
NRDF - Neural Region Descriptor Fields as Implicit ROI
Representation for Robotic 3D Surface Processing

Anish Pratheepkumar1,2, Markus Ikeda1, Michael Hofmann1, Fabian Widmoser1,
Andreas Pichler1, Markus Vincze2

(a) (b) (c)

Process-related ROI
          (P-ROI)

Process Knowledge
Process Knowledge Transfer
  by P-ROI Correspondence

Fig. 1: (a) Conventional correspondence estimations: (left) keypoint correspondence, (right) semantic part correspondence. (b) Proposed arbitrary region of
interest (ROI) correspondence: (left) arbitrary ROI on reference object and (right) the NRDF estimated corresponding ROI on target object. (c) Proposed
concept of process knowledge transfer with P-ROI correspondence: (left) four P-ROI on a reference chair object, (middle) specific process strategy assigned
to each P-ROI (trajectory illustrated in the same color of the sub regions), and (right) when a new instance of category-level target object is presented the
same process strategy associated with the corresponding P-ROI is executed.

Abstract— To automate 3D surface processing across diverse
category-level objects it is imperative to represent process-
related region of interest (P-ROI), which is not obtained with
conventional keypoint or semantic part correspondences. To
resolve this issue, we propose Neural Region Descriptor Fields
(NRDF) for achieving unsupervised dense 3D surface region
correspondence such that arbitrary ROI is retrieved for a
new instance of a known category of object. We utilize the
NRDF representation as a medium to facilitate one-shot P-
ROI level process knowledge transfer. Recent developments in
implicit 3D object representations have focused on keypoint
or part correspondences, which have resulted in applications
like robotic grasping and manipulation. However, explicit one-
shot P-ROI correspondence, and its application for 3D surface
process knowledge transfer, is treated for the first time in this
work, to the best of our knowledge. The evaluation results
show that the proposed approach outperforms the dense cor-
respondence baselines in implicit shape representation and the
capacity to retrieve matching arbitrary ROIs. In addition, we
validate the practicality of our proposed system in a real-world
robotic surface processing application. Our code is available at
https://github.com/Profactor/Neural-Region-Descriptor-Fields.

I. INTRODUCTION

Surface processing is an indispensable aspect of manufac-
turing, spanning a multitude of industries such as furniture,
automobile, aerospace, mold, etc., and encompassing opera-
tions such as polishing, oiling, cleaning, painting, etc., [1]–
[3]. There is a rich history of research addressing multiple
aspects of robotic surface processing, including process
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strategy [2]–[4], focusing on specific applications [5]–[7],
concerning specific surface types [7], [8], etc. However, it
is still challenging to generalize robotic surface processing,
and the task continues to be performed manually by relying
on skilled human workers [8]–[10].

The recent transition from mass production to mass cus-
tomization leads to topology variations in category-level
objects, resulting in a high-mix, low-volume scenario [11],
[12]. Hence, we probe into the specific question of how
to generalize robotic 3D surface processing across diverse
category-level objects. There are multiple existing and cur-
rently researched methodologies focusing on how to perform
a robotic surface process execution [2]–[4]. In contrast, our
focus is on how to introduce a generalization approach
that facilitates process knowledge transfer across diverse
category-level objects. This avoids the need for reprogram-
ming, encouraging flexible automation of robotic surface
processing.

It is intuitive that a surface process is executed on sub
regions or P-ROIs such that a particular P-ROI is associated
with a specific process strategy. The process strategy involves
multiple aspects such as process trajectory, direction, contact
force, tool angle, etc., which we refer to as the process
knowledge. From this perspective, we propose to approach
generalizing category-level surface processing by identifying
corresponding P-ROI which share a similar process strategy.
Hence, by defining P-ROIs and its associated process strategy
for one object, a region correspondence system will facilitate
identifying corresponding P-ROIs on a new instance of the
object, and enable transfer of the process knowledge, an
example is shown in Fig. 1c.

Conventional correspondence estimations focus on dis-
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crete keypoints or object semantic parts as shown in Fig. 1a.
It is evident that keypoints alone are insufficient for defining
a surface process strategy. Also, on a semantic part of an
object, it is challenging to define a single surface processing
strategy as it is possible to have multiple P-ROIs within
a semantic part. Moreover, the P-ROIs could span across
multiple semantic parts, for example, the orange P-ROI in
Fig. 1c is spanning across the two blue and pink semantic
parts as seen in Fig. 1a. It could even be at the intersection
of two semantic parts, for example, the pink P-ROI in Fig.
1c is at the intersection of the two blue and pink semantic
parts of the chair as in Fig. 1a. These aspects justify the need
for specific P-ROI correspondence where the boundaries of
the region are not constrained to the component parts.

However manually annotating and learning category-level
P-ROIs for specific surface processing operation is time
consuming, and the P-ROIs could vary based on the type
of operation executed or with the type of tool adopted. In
contrast, a more generalized approach would be to develop a
dense correspondence system which is capable of retrieving
arbitrary ROIs across category-level objects in a one-shot
manner such that any P-ROI configuration could be defined
and retrieved as needed.

Compared to conventional 3D representations such as
voxels, meshes and point clouds, implicit object represen-
tations [13], [14] have recently emerged as an effective
approach [15]–[17]. A recent work [18] introduce an implicit
Neural Descriptor Field (NDF) representation, which enables
category-level dense correspondence estimation via few-
shot iterative optimization, and applies the technology for
point based robotic manipulation. For this work we leverage
the implicit descriptor [18] representation and advance it
from few-shot iterative point correspondence estimations to
one-shot non-iterative surface region level correspondence
estimations for retrieving any random ROI on the object.

The following is a summary of our contributions:
1) We introduce one-shot implicit descriptor-based 3D

object dense correspondence system capable of re-
trieving arbitrary ROIs on object surface, and then
utilize it for process knowledge transfer with P-ROI
correspondence across category-level objects.

2) To achieve the arbitrary ROI retrieval, we propose the
new NRDF representations which essentially optimizes
the implicit descriptors to explicitly consider the sur-
face geometry variations in 3 dimensions. To this end,
we design a novel inverse descriptor function capable
of mapping descriptors back to the 3D space locations.

3) In addition, we introduce a new descriptor loss function
that focuses on optimizing the descriptor space such
that the descriptors of the corresponding object surface
regions are as similar as possible.

4) The evaluations considering shape representation ca-
pacity and arbitrary ROI retrieval capacity show supe-
riority of the proposed approach over the baselines.
Furthermore, we demonstrate the proposed concept
of process knowledge transfer with P-ROI correspon-
dence in a real world surface processing experiment.

II. RELATED WORK

To achieve the objective of category-level generalization in
3D object surface processing we leverage 3D object dense
correspondence. Accordingly, we split the prior work into
Generalizeable 3D Object Surface Processing and 3D Object
Dense Correspondence.

A. Generalizeable 3D Object Surface Processing

Multiple works have studied generalization approaches
to robotic surface processing. Early works rely on known
CAD models [19] with some focusing specially on mass
production scenarios [20]. Recent works follow a Learning
from Demonstration (LfD) approach which involve a skilled
operator performing a surface processing operation, and
utilizing it as a learning resource for the robot to later
perform the task autonomously. An approach of kinesthetic
teaching for transferring tool trajectory and contact forces
of a grinding operation by ensuring the surface quality
was addressed in [21], [22]. Even though the approaches
mention transfer of skills to new geometries, the study is
limited to transfer between simple shapes; planar surface to a
cylindrical surface. Many LfD approaches [23]–[25] focusing
on human skill transfer with an impedance control system
for simultaneous force and position control are proposed.
However the the approaches are evaluated on specific sur-
faces, and does not consider its scalability to category-level
surface processing which is in demand with the current mass
customization trend in manufacturing [11], [12].

To the best of our knowledge, there is no existing
approaches which explicitly study the surface processing
generalization on a category level. Meanwhile, category-
level approaches are widely studied for robotic grasping and
manipulation tasks. Transfer of category-based functional
grasping skills by latent space non-rigid registration is stud-
ied in [26]. Florence et al. [27] propose using dense visual 2D
descriptors as a representation for robotic manipulation, and
Simenonov et al. [18] develop the concept of NDF descriptor
for category-level 3D dense correspondence estimation for
manipulation. Thomson et al. [28] propose manipulation
skill transfer to novel objects, considering categorical shape
variation. In this work, we propose to extend such category-
level task generalization to robotic surface processing.

B. 3D Object Dense Correspondence

3D object dense correspondences are approached mainly
from three perspectives; keypoint-based, part-based and ROI-
based. Here we treat the related works from all three ap-
proaches since the techniques of correspondence estimations
are potentially used interchangeably. Prior approaches target
correspondence estimation in a supervised and unsupervised
manner [29], here we focus on the unsupervised approaches.

The majority of the earlier Keypoint-based correspondence
works follow an iterative approach [30], [31], and utilize
either handcrafted feature descriptors or template defor-
mations. A recent geometric deep learning approach [32]
uses a set of discrete 3D structure point representation for
keypoint-based and part-based correspondence. However, if



a denser correspondence is needed, retraining with modified
structure point dimension is mandatory. A branched auto
encoder approach [33] learns part-based correspondence by
adopting a multiple branched output for the implicit decoder,
such that each branch predicts the implicit boundary of a
specific component part of the object. An implicit network
for keypoint-based correspondence was recently introduced
in [34] where the feature points on the object is modeled
as a signed distance field (SDF) related implicit spheres.
Another set of work [29], [35] uses a combination of
self-reconstruction and cross-reconstruction losses to enable
category-level correspondences with an implicit network
using [33] as a base. The approach targets both keypoint-
based and part-based correspondences. However, the prior
approaches are either limited to discrete points or not in-
herently devised to provide arbitrary ROI correspondence,
and the evaluations and validations are performed mainly on
semantic part components (which are fixed regions and not
arbitrary in nature) or on discrete point pairs.

ROI-based correspondence focuses on the sub regions, and
is different with respect to semantic part-based correspon-
dence [36]. Not many works have targeted this goal in the
literature. A fuzzy correspondence computation to estimate
similar ROI is proposed in [37]. Denitto et al. propose a
biclustering approach [36] to compute ROI correspondences.
A computation of stable ROI correspondences across non-
isometric shapes are considered in [38]. However, the prior
ROI correspondence works consider handcrafted feature
vectors, and the correspondence computations are iterative
and computationally expensive, hindering direct applications
in real robotic systems. In contrast, we propose a dense
implicit representation approach which encodes any ROI on
a reference object as an implicit NRDF which is directly
used to estimate the corresponding ROI on the target object
by a simple forward pass on an inverse descriptor function.

III. BACKGROUND: NEURAL DESCRIPTOR FIELDS

The recently introduced NDF [18] representations encode
point level dense correspondences across category-level ob-
jects. The approach involves a neural descriptor function F
which maps any query point pi ∈ R3 associated with a 3D
object point cloud P ∈ Rn×3 to a spacial descriptor ki ∈ Rd:

F : R3 × Rn×3 → Rd (1)

The function F is developed by training a neural shape
encoder-decoder network with the objective of predicting the
binary occupancy on the input object point cloud for any 3D
query point p. Essentially, predicting whether a given query
point is occupied within the object surface boundary or not.
After training, the spacial descriptor ki is extracted for a
3D query point pi with respect to the object geometry by
concatenating the intermediate activations of the multilayer
perceptron (MLP) decoder network. The interesting property
of such an extracted point level descriptor is that it is similar
for corresponding points in the category-level objects, which
facilitates dense correspondence.

Encoder Decoder

Concatenate intermediate
        layer activations
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Fig. 2: NRDF architecture diagram: An object point cloud input to the
shape encoder A gives a shape embedding z as output. The MLP decoder
B in conjunction with A is trained to predict for any query 3D point p ∈
R3 the binary occupancy on the object surface, and the intermediate layer
activations of B provides the query point level NDF descriptors k. The
proposed inverse descriptor function C, with k and z as inputs, map the
descriptors back to 3D space. Here we also illustrate the descriptor-level
self-object reconstruction which recovers query points po sampled on the
object o surface S.

IV. NEURAL REGION DESCRIPTOR FIELDS

In Section IV-A, we initially introduce the NRDF system
architecture, and the design of novel inverse descriptor
function. Subsequently, we define the adopted approach to
optimize descriptors to explicitly consider the surface geom-
etry variations in 3D. Inspired from [29], [32], we perform
this optimization by adding an adapted self-reconstruction
and cross-reconstruction loss to the NRDF training along
with the newly introduced descriptor loss function. Then we
explain how to facilitate arbitrary ROI correspondence with
such optimized NRDF descriptors in Section IV-B. Finally,
the proposed concept of process knowledge transfer with P-
ROI correspondence is discussed in Section IV-C.

A. Approach

The proposed end to end network architecture is illustrated
in Fig. 2, here we consider a point cloud P ∈ Rn×3

input space for the object. In contrast to the NDF [18], we
employ a parallel ensemble of Residual Network (ResNet)
[39] integrated PointNet [40] and a 1D convolution integrated
PointNet as the shape encoder A to generate a shape em-
bedding z. The decoder B is an MLP which along with A
trains on object boundary occupancy data, such that for any
3D query point pi ∈ R3 its binary occupancy is predicted,
mathematically:

A : Rn×3 → z,

B : R3 × z → [0, 1]

The desired query point level adapted NDF [18] descriptor
ki for the object geometry is then extracted by the inter-
mediate layer activation concatenations of B, defined as a
descriptor function θ (z, pi) = ki.

a) Inverse Descriptor Function: The inverse descriptor
function C is designed to map the feature descriptors k back
to the 3D space. As shown in Fig. 2, C takes the adapted
NDF feature descriptors k of a set of surface query points po,
and the shape embedding z as input. The concatenated result
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Fig. 3: Descriptor-level cross-object reconstruction. The inverse descriptor
function C retrieves the target object ôt by taking the target object ot
embedding zt and the reference object descriptors kr as input.

of descriptors k and shape embedding z is passed to an MLP
with 3 output neurons. Next, we discuss the approach and
the related loss functions used to enable the prediction of the
associated 3D coordinate points p̂o on the object surface.

Descriptor-Level Self-Object Reconstruction Given a
set of query points po sampled on the object o surface S
boundary, we propose to optimize C such that it maps the
implicit descriptors of po back to the 3D space. The function
C inherently is not able to predict the associated point
coordinates. Hence, to enable the desired state of p̂o ≈ po we
introduce descriptor-level self-object reconstruction. This is
realised by training C on a descriptor-level self reconstruc-
tion loss function which minimizes the mean squared error
(MSE) between the actual input object surface points po and
predicted points p̂o defined as:

MSE =
1

n

n∑
i=1

(C (zo, koi)− poi)
2
, (2)

where n indicates the number of points sampled on the object
geometry surface, and o indicates the object considered. The
network when trained with a combination of descriptor-level
self-object reconstruction and the occupancy loss function
(mean squared error in predicting the binary occupancies), it
injects explicitly the spacial distribution of object geometry
to the generated feature descriptors k.

Descriptor-Level Cross-Object Reconstruction We pro-
pose to further optimize the descriptors to provide the
capacity to blend smoothly across diverse objects within
a category, facilitating correspondence mapping between
object ROIs. To this end, we introduce the descriptor-level
cross-object reconstruction wherein given any two category-
level objects in the training data, C predicts the 3D points
corresponding to the locations on the object, irrespective
from which object the descriptors were extracted. As shown
illustratively in Fig. 3, we propose to optimize the descriptors
to converge such that given a shape embedding zt of any
target object ot and the optimized descriptors kr of reference
object or surface Sr, C approximate the corresponding
target object ot surface St. For this optimization we exploit
the continuous mapping between the descriptor space and
category-level object surface points. This is enforced by
aligning reference and target objects at a descriptor level by
application of reconstruction loss. The cross reconstruction
loss includes a combination of multiple losses, similar to the

approach in [29], we consider minimizing losses pertaining
to the following three standard shape similarity enforcing
measures such as Chamfer Distance (CD) [41], Earth Movers
Distance (EMD) [41], [42] and Normal Consistency Distance
(NCD); each targeting specific aspects of the geometry as ex-
plained below. Also, an adapted form of smoothness loss [29]
as a Descriptor Smoothness (DS) loss is adopted to reinforce
the descriptor-level correspondence across the category-level
object surface. In contrast to component part embedding
level reconstruction in [29], we perform a descriptor-level
reconstruction to align the corresponding object surface
points in a category, targeting a new objective of arbitrary
ROI correspondence estimation.

The CD is computed as mean distance between the actual
target object surface points pt and the nearest neighbour of
pt in the predicted surface points p̂t which ensures similarity
accuracy; its consistency is ensured by computing the same
in the reverse direction i.e., from p̂t to pt, defined as:

CD =
1

n

n∑
i=1

∥pti −Np̂t
(pti)∥22

+
1

n

n∑
i=1

∥p̂ti −Npt
(p̂ti)∥22 , (3)

where p̂ti indicate the surface point predicted by C and is
defined as C (zt, kri), the nearest neighbour of p̂ti in the
target object surface points set pt is indicated as Npt

(p̂ti),
and Np̂t

(pti) indicates the nearest neighbour of target object
surface point in the predicted points set.

The EMD distance performs a finer similarity computation
considering the local density distribution of the two finite
point sets having same cardinality. This is ensured by initially
solving an assignment problem that accounts for a one to one
correspondence between the predicted surface points p̂t and
the target surface points pt essentially resulting in a bijective
mapping ϕ : p̂t → pt. The EMD distance is defined as:

EMD =
1

n

n∑
i=1

∥p̂ti − ϕ (p̂ti)∥2 (4)

The NCD distance compliments the system by providing
discriminative knowledge which supports C in distinguishing
between surface points with respect to the relative local
positions. For example, the normals of the surface points
on a chair object’s seat, back rest front portion and backrest
back portion are all different. We compute NCD based on
the cosine similarity distance between neighbouring point
normal vectors of the predicted p̂t and the target surface
points pt, and vice versa, defined as:

NCD =
1

n

n∑
i=1

(
1− np̂ti ·Npt (np̂ti)

∥np̂ti∥2 ∥Npt (np̂ti)∥2

)
+

1

n

n∑
i=1

(
1− npti ·Np̂t (npti)

∥npti
∥2 ∥Np̂t

(npti
)∥2

)
, (5)

where the npti and np̂ti indicate the normals of surface point
pti and p̂ti respectively.



The DS loss is computed by estimating consistency in
the difference between the reference object surface points pr
and the predicted target surface points p̂t corresponding to
the reference descriptor kr in random patch neighbourhood
of the reference object, defined as:

DS =
∑

v,v′∈Ω(u)

(
1− dcos

(
p̂t

(v) − pr
(v), p̂t

(v′) − pr
(v′)

))
,

(6)
where u is the multiple random patch centers and Ω(u)
indicate the neighbourhood point indices in the patches,
with v′ representing the permuted neighbours in v. The DS
loss ensures that the descriptors in the local neighbourhood
of reference object or is responsible for reconstructing the
corresponding local neighbourhood of the target object ôt
by minimising the distance based on the cosine similarity
dcos between the local neighbourhood difference vectors.
It ensures that during the cross-reconstruction from the
reference to the target object, the reference point indices
do not drift too far from its neighbourhood. This allows
for an index level correspondence between reference and
target by enforcing a smoother optimization, for example,
preventing the descriptors from the left part of reference
object to predict the right part of the target object, which
similarity loss measures alone do not guarantee.

In association with prior mentioned loss functions, we in-
troduce a novel descriptor loss function which promotes the
descriptor space to blend smoothly between diverse objects
in a category such that the resulting optimised descriptor
distribution is consistent with corresponding regions on the
object surface. For this purpose, we minimize the descriptor
distances between the surface points on a reference object
and corresponding points on the target object. To this end,
we exploit the point correspondence inference scheme of [29]
with which for each point pti on the target object we approx-
imate the corresponding point p̃ri on the reference object.
Which is given by the index of the nearest neighbour of the
point pti in the points p̂t predicted by the inverse descriptor
function C. Once the corresponding point descriptors are
computed we minimize the distance between them as:

DD =
1

n

n∑
i=1

∥θ (zr, p̃ri)− θ (zt, pti)∥22 (7)

The combined minimization of the binary occupancy, self-
object reconstruction and cross-object reconstruction losses
results in an optimized descriptor function which facilitates
the descriptor space to be distributed in a manner that the
resulting descriptors k of corresponding surface regions on
the category-level objects are as identical as feasible.

B. Arbitrary ROI Correspondence with NRDF

With the optimized descriptors k generated by the com-
bined self-object and cross-object reconstruction settings, we
propose to represent any ROI on the object surface as an
implicit NRDF ℜ. If the arbitrary ROI sr ⊊ Sr on the
reference object is represented as a set of surface points p̄r,

 Recovered ROI on
      target object

Fig. 4: Illustration of arbitrary ROI correspondence estimation with NRDF.

then ℜr is defined as the concatenation
⊕

of the optimized
descriptors of p̄r, defined as:

ℜr = Θ(zr, sr) =
m⊕
i=1

θ (zr, p̄ri) , (8)

where m indicates the number of points in p̄r. The region
descriptor field has an interesting property that it is consistent
across the category-level objects and hence we directly
recover the corresponding ROI ŝt on the target object by:

ŝt = C (zt,ℜr) , (9)

where ŝt consists of a set of surface points ˆ̄pt ≈ p̄t. Hence,
with only the reference NRDF ℜr and the target shape
embedding zt the target ROI ŝt is recovered as shown in Fig.
4. The exact 3D points in an object point cloud could vary
each time when sampled from a mesh surface or captured
with a 3D sensor; we ensure the predictions are in alignment
with the geometric mean center of the target object, and a
simple nearest neighbour associates the ROI prediction points
ˆ̄pt directly to the currently captured target object points.

C. Process Knowledge Transfer with P-ROI Correspondence
For a robotic 3D surface processing operation there are

multiple process parameters P that define a process strategy
for a particular P-ROI. The parameters could include the
process trajectory, tool angle, contact force, process speed,
process direction, etc., which we collectively refer to as
the process knowledge. We propose to perform the surface
region level process knowledge transfer across category-
level objects by a one time definition of the P-ROIs and its
associated process knowledge on a reference object. Such a
definition is then recorded as a knowledge dictionary D that
maps each P-ROI to its associated process knowledge:

D : {sjr}Kj=1 → P, (10)

where K indicate the number of reference P-ROI sjr con-
sidered on the object, and P indicate the list of process
parameters according to a predefined order. Then for a
new instance of the category-level object we estimate the
corresponding target P-ROI ŝjt with NRDF and execute
the similar process as per the definition in the knowledge
dictionary D. A pictorial illustration of the proposed concept
is illustrated in Fig. 1c, where a specific process trajectory
type is adapted and transferred to corresponding regions on
a target object, we also demonstrate such an NRDF assisted
real world robotic surface process execution, as discussed in
Section V-D.



TABLE I: Shape representation capacity evaluation results.

Chair Car Plane

Model CD-L1 MSE CD-L1 MSE CD-L1 MSE

NDF [18] 0.083 0.051 0.065 0.015 0.070 0.012
IMDC [29] 0.062 0.041 0.060 0.010 0.036 0.006
NRDF 0.054 0.040 0.058 0.008 0.030 0.004
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Fig. 5: Qualitative results for arbitrary ROI retrieval with NRDF. The first
column shows the reference object and the 8 arbitrary ROIs (dashed lines
indicate regions behind the current view). The corresponding ROI retrieved
on different target objects are shown to the right.

V. EVALUATION

In this section, we evaluate the effectiveness of our NRDF
dense ROI correspondence system. Initially, the shape repre-
sentation capacity is evaluated to verify how well proposed
system has abstracted the category-level geometry. Then the
arbitrary ROI retrieval capacity is evaluated quantitatively
to verify how well the NRDF system estimates category-
level arbitrary ROI correspondences, along with a qualitative
visualization of the results. We further perform ablation
analysis to investigate the effect of various loss functions
adopted in the NRDF model development.

Dataset: We evaluate the proposed approach from a proof
of concept basis by training on the shapenet dataset [13], [43]
object categories such as Chair (furniture), Car (automobile),
and Plane (aerospace). Each category has objects with similar
part constituency; on average 500 in the training set and
50 in the test set. For the arbitrary ROI retrieval evaluation
there is no existing dataset, and there is very little prior work
that have explicitly targeted surface region correspondence.
When it comes to overall dense correspondence itself there
is no existing dataset with ground truths [29]. Hence we
manually generated a dataset namely, BSRC (Benchmark
for Surface Region Correspondence), with multiple consis-
tent corresponding arbitrary ROIs, for 10 objects in each
object category (the correspondences are approximations as
a correspondence between topology varying objects in a
category is not a concretely established concept and there
is no explicit ground truths). A visualization of the multiple
ROIs considered on each object category are shown in the
first column of Fig. 5. For motivation of further research and
experimentation we provide (https://github.com/aprath1/bsrc)
the generated dataset.

Training Details: We perform the model training in a
progressive manner [29], where initially the model is trained
on occupancy loss alone which optimizes the encoder A and
decoder B networks. Followed by this the combined system
model (A, B and C) is trained for descriptor-level self-

TABLE II: Arbitrary ROI retrieval evaluation for 8 different ROIs on each
object category measured with the CD-L1 metric.

Chair

Model 1 2 3 4 5 6 7 8 Average

NDF [18] 0.138 0.141 0.131 0.124 0.361 0.326 0.305 0.312 0.230
IMDC [29] 0.024 0.068 0.046 0.042 0.067 0.074 0.094 0.090 0.063
NRDF 0.025 0.029 0.042 0.029 0.051 0.047 0.048 0.044 0.039

Car

Model 1 2 3 4 5 6 7 8 Average

NDF [18] 0.088 0.350 0.084 0.210 0.221 0.233 0.272 0.094 0.194
IMDC [29] 0.019 0.025 0.031 0.024 0.021 0.022 0.026 0.022 0.024
NRDF 0.018 0.014 0.031 0.022 0.021 0.014 0.014 0.017 0.019

Plane

Model 1 2 3 4 5 6 7 8 Average

NDF [18] 0.100 0.098 0.065 0.095 0.070 0.220 0.238 0.231 0.142
IMDC [29] 0.028 0.040 0.063 0.098 0.033 0.037 0.034 0.039 0.047
NRDF 0.023 0.030 0.039 0.054 0.034 0.035 0.031 0.031 0.035

object reconstruction with equal weights for Occupancy and
MSE losses. Finally, we introduce the descriptor-level cross-
object reconstruction with joint minimization of occupancy,
descriptor-level self-object reconstruction and cross-object
reconstruction losses. However, [29] considers two random
objects at a time in each iteration of their part embedding
cross reconstruction training, in contrast, we consider a batch
of objects in each iteration optimizing the descriptors within
a collection of objects. We realize this by setting each object
in a batch against a permuted order of the objects in the same
batch, which also results in an improved training speed. Here
we use an empirically chosen weighting scheme where losses
for Occupancy, MSE, CD, EMD, NCD, DS and DD are set
with weights 10, 1, 10, 1, 0.01, 0.1 and 0.1 respectively.

Baselines: We compare the performance of NRDF against
two dense correspondence baselines. The NDF [18] baseline
represent dense point correspondence, and for ROI retrieval
capacity evaluation, we adapt thier point inference scheme
to predict ROIs. The IMDC [29] baseline is capable of both
dense point and semantic part correspondence, and their
correspondence inference scheme is directly used to evaluate
its capacity to retrieve arbitrary ROI.

A. Shape Representation Capacity

The shape representation capacity is evaluated by esti-
mating the 0.75 level set of the implicit field captured by
the implicit decoder B, which shows how well the network
abstracts the geometry. Then as a quantitative evaluation
the resulting point cloud is compared with the actual input
object point cloud using the Chamfer Distance L1 metric i.e.,
L1 version of (3). Table I shows the results of comparison
between the NDF [18] and the IMDC [29] baselines, and the
proposed NRDF model. We observe that the proposed model
has consistent improvement in the shape representation for
all three tested object categories. In essence, it is intuitive
that the shape representation improves if the model has
improved accuracy in predicting the boundary occupancy
of the geometry. Hence, to validate this we examine the
MSE error in the binary occupancy predictions for the
trained models and the results are shown in Table I. Overall,
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Fig. 6: (a) Robot environment setup. (b) Experiment: (left) 5 P-ROIs and the corresponding process trajectories defined on a virtual chair point cloud, (right)
two new real chair instances to which the process knowledge need to be transferred. (c) Resulting surface process execution on the new object instances
with NRDF assisted P-ROI correspondence based process knowledge transfer. Similar process states for each P-ROI on both the objects are shown.

from Table I we evidently observe that the proposed NRDF
approach outperforms NDF and IMDC baselines in the shape
representation capacity based on the CD-L1 metric. Further-
more, the MSE error rate in binary occupancy prediction is
consistent with the CD-L1 which shows the effectiveness of
our proposed approach.

B. Arbitrary ROI Retrieval Capacity

We evaluate the arbitrary ROI retrieval using the man-
ually generated BSRC dataset. The quantitative evaluation
is performed in a pairwise manner where multiple ROIs on
category-level reference object is retrieved on a target object.
Hence we compute for 10 objects in each category all possi-
ble 90 pair wise correspondence estimations. Furthermore, in
each object we consider 8 arbitrary ROIs. It has to be noted
that the proposed system is designed and intended to predict
any corresponding ROI across category-level objects and is
not limited to the 8 specific ROIs in the dataset. The arbitrary
ROIs show cased in the dataset is only a representative of
possible sub regions from all parts of the object to facilitate
an evaluation of the ROI retrieval capacity.

To evaluate the ROI retrieval capacity, we compute CD-L1
distance error on each of the recovered region with respect
to the ground truth, and a mean value is reported in Table II.
Similar to prior shape representation evaluation, we compare
the performance of the proposed NRDF approach with
respect to the NDF [18] and IMDC [29] baselines. Here we
observe the consistent superior performance of the proposed
NRDF model with respect to the baseline NDF [18], for each
region across all tested object categories. In comparison with
the IMDC [29] model the proposed approach, on average,
shows consistently improved error rates on ROI retrieval.
Additionally, we show some qualitative results of arbitrary
ROI retrieval with NRDF in Fig. 5.

C. Ablation Analysis

We also perform an ablation analysis as shown in Table
III, to examine the impact of the adopted loss functions in
optimizing the descriptors and achieving a descriptor-level
dense ROI correspondence. Here the implicit models were
trained separately omitting each loss, indicated as w/o. Then
the average CD-L1 error for region retrieval on the complete
data is evaluated. Here we see the best performance is
achieved by a combination of the losses, with the geometrical

TABLE III: Average CD-L1 error rates in arbitrary ROI retrieval with
different loss measures ablated.

Model Chair Car Plane

NRDFw/oCD 0.048 0.023 0.047
NRDFw/oEMD 0.223 0.275 0.351
NRDFw/oNC 0.049 0.024 0.037
NRDFw/oDS 0.047 0.022 0.037
NRDFw/oDD 0.042 0.020 0.038
NRDF 0.039 0.019 0.035

similarity ensured by CD, EMD and NC distance measures,
and the descriptor consistency and similarity enforced by the
DS and DD losses respectively.

D. Robotic Demonstration

We validate the practicality of the proposed approach by
transferring P-ROI level process knowledge from a virtual
chair to new instance of unseen chairs. The robot environ-
ment setup is shown in Fig. 6a. Initially the desired process
knowledge is defined on 5 arbitrary P-ROIs on the virtual
chair point cloud as shown in Fig. 6b. The process knowledge
in this specific demonstration include the process trajectory,
process direction, and orientation with respect to the 5 P-
ROIs. Then NRDF assisted region correspondence is applied
to estimate corresponding P-ROIs on the new chair instance
point clouds to repeat the same process, in our experiments
the trajectory is adapted to estimated corresponding P-ROI
using a CAM software. Example execution images are shown
in Fig. 6c, and the video execution of the same is provided as
a supplementary material (https://youtu.be/YiEGInDQT-o).

VI. CONCLUSION

We present a contribution to solve the robotic problem
of surface processing. Ideally, the robot is shown how to
process a particular surface region and learns with this
how to treat similar object surfaces. In this work we show
that with the proposed implicit NRDF representation along
with the inverse descriptor function, we are able to recover
similar ROI on the target category-level object given only
the reference object and an arbitrary ROI on it. The shape
representation results and ROI retrieval tests on the BSRC
dataset demonstrates the effectiveness of the proposed ap-
proach. Furthermore, our work opens an interesting research
direction for point-based manipulation currently performed
with NDF, as we clearly see that the shape representation ca-
pability is improving during the proposed training procedure



for NRDF. With respect to region recovery current system
limitations include the challenges with respect to geometrical
parts that are thin, for example the wings of a plane where
the discriminative ability between the top surface and bottom
surface is challenging. Future work will include research in
this direction to add such a discriminative ability.
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