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Kurzfassung

Diese Arbeit konzentriert sich auf die Robustheit und Generalisierbarkeit der Named
Entity Recognition (NER) Modelle BioBERT [LYK+19] und KeBioLM [YLT+21] über
biomedizinische Datensätze hinweg. Angesichts der wachsenden Komplexität biomedi-
zinischer Texte ist die Anpassungsfähigkeit dieser Modelle an verschiedene Datensätze
wichtig. Das Ziel der Studie ist es, diese Unterschiede zu analysieren, indem die Leistung
der Modelle auf spezifischen Datensätzen bewertet wird, wobei der Schwerpunkt darauf
liegt, wie ungesehene Entitäten und Annotationsinkonsistenzen ihre Genauigkeit und
Generalisierungsfähigkeiten beeinflussen.

Wir werden die Präzision, den Recall und die F1-Werte von BioBERT und KeBioLM durch
systematische Tests mit zwei biomedizinischen NER-Datensätzen, BC5CDR [LSJ+16]
und NCBI [DLL14], untersuchen. Beide Modelle schneiden innerhalb eines Datensatzes
gut ab; ihre Genauigkeit nimmt jedoch in datensatzübergreifenden Szenarien deutlich ab,
was die Schwierigkeiten bei der Generalisierung auf neue, ungesehene Daten verdeutlicht.

Die Ergebnisse zeigen den Bedarf an anpassungsfähigeren NER-Systemen, die mit der
dynamischen und vielfältigen Natur biomedizinischer Texte umgehen können. Die für die
Analyse in dieser Arbeit verwendeten Skripte sind im GitHub-Repository1 verfügbar.

1Nils Kopali, GitHub Repository for NER Analysis, 2024. Available at: https://github.com/
nkopali/NER-cross-dataset (Last accessed: October 31, 2024).
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Abstract

This thesis focuses on the robustness and generalizability of Named Entity Recognition
(NER) models BioBERT [LYK+19] and KeBioLM [YLT+21] across biomedical datasets.
With the growing complexity of biomedical texts, these models’ adaptability to different
datasets is important. The study’s goal is to analyze these differences by assessing the
model performance on specific datasets, focusing on how unseen entities and annotation
inconsistencies affect their accuracy and generalization capabilities.

We will investigate BioBERT and KeBioLM precision, recall, and F1 scores using
systematic tests with two benchmark biomedical NER datasets, BC5CDR [LSJ+16] and
NCBI [DLL14]. Both models perform well within a dataset; however, their accuracy
drops significantly in cross-dataset scenarios, demonstrating the difficulties in generalizing
to new, unseen data.

The findings indicate the need for more adaptable NER systems that can handle the
dynamic and diverse nature of biomedical texts. The scripts used for analysis in this
thesis are available in the GitHub repository2.

2Nils Kopali, GitHub Repository for NER Analysis, 2024. Available at: https://github.com/
nkopali/NER-cross-dataset (Last accessed: October 31, 2024).
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CHAPTER 1
Introduction

1.1 Background and Motivation
Named Entity Recognition (NER) [NS07] is an important task in biomedical text mining,
which identifies and classifies entities in a sentence such as diseases, medications, and
other relevant terms within unstructured text. Extracting these entities is important for
different applications in biomedical research. Although there have been advances in NER
models, particularly those fine-tuned for biomedical contexts like BioBERT [LYK+19]
and KeBioLM [YLT+21], their performance often decreases when applied across different
datasets. This reduction in accuracy and generalizability is very important, as biomedical
texts are diverse and continuously evolving.

The motivation for this paper comes from the need to understand and improve the robust-
ness of NER models in cross-dataset scenarios. We aim to find the factors contributing
to this performance drop and to propose strategies for improving model generalization
across diverse biomedical datasets. Further details and code for this paper can be found
in the GitHub repository1.

1.2 Objectives of the Study

1. To evaluate the impact of cross-dataset training and testing on the
performance of BioBERT and KeBioLM models. This involves assessing
their precision, recall, and overall accuracy by using one dataset for training and
the other for testing and vice-versa.

1Nils Kopali, GitHub Repository for NER Analysis, 2024. Available at: https://github.com/
nkopali/NER-cross-dataset (Last accessed: October 13, 2024).
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1. Introduction

2. To investigate the influence of unseen entities on model performance.
By removing sentences whose entities were not present during training, we aim
to determine the generalizability of the models in recognizing previously seen
biomedical terms.

3. To analyze the effect of annotation artifacts on NER performance. This
objective focuses on identifying inconsistencies in dataset annotations that could
affect model evaluation.

1.3 Literature Review
Named Entity Recognition (NER) is a subtask of information extraction that locates
and classifies entities in text into predefined categories such as the names of persons,
organizations, locations etc. In the biomedical domain, NER is particularly important as
it involves the identification of entities such as diseases, drugs and genes from scientific
literature and other unstructured biomedical texts. The constantly evolving vocabulary,
as well as the need for high precision and recall due to the sensitive nature of medical
information, contribute to the unique challenges posed by biomedical natural language
processing.

A paper by Liu et al. (2021) [LXY+21] looks at domain adaptation for NER applications,
emphasizing the importance of domain-adaptive pre-training (DAPT) as an essential
part of their methodology. Domain-Adaptive Pre-Training (DAPT) is a method designed
to enhance the performance of language models on specific tasks by pre-training them
on a carefully selected subset of a larger, domain specific corpus. In DAPT, instead of
training a model on all available data within a domain, the process focuses on the most
relevant sections that are rich in domain-specific terms and contexts. This approach
involves analyzing the larger corpus to identify and extract segments that contain a
high density of relevant entities and terms, thereby ensuring that the language model
is exposed to the most relevant language features and contextual nuances. Similarly,
our models, KebioLM and BioBERT, have been trained on large biomedical corpora to
optimize their performance in biomedical domain-specific tasks.

In a paper [K+21] focusing on the generalizability of NLP models across medical specialties,
the researchers examined how well SciBERT, a variant of BERT pre-trained on scientific
texts, could classify diagnosis sentiment across different medical domains using the MIMIC-
III dataset. The paper revealed significant problems in model generalization, especially
when models trained on one specialty’s data were evaluated on another. The researchers
discovered that model performance got worse when the overlap between training and test
specialties reduced, indicating the challenge of cross-specialty generalization. However,
they also demonstrated that increasing the training data by including several specialties
improved the model’s ability to generalize to previously unknown specialties.

In this research paper [KK22] the researchers present a thorough examination of the
generalization performance of BioNER models. The authors analyze how these models
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1.4. Overview of NER Models

handle unseen biomedical entities, distinguishing between three core capabilities: mem-
orization (how well does the model identify entities that were seen during training),
synonym generalization (how well does the model identify synonyms, like Motrin and
Ibuprofen, which are the same concept), and concept generalization (how well does the
model identify new biomedical concepts like COVID-19). They demonstrate that, despite
performing well on standardized benchmarks, BioNER models struggle significantly when
generalizing to new synonyms and novel concepts. This highlights that these models may
be overestimated, suggesting that benchmark metrics don’t always reflect how well a
model will actually perform in real-world situations.

1.4 Overview of NER Models
The merging of deep learning with advanced pre-trained language models, particularly
those based on transformer architectures, has transformed the field of Named Entity
Recognition (NER). This section goes into how these models, like BERT [DCLT18] and
its specific adaptations, have improved the capabilities of NER systems, such as those
used in biomedicine.

1.4.1 BERT
BERT is a pre-trained language model that utilizes the transformer architecture to achieve
good performance on a variety of NLP tasks, including Named Entity Recognition (NER).
Unlike traditional models that read text sequentially, BERT processes words in relation
to all other words in a sentence simultaneously, a mechanism known as "bidirectional"
processing. This approach allows the model to capture the contextual meanings of words.
BERT is pre-trained on a large corpus of text from the internet, which includes tasks
like predicting missing words in sentences. This pre-training serves as a foundation that
can be fine-tuned with additional training on a smaller, task-specific dataset, such as
biomedical texts for NER.

1.4.2 BioBERT
BioBERT is a variant of BERT. The BioBERT model is initialized with weights from
BERT. BioBERT is then further pre-trained on large biomedical corpora, including
PubMed abstracts and PMC full-text articles, to adapt it specifically for biomedical text
mining tasks. This additional pre-training step allows BioBERT to better understand
the complex terminology and context found in biomedical literature.

1.4.3 KeBioLM
KeBioLM is similar to BioBERT but it also integrates some external biomedical knowledge
during training. The model leverages the Unified Medical Language System (UMLS)
to enhance entity recognition performance. Specifically, KeBioLM incorporates entities
from PubMed abstracts, linking them to UMLS concepts.

3



1. Introduction

1.5 Description of Datasets
We utilize two biomedical NER datasets: BC5CDR and NCBI. Both datasets were
pre-partitioned into train, test and dev sets. KebioLM was fine-tuned for 60 epochs with
a learning rate 1e-5 and batch size of 8 for both datasets and for BioBERT a learning
rate of 5e-5, 3e-5 or 1e-5 was selected with a batch size ranging from 10, 16, 32 or 64,
as for the epochs it is not clearly stated but it is mentioned more than 20. Table 2 in
[YLT+21] shows that the KeBioLM model achieved an F1-score of 86.1 for BC5CDR
and 89.1 for NCBI and on Table 6 from BioBERT [LYK+19] an F1-score of 86.47 for
BC5CDR and 88.22 for NCBI.

1.5.1 Dataset 1: BC5CDR
The BC5CDR corpus consists of 1,500 PubMed articles, which include annotations for
4,409 chemicals, 5,818 diseases, and 3,116 chemical-disease interactions. It is widely used
for evaluating biomedical NER models due to its high-quality annotations and relevance
to real-world biomedical text mining tasks.

1.5.2 Dataset 2: NCBI
The NCBI Disease Corpus is another benchmark dataset comprising PubMed abstracts
annotated for disease names. It includes 793 PubMed abstracts with 6,892 disease
mentions.

The dataset statistics, as shown in Table 1.1, indicate that BC5CDR and NCBI differ
significantly in terms of the number of sentences, tokens, and entities. NCBI has 11,249
entities entities in the training set compared to BC5CDR’s 7,100. However, BC5CDR
has more total sentences in both the test and dev sets, with 4,812 and 4,602 sentences
respectively, compared to NCBI’s 942 and 923. When comparing the unique entities
between the datasets, as shown in Table 1.2, there is a notable overlap of entities, with
363 intersecting entities in the training sets, 159 in the test sets, and 149 in the dev sets.
BC5CDR contains more unique entities in both the test and dev sets compared to NCBI,
suggesting greater entity variability in BC5CDR’s test and dev data.
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1.5. Description of Datasets

Dataset Set Total Sentences Total Tokens Total Entities (B/I) Unique Entities

BC5CDR
Train 4582 118170 7100 1462
Test 4812 124750 7161 1371
Dev 4602 117453 6969 1356

NCBI
Train 5432 135701 11249 1509
Test 942 24497 2047 500
Dev 923 23969 1877 416

Table 1.1: NER Dataset Statistics for BC5CDR and NCBI

Entity Comparison Train Set Test Set Dev Set
Intersecting Entities 363 159 149

Unique Entities in BC5CDR 1099 1212 1207
Unique Entities in NCBI 1146 341 267

Table 1.2: Comparison of Entities between BC5CDR and NCBI Train, Test, and Dev
Sets
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CHAPTER 2
Methodology

2.1 Research Design
The methodology used in this study will assess the robustness and generalizability of
Named Entity Recognition (NER) models, specifically BioBERT and KeBioLM, across
the biomedical datasets. This chapter describes the experimental setup, training and
evaluation procedures, and methodologies for analyzing the performance of these models.

2.2 Experimental Setup
The experimental setup involves the following steps:

1. Model Training: Both BioBERT and KeBioLM models are evaluated on each
dataset individually to establish baseline performance. BioBERT was trained for
5 epochs with a maximum sequence length of 128 and a batch size of 32, using a
seed of 1 and KeBioLM was trained for 5 epochs with a maximum sequence length
of 512 and a batch size of 8, also with a seed of 1.

2. Cross-Dataset Evaluation: To assess the models’ generalization capabilities,
they are tested on a dataset other than the one on which they were trained. This
cross-dataset evaluation is important for assessing how well the models can handle
unseen data and diverse biomedical texts.

3. Performance Metrics: The models’ performance is measured using standard NER
metrics, including Precision, Recall, and F1 score. These metrics give a thorough
picture of the models’ ability to correctly recognize entities across datasets.

4. Entity Filtering: This involves filtering entities in the validation sets to isolate
unseen entities from the training set. This allows for a focused analysis of the
models’ generalizability in recognizing seen biomedical terms.
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CHAPTER 3
Results

3.1 Analysis of Cross-Dataset Performance
Our research focused only on disease entities using the BioBERT and KeBioLM models
within the BC5CDR and NCBI datasets. This specific analysis helped us explore the
models’ robustness and generalizability in recognizing diseases, based on tests conducted
on the designated test sets for each dataset.

3.1.1 BioBERT Performance
When BioBERT is trained and tested on the same dataset, it demonstrates strong
performance metrics. For instance, training and testing on BC5CDR yields an F1 score of
83.6, with a recall of 86.2 and precision of 81.1. Similarly, training and testing on NCBI
produces an even higher F1 score of 86.9, recall of 88.2, and precision of 85.6. These
results indicate that BioBERT is highly effective at capturing and classifying biomedical
entities within the same dataset context.

However, the performance drops considerably in cross-dataset evaluations. Training on
BC5CDR and testing on NCBI results in an F1 score of 66.8, recall of 61.4, and precision
of 73.3. Conversely, training on NCBI and testing on BC5CDR gives an F1 score of 66.5,
recall of 64.7, and precision of 68.4. This decline highlights the challenge BioBERT faces
in generalizing across different datasets. The reduction in recall, in particular, suggests
difficulties in identifying entities that were not part of the training data, likely due to
differences in entity distributions between the datasets.

3.1.2 KeBioLM Performance
KeBioLM shows a similar pattern but with slightly better cross-dataset performance
compared to BioBERT. When trained and tested on BC5CDR, KeBioLM achieves an

9



3. Results

F1 score of 84.4, recall of 86.6, and precision of 82.2. For NCBI, the scores are F1 of
87.2, recall of 89.0, and precision of 85.5, indicating robust performance within the same
dataset.

In cross-dataset scenarios, KeBioLM maintains a relative edge over BioBERT. Training
on BC5CDR and testing on NCBI results in an F1 score of 71.3, recall of 68.1, and
precision of 75.0. Training on NCBI and testing on BC5CDR yields an F1 score of 67.4,
recall of 65.4, and precision of 69.6. The higher F1 scores compared to BioBERT suggest
that KeBioLM’s integration of external biomedical knowledge may enhance its ability to
generalize across different datasets, although still with noticeable performance drops.

Model Training Dataset F1 Score Recall Precision

BioBERT BC5CDR 83.6 86.2 81.1
NCBI 66.5 64.7 68.4

KeBioLM BC5CDR 84.4 86.6 82.2
NCBI 67.4 65.4 69.6

Table 3.1: Performance Metrics for BioBERT and KeBioLM on BC5CDR Test Set

Model Training Dataset F1 Score Recall Precision

BioBERT BC5CDR 66.8 61.4 73.3
NCBI 86.9 88.2 85.6

KeBioLM BC5CDR 71.3 68.1 75.0
NCBI 87.2 89.0 85.5

Table 3.2: Performance Metrics for BioBERT and KeBioLM on NCBI Test Set

The significant drop in performance for both models in cross-dataset evaluations highlights
the problems of biomedical NER, specifically the differences between the BC5CDR and
NCBI datasets, such as entity types and annotation guidelines. These inconsistencies
have a considerable influence on the models’ ability to generalize, as shown by the decline
in measures such as the F1 score. This suggests that both BioBERT and KeBioLM
are very sensitive to specific training data and less flexible to new, previously unseen
data. The drop in recall more than precision suggests that the models are less capable of
identifying entities they have not been trained on.

The performance metrics are summarized in Tables 3.1 and 3.2.

3.2 Merging Training Datasets
In order to explore whether combining the BC5CDR and NCBI training datasets would
improve performance, we conducted an experiment where both datasets were merged
into a single training set. This combined dataset was then tested on the individual test
sets (BC5CDR and NCBI) to assess the potential benefits of using a larger, more diverse
training dataset. The hypothesis was that merging the datasets would provide the model

10



3.3. Analysis of Influence of Unseen Entities on Model Performance

with a broader context of named entities, which might help improve generalization across
the datasets.

Model Test Dataset F1 Score (%) Recall (%) Precision (%)

BioBERT BC5CDR 83.7 85.6 81.8
NCBI 87.3 89.1 85.5

KeBioLM BC5CDR 85.2 87.3 83.2
NCBI 88.5 90.7 86.4

Table 3.3: Performance Metrics of BioBERT and KeBioLM for Merged Training Dataset

These results in Table 3.3 indicate that merging the BC5CDR and NCBI training datasets
have a slight improvement on both test sets. The increase in F1 scores for both BC5CDR
and NCBI suggests that the model could better generalize across entities, possibly due
to the enriched training data that included a wider variety of named entities from both
datasets.

3.3 Analysis of Influence of Unseen Entities on Model
Performance

To investigate the adaptability and flexibility of the BioBERT and KeBioLM models in
recognizing new, previously unseen biomedical terms, we evaluate their performance on
validation sets before and after filtering out entities present in the training sets. This
analysis provides insights into the models’ ability to handle unseen entities, a crucial
aspect for their generalizability and practical application in biomedical text mining. As
shown in Table 3.4 below, the sample sizes of the NCBI and BC5CDR datasets decrease
after applying the filtering.

Filtering Scenario Original Samples Filtered Samples
NCBI on BC5CDR 923 508
NCBI on NCBI 923 792
BC5CDR on NCBI 4,602 2,296
BC5CDR on BC5CDR 4,602 3,582

Table 3.4: Sample Counts Before and After Filtering

3.3.1 Models Performance
Both BioBERT and KeBioLM demonstrated significant performance improvements after
filtering Tables 3.5 and 3.6. The filtering process likely enhanced the models’ ability
to focus on familiar entities, resulting in better extraction of relevant biomedical terms.
However, there was a noticeable performance drop when both models, trained on the
NCBI dataset, were validated on the BC5CDR dataset. This decline can be attributed
to the difference in the number of PubMed articles in each dataset: BC5CDR contains

11
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1,500 articles, while NCBI is built from only 793. The larger and more diverse BC5CDR
dataset likely includes a broader range of entities, making it more challenging for models
trained on the smaller, less varied NCBI dataset to generalize effectively to this broader
context.

Model Training Dataset Filtering F1 Score (%) Recall (%) Precision (%)

BioBERT

BC5CDR Before 83.6 86.2 81.1
BC5CDR After 86.7 90.0 83.3

NCBI Before 66.5 64.7 68.4
NCBI After 61.1 69.5 54.6

KeBioLM

BC5CDR Before 84.4 86.6 82.2
BC5CDR After 89.3 93.2 85.6

NCBI Before 67.4 65.4 69.6
NCBI After 55.1 62.9 49.0

Table 3.5: Performance Metrics for BioBERT and KeBioLM on BC5CDR Validation Set

Model Training Dataset Filtering F1 Score (%) Recall (%) Precision (%)

BioBERT

BC5CDR Before 66.8 61.4 73.3
BC5CDR After 86.1 90.9 81.8

NCBI Before 86.9 88.2 85.6
NCBI After 89.0 92.6 85.7

KeBioLM

BC5CDR Before 71.3 68.1 75.0
BC5CDR After 82.8 87.8 78.3

NCBI Before 87.2 89.0 85.5
NCBI After 89.9 93.4 86.6

Table 3.6: Performance Metrics for BioBERT and KeBioLM on NCBI Validation Set

3.4 Error Analysis
In this section, we analyze the errors observed in our validation set to better understand
the performance of our model and identify areas for improvement. We took the predictions
done on the NCBI validation set with training set BC5CDR and NCBI for BioBERT
model.

3.4.1 Sample Reduction through Filtering
During the filtering process, we removed sentences whose entities do not appear in the
training set, resulting in a significant reduction in the number of samples:

• Filtering NCBI on BC5CDR: The number of samples reduced from 923 to 508.

• Filtering NCBI on NCBI: The number of samples reduced from 923 to 792.

12



3.4. Error Analysis

3.4.2 Frequent Errors: The Case of ‘-’
One interesting observation is related to the entity "-". This entity is mispredicted 3
times in the BC5 dataset, which had a total of 30 errors, and 9 times in the NCBI dataset,
which had a total of 85 errors. To quantify the impact of these errors, we calculate the
error rates as follows:

• For BC5CDR:
(︂

3
30

)︂
× 100 = 10%

• For NCBI:
(︂

9
85

)︂
× 100 = 10.6%

Therefore, the "-" entity accounts for approximately 10% of the validation set errors,
indicating a notable area of concern.

Column Value
Dataset NCBI
Sentence In 22 of the 43 non - papillary renal cell carcinomas , abnormally

migrating DNA bands were detected by SSCP and / or HD analysis .
Gold non - papillary renal cell carcinomas
Predicted papillary renal cell carcinomas

Dataset NCBI
Sentence Atm - deficient thymocytes undergo spontaneous apoptosis in vitro

significantly more than controls .
Gold
Predicted Atm - deficient

Table 3.7: Examples from the case of ’-’

3.4.3 Frequent Errors: The Case of ‘Tumor’
Another frequent error in the BC5CDR dataset involves the word "tumor". Despite
being consistently annotated as ’B’ (beginning of an entity) 16 times and ’I’ (inside
an entity) 4 times in the training set, the model frequently predicts it as ’O’ (outside of
an entity). This suggests that the model struggles to recognize "tumor" as an entity.

Additionally, it appears that "tumor" is annotated incorrectly in 2 instances within
the BC5CDR validation dataset and in 4 instances within the NCBI validation dataset.
These incorrect annotations label "tumor" as ’O’ instead of ’B’. Correcting these
annotations would likely improve the model’s performance, potentially resulting in 2
additional correct predictions for BC5CDR and 4 additional correct predictions for NCBI.

13



3. Results

Column Value
Dataset NCBI
Sentence These data functionally define a novel genetic locus , designated PAC1 , for

prostate adenocarcinoma 1 , involved in tumor suppression of human
prostate carcinoma and furthermore strongly suggest that the cell death path-
way can be functionally restored in prostatic adenocarcinoma . .

Gold , , prostatic adenocarcinoma
Predicted prostate adenocarcinoma , tumor, prostatic adenocarcinoma

Dataset NCBI
Sentence BACKGROUND & AIMS The chromosome region 18q21 has been shown to

be frequently deleted in colorectal cancers , and such frequent allelic loss is
a hallmark of the presence of a tumor - suppressor gene .

Gold colorectal cancers
Predicted colorectal cancers, tumor

Table 3.8: Examples from the case of ’Tumor’

3.4.4 Frequent Errors in NCBI: The Case of ‘VHL’

Another specific error in the NCBI dataset involves the word "VHL". This term is a
disease and is consistently annotated as ’B’ or ’I’ in the training set. However, in
the validation dataset, it was annotated as ’O’ incorrectly 6 out of 8 times. These
misannotations contribute significantly to the errors in the NCBI dataset.

Correcting these annotations would improve the model’s performance, potentially resulting
in a more accurate identification of "VHL" as an entity in the validation set.

Column Value
Dataset NCBI
Sentence We have therefore assessed the effect of the VHL gene product on VEGF

expression .
Gold
Predicted VHL

Dataset NCBI
Sentence wt - VHL protein inhibited VEGF promoter activity in a dose - dependent

manner up to 5 - to 10 - fold .
Gold
Predicted VHL

Table 3.9: Examples from the case of ’VHL’

14



3.5. Error Patterns

3.4.5 Impact of Correcting Errors
If we correct the identified annotation errors, the model’s performance could improve
significantly. Here are the potential improvements:

BC5 Dataset:

• Initial Total Errors: 30

• Errors Corrected: 3 (for "-") + 2 (for "tumor") = 5

• New Total Errors: 30 - 5 = 25

• Old Error Rate:
(︂

30
508

)︂
× 100 ≈ 5.9%

• New Error Rate:
(︂

25
508

)︂
× 100 ≈ 4.9%

NCBI Dataset:

• Initial Total Errors: 85

• Errors Corrected: 9 (for "-") + 4 (for "tumor") + 6 (for "VHL") = 19

• New Total Errors: 85 - 19 = 66

• Old Error Rate:
(︂

85
792

)︂
× 100 ≈ 10.7%

• New Error Rate:
(︂

66
792

)︂
× 100 ≈ 8.3%

3.5 Error Patterns
In order to analyze the syntactic structure of the errors identified in our Named Entity
Recognition (NER) models, we utilized the Stanza library, a state-of-the-art NLP toolkit
that provides robust syntactic analysis. We were able to categorize the errors into three
main classes: false positives, false negatives, and overlaps. A false positive occurs when
the model mistakenly identifies a non-entity as an entity, while a false negative is the
opposite - failing to recognize an actual entity in the text. The third class, overlap,
happens when the gold standard and predicted entities overlap, yet they do not represent
the exact same entity class.

3.5.1 False Positives
Through the examination of false positives generated by our Named Entity Recognition
(NER), we discovered various part-of-speech (POS) patterns contributing to recognition
errors. Our analysis Table. 3.11 revealed that nouns (’NOUN’) accounted for the majority
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of false positives, occurring 52 times, followed closely by adjectives (’ADJ’) at 24 instances.
In the table Table. 3.10 we can see some of these examples:

Column Value
Dataset NCBI
Sentence Furthermore , the complemented hybrids undergo programmed cell death in

vitro via a mechanism that does not require nuclear localization of p53 .
Gold
Predicted death
Dataset NCBI
Sentence Mice doubly null for atm and p53 exhibited a dramatic acceleration of tumour

formation relative to singly null mice , indicating that both genes collaborate
in a significant manner to prevent tumorigenesis .

Gold tumor,
Predicted tumor, tumorigenesis
Dataset NCBI
Sentence In yeast , mutations in several genes , including RTH and MSH3 , cause

microsatellite instability .
Gold
Predicted microsatellite
Dataset NCBI
Sentence In the other Irish family , exons 7 and 8 failed to amplify and they were shown

to be deleted .
Gold
Predicted Irish

Table 3.10: Examples from False positives

Pattern Frequency
NOUN 52
ADJ 24
PROPN 19
PUNCT 7
VERB 3
SYM 2
NUM 2
ADV 1
INTJ 1
CCONJ 1

Table 3.11: False positives POS Patterns and Their Frequencies
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3.5.2 False Negatives
Our analysis Table. 3.13 of the false negatives revealed several recurring part-of-speech
(POS) patterns that contributed to these errors. The most frequent POS tag associated
with false negatives was nouns (’NOUN’), which appeared 18 times. Adjectives (’ADJ’)
were the second most frequent, appearing 16 times,

Below are some specific examples Table. 3.12 of false negatives:

Column Value
Dataset NCBI
Sentence 2 , a region proposed to contain tumor suppressor gene ( s ) , is mutated at

high frequency in human breast cancer .
Gold tumor , breast cancer
Predicted , breast cancer
Dataset NCBI
Sentence In patients with stage III disease , the respective survival rates were 59 .
Gold stage III disease
Predicted stage III
Dataset NCBI
Sentence Individuals who have rare alleles of the VNTR have an increased risk of certain

types of cancers , including breast cancer ( 2 - 4 ) .
Gold cancers, breast cancer
Predicted breast cancer

Table 3.12: Examples from False negatives

Pattern Frequency
NOUN 18
ADJ 16
PROPN 8
PUNCT 5
ADV 4
VERB 2
NUM 1
CCONJ 1

Table 3.13: False negatives POS Patterns and Their Frequencies

3.5.3 Overlap
Overlap errors occur when the predicted entities and the gold standard entities intersect,
but do not match exactly in terms of the entity class. These errors are particularly
interesting because they indicate partial recognition by the model, where it correctly
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identifies some portion of the entity but fails to capture it entirely or assigns the wrong
entity type.
In our analysis Table. 3.15, we noticed that the overlaps primarily involved nouns
(’NOUN’), adjectives (’ADJ’), and proper nouns (’PROPN’). The most frequent POS tag
associated with overlap errors was ’NOUN’, occurring 23 times. This suggests that the
model often partially recognizes noun-based entities but either misses the complete span
or misclassifies them. Adjectives (’ADJ’) were the second most common, appearing 8
times, indicating that descriptive words modifying the entities were sometimes included
or excluded incorrectly.
The following examples Table. 3.14 show the overlap errors, the entities are marked with
* if they overlap:

Column Value
Dataset NCBI
Sentence No association was found between the presence of bilateral breast cancer

or the number of breast cancers in a family and the detection of a BRCA1
mutation, or between the position of the mutation in the BRCA1 gene and the
presence of ovarian cancer in a family.

Gold breast cancer, breast cancer
Predicted breast* cancer, breast cancer
Dataset NCBI
Sentence In stage II colorectal carcinomas, the absence of DCC identifies a subgroup

of patients with lesions that behave like stage III cancers.
Gold stage II colorectal carcinomas, stage III cancers
Predicted stage II colorectal* carcinomas, stage III cancers

Table 3.14: Examples from Overlap cases

Pattern Frequency
NOUN 23
ADJ 8
PROPN 6

Table 3.15: Overlap POS Patterns and Their Frequencies

3.5.4 Patterns in Errors
During our analysis of the errors in our Named Entity Recognition (NER) models,
we discovered distinct patterns in error formation. Previously, we encountered errors
involving individual entities, in which the error was limited to a single entity and did not
affect adjacent ones.
The table below presents the patterns which are identified by sequences of POS tags that
come one after the other, often forming the core structure of the recognized entities.
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Pattern Frequency
NOUN 29
PROPN 24
ADJ NOUN 19
ADJ 13
NOUN NOUN 7
NOUN PUNCT ADJ 4
ADV 3
PROPN NOUN 2
NOUN NUM NOUN 2
ADJ NOUN NOUN 2
NOUN SYM NOUN NOUN 2
NOUN PUNCT VERB 2
ADV PUNCT NOUN 2
ADJ NOUN ADJ 1
CCONJ 1
VERB PROPN 1
ADJ ADJ ADJ 1
ADJ CCONJ 1
INTJ 1
NOUN NUM PROPN 1
PUNCT VERB 1
NOUN PUNCT ADJ NOUN 1
ADJ ADJ NOUN 1
NOUN PUNCT NOUN ADJ NOUN 1
PROPN PUNCT 1
VERB NOUN 1
ADJ PROPN 1

Table 3.16: POS Patterns and Their Frequencies

As seen in Table 3.16, the most frequent patterns include single POS tags like ‘NOUN‘
(29 occurrences) and ‘PROPN‘ (24 occurrences), followed by combinations such as ‘ADJ
NOUN‘ (19 occurrences). These patterns reflect the typical structure of named entities,
which often consist of nouns and adjectives.

ADJ NOUN Pattern

One of the most notable patterns identified is the ‘ADJ NOUN‘ sequence, which occurred
19 times in our analysis. This pattern typically represents descriptive entities where an
adjective and a noun together, forms a phrase that should be recognized as an entity.
For instance:
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Column Value
Dataset NCBI
Sentence In preliminary screens , mutations of PTEN were detected in 31 % ( 13 / 42 )

of glioblastoma cell lines and xenografts , 100 % ( 4 / 4 ) of prostate cancer
cell lines , 6 % ( 4 / 65 ) of breast cancer cell lines and xenografts , and 17 % (
3 / 18 ) of primary glioblastomas .

Gold glioblastoma, primary glioblastomas
Predicted glioblastoma, glioblastomas
Pattern primary=ADJ, glioblastomas=NOUN
Dataset NCBI
Sentence To identify possible features of the BRCA1 genomic region that may contribute

to chromosomal instability as well as potential transcriptional regulatory
elements , a 117 , 143 - bp DNA sequence encompassing BRCA1 was obtained
by random sequencing of four cosmids identified from a human chromosome 17
specific library .

Gold
Predicted chromosomal instability
Pattern chromosomal=ADJ, instability=NOUN
Dataset NCBI
Sentence Inherited mutant alleles of familial tumour suppressor genes predispose

individuals to particular types of cancer.
Gold tumour, cancer
Predicted familial tumour, cancer
Pattern familial=ADJ, tumour=NOUN

Table 3.17: Examples from the ADJ NOUN pattern

These examples highlight the model’s challenges in correctly identifying entity boundaries
when an adjective precedes a noun. The model may recognize part of the entity but
fail to capture the full entity, or it may misclassify the type of the entity based on this
common structure.

Complex Patterns

In addition to the simpler patterns, we also observed more complex structures, such as
‘NOUN PUNCT ADJ‘ and ‘NOUN NOUN‘. These patterns are less frequent but still
significant, indicating scenarios where the model needs to handle more intricate syntactic
structures.
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CHAPTER 4
Conclusion

This thesis investigated the robustness and generalizability of two Named Entity Recog-
nition (NER) models, BioBERT and KeBioLM, across different biomedical datasets. We
aimed to understand how well these models perform when subjected to cross-dataset
evaluations, which is critical for their application in real-world biomedical text mining
tasks. Utilizing benchmark datasets BC5CDR and NCBI, we investigated the precision,
recall, and F1 scores of each model. While both models demonstrate high accuracy
within a single dataset, their performance drops significantly when applied to a different
dataset. This drop highlights the challenges in generalizing across different biomedical
corpora. We also filtered the sentences who were not part of the training dataset while
testing. This showed great improvement in accuracy indicating that the models cannot
generalize very well with unseen data.

The results of this thesis point to a number of possibilities for research. Investigating
complex pre-training techniques, such as domain-adaptive pre-training, to enhance model
generalization across various datasets is one potential path. Developing strategies that
allow NER models to dynamically adjust to new domains while reducing the requirement
for intensive retraining is another important subject.
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