𝐺+
(𝑢) is independent of

this embedding.
Note that due to the term corresponding to𝒞𝔤, the nesting fieldwithwired boundary conditions

takes half-integer values, whereas the one with free boundary conditions is integer-valued. Such
definition is justified by the next result, and by the joint coupling of ℎ𝐺 and ℎ+𝐺∗ via a dimer model
described in Section 3.2.3. We note that the global shift of 1∕2 between ℎ𝐺 and ℎ+𝐺∗ is the same as
in the work of Boutilier and de Tilière [9].
The following is the main result of this part of the argument. We identify the function ℎ𝐷𝛿

defined on the faces of 𝐷𝛿 with a distribution on 𝐷 in the following sense: extend ℎ𝐷𝛿 to all
points in 𝐷 by setting it to be equal to ℎ𝐷𝛿(𝑢) at every point strictly inside the face 𝑢, and 0 on

 1460244x, 2025, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.70022 by T

echnische U
niversitaet W

ien, W
iley O

nline L
ibrary on [13/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



CONFORMAL INVARIANCE OF DOUBLE RANDOM CURRENTS I: IDENTIFICATION OF THE LIMIT 9 of 68

the complement of the faces in 𝐷. Then, we view ℎ𝐷𝛿 as a distribution (generalised function) by
setting

ℎ𝐷𝛿 (𝑓) ∶= ∫𝐷 𝑓(𝑥)ℎ𝐷𝛿 (𝑥)𝑑𝑥,

where 𝑓 is a test function, that is, a smooth compactly supported function on 𝐷. We proceed anal-
ogously with the field ℎ+

(𝐷𝛿)∗
and extend it to all points within the faces of (𝐷𝛿)∗. We will say that a

sequence of random generalised functions 𝑋𝑛 converges weakly to a random generalised function
𝑋, if 𝑋𝑛(𝑓) converges in distribution to 𝑋(𝑓) for every test function 𝑓.
The GFF ℎ𝐷 with zero boundary conditions in 𝐷 is a random distribution such that for every

smooth function 𝑓 with compact support in 𝐷, we have

𝔼

[(
∫𝐷 𝑓(𝑧)ℎ𝐷(𝑧)𝑑𝑧

)2]
= ∫𝐷 ∫𝐷 𝑓(𝑧1)𝑓(𝑧2)𝐺𝐷(𝑧1, 𝑧2)𝑑𝑧1𝑑𝑧2, (1.8)

where 𝐺𝐷 is the Green’s function on 𝐷 with zero boundary conditions satisfying Δ𝐺𝐷(𝑥, ⋅) =
−𝛿𝑥(⋅), where 𝛿𝑥 denotes the Dirac mass at 𝑥. This normalisation means, for example, that for
the upper half plane ℍ, we have

𝐺ℍ(𝑥, 𝑦) =
1
2𝜋

log |(𝑥 − �̄�)∕(𝑥 − 𝑦)|.
Given a planar graph 𝐺, we write 𝐺† for its weak dual, that is, the planar dual graph with the

vertex corresponding to the outer boundary of 𝐺 removed.

Theorem 1.4 (Convergence of the nesting field). Let 𝐷 be a Jordan domain, and let 𝐷𝛿 approx-
imate 𝐷. Denote by ℎ𝐷𝛿 the nesting field of the critical double random current model on 𝐷𝛿 with
free boundary conditions, and by ℎ+

(𝐷𝛿)†
the nesting field of the critical DRC model on the weak dual

graph (𝐷𝛿)† with wired boundary conditions. Then,

lim
𝛿→0

ℎ𝐷𝛿 = lim
𝛿→0

ℎ+
(𝐷𝛿)†

=
1√
𝜋
ℎ𝐷,

where ℎ𝐷 is the GFF in𝐷 with zero boundary conditions, andwhere the convergence is in distribution
in the space of generalised functions.

Wewant tomention that ℎ𝐷𝛿 and ℎ+(𝐷𝛿)† can be coupled together as one randomheight function
𝐻𝐷𝛿 defined on the faces of a planar graph 𝐶𝐷𝛿 (whose faces correspond to both the faces of 𝐷𝛿
and (𝐷𝛿)†; see Figure 3.3) in such away that lim𝛿→0 𝐻𝐷𝛿 =

1√
𝜋
ℎ𝐷 , andmoreover, the values of ℎ𝐷𝛿

and ℎ+
(𝐷𝛿)†

differ locally by an additive constant. More properties of this coupling are described in
Section 3.1.
Our proof is based on the relationship between the nesting field of DRCs on a graph 𝐺 and

the height function of a dimer model on decorated graphs 𝐺𝑑 and 𝐶𝐺 established in [21]. We
will first explicitly identify the inverse Kasteleyn matrix associated with these dimer models with
the correlators of real-valued Kadanoff–Ceva fermions in the Ising model [32]. This is valid for
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10 of 68 DUMINIL-COPIN et al.

arbitrary planar weighted graphs, and can also be derived from the bozonisation identities of
Dubédat [17]. For completeness of exposition, we choose to present an alternative derivation
that uses arguments similar to those of [21]. Compared to [17], rather than using the connection
with the six-vertex model, we employ the DRC model. We then express the real-valued observ-
ables on general graph in terms of the complex-valued observables of Smirnov [65], Chelkak and
Smirnov [15] and Hongler and Smirnov [31]. This is a well-known relation that can be, for exam-
ple, found in [13]. We also state the relevant scaling limit results for the critical observables on the
square lattice obtained in [15, 31, 65].
All in all, we identify the scaling limit of the inverse Kasteleyn matrix on graphs 𝐶𝐷𝛿 as 𝛿 → 0.

This is an important ingredient in the computation of the limit of themoments of the height func-
tionwhich is done bymodifying an argument of Kenyon [34]. Another crucial and new ingredient
is a class of delicate estimates on the critical random current model from [22] that allow us to do
two things:

∙ to identify the boundary conditions of the limiting GFF to be zero boundary conditions;
∙ to control the behaviour of the increments of the height function between vertices at small
distances.

The first item is particularly important as handling boundary conditions directly in the dimer
model is notoriously difficult. Here, the identification of the limiting boundary conditions ismade
possible by the connectionwith theDRCaswell as themain result of [22] stating that large clusters
of the DRC with free boundary conditions do not come close to the boundary of the domain (see
Theorem 2.4 below). We see this observation and its implication for the nesting field as one of the
key innovation of our paper.
We stress the fact that Theorem 1.4 does not follow from the scaling limit results of Kenyon [34,

35] as the boundary conditions considered in these papers are related to Temperley’s bijection
between dimers and spanning trees [38, 39, 66], whereas those considered in this paper corre-
spond to the double Ising model [9, 17, 21]. Moreover, we note that the infinite volume version
of Theorem 1.4 was obtained by de Tilière [16]. Finally, it can also be shown that the hedgehog
domains of Russkikh [55] are a special case of our framework, where the boundary of 𝐷𝛿 makes
turns at each discrete step.

Organisation
The paper is organised as follows. In Section 2, we state the main results from our second
paper [22]. In Section 3, we recall the relationship between different discrete models and derive
a connection between the inverse Kasteleyn matrix and complex-valued fermionic observables.
While some (but not all) of these results are not completely new, they are scattered around the
literature, and we therefore review them here. In Section 4, we derive Theorem 1.4. Section 5
presents more preliminaries on the continuum objects. Section 6 is devoted to the identification
of the scaling limit of DRCs.

2 INPUT FROM THE SECOND PAPER OF THE SERIES

In this section, we briefly recap some inputs from [22] that are used in this paper. We refer to [22]
for the proofs. We only mention the main tools from [22] that we will use and refer, later in the
proof, to the precise statements of [22] when they were not mentioned in this section.
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CONFORMAL INVARIANCE OF DOUBLE RANDOM CURRENTS I: IDENTIFICATION OF THE LIMIT 11 of 68

Results for the double random current model
We will need tightness results for several families of loops, notably for the outer and inner
boundaries of the DRC clusters. This is done using an Aizenman–Burchard-type criterion for
the DRC. Below, for a subset 𝐴 of vertices, an 𝐴-cluster is a cluster for the current configura-
tion restricted to 𝐴. A domain 𝐷 is a subgraph of ℤ2 whose boundary is a self-avoiding polygon
in ℤ2. Let Λ𝑟 ∶= [−𝑟, 𝑟]2 and Ann(𝑟, 𝑅) ∶= Λ𝑅 ⧵ Λ𝑟−1. Call an Ann(𝑟, 𝑅)-cluster (i.e. an 𝐴-cluster
with 𝐴 = Ann(𝑟, 𝑅)) crossing if it intersects both 𝜕Λ𝑟 and 𝜕Λ𝑅. For an integer 𝑘 ⩾ 1, let 𝐴2𝑘(𝑟, 𝑅)
be the event† that there are 𝑘 distinct Ann(𝑟, 𝑅)-clusters crossing Ann(𝑟, 𝑅).

Theorem 2.1 (Aizenman–Burchard criterion for the DRC model). There exist sequences
(𝐶𝑘)𝑘⩾1, (𝜆𝑘)𝑘⩾1 with 𝜆𝑘 tending to infinity as 𝑘 → ∞, such that for every domain 𝐷, every 𝑘 ⩾ 1
and all 𝑟, 𝑅 with 1 ⩽ 𝑟 ⩽ 𝑅∕2,

𝐏∅,∅𝐷,𝐷[𝐴2𝑘(𝑟, 𝑅)] ⩽ 𝐶𝑘(
𝑟
𝑅
)𝜆𝑘 . (2.1)

If the domain has a 𝐶1 boundary, the same holds for the model with wired boundary conditions but
with the constants 𝐶𝑘 and 𝜆𝑘 depending on 𝐷.

We will also need some a priori properties of possible subsequential scaling limits. These will
be obtained using estimates in the discrete on certain four-arm type events. We list them now.
Let

𝐴□
4 (𝑟, 𝑅) ∶= {there exist two Λ𝑅-clusters crossing Ann(𝑟, 𝑅)},

and let 𝐴□
4 (𝑥, 𝑟, 𝑅) be the translate of 𝐴

□
4 (𝑟, 𝑅) by 𝑥.

Theorem 2.2. There exists 𝐶 > 0 such that for all 𝑟, 𝑅 with 1 ⩽ 𝑟 ⩽ 𝑅,

𝐏∅,∅
ℤ2,ℤ2

[𝐴□
4 (𝑟, 𝑅)] ⩽ 𝐶(𝑟∕𝑅)

2. (2.2)

Furthermore, for every 𝜀 > 0, there exists 𝜂 = 𝜂(𝜀) > 0 such that for all 𝑟, 𝑅with 1 ⩽ 𝑟 ⩽ 𝜂𝑅 and every
domainΩ ⊃ Λ2𝑅,

𝐏∅,∅
Ω,Ω
[∃𝑥 ∈ Λ𝑅 ∶ 𝐴

□
4 (𝑥, 𝑟, 𝑅)] ⩽ 𝜀. (2.3)

The result is coherentwith the fact that the scaling limit of the outer boundaries of large clusters
in the DRC model with free boundary conditions is given by CLE4, which is known to be made
up of simple loops that do not touch each other. Interestingly, to derive the convergence to the
continuum object, it will be necessary to first prove this property at the discrete level.
We turn to a second result of the same type. For a current 𝐧, let 𝐧∗ be the set of dual edges 𝑒∗

with 𝐧𝑒 = 0. For a dual path 𝛾 = (𝑒∗1 , 𝑒
∗
2 , … , 𝑒

∗
𝑘
), call the 𝐧-flux through 𝛾 the sum of the 𝐧𝑒𝑖 . Call

an Ann(𝑟, 𝑅)-hole in 𝐧 a connected component of 𝐧∗ restricted to Ann(𝑟, 𝑅)∗ (note that it can be
seen as a collection of faces). AnAnn(𝑟, 𝑅)-hole is said to be crossingAnn(𝑟, 𝑅) if it intersects 𝜕Λ∗𝑟

† The subscript 2𝑘 instead of 𝑘 is meant to illustrate that there are 𝑘 Ann(𝑟, 𝑅)-clusters from inside to outside separated by
𝑘 dual clusters separating them.
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12 of 68 DUMINIL-COPIN et al.

and 𝜕Λ∗𝑅. Consider the event

𝐴■
4 (𝑟, 𝑅) ∶=

{
there exist two Ann(𝑟, 𝑅)-holes crossing Ann(𝑟, 𝑅) and the
shortest dual path between them has even (𝐧1 + 𝐧2)-flux

}
.

Denote its translate by 𝑥 by 𝐴■
4 (𝑥, 𝑟, 𝑅).

Theorem 2.3. There exists 𝐶 > 0 such that for all 𝑟, 𝑅 with 1 ⩽ 𝑟 ⩽ 𝑅,

𝐏∅,∅
ℤ2,ℤ2

[𝐴■
4 (𝑟, 𝑅)] ⩽ 𝐶(𝑟∕𝑅)

2. (2.4)

Furthermore, for every 𝜀 > 0, there exists 𝜂 = 𝜂(𝜀) > 0 such that for all 𝑟, 𝑅with 1 ⩽ 𝑟 ⩽ 𝜂𝑅 and every
domain 𝐷 ⊃ Λ2𝑅,

𝐏∅,∅
Ω,Ω
[∃𝑥 ∈ Λ𝑅 ∶ 𝐴

■
4 (𝑥, 𝑟, 𝑅)] ⩽ 𝜀. (2.5)

Let us mention that the previous results are obtained using the following key statement, which
is of independent interest and is also directly used in this paper. For a set 𝐷, let 𝜕𝑟𝐷 be the set of
vertices in 𝐷 that are within a distance 𝑟 from 𝜕𝐷.

Theorem 2.4 (Connection probabilities close to the boundary for DRC). There exists 𝑐 > 0 such
that for all 𝑟, 𝑅 with 1 ⩽ 𝑟 ⩽ 𝑅 and every domain 𝐷 containing Λ2𝑅 but not Λ3𝑅,

𝑐
log(𝑅∕𝑟)

⩽ 𝐏∅,∅𝐷,𝐷[Λ𝑅
𝐧1+𝐧2
⟷ 𝜕𝑟𝐷] ⩽ 𝜖(

𝑟
𝑅
),

where 𝑥 ↦ 𝜖(𝑥) is an explicit function tending to 0 as 𝑥 tends to 0.

We predict that the upper bound should be true for 𝜖(𝑥) ∶= 𝐶∕ log(1∕𝑥) but we do not need
such a precise estimate here. Again, the result is coherent with the fact that the scaling limit of
the outer boundary of large clusters in the DRC with free boundary conditions is given by CLE4.
The lower bound is to be compared with recent estimates [24, 25] obtained for another depen-

dent percolationmodel, namely the critical Fortuin–Kasteleyn random cluster model with cluster
weight 𝑞 ∈ [1, 4). There, it was proved that the crossing probability is bounded from below by a
constant 𝑐 = 𝑐(𝑞) > 0 uniformly in 𝑟∕𝑅. We expect that the behaviour of the critical random clus-
ter model with cluster weight 𝑞 = 4 on the other hand is comparable to the behaviour presented
here: large clusters do not come close to the boundary of domains when the boundary conditions
are free.

3 PRELIMINARIES ON DISCRETEMODELS

The main two goals of this section are the following. First of all, we describe a coupling between
DRCs (both primal and dual) and the associated nesting fields. This is stated in Theorem 3.1, and
the properties of the coupling are crucial in the proofs of our main theorems (they exactly mimic
the structure of level sets in the continuum GFF discussed in Section 5). For the proof, we study
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CONFORMAL INVARIANCE OF DOUBLE RANDOM CURRENTS I: IDENTIFICATION OF THE LIMIT 13 of 68

three auxiliary and related to each other discrete models: random alternating flows (introduced
in [43]), and two bipartite dimer models on two different modifications 𝐺𝑑 and 𝐶𝐺 of the under-
lying graph𝐺 (introduced in [21] and [17, 27], respectively). These are described in Section 3.2. We
stress the fact that the alternating flow model and the dimer model on 𝐺𝑑 are not used outside
this section, but they are a convenient tool to relate the DRC model with the dimer model on 𝐶𝐺 .
This is then used in Section 4 to show convergence of the nesting field to the GFF. The main new
result on the dimer model on 𝐶𝐺 contained in this section is the fact that the associated inverse
Kasteleyn matrix is exactly equal to the fermionic observable of Chelkak and Smirnov [15].

3.1 A coupling between the primal and dual double random current

Let 𝐺 = (𝑉, 𝐸) be a graph as in Section 1.3. In this section, we discuss the joint coupling of the
DRC on𝐺 and the DRC on the dual graph𝐺∗ together with a height function that restricts to both
the nesting field of the primal and the dual random current (see Figure 3.1 for an illustration). The
coupling constants for the dual model satisfy the Kramers–Wannier duality relation

exp(−2𝛽∗𝐽∗𝑒∗) = tanh(𝛽𝐽𝑒). (3.1)

We note that if 𝐽𝑒 = 𝐽∗𝑒∗ = 1 for all 𝑒, and 𝛽 = 𝛽𝑐, then 𝛽
∗ = 𝛽𝑐 (the critical point is self-dual).

Properties of this coupling will be used in Section 6 to identify the scaling limit of the boundaries
of theDRC clusters.Wewill provide a proof of this result at the end of Section 3.2.3 using a relation
with the dimer model.

Theorem 3.1 (Master coupling). One can couple the following objects:

(i) a DRC 𝐧 with free boundary conditions on the primal graph 𝐺 = (𝑉, 𝐸), together with i.i.d.
±1-valued spins (𝜏 ∶  ∈ ℭ(𝐧)) associated to each cluster of 𝐧,

(ii) the dual DRC 𝐧† with free boundary conditions on the full dual graph 𝐺∗ = (𝑈, 𝐸∗) (that we
will refer to as the wired boundary conditions on the weak dual graph 𝐺†) and with the dual
coupling constants, together with i.i.d. ±1-valued spins (𝜏† ∶  ∈ ℭ(𝐧†)) associated with each
cluster of 𝐧†,

(iii) a height function𝐻 defined on 𝑉 ∪ 𝑈,

in such a way that the following properties hold:

1. The configurations 𝐧 and 𝐧† are disjoint in the sense that 𝐧𝑒 > 0 implies 𝐧
†
𝑒∗ = 0 and 𝐧

†
𝑒∗ > 0

implies 𝐧𝑒 = 0, where 𝑒∗ is the dual edge of 𝑒.
2. The odd part (the set of edges with odd values) of 𝐧 is equal to the collection of interfaces of 𝜏† (the

set of primal edges separating dual clusters with+1 and−1 spins of 𝜏†), and the odd part of 𝐧† is
equal to the collection of interfaces of 𝜏 (the set of dual edges separating primal clusters with +1
and −1 spins of 𝜏).

3. For a face 𝑢 ∈ 𝑈 and a vertex 𝑣 ∈ 𝑉 incident on 𝑢, we have

𝐻(𝑢) − 𝐻(𝑣) =
1
2
𝜏†𝑢𝜏𝑣.

Moreover, the height function 𝐻 restricted to the faces of 𝐺 (resp. 𝐺∗) has the law of the nesting
field of 𝐧 with free boundary conditions (resp. 𝐧† with wired boundary conditions) as denoted by
ℎ (resp. ℎ†).
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14 of 68 DUMINIL-COPIN et al.

F IGURE 3 . 1 An illustration of the coupling from Theorem 3.1. A piece of the (rotated) primal square lattice
with white vertices, and its dual square lattice with black vertices is shown. The primal and dual DRC clusters are
drawn in blue and red, respectively. The odd parts of the current are marked with solid lines, whereas the
non-zero even parts are marked with dashed lines. Each vertex (primal black vertex) and a face (dual white
vertex) carry both a ±1 spin (𝜏 and 𝜏†, respectively) and the value of the height function𝐻. The height function
takes integer values in ℤ on the black vertices and in 1

2
+ ℤ on the white vertices as implied by property 3 of the

master coupling. Property 3 and the fact that the spins 𝜏 and 𝜏† are constant on the primal and dual clusters,
respectively, imply that the height function is also constant on both the primal and dual clusters. This is why in
the figure we marked the values of the spins and height only at the rightmost vertices of the clusters (including
isolated vertices).

4. When exploring a cluster of 𝐧 from the outside, inside each of its holes the dual current 𝐧† has
wired boundary conditions, where each inner boundary of the hole (as defined in Section 1.2)
is identified as a single dual vertex (note that a single hole can have multiple inner boundaries
since the inner boundaries by definition do not cross primal edges whose both endpoints are in
the cluster of 𝐧). To be more precise, let �̃� be a connected component (which is not the component
of the boundary) of 𝐺 obtained after removing a cluster  of 𝐧 and all its adjacent edges. Then,
𝐧† restricted to �̃�∗ is a DRC with wired boundary conditions (here we disregard the state of 𝐧† on
edges dual to a primal edge that is adjacent to ). By duality, the same holds with the roles of 𝐧
and 𝐧† exchanged.

We stress the fact that the interfaces of 𝜏 and 𝜏† are disjoint in the sense of property 1 appears
already in the works of Dubédat [17], and Boutilier and de Tilière [9]. However, property 1 is a
stronger statement as it concerns the full DRC, and not only its odd part.
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CONFORMAL INVARIANCE OF DOUBLE RANDOM CURRENTS I: IDENTIFICATION OF THE LIMIT 15 of 68

F IGURE 3 . 2 A configuration of primal (red) and dual (blue) double random currents 𝐧 and 𝐧†. The
outermost blue circuit is part of a cluster of the boundary in 𝐧† whose remainder is not shown here. The green
edges denote the inner boundary loop 𝓁 of this cluster (i.e. a loop in 𝑄0 as defined in Section 6.1). The primal
vertices on this loop are identified with each other in the exploration process described in property (4) of the
master coupling from Theorem 3.1. After this identification, the primal current 𝐧 has wired boundary conditions.
The clusters of the modified current 𝐧𝓁 defined in Section 6.1 are given by the union of the green loop and the red
clusters surrounded by it. Finally, 𝑄1(𝓁) is defined as the collection of loops in the inner boundary of the external
most cluster (touching 𝓁) of this modified current 𝐧𝓁 . These loops come in two types, the yellow loops that are
part of 𝐴0(𝓁) and the orange loops are in 𝑄1(𝓁) ⧵ 𝐴0(𝓁). Each orange loop traces the red clusters from the outside
and/or the green loop from the inside. This property is used in Lemma 6.8 to obtain pre-compactness of the
orange loops given pre-compactness of the red and green loops. Inside each yellow loop of the inner boundary of
the primal clusters, the procedure is repeated and now the primal clusters surrounded by each such loop have
wired boundary conditions.

We note that the laws of 𝜏 and 𝜏† are those of a XOR Isingmodel and the dual XOR Isingmodel,
respectively (see Corollary 3.3 below). However, we will not use this fact in the rest of the article,
and our main results do not have direct implications for the scaling limit of the interfaces in the
XOR Ising model. An extension of this coupling to the Ashkin–Teller model can be found in the
works [41, 42] that appeared before but were based on the current article. As mentioned, we will
provide a different proof that uses the associated dimer model representation (see Section 3.2.3).
The following statement identifies the labels introduced in the definition (1.3) that correspond

to the two nesting fields encoded by𝐻.
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16 of 68 DUMINIL-COPIN et al.

Corollary 3.2. In the coupling as above, each cluster  of 𝐧 (resp. a cluster of 𝐧† different from the
cluster of the ghost vertex 𝔤) can be assigned a well-defined dual spin 𝜏† (resp. 𝜏). This is the spin
assigned to any face of𝐺 (resp.𝐺∗) incident on  from the outside. For the cluster of 𝔤, we set this spin
to be+1.With this definition, the independent labels associated to the clusters as in the definition (1.3)
are given by

𝜖 = 𝜏𝜏† . (3.2)

Proof. We first argue that 𝜏† is well defined. By property 2, for each primal cluster , all the dual
spins at the faces adjacent to the outer boundary of  (the innermost dual circuit surrounding )
have the same value. Indeed, otherwise there would exist two consecutive dual vertices along the
outer boundary of  with opposite 𝜏† spins. However, by property 2, the corresponding primal
edge would then belong to , and hence, the two dual vertices could not be consecutive on the
outer boundary of . This justifies the definition (3.2).
We also need to argue that given 𝐧, the spins (𝜖)∈ℭ(𝐧) are independent (as in the definition of

the nesting field). As mentioned, we will not use this result in the rest of the article. This follows
easily since given 𝐧, 𝜏† is a deterministic function of 𝐧 (by property 2), and 𝜏 are independent by
definition. □

Finally, for the sake of independent interest, we establish a connection with the XOR Ising
model. Recall that the XOR Ising model is just the pointwise product of two i.i.d. Ising models.

Corollary 3.3. In the master coupling described above:

∙ The spins 𝜏𝑣 , 𝑣 ∈ 𝑉, where we define 𝜏𝑣 = 𝜏 , with  being the cluster containing 𝑣, have the law
of the XOR Ising model on 𝐺 with free boundary conditions, coupling constants 𝐽𝑒 and inverse
temperature 𝛽.

∙ The spins 𝜏𝑢, 𝑢 ∈ 𝑈, where we define 𝜏
†
𝑢 = 𝜏

†
 , with  being the dual cluster containing 𝑢, condi-

tioned on the spin of the outer vertex 𝔤 being +1, have the law of the XOR Ising model on the dual
graph 𝐺∗ with + boundary conditions and dual parameters as in (3.1).

Proof. We prove the first statement as the second one follows by duality. To this end, let ℙ𝐺,𝛽
denote the master coupling probability measure and 𝔼𝐺,𝛽 its expectation. Moreover, let 𝐸

Ising
𝐺,𝛽

be
the expectation with respect to the Ising model on 𝐺 with free boundary conditions, coupling
constants 𝐽𝑒 and inverse temperature 𝛽. For every𝐴 ⊆ 𝑉, since the spins 𝜏 are independent for all
clusters, we have

𝔼𝐺,𝛽

[∏
𝑣∈𝐴

𝜏𝑣

]
= ℙ𝐺,𝛽[𝐴] = 𝐏∅𝐺,𝛽 ⊗ 𝐏∅

𝐺,𝛽
[𝐧1 + 𝐧2 ∈ 𝐴],

where 𝐧 ∈ 𝐴 is the event that each cluster of 𝐧 contains an even number (possibly zero) of ver-
tices of𝐴. Now, the classical switching lemma of Griffiths, Hurst and Sherman for DRCs [29] (see
also [22]) gives that

𝐏∅
𝐺,𝛽

⊗ 𝐏∅
𝐺,𝛽
[𝐧1 + 𝐧2 ∈ 𝐴] = 𝐸Ising𝐺,𝛽

[∏
𝑣∈𝐴

𝜎𝑣

]2
,
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CONFORMAL INVARIANCE OF DOUBLE RANDOM CURRENTS I: IDENTIFICATION OF THE LIMIT 17 of 68

F IGURE 3 . 3 One can construct the graphs �⃗�, 𝐺𝑑 and 𝐶𝐺 (�⃗� is formally a multigraph) locally around each
vertex of 𝐺. The weights satisfy 𝑦 = 2𝑥

1−𝑥2
, 𝑤 = 2𝑥

1+𝑥2
, 𝑧 = 1−𝑥2

1+𝑥2
. Here, 𝑥 = 𝑥𝑒 is the high-temperature weight equal

to tanh(𝛽𝐽𝑒). The edges carrying weight 1 in 𝐺𝑑 (resp. in 𝐶𝐺) are called short (resp. roads), and the remaining
edges are called long (resp. streets).

where 𝜎 denotes the Ising spins. The last expression is by definition the correlation function of
XOR Ising spins at𝐴. Since the spins are±1-valued, this implies that the law of 𝜏 underℙ𝐺,𝛽 is the
law of the XOR-Ising model (e.g. one can look at the characteristic function of the random vector
𝜏 and expand it into a finite sum of correlation functions as above). □

3.2 Mappings between discrete models

In this section, we recall the combinatorial equivalences between DRCs, alternating flows and
bipartite dimers established in [21, 43]. We will later use them to derive a version of Dubédat’s
bosonisation identity [17]. An additional black-white symmetry for correlators of monomer inser-
tions is established that is not apparent in [17]. This will yield a representation of the inverse
Kasteleyn matrix as the fermionic observable of Chelkak and Smirnov [15].
The results here are stated for general Ising models on arbitrary planar graphs 𝐺 = (𝑉, 𝐸) and

with arbitrary coupling constants (𝐽𝑒)𝑒∈𝐸 . We focus on the free boundary conditions case and
the wired boundary conditions can be treated analogously, replacing 𝐺 with 𝐺+. We will actually
mostly consider wired boundary conditions on the dual graph𝐺∗ which one can think of as (𝐺†)+,
where 𝐺† is the weak dual of 𝐺 whose vertex set does not contain the unbounded face of 𝐺.
We start by describing the relevant decorated graphs: the DRC model on a graph 𝐺 will be

related to the alternating flowmodel on a directed graph �⃗�, and the dimer model on two different
bipartite graphs 𝐺𝑑 and 𝐶𝐺 . All these graphs are planar and weighted, and their local structure
together with the corresponding edge weights are shown in Figure 3.3. We now describe their
construction in detail. Even though this is ultimately not relevant, we note that the structure of
𝐺𝑑 and �⃗� is determined by 𝐺 together with a choice of an orientation for each edge.
Given 𝐺, �⃗� is obtained by replacing each edge 𝑒 of 𝐺 by three parallel directed edges 𝑒𝑠1, 𝑒𝑚, 𝑒𝑠2

such that the orientation of the side (or outer) edges 𝑒𝑠1 and 𝑒𝑠2 is opposite to the orientation of
the middle edge 𝑒𝑚. The orientation of the middle edge can be chosen arbitrarily.
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18 of 68 DUMINIL-COPIN et al.

To obtain 𝐺𝑑 from �⃗�, we replace each vertex 𝑣 of �⃗� by a cycle of vertices of even length which
is given by the number of times the orientation of edges in �⃗� incident on 𝑣 changes when going
around 𝑣. We colour the new vertices black if the corresponding edges are incoming into 𝑣 and
white otherwise. We then connect the white vertices in a cycle corresponding to 𝑣 with the appro-
priate black vertices in a cycle corresponding to 𝑣′, where 𝑣 and 𝑣′ are adjacent in �⃗�. We call long
all the edges of 𝐺𝑑 that correspond to an edge of �⃗�, and short the remaining edges connecting the
vertices in the cycles.
The last graph 𝐶𝐺 can be constructed directly from 𝐺 by replacing each edge of 𝐺 by a quad-

rangle of edges, and then connecting two quadrangles by an edge if the corresponding edges of 𝐺
share a vertex and are incident to the same face (see Figure 3.3). Following [17], we call streets the
edges in the quadrangles and roads those connecting the quadrangles (which represent cities).
We note that the set of faces 𝑈 (resp. vertices 𝑉) of 𝐺 naturally embeds into the set of faces

of �⃗�, 𝐺𝑑 and 𝐶𝐺 (resp. 𝐺𝑑 and 𝐶𝐺). We therefore think of 𝑈 and 𝑉 as subsets of the set of faces
of the respective decorated graphs (e.g. when we talk about equality in distribution of the height
function on 𝐶𝐺 and the nesting field on 𝐺).
In the remainder of this section, we describe the mappings between the different models in

the following order: In Section 3.2.1, alternating flows on �⃗� are mapped under a map 𝜃 to a pair
composed of the odd and even part of a DRC on 𝐺. In Section 3.2.2, dimers on 𝐺𝑑 are mapped
under a map 𝜋 to alternating flows on �⃗�. In Section 3.2.3, dimers on 𝐺𝑑 are mapped to dimers on
𝐶𝐺 . The corresponding statements for wired boundary conditions can be recovered by replacing
𝐺 with 𝐺+.
The first two maps yield relations between configurations of the associated models, and the

last map is described as a sequence of local transformations (urban renewals) of the graphs 𝐶𝐺 or
𝐺𝑑 that does not change the distribution of the height function on a certain subset of the faces of
these two graphs.
We first describe relations on the level of distributions on configurations where no sources

or disorders are imposed. Later on (in Section 3.3), we increase the complexity by introduc-
ing sources.

3.2.1 Double random currents on 𝐺 and alternating flows on �⃗�

A sourceless alternating flow 𝐹 is a set of edges of the directed graph �⃗� satisfying the alternating
condition, that is, for each vertex 𝑣, the edges in 𝐹 that are incident to 𝑣 alternate between being
oriented towards and away from 𝑣 when going around 𝑣 (see Figure 3.4). In particular, the same
number of edges enters and leaves 𝑣. We denote the set of sourceless alternating flows on �⃗� by
∅, and following [43], we define a probability measure on ∅ by the formula, for every 𝐹 ∈ ∅,

𝐏∅flow(𝐹) ∶=
1

𝑍∅flow

wflow(𝐹), (3.3)

where 𝑍∅flow is the partition function of sourceless flows and, if 𝑉(𝐹) denotes the set of vertices in
the graph (𝑉, 𝐹) that have at least one incident edge,

wflow(𝐹) ∶= 2
|𝑉|−|𝑉(𝐹)| ∏

𝑒∈𝐹

𝑥𝑒, (3.4)
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CONFORMAL INVARIANCE OF DOUBLE RANDOM CURRENTS I: IDENTIFICATION OF THE LIMIT 19 of 68

F IGURE 3 . 4 Left: A configuration (𝐧odd, 𝐧even) on a piece of the hexagonal lattice 𝐺. The blue edges
represent 𝐧odd and the red edges represent 𝐧even. The blue and red edges together form one cluster𝒞. Middle: Two
alternating flow configurations on �⃗� mapped to (𝐧odd, 𝐧even) under 𝜃. The two clusters have opposite orientations
of the outer boundary. Depending on this orientation, the height function either increases or decreases by one
when going from the outside to the inside of the lower hexagon. This corresponds to two different outcomes for
the label 𝜖𝒞 in the definition of the nesting field (1.6). Right: Two dimer configurations on 𝐺𝑑 that map to the
corresponding alternating flows under 𝜋. Note that the parity of the height function on 𝐺𝑑 restricted to the
vertices of𝒞 and shifted by 1∕2 changes whenever the sign of 𝜖𝒞 changes. This can be seen from the placement of
the dimers on the short edges. This property is used in the proof of Theorem 3.1. On the other hand, the parity of
the height function on the faces of 𝐺 is independent of 𝜖𝒞 . We also note that both 𝜋 and 𝜃 are many-to-one maps.

with the weights 𝑥𝑒 as in Figure 3.3. We also define the height function of a flow 𝐹 to be a function
ℎ = ℎ𝐹 defined on the faces of �⃗� in the following way:

(i) ℎ(𝑢0) = 0 for the unbounded face 𝑢0,
(ii) for every other face 𝑢, choose a path 𝛾 connecting 𝑢0 and 𝑢, and define ℎ(𝑢) to be total flux of

𝐹 through 𝛾, that is, the number of edges in 𝐹 crossing 𝛾 from left to right minus the number
of edges crossing 𝛾 from right to left.

The function ℎ is well defined, that is, independent of the choice of 𝛾, since at each 𝑣 ∈ 𝑉, the
same number of edges of 𝐹 enters and leaves 𝑣 (and so the total flux of 𝐹 through any closed path
of faces is zero).
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20 of 68 DUMINIL-COPIN et al.

We are ready to state the correspondence between DRCs and alternating flows. To this end,
consider a map 𝜃 ∶ ∅ → Ω∅ defined as follows. For every 𝐹 ∈ ∅ and every 𝑒 ∈ 𝐸, count the
number of the corresponding directed edges 𝑒𝑚, 𝑒𝑠1, 𝑒𝑠2 that are present in 𝐹. Let 𝐹odd ⊆ 𝐸 be the
set with one or three such present edges, and 𝐹even ⊆ 𝐸 the set with exactly two such edges, and
set

𝜃(𝐹) ∶= (𝐹odd, 𝐹even).

Denote by 𝜃∗𝐏
∅
flow the pushforward measure on Ω

∅. The following result was first proved in [43].

Lemma 3.4 Corollary 4.3 of [43]. Let 𝐧 be distributed according to 𝐏∅dcur, and let ℎ𝐧 be its nesting
field. Let 𝐹 be distributed according to 𝐏∅flow. Then

(𝐹odd, 𝐹even, ℎ𝐹) = (𝐧odd, 𝐧even, ℎ𝐧) in law.

Proof. This is a consequence of the fact that the total weight of all alternating flows corresponding
to a cluster in the DRC, and whose outer boundary is oriented clockwise is the same as those
oriented counterclockwise (see also the proof of Lemma 3.10). This corresponds to the fact that
the nesting field is defined using symmetric coin flip random variables 𝜖𝒞 . Moreover, the sum of
these two weights is the same as the weight of the cluster in the DRC model. More details are
provided in the proof of Theorem 2.1 in [21]. □

3.2.2 Alternating flows on �⃗� and dimers on 𝐺𝑑

We first shortly recall the dimer model in its full generality. To this end, consider a finite weighted
graph . Recall that a dimer cover (or perfect matching)𝑀 of  is a subset of edges such that every
vertex of the graph is incident to exactly one edge of 𝑀. We write () for the set of all dimer
covers of . The dimer model is a probability measure on () which assign a probability to a
dimer cover that is proportional to the product of the edge weights over the dimer cover.
To each dimer cover 𝑀 on a bipartite planar finite graph  (coloured in black and white in

a bipartite fashion), one can associate a 1-form 𝑓𝑀 (i.e. a function defined on directed edges
which is antisymmetric under a change of orientation) satisfying 𝑓𝑀((𝑣, 𝑣′)) = −𝑓𝑀((𝑣′, 𝑣)) = 1
if {𝑣, 𝑣′} ∈ 𝑀 and 𝑣 is white, and 𝑓𝑀((𝑣, 𝑣′)) = 0 otherwise. For a 1-form 𝑓 and a vertex 𝑣, let
𝑑𝑓(𝑣) =

∑
𝑣′∼𝑣 𝑓((𝑣, 𝑣

′)) be the divergence of 𝑓 at 𝑣. Note that for a dimer cover𝑀, 𝑑𝑓𝑀(𝑣) = 1 if
𝑣 is white, and 𝑑𝑓𝑀(𝑣) = −1 if 𝑣 is black. Fixing a reference 1-form 𝑓0 with the same divergence,
we define the height function ℎ = ℎ𝑀 by

(i) ℎ(𝑢0) = 0 for the unbounded face 𝑢0,
(ii) for every other face 𝑢, choose a dual path 𝛾 connecting 𝑢0 and 𝑢, and define ℎ(𝑢) to be the

total flux of 𝑓𝑀 − 𝑓0 through 𝛾, that is, the sum of values of 𝑓𝑀 − 𝑓0 over the edges crossing
𝛾 from left to right.

The height function is well defined, that is, independent of the choice of 𝛾, since 𝑓𝑀 − 𝑓0 is a
divergence-free flow, that is, 𝑑(𝑓𝑀 − 𝑓0) = 0.
We now go back to the specific case of  = 𝐺𝑑. We will write 𝐏∅

𝐺𝑑
for the dimer model measure

on 𝐺𝑑 with weights as in Figure 3.3. We also fix a reference 1-form 𝑓0 on 𝐺𝑑 given by
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CONFORMAL INVARIANCE OF DOUBLE RANDOM CURRENTS I: IDENTIFICATION OF THE LIMIT 21 of 68

F IGURE 3 . 5 Urban renewal and vertex splitting are transformations of weighted graphs preserving the
distribution of dimers and the height function outside the modified region. The weights in urban renewal satisfy
𝑥′1 =

𝑥3
𝑥1𝑥3+𝑥2𝑥4

, 𝑥′2 =
𝑥4

𝑥1𝑥3+𝑥2𝑥4
, 𝑥′3 =

𝑥1
𝑥1𝑥3+𝑥2𝑥4

, 𝑥′4 =
𝑥2

𝑥1𝑥3+𝑥2𝑥4
.

∙ 𝑓0((𝑤, 𝑏)) = −𝑓0((𝑏, 𝑤)) = 1∕2 if {𝑤, 𝑏} is a short edge and 𝑤 is white,
∙ 𝑓0((𝑤, 𝑏)) = 𝑓0((𝑏, 𝑤)) = 0 if {𝑤, 𝑏} is a long edge.

Wenowdescribe a straightforwardmap𝜋 from the dimer covers on𝐺𝑑 to alternating flows on �⃗�
that preserves the law of the height function.We note that one could carry out the same discussion
and make a connection with DRCs directly, without introducing alternating flows. However, we
find the language of alternating flows particularly convenient to express some of the crucial steps
discussed later on (especially Lemmata 3.10 and 3.11). To this end, to each matching𝑀 ∈(𝐺𝑑),
associate a flow 𝜋(𝑀) ∈ ∅ by replacing each long edge in𝑀 by the corresponding directed edge
in �⃗�. One can check that this always produces an alternating flow. Indeed, assuming otherwise,
there would be two consecutive edges in 𝐹(𝑀) of the same orientation, and therefore, the path
of short edges connecting them in a cycle would be of odd length and therefore could not have a
dimer cover, which is a contradiction. Let 𝜋∗𝐏∅𝐺𝑑 be the pushforward measure on ∅ under the
map 𝜋.

Lemma 3.5 [21].We have 𝜋∗𝐏∅𝐺𝑑 = 𝐏
∅
flow. Moreover, under this identification, the restriction to𝑈 of

the height function of the dimer model is exactly the height function of the resulting alternating flow.

Proof. This is a consequence of the fact that the reference 1-form vanishes on the long edges, and
hence its contribution to the increment of the height function across a long edge of 𝐺𝑑 is equal
to zero, and the fact that the weights of the edges of �⃗� and the long edges of 𝐺𝑑 are the same.
Moreover, if a vertex 𝑣 has zero flow through it, that is, 𝑣 ∈ 𝑉 ⧵ 𝑉(𝐹), then there are exactly 2
dimer covers of the cycle of short edges of 𝐺𝑑 corresponding to 𝑣. Since both of these covers have
total edge weight 1, this accounts for the factor 2|𝑉|−|𝑉(𝐹)| in (3.4). □

3.2.3 Dimers on 𝐺𝑑 and on 𝐶𝐺

We will write 𝐏∅
𝐶𝐺

for the dimer model measure on 𝐶𝐺 with weights as in Figure 3.3. The dimer
models on 𝐺𝑑 and (𝐺∗)𝑑 are closely related to the dimer model on 𝐶𝐺 (as was described in [21])
using standard dimer model transformations called the vertex splitting and urban renewal, see
Figure 3.5. The main two results of this section are Proposition 3.6 below where we relate the
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22 of 68 DUMINIL-COPIN et al.

F IGURE 3 . 6 An example of the correspondence between dimer models on 𝐺𝑑 and 𝐶𝐺 . The yellow
quadrilaterals within grey quadrilaterals are transformed using urban renewal moves, and then collapsing one
doubled edge to a single edge as shown at the bottom of the figure. The underlying graph 𝐺 is a 3 × 3 piece of the
square lattice.

height functions on 𝐺𝑑 and 𝐶𝐺 , and the proof Theorem 3.1 (existence of the master coupling) that
relies on Proposition 3.6.

Proposition 3.6. The height function on 𝐶𝐺 restricted to the faces and vertices of 𝐺 is distributed
as the height functions on 𝐺𝑑 and (𝐺∗)𝑑 restricted to the faces and vertices of 𝐺. In particular, the
height function on 𝐶𝐺 restricted to the faces of 𝐺 has the law of the nesting field of the DRC with free
boundary conditions on 𝐺, and restricted to the vertices of 𝐺 has the law of the nesting field of the
DRC with wired boundary conditions on 𝐺† (or free boundary conditions on 𝐺∗).

To prove the proposition, we start with a crucial lemma that first appeared in [21].

Lemma 3.7 [21]. One can transform 𝐺𝑑 and (𝐺∗)𝑑 to 𝐶𝐺 (and the other way around) using urban
renewals and vertex splittings.

Proof. Wewill describe how to transform 𝐺𝑑 to 𝐶𝐺 (see Figure 3.6 for an illustration). The second
part follows since 𝐶𝐺 is symmetric with respect to 𝐺 and 𝐺∗.
To this end, fix a bipartite black-white colouring of both𝐺𝑑 and 𝐶𝐺 . Note that for each edge 𝑒 in

𝐺, there is one quadrilateral  in 𝐶𝐺 and two quadrilaterals 1, 2 in 𝐺𝑑 corresponding to 𝑒. For
each such edge 𝑒, choose for the internal quadrilateral of urban renewal the quadrilateral𝑖 in𝐺𝑑
with the opposite colours of vertices when compared to. Then, split each vertex that the chosen
quadrilateral shares with a quadrilateral corresponding to a different edge of 𝐺. In this way, we
find ourselves in the situation from the upper left panel in Figure 3.5. After performing urban
renewal and collapsing the doubled edge, we are left with one quadrilateral as desired. One can
check that the weights that we obtain match those from Figure 3.3. We then repeat the procedure
for every edge of 𝐺. The resulting graph is 𝐶𝐺 . □
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CONFORMAL INVARIANCE OF DOUBLE RANDOM CURRENTS I: IDENTIFICATION OF THE LIMIT 23 of 68

F IGURE 3 . 7 The figure shows the measure-preserving mapping of local configurations on 𝐺𝑑

(corresponding to a single edge 𝑒 of 𝐺) to local configurations on the streets of 𝐶𝐺 under urban renewal
performed on the left-hand-side quadrilateral in 𝐺𝑑 . The last case involves additional random choice between two
possible configurations. These choices are independent for local configurations corresponding to different edges
of 𝐺 and the probabilities are as in the figure with 𝑤 = 2𝑥∕(1 + 𝑥2).

A choice of quadrilaterals where urban renewals are applied for a rectangular piece of the
square lattice is depicted in Figure 3.6. In thisway, theDRCmodel on the square lattice is related to
a (weighted) dimer model on the square-octagon lattice. In Figure 3.7, we illustrate the behaviour
of local dimer configurations under one urban renewal performed in the construction described
in the lemma above.
As the reference 1-form for the dimer model on 𝐶𝐺 , we choose the canonical one given by

𝑓0((𝑤, 𝑏)) = −𝑓0((𝑏, 𝑤)) = 𝐏
∅
𝐶𝐺
({𝑤, 𝑏} ∈ 𝑀), (3.5)

where 𝑤 is a white vertex. Note that this makes the height function centred as all its increments
become centred by definition. This is the same 1-form as used in [9] on the infinite square-octagon
lattice 𝐶ℤ2 . In [36], two crucial properties of 𝑓0 were established when 𝐺 is an infinite isoradial
graph and the Isingmodel on𝐺 is critical. In the next lemma,we show that both of these properties
hold for arbitrary Ising weights on general finite planar graphs.

Lemma 3.8. We have

∙ 𝐏∅
𝐶𝐺
(𝑒 ∈ 𝑀) = 1∕2, if 𝑒 is a road, that is, 𝑒 corresponds to a corner of 𝐺,

∙ 𝐏∅
𝐶𝐺
(𝑒 ∈ 𝑀) = 𝐏∅

𝐶𝐺
(𝑒′ ∈ 𝑀), if 𝑒 and 𝑒′ are two parallel streets corresponding to the same edge of

𝐺 (or of the dual 𝐺∗).

In the proof, which is postponed to the end of Section 3.3, we actually compute the probability
from the second item in terms of the underlying Ising measure. However, the exact value will not
be important for our considerations. We note that the first bullet of the lemma above is the reason
why the nesting field with free boundary conditions on 𝐺 is defined to be integer-valued and the
one with wired boundary conditions on 𝐺∗ to be half-integer valued.
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24 of 68 DUMINIL-COPIN et al.

F IGURE 3 . 8 The reverse mapping to that in Figure 3.7. Again, urban renewal is performed on the
left-hand-side quadrangle of the local configuration on 𝐺𝑑 . Whenever there is ambiguity, we use additional
randomness which is independent for each local configuration and with probabilities as in the figure with
𝑠 = 2(1−𝑥2)

3+𝑥4
. These probabilities are simply obtained from Figure 3.7 using the definitions of the weights in both

dimer models on 𝐶𝐺 and 𝐺𝑑 and elementary conditional probability computations.

A crucial observation now is that the height function on the faces of 𝐺𝑑 corresponding to the
faces and vertices of 𝐺 is not modified by vertex splitting and urban renewal. This follows from
basic properties of these transformations, and the fact that the reference 1-form on the short edges
of 𝐺𝑑 is the same as the one on the roads of 𝐶𝐺 (by the first item of the lemma above). Indeed,
one can compute the height function on the faces of 𝐺𝑑 and 𝐶𝐺 corresponding to the faces and
vertices of𝐺 using only increments across short edges and roads, respectively. Thismeans that the
resulting height function on these faces of 𝐶𝐺 has the same distribution as the one on 𝐺𝑑. Since
𝐶𝐺 plays the same role with respect to 𝐺∗ as to 𝐺, we immediately conclude Proposition 3.6.
This observation is at the heart of the proof of the master coupling from Theorem 3.1. However,

one has to be careful since there is loss of information between the dimer model on 𝐺𝑑 and the
one on 𝐶𝐺 . Indeed, we have already seen that knowing a dimer configuration on 𝐺𝑑 allows one
to fully recover the triple (𝐧odd, 𝐧even, ℎ𝐧). However, a dimer configuration 𝑀 on 𝐶𝐺 only gives
access to (𝐧odd, ℎ𝐧) (since 𝑀 determines the height function, and 𝐧odd are the edges where the
height function has a non-trivial increment) and does not contain information about 𝐧even. To
recover it, one needs to add additional randomness in the form of independent coin flips for each
edge of 𝐺 with an appropriate success probability.

Proof of Theorem 3.1. We will use a procedure reverse to that from the proof of Lemma 3.7.
This procedure induces a measure-preserving mapping between local configurations on 𝐶𝐺 and
𝐺𝑑, see Figure 3.8, where in certain cases additional randomness is used to decide on the exact
configuration on 𝐺𝑑.
As mentioned, the graph 𝐶𝐺 plays a symmetric role with respect to 𝐺 and 𝐺∗. Hence, taking

the Kramers–Wannier dual parameters 𝑥∗𝑒 = (1 − 𝑥𝑒)∕(1 + 𝑥𝑒) and rotating the local configu-
ration on 𝐶𝐺 by 𝜋∕2, one can use the same mapping from Figure 3.8 to generate local dimer
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CONFORMAL INVARIANCE OF DOUBLE RANDOM CURRENTS I: IDENTIFICATION OF THE LIMIT 25 of 68

configurations on (𝐺∗)𝑑 that will correspond to dual random current configurations. Recall that
part of our aim is to couple the DRC on𝐺 with its dual on𝐺∗ so that no edge and its dual are open
at the same time. The idea is to first sample a dimer configuration on 𝐶𝐺 , and then using the rules
from Figure 3.8 to choose, possibly introducing additional randomness, the dimer configurations
on both 𝐺𝑑 and (𝐺∗)𝑑. The desired property of the coupling will follow from the way we use the
additional randomness for 𝐺𝑑 and (𝐺∗)𝑑.
We now explain this in more detail. In the coupling between DRCs and dimers on 𝐺𝑑, an edge

in the current has value zero if and only if there is no long edge present in the corresponding local
dimer configuration. From Figure 3.8, we see that the only possibility to have non-zero values
of double currents for both a primal edge 𝑒 and its dual 𝑒∗ is when the quadrangle in 𝐶𝐺 that
corresponds to both 𝑒 and 𝑒∗ has no dimer in the dimer cover. In that case, we have a probability
of 2𝑥2𝑒∕(1 + 𝑥

2
𝑒 ) to get a non-zero (and even) value of the primal double current and a probability

of 2(𝑥∗𝑒 )
2∕(1 + (𝑥∗𝑒 )

2) to get a non-zero (and even) value of the dual double current. However, since
these choices are independent of the possible choices for other local configurations, and since

2𝑥2𝑒
1 + 𝑥2𝑒

+
2(𝑥∗𝑒 )

2

1 + (𝑥∗𝑒 )
2
= 1 −

2𝑥𝑒(1 − 𝑥𝑒)

1 + 𝑥2𝑒
< 1,

we can couple the results so that the primal and dual currents are never both open (non-zero) at
𝑒. Together establishes Property 1 from the statement of the theorem.
We now focus on Property 2. Note that the spins 𝜏† defined by the interfaces of odd current in

𝐧 satisfy

𝜏†𝑢 = (−1)
𝐻(𝑢) (3.6)

for 𝑢 ∈ 𝑈, where 𝐻 is the height function on 𝐶𝐺 . By Proposition 3.6, we already know that 𝐻
restricted to 𝑈 has the law of the height function on (𝐺∗)𝑑 restricted to 𝑈. From the relationship
between theDRC𝐧† on𝐺∗ and the alternating flowmodel on �⃗�∗, one can see that the parity of this
height function at a face 𝑢 changes with the change of the orientation of the outer boundary of the
cluster of 𝐧† containing 𝑢 (see Figure 3.4 for a dual example). Therefore, (−1)𝐻(𝑢) is distributed as
an independent assignment of a sign to each cluster of𝐧†. This yields Property 2. A dual argument
for

𝜏𝑣 = 𝑖(−1)
𝐻(𝑣) (3.7)

with 𝑣 ∈ 𝑉, and 𝑖 the imaginary unit, yields the dual correspondence. Here, the factor 𝑖 appears
due to the fact that the height function takes half-integer values on 𝑉.
Furthermore, (3.6) and (3.7) together imply Property 3.
Finally, for Property 4, we make the following observations. First of all, when an edge is empty

(has zero current) in𝐧, then in the dimermodel on𝐺𝑑, the corresponding three long edges are not
part of the dimer configuration.We can therefore remove them, and proceed similarly for all other
empty edges encountered during the exploration of a cluster of 𝐧. This means that the unexplored
part dimer configuration on �̃�𝑑 is independent of the explored part, andmoreover is in ameasure-
preserving correspondence with DRCs with free boundary conditions on �̃�. Furthermore, the
(random) maps from Figures 3.7 and 3.8, when composed together, map from dimers on �̃�𝑑 to
dimers on (�̃�∗)𝑑 (and hence to DRCs with wired boundary conditions on the weak dual (�̃�†)𝑑)
are local. Therefore, the distribution of 𝐧† inside (�̃�∗)𝑑 is not affected by the explored part of the
primal current 𝐧 outside �̃�, and is that of an independent DRC with wired boundary conditions
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26 of 68 DUMINIL-COPIN et al.

F IGURE 3 . 9 Corner insertions in the relevant models can be realised by considering additional edges
connecting a vertex and a neighbouring face.

on (�̃�†)𝑑. We also note that a proof without using the dimer representation can also be given using
the construction from [42]. □

We leave it to the interested reader to check that the resulting coupling of the primal and dual
DRC model is the same as the one described in [42] (where no connection with the dimer model
is used, and where all the properties above can as well be deduced).

3.3 Disorder and source insertions

It will be important for our analysis to introduce the so-called sources in dimers, alternating flows,
and DRCs, and to see how they relate to order-disorder variables in the Ising model.
A corner 𝑐 = (𝑢, 𝑣) of a planar graph𝐺 is a pair composed of a face 𝑢 = 𝑢(𝑐) (also seen as a vertex

of the dual graph) and a vertex 𝑣 = 𝑣(𝑐) bordering 𝑢. One can visualise corners as segments from
the centre of the face 𝑢 to the vertex 𝑣 (see Figure 3.9). In this section, we discuss correlations of
disorder insertions, by which we mean modifications of the state space of the appropriate model
that are localised at the corners of 𝐺, and describe their mutual relationships. In what follows,
consider two corners 𝑐𝑖 and 𝑐𝑗 , and a simple dual path 𝛾 connecting 𝑢(𝑐𝑖) to 𝑢(𝑐𝑗). For a collection
of edges 𝐸0 of 𝐺, �⃗�, 𝐺𝑑 or 𝐶𝐺 , we define sgn𝛾(𝐸0) = −1 if the number of edges in 𝐸0 crossed by 𝛾
is odd and sgn𝛾(𝐸0) = 1 otherwise.
In the following subsections, we introduce correlation functions of corner insertions in the

relevant models and relate them to each other.

3.3.1 Kadanoff–Ceva fermions via double random currents

The two-point correlation function of Kadanoff–Ceva fermions is defined by

⟨𝜒𝑐𝑖𝜒𝑐𝑗⟩𝛾 ∶= 1

𝑍∅hT

∑
𝜂∈ {𝑣(𝑐𝑖 ),𝑣(𝑐𝑗 )}

sgn𝛾(𝜂)
∏
𝑒∈𝜂

𝑥𝑒, (3.8)
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CONFORMAL INVARIANCE OF DOUBLE RANDOM CURRENTS I: IDENTIFICATION OF THE LIMIT 27 of 68

where 𝑍∅hT ∶=
∑
𝜂∈∅

∏
𝑒∈𝜂 𝑥𝑒. Here, ∅ is the collection of sets of edges 𝜂 ⊆ 𝐸 such that each

vertex in the graph (𝑉, 𝜂) has even degree, and  {𝑣(𝑐𝑖),𝑣(𝑐𝑗)} is the collection of sets of edges such
that each vertex has even degree except for 𝑣(𝑐𝑖) and 𝑣(𝑐𝑗) that have odd degree. We note that the
sign of this correlator depends on the choice of 𝛾. However, its amplitude depends only on the
corners 𝑐𝑖 and 𝑐𝑗 .
The next lemmawas proved in [4, Lemma 6.3]. It expresses Kadanoff–Ceva correlators in terms

of double currents for which 𝑢(𝑐𝑖) is connected to 𝑢(𝑐𝑗) in the dual configuration. Below, for 𝐧 ∈
Ω𝐵, let

wdcur(𝐧) ∶=
∑

𝐧1∈Ω𝐵,𝐧2∈Ω∅

𝐧1+𝐧2=𝐧

w(𝐧1)w(𝐧2),

where w = w𝐺 is the random current weight defined in (1.4). For a current 𝐧, let 𝐧∗ be the set of
dual edges 𝑒∗ with 𝐧𝑒 = 0. For two faces 𝑢 and 𝑢′, let mean that 𝑢 is connected to 𝑢′ in
𝐧∗, that is, that 𝑢 and 𝑢′ belong to the same connected component of the graph (𝑈, 𝐧∗).

Lemma 3.9 Fermions via double currents [4].We have

3.3.2 Sink and source insertions in alternating flows

Consider the graph �⃗� with two additional directed edges 𝑐𝑖 = (𝑢(𝑐𝑖), 𝑣(𝑐𝑖)) and −𝑐𝑗 =
(𝑣(𝑐𝑗), 𝑢(𝑐𝑗)), and let  𝑐𝑖 ,−𝑐𝑗 be the set of alternating flows on this graph that contain both 𝑐𝑖 and
−𝑐𝑗 . By an alternating flow, here we mean a subset of edges of the extended graph that satisfies
the alternating condition at every vertex of �⃗�. The weights of 𝑐𝑖 and−𝑐𝑗 are set to 1.With 𝛾 defined
as above, introduce

𝑍𝛾flow(𝑐𝑖, −𝑐𝑗) ∶=
∑

𝐹∈ 𝑐𝑖 ,−𝑐𝑗
sgn𝛾(𝐹)wflow(𝐹).

Here, 𝑐𝑖 plays the role of the source and −𝑐𝑗 is the sink of the flow 𝐹.
Recall that 𝜃 ∶ ∅ → Ω∅ is the measure-preserving map sending sourceless alternating flows

on �⃗� to sourceless double current configurations on 𝐺, where as before, we identify a current 𝐧
with the pair (𝐧odd, 𝐧even). With a slight abuse of notation, we also write 𝜃 for the analogous map
from  𝑐𝑖 ,−𝑐𝑗 to the set Ω{𝑣(𝑐𝑖),𝑣(𝑐𝑗)} of currents on 𝐺 with sources at 𝑣(𝑐𝑖) and 𝑣(𝑐𝑗) (for currents,
there is no distinction between sources and sinks).
The next lemma is closely related to [43, Theorem 4.1].

Lemma 3.10 (Symmetry between sinks and sources).We have

𝑍𝛾flow(𝑐𝑖, −𝑐𝑗) = 𝑍
𝛾
flow(𝑐𝑗, −𝑐𝑖).
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28 of 68 DUMINIL-COPIN et al.

Proof. Note that the flow’s weights on �⃗� are invariant under the reversal of direction of the flow,
that is, the weights of the three directed edges 𝑒𝑠1, 𝑒𝑚, 𝑒𝑠2 of �⃗� corresponding to a single edge
𝑒 of 𝐺 satisfy 𝑥𝑒𝑠1 + 𝑥𝑒𝑠2 + 𝑥𝑒𝑠1𝑥𝑒𝑠2𝑥𝑒𝑚 = 𝑥𝑒𝑚 by construction. Hence, for a fixed (𝐧odd, 𝐧even) ∈
Ω{𝑣(𝑐𝑖),𝑣(𝑐𝑗)}, we have ∑

𝐹∈ 𝑐𝑖 ,−𝑐𝑗 ∶ 𝜃(𝐹)=(𝐧odd,𝐧even)
wflow(𝐹) =

∑
𝐹∈ 𝑐𝑗 ,−𝑐𝑖 ∶ 𝜃(𝐹)=(𝐧odd,𝐧even)

wflow(𝐹).

We finish the proof by summing both sides of this identity over (𝐧odd, 𝐧even) ∈ Ω
{𝑣(𝑐𝑖),𝑣(𝑐𝑗)}, and

using the fact that sgn𝛾(𝐹) depends only on 𝜃(𝐹). □

The next result is a direct analogue of Lemma 3.9 with an additional factor of 1∕2 that corre-
sponds to the fact that the connected component of the flow that connects 𝑐𝑖 to −𝑐𝑗 has a fixed
orientation.

Lemma 3.11 (Dual connection in alternating flows).We have

and moreover,

Proof. We first argue that for each (𝐧odd, 𝐧even) = 𝜃(𝐹) with 𝐹 ∈  𝑐𝑖 ,−𝑐𝑗 , we have that
. This follows from topological arguments and the alternating condition for flows.

Indeed, assume by contradiction that there is a cycle of edges in 𝐹 separating 𝑢(𝑐𝑖) from 𝑢(𝑐𝑗),
and choose the innermost such cycle surrounding 𝑢(𝑐𝑖). Consider the vertex 𝑣 of this cycle that is
first visited on a path from 𝑐𝑖 to −𝑐𝑗 . The alternating condition implies that the edges of the cycle
on both sides of 𝑣 should be oriented away from 𝑣. Following that orientation around the cycle,
we must arrive at another vertex 𝑣′ of the cycle where both incident edges are oriented towards
𝑣′. That is in contradiction with the alternating condition and the fact that the cycle is minimal.
The fact that the image of the map is follows from the same arguments as in [43,
Lemma 5.4].
The second part of the statement follows from the proof of [43, Theorem4.1] or [21, Theorem 1.7]

(theweights of flows in [43] are the same as ours up to a global factor). Themultiplicative constant
1∕2 is a consequence of the fact that the orientation of the cluster containing the corners is fixed
to one of the two possibilities, and in the DRC measure, there is an additional factor of 2 for each
cluster (see [43, Theorem 3.2]). □

Corollary 3.12. We have

⟨𝜒𝑐𝑖𝜒𝑐𝑗 ⟩𝛾 = 2𝑍𝛾flow(𝑐𝑖, −𝑐𝑗)𝑍𝛾flow
= 2

𝑍𝛾flow(𝑐𝑗, −𝑐𝑖)

𝑍𝛾flow
.
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CONFORMAL INVARIANCE OF DOUBLE RANDOM CURRENTS I: IDENTIFICATION OF THE LIMIT 29 of 68

Proof. This follows directly from Lemmata 3.9 and 3.11. □

3.3.3 Monomer insertions on 𝐺𝑑 and 𝐶𝐺

We identify the faces and vertices of the graphs 𝐺 and �⃗� with the corresponding subsets of the
faces of the dimer graphs 𝐺𝑑 and 𝐶𝐺 . We say that a vertex of 𝐺𝑑 or 𝐶𝐺 is a corner (vertex) corre-
sponding to 𝑐 = 𝑣𝑢 if it is incident both on the vertex 𝑣 and the face 𝑢 of 𝐺 in this identification.
Analogously to the discussion above, for  ∈ {𝐺𝑑, 𝐶𝐺} and 𝑣, 𝑣′ two vertices of , we define 𝑍𝛾 to
be the partition function of dimer covers of the graph  with 𝑣 and 𝑣′ removed, where moreover
each dimer crossed by the path 𝛾 contributes an additional factor of−1 to the weight of the cover.

Lemma 3.13 (Symmetry between white and black corners). Let 𝑏𝑖 and 𝑤𝑖 (resp. 𝑏𝑗 and 𝑤𝑗) be a
black and white corner vertex of 𝐺𝑑 corresponding to the corner 𝑐𝑖 (resp. 𝑐𝑗). If there is no such vertex
of the chosen colour, wemodify𝐺𝑑 by splitting the corner vertex of the opposite colour (using the vertex
splitting operation from Figure 3.5). Then,

𝑍𝛾
𝐺𝑑
(𝑏𝑖, 𝑤𝑗) = 𝑍

𝛾

𝐺𝑑
(𝑤𝑖, 𝑏𝑗) = 𝑍

𝛾
flow(𝑐𝑖, 𝑐𝑗).

Proof. By the definition of the measure-preserving map 𝐹∗ between dimers and alternating flows,
a corner monomer insertion in dimers is a source or sink insertion in alternating flows, which
yields

𝑍𝛾flow(𝑐𝑖, 𝑐𝑗) = 𝑍
𝛾

𝐺𝑑
(𝑏𝑖, 𝑤𝑗).

The statement then follows immediately from Lemma 3.10. □

Lemma 3.14 (Monomer insertions in 𝐺𝑑 and 𝐶𝐺). Let 𝑏 and 𝑤 be, respectively, black and white
corner vertices of 𝐺𝑑, and let �̃� and �̃� be the corresponding black and white vertices of 𝐶𝐺 . Then,

𝑍𝛾
𝐺𝑑
(𝑏, 𝑤) = 𝑍𝛾

𝐶𝐺
(�̃�, �̃�).

Proof. We use urban renewal as in Figure 3.10 to transform 𝐺𝑑 with monomer insertions to 𝐶𝐺
with monomer insertions. Note that here we use urban renewal with some of the long edges hav-
ing negative weight. However, this is not a problem since the opposite edges in a quadrilateral
being transformed by urban renewal always have the same sign, which results in a non-zero mul-
tiplicative constant for the partition functions. The resultingweights of𝐶𝐺 are negative if and only
if the edge crosses 𝛾. This implies the claim readily. □

We finally combine the previous results to obtain the following identity.We note that it can also
be derived using the approach of [17] after taking into account the symmetry of the underlying
six-vertex model (that we do not discuss here and that is also not discussed in [17]).

Corollary 3.15. In the setting of Lemma 3.13, we have

⟨𝜒𝑐𝑖𝜒𝑐𝑗 ⟩𝛾 = 2𝑍
𝛾
𝐶𝐺
(𝑤𝑖, 𝑏𝑗)

𝑍𝐶𝐺
= 2

𝑍𝛾
𝐶𝐺
(𝑤𝑗, 𝑏𝑖)

𝑍𝐶𝐺
.
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30 of 68 DUMINIL-COPIN et al.

F IGURE 3 . 1 0 Behaviour of corner monomer insertions under urban renewal. Insertion of a monomer is
modelled by the addition of edges with weight one into the dimer model: above (resp. below), the insertion of a
black (resp. white) monomer at the corner 𝑐 = 𝑢𝑣 with a disorder operator at 𝑢. The green edges crossing 𝛾 are
assigned negative weights. Urban renewal is applied to the yellow quadrilaterals on the left-hand side yielding the
yellow quadrilaterals on the right-hand side. Note that the colour of the monomer insertions on the left-hand and
right-hand sides agree.

Proof. This follows from Lemmata 3.14 and 3.13, as well as Corollary 3.12. □

The final item of this section is the proof of Lemma 3.5 which explicitly computes the canonical
reference 1-form (3.8) on 𝐶𝐺 in terms of the underlying Ising measures.

Proof of Lemma 3.8. By the corollary above, for a street {𝑤, 𝑏} of 𝐶𝐺 corresponding to an edge
𝑒 = {𝑣, 𝑣′} of 𝐺, we have

𝐏∅
𝐶𝐺
({𝑤, 𝑏} ∈ 𝑀) =

2𝑥
1 + 𝑥2

𝑍𝛾
𝐶𝐺
(𝑤, 𝑏)

𝑍𝐶𝐺
=

𝑥
1 + 𝑥2

⟨𝜒𝑐𝜒𝑐′⟩𝛾, (3.9)

where𝑥 = 𝑥𝑒 = tanh 𝛽𝐽𝑒 is the high-temperature Isingweight,
2𝑥
1+𝑥2

is theweight of the edge {𝑤, 𝑏}
in the dimermodel on𝐶𝐺 as in Figure 3.3, andwhere 𝑐 and 𝑐′ are the two corners of𝐺 correspond-
ing to the two roads of 𝐶𝐺 that are incident on 𝑤 and 𝑏, respectively. Indeed, the first identity is a
consequence of the fact that in this case the path 𝛾 can be chosen empty and therefore the numer-
ator 𝑍𝛾

𝐶𝐺
(𝑤, 𝑏) is actually the unsigned partition function of dimer covers of the graph where 𝑤

and 𝑏 are removed.
We now compute ⟨𝜒𝑐𝜒𝑐′⟩𝛾 in terms of the Ising two-point function𝜇𝐺[𝜎𝑣𝜎𝑣′ ]. To this end, recall

that ∅ is the collection of sets of edges 𝜂 ⊆ 𝐸 such that each vertex in the graph (𝑉, 𝜂) has even
degree, and  {𝑣,𝑣′} is the collection of sets of edges such that each vertex has even degree except
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CONFORMAL INVARIANCE OF DOUBLE RANDOM CURRENTS I: IDENTIFICATION OF THE LIMIT 31 of 68

for 𝑣 and 𝑣′ that have odd degree. Let

𝑍+ ∶=
∑
𝜂∈∅
𝑒∈𝜂

∏
𝑒′∈𝜂

𝑥𝑒′ , and 𝑍− ∶=
∑
𝜂∈∅
𝑒∉𝜂

∏
𝑒′∈𝜂

𝑥𝑒′ ,

and 𝑍 = 𝑍∅hT. By definition (3.8) of Kadanoff–Ceva fermions with 𝛾 empty, the high-temperature
expansion of spin correlations, and the fact that 𝜂 ↦ 𝜂△ {𝑒} is a bijection between ∅ and  {𝑣,𝑣′},
(3.9) gives

𝐏∅
𝐶𝐺
({𝑤, 𝑏} ∈ 𝑀) =

𝑥
1 + 𝑥2

1
𝑍
(𝑥−1𝑍+ + 𝑥𝑍−) =

𝑥
1 + 𝑥2

𝜇𝐺[𝜎𝑣𝜎𝑣′]. (3.10)

The same argument applied to the other street {𝑤′, 𝑏′} corresponding to the same edge 𝑒 yields
𝐏∅
𝐶𝐺
({𝑤, 𝑏} ∈ 𝑀) = 𝐏∅

𝐶𝐺
({𝑤′, 𝑏′} ∈ 𝑀) as the last displayed expression depends only on 𝑒. More-

over, by the Kramers–Wannier duality and the same computation for the dual Ising model on the
dual graph 𝐺∗, we have

𝐏∅
𝐶𝐺
({𝑤, 𝑏′} ∈ 𝑀) = 𝐏∅

𝐶𝐺
({𝑤′, 𝑏} ∈ 𝑀) =

𝑥∗

1 + (𝑥∗)2
𝜇𝐺∗[𝜎𝑢𝜎𝑢′] =

1 − 𝑥2

2(1 + 𝑥2)
𝜇𝐺∗[𝜎𝑢𝜎𝑢′], (3.11)

where 𝑥∗ ∶= (1 − 𝑥)∕(1 + 𝑥) is the dual weight, and where {𝑢, 𝑢′} is the dual edge of {𝑣, 𝑣′}. This
yields the second bullet of the lemma.
To prove the first bullet of the lemma, we need to relate the dual energy correlators 𝜇𝐺[𝜎𝑣𝜎𝑣′]

and 𝜇𝐺∗[𝜎𝑢𝜎𝑢′] with each other. Interpreting the graphs in ∅ as interfaces between spins of
different value on the vertices of 𝐺∗, and using the low-temperature expansion, we get

𝜇𝐺∗[𝜎𝑢𝜎𝑢′] =
𝑍− − 𝑍+

𝑍
.

This together with the second equality of (3.10), and the fact that 𝑍+ + 𝑍− = 𝑍, yields

2𝑥𝜇𝐺[𝜎𝑣𝜎𝑣′] + (1 − 𝑥
2)𝜇𝐺∗[𝜎𝑢𝜎𝑢′] = 1 + 𝑥

2.

Therefore adding (3.10) and (3.11) gives

𝐏∅
𝐶𝐺
({𝑤, 𝑏} ∈ 𝑀) + 𝐏∅

𝐶𝐺
({𝑤, 𝑏′} ∈ 𝑀) = 1∕2.

This means that the probability of seeing the road containing𝑤 in the dimer configuration is 1∕2.
By symmetry, this is true for all roads of 𝐶𝐺 . This finishes the proof. □

3.4 Kasteleyn theory and complex-valued fermionic observables

In this section, we introduce a Kasteleyn orientation which will be directly related to complex-
valued observables introduced by Chelkak and Smirnov [15].
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32 of 68 DUMINIL-COPIN et al.

F IGURE 3 . 1 1 A piece of the primal graph 𝐺 and its dual 𝐺∗ (black solid and dashed edges respectively)
and the corresponding diamond graph (blue edges) used to define the Kasteleyn weighting. We assume that the
edges of 𝐺 and 𝐺∗ are drawn as straight line segments. Each street 𝑒 of 𝐶𝐺 can be identified with a directed edge
of 𝐺 or 𝐺∗. Then, the angle 𝜃𝑒 is the angle in the diamond graph at the origin of this directed edge as depicted in
the figure. By definition, these angles sum up to 2𝜋 around every vertex and face of 𝐺, and around every face of
the diamond graph. This guarantees that the associated weighting satisfies the Kasteleyn condition.

3.4.1 A choice of Kasteleyn’s orientation

A Kasteleyn weighting of a planar bipartite graph is an assignment of complex phases 𝜍𝑒 ∈ ℂ with|𝜍𝑒| = 1 to the edges of the graph satisfying the alternating product condition meaning that for
each cycle 𝑒1, 𝑒2, … , 𝑒2𝑘 in the graph, we have

𝑘∏
𝑖=1

𝜍𝑒2𝑖−1𝜍
−1
𝑒2𝑖
= (−1)𝑘+1. (3.12)

Note that it is enough to check the condition around every bounded face of the graph.
To define an explicit Kasteleyn weighting for 𝐶𝐺 , consider the diamond graph of 𝐺, that is, the

graph whose vertices are the vertices and faces of 𝐺, and whose edges are the corners of 𝐺 (see
Figure 3.11). Recall that the edges of 𝐶𝐺 that correspond to the corners of 𝐺 are called roads and
the remaining edges (forming the quadrangles) are called streets. To each street, there is assigned
an angle 𝜃𝑒 between the two neighbouring corners in the diamond graph. We now define

∙ 𝜍𝑒 = −1 if 𝑒 is a road,
∙ 𝜍𝑒 = exp(

i
2
𝜃𝑒) if 𝑒 is a street that crosses a primal edge of 𝐺,

∙ 𝜍𝑒 = exp(−
i
2
𝜃𝑒) if 𝑒 is a street that crosses a dual edge of 𝐺∗.

That 𝜍 is a Kasteleyn orientation of𝐶𝐺 follows from the fact that the angles sumup to 2𝜋 around
every vertex and face of 𝐺, and around every face of the diamond graph. Note that if 𝐺 is a finite
subgraph of an embedded infinite graph Γ, then one can as well use the angles from the diamond
graph of Γ since, as already mentioned, one needs to check condition (3.12) only on the bounded
faces of𝐶𝐺 . In particular, for subgraphs of the square lattice with the standard embedding, wewill
take 𝜃𝑒 = 𝜋∕2 for all edges 𝑒.
Fix a bipartite colouring of 𝐶𝐺 , and let𝐾 = 𝐾𝐶𝐺 be a Kasteleynmatrix for a dimer model on the

bipartite graph 𝐶𝐺 with the weighting as above, that is, the matrix whose rows are indexed by the
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CONFORMAL INVARIANCE OF DOUBLE RANDOM CURRENTS I: IDENTIFICATION OF THE LIMIT 33 of 68

black vertices and the columns by the white vertices, and whose entries are

𝐾(𝑏,𝑤) ∶= 𝜍𝑏𝑤𝑥𝑏𝑤

if 𝑏𝑤 is an edge of 𝐶𝐺 and 𝐾(𝑏,𝑤) = 0 otherwise, where 𝑏 and𝑤 are respectively black and white
vertices, and 𝑥 is the edge weight for 𝐶𝐺 as in Figure 3.3.
We assume that the set of corners of 𝐺 comes with a prescribed order 𝑐1, … , 𝑐𝑚, and we order

the rows and columns of 𝐾 according to this order (for each white and black vertex of 𝐶𝐺 , there
is exactly one corner of 𝐺 that the vertex corresponds to). We denote by 𝑏𝑖 and 𝑤𝑖 the black and
white vertex of 𝐶𝐺 corresponding to 𝑐𝑖 .
The following lemma is a known observation.

Lemma 3.16. We have that

𝐾−1(𝑤𝑖, 𝑏𝑗) = i𝜅𝛾
𝑍𝛾
𝐶𝐺
(𝑤𝑖, 𝑏𝑗)

𝑍𝐶𝐺
, (3.13)

where 𝛾 is any dual path connecting a face 𝑢𝑖 adjacent to 𝑏𝑖 with a face 𝑢𝑗 adjacent to 𝑤𝑗 , 𝜅𝛾 is a
complex phase depending only on 𝛾,𝑤𝑗 and 𝑏𝑖 (see the proof for a concrete formula), and𝑍

𝛾
𝐶𝐺
(𝑏𝑖, 𝑤𝑗)

is, as before, the partition function of dimers on𝐶𝐺 with 𝑏𝑖 and𝑤𝑗 removed, andwith negativeweights
assigned to the edges crossing 𝛾.

The factor i is due to an arbitrary choice of 𝜅𝛾 which is made for later convenience.Wewill now
justify (3.13) and explicitly identify the complex phase 𝜅𝛾 in this expression.

Proof. To compute the inverse matrix, we use the cofactor representation as a ratio of
determinants:

𝐾−1(𝑤𝑖, 𝑏𝑗) = (−1)
𝑖+𝑗 det 𝐾

𝑏𝑗,𝑤𝑖

det 𝐾
,

where 𝐾𝑤𝑖,𝑏𝑗 =∶ �̃� is the matrix 𝐾 with the 𝑗th row and 𝑖th column removed.
By definition of the determinant, we have

det 𝐾 =
∑
𝜋∈𝑆𝑚

sgn(𝜋)
𝑚∏
𝑘=1

𝜍𝑏𝑘𝑤𝜋(𝑘)𝑥𝑏𝑘𝑤𝜋(𝑘) .

In this sum, only terms where 𝜋 corresponds to a perfect matching on 𝐶𝐺 are non-zero. Moreover,
by a classical theoremofKasteleyn [33], the complex phase sgn(𝜋)

∏𝑚
𝑖=1 𝜍𝑏𝑖𝑤𝜋(𝑖) is constant for such

𝜋. In particular, we can take 𝜋 to be the identity. Since 𝜍𝑏𝑖𝑤𝑖 = −1, we get that

det𝐾 = (−1)𝑁𝑍𝐶𝐺 ,

where 𝑁 is the number of corner edges in 𝐶𝐺 .
We nowwant to interpret �̃� as a Kasteleynmatrix for the graph �̃�𝐺 obtained from𝐶𝐺 by remov-

ing the vertices 𝑤𝑖 and 𝑏𝑗 . To this end, if 𝑤𝑖 and 𝑏𝑗 are not incident on the same face 𝑢𝑖 = 𝑢𝑗 , we
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34 of 68 DUMINIL-COPIN et al.

need to introduce a sign change to the Kasteleyn weighting along a dual path 𝛾 which connects
𝑢𝑖 to 𝑢𝑗 . We do it as follows. Define modified weights 𝜍 and �̃� by 𝜍𝑒 = −𝜍𝑒 (resp. �̃�𝑒 = −𝑥𝑒), if 𝑒 is
crossed by 𝛾, and 𝜍𝑒 = 𝜍𝑒 (resp. �̃�𝑒 = 𝑥𝑒) otherwise. Then 𝜍𝑒𝑥𝑒 = 𝜍𝑒�̃�𝑒, and hence �̃�(𝑏, 𝑤) = 𝜍𝑏𝑤�̃�𝑏𝑤
if 𝑏𝑤 is an edge of �̃�𝐺 , and �̃�(𝑏, 𝑤) = 0 otherwise.We leave it to the reader to verify that 𝜍 is indeed
a Kasteleyn weighting for �̃�𝐺 .
We can therefore again apply Kasteleyn’s theorem to obtain

det �̃� =
∑

𝜋∈𝑆𝑚−1

sgn(𝜋)
𝑚−1∏
𝑘=1

𝜍�̃�𝑘�̃�𝜋(𝑘) �̃�𝑏𝑘𝑤𝜋(𝑘) = �̃�𝛾𝑍
𝛾
𝐶𝐺
(𝑤𝑖, 𝑏𝑗),

where �̃�1, … , �̃�𝑚−1 (resp. �̃�1, … , �̃�𝑚−1) is an order-preserving renumbering of the black (resp.
white) vertices where 𝑏𝑗 (resp. 𝑤𝑖) is removed, and

�̃�𝛾 = sgn(𝜋)
𝑚−1∏
𝑘=1

𝜍�̃�𝑘�̃�𝜋(𝑘)

is a constant complex factor independent of the permutation 𝜋 defining a perfect matching of �̃�𝐺 .
Setting

𝜅𝛾 = (−1)
𝑖+𝑗+1+𝑁i�̃�𝛾 (3.14)

justifies (3.13). □

Wenowproceed to giving 𝜅𝛾 a concrete representation in terms of thewinding angle of 𝛾. To this
end, we first need to introduce some complex factors. We follow [13] and for each directed edge or
corner 𝑒, we fix a square root of the corresponding direction in the complex plane and denote by
𝜂𝑒 its complex conjugate. Recall that we always assume that a corner 𝑐 is oriented towards its vertex
𝑣(𝑐), and we write −𝑐 whenever we consider the opposite orientation. For two directed edges or
corners 𝑒, g that do not point in opposite directions, we define∠(𝑒, g) to be the turning angle from
𝑒 to g , that is, the number in (−𝜋, 𝜋) satisfying

𝑒−i∠(𝑒,g) = (𝜂𝑒𝜂g )
2.

Lemma 3.17. Let 𝑐𝑖 , 𝑐𝑗 and 𝛾 be as above. Define �̃� to be the extended path starting at−𝑐𝑗 , following
𝛾, and ending at 𝑐𝑖 . Then,

𝜅𝛾 = exp

(
i
2
wind(�̃�)

)
,

where wind(�̃�) is the total winding angle of the path �̃�, that is, the sum of all turning angles along
the path.

Proof. Let 𝜌 be a simple primal path starting at 𝑣(𝑐𝑖) and ending at 𝑣(𝑐𝑗), and let �̃� be the extended
path that starts at 𝑐𝑖 , then follows 𝜌, and ends at −𝑐𝑗 . We will define a perfect matching 𝑀𝜌 of
�̃�𝐺 that corresponds to 𝜌 in a natural way (see Figure 3.12). Note that there is a unique sequence
of streets 𝑆𝜌 such that the first edge contains 𝑏𝑖 and the last edge contains 𝑤𝑗, and where all the
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CONFORMAL INVARIANCE OF DOUBLE RANDOM CURRENTS I: IDENTIFICATION OF THE LIMIT 35 of 68

F IGURE 3 . 1 2 An illustration of the proof of Lemma 3.17 in the case where 𝐺 is a piece of the square lattice.
The green lines represent corners 𝑐𝑖 and 𝑐𝑗 , the red lines represent the primal path 𝜌 from 𝑣(𝑐𝑖) to 𝑣(𝑐𝑗) and the
blue lines show the dual path 𝛾 from 𝑢(𝑐𝑗) to 𝑢(𝑐𝑖). The red vertices 𝑤𝑖 and 𝑏𝑗 are removed in the graph 𝐶�̃� . The
matching𝑀𝜌 corresponding to 𝜌 contains the orange streets and all remaining roads. The dashed (resp. solid)
orange edges carry a phase exp( i𝜋

4
) (resp. exp(− i𝜋

4
)) in the original Kasteleyn weighting 𝜍 of 𝐶𝐺 . The orange edge

crossed by 𝛾 gets an additional −1 sign in the Kasteleyn weighting 𝜍 of �̃�𝐺 .

edges are directly to the right of the oriented path �̃� (the orange edges in Figure 3.12). We define
𝑀𝜌 to contain 𝑆𝜌 and all the remaining roads denoted by 𝑅𝜌.
Moreover, let 𝓁 be the loop (closed path) which is the concatenation of �̃� and �̃�. We claim that∏

𝑏𝑤∈𝑆𝜌

𝜍𝑏𝑤 = (−1)
𝑡(𝓁)

∏
𝑏𝑤∈𝑆𝜌

𝜍𝑏𝑤 = (−1)
𝑡(𝓁)+1i exp

(
−
i
2
wind(�̃�)

)
, (3.15)

where 𝑡(𝓁) is the number of self-crossings of 𝓁. Indeed, the first identity follows since the self-
crossings of 𝓁 only come from a crossing between 𝛾 and 𝜌, and each such edge gets an additional
−1 factor in the Kasteleyn weighting �̃�. We now argue for the second inequality by inspecting the
contribution of the phases 𝜍 at each turn of �̃�.
To this end, we consider all the corners adjacent to 𝜌. We denote by 𝛼𝑘 (resp. 𝛼∗𝑘), 𝑘 = 1, 2, …,

the unsigned angles between two consecutive corners that share a vertex (resp. a face) of 𝐺, and
by 𝛽𝑘, we denote the angles between the edges of 𝜌 and the corners (see Figure 3.13). Note that
there is exactly |𝜌| angles of type 𝛼∗, and 2|𝜌| angles of type 𝛽 (there can be more angles of type
𝛼). Moreover, 𝛼∗

𝑘
= 𝜋 − 𝛽2𝑘−1 − 𝛽2𝑘 for each 𝑘 ∈ {1, … , |𝜌|}. Finally, the sum of all angles of type

𝛼 and 𝛽 around a vertex of 𝐺 is by definition equal to 𝜋 plus the turning angle of 𝜌 at that vertex.
Writing 𝐴 (resp. 𝐵) for the sum of all angles of type 𝛼 (resp. 𝛽), and using the definition of 𝜍, we
find ∏

𝑏𝑤∈𝑆𝜌

𝜍𝑏𝑤 =
∏
𝑘

𝑒−
i𝛼𝑘
2

∏
𝑘

𝑒
i𝛼∗
𝑘
2 = 𝑒−

i
2
(𝐴+𝐵−|𝜌|𝜋) = 𝑒− i

2
(wind(�̃�)+𝜋) = −i exp

(
−
i
2
wind(�̃�)

)
,

which justifies (3.15).
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36 of 68 DUMINIL-COPIN et al.

F IGURE 3 . 1 3 An illustration of the proof of (3.15). The path 𝜌 goes from 𝑐𝑖 to −𝑐𝑗 , and is composed of the
two red edges. The orange edges represent 𝑆𝜌.

On the other hand, a classical fact due to Whitney [67] (see also [13, Lemma 2.2]) says that

exp

(
i
2
wind(𝓁)

)
= (−1)𝑡(𝓁)+1. (3.16)

Factorising the left-hand side into the contributions coming from �̃� and �̃�, we get

exp

(
i
2
wind(𝓁)

)
= 𝜅𝛾 exp

(
i
2
wind(�̃�)

)
.

Combining with (3.15), we arrive at∏
𝑏𝑤∈𝑀𝜌

𝜍𝑏𝑤 =
∏
𝑏𝑤∈𝑆𝜌

𝜍𝑏𝑤
∏
𝑏𝑤∈𝑅𝜌

𝜍𝑏𝑤 = (−1)
|𝑅𝜌|i𝜅𝛾,

where the second equality holds true since roads have complex phase 𝜍 = −1. On the other hand,
by (3.14), we have

𝜅𝛾 = (−1)
𝑖+𝑗+1+𝑁sgn(𝜋)i

𝑚−1∏
𝑘=1

𝜍𝑏𝑘𝑤𝜋(𝑘) = (−1)
𝑖+𝑗+1+𝑁sgn(𝜋)i

∏
𝑏𝑤∈𝑀𝜌

𝜍𝑏𝑤,

where 𝜋 ∈ 𝑆𝑘−1 is the permutation defining the matching𝑀𝜌, and 𝑁 is the number of all corner
edges in 𝐶𝐺 . Therefore, to finish the proof, it is enough to show that

sgn(𝜋) = (−1)𝑖+𝑗+𝑁+|𝑅𝜌|. (3.17)

To this end, first note that 𝑀𝜌 naturally defines a bijection �̃� of the set of corners of 𝐺 with the
two corners 𝑐𝑖 and 𝑐𝑗 identified as one corner, called from now on 𝑐, where �̃�(𝑐) = 𝑐′ if the black
vertex corresponding to 𝑐 is connected by an edge in𝑀𝜌 to the white vertex corresponding to 𝑐′.
This bijection can be thought of as a permutation of {1, … , 𝑘 − 1}where the index corresponding to
𝑐 is 𝑚 − 1, and where the first 𝑚 − 2 indices respect the original order on the remaining corners
of 𝐶𝐺 . Clearly, �̃� has only one non-trivial cycle whose length is |𝑆𝜌| + 1, and hence, sgn(�̃�) =
(−1)|𝑆𝜌|. Without loss of generality, let 𝑗 > 𝑖 and for an index 𝑙 ∈ {1, … , 𝑘 − 1}, let 𝑝𝑙 ∈ 𝑆𝑘−1 be the
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CONFORMAL INVARIANCE OF DOUBLE RANDOM CURRENTS I: IDENTIFICATION OF THE LIMIT 37 of 68

permutation such that 𝑝𝑙(𝑙) = 𝑘 − 1 and that does not change the order of the remaining indices.
Note that sgn(𝑝𝑙) = (−1)𝑘−1−𝑙 as 𝑝𝑙 is a composition of 𝑘 − 1 − 𝑙 transpositions. One can check
that 𝜋 = 𝑝−1

𝑖
�̃�𝑝𝑗−1, and as a result sgn(𝜋) = (−1)

𝑖+𝑗−1+|𝑆𝜌|. To show (3.17) and finish the proof,
we count the roads whose both endpoints are covered by a street in 𝑆𝜌, to get that𝑁 = |𝑆𝜌| + 1 +|𝑅𝜌|. □

All in all, from (3.13) together with Corollary 3.15, we obtain the following statement.

Corollary 3.18. We have

𝐾−1(𝑤𝑖, 𝑏𝑗) =
1
2
i𝜅𝛾⟨𝜒𝑐𝑖𝜒𝑐𝑗⟩𝛾, (3.18)

where the complex phase 𝜅𝛾 is as in Lemma 3.17.

3.4.2 Complex-valued fermionic observables

In this section, we rewrite ⟨𝜒𝑐𝑖𝜒𝑐𝑗 ⟩, and hence the right-hand side of (3.18), in terms of
complex-valued fermionic observables of Chelkak–Smirnov [15], and Hongler–Smirnov [31]. This
correspondence is well known (and can be, e.g. found in [13]) but we choose to present the details
for completeness of exposition. In the next section,wewill use it togetherwith the available scaling
limit results to derive the scaling limit of 𝐾−1 for the critical model on 𝐶𝐷𝛿 .
We first define the complex version of the Kadanoff–Ceva observable for two corners 𝑐𝑖 and 𝑐𝑗

by

𝑓(𝑐𝑖, 𝑐𝑗) ∶=
1

𝑍∅hT

∑
𝜂∈𝑣(𝑐𝑖 ),𝑣(𝑐𝑗 )

exp

(
−
i
2
wind(𝜌𝜂)

)∏
𝑒∈𝜂

𝑥𝑒, (3.19)

wherewind(𝜌𝜂) is again the totalwinding angle of the path 𝜌𝜂, that is, the sumof all turning angles
along the path, and where 𝜌𝜂 is a simple path contained in 𝜂 ∪ {𝑐𝑖, 𝑐𝑗} that starts at 𝑐𝑖 and ends at
−𝑐𝑗 , and is defined as follows: for each vertex 𝑣 of degree larger than two in 𝜂, one connects the
edges around 𝑣 into pairs in a non-crossing way, thus giving rise to a collection of non-crossing
cycles 𝜂 and a path from 𝑐𝑖 to −𝑐𝑗 that we call 𝜌𝜂.
It is a standard fact that the definition of 𝑓(𝑐𝑖, 𝑐𝑗) does not depend on the way the connections

at each vertex of 𝜂 are chosen (as long as they are non-crossing). Moreover, for all 𝜂 ∈ 𝑣(𝑐𝑖),𝑣(𝑐𝑗),
we have

−𝜅𝛾 exp

(
−
i
2
wind(𝜌𝜂)

)
= sgn𝛾(𝜂), (3.20)

where as before, 𝛾 is a fixed dual path connecting 𝑢(𝑐𝑖) and 𝑢(𝑐𝑗), and 𝜅𝛾 = exp(
i
2
wind(�̃�)), with

�̃� being the path starting at −𝑐𝑗 , then following 𝛾, and ending at 𝑐𝑖 . To justify this identity, we
consider the loop 𝓁 which is the concatenation of 𝜌𝜂 and the path �̃�, and write

exp

(
−
i
2
wind(𝓁)

)
= 𝜅𝛾 exp

(
−
i
2
wind(𝜌𝜂)

)
.
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38 of 68 DUMINIL-COPIN et al.

We then again use Whitney’s identity (3.16) and the fact that the collection of cycles 𝜂 must, by
construction, cross 𝛾 an even number of times (since 𝜂 does not cross 𝜌𝜂, and 𝜂 crosses 𝓁 an
even number of times for topological reasons). This justifies (3.20) and implies that

⟨𝜒𝑐𝑖𝜒𝑐𝑗⟩𝛾 = −𝜅𝛾𝑓(𝑐𝑖, 𝑐𝑗),
which together with Corollary 3.18 gives the following proposition.

Proposition 3.19. We have

𝐾−1(𝑤𝑖, 𝑏𝑗) = −
i
2
𝑓(𝑐𝑖, 𝑐𝑗). (3.21)

To make the connection with the scaling limit results of [31], we still need to introduce an
observable that is indexed by two directed edges of 𝐺 instead of two corners. To this end, for
each edge 𝑒 of 𝐺, let 𝑧𝑒 be its midpoint. Also, for a directed edge 𝑒 = (𝑣1, 𝑣2), let ℎ(𝑒) be the half-
edge{𝑧𝑒, 𝑣2}, let−𝑒 = (𝑣2, 𝑣1) be its reversal and let 𝑒 = {𝑣1, 𝑣2} be its undirected version.Moreover,
for two directed edges 𝑒 = (𝑣1, 𝑣2) and g = (𝑣1, 𝑣2), let 𝑒,g be the collections of edges 𝜂 ∈ 𝑣2,𝑣1
that do not contain 𝑒 and ḡ . We define

𝑓(𝑒, g) ∶=
1

𝑍∅hT

∑
𝜂∈𝑒,g

exp

(
−
i
2
wind(𝜌𝜂)

)∏
𝑒∈𝜂

𝑥𝑒,

where 𝜌𝜂 is a simple path in 𝜂 ∪ {ℎ(𝑒), ℎ(−g)} that starts at 𝑧𝑒 and ends at 𝑧g , and is analogous to
𝜌𝜂 from (3.19). Note that the winding of 𝜌𝜂 is constant (independent of 𝜂) modulo 2𝜋 and equal
to ∠(𝑒, g), and therefore,

𝑓(𝑒, g) ∈ 𝜂𝑒𝜂gℝ. (3.22)

4 CONVERGENCE OF THE NESTING FIELD (PROOF OF
THEOREM 1.4)

Let𝐷 ⊂ ℂ be a Jordan domain, and let𝐷𝛿 approximate𝐷, that is, 𝑑(𝜕𝐷𝛿, 𝜕𝐷) → 0 as 𝛿 → 0 (where
𝑑 is as in (1.2)). We consider the critical DRCmodel with free boundary conditions on𝐷𝛿, and the
corresponding dimermodel on Dubédat’s square-octagon graph𝐶𝐷𝛿 . We call𝑈𝛿 and𝑉𝛿 the set of
faces of 𝐶𝐷𝛿 that correspond to the faces and vertices of 𝐷𝛿 respectively. In this section, we show
that the moments of the associated height function ℎ𝛿 converge to the moments of 1√

𝜋
times the

Dirichlet GFF.

4.1 Scaling limit of inverse Kasteleyn matrix

We start by establishing the scaling limit of the inverse Kasteleyn matrix on 𝐶𝐷𝛿 . This is crucial
for the computation of the moments of the height function that is done in the next section.
Our method is to use Proposition 3.19 obtained in the previous section, as well as the existing

scaling limit results for discrete s-holomorphic observables in the Ising model [14, 31]. It is
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CONFORMAL INVARIANCE OF DOUBLE RANDOM CURRENTS I: IDENTIFICATION OF THE LIMIT 39 of 68

important to note that to prove our main results, we need to work with continuum domains 𝐷
with an arbitrary (possibly fractal) boundary. Therefore, we state a generalised version of the
scaling limit results of Hongler and Smirnov [31] for the critical fermionic observable with two
points in the bulk of the domain. Their result, as stated, is valid only for domains whose boundary
is a rectifiable curve (see also [30]). Even though the stronger result that we need is most likely
known to the experts, for the sake of completeness, we will outline its proof, which is a direct
consequence of the robust framework of Chelkak, Hongler and Izyurov [14] that was used to
establish scaling limits for critical spin correlations.
From now on, we assume that the observables are critical, that is, the weight 𝑥𝑒 is constant and

equal to 𝑥𝑐 =
√
2 − 1 so that

∏
𝑒∈𝜂 𝑥𝑒 = 𝑥

|𝜂|
𝑐 . Also, we define

𝑓(𝑒, 𝑧g ) ∶= 𝑥𝑐(𝑓(𝑒, g) + 𝑓(𝑒, −g)), (4.1)

which is the observable of Hongler and Smirnov [31] (when 𝑒 is a horizontal edge pointing to the
right) that is indexed by a directed edge 𝑒 and a midpoint of an edge 𝑧g . The next lemma relates
this observable to the corner observable in a linear fashion. This type of identities is well known
(see, e.g. [13]) and is closely related to the notion of s-holomorphicity introduced by Smirnov [65]
for the square lattice, and generalized by Chelkak and Smirnov [15], and Chelkak [11, 12]. We omit
the proof.

Lemma 4.1. Let 𝑐𝑖 and 𝑐𝑗 be two corners that do not share a vertex, and let 𝑒 and g be directed edges
incident to 𝑣(𝑐𝑖) and 𝑣(𝑐𝑗), respectively. Then,

𝑓(𝑐𝑖, 𝑐𝑗) =
1√
2

∑
𝑒′∈{𝑒,−𝑒}

(
1 + (𝜂𝑐𝑖 𝜂𝑒′ )

2
)(
𝑓(𝑒′, 𝑧g ) − (𝜂𝑒′𝜂𝑐𝑗 )

2𝑓(𝑒′, 𝑧g )
)
.

Wealso need to introduce the continuumcounterparts of the discrete holomorphic observables.
To this end, let 𝐷 ⊊ ℂ be a simply connected domain different from ℂ, and let 𝜓𝑤 = 𝜓𝐷𝑤 be the
unique conformal map from 𝐷 to the unit disk with 𝜓𝑤(𝑤) = 0 and 𝜓′𝑤(𝑤) > 0. For 𝑤, 𝑧 ∈ 𝐷, we
define

𝑓𝐷−(𝑤, 𝑧) ∶=
1
2𝜋

√
𝜓′𝑤(𝑤)𝜓

′
𝑤(𝑧) and 𝑓𝐷+(𝑤, 𝑧) ∶=

1
2𝜋

√
𝜓′𝑤(𝑤)𝜓

′
𝑤(𝑧)

1
𝜓𝑤(𝑧)

.

Lemma 4.2 (Conformal covariance of 𝑓𝐷± ). Let 𝜑 ∶ 𝐷 → 𝐷′ be a conformal map. Then,

𝑓𝐷−(𝑤, 𝑧) = 𝜑
′(𝑤)

1
2 𝜑′(𝑧)

1
2 𝑓𝐷

′

− (𝜑(𝑤), 𝜑(𝑧)),

𝑓𝐷+(𝑤, 𝑧) = 𝜑
′(𝑤)

1
2 𝜑′(𝑧)

1
2 𝑓𝐷

′

+ (𝜑(𝑤), 𝜑(𝑧)).

Moreover, for the upper half-plane ℍ, we have

𝑓ℍ−(𝑤, 𝑧) =
i

2𝜋(𝑧 − 𝑤)
and 𝑓ℍ+(𝑤, 𝑧) =

1
2𝜋(𝑧 − 𝑤)

.
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40 of 68 DUMINIL-COPIN et al.

Proof. To prove the first part, note that 𝜓𝐷′
𝜑(𝑤)

(𝑧) = 𝜓𝐷𝑤(𝜑
−1(𝑧)) 𝜑

′(𝑤)|𝜑′(𝑤)| . Indeed, the right-hand side
is a conformal map with a positive derivative (𝜓𝐷𝑤)

′(𝑤)∕|𝜑′(𝑤)| and vanishing at 𝜑(𝑤). Hence, we
have

𝑓𝐷
′

− (𝜑(𝑤), 𝜑(𝑧)) =

[(
𝜓𝐷

′

𝜑(𝑤)

)′
(𝜑(𝑤))

(
𝜓𝐷

′

𝜑(𝑤)

)′
(𝜑(𝑧))

] 1
2

=
[(
𝜓𝐷𝑤

)′
(𝑤)

(
𝜓𝐷𝑤

)′
(𝑧)

] 1
2 [𝜑′(𝑤)𝜑′(𝑧)]−1

2
𝜑′(𝑤)|𝜑′(𝑤)|

= 𝑓𝐷−(𝑤, 𝑧)𝜑
′(𝑤)

− 1
2 𝜑′(𝑧)−

1
2 ,

and similarly for 𝑓𝐷+ . The second part follows from the fact that 𝜓ℍ𝑤(𝑧) = 𝑖
𝑧−𝑤
𝑧−𝑤

and the definition
of 𝑓ℍ±. □

We now proceed to the generalisation of [31, Theorem 8] mentioned at the beginning of the
section. In the proof, we will very closely follow the proof of [14, Theorem 2.16] dealing with the
convergence of discrete s-holomorphic spinors.

Theorem 4.3. Let 𝐷 ⊂ ℂ be a bounded simply connected domain, and let 𝐷𝛿 approximate 𝐷 as
𝛿 → 0. Fix 𝑤, 𝑧 ∈ 𝐷, and let 𝑒 = 𝑒𝛿 and g = g𝛿 be edges of 𝐷𝛿 whose midpoints converge to 𝑤 and
𝑧, respectively, as 𝛿 → 0. Then,

𝑓𝛿(𝑒, 𝑧g ) = 𝛿
(
𝑓𝐷−(𝑤, 𝑧) + 𝜂

2
𝑒𝑓

𝐷
+(𝑤, 𝑧) + 𝑜(1)

)
as 𝛿 → 0,

where𝑓𝛿 is the observable from (4.1) defined on𝐷𝛿 . Moreover, the convergence is uniform on compact
subsets of {(𝑤, 𝑧) ∈ 𝐷2 ∶ 𝑤 ≠ 𝑧}.
Before giving a sketch of the proof of this theorem, we state a corollary that will be convenient

for us when computing moments of the height function in the next section.

Corollary 4.4. Consider the setting from the theorem above and let 𝑐𝑖 = 𝑐𝛿𝑖 and 𝑐𝑗 = 𝑐
𝛿
𝑗
be two

corners of 𝐷𝛿 whose vertices converge to 𝑤 and 𝑧, respectively. Then

𝐾−1(𝑤𝑖, 𝑏𝑗) = −
1√
2
𝛿i
(
𝑓𝐷−(𝑤, 𝑧) − 𝜂

2
𝑐𝑖
𝜂2𝑐𝑗𝑓

𝐷
−(𝑤, 𝑧) + 𝜂

2
𝑐𝑖
𝑓𝐷+(𝑤, 𝑧) − 𝜂

2
𝑐𝑗
𝑓𝐷+(𝑤, 𝑧) + 𝑜(1)

)
,

where 𝐾−1 is the inverse Kasteleyn matrix on 𝐶𝐷𝛿 .

Proof. To simplify the notation, we drop 𝐷 from the superscripts. We combine Lemmas 4.3 and
4.1 to get that

√
2
𝛿
𝑓(𝑐𝑖, 𝑐𝑗) equals to∑

𝑒′∈{𝑒,−𝑒}

(
1 + (𝜂𝑐𝑖 𝜂𝑒′ )

2)(𝑓(𝑒′, 𝑧g ) − (𝜂𝑒′𝜂𝑐𝑗 )
2𝑓(𝑒′, 𝑧g ))
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CONFORMAL INVARIANCE OF DOUBLE RANDOM CURRENTS I: IDENTIFICATION OF THE LIMIT 41 of 68

=
∑

𝑒′∈{𝑒,−𝑒}

(
1 + (𝜂𝑐𝑖 𝜂𝑒′ )

2)(𝑓−(𝑤, 𝑧) + 𝜂
2
𝑒′𝑓+(𝑤, 𝑧) − (𝜂𝑒′𝜂𝑐𝑗 )

2𝑓−(𝑤, 𝑧) − 𝜂
2
𝑐𝑗
𝑓+(𝑤, 𝑧)) + 𝑜(1)

= 2
(
𝑓−(𝑤, 𝑧) + 𝜂

2
𝑐𝑖
𝑓+(𝑤, 𝑧) − 𝜂

2
𝑐𝑖
𝜂2𝑐𝑗𝑓−(𝑤, 𝑧) − 𝜂

2
𝑐𝑗
𝑓+(𝑤, 𝑧)

)
+ 𝑜(1),

where the last equality holds due to cancellations resulting from 𝜂2𝑒 = −𝜂
2
−𝑒. On the other hand,

by (3.21), 𝐾−1(𝑤𝑖, 𝑏𝑗) = −
i
2
𝑓(𝑐𝑖, 𝑐𝑗) which finishes the proof. □

Sketch of proof of Theorem 4.3. Based on the scaling limit results of Hongler–Smirnov [31], we
first argue that the statement holds true for a domain 𝐷 with a smooth boundary. Indeed, in [31],
it is assumed that 𝜂2𝑒 = 1 and hence, in that case, the result follows directly from [31, Theo-
rem 8]. Applying this to a rotated domain together with the conformal covariance properties
from Lemma 4.2 yields the statement for a general direction of 𝑒.
We now briefly describe how to use the robust framework of Chelkak, Hongler and Izyurov to

extend this to general simply connected domains. In [14, Theorem 2.16], a scaling limit result was
established for a discrete holomorphic spinor 𝐹𝛿 defined on an approximation 𝐷𝛿 of an arbitrary
bounded simply connected domain 𝐷. The two observables 𝐹𝛿 and 𝑓𝛿 satisfy the same boundary
conditions (of [31, Proposition 18] and [14, (2.7)]). Moreover, both observables are s-holomorphic
away from the diagonal. The difference, however, is their singular behaviour near the diagonal.
In [14], the full plane version 𝐹𝛿

ℂ
(the discrete analog of 1∕

√
𝑧 − 𝑤) of the observable is subtracted

from 𝐹𝛿 in order to cancel out the discrete-holomorphic singularity on the diagonal. The details
of the proof of [14, Theorem 2.16] can be carried out verbatim for 𝑓𝛿 instead of 𝐹𝛿 and its full
plane version 𝑓𝛿

ℂ
(the discrete analog of 1∕(𝑧 − 𝑤)) introduced in [31] instead of 𝐹𝛿

ℂ
. Indeed, the

arguments in [14] depend only on the fact that the observables in question are s-holomorphic and
satisfy the correct boundary value problem.
Since the scaling limit is conformally invariant and was uniquely identified for domains with a

smooth boundary by the argument above, this finishes the proof. □

4.2 Moments of 𝒉𝜹

Throughout this section, and as before, let 𝐷 ⊂ ℂ be a Jordan domain, and let 𝐷𝛿 approximate
𝐷, that is, 𝑑(𝜕𝐷𝛿, 𝜕𝐷) → 0 as 𝛿 → 0 (where 𝑑 is as in (1.2)). For simplicity of exposition, we only
consider the height function on𝐶𝐷𝛿 restricted to𝑈𝛿 whichhas the samedistribution as the nesting
field of the critical DRC on 𝐷 with free boundary conditions. The case of mixed moments (for
the joint height function on both the faces and vertices of 𝐷𝛿) follows in the same manner as
the faces and vertices of 𝐷𝛿 play a symmetric role in the graph 𝐶𝐷𝛿 . To this end, let 𝑎1, 𝑎2, … , 𝑎𝑛
be distinct points in 𝐷, and let ℎ𝛿(𝑎𝑖) (𝑖 = 1, … , 𝑛) be the height function evaluated at the face
𝑢𝛿
𝑖
= 𝑢𝛿

𝑖
(𝑎𝑖) ∈ 𝑈

𝛿 of 𝐷𝛿, in which the point 𝑎𝑖 lies (we choose a face arbitrarily if 𝑎𝑖 lies on an
edge of 𝐷𝛿).
Let 𝐺𝐷(𝑧, 𝑤) be the Dirichlet Green’s function in 𝐷, that is, the Green’s function of standard

Brownian motion in 𝐷 killed upon hitting 𝜕𝐷. In particular, for the upper-half plane ℍ, we have

𝐺ℍ(𝑧, 𝑤) =
1
2𝜋

ln |||𝑧 − 𝑤𝑧 − 𝑤
|||.
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42 of 68 DUMINIL-COPIN et al.

This section is devoted to the proof of the following theorem. Below,𝐏∅,∅
𝐷𝛿,𝐷𝛿

denotes the probability
measure of the DRC model with free boundary conditions together with the independent labels
used to define the nesting field.

Theorem 4.5. For every even integer 𝑛 and any distinct points 𝑎1, 𝑎2, … , 𝑎𝑛 ∈ 𝐷, we have

lim
𝛿→0

𝐄∅,∅
𝐷𝛿,𝐷𝛿

[
𝑛∏
𝑖=1

ℎ𝛿(𝑎𝑖)

]
=

∑
𝜋 pairing of {𝑎1,…,𝑎𝑛}

∏
{𝑧,𝑤}∈𝜋

1
𝜋
𝐺𝐷(𝑧, 𝑤),

where a pairing is a partition into sets of size two.

Note that the fieldℎ𝛿 is symmetric, and therefore, the correspondingmoments for 𝑛 odd vanish.
Kasteleyn theory classically allows to compute all moments of the height function in terms of

the inverse Kasteleyn matrix 𝐾−1. In the proof of the theorem, we follow the line of computation
due to Kenyon [34] but with several adjustments to our setting. In particular, we start with an alge-
braicmanipulation to take care of the behaviour of𝐾−1 near the boundary of𝐷𝛿: for𝑎01, … , 𝑎

0
𝑛 ∈ 𝐷,

write

𝐄∅,∅
𝐷𝛿,𝐷𝛿

[
𝑛∏
𝑖=1

ℎ𝛿(𝑎𝑖)

]
= 𝐄∅,∅

𝐷𝛿,𝐷𝛿

[
𝑛∏
𝑖=1

(ℎ𝛿(𝑎𝑖) − ℎ
𝛿(𝑎0𝑖 ))

]
−

∑
𝑡∈{0,1}𝑛

𝑡≠(1,…,1)
(−1)

∑
𝑖 (1−𝑡𝑖)𝐄∅,∅

𝐷𝛿,𝐷𝛿

[
𝑛∏
𝑖=1

ℎ𝛿(𝑎
𝑡𝑖
𝑖
)

]
,

(4.2)

where 𝑎1
𝑖
= 𝑎𝑖 for 𝑖 = 1, … , 𝑛.

The advantage of this formulation is that the first term on the right-hand side can be computed
using Kasteleyn theory, and that the others are small when 𝑎01, … , 𝑎

0
𝑛 are close to the boundary.

This latter fact is not obvious and is relying on discrete properties of the DRC obtained in [22]
(note that it is basically saying that the field is uniformly small — in terms of moments — near
the boundary).
We start by proving that the remaining terms are small.

Proposition 4.6. For any 𝜀 > 0 and 𝑎1, … , 𝑎𝑛 ∈ 𝐷, one may choose 𝑎01, … , 𝑎
0
𝑛 ∈ 𝐷 so that

||||||𝐄∅,∅𝐷𝛿,𝐷𝛿
[

𝑛∏
𝑖=1

ℎ𝛿(𝑎𝑖)

]
− 𝐄∅,∅

𝐷𝛿,𝐷𝛿

[
𝑛∏
𝑖=1

(ℎ𝛿(𝑎𝑖) − ℎ
𝛿(𝑎0𝑖 ))

]|||||| < 𝜀 (4.3)

uniformly in 𝛿 > 0.

Remark 4.7. This proposition, which basically claims that the second term on the right-hand
side of (4.2) is close to zero provided the 𝑎0

𝑖
are close enough to the boundary, is a restatement

of the fact that boundary conditions for the limiting height function are zero. It is therefore the
main place where we identify boundary conditions. Note that this proposition relies heavily on
the main results from [22] (Theorems 2.1 and 2.4 from Section 2), and is as such non-trivial.

To prove this proposition, we need to introduce some auxiliary notions. We say that a cluster
of the DRC is relevant for 𝐴 = {𝑎1, … , 𝑎𝑛} ⊊ 𝐷 if it is odd around 𝑢𝛿

𝑖
for at least two different 𝑖 ∈
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CONFORMAL INVARIANCE OF DOUBLE RANDOM CURRENTS I: IDENTIFICATION OF THE LIMIT 43 of 68

{1, … , 𝑛} (it is possible that 𝑢𝛿
𝑖
= 𝑢𝛿

𝑗
even though 𝑎𝑖 ≠ 𝑎𝑗). We denote by 𝖱𝛿(𝐴) the number of

relevant clusters for 𝐴 in 𝐷𝛿, and by 𝖨𝛿(𝐴) the event that all faces 𝑢𝛿1 , … , 𝑢
𝛿
𝑛 are surrounded by at

least one relevant cluster for 𝐴. We start with three lemmata.

Lemma 4.8. For every 𝑛 ⩾ 2 even, there exists 𝑃𝑛 ∈ (0,∞) such that for all sets of points 𝐴 =
{𝑎1, … , 𝑎𝑛} ⊊ 𝐷, we have

𝐄∅,∅
𝐷𝛿,𝐷𝛿

[
𝑛∏
𝑖=1

ℎ𝛿(𝑎𝑖)

]
⩽ 𝑃𝑛

√
𝐄∅,∅
𝐷𝛿,𝐷𝛿

[𝖱𝛿(𝐴)𝑛]𝐏∅,∅
𝐷𝛿,𝐷𝛿

[𝖨𝛿(𝐴)].

Proof. For a cluster  of the DRC, let
Odd() ∶= {𝑎𝑖 ∈ 𝐴 ∶  is odd around 𝑢𝛿𝑖 }.

We denote a partition of 𝐴 by {𝐴1, … ,𝐴𝑘}. We call such a partition even if all its elements have
even cardinality. Using the correspondence with the nesting field of the critical DRC on 𝐷𝛿 with
free boundary conditions defined in (1.6), we have

𝐄∅,∅
𝐷𝛿,𝐷𝛿

[
𝑛∏
𝑖=1

ℎ𝛿(𝑎𝑖)

]
= 𝐄∅,∅

𝐷𝛿,𝐷𝛿

[
𝑛∏
𝑖=1

(∑
𝑖
𝜖𝑖 𝟏{𝑖 odd around 𝑢𝛿𝑖 }

)]

= 𝐄∅,∅
𝐷𝛿,𝐷𝛿

⎡⎢⎢⎣
∑

(1,…,𝑛)

𝑛∏
𝑖=1

𝜖𝑖 𝟏{𝑖 odd around 𝑢𝛿𝑖 }
⎤⎥⎥⎦

=
∑

{𝐴1,…,𝐴𝑘} even
𝐄∅,∅
𝐷𝛿,𝐷𝛿

⎡⎢⎢⎣
∑

(1,…,𝑘)
𝟏{𝐴𝑖⊆Odd(𝑖 ), 𝑖 distinct ∀𝑖∈{1,…,𝑘}}

⎤⎥⎥⎦
⩽

∑
{𝐴1,…,𝐴𝑘} even

𝐄∅,∅
𝐷𝛿,𝐷𝛿

⎡⎢⎢⎣
∑

(1,…,𝑘)
𝟏{𝑖 relevant for 𝐴}𝟏𝖨𝛿(𝐴)

⎤⎥⎥⎦
⩽ 𝑃𝑛𝐄

∅,∅
𝐷𝛿,𝐷𝛿

[
𝖱𝛿(𝐴)𝑛∕2𝟏𝖨𝛿(𝐴)

]
⩽ 𝑃𝑛

√
𝐄∅,∅
𝐷𝛿,𝐷𝛿

[𝖱𝛿(𝐴)𝑛]𝐏∅,∅
𝐷𝛿,𝐷𝛿

[𝖨𝛿(𝐴)],

where 𝑃𝑛 is the number of even partitions of a set of size 𝑛 (we used that 𝑘 ⩽ 𝑛∕2), and where in
the last inequality we used the Cauchy–Schwarz inequality. □

Lemma 4.9 (Logarithmic bound on the number of clusters). There exists 𝐶 ∈ (0,∞) such that for
every bounded domain 𝐷 and every 𝐴 = {𝑎1, … , 𝑎𝑛} ⊊ 𝐷 and𝑁 ⩾ 1,

𝐄∅,∅
𝐷𝛿,𝐷𝛿

[𝖱𝛿(𝐴)𝑁] ⩽
1
𝑁!

[
𝐶𝑛 log

(
diam(𝐷)

min𝑖≠𝑗 |𝑎𝑖 − 𝑎𝑗|
)]𝑁

,

uniformly in 𝛿 > 0.
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44 of 68 DUMINIL-COPIN et al.

Proof. Consider the constant 𝐶 given by Theorem 2.1. Set 𝜅 ∶= 1
2
min𝑖≠𝑗 |𝑎𝑖 − 𝑎𝑗| and 𝑑 ∶=

diam(𝐷).
Consider the family  = (Λ𝑟𝑘 (𝑥𝑘) ∶ 𝑘 ∈ ) containing the boxes Λ 𝑟

4𝐶
(𝑥) with 𝑟 ∶= 2𝑗𝜅, 𝑥 ∈

𝑟
4𝐶
ℤ2 ∩ Ann(𝑎𝑖, 𝑟, 2𝑟) for every 1 ⩽ 𝑖 ⩽ 𝑛 and 0 ⩽ 𝑗 ⩽ ⌊log2(𝑑∕𝜅)⌋. One may easily check that

every cluster that surrounds at least two vertices in 𝐴 must contain, for some 𝑘 ∈ , a cross-
ing from Λ𝑟𝑘 (𝑥𝑘) to Λ2𝐶𝑟𝑘 (𝑥𝑘). We deduce that if 𝑋𝑘 is the number of disjoint Λ𝐶𝑟𝑘 (𝑥𝑘)-clusters
crossing Ann(𝑥𝑘, 𝑟𝑘, 2𝐶𝑟𝑘) from inside to outside, then

𝖱𝛿(𝐴) ⩽
∑
𝑘∈

𝑋𝑘.

Now, for each 𝑘 ∈ ,Λ3𝐶𝑟𝑘 (𝑥𝑘) intersects at most 𝑂(𝐶2) boxesΛ3𝐶𝑟𝑙 (𝑥𝑙) for 𝑙 ∈ . We may there-
fore partition  in 𝐼 = 𝑂(𝐶2) disjoint sets 1, … ,𝐼 for which the Λ3𝐶𝑟𝑘 (𝑥𝑘) with 𝑘 ∈ 𝑖 are all
disjoint. Set 𝑆𝑖 ∶=

∑
𝑘∈𝑖 𝑋𝑘. Hölder’s inequality implies that

𝐄∅,∅
𝐷𝛿,𝐷𝛿

[𝖱𝛿(𝐴)𝑁] ⩽ 𝐄∅,∅
𝐷𝛿,𝐷𝛿

[(𝑆1 +⋯ + 𝑆|𝐼|)𝑁] ⩽ |𝐼|𝑁−1 |𝐼|∑
𝑖=1

𝐄∅,∅
𝐷𝛿,𝐷𝛿

[𝑆𝑁𝑖 ].

The mixing property of the DRC proved in [22] and Theorem 2.1 imply the existence of 𝐶mix ∈
(0,∞) (independent of everything) such that 𝑆𝑖 is stochastically dominated by 𝐶mix𝑆𝑖 , where 𝑆𝑖
is the sum of |𝑖| independent geometric random variables (𝑋𝑘 ∶ 𝑘 ∈ 𝑖) of parameter 1∕2. We
deduce that

𝐄∅,∅
𝐷𝛿,𝐷𝛿

[𝑆𝑁𝑖 ] ⩽ 𝐶
𝑁
mix ×

(𝐶0|𝑖|)𝑁
𝑁!

.

Since |𝑖| ⩽ || ⩽ 𝐶1𝑛 log(𝑑∕𝜅), we deduce that
𝐄∅,∅
𝐷𝛿,𝐷𝛿

[𝖱𝛿(𝐴)𝑁] ⩽
(𝐶2𝑛 log(𝑑∕𝜅))

𝑁

𝑁!
.

This concludes the proof. □

We now turn to the third lemma that we will need. Let 𝜕𝛼Ω be the set of points in Ω that are
exactly at a Euclidean distance equal to 𝛼 away from 𝜕Ω.

Lemma 4.10 (Large DRC clusters do not come close to the boundary). For every 𝐶, 𝛼, 𝜀 > 0, there
exists 𝛽 = 𝛽(𝐶, 𝛼, 𝜀) > 0 such that for every 𝐷 ⊆ Λ𝐶 ,

𝐏∅,∅
𝐷𝛿,𝐷𝛿

[𝜕𝛼𝐷
𝐧1+𝐧2
⟷ 𝜕𝛽𝐷] ⩽ 𝜀. (4.4)

Proof. Assume that 𝜕𝛼𝐷 is not empty otherwise there is nothing to prove. Since 𝐷 ⊆ Λ𝐶 , one may
find a collection of 𝑘 = 𝑂((𝐶∕𝛼)2) vertices 𝑥1, … , 𝑥𝑘 ∈

1
3
𝛼ℤ2 such that

∙ Λ2𝛼∕3(𝑥𝑖) ⊆ 𝐷 for 1 ⩽ 𝑖 ⩽ 𝑘;
∙ Λ𝛼(𝑥𝑖) ⊈ 𝐷 for 1 ⩽ 𝑖 ⩽ 𝑘;
∙ 𝜕𝛼𝐷 ⊆ Λ𝛼∕3(𝑥1) ∪⋯ ∪ Λ𝛼∕3(𝑥𝑘).
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CONFORMAL INVARIANCE OF DOUBLE RANDOM CURRENTS I: IDENTIFICATION OF THE LIMIT 45 of 68

Then, Theorem 2.4 implies that

𝐏∅,∅
𝐷𝛿,𝐷𝛿

[𝜕𝛼𝐷
𝐧1+𝐧2
⟷ 𝜕𝛽𝐷] ⩽

𝑘∑
𝑖=1

𝐏∅,∅
𝐷𝛿,𝐷𝛿

[Λ𝛼∕3(𝑥𝑖)
𝐧1+𝐧2
⟷ 𝜕𝛽𝐷] ⩽ 𝑘𝜖(𝛽∕𝛼). (4.5)

We then choose 𝛽 so that the right-hand side is smaller than 𝜀. □

These ingredients are enough for the proof of Proposition 4.6.

Proof of Proposition 4.6. Firstly, Lemma 4.9 shows that for every 𝑛 ⩾ 2, there exist 𝐶𝑛,𝑀𝑛 < ∞
such that for all sets of points 𝐴 = {𝑎1, … , 𝑎𝑛} ⊊ 𝐷, we have

𝐄∅,∅
𝐷𝛿,𝐷𝛿

[𝖱𝛿(𝐴)𝑛] ⩽ 𝐶𝑛|| log(min𝑖≠𝑗 |𝑎𝑖 − 𝑎𝑗|) ∧ log 1𝛿 )||𝑀𝑛. (4.6)

Lemma 4.10 implies that for every 𝑛 ⩾ 2 and every 𝜂 > 0, there exists a function 𝜌 ∶ [0,∞) →
[0,∞) satisfying 𝜌(0) = 0 and continuous at 0, and such that for all 𝛿 and all sets of points 𝐴 =
{𝑎1, … , 𝑎𝑛} ⊊ 𝐷 that are pairwise at least 𝜂 away from each other, we have

𝐏∅,∅
𝐷𝛿,𝐷𝛿

[𝖨𝛿(𝐴)] ⩽ 𝜌(min
𝑖
dist(𝑢𝑖, 𝜕𝐷)).

The proof is then a direct combination of these two inequalities with Lemma 4.8 and (4.2). □

We now turn to the computation of the first term on the right-hand side of (4.2) using the
approach of Kenyon [34]. The next result is an analog of [34, Proposition 20].

Proposition 4.11. Let 𝑎1, 𝑎01, … , 𝑎𝑛, 𝑎
0
𝑛 be distinct points in𝐷, and let 𝛾1, … , 𝛾𝑛 be pairwise disjoint

curves in 𝐷 connecting 𝑎0
𝑖
to 𝑎𝑖 for 𝑖 = 1, … , 𝑛. Then,

lim
𝛿→0

𝐄∅,∅
𝐷𝛿,𝐷𝛿

[
𝑛∏
𝑖=1

(ℎ𝛿(𝑎𝑖) − ℎ
𝛿(𝑎0𝑖 ))

]
= i𝑛

∑
𝜖∈{±1}𝑛

𝑛∏
𝑘=1

𝜖𝑘 ∫𝛾1 ⋯∫𝛾𝑛 det
[
𝑓𝜖𝑖,𝜖𝑗 (𝑧𝑖, 𝑧𝑗)

]
1⩽𝑖,𝑗⩽𝑛

𝑑𝑧(𝜖1)1 ⋯ 𝑑𝑧
(𝜖𝑛)
𝑛 ,

where 𝑑𝑧(1)
𝑖
= 𝑑𝑧𝑖 , 𝑑𝑧

(−1)
𝑖

= 𝑑𝑧𝑖 , and

𝑓𝜖𝑖,𝜖𝑗 (𝑧𝑖, 𝑧𝑗) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if 𝑖 = 𝑗,

𝑓−(𝑧𝑖, 𝑧𝑗) if (𝜖𝑖, 𝜖𝑗) = (−1, 1),

𝑓+(𝑧𝑖, 𝑧𝑗) if (𝜖𝑖, 𝜖𝑗) = (1, 1),

𝑓−(𝑧𝑖, 𝑧𝑗) if (𝜖𝑖, 𝜖𝑗) = (1, −1),

𝑓+(𝑧𝑖, 𝑧𝑗) if (𝜖𝑖, 𝜖𝑗) = (−1,−1).

Moreover the limit is conformally invariant.
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46 of 68 DUMINIL-COPIN et al.

Proof. We start by proving a stronger version of the conformal invariance statement. Namely, if
one expands the determinant under the integrals as a sum of terms over permutations 𝜄, then
each multiple integral of the term 𝑇𝜖,𝜄 corresponding to a fixed 𝜖 and 𝜄 is conformally invariant.
This follows from the conformal covariance of the functions 𝑓±(𝑧𝑖, 𝑧𝑗) stated in Lemma 4.2 and
an integration by substitution. Indeed, it is enough to notice that 𝑇𝜖,𝜄 is a product of 𝑛 functions
𝑓±(𝑧𝑖, 𝑧𝑗) or their conjugates with the property that each variable 𝑧𝑖 appears in it exactly twice
and in a way that, under a conformal map 𝜑, it contributes a factor 𝜑′(𝑧𝑖) if 𝜖𝑖 = 1 and 𝜑′(𝑧𝑖) if
𝜖𝑖 = −1.
We now turn to the convergence part. To this end, for 𝑖 = 1, … , 𝑛 and every 𝛿 small enough, we

fix a dual path 𝛾𝛿
𝑖
connecting (𝑢0

𝑖
)𝛿 with 𝑢𝛿

𝑖
that converges uniformly to 𝛾𝑖 . It will be convenient

to choose the paths 𝛾𝛿
𝑖
in such a way that:

∙ the faces of 𝐶𝐷𝛿 visited by each 𝛾𝛿𝑖 alternate with each step between 𝑈
𝛿 and 𝑉𝛿 (by definition,

the paths start and end in 𝑈𝛿),
∙ the restriction of each 𝛾𝛿

𝑖
to𝑈𝛿 is a path in the dual of𝐷𝛿, meaning that consecutive faces share

an edge in 𝐷𝛿,
∙ the restriction of each 𝛾𝛿

𝑖
to 𝑉𝛿 is a path in 𝐷𝛿 given by the left endpoints of the edges of 𝐷𝛿

crossed by the path.

Note that such paths exist (for 𝛿 small enough), and they only cross corner edges of 𝐶𝐷𝛿 .
We enumerate the edges crossed by 𝛾𝛿

𝑖
(there is always an even number of them) using the

symbols 𝑐+
𝑖,1
, 𝑐−
𝑖,1
, … , 𝑐+

𝑖,𝑙𝑖
, 𝑐−
𝑖,𝑙𝑖
. With a slight abuse of notation we will also write 𝑐±

𝑖,𝑡
for the indicator

functions that the edge belongs to the dimer cover, and 𝑐±
𝑖,𝑡
∶= 𝑐±

𝑖,𝑡
− 𝐄[𝑐±

𝑖,𝑡
] for the centred version.

Since the height increments are centred by the choice of the reference 1-form 𝑓0 (3.5) and since|𝑓0| = 1∕2 on all roads, we find
𝐄∅,∅
𝐷𝛿,𝐷𝛿

[
𝑛∏
𝑖=1

(ℎ𝛿(𝑎𝑖) − ℎ
𝛿(𝑎0𝑖 ))

]
= 𝐄∅,∅

𝐷𝛿,𝐷𝛿

[
𝑛∏
𝑖=1

𝑙𝑖∑
𝑡=1

(𝑐+𝑖,𝑡 − 𝑐
−
𝑖,𝑡)

]

= 𝐄∅,∅
𝐷𝛿,𝐷𝛿

[
𝑛∏
𝑖=1

𝑙𝑖∑
𝑡=1

(𝑐+𝑖,𝑡 − 𝑐
−
𝑖,𝑡)

]

=
𝑙1∑
𝑡𝑖=1

⋯
𝑙𝑛∑
𝑡𝑛=1

∑
𝑠∈{±}𝑛

(−1)#−(𝑠)𝐄

[
𝑛∏
𝑖=1

𝑐
𝑠𝑖
𝑖,𝑡𝑖

]
, (4.7)

where #−(𝑠) is the number of minuses in 𝑠.
Fix 𝑡1, … , 𝑡𝑛 and 𝑠 ∈ {±}𝑛, and let 𝑐𝑖 ∶= 𝑐

𝑠𝑖
𝑖,𝑡𝑖
. By [34, Lemma 21], the determinant of the inverse

Kasteleyn matrix gives correlations of height increments, hence

𝐄∅,∅
𝐷𝛿,𝐷𝛿

[
𝑛∏
𝑖=1

𝑐𝑖

]
=

(
𝑛∏
𝑖=1

𝐾(𝑏𝑖, 𝑤𝑖)

)
det �̂� = (−1)𝑛 det �̂� = det �̂�, (4.8)

where �̂� is the 𝑛 × 𝑛matrix given by

�̂�𝑖,𝑗 =

{
𝐾−1(𝑤𝑖, 𝑏𝑗) if 𝑖 ≠ 𝑗,
0 otherwise.
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CONFORMAL INVARIANCE OF DOUBLE RANDOM CURRENTS I: IDENTIFICATION OF THE LIMIT 47 of 68

Here, we used that the edges of 𝐶𝛿 (roads) corresponding to the corners in𝐷𝛿 are assigned weight
−1 in the Kasteleyn weighting as defined in Section 3.4.1.
Let 𝑒𝑖 be the edge satisfying 𝑐±(𝑒𝑖) = 𝑐

±
𝑖,𝑡𝑖
, and let 𝑧𝑖 be its midpoint. We write 𝑓± ∶= 𝑓𝐷± and

𝑓𝛿 ∶= 𝑓𝐷𝛿 . Proposition 4.4 gives

𝐾−1(𝑤𝑖, 𝑏𝑗) = −
𝛿i√
2

(
𝑓−(𝑧𝑖, 𝑧𝑗) − 𝜂

2
𝑐𝑖
𝜂2𝑐𝑗𝑓−(𝑧𝑖, 𝑧𝑗) + 𝜂

2
𝑐𝑖
𝑓+(𝑧𝑖, 𝑧𝑗) − 𝜂

2
𝑐𝑗
𝑓+(𝑧𝑖, 𝑧𝑗) + 𝑜(1)

)
.

We now expand the determinant from (4.8) as a sum over permutations. Let us investigate the
term in this expansion coming from a fixed permutation 𝜄, and for simplicity of notation, let us
assume that 𝜄 is the cycle 𝜄(𝑖) = 𝑖 + 1 (mod 𝑛). The case of a general permutation will follow in a
similar manner. The term under consideration reads

sgn(𝜄) 𝛿
𝑛√
2
𝑛 i
𝑛

𝑛∏
𝑖=1

(
𝑓−(𝑧𝑖, 𝑧𝑖+1) + 𝜂

2
𝑐𝑖
𝑓+(𝑧𝑖, 𝑧𝑖+1)−

𝜂2𝑐𝑖 𝜂
2
𝑐𝑖+1
𝑓−(𝑧𝑖, 𝑧𝑖+1) − 𝜂

2
𝑐𝑖+1
𝑓+(𝑧𝑖, 𝑧𝑖+1)

)
+ 𝑜(𝛿𝑛)

= sgn(𝜄) 𝛿
𝑛√
2
𝑛 i
𝑛

𝑛∏
𝑖=1

(
𝑓−1,1(𝑧𝑖, 𝑧𝑖+1) + 𝜂

−2
𝑐𝑖
𝑓1,1(𝑧𝑖, 𝑧𝑖+1)−

𝜂−2𝑐𝑖 𝜂
2
𝑐𝑖+1
𝑓1,−1(𝑧𝑖, 𝑧𝑖+1) − 𝜂

2
𝑐𝑖+1
𝑓−1,−1(𝑧𝑖, 𝑧𝑖+1)

)
+ 𝑜(𝛿𝑛). (4.9)

We can now expand the product into a sum of 4𝑛 terms. Note that for each corner 𝑐𝑖 , the fac-
tors 𝜂2𝑐𝑖 and 𝜂

−2
𝑐𝑖

appear in exactly one out of 𝑛 brackets, meaning that each final term contains a

multiplicative factor of 𝜂
𝑟𝑐𝑖
𝑐𝑖
, where 𝑟𝑐𝑖 ∈ {−2, 0, 2}.

The first important observation is that the terms for which there exists 𝑖 such that 𝑟𝑐𝑖 = 0 cancel
out to 𝑜(𝛿𝑛) after summing over all sign choices 𝑠 ∈ {−1, 1}𝑛 in (4.7). Indeed, for each such term,
take the smallest 𝑖 for which 𝑟𝑐𝑖 = 0 and consider the corresponding term assigned in (4.7) to a
different sign choice 𝑠′ which differs from 𝑠 only at the coordinate 𝑖. By (4.9), the two terms differ
by 𝑜(𝛿𝑛), and the cancellation in (4.7) is caused by the fact that #−(𝑠) = −#−(𝑠′).
There are exactly 2𝑛 remaining terms indexed by 𝜖 ∈ {−1, 1}𝑛 that satisfy 𝑟𝑐𝑖 = −2𝜖𝑖 for all 𝑖.

Note that in the embedding of the square lattice 𝛿ℤ2, all corners have length 𝛿
√
2∕2, and

therefore,

𝜂±2𝑐𝑖 =
√
2𝛿−1𝑑𝑐(∓1)

𝑖
,

where 𝑑𝑐(1)
𝑖
∶= 𝑑𝑐𝑖 and 𝑑𝑐

(−1)
𝑖

∶= 𝑑𝑐𝑖 . Hence, the
√
2-terms cancel out, and each such term is of

the form

sgn(𝜄)i𝑛
(

𝑛∏
𝑖=1

𝜖𝑖

)(
𝑛∏
𝑖=1

𝑓𝜖𝑖 ,𝜖𝑖+1 (𝑧𝑖, 𝑧𝑖+1)

)
𝑑𝑐
(𝜖1)
𝑖

⋯𝑑𝑐
(𝜖𝑛)
𝑛 + 𝑜(𝛿𝑛). (4.10)

The term
∏𝑛
𝑖=1 𝜖𝑖 arises as the product of the signs from the expansion of (4.9).
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48 of 68 DUMINIL-COPIN et al.

Since

𝑑(𝑐+𝑖,𝑡𝑖
)(𝜖𝑖) − 𝑑(𝑐−𝑖,𝑡𝑖

)(𝜖𝑖) = 𝑑(𝑧𝛿𝑖 )
(𝜖𝑖),

keeping the permutation 𝜄 and the signs 𝜖 fixed, and summing (4.10) over all 𝑠 ∈ {−1, 1}𝑛, we
obtain

sgn(𝜄)i𝑛
(

𝑛∏
𝑖=1

𝜖𝑖

)(
𝑛∏
𝑖=1

𝑓𝜖𝑖 ,𝜖𝑖+1 (𝑧𝑖, 𝑧𝑖+1)

)
𝑑(𝑧𝛿1)

(𝜖1)⋯𝑑(𝑧𝛿𝑛)
(𝜖𝑛) + 𝑜(𝛿𝑛).

Finally, summing back over all permutations and using that 𝛾𝛿
𝑖
→ 𝛾𝑖 as 𝛿 → 0, we obtain that (4.7)

is equal to

i𝑛
𝑙1∑
𝑡𝑖=1

⋯
𝑙𝑛∑
𝑡𝑛=1

( ∑
𝜖∈{±}𝑛

(
𝑛∏
𝑖=1

𝜖𝑖

)
det

[
𝑓𝜖𝑖,𝜖𝑗 (𝑧𝑖, 𝑧𝑗)

]
1⩽𝑖,𝑗⩽𝑛

𝑑(𝑧𝛿1)
(𝜖1)⋯𝑑(𝑧𝛿𝑛)

(𝜖𝑛) + 𝑜(𝛿𝑛)

)

= i𝑛
∑
𝜖∈{±}𝑛

(
𝑛∏
𝑖=1

𝜖𝑖

)
∫𝛾1 ⋯∫𝛾𝑛 det

[
𝑓𝜖𝑖,𝜖𝑗 (𝑧𝑖, 𝑧𝑗)

]
1⩽𝑖,𝑗⩽𝑛

𝑑𝑧
(𝜖1)
1 ⋯𝑑𝑧

(𝜖𝑛)
𝑛 + 𝑜(1). (4.11)

This concludes the proof of Proposition 4.11. □

Proof of Theorem 4.5. We already proved in Proposition 4.11 that the desired limit exists and is
conformally invariant. Hence, it is enough to identify it for the upper half-plane ℍ. In this case,
by Lemma 4.2, we have an explicit formula

𝑓𝜖𝑖,𝜖𝑗 (𝑧𝑖, 𝑧𝑗) =
i
𝜖𝑗−𝜖𝑖
2

2𝜋
(
𝑧
(𝜖𝑗)

𝑗
− 𝑧

(𝜖𝑗)

𝑖

) ,
where 𝑧(1)

𝑖
= 𝑧𝑖 and 𝑧

(−1)
𝑖

= 𝑧𝑖 . Up to conjugation by a diagonal matrix with entries i
𝜖𝑖
2 , this is the

same matrix as in [35, Lemma 3.1], and hence,

det [𝑓𝜖𝑖 ,𝜖𝑗 (𝑧𝑖, 𝑧𝑗)]1⩽𝑖,𝑗⩽𝑛
=

1
(2𝜋)𝑛

∑
𝜋 pairing of {1,…,𝑛}

∏
{𝑖,𝑗}∈𝜋

1(
𝑧
(𝜖𝑗)

𝑗
− 𝑧

(𝜖𝑖)
𝑖

)2 .
This means that, after exchanging the order of summations, integrals and products, (4.11) is equal
to

i𝑛

(2𝜋)𝑛

∑
𝜋 pairing of {1,…,𝑛}

∏
{𝑖,𝑗}∈𝜋

2ℜ𝑒

[
∫𝛾𝑗 ∫𝛾𝑖

𝑑𝑧𝑖𝑑𝑧𝑗

(𝑧𝑗 − 𝑧𝑖)2
−

𝑑𝑧𝑖𝑑𝑧𝑗

(𝑧𝑗 − 𝑧𝑖)2

]

= 𝜋−
𝑛
2

∑
𝜋 pairing of {1,…,𝑛}

∏
{𝑖,𝑗}∈𝜋

1
2𝜋

ln

|||||||
(𝑢𝑗 − 𝑢𝑖)(𝑢

0
𝑗
− 𝑢0

𝑖
)(𝑢0

𝑗
− 𝑢𝑖)(𝑢𝑗 − 𝑢

0
𝑖
)

(𝑢0
𝑗
− 𝑢𝑖)(𝑢𝑗 − 𝑢

0
𝑖
)(𝑢𝑗 − 𝑢𝑖)(𝑢

0
𝑗
− 𝑢0

𝑖
)

|||||||.
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CONFORMAL INVARIANCE OF DOUBLE RANDOM CURRENTS I: IDENTIFICATION OF THE LIMIT 49 of 68

Note that the terms in the product above converge to 𝐺ℍ(𝑢𝑖, 𝑢𝑗) as 𝑢0𝑖 and 𝑢
0
𝑗
get close to 𝜕ℍ.

This together with (4.3) implies that, up to the explicit multiplicative constant, the moments have
the same scaling limit as in [35], which ends the proof. □

4.3 Convergence of 𝒉𝜹 as a random distribution

Recall that for 𝑎 ∈ 𝐷, we write ℎ𝛿(𝑎) for the evaluation of the nesting field at a face 𝑢𝛿 = 𝑢𝛿(𝑎) of
𝐷𝛿 containing 𝑎. (Here, we talk only about the graph 𝐷𝛿 where the nesting field is defined, and
not about𝐶𝐷𝛿 which is used as an intermediate tool to prove this convergence.) For a test function
g ∶ 𝐷 → ℝ, define

ℎ𝛿(g) ∶= ∫𝐷 g(𝑎)ℎ𝛿(𝑎)𝑑𝑎. (4.12)

Theorem 4.12. Let ℎ𝐷 be the GFF in 𝐷 with zero boundary conditions, and let g1, … , g𝑘 ∶ 𝐷 → ℝ

be continuous and bounded test functions. Then, for 𝑙1, … , 𝑙𝑘 ∈ ℕ,

lim
𝛿→0

𝐄∅,∅
𝐷𝛿,𝐷𝛿

[
𝑘∏
𝑖=1

ℎ𝛿(g𝑖)
𝑙𝑖

]
= 𝐄

⎡⎢⎢⎣
𝑘∏
𝑖=1

(
1√
𝜋
ℎ𝐷(g𝑖)

)𝑙𝑖⎤⎥⎥⎦,
Proof. We first note that if

∑𝑘
𝑖=1 𝑙𝑖 is odd, then the correspondingmoments of ℎ

𝛿 and ℎ vanish and
there is nothing to prove. Moreover, to simplify notation, we only consider moments 𝐄[ℎ𝛿(g)𝑙] of
one test function g for 𝑙 even. The general case follows in a similar way. To this end, we fix 𝑙 ⩾ 2,
and define

𝐷𝑙𝛿 ∶= {(𝑎1, … , 𝑎𝑙) ∈ 𝐷
𝑙 ∶ |𝑎𝑖 − 𝑎𝑗| < 𝛿 for some 𝑖 ≠ 𝑗}.

Then, by Lemma 4.8 and (4.6), we have

∫𝐷⋯∫𝐷 𝐄
∅,∅
𝐷𝛿,𝐷𝛿

[
𝑙∏
𝑖=1

g(𝑎𝑖)ℎ
𝛿(𝑎𝑖)

]
𝟏(𝑎1,…,𝑎𝑙)∈𝐷𝑙𝛿

𝑑𝑎1⋯𝑑𝑎𝑙 ⩽ 𝐶‖g‖𝑙∞(log 1𝛿 )𝑙𝑀𝜆𝜆𝜆2𝑙(𝐷𝑙𝛿)
⩽ 𝐶′‖g‖𝑙∞𝜆𝜆𝜆2(𝐷)𝑙−1(log 1𝛿 )𝑙𝑀𝛿2

for some constants 𝐶, 𝐶′ and 𝑀 that depend on 𝑙, where 𝜆𝜆𝜆2𝑙 is the 2𝑙-dimensional Lebesgue
measure. Note that the right-hand side tends to zero as 𝛿 → 0. The function

(𝑎1, … , 𝑎𝑙) ↦ | log(min
𝑖≠𝑗 |𝑎𝑖 − 𝑎𝑗|)|𝑙𝑀

is integrable over 𝐷𝑙, and hence by dominated convergence, Lemma 4.8 and (4.6) again, we have

lim
𝛿→0

𝐄∅,∅
𝐷𝛿,𝐷𝛿

[
ℎ𝛿(g)𝑙

]
= lim
𝛿→0∫𝐷⋯∫𝐷 𝐄

∅,∅
𝐷𝛿,𝐷𝛿

[
𝑙∏
𝑖=1

g(𝑎𝑖)ℎ
𝛿(𝑎𝑖)

]
𝑑𝑎1⋯𝑑𝑎𝑙

= lim
𝛿→0∫𝐷⋯∫𝐷 𝐄

∅,∅
𝐷𝛿,𝐷𝛿

[
𝑙∏
𝑖=1

g(𝑎𝑖)ℎ
𝛿(𝑎𝑖)

]
𝟏(𝑎1,…,𝑎𝑙)∈𝐷𝑙⧵𝐷𝑙𝛿

𝑑𝑎1⋯𝑑𝑎𝑙
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50 of 68 DUMINIL-COPIN et al.

= ∫𝐷⋯∫𝐷
(

𝑙∏
𝑖=1

g(𝑎𝑖)

)
lim
𝛿→0

𝐄∅,∅
𝐷𝛿,𝐷𝛿

[
𝑛∏
𝑖=1

ℎ𝛿(𝑎𝑖)

]
𝟏(𝑎1,…,𝑎𝑙)∈𝐷𝑙⧵𝐷𝑙𝛿

𝑑𝑎1⋯𝑑𝑎𝑙

= ∫𝐷⋯∫𝐷
(

𝑙∏
𝑖=1

g(𝑎𝑖)

) ∑
𝜋 pairing

∏
{𝑖,𝑗}∈𝜋

1
𝜋
𝐺𝐷(𝑎𝑖, 𝑎𝑗)𝑑𝑎1⋯𝑑𝑎𝑙

= 𝐄[(
1√
𝜋
ℎ𝐷(g))

𝑙],

where the second last equality follows from Theorem 4.5. □

Remark 4.13. We note that the same convergence as in Theorem 4.12 holds if the height function
is considered as a function on all faces of 𝐶𝐺𝛿 and not only on the faces of 𝐺𝛿.

We are now ready to conclude the proof the main theorem of this section.

Proof of Theorem 1.4. By Theorem 4.12, all moments of ℎ𝛿 converge to the correspondingmoments
of 1√

𝜋
ℎ𝐷 . Since ℎ𝐷 is a Gaussian process, its moments identify its law uniquely. Since convergence

of the second moment implies tightness, we conclude that ℎ𝛿 tends to 1√
𝜋
ℎ𝐷 in distribution as 𝛿

tends to 0 in the space of generalised functions acting on continuous test functions with compact
support. □

5 FURTHER PRELIMINARIES

In this section, we recall some background on the continuum side.
In this section, we recall some background on the continuum side, notably on the GFF, the

local sets and the two-valued sets. Throughout, let 𝐷 ⊊ ℂ be a simply connected domain whose
boundary is a Jordan curve.
The SLE was introduced by Schramm in [57]. It is a family of non-self-crossing random curves

which depend on a parameter 𝜅 > 0. For many discrete models, free or wired/monochromatic
boundary conditions force the interfaces to take the form of loops. The loop interfaces are conjec-
tured (and sometimes proved) to converge to a conformal loop ensemble (CLE) in the continuum,
which is a random collection of loops contained in 𝐷 that do not cross each other. The family of
CLE was introduced by Sheffield in [62] and further studied by Sheffield and Werner in [63]. It
depends on a parameter 𝜅 ∈ (8∕3, 8) and can be constructed using variants of SLE𝜅.
In [58, 59], Schramm and Sheffield made the important discovery that level lines of the discrete

GFF converge in the scaling limit to SLE4 curves, and that the limiting SLE4 curves are coupled
with the continuum GFF as its local sets (i.e. a set with a certain spatial Markov property, see
Definition 5.1). More generally, the theory of local sets developed in [59] allows one to couple
SLE𝜅 with the GFF for all 𝜅 ∈ (0, 8). The coupling between SLE𝜅 and GFF was further developed
in [19, 49–52] (also, see references therein).
In this work, we are only concerned with the case 𝜅 = 4. It was shown in [59] that SLE4-type

curves are coupled with the GFF with a height gap 2𝜆 in such a way that they are local sets of
the GFF with boundary values, respectively, 𝑎 − 𝜆 and 𝑎 + 𝜆 on the left- and right-hand sides
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CONFORMAL INVARIANCE OF DOUBLE RANDOM CURRENTS I: IDENTIFICATION OF THE LIMIT 51 of 68

F IGURE 5 . 1 Left: A sketch of CLE4 coupled with the GFF. The loops have boundary values −2𝜆 or 2𝜆.
Right: We depict a few layers of the nested CLE4 coupled with the same GFF. We mark in red the outermost loops
that have boundary values −4𝜆 or 4𝜆, which belong to −4𝜆,4𝜆.

of the curve. A crucial property shown in [59] is that such SLE4-type curves are deterministic
functions of the GFF. We call these curves level lines, to keep the same terminology as in the
discrete. The value 𝑎 ∈ ℝ is called the height of the level line. The coupling between SLE4 and
GFFwas extended toCLE4 andGFFbyMiller and Sheffield [48] (amore general coupling between
CLE𝜅 andGFF for all 𝜅 ∈ (0, 8)was established in [53]; a proof for the case 𝜅 = 4was also provided
in [7]).
Let us fix some notation that will be used throughout this work. For any simply connected

domain𝑈, we say that its boundary 𝜕𝑈 is a contour. If 𝛾 is a simple loop, then let 𝑂(𝛾) denote the
domain encircled by 𝛾, which is equal to the unique bounded connected component of ℂ ⧵ 𝛾. Let
𝑂(𝛾) be the closure of 𝑂(𝛾). Every simple loop is a contour, but a contour need not be a loop or
a curve. Let ℎ be a zero boundary GFF in 𝐷. For every simply connected domain 𝑈 ⊆ 𝐷, let ℎ|𝑈
denote the restriction of ℎ to the domain𝑈. If ℎ|𝑈 is equal to a GFF in𝑈 with constant boundary
conditions, say equal to 𝑐, then let ℎ0|𝑈 be the zero boundary GFF so that ℎ|𝑈 is equal to ℎ0|𝑈
plus 𝑐. This constant 𝑐 is also called the boundary value of 𝑈, or the boundary value of 𝜕𝑈. Let Γ
denote a collection of simple loops which do not cross each other. Let gask(Γ) denote the gasket
of Γ, which is equal to 𝐷 ⧵ ∪𝛾∈Γ𝑂(𝛾). Given a connected set 𝐴 ⊆ 𝐷 such that 𝜕𝐷 ⊆ 𝐴, let (𝐴)
denote the collection of outer boundaries of the connected components of 𝐷 ⧵ 𝐴.
TheMiller–Sheffield coupling between theGFF andCLE4 states thatℎ a.s. uniquely determines

a random collection Γ of simple loops which do not cross each other and satisfy the following
property (see Figure 5.1, left): conditionally on gask(Γ), for each loop 𝛾 ∈ Γ, there exists 𝜖(𝛾) ∈
{−1, 1} such that ℎ|𝑂(𝛾) is equal to 𝜖(𝛾)2𝜆 plus a zero-boundary GFF. In addition, the fields ℎ|𝑂(𝛾)
for different 𝛾’s are (conditionally) independent of each other. In other words, gask(Γ) is a local
set of ℎ with boundary values in {−2𝜆, 2𝜆}. It turns out that Γ has the law of a CLE4. In addition,
gask(Γ) carries no mass of the GFF: for all test function 𝑓 on 𝐷, we have

∫𝐷 𝑓(𝑥)ℎ(𝑥)𝑑𝑥 =
∑
𝛾∈Γ

∫𝑂(𝛾) 𝑓(𝑥)ℎ|𝑂(𝛾)(𝑥)𝑑𝑥. (5.1)
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52 of 68 DUMINIL-COPIN et al.

Each loop 𝛾 in CLE4 is a level line (we also call it a level loop) of the GFF with boundary
value 𝜖(𝛾)2𝜆 on the inner side of the loop and 0 on the outer side of the loop (so it is at
height 𝜖(𝛾)𝜆).
It is also natural to consider level loops of ℎ at other heights than those of CLE4. For example,

the previous coupling can be extended to the nested CLE4 (by sampling the CLE4 coupled to
ℎ0|𝑂(𝛾) for each 𝛾 ∈ Γ), so that the further layers of CLE4 loops are at heights (2𝑘 + 1)𝜆 for 𝑘 ∈ ℤ.
For 𝑎 ∈ (−𝜆, 𝜆), the outermost level loops of ℎ at height 𝑎 are given by boundary conformal loop
ensembles (BCLE) [53], and one can then also consider nested versions of BCLE to obtain level
loops of ℎ at a continuum range of heights.
The gaskets of CLEs and BCLEs belong to a particular class of local sets called two-valued sets

introduced by Aru, Sepúlveda and Werner in [7]: a two-valued set is a thin local set (a termi-
nology in [60] meaning that the local set carries no mass of the GFF, described by (5.1)) with
two boundary values in {−𝑎, 𝑏}, denoted by 𝔸−𝑎,𝑏. For example, the gasket of CLE4 is equal to
𝔸−2𝜆,2𝜆, and the gaskets of BCLEs correspond to 𝔸−𝑎,𝑏 with 𝑎 + 𝑏 = 2𝜆. It was shown in [7]
that the sets 𝔸−𝑎,𝑏 exist for 𝑎, 𝑏 > 0 with 𝑎 + 𝑏 ⩾ 2𝜆, and are a.s. unique and determined by
ℎ. Let us use −𝑎,𝑏 to denote (𝔸−𝑎,𝑏). Throughout, we denote by +

−𝑎,𝑏
(resp. −

−𝑎,𝑏
) the set

of loops in −𝑎,𝑏 with boundary value 𝑏 (resp. −𝑎). We will also use notations like CLE4(ℎ)
and −𝑎,𝑏(ℎ) to represent these sets coupled to ℎ (especially when there are different GFFs
involved).
The loops in −𝑎,𝑏 are composed of SLE4-type curves which are level lines of ℎ, hence are a.s.

simple and do not cross each other (but can intersect each other). The law of −𝑎,𝑏 is invariant
under all conformal automorphisms from𝐷 onto itself, since ℎ is invariant under those conformal
maps. The geometric properties of the loops in −𝑎,𝑏 are well understood (see, e.g. [6, 7, 56] and
Lemma 5.6).
Let us now give a simple and intuitive explanation of the two-valued sets, and postpone more

details to the next subsection. As pointed out in [7], 𝔸−𝑎,𝑏 is a 2D analogue for GFF of the stop-
ping time of a 1D Brownian motion upon exiting [−𝑎, 𝑏], and is intuitively the set of points
that are connected to the boundary by a path on which the values of ℎ remain in [−𝑎, 𝑏]. Let
us illustrate this by the following construction of 𝔸−2𝑛𝜆,2𝑛𝜆 via iterated CLE4s (see Figure 5.1,
right). For each point 𝑧 ∈ 𝐷, the boundary values of the successive loops that encircle 𝑧 in the
nested CLE4 perform a symmetric random walk with steps ±2𝜆. The loops in −2𝑛𝜆,2𝑛𝜆 corre-
spond to the first time that we obtain a nested CLE4 loop with boundary value equal to −2𝑛𝜆
or 2𝑛𝜆.
Let us give more details on GFF, local sets and two-valued sets. Here, we look at a GFF in the

unit disk𝕌. For any other simply connected domain𝐷, one can simplymap𝐷 conformally onto𝕌.
Let Γ be the space of all closed non-empty subsets of 𝕌. We view Γ as a metric space, endowed by
the Hausdorff metric induced by the Euclidean distance. Note that Γ is naturally equipped with
the Borel 𝜎-algebra on Γ induced by this metric. Given 𝐴 ∈ Γ, let 𝐴𝛿 denote the closure of the
𝛿-neighbourhood of 𝐴 in 𝕌. Let𝛿 be the smallest 𝜎-algebra in which 𝐴 and the restriction of ℎ
to the interior of 𝐴𝛿 are measurable. Let

 ∶=
⋂

𝛿∈ℚ,𝛿>0

𝛿.

Intuitively, this is the smallest 𝜎-algebra in which 𝐴 and the values of ℎ in an infinitesimal
neighbourhood of 𝐴 are measurable.
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CONFORMAL INVARIANCE OF DOUBLE RANDOM CURRENTS I: IDENTIFICATION OF THE LIMIT 53 of 68

Definition 5.1 (Local set [59]). Let ℎ be a GFF in 𝕌. We say that a random set 𝐴 is a local set of ℎ
if 𝐴 is a closed subset of 𝕌 and one can write ℎ = ℎ𝐴 + ℎ𝐴, where

∙ ℎ𝐴 is an-measurable random distribution which is a.s. harmonic on 𝕌 ⧵ 𝐴.
∙ Conditionally on, ℎ𝐴 is a random distribution which is independent of. It is a.s. zero on 𝐴
and equal to an independent zero boundary GFF in each connected component of 𝕌 ⧵ 𝐴.

Two-valued sets were introduced by Aru, Sepúlveda and Werner in [7]. More precisely, they
denote thin local sets with two prescribed boundary values. Above we have mentioned the exam-
ples of CLE4 (whose gasket is a thin local set of a GFF with two boundary values in {−2𝜆, 2𝜆}) and
BCLE4(−1) (whose gasket is a thin local set of a GFF with two boundary values in {−𝜆, 𝜆}).
In [7], the authors first defined the more general family of bounded-type thin local sets (denoted

by BTLS), as follows.

Definition 5.2 (BTLSs, [7]). Let ℎ be a GFF in 𝐷. Let 𝐴 be a relatively closed subset of 𝐷. For
𝐾 > 0, we say that 𝐴 is a 𝐾-BTLS of ℎ if

1. (boundedness) 𝐴 is a local set of ℎ such that |ℎ𝐴(𝑥)| ⩽ 𝐾 for all 𝑥 ∈ 𝐷 ⧵ 𝐴.
2. (thinness) for any smooth function 𝑓, we have (ℎ𝐴, 𝑓) = ∫𝐷⧵𝐴 ℎ𝐴(𝑥)𝑓(𝑥)𝑑𝑥.
It was shown in [7] that a BTLS must be connected to the boundary of the domain.

Lemma 5.3 (Proposition 4, [7]). If 𝐴 is a BTLS, then 𝐴 ∪ 𝜕𝐷 is a.s. connected.

A two-valued set is defined to be a BTLS 𝐴 such that ℎ𝐴 ∈ {−𝑎, 𝑏} for 𝑎, 𝑏 > 0. The family of
two-valued sets satisfies the properties of the following lemma.

Lemma 5.4 (Proposition 2 in [7]). Let −𝑎 < 0 < 𝑏.

∙ When 𝑎 + 𝑏 < 2𝜆, it is not possible to construct a BTLS 𝐴 such that ℎ𝐴 ∈ {−𝑎, 𝑏} a.s.
∙ When 𝑎 + 𝑏 ⩾ 2𝜆, there is a unique BTLS𝐴 coupled with ℎ such that ℎ𝐴 ∈ {−𝑎, 𝑏} a.s. We denote
this set 𝐴 by 𝔸−𝑎,𝑏.

∙ If [𝑎, 𝑏] ⊆ [𝑎′, 𝑏′], then 𝔸−𝑎,𝑏 ⊆ 𝔸−𝑎′,𝑏′ a.s.

This lemma shows that two-valued sets are deterministic functions of the GFF ℎ (when they
exist), and this property will be instrumental in our proof.
When 𝑎 + 𝑏 = 2𝜆, the set−𝑎,𝑏 is equal to BCLE4(𝜌) (where 𝜌 = −𝑎∕𝜆) and can be constructed

using the branching SLE4(𝜌, −2 − 𝜌) process ([7, 53]). The loops in +
−𝑎,𝑏

(resp. −
−𝑎,𝑏

) corre-
spond to the loops traced in the clockwise (resp. counterclockwise) direction by the branching
SLE4(𝜌, −2 − 𝜌). Properties of such SLE processes directly imply the following lemma.

Lemma 5.5 [7, 53]. If 𝑎 + 𝑏 = 2𝜆, every loop in −𝑎,𝑏 intersects 𝜕𝐷. The loops in −
−𝑎,𝑏

are equal to

the outer boundaries of the connected components of 𝐷 ⧵ ∪𝛾∈+
−𝑎,𝑏
𝑂(𝛾).

For other values of 𝑎, 𝑏, 𝔸−𝑎,𝑏 is constructed by iterating the branching SLE4(𝜌, −2 − 𝜌)
processes. Using properties of the SLE4(𝜌, −2 − 𝜌) processes, [6] has deduced the following
intersecting behaviour of the loops in −𝑎,𝑏, which will be useful for us later.
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54 of 68 DUMINIL-COPIN et al.

Lemma 5.6 (Intersecting behaviour of the loops [6]).

1. There exists a loop in +
−𝑎,𝑏

(resp. −
−𝑎,𝑏

) which intersects 𝜕𝐷 if and only if 𝑏 < 2𝜆 (resp. 𝑎 < 2𝜆).
2. If 𝑎 + 𝑏 < 4𝜆, then one can connect any two loops 𝜂1 and 𝜂2 in−𝑎,𝑏 by a finite sequence of loops
(𝛾1, … , 𝛾𝑛) so that 𝛾1 = 𝜂1, 𝛾𝑛 = 𝜂2 and 𝛾𝑘+1 intersects 𝛾𝑘 for each 1 ⩽ 𝑘 ⩽ 𝑛 − 1. Only loops with
different boundary values can intersect each other.

We will also use the following lemmas to identify uniquely the law of the limiting interfaces in
Section 6.1.

Lemma 5.7 (Lemma 3.8, [6]). Let 𝑎, 𝑏 > 0 with 𝑎 + 𝑏 > 2𝜆. Then almost surely, a loop 𝓁 of −𝑎,𝑏
labelled −𝑎 touches the boundary if and only if 𝑎 < 2𝜆 and 𝓁 is a loop of −𝑎,−𝑎+2𝜆 labelled −𝑎.
Moreover, the loops of −𝑎,𝑏 which do not touch the boundary and are surrounded by a loop 𝛾 ∈−𝑎,−𝑎+2𝜆 labelled −𝑎 + 2𝜆 are exactly the loops of −2𝜆,𝑎+𝑏−2𝜆(ℎ0|𝑂(𝛾)).
Lemma 5.8. Let 𝐴1,𝐴2, … be an increasing sequence of thin local set of a GFF ℎ in a domain
𝐷 with 𝐴1 = 𝐴−

√
2𝜆,

√
2𝜆
, and such that for each 𝑘 and each 𝓁 ∈ (𝐴𝑘) with boundary value

𝑚
√
2𝜆, each loop in (𝐴𝑘+1) encircled by 𝓁 has boundary value either (𝑚 − 1)

√
2𝜆 or (𝑚 +

1)
√
2𝜆. Then, for each 𝑘 and each 𝓁 ∈ (𝐴𝑘), the loops in (𝐴𝑘+1) encircled by 𝓁 are exactly


−
√
2𝜆,

√
2𝜆
(ℎ0
𝑂(𝓁)

).

Proof. Suppose that 𝓁 ∈ (𝐴𝑘) has boundary value 𝑚
√
2𝜆. Since 𝐴1,𝐴2, … is an increasing

sequence, every loop 𝛾 ∈ (𝐴𝑘+1) is either encircled by 𝓁 or 𝑂(𝛾) ∩ 𝑂(𝓁) = ∅. Since 𝐴𝑘+1 is a
thin local set of ℎ, we have for any smooth function 𝑓

∫𝑂(𝓁) ℎ𝑂(𝓁)(𝑥)𝑓(𝑥)𝑑𝑥 = ∫𝑂(𝓁) ℎ(𝑥)𝑓(𝑥)𝑑𝑥 =
∑

𝛾∈(𝐴𝑘+1),𝑂(𝛾)⊆𝑂(𝓁)∫𝑂(𝛾)
ℎ𝑂(𝛾)(𝑥)𝑓(𝑥)𝑑𝑥.

Since𝓁 has boundary value𝑚
√
2𝜆 and each 𝛾 ∈ (𝐴𝑘+1) encircled by𝓁 has boundary value either

(𝑚 − 1)
√
2𝜆 or (𝑚 + 1)

√
2𝜆, we can conclude the proof. □

Lemma 5.9. Consider the following collection of loops defined iteratively.

∙ Let 0(ℎ) be the collection of loops resulting from replacing each 𝓁 ∈ +
−
√
2𝜆,

√
2𝜆
(ℎ)

(resp. 𝓁 ∈ −
−
√
2𝜆,

√
2𝜆
(ℎ)) by an independent (conditionally on 𝓁) 

−
√
2𝜆,(2−

√
2)𝜆
(ℎ|𝑂(𝓁))

(resp. 
−(2−

√
2)𝜆,

√
2𝜆
(ℎ|𝑂(𝓁))).

∙ Given 𝑘(ℎ), define 𝑘+1(ℎ) by replacing each 𝓁 ∈ 𝑘(ℎ) with boundary value 0 by an
independent (conditionally on 𝓁) copy of 0(ℎ|𝑂(𝓁)).

Then, lim inf𝑘→∞ 𝑘(ℎ) = lim sup𝑘→∞ 𝑘(ℎ) = −2𝜆,2𝜆(ℎ) = CLE4(ℎ).

Proof. For each 𝑘, gask(𝑘(ℎ)) is clearly a thin local set of ℎwith boundary values in {−2𝜆, 0, 2𝜆}. It
remains to prove that gask(lim𝑘→∞ 𝑘(ℎ)) is a thin local set ofℎwith boundary values in {−2𝜆, 2𝜆}.
For this purpose, it is enough to prove that lim𝑘→∞ 𝑘(ℎ) a.s. does not contain any loop with
boundary value 0.
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CONFORMAL INVARIANCE OF DOUBLE RANDOM CURRENTS I: IDENTIFICATION OF THE LIMIT 55 of 68

Let 𝐷 be the domain on which ℎ is defined. For 𝑧 ∈ 𝐷, if 𝑧 is encircled by a loop in 𝑘(ℎ) with
boundary value in {−2𝜆, 2𝜆} for some 𝑘 ⩾ 0, then 𝑧 cannot be encircled by a loop in lim𝑘→∞ 𝑘(ℎ)
with boundary value 0. Let 𝐸(𝑧) be the event that 𝑧 is encircled by a loop 𝓁𝑘 ∈ 𝑘(ℎ)with bound-
ary value 0 for every 𝑘 ⩾ 0. Then, 𝑧 is encircled by a loop 𝓁 ∈ lim𝑘→∞ 𝑘(ℎ) if and only if 𝐸(𝑧)
occurs. On this event, 𝓁 is a.s. encircled by 𝓁𝑘 for every 𝑘 ⩾ 0.
On 𝐸(𝑧), for 𝑘 ⩾ 1, let 𝑟𝑘(𝑧) be the conformal radius of 𝓁𝑘−1 seen from 𝑧. Let 𝑟0(𝑧) be the

conformal radius of 𝜕𝐷 seen from 𝑧. Then, for 𝑘 ⩾ 1, conditionally on 𝐸(𝑧), the random vari-
ables 𝑟𝑘(𝑧)∕𝑟𝑘−1(𝑧) are i.i.d. and their law does not depend on 𝑧 (due to conformal invariance of
0(ℎ)). Moreover, 𝑟𝑘(𝑧)∕𝑟𝑘−1(𝑧) is a.s. strictly less than 1, since gask(0(ℎ)) is a.s. non-empty. It
follows that 𝑟𝑘(𝑧) → 0 as 𝑘 → ∞ a.s., hence 𝓁 a.s. has conformal radius 0, which is impossible.
Therefore, 𝑧 is a.s. not encircled by a loop in lim𝑘→∞ 𝑘(ℎ) with boundary value 0. Since this is
true for all 𝑧, we have proved that lim𝑘→∞ 𝑘(ℎ) a.s. does not contain any loop with boundary
value 0. □

6 SCALING LIMIT OF THE DOUBLE RANDOM CURRENT
CLUSTERS

In this section, we identify the scaling limit of the DRC clusters with free and wired boundary
conditions. More precisely, we prove Theorems 6.2 and 6.4 which imply Theorems 1.1 and 1.2. As
we have pointed out at the end of Section 1.2, Theorems 6.2 and 6.4 contain more information
than Theorems 1.1 and 1.2.
Our proof crucially relies on the height function as defined in the master coupling in Theo-

rem 3.1 which satisfies a strong form of spatial Markov property at the inner boundaries of the
DRC clusters, namely one has an independent height function (which converges to a GFF) inside
each domain encircled by the inner boundary of a cluster. The boundary values

√
2𝜆 and 2

√
2𝜆

at the inner boundaries of the clusters come from the discrete height function (in the discrete,
the height changes by ±1 or ±1∕2 between neighbouring sites and faces but the limiting field is
(2
√
2𝜆)−1 times the GFF, hence the values of the continuum field on the scaling limit of such

inner boundaries are multiples of
√
2𝜆). For example, the scaling limit of the inner boundaries of

the outermost cluster in a DRC model with wired boundary conditions follows directly from this
spatial Markov property and the characterisation of two-valued sets (Lemma 5.4) [7].
In contrast, the discrete height function does not have this form of spatial Markov property

at the outer boundaries of the clusters. However, we establish this spatial Markov property in the
continuum limit, using additional information on the geometric properties of these loops and their
interaction with other interfaces of the primal and dual models coupled through Theorem 3.1.
More precisely, we show that the outer boundaries of the clusters in a free boundary DRC model
converge to the CLE4 coupled with the limiting GFF, so that each limiting loop has boundary
value −2𝜆 or 2𝜆. The value 2𝜆 cannot be found in the height function of the discrete model, but
only appears in the continuum limit. This is the same value as the height gap at the two sides of
a level line, identified in [58].
Throughout, let 𝐷 be a Jordan domain. Let𝑈1 and 𝑈2 be two open and simply connected sets.

We say that two contours 𝜕𝑈1 and 𝜕𝑈2 cross each other if𝑈1 ⊈ 𝑈2,𝑈2 ⊈ 𝑈1 and𝑈1 ∩ 𝑈2 ≠ ∅. We
say that a contour 𝜕𝑈1 encircles another contour 𝜕𝑈2 if𝑈2 ⊆ 𝑈1, andwe say 𝜕𝑈1 strictly encircles
𝜕𝑈2 if 𝑈2 ⊊ 𝑈1.
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56 of 68 DUMINIL-COPIN et al.

6.1 Main results

In this section, we state the main Theorems 6.2 and 6.4, which can be seen as enhanced versions
of Theorems 1.1 and 1.2 presented in the introduction.
Let 𝐷 ⊊ ℂ be a Jordan domain. Recall that we say that simply connected graphs 𝐷𝛿 ⊂ 𝛿ℤ2

approximate 𝐷 if 𝑑(𝜕𝐷𝛿, 𝜕𝐷) → 0 as 𝛿 → 0, where 𝑑 is as in (1.2). We consider a critical DRC
𝐧𝛿 on 𝐷𝛿 with free boundary conditions, and the dual DRC (𝐧†)𝛿 on (𝐷𝛿)† with wired boundary
conditions, coupled together as in Theorem 3.1. Let ℙ𝐷𝛿 be this coupling that also encodes the
joint height function 𝐻𝛿 composed of the nesting field ℎ𝛿 of 𝐧𝛿, and the nesting field (ℎ†)𝛿 of
(𝐧†)𝛿. The following collections of loops will be relevant in our proofs.

∙ 𝑄𝛿0 is the collection of loops in the inner boundary of the cluster of the ghost vertex of (𝐧
†)𝛿.

We proceed inductively. Having defined 𝑄𝛿
𝑘
, we define 𝑄𝛿

𝑘+1
in the following way. Recall that

by property (4) of the master coupling from Theorem 3.1, if 𝑘 is even, then in each loop 𝓁 of
𝑄𝛿
𝑘
, 𝐧𝛿 restricted to the domain encircled by 𝓁 has wired boundary conditions. We modify the

current by setting 𝐧𝛿𝑒 = 2 (the only important property is that the value is non-zero and even)
for every primal edge 𝑒 whose both endpoints are adjacent to 𝓁 from the inside. We denote this
modified current restricted to 𝓁 by 𝐧𝛿𝓁 . We then define 𝑄

𝛿
𝑘+1
(𝓁) as the union of all the loops

in the inner boundary of the external most (touching 𝓁) cluster of 𝐧𝛿𝓁 (see Figure 3.2 for an
illustration). Finally, we set 𝑄𝛿

𝑘+1
=

⋃
𝓁∈𝑄𝛿

𝑘
𝑄𝛿
𝑘+1
(𝓁). If 𝑘 is odd, then we proceed analogously

with 𝐧𝛿 replaced by (𝐧†)𝛿, and the primal graph replaced by the dual graph. In particular, the
loops in𝑄𝑘 are on the primal (resp. dual) lattice for 𝑘 even (resp. odd).We define𝑄𝛿 =

⋃∞
𝑘=0 𝑄

𝛿
𝑘
.

∙ 𝐵𝛿
𝑘
, for 𝑘 even, is the collection of outer boundaries of the clusters of 𝐧𝛿 that touch a loop of

𝑄𝛿
𝑘
from the inside. Moreover, for each loop 𝓁 ∈ 𝐵𝛿

𝑘
, let (𝓁) be the cluster of 𝐧𝛿 with outer

boundary 𝓁, and let 𝐴𝛿
𝑘
(𝓁) be the collection of loops in the inner boundary of (𝓁), and 𝐴𝛿

𝑘
∶=⋃

𝓁∈𝐵𝛿
𝑘
𝐴𝛿
𝑘
(𝓁). The collection of loops 𝐵𝛿

𝑘
, for 𝑘 odd, is defined in the same way but with 𝐧𝛿

exchanged for (𝐧†)𝛿. Finally, let 𝐵𝛿 =
⋃∞
𝑘=0 𝐵

𝛿
𝑘
and 𝐴𝛿 =

⋃∞
𝑘=0 𝐴

𝛿
𝑘
.

Remark 6.1. Note that𝐴𝛿
𝑘
(𝓁) ⊂ 𝑄𝛿

𝑘+1
(𝓁), and hence𝐴𝛿

𝑘
⊂ 𝑄𝛿

𝑘+1
. Moreover, every loop in𝑄𝛿

𝑘+1
(𝓁) ⧵

𝐴𝛿
𝑘
(𝓁) traces pieces of loops in 𝐵𝛿

𝑘
that touch 𝓁 and/or the loop 𝓁 itself (see Figure 3.2 for an

illustration). We also note that the outermost loops both in 𝐵𝛿 and 𝐴𝛿 can be of arbitrary level,
that is, belong to 𝐵𝛿

𝑘
and 𝐴𝛿

𝑘
for any 𝑘.

For 𝑘 odd (resp. even) and each 𝛾 ∈ 𝑄𝛿
𝑘
(𝓁), we say that 𝛾 is the boundary of an odd hole if 𝐧𝛿𝓁

(resp. (𝐧†)𝛿𝓁) is odd around every face encircled by 𝛾 (see definition in Section 1.3). Otherwise
we say that 𝛾 is the boundary of an even hole. We define 𝑐𝛿(𝓁) = 1 (resp. 𝑐𝛿(𝓁) = −1) if 𝓁 is the
boundary of an odd (resp. even) hole. Note that every loop in 𝑄𝛿

𝑘+1
(𝓁) ⧵ 𝐴𝛿

𝑘
(𝓁) is the boundary

of an even hole in by construction (since we modified the current by adding edges with value 2).
Moreover, for each loop 𝓁 ∈ 𝐵𝛿, let 𝜖𝛿(𝓁) be the label of the cluster (𝓁) of𝐧𝛿 with outer boundary
𝓁. The label is defined by the coupling with the nesting field ℎ𝛿 as in Theorem 3.1.
We will prove the following theorems which clearly imply Theorem 1.1 and Theorem 1.2.

Theorem6.2. Let𝐷 and𝐷𝛿 be as above, and such that 𝜕𝐷 is𝐶1. Let 𝜖𝛿𝔤 be the label of the cluster of the
boundary in (𝐧†)𝛿 . Then, as𝛿 → 0, the family (𝐻𝛿, 𝑄𝛿, 𝑐𝛿, 𝜖𝛿𝔤)defined above converges in distribution
to a limit ( 1√

𝜋
ℎ, 𝑄, 𝑐, 𝜖𝔤) satisfying:
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CONFORMAL INVARIANCE OF DOUBLE RANDOM CURRENTS I: IDENTIFICATION OF THE LIMIT 57 of 68

∙ ℎ is a GFF with zero boundary conditions in 𝐷.
∙ For𝑘 ⩾ 0, let𝑄𝑘 be the scaling limit of the loops in𝑄𝛿𝑘 . Then,𝑄0 is equal to−√2𝜆,√2𝜆(ℎ).Moreover,
for every loop 𝛾 ∈ 𝑄0, ℎ restricted to 𝑂(𝛾) has boundary value 𝜖𝔤𝑐(𝛾)

√
2𝜆.

∙ This picture repeats iteratively: if 𝓁 is a loop in𝑄𝑘 , then all the loops in𝑄𝑘+1 directly encircled by 𝓁
form

−
√
2𝜆,

√
2𝜆
(ℎ0|𝑂(𝓁)), and for each such loop 𝛾, ℎ0|𝑂(𝓁) restricted to𝑂(𝛾) has boundary value

(−1)𝑘𝑐(𝛾)𝑐(𝓁)
√
2𝜆.

Remark 6.3. The difference in the gaps between the first layer and the remaining layers (𝜖𝔤𝑐(𝛾)
√
2𝜆

and (−1)𝑘𝑐(𝛾)𝑐(𝓁)
√
2𝜆, respectively) comes from the fact that in the master coupling of Theo-

rem 3.1, the label of the external most cluster of 𝐧† is chosen uniformly at random, whereas the
increment of the heights between loops in consecutive layers is given by Property (3). Here, we
also use Property 2 to see that for a primal cluster , one has 𝜖 = −𝑐(𝛾), where 𝛾 is the loop in𝑄𝛿
that surrounds and touches . An analogous formula holds for dual clusters. The alternating sign
(−1)𝑘 appears since 𝑄𝛿

𝑘
alternate between primal and dual interfaces, and the formula in Prop-

erty (3) changes sign depending if we compute the increment from a face or from a vertex of the
original graph.

Theorem 6.4. Let 𝐷 and 𝐷𝛿 be as above and such that 𝜕𝐷 is 𝐶1. As 𝛿 → 0, the family

(𝐻𝛿, 𝐵𝛿, 𝐴𝛿, 𝜖𝛿, 𝑐𝛿)

defined above converges in distribution to a limit ( 1√
𝜋
ℎ, 𝐵, 𝐴, 𝜖, 𝑐) satisfying (see Figure 6.1):

∙ ℎ is a GFF with zero boundary conditions in 𝐷.
∙ The collection of outermost loops in 𝐵 is equal to CLE4(ℎ). For each such loop 𝓁, ℎ|𝑂(𝓁) is equal to
an independent zero-boundary GFF ℎ0|𝑂(𝓁) plus the constant 𝜖(𝓁)2𝜆.

∙ For each such outermost loop 𝓁 of 𝐵, let𝐴(𝓁) denote the collection of loops 𝛾 in𝐴 that are directly
encircled by 𝓁 (no other loop in 𝐴 encircles 𝛾).
– If 𝜖(𝓁) = 1, then 𝐴(𝓁) is equal to 

−2𝜆,(2
√
2−2)𝜆

(ℎ0|𝑂(𝓁)).
– If 𝜖(𝓁) = −1, then 𝐴(𝓁) is equal to 

−(2
√
2−2)𝜆,2𝜆

(ℎ0|𝑂(𝓁)).
– Each loop 𝛾 ∈ 𝐴(𝓁) has boundary value 𝜖(𝓁)(𝑐(𝛾) + 1)

√
2𝜆.

∙ This picture repeats iteratively in each outermost loop 𝓁 of𝐴 (with 𝜕𝐷 ∶= 𝓁, and with the loops of
𝐵 and 𝐴 encircled by 𝓁).

The relation between the loops in 𝑄 an 𝐴, 𝐵 is illustrated in Figure 6.2.

Remark 6.5. We can deduce using crossing estimates from [22] that for each loop𝓁 ∈ 𝐵𝑘, two loops
in 𝐴𝑘(𝓁) of the same parity (hence of the same boundary value and drawn in the same colour in
Figure 6.1) never touch each other. Moreover, only the limit of the boundaries of odd holes can
touch 𝓁. This is consistent with Theorem 6.4 and the adjacency properties of the loops in a two-
valued set (Lemma 5.6). Furthermore, Theorem 6.4 implies that each loop in 𝐴𝑘(𝓁) is connected
to 𝓁 via a finite chain of loops of alternating parities (hence the length of this chain always has a
fixed parity). In particular, the parity of the holes are determined by the shape of the clusters.
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58 of 68 DUMINIL-COPIN et al.

F IGURE 6 . 1 Scaling limit of the boundaries of the outermost clusters on the primal graph. We depicted the
outermost loops of 𝐵 in blue. For each blue loop 𝓁, the loops in 𝐴(𝓁) have boundary value either 0 or 𝜖(𝓁)2

√
2𝜆.

For two blue loops 𝓁1 and 𝓁2 with labels 𝜖(𝓁1) = 1 and 𝜖(𝓁2) = −1, we depict the loops in 𝐴(𝓁1) and 𝐴(𝓁2). For
𝑖 = 1, 2, we draw the loops in 𝐴(𝓁𝑖 ) with boundary value 0 (resp. 𝜖(𝓁𝑖 )2

√
2𝜆) in red (resp. green). Each green

(resp. red) loop is the limit of the boundary of an odd (resp. even) hole.

Remark 6.6. We can deduce using crossing estimates from [22] that two loops in 𝑄0 of the same
parity (hence of the same boundary value and drawn in the same colour in Figure 6.2) never
touch each other. This is consistent with Theorem 6.2 and the adjacency properties of the loops
in a two-valued set (Lemma 5.6).

6.2 Pre-compactness and first properties of limiting curves

We now proceed to proving the two theorems. To this end, recall the tightness criterion [2, H1]:
a family of random variables 𝛿 (with law ℙ𝛿) taking values in ℭ(Ω) satisfies condition H1 if
for every 𝑘 < ∞ and every annulus Ann(𝑥, 𝑟, 𝑅) with 𝛿 ⩽ 𝑟 ⩽ 𝑅 ⩽ 1, the following bound holds
uniformly in 𝛿 > 0:

ℙ𝛿[𝑁𝛿 (Ann(𝑥, 𝑟, 𝑅)) ⩾ 𝑘] ⩽ 𝐶(𝑘)( 𝑟𝑅 )
𝜆(𝑘), (6.1)

with 𝐶(𝑘) > 0 and 𝜆(𝑘) tending to infinity as 𝑘 → ∞, and where

𝑁𝛿 (𝐀) = {𝑘 distinct pieces of curves in 𝛿 cross the annulus 𝐀}. (6.2)

Here, by a piece (in 𝐀) of a curve, we mean a connected component of the curve resulting from
a restriction of the curve to the annulus 𝐀. If 𝛿 contains only one curve 𝓁, we will simply write
𝑁𝓁 for 𝑁{𝓁}. Theorem 1.2 of [2] says that if 𝛿 satisfies condition H1, then 𝛿 is pre-compact for
the topology of weak convergence with respect to the distance (1.1).
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CONFORMAL INVARIANCE OF DOUBLE RANDOM CURRENTS I: IDENTIFICATION OF THE LIMIT 59 of 68

F IGURE 6 . 2 The nesting between the loops in 𝑄,𝐴, 𝐵 and their coupling with ℎ. For each set of discrete
loops at mesh size 𝛿, we take away the superscript 𝛿 to denote its scaling limit in the continuum. For example, 𝐴𝑘
and 𝐵𝑘 denote, respectively, the scaling limit of the loops in 𝐴𝛿𝑘 and 𝐵

𝛿
𝑘
. We point out that an outermost loop in 𝐵

or 𝐴 can be at an arbitrary level, that is, belongs to 𝐵𝑘 or 𝐴𝑘 for any 𝑘.

Proposition 6.7. Let𝐷,𝐷𝛿 andℙ𝐷𝛿 be as above. Let 𝜂𝛿 (resp. 𝜂𝛿) be the nested boundaries interface
configuration of 𝐧𝛿 (resp. (𝐧†)𝛿) as defined in Section 1.2. We view 𝜂𝛿 and 𝜂𝛿 as collections of loops,
so that 𝜂𝛿 ∪ 𝜂𝛿 = 𝐴𝛿 ∪ 𝐵𝛿 . Then, 𝜂𝛿 satisfies conditionH1 under ℙ𝐷𝛿 . Moreover, if 𝜕𝐷 is 𝐶1, then 𝜂𝛿
also satisfies conditionH1 under ℙ𝐷𝛿 .

Proof. We apply criterion H1 to the families 𝜂𝛿 and 𝜂𝛿. The event that Ann(𝑥, 𝑟, 𝑅) is crossed by
𝑘 separate pieces of interfaces in 𝜂𝛿 (resp. 𝜂𝛿) is included in the (rescaled version of the) event
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60 of 68 DUMINIL-COPIN et al.

𝐴2𝑘(𝑟∕𝛿, 𝑅∕𝛿) for 𝐧 (resp. (𝐧𝛿)†), so that we may apply Theorem 2.1 and Remark 7.3 of [22]. This
concludes the proof. □

Lemma 6.8. Let 𝐷, 𝐷𝛿 , ℙ𝐷𝛿 , and 𝑄𝛿𝑘 be as above. Assume, moreover, that 𝜕𝐷 is 𝐶1. Then, for each
𝑘 ⩾ 0, 𝑄𝛿

𝑘
satisfies conditionH1 under ℙ𝐷𝛿 .

Proof. Wewill say that two (pieces of) loops are adjacent if either they are both subsets of the same
graph (primal or dual), and moreover, they intersect, or they are subsets of mutually dual graphs,
and moreover, they visit at least one same corner (pair of vertex and face) of the primal graph.
We will proceed inductively. By Proposition 6.7, 𝑄𝛿0 satisfiesH1 since it is a subset of 𝜂

𝛿. Let us
hence assume that𝑄𝛿

𝑘
satisfiesH1. Suppose that 𝑘 is even (the case of 𝑘 odd is treated analogously).

Let us show that𝑄𝛿
𝑘+1

also satisfiesH1 (with properly adjusted constants in (6.2)). For 𝓁 ∈ 𝑄𝛿
𝑘
, let

𝐿(𝓁) = 𝑄𝛿
𝑘+1
(𝓁) ⧵ 𝜂𝛿, and 𝐿 = 𝑄𝛿

𝑘+1
⧵ 𝜂𝛿 =

⋃
𝓁∈𝑄𝛿

𝑘
𝐿(𝓁). Note that by Proposition 6.7, it is enough

to prove that 𝐿 satisfiesH1.
To this end, we will use the fact that the loops in 𝐿 are constructed from (pieces of) a loop

𝓁 ∈ 𝑄𝛿
𝑘
or/and pieces of the loops in 𝜂𝛿 that are adjacent to 𝓁 from the inside (see also Remark 6.1).

Let us denote the latter collection of loops by 𝜂𝛿(𝓁). Consider annuli 𝐀 = Ann(𝑥, 𝑟, 𝑅), and 𝐀𝑖 =
Ann(𝑥, 𝑟𝑠𝑖−1, 𝑟𝑠𝑖), where 𝑖 = 1, 2, 3, 4 and 𝑠 = 4

√
𝑅∕𝑟, so that 𝐀 = 𝐀1 ∪ 𝐀2 ∪ 𝐀3 ∪ 𝐀4. Since 𝜂𝛿(𝓁)

and 𝜂𝛿(𝓁′) are disjoint for 𝓁 ≠ 𝓁′, by Proposition 6.7 and the induction assumption, it is enough
to show that for each 𝓁 ∈ 𝑄𝛿

𝑘
,

𝑁𝐿(𝓁)(𝐀) ⩽ 2(𝑁𝜂𝛿(𝓁)∪{𝓁}(𝐀1) + 𝑁𝜂𝛿(𝓁)(𝐀2) + 𝑁𝜂𝛿(𝓁)(𝐀3) + 𝑁𝜂𝛿(𝓁)∪{𝓁}(𝐀4)). (6.3)

To this end, let 𝑃1(𝓁) be the set of all pieces in 𝐀 of the loops in 𝐿(𝓁) that cross 𝐀 (as defined
above). Then, the cardinality of 𝑃1(𝓁) is equal to 𝑁𝐿(𝓁)(𝐀). Moreover, let 𝑃2(𝓁) be the set of all
pieces in𝐀 of the loops in 𝜂𝛿(𝓁) ∪ {𝓁} (not necessarily crossing𝐀). Here, if a loop is fully contained
in 𝐀, then there is one piece which is equal to this loop. Furthermore, for each 𝑝1 ∈ 𝑃1(𝓁), let
𝑃2(𝑝1) ⊂ 𝑃2(𝓁) be the set of pieces in 𝑃2(𝓁) that are adjacent to 𝑝1, or are adjacent to another
piece adjacent to 𝑝1. As we mentioned earlier, the union of the pieces in 𝑃2(𝑝1) should entirely
cover 𝑝1, by Remark 6.1. The pieces in 𝑃2(𝓁) are of two kinds: either they come from 𝓁 or 𝜂𝛿(𝓁).
See Figure 6.3 for an illustration. Let 𝑝1 ∈ 𝑃1(𝓁). Since 𝓁 encircles all loops in 𝜂𝛿(𝓁), every piece
in 𝑃2(𝑝1) that is a piece of a loop in 𝜂𝛿(𝓁) is either itself connected to the boundary of 𝐀 or it is
connected to it via a single piece of 𝓁 in 𝑃2(𝑝1). This means that there are two possibilities: either
there exists a piece in 𝑃2(𝑝1) that crosses 𝐀1 or 𝐀4, or there exists a piece in 𝑃2(𝑝1) that is a full
loop and crosses either 𝐀2 or 𝐀3. Indeed, suppose that none of the two possibilities is true, then
there must exist a full loop 𝛾 in 𝑃2(𝑝1) that is entirely contained in 𝐀2 ∪ 𝐀3. Note that 𝛾 must be
connected to the boundary of 𝐀 via a single piece of 𝓁 in 𝑃2(𝑝1). The latter piece in 𝑃2(𝑝1) then
has to cross either𝐀1 or𝐀4, leading to a contradiction. Observe, moreover, that by planarity, each
𝑝2 ∈ 𝑃2(𝑝1) belongs to at most two sets of the form 𝑃2(𝑝

′
1) for some 𝑝

′
1 ∈ 𝑃1(𝓁), since a crossing

piece 𝑝1 can follow 𝑝2 from at most two sides (this bound is not optimal, but sufficient for our
purpose), hence the constant 2 in (6.3). This shows (6.3) and finishes the proof of the lemma. □

Finally, we will need the following intersection properties of the limiting interfaces.

Lemma 6.9. Let (𝐴, 𝐵, 𝑐) be any subsequential limit of (𝐴𝛿, 𝐵𝛿, 𝑐𝛿). Then
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CONFORMAL INVARIANCE OF DOUBLE RANDOM CURRENTS I: IDENTIFICATION OF THE LIMIT 61 of 68

F IGURE 6 . 3 Illustration of the proof of (6.3). The proof is on the discrete lattice, but we depict curves in the
continuum for convenience. Adjacent pieces of loops are depicted as curves that touch or trace each other. We
depict in green the loop 𝓁, and in red the loops in 𝜂𝛿(𝓁). Note that in the discrete, the loops in 𝜂𝛿(𝓁) can be
adjacent to each other (i.e. the red loops can touch each other), even though Theorem 6.2 (that we will prove
later) implies that the scaling limit of the loops in 𝜂𝛿(𝓁) a.s. do not touch each other (see Remark 6.6). The pieces
in 𝑃2(𝓁) are drawn in solid (green or red) curves. We depict in blue 3 pieces 𝑝1, 𝑝′1, 𝑝

′′
1 in 𝑃1(𝓁) (among several

others). We can see that 𝑝1 and 𝑝′1 are adjacent to the same pieces in 𝑃2(𝓁), which is why the constant 2 in (6.3) is
needed. In this picture, there are five pieces in 𝑃2(𝓁) which are adjacent to 𝑝′′1 , but none of them makes the
required crossing across 𝐀1,… ,𝐀4. However, in this case, the pieces in 𝑃2(𝓁) adjacent to 𝑝′′1 must contain at least
one full loop 𝛾 from 𝜂𝛿(𝓁)which is strictly contained in 𝐀2 ∪ 𝐀3. Then, 𝛾must be adjacent to some piece 𝑝2 of the
loop 𝓁 which is connected to 𝜕𝐀. Here, 𝑝2 crosses 𝐀4. Note that 𝑝2 is not directly adjacent to 𝑝′′1 , but is adjacent to
some piece adjacent to 𝑝′′1 , so it is contained in 𝑃2(𝑝

′′
1 ) by our definition.

∙ the loops in 𝐵 are simple and do not intersect each other,
∙ the outermost loops in 𝐵 do not intersect the outermost loops in 𝐴 with 𝑐 = −1.

Proof. The fact that the loops in 𝐵 do not intersect each other is a direct consequence of Theo-
rem 2.2. Indeed, fix 𝛼, 𝛽, 𝜀 > 0. For two loops of 𝐵𝛿 of diameter at least 𝛼 to come within distance
𝛽 of each other, there must be 𝑥 ∈ Ω𝛿 such that the translate by 𝑥 of the rescaled version of the
event 𝐴□

4 (𝛽∕𝛿, 𝛼∕𝛿) occurs. Yet, Theorem 2.2 implies that provided that 𝛽 ⩽ 𝛽0(𝛼, 𝜀), this occurs
with probability smaller than 𝜀. The fact that the loops in 𝐴 and 𝐵 are simple is also direct conse-
quence of Theorem 2.2. Indeed, the event that a single loop comes within distance 𝛽 of itself after
going away to distance 𝛼 also implies the same event. Letting 𝛽 tend to zero, then 𝛼, and finally 𝜀,
we obtain the result.
Moreover, for a loop of 𝐴𝛿 of diameter at least 𝛼 and with boundary value zero (and hence

𝑐 = −1) to come within a distance 𝛽 of an outermost loop in 𝐵𝛿 of diameter at least 𝛼, there must
be 𝑥 ∈ 𝐷𝛿 such that the translate by 𝑥 of the rescaled version of the event 𝐴■

4 (𝛽∕𝛿, 𝛼∕𝛿) occurs.
Yet, Theorem 2.3 implies that provided that 𝛽 ⩽ 𝛽0(𝛼, 𝜀), this occurs with probability smaller than
𝜀. Letting 𝛽 tend to zero, then 𝛼, and finally 𝜀, we obtain the result. □

6.3 Identification of limits

We start with a lemma that proves the first two bullets of Theorem 6.2.
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62 of 68 DUMINIL-COPIN et al.

Lemma 6.10. Let 𝐷, 𝐷𝛿 , ℙ𝐷𝛿 and 𝑄𝛿0 be as above. Assume moreover that 𝜕𝐷 is 𝐶1. Let 𝜖𝛿𝔤 be the
label of the cluster of the boundary in (𝐧†)𝛿 . Then the family ((ℎ†)𝛿, 𝑄𝛿0 , 𝑐

𝛿, 𝜖𝛿𝔤) converges weakly to
( 1√

𝜋
ℎ, 𝑄0, 𝑐, 𝜖𝔤) as 𝛿 → 0, where

∙ ℎ is a GFF with zero boundary conditions in 𝐷.
∙ 𝑄0 = 

−
√
2𝜆,

√
2𝜆
(ℎ).

∙ For each 𝓁 ∈ 𝑄0, ℎ restricted to 𝑂(𝓁) has boundary value 𝜖𝔤𝑐(𝓁)
√
2𝜆.

Proof. By Lemma 6.8, Theorem 1.4, and the compactness of {−1, 1}ℕ, ((ℎ†)𝛿, 𝑄𝛿0 , 𝑐
𝛿, 𝜖𝛿𝔤) is

pre-compact in the topology of week convergence. Let ( 1√
𝜋
ℎ, 𝑄0, 𝑐, 𝜖𝔤) be a limit along a subse-

quence 𝛿𝑛. We also know from Theorem 1.4 that ℎ is the GFF in𝐷 with zero boundary conditions.
We will identify gask(𝑄0) as the only two-valued set of ℎ with boundary values ±

√
2𝜆. To this

end, we need to show that gask(𝑄0) is thin for ℎ, that is, for any smooth bounded function g , we
have

∫𝐷 g(𝑥)ℎ(𝑥)𝑑𝑥 =
∑
𝛾∈𝑄0

∫𝑂(𝛾) g(𝑥)ℎ|𝑂(𝛾)(𝑥)𝑑𝑥.
Note that gask(𝑄𝛿0) ⊂ gask(𝐴

𝛿
0) by the master coupling from Theorem 3.1, and moreover ℎ𝛿 is

zero on gask(𝐴𝛿0). Furthermore, (ℎ
†)𝛿 and ℎ𝛿 have a common scaling limit 1√

𝜋
ℎ by Theorem 1.4.

Therefore, it is enough to show the following (here we prefer to look at gask(𝐴𝛿0) as it deals
with DRCs with free boundary conditions, and these are more amenable to analysis as already
mentioned)

lim
𝛼→0

lim
𝑛→∞∫𝐷𝛿𝑛 g(𝑥)ℎ

𝛿𝑛 (𝑥)𝟏
𝑥∈𝐸

𝛿𝑛
𝛼
𝑑𝑥 = 0, (6.4)

where, if Λ𝛼(𝑦) ∶= 𝑦 + [−𝛼, 𝛼]2,

𝐸
𝛿𝑛
𝛼 ∶= union of the Λ𝛼(𝑦) for 𝑦 ∈ 𝛼ℤ2 such that Λ2𝛼(𝑦) intersects some 𝛾 ∈ 𝐴

𝛿𝑛
0

(note that, in particular, every 𝑥 that is within a distance 𝛼 of some 𝛾 in 𝐴𝛿𝑛0 must be in 𝐸𝛿𝑛𝛼 ).
In order to prove this statement, we fix 𝜀 > 0 and see that

𝜀ℙ𝛿𝑛

[
∫𝐷𝛿𝑛 g(𝑥)ℎ

𝛿𝑛 (𝑥)𝟏
𝑥∈𝐸

𝛿𝑛
𝛼
𝑑𝑥 ⩾ 𝜀

]
⩽ 𝔼𝛿𝑛

[|||∫𝐷𝛿𝑛 g(𝑥)ℎ𝛿𝑛 (𝑥)𝟏𝑥∈𝐸𝛿𝑛𝛼 𝑑𝑥|||
]

⩽
∑
𝑦∈𝛼ℤ2

𝔼𝛿𝑛

[|||∫Λ𝛼(𝑦) g(𝑥)ℎ𝛿𝑛 (𝑥)𝟏𝑥∈𝐸𝛿𝑛𝛼 𝑑𝑥|||
]

=
∑
𝑦∈𝛼ℤ2

𝔼𝛿𝑛

[
𝟏
𝑦∈𝐸

𝛿𝑛
𝛼

|||∫Λ𝛼(𝑦) g(𝑥)ℎ𝛿𝑛 (𝑥)𝑑𝑥|||
]
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⩽
∑
𝑦∈𝛼ℤ2

ℙ𝛿𝑛 [𝑦 ∈ 𝐸
𝛿𝑛
𝛼 ]

1∕2𝔼𝛿𝑛

⎡⎢⎢⎣
(
∫Λ𝛼(𝑦) g(𝑥)ℎ

𝛿𝑛 (𝑥)𝑑𝑥

)2⎤⎥⎥⎦
1∕2

⩽
∑
𝑦∈𝛼ℤ2

𝛼𝑐 × 𝐶(g)𝛼2 log(1∕𝛼)

⩽ 𝐶(g , 𝐷) log(1∕𝛼)𝛼𝑐.

Above, we used Markov’s inequality in the first inequality, the triangle inequality in the second,
the fact that 𝑥 ∈ 𝐸𝛿𝑛𝛼 is equivalent to 𝑦 ∈ 𝐸𝛿𝑛𝛼 in the third, and Cauchy–Schwarz in the fourth. In
the fifth, we combine an easy estimate on the second moment of ∫Λ𝛼(𝑦) g(𝑥)ℎ𝛿𝑛 (𝑥)𝑑𝑥 based on
the definition of the nesting field and RSW-type estimates from [22], together with the fact that
for Λ𝛼(𝑦) to intersect a loop 𝛾 in 𝐴𝛿𝑛 , there must be a primal path in 𝐧𝛿 from Λ𝛼(𝑥) to Λ𝛽(𝑥) or a
path in (𝐧𝛿)∗ (the dual complement) from 𝜕Λ𝛽(𝑥) to 𝜕Λ𝑑(𝑥,𝜕𝐷)(𝑥), where 𝛽 ∶=

√
𝛼𝑑(𝑥, 𝜕𝐷). This

proves that gask(𝑄𝛿0) is thin for ℎ.
Moreover, by theMarkov property of the nesting field with wired boundary conditions (1.7) and

Theorem 1.4 applied inside each loop of 𝑄𝛿0 , we know that gask(𝑄0) is a local set of ℎ, and that for
each 𝛾 ∈ 𝑄0, the restriction of ℎ to 𝑂(𝛾) has boundary value equal to 𝜖𝔤𝑐(𝓁)

√
2𝜆 ∈ {−

√
2𝜆,

√
2𝜆}

(since in the discrete the boundary value is equal to ±1
2
and the scaling limit of ℎ𝛿 is 1√

𝜋
ℎ =

1

2
√
2𝜆
ℎ). By Lemma 5.4, this uniquely characterises 𝑄0 as the two-valued set −√2𝜆,√2𝜆(ℎ). □

Proof of Theorem 6.2. By the lemma above, we are left with proving the third bullet from the
statement. By the definition of 𝑄𝛿

𝑘
and by the Markov property 4 of the master coupling from

Theorem 3.1, we know that the loops of 𝑄𝛿
𝑘+1

contained in a single loop 𝓁 of 𝑄𝛿
𝑘
, have the same

distribution as 𝑄𝛿0 in a domain 𝐷
𝛿 whose outer boundary is 𝓁. However, we cannot directly apply

Lemma 6.10 since the assumption on the boundary of the domain being smooth is not satisfied
by the scaling limits of the loops from 𝑄𝛿0 (as they are fractal loops by Lemma 6.10). Nonethe-
less, this assumption is only used to obtain subsequential limits of the loops. Indeed, the proof of
convergence of the height function in Theorem 1.4 and of the fact that the gasket of the limiting
collection of loops is thin in Lemma 6.10 works for Jordan domains with arbitrary boundaries
as it goes through currents with free boundary conditions (and we have more control on them
as already mentioned). The remaining ingredient of the proof is the Markov property that is the
same both for random currents with free and wired boundary conditions.
Therefore, to prove the third bullet, it is enough to use pre-compactness of 𝑄𝛿

𝑘
(which follows

directly from Lemma 6.8) and show that every subsequential limit of gask(𝑄𝛿
𝑘
) is a thin local

set (as in the proof of Lemma 6.10). Then, use Remark 6.3 to identify the signs of boundary val-
ues of the field on consecutive loops in the continuum, and use Lemma 5.8 to identify the limit
uniquely. □

Proof of Theorem 6.4. By Theorem 1.4, Proposition 6.7 and compactness of {±1}ℕ, we know that
(𝐴𝛿, 𝐵𝛿, ℎ𝛿, 𝑐𝛿, 𝜖𝛿) is pre-compact in the topology of weak convergence. Let (𝐴, 𝐵, ℎ, 𝑐, 𝜖) be any
subsequential limit.
Note that from Theorem 6.2 and Remark 6.1, we already know that the loops in 𝐴 are a

subset of all the loops in the union of nested iterations of 
−
√
2𝜆,

√
2𝜆
. However, we need an
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64 of 68 DUMINIL-COPIN et al.

additional argument to uniquely determine exactly which subset they are. To be more pre-
cise, recall from Remark 6.1 that 𝐴𝛿

𝑘
⊂ 𝑄𝛿

𝑘+1
. Theorem 6.2 implies that if 𝓁 is a scaling limit of

𝓁𝛿 ∈ 𝑄𝛿
𝑘
, then the scaling limits of loops in 𝑄𝛿

𝑘+1
(𝓁𝛿) is 

−
√
2𝜆,

√
2𝜆
(ℎ0|𝑂(𝓁)). We claim that the

scaling limit of 𝑄𝛿
𝑘+1
(𝓁𝛿) ⧵ 𝐴𝛿

𝑘
(𝓁𝛿) is exactly the set of loops in 

−
√
2𝜆,

√
2𝜆
(ℎ0|𝑂(𝓁)) that have

label (−1)𝑘+1𝑐(𝓁)
√
2𝜆 and moreover intersect 𝓁. Equivalently, by Lemma 5.7, this is exactly

−
−
√
2𝜆,(2−

√
2)𝜆
(ℎ0|𝑂(𝓁)) if 𝑐(𝓁) = (−1)𝑘, and +

−(2−
√
2)𝜆,

√
2𝜆
(ℎ0|𝑂(𝓁)) if 𝑐(𝓁) = (−1)𝑘+1. Indeed,

by property 2 of the master coupling from Theorem 3.1, the increment of the nesting field
between 𝓁𝛿 and 𝛾𝛿 ∈ 𝑄𝛿

𝑘+1
(𝓁𝛿) is (−1)𝑘𝑐(𝓁𝛿)𝑐(𝛾𝛿). The loops in 𝑄𝛿

𝑘+1
(𝓁𝛿) ⧵ 𝐴𝛿

𝑘
(𝓁𝛿) are bound-

aries of even holes as mentioned below Remark 6.1, and hence 𝑐(𝛾𝛿) = −1 for every such
loop 𝛾𝛿. Altogether this means that all loops in the scaling limit of 𝑄𝛿

𝑘+1
(𝓁𝛿) ⧵ 𝐴𝛿

𝑘
(𝓁𝛿) have

label (−1)𝑘+1𝑐(𝓁)
√
2𝜆. To prove the claim, we still need to show that they are boundaries of

exactly those even holes in 𝑄𝛿
𝑘+1
(𝓁𝛿) whose scaling limit intersects 𝓁. Here is where we use

the intersection properties from Lemma 6.9. First of all, every loop 𝛾𝛿 ∈ 𝐴𝛿
𝑘
(𝓁𝛿) is by defini-

tion encircled by a loop in 𝐵𝛿
𝑘
, which, in turn, is encircled by 𝓁𝛿. If 𝛾𝛿 is the boundary of an

even hole, then its scaling limit cannot intersect 𝓁, as in this case, it would intersect the scal-
ing limit of the corresponding loop in 𝐵𝛿

𝑘
, which is forbidden by bullet two of Lemma 6.9.

Hence, it is enough to show that every loop in 𝑄𝛿
𝑘+1
(𝓁𝛿) ⧵ 𝐴𝛿

𝑘
(𝓁𝛿) has a scaling limit that inter-

sects 𝓁. To this end, recall from Remark 6.1 that each such loop traces pieces of loops in 𝐵𝛿
𝑘

that touch 𝓁𝛿 and/or pieces of 𝓁𝛿 itself. If its scaling limit does not intersect 𝓁, it means that
it can only trace pieces of scaling limits of loops from 𝐵𝛿

𝑘
that intersect 𝓁. However, that would

imply that these loops either touch each other or self-touch which is forbidden by bullet one of
Lemma 6.9.
We nowmove on to the identification of the scaling limit of the outermost loops of𝐵 as CLE4(ℎ)

using Lemmas 5.5 and 5.9. Our aim is to show that the continuum construction of Lemma 5.9 is
mirrored in the discrete. Since we look at the outer boundaries of only the primal current 𝐧𝛿,
the relevant auxiliary collections of loops will be 𝑄𝛿

2𝑘
, 𝑘 = 0, 1, …. Let 𝓁𝛿 ∈ 𝑄𝛿

2𝑘
, and recall that

𝐵2𝑘(𝓁
𝛿) is the set of outer boundaries of 𝐧𝛿 that touch 𝓁𝛿 from the inside, and let 𝐵2𝑘(𝓁) be the

set of their scaling limits, where 𝓁 is the scaling limit of 𝓁𝛿. We claim that the restriction of the
loops in 𝐵2𝑘(𝓁) to 𝑂(𝓁) agrees with the restriction of −

−
√
2𝜆,(2−

√
2)𝜆
(ℎ0|𝑂(𝓁)) to 𝑂(𝓁) if 𝑐(𝓁𝛿) = 1,

and with the restriction of +
−(2−

√
2)𝜆,

√
2𝜆
(ℎ0|𝑂(𝓁)) if 𝑐(𝓁𝛿) = −1. Without loss of generality, let us

assume that 𝑐(𝓁𝛿) = 1. Indeed, by definition, the loops in 𝑄𝛿
2𝑘+1

(𝓁𝛿) ⧵ 𝐴𝛿
2𝑘
(𝓁𝛿) restricted to the

inside of 𝓁𝛿 follow pieces of loops from 𝐵2𝑘(𝓁
𝛿). Reversely, the loops in 𝐵2𝑘(𝓁𝛿) follow pieces of

loops in 𝑄𝛿
2𝑘+1

(𝓁𝛿) ⧵ 𝐴𝛿
2𝑘
(𝓁𝛿) unless the loops in 𝐵2𝑘(𝓁𝛿) come to distance one (see Figure 3.2 for

an example). Since 𝐵2𝑘(𝓁) do not intersect each other, and by the paragraph above, inside 𝑂(𝓁),
all loops from 𝐵2𝑘(𝓁) follow pieces of 𝑂(𝓁) if 𝑐(𝓁𝛿) = 1. On the other hand, again by definition,
the restriction of the loops in 𝐵2𝑘(𝓁) to 𝓁 is the closure of the complement of the restriction of
−
−
√
2𝜆,(2−

√
2)𝜆
(ℎ0|𝑂(𝓁)) to 𝓁. Hence, by Lemma 5.5, 𝐵2𝑘(𝓁) is equal to +

−
√
2𝜆,(2−

√
2)𝜆
(ℎ0|𝑂(𝓁)). This

together with the construction of Lemma 5.9 that extracts the outermost loops from 𝐵 proves that
these outermost loops are CLE4(ℎ).
The fact that 𝐴(𝛾) for every outermost loop 𝛾 ∈ 𝐵 is equal to 

−2𝜆,(2
√
2−2)𝜆

(ℎ0|𝑂(𝛾)) if 𝜖(𝛾) =
1, and to 

−(2
√
2−2)𝜆,2𝜆

(ℎ0|𝑂(𝛾)) if 𝜖(𝛾) = −1 follows directly from the discussion above and the
second part of Lemma 5.7. □
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6.4 Asymptotic behaviour of the number of clusters

Let us now prove a lemma which leads to the asymptotic numbers of clusters in the DRC models
that surround the origin.

Lemma 6.11. In the scaling limit of the DRC model in the unit disk (with either the free or wired
boundary conditions), let𝑁(𝜀) be the number of clusters surrounding the origin such that their outer
boundaries have a conformal radius w.r.t. the origin at least 𝜀. Then,

𝑁(𝜀)∕ log(𝜀−1)⟶
𝜀→0

1∕(
√
2𝜋2).

Proof. By Theorems 1.1 and 1.2 and [7, Proposition 20], we know that the difference of log
conformal radii between the outer boundaries of two successive DRC clusters that encircle the
origin is given by 𝑅 ∶= 𝑇1 + 𝑇2, where 𝑇1 is the first time that a standard Brownian motion
exits [−𝜋, (

√
2 − 1)𝜋] and 𝑇2 is the first time that a standard Brownian motion exits [−𝜋, 𝜋]. We

have

𝔼(𝑇1 + 𝑇2) = (
√
2 − 1)𝜋2 + 𝜋2 =

√
2𝜋2.

The 𝑛th cluster which encircles the origin has log conformal radius equal to −𝑆𝑛 where 𝑆𝑛 ∶=
−(𝑅1 +⋯ + 𝑅𝑛) and 𝑅𝑖 are i.i.d. random variables distributed like 𝑅. Then, 𝑁(𝜀) is the smallest
𝑛 ⩾ 1 such that 𝑆𝑛+1 ⩾ log(𝜀−1). By the law of large numbers, we know that 𝑆𝑛∕𝑛 converges to
𝔼(𝑅) a.s. as 𝑛 → ∞. Since 𝑁(𝜀) → ∞ as 𝜀 → 0, we also have that

𝑆𝑁(𝜀)+1∕(𝑁(𝜀) + 1) → 𝔼(𝑅) a.s. as 𝜀 → 0.

Note that log(𝜀−1) ⩽ 𝑆𝑁(𝜀)+1 ⩽ log(𝜀−1) + 𝑅𝑁(𝜀). It follows that

lim
𝜀→0

log(𝜀−1)∕𝑁(𝜀) = 𝔼(𝑅) =
√
2𝜋2.

The inverse of the above equation proves the lemma. □
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