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Kurzfassung

In dieser Diplomarbeit untersuchen wir zwei für die Praxis relevante Optimierungspro-
bleme aus dem Bereich der Produktionsplanung. Das erste Problem, das Balanced Task
Planning Problem, wird in dieser Arbeit erstmals beschrieben. Obwohl es verwandte
Probleme aus der Literatur gibt, erfordern relevante Unterschiede in der Definition der
Nebenbedingungen und Zielfunktionen die Einführung einer neuen Problemspezifikation.
Das Ziel ist es verschiedene Aufgaben zu Planungsperioden und Maschinen zuzuordnen,
sodass die Auslastungen der Maschinen ausgewogen um einen Zielwert liegen, während
kritische Aufgaben priorisiert werden. Eine formale Problemspezifikation des zweiten
Problems wurde kürzlich unter dem Namen Employee Task Distribution Problem veröf-
fentlicht. Dabei handelt es sich um ein Optimierungsproblem mit dem Ziel Bedarfe zu
erfüllen, indem Mitarbeiterinnen und Mitarbeiter zu Operationen zugeordnet werden.
Außerdem muss eine Reihe an Nebenbedingungen berücksichtigt werden. In der Literatur
wurden bereits Lösungsansätze für das Problem untersucht. In der Praxis gibt es jedoch
zusätzlich den Badarf einer interaktiven Lösungsvariante, um Entscheidungsträgerinnen
und Entscheidungsträger enger in den Planungsprozess einzubinden. Dies ist vor allem
relevant um auf kurzfristige Veränderungen der Mitarbeiterverfügbarkeiten oder -bedarfe
reagieren zu können, während die Anpassungen des vorhandenen Plans möglichst gering
gehalten werden sollen.

Wir präsentieren eine Problemspezifikation für das erste Problem und beweisen, dass eine
Entscheidungsvariante des Problems NP-vollständig ist. Wir stellen ein mathematisches
Modell vor, welches mit modernen Constraint Programming und Integer Programming
Lösungsverfahren optimale Lösungen bereitstellen kann. Außerdem schlagen wir verschie-
dene metaheuristische Varianten basierend auf Tabusuche vor, um qualitative Lösungen
für große Probleminstanzen zu finden. Für das zweite Problem verwenden wir eine inter-
aktive Optimierungsmethode, die nachvollziehbare Verbesserungen eines vorhandenen
Plans vorschlägt. Dafür definieren wir eine interaktive Problemvariante des Employee
Task Distribution Problems und schlagen einen Lösungsansatz basierend auf Tabusuche
vor, der es ermöglicht, Lösungen zu dieser Problemvariante zu finden.

Um die vorgeschlagenen Methoden zu evaluieren, erzeugen wir zufällige Probleminstanzen
für das Balanced Task Planning Problem und führen eine experimentelle Auswertung der
verschiedenen Lösungsansätze durch. Das Ergebnis dieser Auswertungen zeigt, dass die
meisten kleinen Instanzen mithilfe der exakten Methoden gelöst werden können, wobei
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für einige eine optimale Lösung gefunden wurde. Bei Verwendung der Tabusuche konnten
hochqualitative Lösungen auch für die überwiegende Mehrheit der großen Problemin-
stanzen gefunden werden. Um die Effektivität der interaktiven Optimierungsmethode zu
demonstrieren, untersuchen wir praktische Anwendungsfälle und zeigen die Wirksamkeit
unseres Ansatzes bei der Unterstützung menschlicher Entscheidungsträgerinnen und
Entscheidungsträger.



Abstract

In this thesis, we investigate two real-life optimization problems from the area of produc-
tion planning. The first problem, the Balanced Task Planning Problem, is introduced in
this thesis. While there are related problems in the literature, significant differences in
the definition of constraints and objectives require the introduction of a new problem
specification. The aim of the problem is to assign tasks to machines and planning periods
so that the machine loads are balanced around a target value while prioritizing more
critical tasks. The second problem was recently introduced to the literature and is called
the Employee Task Distribution Problem. The goal is to fulfill demands by assigning
employees to operations while satisfying various constraints. While promising solution
approaches have been proposed in the literature, users of decision support systems that
solve real-life problems often prefer more involvement in the employee planning process.
This is particularly relevant for reacting to short-term changes in employee availabilities
or capacity demands while keeping the adaptations as minimal as possible.

For the first problem, we provide a formal problem description and prove that a decision
variant of the problem is NP-complete. We introduce a mathematical model that can be
used with Constraint Programming and Integer Programming solvers to find optimal
solutions. Furthermore, we propose different local search variants based on Tabu Search
to find solutions for large-scale problem instances. For the second problem, we propose
an interactive optimization method that provides the user with traceable suggestions
for improving employee assignments. For that, we introduce an interactive variant of
the Employee Task Distribution Problem and propose a Tabu Search method to find
solutions for this problem variant.

To evaluate the methods, we generate random problem instances for the Balanced Task
Planning Problem and perform an experimental evaluation of the different approaches.
The results show that most of the small instances can be solved using the exact approach,
and for some, optimal solutions can be obtained. Using Tabu Search, high-quality solutions
could also be found for the large majority of large-scale instances. To demonstrate the
effectiveness of the interactive optimization approach, we study practical use cases and
show the usefulness in supporting human decision-makers.
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CHAPTER 1
Introduction

In the area of production planning, assigning tasks to machines or employees is a highly
relevant problem. Solving such kind of problems can be challenging, especially if they
include a large number of constraints and objectives. Finding high-quality solutions,
however, is of high importance. In this thesis, we approach two combinatorial optimization
problems that originate from the field of production planning: the Balanced Task Planning
Problem and the Employee Task Distribution Problem.

The Balanced Task Planning Problem takes a set of tasks and machines as input, and the
goal is to assign the tasks to machines, while a machine’s load must not exceed a given
maximum but should also reach a given minimum. Furthermore, there are restrictions
on the compatibility between tasks and machines, i.e., not each task can be assigned
to each machine. Depending on the input, not all tasks can always be planned without
exceeding a machine’s maximum load. Therefore, the plan can further be divided into
independent planning periods. There are three optimization objectives: First, the loads
of machines within a planning period should be balanced. Second, each machine’s load
should be as close as possible to a given target value. Third, priorities should be respected,
and tasks with similar priorities should be assigned to the same period. This way, the
human planner can prioritize periods containing tasks with high priority over periods
with low-priority tasks.

Related problems have already been investigated in the literature. Both, the Production
Leveling Problem [Vas19, VLM+22] and the Balanced Academic Curriculum Problem
[CM01, CDGGS12] aim at finding assignments to periods while balancing the load of
each period. However, relevant differences in the definition of constraints and objectives
motivate the introduction of the Balanced Task Planning Problem in this thesis.

The second part of the thesis is dedicated to the Employee Task Distribution Problem - a
multi-objective optimization problem, with the task of assigning employees to operations
while respecting a variety of different constraints. It has already been introduced and
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1. Introduction

formally described in the literature, together with a constraint programming approach to
solve the problem [HLM+24b]. This problem originates from a real-life application and is
relevant for a wide range of industrial areas. Although the existing solution approaches
are capable of finding high-quality solutions to real-life problem instances, there are
cases in which it is necessary to include the human decision-makers (i.e., the users of
the planning tool) more closely during the optimization process. This is mainly due
to two reasons: First, to the users, automatic planning is a black box, i.e., they do
not understand concretely why specific decisions were made. Second, they often prefer
stable plans over plans retrieved from the tool. Therefore, a common approach is to copy
established plans (e.g., from previous weeks) and only make small adaptations to react
to changing demands or (short-term) changes in employee availability (e.g., caused by
illnesses). Applying the automatic planning tool, however, would possibly change a large
portion of the plan.

1.1 Aims of the thesis
The goals of this thesis are:

• Introduce and formally define the Balanced Task Planning Problem.

• Analyze the computational complexity of the Balanced Task Planning Problem.

• Apply exact solution methods to find optimal solutions.

• Develop a metaheuristic method to efficiently find high-quality solutions to large-
scale problem instances.

• Provide diverse problem instances by proposing a random instance generator for
the Balanced Task Planning Problem.

• Compare the different solution approaches in an experimental evaluation.

• Develop an interactive method to include human decision-makers in the solution
process of the Employee Task Distribution Problem.

• Propose a solution method for the interactive optimization problem.

• Demonstrate the approach in practical use cases.

1.2 Contributions
The contributions provided in this thesis are:

• We provide an informal problem description and mathematical definition of the
Balanced Task Planning Problem.
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1.3. Structure of the thesis

• We prove that a decision variant of the problem is NP-complete by providing a
polynomial-time reduction from a well-known NP-complete problem.

• A mathematical model is developed that can be used as an exact solution approach
to acquire optimal solutions.

• As a metaheuristic approach, a local search method based on (Reactive) Tabu
Search is proposed that can solve large-scale instances in a reasonable time.

• We provide an instance generator that allows the generation of random instances
of the Balanced Task Planning Problem.

• Using the exact approaches, we provide optimal solutions for 24 of the 100 small
instances and one medium-sized instance. The metaheuristic methods provide
high-quality solutions for the majority of large-scale instances.

• For the Employee Task Distribution Problem, we adapt the problem definition
from the literature to be able to model user interactions and solve this interactive
problem using Tabu Search.

• We provide three concrete, practical use cases to demonstrate the applicability of
the interactive approach to relevant, real-life scenarios.

1.3 Structure of the thesis
The remainder of the thesis is structured as follows. In Chapter 2, we introduce the
Balanced Task Planning Problem and provide an informal description and a mathematical
problem definition. Furthermore, related problems from the literature are summarized,
and the computational complexity is analyzed. Chapter 3 is dedicated to different solution
methods, starting with the exact approach, where we provide a constraint programming
model. Then, the different Tabu Search methods are presented. Finally, the experimental
evaluation of the solution methods concludes this chapter. In chapter 4, we describe the
Employee Task Distribution problem and summarize existing solution methods. The
interactive optimization method for this problem is presented in chapter 5, where we also
demonstrate this method in practical use cases. Finally, in chapter 6, we summarize the
findings of this thesis and mention possible future work.
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CHAPTER 2
The Balanced Task Planning

Problem

In this chapter, we introduce the Balanced Task Planning Problem (BTPP). After an
informal problem description, we give a formal definition of the BTPP. Furthermore,
related work is summarized, and similar problems are compared. In the last section of
this chapter, we analyze the computational complexity of the BTPP.

2.1 Problem Description
The input to the BTPP consists of a set of tasks and machines. Each task has a size,
a priority, and a set of machines on which the task can be planned. The goal is to
assign each task to a machine so that the load of each machine is within a given range.
Furthermore, the schedule can be divided into an arbitrary number of independent
planning periods. The number of periods is not given as part of the problem input but
can be adjusted dynamically during the solution process.

There are three objective goals which can be calculated independently for each period:

• The first goal is to balance the sum of task sizes assigned to the machines within a
period. Therefore, we want to minimize the load deviation between each machine
and the machine with the highest load in the period.

• The load of each machine should be as close as possible to a given target load.
Hence, the goal is to minimize the absolute difference between this target value
and the load of each machine.

• The priorities of tasks assigned to the same period should be as homogeneous as
possible. For each period, we consider the average priority of tasks assigned to this
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2. The Balanced Task Planning Problem

period, and the goal is to minimize the sum of absolute differences between each
task priority and the average.

As an example, consider an instance with tasks T1-T14 and three machines, where all
tasks can be planned on each machine. Furthermore, we allow machine loads between 2
and 9, and we target machine loads of 7. Figure 2.1 shows a candidate solution to this
instance, containing two planning periods. In period P1, the loads of all machines lie
between the minimum and maximum sizes defined by the instance. The same does not
hold for period P2 because task T5 only has a size of 1.

T5

T6

T4 T9

T8

T14

0 2 4 6 8

T7

T3

T10 T13

T12

T11

T1

MaxMin

M3

M2

M1

M3

M2

M1

P1

P2

T2

Target

Figure 2.1: A candidate solution to an example instance of the BTPP

2.2 Formal Problem Definition

2.2.1 Problem Input

The following parameters define the input to the problem:

Finite set of tasks: T = {t1, . . . , tn}
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2.2. Formal Problem Definition

Finite set of machines: M = {m1, . . . , mk}

Size of task t: st ∈ N+

Priority of task t: prt ∈ N+

Minimum machine load: Smin ∈ N

Maximum machine load: Smax ∈ N+

Targeted machine load: Star ∈ N+, where Smin ≤ Star ≤ Smax

Task-machine compatibility matrix: Vt,m ∈ {0, 1}, ∀t ∈ T , ∀m ∈ M, Vt,m = 1 iff
task t can be assigned to machine m

2.2.2 Variables
The following variables represent the output of the problem:

Set of planning periods: P = {p1, . . . , pq}

Period which task t is assigned to: PAt ∈ P, ∀t ∈ T

Machine which task t is assigned to: MAt ∈ M, ∀t ∈ P

The following variables act as helper variables:

Load of a machine: To calculate the load of a machine m in period p, we sum up the
sizes of all tasks that are assigned to m and p.

MSp,m =
∑︂
t∈T

st · [PAt = p ∧ MAt = m], ∀p ∈ P, m ∈ M

Average period priority: To calculate the average priority of tasks assigned to a
planning period p, we sum up the priorities of all tasks assigned to p and divide this sum
by the total number of tasks assigned to p.

avgPriop =
∑︁

t∈T prt · [PAt = p]
|{t ∈ T | PAt = p}| , ∀p ∈ P

7



2. The Balanced Task Planning Problem

2.2.3 Constraints
• The load of each machine must not be lower than the given minimum Smin. This

constraint is not active for exactly one special period, which we call the remainder
period (p = 1):

MSp,m ≥ Smin, ∀p ∈ P \ 1, m ∈ M

• The load of each machine must not be larger than the given maximum Smax. Note
that this constraint has to be satisfied for all periods, including the remainder
period:

MSp,m ≤ Smax, ∀p ∈ P, m ∈ M

• Each task may only be assigned to a compatible machine:

Vt,MAt = 1, ∀t ∈ T

2.2.4 Objective
The objective function is composed of the following three objectives:

• Machine load deviation: The difference between the loads of the machine with
the highest load and each single machine in a period should be as low as possible:

f1 =
∑︂
p∈P

∑︂
m∈M

(︃
max

m′∈M
MSp,m′

)︃
− MSp,m

• Target machine load deviation: The absolute difference between the target
machine load and each machine load should be minimized:

f2 =
∑︂
p∈P

∑︂
m∈M

|Star − MSp,m|

• Priority deviation: For each period, the absolute difference between the average
task priority and the priorities of the single tasks assigned to this period is minimized.
The average period size is rounded to the next integer to ensure the integrality of
the objective value, which allows the use of Constraint Programming solvers that
do not support real-valued variables. Furthermore, it enables the implementation
of efficient delta evaluation procedures for the metaheuristic approaches without
errors caused by the use of floating-point arithmetic:

f3 =
∑︂
p∈P

∑︂
t∈T

|⌈avgPriop⌉ − prt| · [PAt = p]

The overall objective is to minimize the weighted sum of the objective components f1, f2
and f3:

8



2.3. Related Work

minimize w1 · f1 + w2 · f2 + w3 · f3

The parameters w1, w2, and w3 can be used to configure the influence of the three
objective components on the overall objective value.

2.3 Related Work
In this section, we summarize problems from the literature that share similar properties
with the BTPP.

One related problem is the Production Leveling Problem (PLP) [Vas19, VLM+22]. The
goal of the PLP is to assign orders (which are comparable to tasks in the BTPP) of
different types to periods while getting as close as possible to a targeted production volume
and respecting order priorities. The number of periods in the PLP is fixed, while for the
BTPP it is a variable that is assigned during the solution process. Another significant
difference is that the PLP implicitly assumes that there is only one machine, in contrast to
the BTPP, where the number of machines is part of the problem parameters. As solution
methods, the authors of [Vas19, VLM+22] proposed a Mixed Integer Programming
approach as well as a metaheuristic method based on Simulated Annealing.

Another problem related to the BTPP is the Balanced Academic Curriculum Problem
(BACP) [CM01][CDGGS12]. The goal of this problem is to assign courses to academic
periods while restricting the minimum and maximum academic load of each period. The
objective is to find a curriculum with a balanced academic load among the periods. This
is achieved by minimizing the maximum academic load. In another work [MSZ+07], a few
more balancing criteria for the BACP were studied, including the objective to minimize
the sum of deviations from the mean, which is used similarly in the BTPP for balancing
the task priorities within a period. The BACP differs from the BTPP in that it lacks
the notion of machines (or a similar concept) and does not allow the prioritization of
courses, which is possible for the tasks of the BTPP. Furthermore, it takes the number
of periods as part of the input and, in contrast to the BTPP, does not model it as a
decision variable. The problem has been approached using Constraint Programming
[CM01], Integer Programming, and Local Search [CDGGS12].

Restricting the BTPP to instances with only one machine yields a problem similar to
the two problems above. Similarly, enforcing solutions to the BTPP to contain only
one planning period leads to a generalization of the well-known and extensively studied
Bin Packing Problem (BPP) [Har82]. The input to the traditional variant of the BPP
consists of a finite set of items of different sizes. The objective is to assign each item to
a bin while the overall number of bins should be minimized. This goal differs from the
BTPP, where the number of machines is given as input, and the minimization of the
number of used periods is not a direct objective. Vice versa, the Bin Packing Problem
does not aim to balance the load of the bins in any way. Although the BPP was first

9



2. The Balanced Task Planning Problem

released some decades ago, it, together with its variants, remains a relevant research
topic to this day. For surveys and literature reviews, we refer to [DIM16, ME21].

Generalizations of the BPP to two or more dimensions have been extensively studied (e.g.,
see [CKPT17, LMMV14]). The BTPP can be seen as a special variant of two-dimensional
bin packing with the machines and periods as the two dimensions. However, while the
sizes of tasks in the BTPP are one-dimensional, in most of the studied two-dimensional
problem variants of the BPP, the size of an item is defined by its length and width.

2.4 Complexity Analysis
In this section, we prove that a decision variant of the BTPP is NP-complete. This is a
problem variant where the goal is to decide for an arbitrary problem instance whether
there exists a solution that satisfies all constraints while not considering the optimization
objectives.

Theorem 1. The decision variant of the Balanced Task Planning Problem that asks
whether a feasible solution exists without considering the optimization objectives is
NP-complete.

Proof. To show the NP-hardness of the decision variant of the BTPP, we give a polynomial
time reduction from the Bin Packing Problem [Har82], which is known to be NP-complete
in the strong sense. Formally, it is defined as follows:

Bin Packing Problem (BPP)
Instance: A finite set U of items, a size su ∈ N+ for each u ∈ U , a positive integer

bin capacity B, and a positive integer K.
Question: Is there a partition of U into disjoint sets U1, . . . , UK such that the sum

of the sizes of the items in each Ui is B or less?

Consider an arbitrary instance of the Bin Packing problem with a set U and positive
integers B and K.

We construct an instance of the BTPP in the following way:

• We use a bijective function g to uniquely map each item to a task. We denote the
inverse function of g by g−1:

T = {g(u1), . . . , g(u|U |)}

• The number of machines is K + 1: M = {m1, . . . , mK+1}
• The size of a task refers to the size of the corresponding item:

st = sg−1(t), ∀t ∈ T

10



2.4. Complexity Analysis

• As the task priority is only relevant for calculating the objective value, which is not
part of the considered decision variant of the BTPP, we can set it to an arbitrary
value:

prt = 1, ∀t ∈ T
• Each task can be assigned to each machine except for one special machine M0:

Vt,m = 1, ∀t ∈ T , ∀m ∈ M \ M0

Vt,M0 = 0, ∀t ∈ T
• The minimum machine load is set to 1:

Smin = 1

• The maximum and target machine loads are set to the bin capacity

Smax = Star = B

• All objective weights are set to 1

w0 = w1 = w2 = 1

We clearly see that this transformation from an instance of the BPP to an instance of
the BTPP can be done in time polynomial to all of the input parameters.

To show that BTPP is NP-hard, it remains to show that given an instance of the
Bin Packing Problem, there exists a partition of U into disjoint sets U1, . . . , UK with∑︁

u∈Ui
su ≤ B, if and only if there exists a feasible solution to the BTPP instance

retrieved from the reduction.

Consider an arbitrary instance of BPP and assume that there is a partition of U
into disjoint sets U1, . . . , UK with ∑︁

u∈Ui
su ≤ B. We construct a solution to the

BTPP instance as follows: We set P = {p1} and assign each task to the single period,
i.e. PAt = p1 for all tasks t ∈ T . Furthermore, we identify each set Ui from the
solution to the BPP with a machine Mi and assign the tasks to Mi for which the
corresponding items are assigned to Ui. Formally, this means that MAt = mi if and
only if g−1(t) ∈ Ui. We know that ∑︁

u∈Ui
su ≤ B and by construction of the reduction it

follows that ∑︁
u∈Ui

sg−1(u) ≤ Smax. Therefore, the constraints enforcing the maximum
machine sizes are satisfied. Furthermore, there is only one period, which means that the
constraints enforcing the minimum machine sizes are not active, and as the task-machine
compatibilities are only restricted for M0 (to which no tasks are assigned), there are no
constraint violations. Consequently, there is a feasible solution to the instance of the
BTPP.

Now, consider an arbitrary instance of BTPP that has a feasible solution and was retrieved
from a BPP instance by the reduction. This instance cannot contain any tasks that are
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2. The Balanced Task Planning Problem

assigned to machine M0 because Vt,M0 = 0 for all t ∈ T . Furthermore, the minimum
machine load Smin is set to 1, which means that the constraints that enforce the minimum
machine load for M0 would be violated for each period, except for the remainder period,
for which this constraint is not active. Consequently, the solution can only contain one
period p1. Now, we construct a partition of U into disjoint sets U1, . . . , UK , by setting
Ui = {u | g(u) ∈ Mi}. As there is only one period and MSp1,m ≤ Smax holds for all
machines, it follows directly from the construction of the reduction that ∑︁

u∈Ui
su ≤ B.

Finally, it remains to show that the BTPP is a member of the complexity class NP. This
is done by proving the existence of a polynomial-time verifier, which is an algorithm that,
given a problem instance together with a solution, decides in polynomial time whether
the solution is feasible. In a feasible solution, the number of periods is polynomial
in the number of tasks because otherwise, there would be periods to which no task is
assigned, which would violate the minimum machine size constraints. This means that the
number of constraints enforcing the minimum and maximum machine loads is polynomial
in |T | · |M|. Similarly, the number of constraints for task-machine compatibility is
polynomial in the number of tasks. Therefore, a polynomial-time verifier is obtained by
checking each of the constraints.
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CHAPTER 3
Solution Approaches for the

Balanced Task Planning Problem

In this chapter, we present solution methods for the BTPP. First, we propose a math-
ematical model to find solutions using Constraint Programming and Mixed Integer
Programming solvers. Then, we introduce a construction heuristic to create initial
solutions. Furthermore, we present metaheuristic approaches based on Tabu Search.
Finally, we evaluate all proposed methods by conducting a large number of experiments.
The experimental results are presented and discussed at the end of this chapter.

3.1 Constraint Programming Model
In this section, we provide a Constraint Programming model that can be used to solve
the BTPP. The model is similar to the formal problem description presented in Chapter
2.2, however, there are a few differences in the definition of some of the constraints.
Therefore, we only describe these differences in more detail.

3.1.1 Input Parameters
Finite set of tasks: T = {t1, . . . , tn}

Finite set of machines: M = {m1, . . . , mk}

Finite set of periods: P = {p1, . . . , pq}

Size of task t: st ∈ N+

13
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Priority of task t: prt ∈ N+

Minimum machine load: Smin ∈ N

Maximum machine load: Smax ∈ N+

Targeted machine load: Star ∈ N+, where Smin ≤ Star ≤ Smax

Set of forbidden machines per task: Ft ⊆ M, for all t ∈ T

Machine-task compatibilities are represented as a set of machines Ft to which a task t
cannot be assigned, i.e., m ∈ Ft if and only if Vt,m = 0. Furthermore, the maximum
number |P| of periods is given as part of the input because the number of decision
variables depends on |P|. When solving an instance, we set this number to a theoretical
upper bound for the number of periods. In any feasible solution, the minimum load in
each period, except for the remainder period, is Smin · |M|. Consequently, ignoring the
remainder period, there cannot be more than

∑︁
t∈T st

Smin·|M| periods. Adding the remainder

period, we set |P| =
⌊︂ ∑︁

t∈T st

Smin·|M|
⌋︂

+ 1.

3.1.2 Decision Variables
Period which task t is assigned to: PAt ∈ P, ∀t ∈ T

Machine which task t is assigned to: MAt ∈ M, ∀t ∈ T

Load of a machine: MSp,m ∈ N, ∀p ∈ P, m ∈ M

Load of a period: PSp ∈ N, ∀p ∈ P

3.1.3 Constraints
In this section we list all constraints of the Constraint Programming model. As most
of them are similar to the constraints definded in Section 2.2.3, we only discuss the
differences in more detail.

• The load of machine m in period p is the sum of all tasks assigned to t and p:

MSp,m =
∑︂
t∈T

st · [PAt = p ∧ MAt = m], ∀p ∈ P, m ∈ M
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• The size of a period is the maximum load of its machines:

PSp = max
m∈M

MSp,m, ∀p ∈ P

• The load of each machine must not be lower than the given minimum Smin. This
constraint is not active for the remainder period (p = 1):

MSp,m ≥ Smin, ∀p ∈ P \ 1, m ∈ M

• The size of each machine must not be larger than the given maximum Smax. Note
that this constraint has to be satisfied for all periods, including the remainder
period:

MSp,m ≤ Smax, ∀p ∈ P, m ∈ M

• If a machine m is contained in the set of forbidden resources Ft of a task t, the
machine m cannot be assigned to t. This replaces the constraint from the formal
description, which enforces the task-machine compatibilities using the matrix Vt,m.

MAt ̸= m, ∀t ∈ T , ∀m ∈ Ft

• To enhance the model’s performance, we add the following symmetry breaking
constraint. It eliminates symmetries by ensuring that the periods are ordered by
their loads (ignoring the first period, which is always the remainder period). This
constraint is redundant, i.e., in contrast to the other constraints, it is not required
for the correctness of the model.

PSp ≤ PSp−1, ∀p ∈ {3, . . . , |P|}

3.1.4 Objective
As objective, we minimize the same function described in Section 2.2.4.

3.2 Construction Heuristic
In this section, we present a construction heuristic that is used to generate solutions to
instances of the BTPP. In the upcoming sections, we will use this approach to create
initial solutions for the metaheuristic approaches. Furthermore, it is used by the random
instance generator described in Section 3.7. It is a greedy algorithm that, in each iteration,
assigns a task to a period and machine. At each stage of the algorithm, we consider just
one period. In each iteration, we find the machine with the least load, which the task
can be assigned to without violating any constraint, and plan the task on this machine.
If no such machine exists, a new period is created, which the current and subsequent
tasks are assigned to.
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Algorithm 3.1: Construction heuristic for the BTPP
Input: Sorted list of tasks T , set M of machines, Task-machine compatibility

matrix V , and positive integer Smax

Output: Number of periods, Period assignments PAt, and machine assignments
MAt for each task t

1 machine_loadm ← 0, for all machines m ∈ M
2 current_period ← 1
3 for t in T do
4 selected_machine ← arg min

m∈{m′∈M|Vt,m′ =1}
machine_loadm

5 free_space ← Smax− machine_loadselected_machine
6 if free_space < st then
7 current_period ← current_period + 1
8 machine_loadm ← 0, for all machines m ∈ M
9 selected_machine ← first machine m, with Vt,m = 1

10 end
11 PAt = current_period

12 MAt = selected_machine

13 machine_loadselected_machine ← machine_loadselected_machine +
st

14 end
15 return current_period, PAt, and MAt for each task t

Algorithm 3.1 shows the construction heuristic in more detail. As input, it takes the
tasks T and machines M, as well as the task-machine compatibility matrix V , and the
maximum allowed load of a machine Smax. Note that the tasks are given as a sorted list,
so that the user of the algorithm can influence the order in which the tasks are assigned.
To find good solutions (e.g. as initial solutions for local search), we first sort the tasks
by their priorities. This way, the tasks with similar priorities tend to be assigned to the
same period. The number of periods and assignments of each task to a period and a
machine are returned as output. First, the algorithm initializes the load of each machine
to 0 and sets the current period to 1. Then, we iterate over the tasks in the given order.
In each iteration, the machine with the least load, on which the task can be planned
according to the matrix V , is stored in the variable selected_machine. In line 5, the
free space on this machine is calculated as the difference between the maximum load
Smax and the load of the selected machine. If there is not enough space for the current
task, a new period is added by incrementing the period counter (current_period) and
resetting the load of all machines. Furthermore, a new machine is selected by finding
the first one compatible with the current task. In lines 11-12, the task is assigned to the
current period and the selected machine. Finally, the load of the selected machine is
increased by the size of the assigned task.
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3.3 Tabu Search for the Balanced Task Planning Problem
In this section, we propose a metaheuristic method based on Tabu Search to solve the
BTPP.

3.3.1 Solution Representation
For the local search approach, we represent a solution as a list of planning periods. Each
of these periods is represented as a list of machines, and each machine as a list of tasks
that are assigned to the enclosing machine and period. Furthermore, a single integer
representing the index of the remainder period is stored with each candidate solution.

We ensure that the constraints enforcing the maximum load Smax and the task-machine
compatibilities are satisfied in each stage of the algorithm by the definition of the move
operators (see next section). In contrast, the constraints concerning the minimum allowed
machine loads can be violated during the search process. For each violation of these
constraints, we add a penalty to the cost function multiplied by a constant value bigM.

fL = w1 · f1 + w2 · f2 + w3 · f3 + bigM · penalty
penalty =

∑︂
p∈P

∑︂
m∈M

max(0, MSp,m − Smin)

The constant bigM is chosen so that each solution with at least one constraint violation
has a cost higher than each feasible solution. To achieve that, we calculate an upper
bound for each of the three objectives:

• Machine load deviation: In the worst case, each period has exactly one assigned
task. Then, the number of periods is equal to the number of tasks, and each
machine, except for the machine to which the single task in the period is assigned,
has a deviation of st to the loaded machine.

max1 =
∑︂
t∈T

st · (|M| − 1)

• Target machine load deviation: As above, in the worst case, each task is
assigned to its own period. The maximum deviation from Star per machine is either
the space between 0 and Star or Star and Smax.

max2 = |T | · |M| · max(Star, Smax − Star)

• Priority deviation: The deviation of each task priority to the average priority
of the period cannot be larger than the difference between the largest and lowest
priority.

max3 = |T | · max
t∈T

prt − min
t∈T

prt

Therefore, we set bigM = max1 + max2 + max3 + 1.
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Figure 3.1: An example of a shift task move

3.3.2 Neighborhood Structure

In this section, we present the search moves we used to generate the neighborhood of a
solution.

Shift Task Neighborhood
A Shift Task move shifts a task t to a machine m and period p. This means that task t
is removed from its current machine m0 and period p0 and assigned to machine m and
period p. Note that a shift move can also be applied if the current machine is equal to the
machine the task is shifted to, and the same holds for the periods. However, we require
a change in either the machine or the period, i.e., m0 ̸= m or p0 ̸= p, as otherwise, the
move would not change the solution. Figure 3.1 shows an example of a shift move, where
task T11 is moved from machine M2 of period P2 to machine M1 of period P1.

A special occurrence of a Shift Task move is the shift of the only task of a period to
another period. In this case, the period, which is empty after the move is applied, is
removed from the solution (see Figure 3.2). Furthermore, if a task is shifted to a period
that is not yet part of the solution, it will be added.

Swap Tasks Neighborhood
A Swap Task move exchanges the positions of two tasks t1 and t2. If t1 is assigned to
machine m1 and period p1, and task t2 is assigned to machine m2 and period p2 before
applying the move, t1 is assigned to m2 and p2, while t2 is assigned to m1 and p1 after
the application. This type of move is only applicable if the two tasks t1 and t2 are not
assigned to the same period and machine (i.e., m1 = m2 and p1 = p2) because applying
the move would not have an effect. An example of this move can be seen in Figure 3.3,
where tasks T3 and T11 are exchanged.
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Figure 3.2: An example of a shift task move where the single task of the second period is
removed
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Figure 3.3: An example of a swap tasks move

3.3.3 Tabu Search
In this section, we propose a local search algorithm to solve the BTPP. A basic local
search approach can be seen in Algorithm 3.2. The algorithm takes a problem instance
and an initial solution to this instance as input and then tries to iteratively improve the
solution by replacing it with the best solution in its neighborhood. As exit condition,
we use a wall-clock time limit. This type of local search algorithm is also known as hill
climber.

However, one problem with this basic approach is that it improves the solution only until
no more solution in the neighborhood is better than the current solution. Then, the
search process gets stuck in a local optimum. To avoid this problem, more advanced local
search algorithms are applied. Tabu Search (TS) [Glo86] is one of the most prominent
approaches for escaping local optima. The idea behind Tabu Search is to avoid returning
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Algorithm 3.2: A basic local search procedure (hill climber) to improve a
solution to the BTPP

Input: An instance I of the BTPP and an initial solution S to this instance
Output: An improved solution to instance I

1 current_solution = S
2 best_solution = S
3 while exit condition not met do
4 neighborhood ← generate_neighborhood()

5 current_solution ← find_best_solution(neighborhood)

6 if cost(current_solution) < cost(best_solution) then
7 best_solution ← current_solution

8 end
9 end

10 return best_solution

to parts of the search space that have already been seen. This is achieved using the
notion of tabu lists. In each iteration of the search process, the current solution is
added to the tabu list. In future iterations, the solutions contained in the tabu list
will not be considered when searching the neighborhood. Storing solutions explicitly in
the tabu list is computationally expensive, because each solution in the neighborhood
would have to be compared to each solution in the tabu list. Therefore, in most tabu
list implementations, only attributes of the solution or the move applied to reach the
solution are stored in the tabu list. To control the duration for which these attributes
are tabu, a meta-parameter, the tabu tenure, is introduced to specify the length of the
tabu list. In other words, the tabu tenure controls the number of iterations in which
added solutions (or its attributes) are tabu. Furthermore, in our implementation, we do
not explicitly remove a solution/attribute from the tabu list once it is no longer tabu.
Rather, we store the iteration until it is tabu alongside the solutions/attributes in the
tabu list, and can then check whether it is still tabu in the current iteration.

For the BTPP, we propose the following two types of tabu lists:

Tabu List 1: Fix task
The idea of this type of tabu list is to consider the move that is used to reach a solution.
Whenever a move is applied, the tasks touched by the move are added to the tabu list.
For a SwapTasks move, this means that both tasks that are exchanged are made tabu.
As long as a task is part of the tabu list, the assignments of this task to a machine and
period cannot be changed, i.e., they are fixed.

Tabu List 2: Forbid task source
In the second tabu list, we again consider the tasks affected by the applied move. Let t
be such a task, and m0 and p0 the machine and period, which t is assigned to before the
move application. When the move is applied, we add the tuple (t, m0, p0) to the tabu list,
which means that a move is considered tabu if t would again be moved to machine m0
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and period p0. In other words, we forbid the task from returning to the exact position to
which it was assigned before the move was applied.

Furthermore, there can be conditions that justify the tabu status of a solution or move
to be overwritten, also known as aspiration criteria. Often, a solution is accepted if it is
better than the best solution found so far, even if it is contained in the tabu list. This is
also the aspiration criterion we apply in our Tabu Search approach.

Algorithm 3.3: A Tabu Search algorithm for the BTPP
Input: An instance I of the BTPP and an initial solution S to this instance
Output: An improved solution to instance I

1 current_solution = S
2 best_solution = S
3 tabu_list = []

4 while exit condition not met do
5 neighborhood ← generate_neighborhood()

6 best_neighbor ← null
7 for neighbor in neighborhood do
8 if cost(neighbor) < cost(current_neighbor) and

(nottabu_list.contains(neighbor) or cost(neighbor) <
cost(best_neighbor)) then

9 best_neighbor ← neighbor

10 end
11 end
12 if best_neighbor ̸= null then
13 current_solution ← best_neighbor

14 if cost(current_solution) < cost(best_solution) then
15 best_solution ← current_solution

16 end
17 tabu_list.add(current_solution)
18 end
19 end
20 return best_solution

Algorithm 3.3 shows our Tabu Search approach in more detail. First, the current and
best solution found so far are set to the initial solution, and the tabu list is initialized.
Then, the following steps are repeated in a loop until a stopping criterion is met (i.e., a
time-limit is reached). In each iteration, we first generate the neighborhood of the current
solution and then search for the best neighbor, that is not tabu. This is done in the loop
starting at line 7. Note that in line 8, we apply the aspiration criterion by overwriting
the tabu status of a neighbor if it is better than the best solution found so far. In line
12, we check whether a valid neighbor was found, i.e., a solution in the neighborhood
that is not tabu or satisfies the aspiration criterion. If this is not the case, the current
solution is not changed in this iteration. Otherwise, we set the current solution to the
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best neighbor, and if it is better than the best solution found so far, we also update the
value of best_solution. Finally, we add the current solution to the tabu list.

3.3.4 Reactive Tabu Search
An extension of the Tabu Search is the Reactive Tabu Search (RTS) [BT94]. As discussed
above, standard Tabu Search relies on the tabu tenure parameter, which defines the
number of iterations a solution remains in the tabu list. The value of the tabu tenure
highly influences the performance of Tabu Search [PMSB14]. Furthermore, the optimal
setting of the tabu tenure often depends on properties of the instance space, like the size
of an instance. Reactive Tabu Search tries to solve these issues by adapting the tabu
tenure during the search process. This is done by keeping track of the solutions found
during the search process. Whenever we return to an already seen solution, we increase
the tabu tenure. If no cycles are detected for a certain period of time, the tabu tenure is
decreased again. This approach does not only have the advantage that it is not required
to set the tabu tenure before the execution of the algorithm but also adapts the tabu
tenure to a value beneficial for the current part of the search space.

Another component of RTS is a more radical strategy to escape from local optima. While
the tabu list allows the escape from short cycles in the search, it often struggles with
larger cycles. Therefore, a sequence of random moves is applied whenever the number of
encountered cycles exceeds a certain threshold. This is often referred to as diversification
strategy and is an important part of high-quality Tabu Search implementations [GL97].

Algorithm 3.4 shows this approach in more detail. As before, the algorithm starts
with initializing the current and best solution. Additionally, the variables chaotic,
iterations_since_last_change, and average_cycle_length are set to the initial
value 0. These three variables are explained in more detail below. Note that the tabu
tenure is initialized with 1 in line 7. In line 8, a data structure is initialized, which
stores the history of solutions encountered during the search process. This data structure
is implemented as a hash table, which uses a solution as key and stores an object as
values, which provides information about the last iteration (last_iteration) and the
number of times (repetitions) a solution was encountered. The mechanism of RTS that
changes the tabu tenure if necessary is done by adapt_tabu_tenure and is explained
below. This function returns a flag indicating whether it is necessary to execute the more
radical escape strategy. If this is not the case, the algorithm proceeds like the standard
tabu search presented above, with an additional else case in line 27, where the tabu
tenure is decreased if no applicable neighbor is found.

Algorithm 3.5 shows the reaction mechanism. First, it increments the variable
iterations_since_last_change, which stores the number of iterations that elapsed
since the tabu tenure has been changed. Then, the hash table solution_history is
searched to find potential cycles. If a cycle is found, its length is calculated by the
difference between the current iteration and the last iteration, in which this solution has
been encountered. The last iteration is then set to the current iteration, and the number
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Algorithm 3.4: A Reactive Tabu Search algorithm for the BTPP
Input: An instance I of the BTPP and an initial solution S to this instance
Output: An improved solution to instance I

1 current_solution = S
2 best_solution = S
3 chaotic ← 0
4 iterations_since_last_change ← 0
5 average_cycle_length ← 0
6 tabu_list = []

7 tabu_list.tenure ← 1
8 solution_history = {}
9 while exit condition not met do

10 is_escape_necessary ← adapt_tabu_tenure()

11 if is_escape_necessary then
12 escape()

13 else
14 neighborhood ← generate_neighborhood()

15 best_neighbor ← null
16 for neighbor in neighborhood do
17 if cost(neighbor) < cost(current_neighbor) and

(nottabu_list.contains(neighbor) or cost(neighbor) <
cost(best_neighbor)) then

18 best_neighbor ← neighbor

19 end
20 end
21 if best_neighbor ̸= null then
22 current_solution ← best_neighbor

23 if cost(current_solution) < cost(best_solution) then
24 best_solution ← current_solution

25 end
26 tabu_list.add(current_solution)
27 else
28 tabu_list.tenure ← tabu_list.tenure · DECREASE_FACTOR
29 iterations_since_last_change ← 0
30 end
31 end
32 end
33 return best_solution
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Algorithm 3.5: The reaction mechanism that adapts the tabu tenure in RTS
1 function adapt_tabu_tenure() begin
2 iterations_since_last_change ← iterations_since_last_change +

1
3 cycle ← solution_history.find(current_solution)
4 if cycle was found then
5 cycle_length ← current_iteration − cycle.last_iteration

6 cycle.last_iteration ← current_iteration

7 cycle.repetitions ← cycle.repetitions +1
8 if cycle.repetitions > REPETITION_THRESHOLD then
9 chaotic ← chaotic + 1

10 if chaotic > CHAOS then
11 chaotic ← 0
12 return true
13 end
14 end
15 tabu_list.tenure ← tabu_list.tenure · INCREASE_FACTOR
16 iterations_since_last_change ← 0
17 average_cycle_length ← 0.9 · average_cycle_length + 0.1 ·

cycle_length
18 else
19 solution_history.add(key: current_solution, value:

(last_iteration: current_iteration, repetitions: 1))
20 end
21 if iterations_since_last_change > average_cycle_length then
22 tabu_list.tenure ← tabu_list.tenure · DECREASE_FACTOR
23 iterations_since_last_change ← 0
24 end
25 return false
26 end
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of repetitions of the current solution is incremented. In line 8, we check whether this
number of repetitions exceeds a threshold, which is given to the algorithm as parameter
REPETITION_THRESHOLD. If this is the case, the counter chaotic is incremented, and
if it is larger than the parameter CHAOS, it is reset to 0, and the algorithm returns
true, indicating that it is necessary to apply the escape strategy. In the case that no
escape is required, we increase the tabu tenure by multiplying it with the parameter
INCREASE_FACTOR. Furthermore, we adopt the average cycle length, which is calculated
as the moving average, where the current value is multiplied by 0.9 and the length of the
cycle observed in this iteration, multiplied by 0.1, is added. If no cycle is detected in an
iteration, this means that the current solution has not been seen before. In this case, the
solution is added to the solution history, where the last iteration is set to the current
iteration and the number of repetitions is initialized with 1 (line 19). If the tabu tenure
is unchanged for a number of iterations larger than the average cycle length, we decrease
it by multiplying it with the parameter DECREASE_FACTOR. Finally, we return false to
indicate that no application of the escape strategy is required.

Algorithm 3.6: The escape strategy used in RTS
1 function escape() begin
2 solution_history ← {}

3 random_moves ← 1 + (1+ rand()) ·average_cycle_length2
4 for i in 1 . . . random_moves do
5 current_solution ← find_random_neighbor()

6 if cost(current_solution) < cost(best_solution) then
7 best_solution ← current_solution

8 end
9 tabu_list.add(current_solution)

10 end
11 end

In Algorithm 3.6, we present the strategy to escape from local optima. First, the solution
history is reinitialized, i.e., all solutions are removed from the hash table. Then, the
number of random moves that shall be applied is calculated with the formula in line 3,
where the function rand() returns a random number in the interval [0, 1). In this way,
the number of random moves will always be between average_cycle_length

2 + 1 and
average_cycle_length + 1. In the loop, we first randomly choose a solution from the
neighborhood as the new value for the current solution. As above, we replace the best
solution with the current solution if it is better and add the new solution to the tabu list.

3.3.5 Restrict neighborhood
In each iteration, standard Tabu Search algorithms explore the entire neighborhood to
find the best neighbor. This means that each of the solutions in the neighborhood has to
be evaluated to decide which neighbor is the best. This can become very time-consuming,
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especially for large-scale instances. In this section, we propose two approaches to solve
this issue.

Only explore fraction of neighborhood
The most basic way is to only search a restricted portion of the neighborhood. Every
time we have to search for the best neighbor in the neighborhood, we consider each
neighbor only with a probability Fexp, which is a parameter used to control the fraction
of the neighborhood that should be explored.

Elite Candidate List
Another way to restrict the number of evaluated solutions is to use a candidate list
approach [GL97]. In this thesis, we use an Elite Candidate List, which is based on the
assumption that a promising move in the current iteration will also yield good neighbors
in the subsequent iterations. In the first iteration, the entire neighborhood is explored,
and the best k neighbors are added to the candidate list. In the succeeding iterations,
only the moves stored in the candidate list are used to generate the neighborhood. The
best move is then removed from the candidate list and applied to the current solution.
Note that it can happen that between the creation of the candidate list and the current
iteration, the solution changed in a way that not each move from the candidate list is
applicable. If this is the case, this specific move is ignored when searching for the best
move. If the candidate list is empty, none of the moves are applicable, or the quality of
the best move in the neighborhood does not reach a certain threshold, the candidate
list is rebuilt as described above. We set this threshold to the quality of the worst move
at the point in time the candidate list is constructed. This approach to set the quality
threshold was also used by [AHA09].

3.4 Experimental Evaluation
In this section, we experimentally evaluate the solution methods presented in the last
sections. First, we propose a random instance generator to create problem instances
we can use for the experimental evaluation and then describe the experimental setting.
In Section 3.4.3, we examine the results of the experiments conducted using the exact
solution approaches. Section 3.4.4 is devoted to the experimental evaluation of the
metaheuristic approaches. Finally, in Section 3.4.5, we make an overall comparison of
the results obtained by exact and metaheuristic approaches.

3.4.1 Problem Instances
In this section, we propose a random instance generator to create instances of the BTPP,
which we can use for the experimental evaluation of our approaches. Algorithm 3.7 shows
our approach to generate one random instance. As input, it takes upper and lower bounds
for the number of tasks (tmin, tmax), number of machines (mmin, mmax), sizes of tasks
(smin, smax), and the number of different priority levels (prmin, prmax). Furthermore, it
receives an upper bound msmax for the maximum machine load. First, we randomly

26



3.4. Experimental Evaluation

determine some properties of the instances using the function rand(x, y), which returns
a random integer between x and y. The minimum machine load (Smin) gets assigned
a random value between the upper bound of the task size and the upper bound of the
machine load. This ensures that the largest task still fits in a machine. Then, the
maximum machine load (Smax) is chosen to be between Smin and the upper bound. Now,
the target machine load (Star) has to lie between Smin and Smax. The number of tasks
(task_n), machines (machine_n) and priority levels (priority_levels) are randomly
chosen from the intervals [tmin, tmax], [mmin, mmax], and [prmin, prmax], respectively. In
the loop starting at line 8, we generate tasks with randomly chosen sizes between smin

and smax and priorities between 1 and priority_levels, and add them to the list of
tasks. In line 15, the task-machine compatibilities are temporarily set to 1 for all tasks
and machines. This way, we can apply the construction heuristic from Algorithm 3.1 to
generate a reference solution. Note that the construction heuristic processes the tasks
in the order they are generated, i.e., we do not sort them by the priorities and sizes as
we do when generating initial solutions for the local search. The result of the greedy
algorithm is the number of periods (period_n), period assignments PA, and machine
assignments MA. However, this solution may not be feasible as it can contain machines
with a load lower than Smin. This means, it is not guaranteed that the generated instance
is satisfiable. Therefore, we apply a procedure to fill these gaps, such that each machine
load is at least as high as the lower bound Smin. Afterward, we set the valid machines of
each task to 0 for the machines it is not assigned to in the reference solution (line 19).
Then, we randomly choose the probability that an arbitrary task is compatible with an
arbitrary machine. Therefore, for each task-machine pair (t, m), we set its compatibility
Vt,m to 1 with this probability.

Algorithm 3.8 shows the method we apply to fill the gaps between the load of a machine
and its lower bound Smin. This is done by checking whether the current machine load
MSperiod,machine is lower than Smin. If this is the case, we randomly choose a machine
load between Smin and Smax and calculate the size of the gap to fill, which is the difference
between the desired and actual machine load. Then, we do the following steps while
there is still a gap, i.e., gap_size > 0. We create a task by randomly choosing its size
and priority in the same way as above. If this task is larger than the gap, we set it to
the size of the gap. Finally, we assign this task to the current machine and period and
subtract the size of the task from the gap size.

3.4.2 Experimental setting

Using the random instance generator, we created a total of 345 problem instances, which
are evenly divided into small, medium, and large instances. Small instances contain
between 20 and 200 tasks, medium instances between 201 and 600, and large instances
between 601 and 1000 tasks. Furthermore, the weights w1 − w3 of the three objective
components are all set to 1. The remaining value ranges can be seen in Table 3.1. From
each instance set (small, medium, large), we chose 100 instances for the experimental
evaluation and 15 for tuning the local search parameters.
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Algorithm 3.7: Random instance generator
Input: Intervals of task number [tmin, tmax], machine number [mmin, mmax],

task sizes [smin, smax], priority levels [prmin, prmax] and maximum
machine load msmax

Output: A randomly generated instance
1 Smin ← rand(smax, msmax)
2 Smax ← rand(Smin, msmax)
3 Star ← rand(Smin, max_machine_size)
4 task_n ← rand(tmin, tmax)
5 machine_n ← rand(mmin, mmax)
6 priority_levels ← rand(prmin, prmax)
7 tasks ← []
8 for i in 1 . . . task_n do
9 s ← rand(smin, smax)

10 pr ← rand(1, priority_levels)
11 task ← create new task of size s and priority pr
12 tasks.add(task)
13 end
14 machines ← {1, . . . , machine_n}
15 Vt,m ← 1, for each task t and machine m
16 period_n, PA, MA ← construct_solution(tasks, machines, V , Smax)
17 fill_gaps()

18 Vt,m ← 0, for each task t and machine m where MAt ̸= m
19 valid_machine_probability ← rand()
20 for t in tasks do
21 for m in machines do
22 if valid_machine_probability > rand() then
23 Vt,m ← 1
24 end
25 end
26 end
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Algorithm 3.8: Algorithm to fill gaps to minimum size
1 function fill_gaps() begin
2 for period in 1 . . . period_n do
3 for machine in machines do
4 if MSperiod,machine < Smin then
5 machine_load ← rand(Smin, Smax)
6 gap_size ← machine_load - MSmachine
7 while gap_size > 0 do
8 s ← rand(smin, smax)
9 if s > gap_size then

10 s ← gap_size

11 end
12 gap_size ← gap_size - s
13 pr ← rand(1, priority_levels)
14 task ← create new task of size s and priority pr
15 tasks.add(task)
16 PAtask ← period

17 MAtask ← machine

18 end
19 end
20 end
21 end
22 end

Machines Task size Priority levels Machine size (upper bound)
[1, 10] [1, 100] [1, 20] 500

Table 3.1: The valid value ranges for the generation of random problem instances

All experiments, including parameter tuning runs, were executed on a computation cluster
with 13 nodes, each with 20.48 GB RAM and an Intel(R) Xeon(R) CPU E5-2650 v4 @
2.20GHz processor with 24 cores. For the exact methods, we used eight cores, as some
of the used solvers can benefit from running the solution process in parallel. For the
evaluation of the metaheuristic approaches, we conducted each experiment five times
using a single CPU core. Each algorithm run, both for the exact and metaheuristic
methods, was executed using a wall-clock time limit of 10 minutes.

3.4.3 Evaluation of the exact methods

We implemented the Constraint Programming model proposed in Section 3.1 using the
solver-independent modeling language MiniZinc [NSB+07] and conducted experiments
using the solvers Gurobi 11.0.3 [Gur24], Google OR-Tools CP-SAT 9.10 [PD24], Coin-Or
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Gurobi OR-Tools Coin Chuffed
Small 86% 99% 27% 62%

Medium 7% 47% 0% 4%
Large 0% 15% 0% 0%

Table 3.2: Percentages of instances for which a feasible solution was found using the
exact methods

Gurobi OR-Tools Coin Chuffed
Small 24% 19% 9% 3%

Medium 1% 1% 0% 0%
Large 0% 0% 0% 0%

Table 3.3: Percentages of instances for which an optimal solution was found using exact
methods

2.10.11 [Lou03] and Chuffed 0.13.2. [CSS+]. With the exception of Chuffed, these
solvers support parallel execution, and we therefore assign them eight CPU cores for
the experiments. We applied each solver to all 300 instances from the validation set.
The detailed results can be seen in Appendix A. Table 3.2 shows for each solver the
percentages of instances for which a feasible solution was found. For the small instances,
feasible solutions to all but one instance could be found using OR-Tools. Gurobi managed
to find feasible solutions to 86 of the small problem instances, followed by Chuffed with
62 and Coin with 27 solved instances. For the medium-sized problem instances, only
OR-Tools could find feasible solutions for nearly half of the instances, while Gurobi and
Chuffed managed to find solutions only for a small portion of the medium-sized instances,
and Coin could not find a single feasible solution. Only with OR-Tools could feasible
solutions be found for large-scale instances, which, however, could be achieved for only
15 of the large instances. Gurobi and OR-Tools found the largest number of optimal
solutions among all the solvers. However, even these solvers did not find optimal solutions
for any of the large-scale instances and only for a single medium-sized instance. The
exact percentages of optimal solutions found for each instance set can be seen in Table
3.3.

There are 25 small instances for which all four solvers found a feasible solution. Figure
3.4 shows the relative objective values (i.e., the objective value found using the specific
method divided by the best objective found using any solver for the respective instance)
for the four solvers on these 25 small instances. It can be seen that Gurobi and OR-Tools
clearly produced improved results compared to Chuffed and Coin for the large majority
of the instances. To compare Gurobi and OR-Tools in more detail, we considered the
86 small instances for which both solvers found a feasible solution. The results of this
experiment are shown in the boxplot in Figure 3.5. It can be seen that Gurobi and
OR-Tool perform similarly well on these instances, with a slightly better performance of
OR-Tools.
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Figure 3.4: A boxplot showing the relative objective value for the 25 small instances for
which all solvers could find a feasible solution
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Figure 3.5: A boxplot showing the relative objective value for the 86 small instances for
which Gurobi and OR-Tools could find a feasible solution with (left) and without (right)
extreme outliers

3.4.4 Evaluation of the metaheuristic methods

In this section, we evaluate the performance of the proposed metaheuristic methods. More
precisely, we compare a basic hill-climbing algorithm (HC), standard Tabu Search (TS),
Reactive Tabu Search (RTS), and Reactive Tabu Search with restricted neighborhood
exploration (RTS-RN).
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Parameter Methods Type Range
Tabu list type (TL) TS, RTS, RTS-RN Categorical (TL1, TL2)
Tabu tenure (T ) TS Integer 1-1000
Chaos (C) RTS, RTS-RN Integer 1-10
Repetition threshold (RT ) RTS, RTS-RN Integer 1-10
Increase factor (α+) RTS, RTS-RN Real 1-10
Decrease factor (α−) RTS, RTS-RN Real 0-1
Candidate list size (SCL) RTS-RN Integer 1-1000
Explore neighborhood fraction (Fexp) RTS-RN Real 0-1

Table 3.4: The value ranges for the single parameters

TL T C RT α+ α− SCL Fexp

Small, TS TL2 31 - - - - - -
Medium, TS TL2 4266 - - - - - -
Large, TS TL1 86 - - - - - -
Small, RTS TL1 - 7 3 7.2319 0.5651 - -
Medium, RTS TL1 8 2 6.2994 0.8849 - -
Large, RTS TL1 - 2 6 7.3013 0.9544 - -
Small, RTS-RN TL2 - 7 1 3.4759 0.509 51 0.9084
Medium, RTS-RN TL2 - 1 2 4.3866 0.1685 131 0.7849
Large, RTS-RN TL2 - 1 1 7.3512 0.1013 924 0.634

Table 3.5: The tuned parameter settings for the single methods and instance sets found
by irace

As discussed above, the behavior of these methods depends on the settings of various
algorithm parameters. To find high-quality parameter settings, we use the parameter
tuning tool irace 3.5 [LDPC+16]. For each metaheuristic method (except for the hill
climber, which does not rely on parameter settings), we used irace to tune the parameters
for each instance set. Table 3.4 shows a summary of the single parameters, together
with their data types and the value ranges given to irace. Using the instances from the
training set, we executed a single tuning run for each combination of method and data
set. The number of algorithm runs for each tuning run was set to 10,000, and the time
limit for each algorithm run was set to 10 minutes. The resulting parameter settings
retrieved from irace are depicted in Table 3.5.

To compare the performance of the single metaheuristic methods, we conducted experi-
ments using all 300 instances from the test set using the tuned parameter settings. As
some of the methods contain randomized components, we repeated each algorithm run
five times using different random seeds. If, for a method, at least one of these runs does
not return a feasible solution, we report that the respective instance could not be solved
using this method. The detailed results of these experiments can be seen in Appendix B.

Table 3.6 shows the number of instances for which a feasible solution was found in each
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HC TS RTS RTS-RN
Small 97% 99% 100% 100%

Medium 96% 98% 98% 98%
Large 94% 97% 97% 98%

Table 3.6: Percentages of instances for which a feasible solution was found using the
exact methods
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Figure 3.6: Boxplots showing the relative mean cost for the metaheuristic methods on
the 97 small instances for which all methods found feasible solutions in each run with
(left) and without (right) extreme outliers

of the five algorithm runs. It can be seen that using the metaheuristic methods, most of
the instances could be solved. There were only two medium and two large instances for
which none of the methods could find a feasible solution.

To compare the metaheuristic approaches, we calculated the relative mean costs for each
instance by dividing the mean objective value for each method by the best mean objective
value achieved for this instance using any of the metaheuristic approaches. This means
that the method with the lowest mean objective value has a relative mean cost of 1.0.
The relative costs for all problem instances can be seen in Table B.2 in the appendix.
We make the comparison based on the results of the 97 small, 96 medium, and 94 large
instances, for which all four metaheuristic methods managed to find a feasible solution in
each of the five algorithm runs.

The boxplots in Figure 3.6 show the relative mean costs for the small instances. It
can be seen that the three methods based on Tabu Search managed to produce better
results than the basic hill climber. Furthermore, more high-quality results could be found
using the reactive variants of Tabu Search. Restricting the search neighborhood could
further improve the results. However, there are some outliers. For instance small_86,
for example, the best mean solution is found by RTS, while the mean cost of solutions
found using RTS-RN was almost 40 times higher. Another outlier worth mentioning is
instance small_34, for which the best mean result can be observed using TS, while RTS
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Figure 3.7: Boxplots showing the relative mean cost for the metaheuristic methods on
the 96 medium instances for which all methods found feasible solutions in each run with
(left) and without (right) extreme outliers

and RTS-RN both have a relative mean cost of around 13.

Figure 3.7 shows the boxplots visualizing the results for the medium-sized instances. Again,
RTS-RN produces the best results, followed by RTS and TS, which work considerably
better than the hill climber. Furthermore, the observed outliers are not as severe as for
the small instances.

The results for the large instances can be seen in the boxplots in Figure 3.8. As expected,
the restriction of the search neighborhood has the most effect on the large instances.
Furthermore, it can be observed that the quality of the solutions found by RTS and TS
are comparably good. A more fine-grained comparison between the three Tabu Search
variants is shown in Figure 3.9 It can be seen that the TS even performs slightly better
than the RTS.

3.4.5 Overall comparison
In this section, we compare the experimental results for exact methods and the meta-
heuristic approaches. For the metaheuristic methods, we consider the best results found
over all of the five runs. For the large majority of instances, a feasible solution could
be found. Regarding the instances medium_26, medium_86, and large_10, none of the
proposed methods was able to obtain a solution. Furthermore, a feasible solution to
instance large_69 could only be found using RTS-RN in one of the five algorithm runs.

Table 3.7 shows for each solution method the percentages of instances for which the best
known solution could be found. It can be seen that RTS-RN provides the largest number of
best upper bounds. For the small instances, OR-Tools and Gurobi performed comparably
well regarding the number of best known solutions found. A boxplot visualizing the
relative best cost (i.e., the cost divided by the cost of the best known solution) for the
small instances using the best metaheuristic approach RTS-RN and the OR-Tools solver
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Figure 3.8: Boxplots showing the relative mean cost for the metaheuristic methods on
the 94 large instances for which all methods found feasible solutions in each run with
(left) and without (right) extreme outliers
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Figure 3.9: Boxplots showing the relative mean cost for the Tabu Search based methods
on the 97 large instances for which all three methods found feasible solutions in each run
with (left) and without (right) extreme outliers

(which is the solver that produced the most feasible solution) can be seen in Figure
3.10. It shows that these two methods produced comparably good solutions on a large
number of the small instances. However, there is a respectable number of instances for
which OR-Tools found considerably better solutions than RTS-RN. A similar behavior
could be observed for the 47 medium-sized instances, for which both methods provided
feasible solutions (see Figure 3.11). An optimal solution to 24 of the small instances
could be found. Solutions with the same optimal cost could be found for 18 instances
using RTS-RN, 17 using RTS, 16 using TS, and 4 using HC. Regarding the medium-sized
instances, one optimal solution could be obtained using the exact methods. For the large
instances, none of the approaches could provide optimal solutions.
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Gurobi OR-Tools Chuffed Coin HC TS RTS RTS-RN
Small 44% 47% 9% 3% 4% 24% 28% 49%

Medium 2% 26% 0% 0% 1% 6% 15% 57%
Large 0% 0% 0% 0% 0% 4% 3% 94%

Table 3.7: Percentages of instances for which the best known solution was found by the
single solution approaches
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Figure 3.10: Boxplots showing the relative best cost for the OR-Tools and RTS-RN on
the 99 small instances for which a feasible solution could be found by both methods with
(left) and without (right) extreme outliers
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Figure 3.11: Boxplots showing the relative best cost for the OR-Tools and RTS-RN on
the 47 medium instances for which a feasible solution could be found by both methods
with (left) and without (right) extreme outliers
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CHAPTER 4
The Employee Task Distribution

Problem

In this chapter, we introduce the Employee Task Distribution Problem. First, we give
an informal problem description followed by a mathematical definition. Furthermore, a
state-of-the-art metaheuristic solution approach using local search is presented.

4.1 Problem Description
The Employee Task Distribution Problem (ETDP) [HLM+24b] is a multi-objective
optimization problem where the goal is to assign employees to operations while fulfilling
several constraints. The input to the ETDP consists of sets of employees, operations, time
buckets, and qualifications. A solution is represented as an assignment of a capacity to
each triple of time bucket, operation, and employee. In a feasible solution, employees must
be qualified for the operations they are assigned to. A supplied capacity is given for each
employee in each time bucket, which must not be exceeded by the total capacity assigned
to this employee in the respective bucket. Similarly, in each time bucket, an operation
demands a certain amount of capacity, which must not be exceeded. Furthermore, an
operation can have a minimum capacity, which has to be assigned for the operation to
be active in a time bucket. In other words, the sum of assigned capacities in the bucket
is either at least at the given minimum or no capacities are assigned to the operation
in this bucket. In addition, a maximum number of parallel operations in a bucket can
be given for an operation. Then, for each employee assigned to this operation, the total
number of operations it is assigned to must not exceed this maximum in any time bucket.

The ETDP is a multi-objective optimization problem. Therefore, a variety of different
objectives are optimized at the same time. The basic goal is to maximize the total sum
of capacities, i.e., the satisfied capacity demands. Priorities can be assigned to employees
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such that certain employees can be lexicographically preferred over others. In practice,
this is relevant for considering the distinction between permanent and temporary staff,
where unfulfilled supplies on the former should have a greater impact. Similarly, priorities
can be assigned to operations, which can be used to model the higher importance of
bottleneck operations. Furthermore, for each operation-employee pair, a qualification
score is given, defining the level of qualification an employee has for the operation. In
addition, if an employee is assigned to an operation in a time bucket, there can be
cases where it is preferable that the employee is assigned to the same operation in the
subsequent time bucket. The last objective is to minimize the total number of (non-zero)
capacity assignments. The purpose of this objective is to ensure that solutions in which
employees are assigned to fewer operations are preferred, which in practice should satisfy
employees and lead to a better outcome of their work.

4.2 Formal Problem Definition
In this section, we give a formal definition of the ETDP, which was first proposed in
[HLM+24b].

4.2.1 Problem Input

The following parameters define the input to the problem:

Finite set of employees: E = {1, 2, . . . , m}

Finite set of operations: O = {1, 2, . . . , n}

Finite set of time buckets: B = {1, 2, . . . , u}

Supplied capacity of employee e in bucket b : sc(b, e) ∈ N

Priority of employee e in bucket b: ep(b, e) ∈ N+

Demanded capacity of operation o in bucket b: sc(b, o) ∈ N

Priority of operation o in bucket b: op(b, o) ∈ N+

Minimum capacity assigned to operation o in bucket b: mc(b, o) ∈ N
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4.2. Formal Problem Definition

Maximum total number of operation each employee assigned to operation o
can be assigned to in bucket b: mp(b, o) ∈ N

Qualification matrix: Q, Q(o, e) ∈ N, Q(o, e) > 0 iff employee e is qualified for opera-
tion o

4.2.2 Variables
The following variables represent the output of the problem:

Amount of capacity assigned to employee e at operation o in bucket b:
A(b, o, e) ∈ N

4.2.3 Constraints
• If a positive capacity is assigned to employee e at operation o in any time bucket b,

employee e must be qualified for operation o:

A(b, o, e) > 0 =⇒ Q(o, e) > 0, ∀b ∈ B, o ∈ O, e ∈ E

• The sum of capacities assigned to an employee in a time bucket must not exceed
the supplied capacity of the employee in the bucket:∑︂

o∈O
A(b, o, e) ≤ sc(b, e), ∀b ∈ B, ∀e ∈ E

• The sum of capacities assigned to an operation in a time bucket must not exceed
the demanded capacity of the operation in the bucket:∑︂

e∈E
A(b, o, e) ≤ dc(b, o), ∀b ∈ B, ∀o ∈ O

• If a positive capacity is assigned to operation o in time bucket b, the sum of capacity
assigned to operation o in bucket b must not be lower than the given minimum
sc(b, o): ∑︂

e∈E
A(b, o, e) = 0 ∨

∑︂
e∈E

A(b, o, e) ≥ mc(b, o), ∀b ∈ B, ∀o ∈ O

• For each operation o with a positive maximum number of parallel operations in
bucket b (i.e., mp(b, o) > 0), the total number of employees assigned to operation o
in bucket b must not exceed the maximum mp(b, o):

|{i ∈ O | A(b, i, e) > 0}| ≤ mp(b, o),∀b ∈ B, ∀o ∈ O, ∀e ∈ E ,

with mp(b, o) = 0 ∧ A(b, o, e) > 0
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4.2.4 Objective
The objective function is composed of the six components f1 − f6.

Regarding the objective concerning the lexicographic optimization of employee priority
levels (f2), an assignment A1 is considered better (i.e., has a larger value for f2), if for any
priority level p, the sum of capacities assigned to employees are equal at priority levels
smaller than p (more important employees) and greater for A1 for the employees at each
priority level larger than p (less important employees). The lexicographic optimization of
employee priorities (f3) uses the same concept. This is achieved using big-M constants
bigMe(b, p) and bigMo(b, p) for each bucket b and priority level p, which are multiplied
to the sum of assigned capacities at the respective priority level. We refer to [HLM+24a]
for a detailed definition of these big-M constants.

• Maximize sum of assigned capacities:: The basic goal is to maximize the total
sum of assigned capacities

f1 =
∑︂
b∈B

∑︂
o∈O

∑︂
e∈E

A(b, o, e)

• Employee priorities: Lexicographic optimization of employee priorities; pE

denotes the maximum employee priority:

f2 =
∑︂
b∈B

pE∑︂
p=1

bigMe(b, p)
(︄∑︂

o∈O

∑︂
e∈E

A(b, o, e) · [ep(b, e) = p]
)︄

• Operation priorities: Lexicographic optimization of operation priorities; pO

denotes the maximum operation priority:

f3 =
∑︂
b∈B

pO∑︂
p=1

bigMo(b, p)
(︄∑︂

e∈E

∑︂
o∈O

A(b, o, e) · [op(b, o) = p]
)︄

• Maximize qualification scores: Maximize the sum of assigned capacities
weighted by qualification scores of the involved employee and operation:

f4 =
∑︂
b∈B

∑︂
o∈O

∑︂
e∈E

(A(b, o, e) · Q(o, e))

• Minimize time bucket changes: Minimize the number of times an employee has
positive assigned capacities in a time bucket b but not the consecutive bucket b + 1.

f5 =
∑︂

b∈{1,...,u−1}

∑︂
o∈O

∑︂
e∈E

|[(A(b, o, e) > 0] − [A(b + 1, o, e) > 0]|

• Minimize assignment count: Minimize the number of bucket-operation-employee
triples with positive assigned capacity:

f6 = |{b ∈ B, o ∈ O, e ∈ E | A(b, o, e) > 0}|
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To combine f1 − f6 to one objective function, which is then supposed to be minimized,
the maximization goals must be converted to minimization goals. To achieve this, upper
bounds are calculated, from which the maximization objectives are subtracted, yielding
a non-negative objective value.

• Upper bound for sum of assigned capacities: For each time bucket, the sum
of assigned capacities cannot be larger than the total sum of demanded capacities
nor the sum of supplied capacities:

max1 =
∑︂
b∈B

min

(︄∑︂
o∈O

dc(b, o),
∑︂
e∈E

sc(b, e)
)︄

• Upper bound for employee priorities objective: Both the sum of supplied
capacities and the sum of demanded capacities for an employee and operation are
upper bounds for the sum of assigned capacities, from which the smaller bound is
chosen:

max2 =
∑︂
b∈B

pE∑︂
p=1

bigMe(b, p) · min
(︄∑︂

o∈O
dc(b, o),

∑︂
e∈E

sc(b, e) · [ep(b, e) = p]
)︄

• Upper bound for operation priorities objective: Again, the supplies and
demands are used to calculate the upper bound:

max3 =
∑︂
b∈B

pO∑︂
p=1

bigMo(b, p) · min
(︄∑︂

e∈E
sc(b, e),

∑︂
o∈O

dc(b, o) · [op(b, o) = p]
)︄

• Upper bound for qualification score objective: The upper bound for the
qualification score objective is calculated similarly as for the basic objective, with
the difference that additionally, the maximum qualification score over all employees
and operations is multiplied to the sum of demands and supplies, respectively:

max4 =
∑︂
b∈B

min

(︄∑︂
o∈O

(dc(b, o) · max
e∈E

Q(o, e)),
∑︂
e∈E

(sc(b, e) · max
o∈O

Q(o, e))
)︄

The aggregated objective value is then calculated in the following way:

f = w1 ·(max1 −f1)+w2 ·(max2 −f2)+w3 ·(max3 −f3)+w4 ·(max4 −f4)+w5 ·f5 +w6 ·f6

, where w1 − w6 are the weights with which the influence of the single components can
be controlled.
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4.3 Local Search
In the same work that first introduced the ETDP [HLM+24b], exact methods using
a constraint programming approach were proposed. In another (at the time of the
finalization of this thesis) unpublished work, the same authors also developed a local
search algorithm to solve the problem. This algorithm is based on Simulated Annealing
[KGV83] and is used by our industrial partner to solve practical problem instances. In
this section, we present the solution representation and neighborhood structure they used
in their local search approach.

4.3.1 Solution Representation
For local search, a solution is represented as a three-dimensional array A, with the time
buckets as first, operations as second, and employees as third dimension. This means
that if a capacity of c is assigned to the employee e at operation o in time bucket b,
then A[b][o][e] = c. The moves of the neighborhood structure ensure that no employee
is assigned to an operation for which they are not qualified. Similarly, a move does not
cause the supplied or demanded capacities to be violated for an employee or operation.
This, however, does not hold for the constraints enforcing the minimum capacity mc(b, a)
and maximum total number of operations mp(b, o), which can be violated throughout the
search process. Therefore, a penalty is added to the objective function for each violation
of these constraints:

• The penalty term for the minimum capacity constraints is the number of bucket-
operation pairs for which the constraint is violated.

penaltymc =
∑︂
b∈B

∑︂
o∈O

[︄
0 <

∑︂
e∈E

A(b, o, e) < m(b, o)
]︄

• For the penalty regarding the maximum total number of operations, first, the
number ao(b, e) of operations that employee e is assigned to in time bucket b is
calculated. For each bucket-operation-employee triple that violates the constraint,
the penalty is the difference between the actual number of operations ao(b, e) and
the allowed maximum mp(b, o).

ao(b, e) = |{o ∈ O | A(b, o, e) > 0}|, ∀b ∈ B, ∀e ∈ E

penaltymp =
∑︂
b∈B

∑︂
o∈O

∑︂
e∈E

{︄
max(ao(b, e) − mp(b, o), 0), if mp(b, o) > 0 ∧ A(b, o, e) > 0
0, otherwise

To ensure that each feasible solution has an objective value less than each solution with
constraint violations, a big-M constant is multiplied to the penalty term. To calculate this
constant, the total upper bound of the objective value of a feasible solution is required.
In Chapter 4.2.4, upper bounds max1 − max4 for the first four objectives were presented.
The remaining upper bounds are calculated as follows:
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4.3. Local Search

E1 E2 E3 E4
O1 4 0 0 0
O2 4 8 0 4
O3 0 0 0 4

(a) Before the Change Single Assign-
ment move is applied

E1 E2 E3 E4
O1 4 0 0 0
O2 4 5 0 4
O3 0 0 0 4

(b) After the Change Single Assignment
move is applied

Figure 4.1: An example of a Change Single Assignment move in a time bucket B1

• Upper bound for time bucket changes objective: For each operation-employee
pair (o, e), the fact that e is assigned to o can at most change |B| − 1 times between
time buckets:

max5 = (|B| − 1) · |O| · |E|

• Upper bound for assignment count objective: An upper bound is given by
the total number of assignments:

max6 = |B| · |O| · |E|

The big-M value is, therefore, the sum of the upper bounds of all objective components,
to which 1 is added to get a value larger than the theoretical maximal objective:

bigM = max1 + max2 + max3 + max4 + max5 + max6 + 1

The objective function used for the local search fL is then calculated by adding the
penalties multiplied by the big-M constant to the objective function f from Chapter
4.2.4:

fL = f + bigM · (penaltymc + penaltymp)

4.3.2 Neighborhood Structure
The neighborhood of a solution is generated using three types of moves.

Change single assignment A Change Single Assignment move adds or subtracts
capacity from a bucket-operation-employee triple. This type of move is specified by a tuple
(b, o, e, c) and has the effect that when applied to an assignment A, the resulting neighbor
A′ has A′(b, o, e) = A(b, o, e) + c. For all other values, A′ has the same assignments as
A. Figure 4.1 shows an example of the application of a move (B1, O2, E2, −3), where in
the time bucket B1, the capacity which is assigned to employee E2 in operation O2 is
deduced by 3.

Shift with fixed employee: A move of this type is defined by a tuple (b, e, o1, o2, c)
and has the effect that in bucket b for employee e a capacity of c is shifted from operation
o1 to o2. In Figure 4.2, an example can be seen where the move (B1, E2, O2, O3, 5) is
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E1 E2 E3 E4
O1 4 0 0 0
O2 4 8 0 4
O3 0 0 0 4

(a) Before the shift move is applied

E1 E2 E3 E4
O1 4 0 0 0
O2 4 2 0 4
O3 0 6 0 4

(b) After the shift move is applied

Figure 4.2: An example of a Shift move with fixed employee in a time bucket B1

E1 E2 E3 E4
O1 4 0 0 0
O2 4 8 0 4
O3 0 0 0 4

(a) Before the shift move is applied

E1 E2 E3 E4
O1 4 0 0 0
O2 4 0 8 4
O3 0 6 0 4

(b) After the shift move is applied

Figure 4.3: An example of a Shift move with fixed operation in a time bucket B1

applied, which takes 6 of the 8 time units assigned to employee E2 and shifts them from
operation O2 to operation O3.

Shift with fixed operation: In a similar fashion, for an operation o in bucket b, c time
units can be shifted from one employee e1 to another employee e2, which is represented as
a tuple (b, o, e1, e2, c). Figure 4.3 shows an example, where the move (B1, O2, E2, E3, 8)
is applied so that for operation O2, all 8 time units assigned to employee E2 are shifted
to employee E3.
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CHAPTER 5
An Interactive Optimization

Method for the Employee Task
Distribution Problem

In this chapter, we introduce an interactive variant of the Employee Task Distribution
Problem. First, we motivate and describe the approach used to involve the decision-
makers in the optimization process. Then, we adapt the problem definition to be able to
model interactive optimization scenarios. Finally, we demonstrate the effectiveness of
our approach in practical use cases.

5.1 Interactive Optimization

Approaches that solve the ETDP as presented in Chapter 4 find very good solutions
to real-life problem instances [HLM+24b]. In practice, however, there are cases where
users of automated optimization procedures prefer to have control and want to know why
specific decisions are made. This is particularly relevant if existing assignments have to be
changed due to short-term events like absences caused by illnesses or short-term changes
in demands. This motivates the use of methods that involve the user in the optimization
process. A comprehensive review of interactive optimization methods can be found
in [MKF+15]. Two properties are particularly important for interactive optimization:
responsiveness and stability [HGQ+12]. Responsiveness refers to the time it takes to
present a new solution to the user. Due to frequent executions of the solving procedure,
this is especially important for interactive decision support systems. The notion of
stability requires solutions to be similar to previous solutions so that decision-makers
can retrace proposed changes.
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With that in mind, we designed an interactive decision support system for the ETDP
using the following approach:

1. For an available solution to a problem instance, which is either created by the user
manually or with the help of an automated solution approach, the system should
propose changes that improve the solution.

2. These changes should be as minimal as possible, such that the decision-maker is
able to understand the effect of the suggested changes

3. Then, the user decides whether the suggested change should be applied.

4. If yes, the change is applied to the current solution, and the next improvement is
proposed.

5. Otherwise, the change is discarded and will not be suggested again, and another
change is proposed to the user.

5.2 Problem Statement
In this section, we formally define the interactive variant of the ETDP. To achieve that,
we adapt the problem definition from Chapter 4, so that it includes the requirements for
the user interaction.

5.2.1 Problem Input
The problem input has to be extended in two ways.

First, the initial solution for which improvements are to be found is given as part of the
input. The initial solution is represented by an assignment function A0(b, o, e) ∈ N.

Second, a method is needed to model the situation in which a user declines a suggested
change. In this case, it is required that the same (or similar changes) are not presented
to the user again. For example, suppose the system suggests that for an employee, 4
time units should be moved from operation O1 to operation O2, and the user declines
this change. In that case, it is expected that the following suggestions do not include
the move of 3 time units from O1 to O2 for the same employee. Therefore, the input is
extended by a function F (b, o, e) ∈ {0, 1} indicating whether the assignment to the triple
(b, o, e) can be changed during the solution process. If a user declines a change including
the assignment (b, o, e), the respective value F (b, o, e) is set to 1 causing this particular
assignment to be fixed, i.e. A(b, o, e) = A0(b, o, e).

5.2.2 Soft Constraints
In the high-level procedure presented in the previous section, it can happen that the
initial solution given by the user has constraint violations, i.e., it is not feasible according
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5.2. Problem Statement

to the problem definition from Chapter 4.2. This can happen because the user is unaware
that constraints are violated or fixing them by hand would be too challenging due to the
complexity of the problem. In this case, it is the task of the interactive optimization tool
to suggest changes to satisfy the violated constraints. This means our solution method
has to be capable of handling constraint violations.

Such violations can occur for all of the constraints from Section 4.2.3, except for the
constraints ensuring that the capacities supplied by employees are not exceeded. This
has two reasons: First, the application in which the optimization method is used by our
industrial partner does not allow the assignment of more capacity to an employee than
supplied. Second, it enables an upper bound to the total sum of assigned capacities,
which is relevant for calculating theoretical maxima for the objectives.

This means we have to reformalize the problem so that the constraints are modeled as
soft constraints, in the same way it was done for two constraints for the local search
approach in Chapter 4.3.1. Therefore, we add a penalty term to the objective function
also for these constraints.

• If an employee is assigned to an operation he/she is not qualified for, the penalty is
equal to the number of time units assigned to this operation-employee pair.

penaltyq =
∑︂
b∈B

∑︂
o∈O

∑︂
e∈E

{︄
A(b,o,e), if A(b, o, e) > 0 ∧ Q(o, e) = 0
0, otherwise

• If, in a time bucket, more capacity is assigned to an operation than demanded, the
difference between assigned and demanded capacity is added as a penalty:

penaltydc =
∑︂
b∈B

∑︂
o∈O

max
(︄∑︂

e∈E
A(b, o, e) − dc(b, o), 0

)︄

5.2.3 Objectives

• Maximize sum of assigned capacities: After the changes from the last section,
the demands of operations can now be overfulfilled. Therefore, the basic goal is
adapted so that only the assigned capacities up to the demands are counted when
calculating the sum of assigned capacities:

fI
1 =

∑︂
b∈B

∑︂
o∈O

min
(︄∑︂

e∈E
A(b, o, e), dc(b, o)

)︄

• Operation priorities: Similar, for the operation priority objective, the counted
capacity must not exceed the demand given for each bucket-operation pair:

fI
3 =

∑︂
b∈B

pO∑︂
p=1

bigMo(b, p)
(︄∑︂

o∈O
[op(b, o) = p] · min

(︄∑︂
e∈E

A(b, o, e), dc(b, o)
)︄)︄
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• Maximize qualification scores: In the same way, the qualification score objective
is adapted:

fI
4 =

∑︂
b∈B

∑︂
o∈O

min
(︄∑︂

e∈E
A(b, o, e), dc(b, o)

)︄
· Q(o, e)

• The remaining objectives are unchanged:

fI
2 = f2

fI
5 = f5

fI
6 = f6

The intermediate objective value, which only considers the single objectives without soft
constraints, is then calculated in the same way it was done for the objective function f
in Chapter 4.2.4:

fI = w1·(max1−fI
1 )+w2·(max2−fI

2 )+w3·(max3−fI
3 )+w4·(max4−fI

4 )+w5·fI
5 +w6·fI

6

Adding the penalty terms from the last section together with the big-M constant from
Chapter 4.3.1 yields the following function fI

c to calculate the quality of a solution:

fI
c = fI + bigM · (penaltyq + penaltysc + penaltydc + penaltymc + penaltymp)

As mentioned above, we have to ensure that the solutions are similar to the initial solution
so that the user can retrace the suggested improvements. To achieve that, we add another
objective component, which calculates the distance between the solution and the given
initial solution:

• Minimize distance between solutions (stability objective): The distance
between two solutions is the number of assignments that differ between the solutions.

fd =
∑︂
b∈B

∑︂
o∈O

∑︂
e∈E

[|A(b, o, e) − A0(b, o, e)| > 0]

The final objective function of a solution to the interactive problem variant is the quality
fI

c of the solution, together with the distance to the initial solution fd weighted by wd.

fI
∗ = fI

c + wd · fd
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5.2.4 Hard Constraints
Depending on the choices of the weights, it can happen that the solution quality of the
solution A is worse or equal to the quality of the initial assignments A0. In other words,
the solution suggested to the user would not be an improvement. Furthermore, we have
to ensure that fixed assignments are not overwritten. Therefore, we add the following
two hard constraints:

• The quality fc(A) of the solution has to be better (i.e., lower) than the quality of
the initial solution:

fc(A) < fc(A0)

• If an assignment is fixed, it should be the same as given in the initial solution:

A(b, o, e) = A0(b, o, e), ∀b ∈ B, ∀o ∈ O, ∀e ∈ E , with F (b, o, e) = 1

5.2.5 Quality vs. stability
One problem that arises in practice is the choice of objective weights. For the interactive
problem variant, the choice of the weight wd is of particular importance. On the one hand,
the proposed improved solution should be as similar to the initial solution as possible.
On the other hand, the quality fI

c of the solution, i.e., the objective value without the
distance objective, is of high significance. We propose two ways to choose these weights.

Users manually choose weight wd
The most basic approach is to let the decision-maker determine the importance of stable
solutions. Although this provides the most flexibility, it is difficult to find a tradeoff
between solution quality and stability.

Prefer stability over quality
To overcome the drawback of having to choose the weight of the stability objective
manually, we propose another way. The idea is to always prefer stability over quality. In
other words, we choose the weight wd, so that for solutions A1 and A2, where A1 is more
stable than A2, also the total objective is better for the first solution, i.e., fd(A1) < fd(A2)
implies f(A1) < f(A2). To achieve that, we use a big-M constant as weight wd, as we
did for the penalty terms. For that, we need an upper bound for the solution quality fI

c .
Upper bounds for the objectives f1 − f6 were already presented in Chapter 4.2 and they
still apply for the adapted objectives fI

1 − fI
6 . The same has to be done for the penalty

terms:

• Upper bound for penaltyq: In the worst case, the entire capacity is assigned to
pairs of operations and employees without qualification. This means the penalty
is equal to the maximum total capacity that can be assigned. And, for each time
bucket, this sum cannot exceed the total capacity supplied by each employee.

maxq =
∑︂
b∈B

∑︂
e∈E

sc(b, e)
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• Upper bound for penaltymc: In the worst case, each operation with a positive
minimum capacity does not reach this minimum.

maxmc =
∑︂
b∈B

∑︂
o∈O

{︄
1, mc(b, o) > 0
0, otherwise

• Upper bound for penaltymp: In each time bucket, the maximum total number
of operations an employee e can be assigned to in parallel is |O| (i.e., the employee
is assigned to all operations). Therefore, for each bucket-operation-employee triple
(b, o, e), the maximum number of parallel operations mp(b, o) can be exceeded by
at most |O| − mp(b, o).

maxmp =
∑︂
b∈B

∑︂
o∈O

∑︂
e∈E

{︄
max(|O| − mp(b, o), 0), if mp(b, o) > 0
0, otherwise

• Upper bound for penaltydc: The total overfulfillment of capacities cannot be
larger than the theoretical maximum sum of assigned capacities:

maxdc =
∑︂
b∈B

∑︂
e∈E

sc(b, e)

5.3 Tabu Search
To solve instances of the interactive ETDP, we apply the Reactive Tabu Search approach
presented in Chapter 3.3. In this section, we propose three different types of tabu lists
for the ETDP.

Fix Assignment Tabu List The idea of this type of tabu list is that after a move is
applied, the assignments to all affected bucket-operation-employee triples are fixed. In
other words, whenever a move is applied that changes the assignment of a triple (b, o, e),
all moves are tabu, which would change the same assignment A(b, o, e).

Fix Employee Tabu List This type of tabu list considers the time bucket b and
employee e affected by the applied move. All moves that would change an assignment
A(b, o, e), for arbitrary o ∈ O, are considered tabu in the succeeding iterations.

Fix Operation Tabu List What the previous type of tabu list did for employees can
also be applied to operations. Whenever a move changes an assignment for operation o in
bucket b, all moves that would change assignments affecting the same bucket-operation
pair (b, o) are added to the tabu list.

5.4 Use Cases
In this section, we demonstrate the effectiveness of the interactive optimization approach
in three use cases, which were acquired in cooperation with our industrial partner. These
use cases are based on the instances from industry provided by [HLM+24b, HLM+24a].
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Capacity Max. operations Min. capacity
Operation 1 8.00 h - -
Operation 2 2.50 h - -
Operation 3 3.00 h 2 -
Operation 4 1.00 h - -
Operation 5 8.00 h - -
Operation 6 6.50 h 1 -
Operation 7 3.00 h - -
Operation 8 5.75 h - -
Operation 9 4.00 h - 4.00 h
Operation 10 6.50 h 3 -
Operation 11 4.25 h - -
Operation 12 8.00 h 2 -

Table 5.1: The operations used to demonstrate the use cases

For all of these use cases, we have a total of 11 employees and 12 operations. For ease of
presentation, we only consider planning one shift at one day, i.e., the instance contains
only a single time bucket. However, the insights gathered from the use cases can be
generalized to a larger number of buckets. Table 5.1 shows the operations considered
in the use cases, together with their demanded capacities, maximum total number of
parallel operations, and minimum assigned capacity. The used employees can be seen
in Table 5.2, where the supplied capacity is listed for each employee. Note that the
capacities (demands and supplies) are displayed in hours and include fractionals, while
capacities are integral according to the problem definition. This problem is solved by
multiplying each capacity by 4 to retrieve an integer so that a precision from up to
a quarter of an hour can be modeled. The qualification matrix is displayed in Table
5.3, where the qualification scores are listed - the higher the score, the better qualified
is the employee on the respective operation. Each run of the Reactive Tabu Search
algorithm was executed with a time limit of 5 seconds, using manually tuned algorithm
parameters. As optimization objectives, we considered the maximization of the sum of
assignments (fI

1 ), maximization of the qualification score (fI
4 ), and minimization of the

assignment count (fI
6 ). We chose the corresponding weights w1, w4, w6, so that fI

1 is
lexicographically more important than fI

4 , which itself is more important than fI
6 . The

weight wd for the distance objective was chosen so that stability is strictly preferred over
quality, as described in Section 5.2.5.

5.4.1 Use Case 1: Changing employee supplies
In practice, the employee planning is completed a few days in advance. This means
the decision-maker either manually assigns the employees to operations or uses the
automated planning tool based on the algorithmic approach described in Chapter 4. It
often happens, however, that employee supplies change in the short term, caused by
absences, for example, due to illnesses.
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Capacity
Turing, Alan 8.00 h
Lovelace, Ada 8.00 h
Gödel, Kurt 8.00 h
Babbage, Charles 8.00 h
Dijkstra, Edsger 8.00 h
von Neumann, John 8.00 h
Johnson, Katherine 8.00 h
Engelbart, Douglas 8.00 h
Hopper, Grace 8.00 h
Hilbert, David 2.00 h
Zuse, Konrad 2.00 h

Table 5.2: The employees used to demonstrate the use cases

Operations
1 2 3 4 5 6 7 8 9 10 11 12

Turing, Alan 30 - - - - - - - - - - 30
Lovelace, Ada - - - 20 - - - - - - 15 -
Gödel, Kurt - - - - 20 - 40 20 20 - - 30
Babbage, Charles 30 - - - 20 - - - - - - -
Dijkstra, Edsger - - - - 30 - - - - - - -
von Neumann, John - - - - - - - - - 30 40 -
Johnson, Katherine - - 30 - - - - 20 40 20 - -
Engelbart, Douglas - - - - 20 40 - - - - - -
Hopper, Grace - - - - - - - - - - 20 -
Hilbert, David - 15 - - - - - - - - - -
Zuse, Konrad - 30 - - - - - - - - - 20

Table 5.3: The qualification scores used for the demonstration of the use cases

As a concrete use case, assume that the employees Turing, Alan and von Neumann, John
are now absent. This would mean that the demands of the operations they are currently
assigned to are no longer fulfilled. Concretely, this means that operations 10 and 12 now
do not have any capacities assigned, and only 2.75 h of the demanded 4.25 h are fulfilled.
The task of the interactive optimization tool is now to suggest changes to the employee
plan so that a large number of demands can be fulfilled by other employees.

The Reactive Tabu Search algorithm is applied to this instance of the interactive problem
variant. As result, it returns a solution where the capacity of employee Hopper, Grace is
increased to 1.5 h on operation 11. Figure 5.1 shows how this change is presented to the
user in the real-life application of our industrial partner MCP GmbH [MCP24]. The idea
of the change is to substitute the capacity previously provided by the absent employee von
Neumann, John with the (less qualified) employee Hopper, Grace. After accepting this
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Operation 1 Babbage, Charles (8 h)

Operation 2 Hilbert, David (0.5 h)
Zuse, Konrad (2 h)

Operation 3 Johnson, Katherine (3 h)
Operation 4 Lovelace, Ada (1 h)
Operation 5 Dijkstra, Edsger (8 h)
Operation 6 Engelbart, Douglas (6.5 h)
Operation 7 Gödel, Kurt (3 h)

Operation 8 Gödel, Kurt (0.75 h)
Johnson, Katherine (5 h)

Operation 9 Gödel, Kurt (4 h)
Operation 10 von Neumann, John (6.5 h)

Operation 11 von Neumann, John (1.5 h)
Hopper, Grace (2.75 h)

Operation 12 Turing, Alan (8 h)

Table 5.4: The initial solution to the instance of the use cases

change, the improvement is applied to the current solution, and the interactive algorithm
is called again, with the adapted solution as the initial solution. The screenshots in
Figure 5.2 show the visualization of the solution in the tool of our industrial partner
before and after the move is applied. Next, it is suggested to increase the capacity of
Hilbert, David on operation 2 by 1.5 h and move Zuse, Konrad to operation 12 for 1.5 h.
This way, the absent employee Turing, Alan is partially substituted by Zuse, Konrad,
who in turn is substituted by Hilbert, David on operation 2. Again, we accept these
changes and receive the suggestion to move employee Johnson, Katherine from operation
8 to operation 10 so that the remaining capacity of 0.25 h for Gödel, Kurt can be added
to operation 8. The adapted solution, after accepting the suggested improvements, can
be seen in Table 5.5.

Figure 5.1: A screenshot from the tool where the interactive approach is used

5.4.2 Use Case 2: Modified demands
Like employee supplies, short-term changes in capacity demands for operations are a
recurring event in practice. If such changes happen, the decision-maker is responsible for
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(a) The plan before the improvement is applied. (b) The plan after the improvement is applied.

Figure 5.2: A screenshot from the tool of our industrial partner showing a part of the
solution before and after the first improvement from use case 1 was applied. The absence
of an employee is indicated by the red borders.

Operation 1 Babbage, Charles (8 h)

Operation 2 Hilbert, David (0.5 h + 1.5 h)
Zuse, Konrad (2 h - 1.5 h )

Operation 3 Johnson, Katherine (3 h)
Operation 4 Lovelace, Ada (1 h)
Operation 5 Dijkstra, Edsger (8 h)
Operation 6 Engelbart, Douglas (6.5 h)
Operation 7 Gödel, Kurt (3 h)

Operation 8 Gödel, Kurt (0.75 h + 0.25 h)
Johnson, Katherine (5 h)

Operation 9 Gödel, Kurt (4 h)

Operation 10 von Neumann, John (6.5 h)
Johnson, Katherine (5 h)

Operation 11 von Neumann, John (1.5 h)
Hopper, Grace (2.75 h + 1.5 h )

Operation 12 Turing, Alan (8 h)
Zuse, Konrad (1.5 h)

Table 5.5: The solution after the improvements suggested for use case 1 were applied
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5.4. Use Cases

Operation 1 Babbage, Charles (8 h)

Operation 2 Hilbert, David (0.5 h)
Zuse, Konrad (2 h)

Operation 3 Johnson, Katherine (3 h)
Operation 4 Lovelace, Ada (1 h)

Operation 5 Dijkstra, Edsger (8 h)
Engelbart, Douglas (8 h)

Operation 6 Engelbart, Douglas (6.5 h)
Operation 7 Gödel, Kurt (3 h)

Operation 8 Gödel, Kurt (0.75 h)
Johnson, Katherine (5 h)

Operation 9 Gödel, Kurt (4 h)
Operation 10 von Neumann, John (6.5 h)

Operation 11 von Neumann, John (1.5 h)
Hopper, Grace (2.75 h)

Operation 12 Turing, Alan (8 h)

Table 5.6: The solution after the accepted improvement suggested for use case 2 was
applied

incorporating these changes into the existing plan.

Again, consider the solution from Table 5.4, and assume that the requested demand for
operation 5 increases to 16 h. After applying the interactive algorithm, the first suggestion
is to assign the free capacities from Gödel, Kurt (0.25 h) to operation 5. Suppose now
the user decides to reject this change. In that case, the system proposes to assign 8 h of
the employee Engelbart, Douglas to operation 5, where 6.5 h are moved from operation
6, while 1.5 h were still unassigned for this employee. Note that only adding the free
capacity of 1.5 h would not be an improvement because the maximum number of parallel
operations for all employees assigned to operation 6 is set to 1. Therefore, Engelbart,
Douglas has to be moved from operation 6 to avoid a violation of this constraint. The
resulting solution can be seen in Table 5.6.

5.4.3 Use Case 3: Changes to default plan

In practice, the decision-makers often have a default plan as a starting point for their
planning. This should keep the plan stable for the employees from week to week. However,
as demands and employee availabilities change, these default plans must be adapted to
the current demands and employee supplies.

To demonstrate the usage of the interactive planning tool for this use case, let the solution
depicted in Table 5.4 be the default plan. The assumed demands and supplies, however,
changed in the following ways:
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• The demand for operation 8 deduces to 2 h.

• The demand for operation 10 increases to 8 h.

• The demand for operation 11 reduces to 3 h.

• Employee Gödel, Kurt is on vacation.

When applying the interactive optimization algorithm, the following changes are suggested,
which - as we assume - are all accepted:

1. Shift 1.25 h of employee von Neumann, John from operation 11 to operation 10.

2. For employee Johnson, Katherine, shift 4 h from operation 8 to operation 9 and
remove the remaining 1 h from operation 8

3. Shift 0.25 h of von Neumann, John from operation 11 to operation 10 and add 0.25
h to Hopper, Grace on operation 10

With the first improvement, the excess capacity from operation 11 is shifted to operation
10, which has unfulfilled demands. Similarly, the second change is to take the unneeded
capacity from operation 8 to satisfy the demands of operation 9. Note that keeping the
remaining 1 h at operation 8 is not possible because Johnson, Katherine is also assigned
to operation 3, which has a maximum number of parallel operations of 2. Finally, the
remaining demands for operation 10 are fulfilled by applying the third suggestion. As
Gödel, Kurt is absent and is the only employee qualified for operation 7, these demands
cannot be fulfilled. Therefore, no further changes are suggested. The solution after
applying all suggested changes can be seen in Table 5.7.
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5.4. Use Cases

Operation 1 Babbage, Charles (8 h)

Operation 2 Hilbert, David (0.5 h)
Zuse, Konrad (2 h)

Operation 3 Johnson, Katherine (3 h)
Operation 4 Lovelace, Ada (1 h)
Operation 5 Dijkstra, Edsger (8 h)
Operation 6 Engelbart, Douglas (6.5 h)
Operation 7 Gödel, Kurt (3 h)

Operation 8 Gödel, Kurt (0.75 h)
Johnson, Katherine (5 h)

Operation 9 Gödel, Kurt (4 h)
Johnson, Katherine (4 h)

Operation 10 von Neumann, John (6.5 h + 1.5 h)

Operation 11 von Neumann, John (1.5 h)
Hopper, Grace (2.75 h + 0.25 h )

Operation 12 Turing, Alan (8 h)

Table 5.7: The solution after the suggestions from use case 3 were adapted
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CHAPTER 6
Conclusion

In this thesis, we introduced the Balanced Task Planning Problem. We analyzed its
computational complexity and proved that a decision variant is NP-complete by providing
a reduction from the well-known NP-complete Bin Packing Problem. We introduced
a mathematical model for the BTPP, which we used as an exact approach together
with state-of-the-art Constraint Programming and Mixed Integer Programming solvers.
Furthermore, we proposed a greedy construction heuristic and different variants of local
search-based metaheuristics, which can be used to efficiently solve large-scale problem
instances in a reasonable time. More precisely, we used Reactive Tabu Search, an
extension of standard Tabu Search that adapts the tabu list length during the search
process and introduces a more radical strategy to escape from local optima. Additionally,
we used two strategies to reduce the size of the neighborhood explored in each iteration.
To evaluate our approaches, we introduced a set of problem instances, which we created
using a random instance generator developed in this thesis. The experimental results
show that, among the investigated methods, the exact approach produces the best results
for small problem instances and solves 24% of the instances to optimality. Using the
different Tabu Search variants, we could find high-quality solutions for most medium-sized
and large-scale problem instances. The experiments indicate that for the evaluated test
set, on average, the Reactive Tabu Search is capable of finding better solutions than
the standard variant of Tabu Search. Furthermore, restricting the neighborhood led to
improved results in our experiments, especially for the larger instances.

In the second part of the thesis, we investigated interactive optimization methods for
the Employee Task Distribution Problem. We proposed a method that suggests stepwise
improvements so that the decision-maker can follow and possibly adapt the suggestions.
We adapted the formal problem definition from the literature to model the special
requirements for user interaction. To solve the interactive problem variant, we proposed
a Tabu Search method with three different tabu list implementations. Finally, we
demonstrated our approach in three practically relevant use cases. This showed that the
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6. Conclusion

proposed method is capable of suggesting reasonable improvements to solutions, which
can help decision-makers react to changes in problem instances after an initial (automatic
or manual) optimization.

In future work, it would be interesting to examine further solution approaches for
the Balanced Task Planning Problem, e.g., using other metaheuristic methods like
Simulated Annealing, Genetic Algorithms or Large Neighborhood Search. A more
detailed investigation of exact methods could provide optimal solutions for more problem
instances. For the Employee Task Distribution Problem, it would be interesting to apply
the proposed Reactive Tabu Search approach also for the non-interactive problem variant
and compare the results to the methods from the literature.
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APPENDIX A
Experimental results of exact

methods

Table A.1: The objective values for each of the used solvers and the best dual bound
found by one of the solvers

Instance Gurobi OR-Tools Coin Chuffed Dual Bound
small_1 885.0 924.0 - - 9.0
small_2 236.0* 236.0* 236.0* 390.0 236.0
small_3 606.0 637.0 - - 336.0
small_4 - 276.0 - - 0.0
small_5 146.0 146.0 159.0 199.0 138.12
small_6 144.0 141.0 - 350.0 93.0
small_7 534.0* 534.0* 687.0 894.0 534.0
small_8 890.0* 890.0* - 1466.0 890.0
small_9 338.0 379.0 - - 153.0
small_10 959.0 943.0 - 2242.0 278.7
small_11 53.0 40.0 - 135.0 16.0
small_12 170.0* 170.0* 170.0* - 170.0
small_13 95.0 174.0 - - 0.0
small_14 457.0* 457.0* 457.0* 457.0* 457.0
small_15 281.0* 281.0* 313.0 921.0 281.0
small_16 193.0 274.0 - - 74.0
small_17 74.0 66.0 118.0 357.0 38.0
small_18 104.0 107.0 - 187.0 0.0
small_19 101.0 82.0 - 691.0 11.0
small_20 203.0* 203.0* 212.0 - 203.0
small_21 134.0 230.0 - - 0.0
small_22 146.0* 146.0* 146.0* 1332.0 146.0
small_23 - 484.0 - 1965.0 16.0
small_24 2658.0 482.0 - - 5.0
small_25 610.0 583.0 - - 488.23
small_26 536.0 547.0 - 1003.0 422.0
small_27 563.0 495.0 - 1449.0 369.0
small_28 - 685.0 - - 1.0

Continued on next page
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A. Experimental results of exact methods

Table A.1: The objective values for each of the used solvers and the best dual bound
found by one of the solvers

Instance Gurobi OR-Tools Coin Chuffed Dual Bound
small_29 761.0 764.0 1150.0 1036.0 663.98
small_30 487.0* 487.0* 487.0* 2695.0 487.0
small_31 124.0* 124.0* 270.0 276.0 124.0
small_32 420.0 420.0 - - 0.0
small_33 1177.0 891.0 - - 4.0
small_34 311.0* 311.0* - - 311.0
small_35 403.0 393.0 - - 215.0
small_36 197.0* 197.0* - 956.0 197.0
small_37 661.0 657.0 - 950.0 190.97
small_38 935.0 801.0 - - 19.5
small_39 226.0 226.0 - 2056.0 0.0
small_40 340.0 337.0 - - 159.77
small_41 742.0 739.0 - 2025.0 286.0
small_42 286.0 408.0 - 3190.0 12.0
small_43 356.0* 356.0* 356.0* 404.0 356.0
small_44 - 971.0 - - 199.0
small_45 413.0 445.0 - 5003.0 218.0
small_46 1162.0 1169.0 - 4553.0 1156.0
small_47 - 831.0 - 2531.0 12.0
small_48 336.0* 336.0* 408.0 920.0 336.0
small_49 279.0 280.0 1786.0 2729.0 63.0
small_50 - 201.0 - 245.0 82.0
small_51 1119.0* 1119.0* - 3171.0 1119.0
small_52 1176.0 798.0 - 5153.0 492.04
small_53 158.0 158.0 - 302.0 145.58
small_54 320.0 398.0 - 664.0 6.0
small_55 184.0* 186.0 239.0 281.0 184.0
small_56 391.0 314.0 - 2466.0 5.0
small_57 142.0 138.0 212.0 472.0 96.0
small_58 408.0 466.0 - - 38.0
small_59 159.0 266.0 - 434.0 8.0
small_60 1075.0 1417.0 - 1650.0 0.0
small_61 294.0 280.0 - - 182.0
small_62 222.0 185.0 - - 3.0
small_63 501.0 468.0 - 3828.0 8.0
small_64 - 225.0 - 1059.0 151.0
small_65 613.0 377.0 - - 4.0
small_66 133.0 138.0 1492.0 782.0 81.0
small_67 472.0 470.0 490.0 553.0 460.0
small_68 224.0 284.0 - - 9.0
small_69 319.0* 319.0* 319.0* 319.0* 319.0
small_70 - 387.0 - 1024.0 211.0
small_71 285.0 321.0 - - 95.0
small_72 3653.0 774.0 - - 2.0
small_73 664.0 608.0 - - 5.0
small_74 - 995.0 - - 5.0
small_75 242.0 242.0 285.0 582.0 177.16
small_76 - 1499.0 - - 2.0
small_77 - 4368.0 - - 0.0
small_78 955.0 1035.0 - - 220.67
small_79 142.0 175.0 - 859.0 129.0
small_80 259.0 260.0 - 485.0 101.0
small_81 202.0* 203.0 381.0 280.0 202.0
small_82 366.0 339.0 - 1381.0 89.62

Continued on next page
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Table A.1: The objective values for each of the used solvers and the best dual bound
found by one of the solvers

Instance Gurobi OR-Tools Coin Chuffed Dual Bound
small_83 517.0 510.0 1789.0 1771.0 354.45
small_84 395.0 401.0 - 1040.0 330.0
small_85 491.0 486.0 - 1770.0 349.7
small_86 90.0 90.0 - - 9.01
small_87 - 1469.0 - - 12.0
small_88 339.0* 339.0* 339.0* 339.0* 339.0
small_89 180.0 178.0 - 431.0 171.0
small_90 1122.0 1293.0 - - 3.0
small_91 2353.0 2418.0 - - 26.5
small_92 894.0* 894.0* 894.0* 2382.0 894.0
small_93 87.0 79.0 - 741.0 26.0
small_94 198.0* 207.0 - - 198.0
small_95 - 649.0 - - 3.0
small_96 386.0* 386.0* - 472.0 386.0
small_97 86.0* 86.0 - 822.0 86.0
small_98 71.0* 71.0 80.0 104.0 71.0
small_99 131.0 128.0 252.0 326.0 74.0
small_100 - - - - 0
medium_1 - 1037.0 - - 0.0
medium_2 - - - - 0
medium_3 - - - - 0
medium_4 - - - - 0
medium_5 - 2195.0 - - 195.27
medium_6 - - - - 0
medium_7 - 5446.0 - - 4.0
medium_8 - 1186.0 - 1822.0 4.0
medium_9 1528.0 1088.0 - - 0.0
medium_10 - 7270.0 - - 0
medium_11 - - - - 0
medium_12 - - - - 0
medium_13 - - - - 0
medium_14 - - - - 0
medium_15 - 1569.0 - - 0
medium_16 - - - - 0
medium_17 - - - - 54.0
medium_18 - 378.0 - - 0.0
medium_19 - 501.0 - - 0.0
medium_20 - - - - 0
medium_21 - 1706.0 - - 3.0
medium_22 - - - - 0
medium_23 - - - - 0.0
medium_24 - 5000.0 - - 0.0
medium_25 1229.0 1235.0 - - 2.0
medium_26 - - - - 28.0
medium_27 - 1067.0 - - 1.0
medium_28 - - - - 0
medium_29 - 7704.0 - - 0
medium_30 - 5049.0 - - 0
medium_31 - 9176.0 - - 1.0
medium_32 11.0* 11.0* - 35.0 11.0
medium_33 - - - - 0
medium_34 - - - - 0.0
medium_35 - - - - 0
medium_36 - - - - 0.0

Continued on next page
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A. Experimental results of exact methods

Table A.1: The objective values for each of the used solvers and the best dual bound
found by one of the solvers

Instance Gurobi OR-Tools Coin Chuffed Dual Bound
medium_37 - 3102.0 - - 0
medium_38 - 5711.0 - - 0
medium_39 - 12885.0 - - 0
medium_40 - - - - 0
medium_41 - - - - 0
medium_42 - 1374.0 - - 1.0
medium_43 - - - - 0
medium_44 - - - - 0
medium_45 - - - - 0
medium_46 2008.0 - - - 0.0
medium_47 - - - - 0
medium_48 - 4899.0 - - 4.0
medium_49 - - - - 0
medium_50 - 3826.0 - - 0
medium_51 - - - - 0
medium_52 - - - - 125.0
medium_53 - - - - 0
medium_54 - 1219.0 - - 2.0
medium_55 - 4402.0 - - 0.0
medium_56 315.0 245.0 - - 0
medium_57 - 11875.0 - - 0
medium_58 - 4817.0 - - 1.0
medium_59 - - - - 0
medium_60 - - - - 0
medium_61 - - - - 0.0
medium_62 - 13833.0 - - 0
medium_63 - 3476.0 - - 2.0
medium_64 - - - - 0
medium_65 - - - - 0
medium_66 - 2257.0 - - 0.0
medium_67 - 4376.0 - - 0
medium_68 - - - - 0
medium_69 - 9831.0 - - 0
medium_70 - 749.0 - - 0.0
medium_71 - - - - 0
medium_72 - 1917.0 - - 5.0
medium_73 - 11540.0 - - 0
medium_74 - - - - 0
medium_75 - - - - 0
medium_76 - 521.0 - - 0.0
medium_77 - - - - 0.0
medium_78 - - - - 0
medium_79 - 1051.0 - - 4.0
medium_80 - - - - 0
medium_81 - - - - 0
medium_82 - 2234.0 - 5216.0 79.0
medium_83 - 776.0 - - 0.0
medium_84 - - - - 0
medium_85 - - - - 0
medium_86 - - - - 0
medium_87 - - - - 0.0
medium_88 365.0 343.0 - - 295.0
medium_89 - - - - 0
medium_90 - - - - 0

Continued on next page
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Table A.1: The objective values for each of the used solvers and the best dual bound
found by one of the solvers

Instance Gurobi OR-Tools Coin Chuffed Dual Bound
medium_91 - 5679.0 - - 1.0
medium_92 - - - - 0.0
medium_93 932.0 1188.0 - 1599.0 180.0
medium_94 - - - - 0
medium_95 - 1128.0 - - 601.11
medium_96 - - - - 0.0
medium_97 - 4620.0 - - 0
medium_98 - - - - 0
medium_99 - 2789.0 - - 6.0
medium_100 - 1828.0 - - 0
large_1 - - - - 0
large_2 - - - - 0
large_3 - - - - 0
large_4 - - - - 0
large_5 - - - - 0
large_6 - 12269.0 - - 0
large_7 - 14368.0 - - 0
large_8 - - - - 0
large_9 - - - - 0
large_10 - - - - 0
large_11 - - - - 0
large_12 - - - - 0
large_13 - - - - 0
large_14 - 6281.0 - - 0
large_15 - - - - 0
large_16 - - - - 0
large_17 - - - - 0
large_18 - - - - 0
large_19 - - - - 0
large_20 - 8378.0 - - 0
large_21 - - - - 0
large_22 - - - - 0
large_23 - - - - 0
large_24 - - - - 0
large_25 - - - - 0
large_26 - - - - 0
large_27 - - - - 0
large_28 - - - - 0
large_29 - 9347.0 - - 0
large_30 - - - - 0
large_31 - - - - 0
large_32 - - - - 0
large_33 - - - - 0.0
large_34 - - - - 0
large_35 - - - - 0
large_36 - - - - 0
large_37 - - - - 0
large_38 - 4441.0 - - 0
large_39 - - - - 0
large_40 - 4097.0 - - 0
large_41 - 6109.0 - - 0
large_42 - - - - 0
large_43 - 5229.0 - - 0
large_44 - - - - 0

Continued on next page
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A. Experimental results of exact methods

Table A.1: The objective values for each of the used solvers and the best dual bound
found by one of the solvers

Instance Gurobi OR-Tools Coin Chuffed Dual Bound
large_45 - - - - 0
large_46 - - - - 0
large_47 - - - - 0
large_48 - 6852.0 - - 0
large_49 - - - - 0
large_50 - - - - 0
large_51 - - - - 0
large_52 - - - - 0
large_53 - - - - 0
large_54 - - - - 0
large_55 - 9847.0 - - 0
large_56 - - - - 0
large_57 - - - - 0
large_58 - - - - 0
large_59 - - - - 0
large_60 - - - - 0
large_61 - - - - 0
large_62 - - - - 0
large_63 - - - - 0
large_64 - - - - 0
large_65 - - - - 0
large_66 - - - - 0
large_67 - - - - 0
large_68 - - - - 0
large_69 - - - - 700.0
large_70 - - - - 0
large_71 - - - - 0
large_72 - - - - 0
large_73 - - - - 0
large_74 - - - - 37.0
large_75 - - - - 0
large_76 - 9778.0 - - 0
large_77 - - - - 0
large_78 - - - - 0
large_79 - - - - 0
large_80 - - - - 0
large_81 - - - - 0
large_82 - - - - 0
large_83 - - - - 0
large_84 - - - - 0
large_85 - - - - 0
large_86 - - - - 0
large_87 - 19490.0 - - 2.0
large_88 - 17447.0 - - 0
large_89 - - - - 0
large_90 - - - - 0
large_91 - - - - 0
large_92 - - - - 0
large_93 - - - - 0
large_94 - - - - 0
large_95 - - - - 0
large_96 - - - - 0
large_97 - - - - 0
large_98 - 8695.0 - - 0

Continued on next page
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Table A.1: The objective values for each of the used solvers and the best dual bound
found by one of the solvers

Instance Gurobi OR-Tools Coin Chuffed Dual Bound
large_99 - - - - 772.0
large_100 - - - - 0
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A. Experimental results of exact methods

Table A.2: The relative objective values for each of the used solvers
Instance Gurobi OR-Tools Coin Chuffed
small_1 1.0 1.0441 - -
small_2 1.0 1.0 1.0 1.6525
small_3 1.0 1.0512 - -
small_4 - 1.0 - -
small_5 1.0 1.0 1.089 1.363
small_6 1.0213 1.0 - 2.4823
small_7 1.0 1.0 1.2865 1.6742
small_8 1.0 1.0 - 1.6472
small_9 1.0 1.1213 - -
small_10 1.017 1.0 - 2.3775
small_11 1.325 1.0 - 3.375
small_12 1.0 1.0 1.0 -
small_13 1.0 1.8316 - -
small_14 1.0 1.0 1.0 1.0
small_15 1.0 1.0 1.1139 3.2776
small_16 1.0 1.4197 - -
small_17 1.1212 1.0 1.7879 5.4091
small_18 1.0 1.0288 - 1.7981
small_19 1.2317 1.0 - 8.4268
small_20 1.0 1.0 1.0443 -
small_21 1.0 1.7164 - -
small_22 1.0 1.0 1.0 9.1233
small_23 - 1.0 - 4.0599
small_24 5.5145 1.0 - -
small_25 1.0463 1.0 - -
small_26 1.0 1.0205 - 1.8713
small_27 1.1374 1.0 - 2.9273
small_28 - 1.0 - -
small_29 1.0 1.0039 1.5112 1.3614
small_30 1.0 1.0 1.0 5.5339
small_31 1.0 1.0 2.1774 2.2258
small_32 1.0 1.0 - -
small_33 1.321 1.0 - -
small_34 1.0 1.0 - -
small_35 1.0254 1.0 - -
small_36 1.0 1.0 - 4.8528
small_37 1.0061 1.0 - 1.446
small_38 1.1673 1.0 - -
small_39 1.0 1.0 - 9.0973
small_40 1.0089 1.0 - -
small_41 1.0041 1.0 - 2.7402
small_42 1.0 1.4266 - 11.1538
small_43 1.0 1.0 1.0 1.1348
small_44 - 1.0 - -
small_45 1.0 1.0775 - 12.1138
small_46 1.0 1.006 - 3.9182
small_47 - 1.0 - 3.0457
small_48 1.0 1.0 1.2143 2.7381
small_49 1.0 1.0036 6.4014 9.7814
small_50 - 1.0 - 1.2189
small_51 1.0 1.0 - 2.8338
small_52 1.4737 1.0 - 6.4574
small_53 1.0 1.0 - 1.9114
small_54 1.0 1.2438 - 2.075
small_55 1.0 1.0109 1.2989 1.5272

Continued on next page
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Table A.2: The relative objective values for each of the used solvers
Instance Gurobi OR-Tools Coin Chuffed
small_56 1.2452 1.0 - 7.8535
small_57 1.029 1.0 1.5362 3.4203
small_58 1.0 1.1422 - -
small_59 1.0 1.673 - 2.7296
small_60 1.0 1.3181 - 1.5349
small_61 1.05 1.0 - -
small_62 1.2 1.0 - -
small_63 1.0705 1.0 - 8.1795
small_64 - 1.0 - 4.7067
small_65 1.626 1.0 - -
small_66 1.0 1.0376 11.218 5.8797
small_67 1.0043 1.0 1.0426 1.1766
small_68 1.0 1.2679 - -
small_69 1.0 1.0 1.0 1.0
small_70 - 1.0 - 2.646
small_71 1.0 1.1263 - -
small_72 4.7196 1.0 - -
small_73 1.0921 1.0 - -
small_74 - 1.0 - -
small_75 1.0 1.0 1.1777 2.405
small_76 - 1.0 - -
small_77 - 1.0 - -
small_78 1.0 1.0838 - -
small_79 1.0 1.2324 - 6.0493
small_80 1.0 1.0039 - 1.8726
small_81 1.0 1.005 1.8861 1.3861
small_82 1.0796 1.0 - 4.0737
small_83 1.0137 1.0 3.5078 3.4725
small_84 1.0 1.0152 - 2.6329
small_85 1.0103 1.0 - 3.642
small_86 1.0 1.0 - -
small_87 - 1.0 - -
small_88 1.0 1.0 1.0 1.0
small_89 1.0112 1.0 - 2.4213
small_90 1.0 1.1524 - -
small_91 1.0 1.0276 - -
small_92 1.0 1.0 1.0 2.6644
small_93 1.1013 1.0 - 9.3797
small_94 1.0 1.0455 - -
small_95 - 1.0 - -
small_96 1.0 1.0 - 1.2228
small_97 1.0 1.0 - 9.5581
small_98 1.0 1.0 1.1268 1.4648
small_99 1.0234 1.0 1.9688 2.5469
small_100 - - - -
medium_1 - 1.0 - -
medium_2 - - - -
medium_3 - - - -
medium_4 - - - -
medium_5 - 1.0 - -
medium_6 - - - -
medium_7 - 1.0 - -
medium_8 - 1.0 - 1.5363
medium_9 1.4044 1.0 - -
medium_10 - 1.0 - -

Continued on next page
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A. Experimental results of exact methods

Table A.2: The relative objective values for each of the used solvers
Instance Gurobi OR-Tools Coin Chuffed
medium_11 - - - -
medium_12 - - - -
medium_13 - - - -
medium_14 - - - -
medium_15 - 1.0 - -
medium_16 - - - -
medium_17 - - - -
medium_18 - 1.0 - -
medium_19 - 1.0 - -
medium_20 - - - -
medium_21 - 1.0 - -
medium_22 - - - -
medium_23 - - - -
medium_24 - 1.0 - -
medium_25 1.0 1.0049 - -
medium_26 - - - -
medium_27 - 1.0 - -
medium_28 - - - -
medium_29 - 1.0 - -
medium_30 - 1.0 - -
medium_31 - 1.0 - -
medium_32 1.0 1.0 - 3.1818
medium_33 - - - -
medium_34 - - - -
medium_35 - - - -
medium_36 - - - -
medium_37 - 1.0 - -
medium_38 - 1.0 - -
medium_39 - 1.0 - -
medium_40 - - - -
medium_41 - - - -
medium_42 - 1.0 - -
medium_43 - - - -
medium_44 - - - -
medium_45 - - - -
medium_46 1.0 - - -
medium_47 - - - -
medium_48 - 1.0 - -
medium_49 - - - -
medium_50 - 1.0 - -
medium_51 - - - -
medium_52 - - - -
medium_53 - - - -
medium_54 - 1.0 - -
medium_55 - 1.0 - -
medium_56 1.2857 1.0 - -
medium_57 - 1.0 - -
medium_58 - 1.0 - -
medium_59 - - - -
medium_60 - - - -
medium_61 - - - -
medium_62 - 1.0 - -
medium_63 - 1.0 - -
medium_64 - - - -
medium_65 - - - -

Continued on next page
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Table A.2: The relative objective values for each of the used solvers
Instance Gurobi OR-Tools Coin Chuffed
medium_66 - 1.0 - -
medium_67 - 1.0 - -
medium_68 - - - -
medium_69 - 1.0 - -
medium_70 - 1.0 - -
medium_71 - - - -
medium_72 - 1.0 - -
medium_73 - 1.0 - -
medium_74 - - - -
medium_75 - - - -
medium_76 - 1.0 - -
medium_77 - - - -
medium_78 - - - -
medium_79 - 1.0 - -
medium_80 - - - -
medium_81 - - - -
medium_82 - 1.0 - 2.3348
medium_83 - 1.0 - -
medium_84 - - - -
medium_85 - - - -
medium_86 - - - -
medium_87 - - - -
medium_88 1.0641 1.0 - -
medium_89 - - - -
medium_90 - - - -
medium_91 - 1.0 - -
medium_92 - - - -
medium_93 1.0 1.2747 - 1.7157
medium_94 - - - -
medium_95 - 1.0 - -
medium_96 - - - -
medium_97 - 1.0 - -
medium_98 - - - -
medium_99 - 1.0 - -
medium_100 - 1.0 - -
large_1 - - - -
large_2 - - - -
large_3 - - - -
large_4 - - - -
large_5 - - - -
large_6 - 1.0 - -
large_7 - 1.0 - -
large_8 - - - -
large_9 - - - -
large_10 - - - -
large_11 - - - -
large_12 - - - -
large_13 - - - -
large_14 - 1.0 - -
large_15 - - - -
large_16 - - - -
large_17 - - - -
large_18 - - - -
large_19 - - - -
large_20 - 1.0 - -
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A. Experimental results of exact methods

Table A.2: The relative objective values for each of the used solvers
Instance Gurobi OR-Tools Coin Chuffed
large_21 - - - -
large_22 - - - -
large_23 - - - -
large_24 - - - -
large_25 - - - -
large_26 - - - -
large_27 - - - -
large_28 - - - -
large_29 - 1.0 - -
large_30 - - - -
large_31 - - - -
large_32 - - - -
large_33 - - - -
large_34 - - - -
large_35 - - - -
large_36 - - - -
large_37 - - - -
large_38 - 1.0 - -
large_39 - - - -
large_40 - 1.0 - -
large_41 - 1.0 - -
large_42 - - - -
large_43 - 1.0 - -
large_44 - - - -
large_45 - - - -
large_46 - - - -
large_47 - - - -
large_48 - 1.0 - -
large_49 - - - -
large_50 - - - -
large_51 - - - -
large_52 - - - -
large_53 - - - -
large_54 - - - -
large_55 - 1.0 - -
large_56 - - - -
large_57 - - - -
large_58 - - - -
large_59 - - - -
large_60 - - - -
large_61 - - - -
large_62 - - - -
large_63 - - - -
large_64 - - - -
large_65 - - - -
large_66 - - - -
large_67 - - - -
large_68 - - - -
large_69 - - - -
large_70 - - - -
large_71 - - - -
large_72 - - - -
large_73 - - - -
large_74 - - - -
large_75 - - - -
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Table A.2: The relative objective values for each of the used solvers
Instance Gurobi OR-Tools Coin Chuffed
large_76 - 1.0 - -
large_77 - - - -
large_78 - - - -
large_79 - - - -
large_80 - - - -
large_81 - - - -
large_82 - - - -
large_83 - - - -
large_84 - - - -
large_85 - - - -
large_86 - - - -
large_87 - 1.0 - -
large_88 - 1.0 - -
large_89 - - - -
large_90 - - - -
large_91 - - - -
large_92 - - - -
large_93 - - - -
large_94 - - - -
large_95 - - - -
large_96 - - - -
large_97 - - - -
large_98 - 1.0 - -
large_99 - - - -
large_100 - - - -
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B. Experimental results of metaheuristic methods

Ta
bl

e
B.

1:
Th

e
ob

je
ct

iv
e

va
lu

es
fo

rt
he

hi
ll

cli
m

be
r(

H
C)

,T
ab

u
Se

ar
ch

(T
S)

,R
ea

ct
iv

e
Ta

bu
Se

ar
ch

(R
TS

)a
nd

R
ea

ct
iv

e
Ta

bu
Se

ar
ch

w
ith

re
st

ric
te

d
ne

ig
hb

or
ho

od
(R

T
S-

R
N

)
O

bj
ec

ti
ve

(m
ed

ia
n

/
m

ea
n

/
st

d)
H

C
T

S
RT

S
RT

S-
R

N
sm

al
l_

1
42

04
/

42
04

.0
/

0.
0

41
84

/
41

84
.0

/
0.

0
77

/
77

.0
/

0.
0

68
/

67
.8

/
1.

1
sm

al
l_

2
41

96
/

41
96

.0
/

0.
0

41
76

/
41

76
.0

/
0.

0
26

7
/

26
7.

0
/

0.
0

25
7

/
25

8.
8

/
2.

49
sm

al
l_

3
16

89
/

16
89

.0
/

0.
0

16
79

/
16

79
.0

/
0.

0
16

75
/

16
75

.0
/

0.
0

16
85

/
16

82
.4

/
6.

47
sm

al
l_

4
29

20
/

29
20

.0
/

0.
0

29
10

/
29

10
.0

/
0.

0
29

04
/

29
04

.0
/

0.
0

19
2

/
73

0.
0

/
12

14
.2

sm
al

l_
5

11
33

/
11

33
.0

/
0.

0
11

20
/

11
20

.0
/

0.
0

14
9

/
14

8.
8

/
0.

45
14

6
/

14
6.

2
/

0.
45

sm
al

l_
6

13
18

/
13

18
.0

/
0.

0
12

61
/

12
61

.0
/

0.
0

12
72

/
12

72
.0

/
0.

0
12

63
/

12
61

.2
/

3.
49

sm
al

l_
7

57
9

/
57

9.
0

/
0.

0
53

4
/

53
4.

0
/

0.
0

53
4

/
53

4.
0

/
0.

0
53

4
/

53
4.

0
/

0.
0

sm
al

l_
8

12
86

/
12

86
.0

/
0.

0
89

0
/

89
0.

0
/

0.
0

89
0

/
89

1.
8

/
4.

02
89

0
/

89
0.

0
/

0.
0

sm
al

l_
9

12
09

/
12

09
.0

/
0.

0
10

62
/

10
62

.0
/

0.
0

10
62

/
10

62
.0

/
0.

0
10

48
/

10
51

.6
/

7.
44

sm
al

l_
10

10
28

/
10

28
.0

/
0.

0
96

8
/

96
8.

0
/

0.
0

91
8

/
92

2.
0

/
7.

68
90

4
/

90
3.

4
/

2.
61

sm
al

l_
11

-/
-/

-
47

/
47

.0
/

0.
0

45
/

44
.2

/
1.

79
47

/
46

.0
/

2.
0

sm
al

l_
12

18
4

/
18

4.
0

/
0.

0
17

0
/

17
0.

0
/

0.
0

17
0

/
17

0.
0

/
0.

0
17

0
/

17
0.

0
/

0.
0

sm
al

l_
13

21
6

/
21

6.
0

/
0.

0
21

6
/

21
6.

0
/

0.
0

13
8

/
13

8.
0

/
0.

0
14

6
/

14
2.

6
/

9.
07

sm
al

l_
14

45
7

/
45

7.
0

/
0.

0
45

7
/

45
7.

0
/

0.
0

45
7

/
45

7.
0

/
0.

0
45

7
/

45
7.

0
/

0.
0

sm
al

l_
15

31
51

/
31

51
.0

/
0.

0
29

36
/

29
36

.0
/

0.
0

32
9

/
13

65
.2

/
14

48
.1

9
29

40
/

29
41

.4
/

3.
51

sm
al

l_
16

20
58

/
20

58
.0

/
0.

0
19

71
/

19
71

.0
/

0.
0

19
80

/
19

80
.0

/
0.

0
19

78
/

19
78

.8
/

5.
22

sm
al

l_
17

77
2

/
77

2.
0

/
0.

0
70

9
/

70
9.

0
/

0.
0

71
9

/
71

6.
8

/
3.

49
71

3
/

71
2.

2
/

2.
17

sm
al

l_
18

19
05

/
19

05
.0

/
0.

0
18

77
/

18
77

.0
/

0.
0

18
71

/
18

70
.2

/
2.

17
18

77
/

18
73

.4
/

4.
93

sm
al

l_
19

52
5

/
52

5.
0

/
0.

0
50

9
/

50
9.

0
/

0.
0

50
6

/
50

6.
0

/
0.

0
50

2
/

50
2.

4
/

1.
82

sm
al

l_
20

22
1

/
22

1.
0

/
0.

0
20

3
/

20
3.

0
/

0.
0

20
3

/
20

3.
0

/
0.

0
20

3
/

20
3.

0
/

0.
0

sm
al

l_
21

16
26

/
16

26
.0

/
0.

0
16

22
/

16
22

.0
/

0.
0

17
3

/
18

0.
8

/
14

.1
3

14
32

/
10

09
.0

/
60

6.
99

sm
al

l_
22

17
0

/
17

0.
0

/
0.

0
14

6
/

14
6.

0
/

0.
0

14
6

/
14

6.
0

/
0.

0
14

6
/

14
6.

0
/

0.
0

sm
al

l_
23

10
39

/
10

39
.0

/
0.

0
10

34
/

10
34

.0
/

0.
0

27
3

/
32

2.
4

/
18

6.
72

76
2

/
71

4.
4

/
10

9.
82

sm
al

l_
24

26
81

/
26

81
.0

/
0.

0
26

05
/

26
05

.0
/

0.
0

26
09

/
26

09
.0

/
0.

0
25

56
/

25
55

.8
/

6.
94

sm
al

l_
25

58
8

/
58

8.
0

/
0.

0
56

4
/

56
4.

0
/

0.
0

56
9

/
56

9.
0

/
0.

0
57

1
/

57
0.

0
/

2.
45

sm
al

l_
26

52
6

/
52

6.
0

/
0.

0
51

3
/

51
3.

0
/

0.
0

51
5

/
51

5.
0

/
0.

0
52

1
/

52
0.

0
/

3.
46

sm
al

l_
27

62
9

/
62

9.
0

/
0.

0
45

5
/

45
5.

0
/

0.
0

45
7

/
45

7.
0

/
0.

0
45

6
/

45
5.

8
/

2.
28

sm
al

l_
28

12
71

/
12

71
.0

/
0.

0
12

57
/

12
57

.0
/

0.
0

10
52

/
10

13
.2

/
86

.7
6

12
54

/
12

55
.8

/
3.

9
sm

al
l_

29
15

12
/

15
12

.0
/

0.
0

73
5

/
73

5.
0

/
0.

0
74

1
/

74
1.

0
/

4.
06

73
0

/
73

0.
0

/
0.

0
sm

al
l_

30
54

7
/

54
7.

0
/

0.
0

54
7

/
54

7.
0

/
0.

0
48

7
/

48
7.

0
/

0.
0

48
7

/
48

7.
0

/
0.

0
sm

al
l_

31
13

2
/

13
2.

0
/

0.
0

12
4

/
12

4.
0

/
0.

0
12

4
/

12
4.

0
/

0.
0

12
4

/
12

4.
0

/
0.

0
sm

al
l_

32
21

81
/

21
81

.0
/

0.
0

21
55

/
21

55
.0

/
0.

0
21

55
/

21
55

.0
/

0.
0

38
4

/
38

7.
6

/
15

.0
6

sm
al

l_
33

27
99

/
27

99
.0

/
0.

0
27

38
/

27
38

.0
/

0.
0

27
39

/
27

39
.0

/
0.

0
13

71
/

16
44

.6
/

60
9.

59
sm

al
l_

34
-/

-/
-

31
1

/
31

1.
0

/
0.

0
41

84
/

41
84

.0
/

0.
0

41
78

/
41

80
.4

/
7.

8
sm

al
l_

35
37

0
/

37
0.

0
/

0.
0

34
2

/
34

2.
0

/
0.

0
34

9
/

34
9.

0
/

0.
0

34
4

/
34

5.
2

/
3.

56
C

on
tin

ue
d

on
ne

xt
pa

ge

76



Ta
bl

e
B.

1:
Th

e
ob

je
ct

iv
e

va
lu

es
fo

rt
he

hi
ll

cli
m

be
r(

H
C)

,T
ab

u
Se

ar
ch

(T
S)

,R
ea

ct
iv

e
Ta

bu
Se

ar
ch

(R
TS

)a
nd

R
ea

ct
iv

e
Ta

bu
Se

ar
ch

w
ith

re
st

ric
te

d
ne

ig
hb

or
ho

od
(R

T
S-

R
N

)
O

bj
ec

ti
ve

(m
ed

ia
n

/
m

ea
n

/
st

d)
H

C
T

S
RT

S
RT

S-
R

N
sm

al
l_

36
27

8
/

27
8.

0
/

0.
0

19
7

/
19

7.
0

/
0.

0
19

7
/

19
7.

0
/

0.
0

19
7

/
19

7.
0

/
0.

0
sm

al
l_

37
68

5
/

68
5.

0
/

0.
0

64
5

/
64

5.
0

/
0.

0
64

5
/

64
5.

0
/

0.
0

64
5

/
64

5.
2

/
0.

45
sm

al
l_

38
17

34
/

17
34

.0
/

0.
0

91
5

/
91

5.
0

/
0.

0
85

1
/

85
1.

0
/

0.
0

77
7

/
94

1.
4

/
33

9.
05

sm
al

l_
39

82
2

/
82

2.
0

/
0.

0
82

0
/

82
0.

0
/

0.
0

82
0

/
82

0.
0

/
0.

0
22

6
/

46
3.

6
/

32
5.

35
sm

al
l_

40
25

85
/

25
85

.0
/

0.
0

24
59

/
24

59
.0

/
0.

0
36

6
/

78
3.

6
/

93
8.

85
24

60
/

24
60

.2
/

2.
39

sm
al

l_
41

12
78

/
12

78
.0

/
0.

0
12

55
/

12
55

.0
/

0.
0

12
61

/
12

61
.4

/
0.

55
12

59
/

12
59

.8
/

3.
35

sm
al

l_
42

17
35

/
17

35
.0

/
0.

0
28

8
/

28
8.

0
/

0.
0

35
8

/
35

8.
0

/
0.

0
28

0
/

27
8.

0
/

5.
83

sm
al

l_
43

46
2

/
46

2.
0

/
0.

0
39

2
/

39
2.

0
/

0.
0

39
2

/
39

2.
0

/
0.

0
35

6
/

35
6.

0
/

0.
0

sm
al

l_
44

96
5

/
96

5.
0

/
0.

0
87

2
/

87
2.

0
/

0.
0

88
6

/
88

6.
0

/
0.

0
87

8
/

88
3.

4
/

14
.7

1
sm

al
l_

45
-/

-/
-

-/
-/

-
37

76
/

37
76

.0
/

0.
0

37
66

/
37

74
.0

/
13

.0
4

sm
al

l_
46

13
30

/
13

30
.0

/
0.

0
11

62
/

11
62

.0
/

0.
0

11
62

/
11

62
.0

/
0.

0
11

62
/

11
62

.0
/

0.
0

sm
al

l_
47

97
0

/
97

0.
0

/
0.

0
95

9
/

95
9.

0
/

0.
0

28
2

/
34

2.
2

/
15

1.
75

94
2

/
87

2.
4

/
15

8.
55

sm
al

l_
48

33
6

/
33

6.
0

/
0.

0
33

6
/

33
6.

0
/

0.
0

33
6

/
33

6.
0

/
0.

0
33

6
/

33
6.

0
/

0.
0

sm
al

l_
49

18
33

/
18

33
.0

/
0.

0
18

14
/

18
14

.0
/

0.
0

98
3

/
98

1.
6

/
9.

26
98

0
/

98
0.

2
/

0.
45

sm
al

l_
50

44
91

/
44

91
.0

/
0.

0
44

80
/

44
80

.0
/

0.
0

21
0

/
20

8.
2

/
7.

53
13

2
/

13
4.

6
/

6.
99

sm
al

l_
51

12
54

/
12

54
.0

/
0.

0
12

54
/

12
54

.0
/

0.
0

11
19

/
11

20
.8

/
4.

02
11

19
/

11
19

.0
/

0.
0

sm
al

l_
52

77
3

/
77

3.
0

/
0.

0
74

4
/

74
4.

0
/

0.
0

74
0

/
74

0.
0

/
0.

0
74

2
/

74
5.

4
/

12
.4

8
sm

al
l_

53
17

4
/

17
4.

0
/

0.
0

15
8

/
15

8.
0

/
0.

0
16

2
/

16
2.

0
/

0.
0

16
2

/
16

2.
0

/
1.

41
sm

al
l_

54
22

33
/

22
33

.0
/

0.
0

21
67

/
21

67
.0

/
0.

0
21

72
/

21
72

.0
/

0.
0

21
70

/
21

71
.8

/
13

.4
6

sm
al

l_
55

18
8

/
18

8.
0

/
0.

0
18

8
/

18
8.

0
/

0.
0

18
8

/
18

8.
0

/
0.

0
18

7
/

18
7.

2
/

0.
84

sm
al

l_
56

14
80

/
14

80
.0

/
0.

0
14

30
/

14
30

.0
/

0.
0

34
2

/
34

2.
0

/
12

.2
5

31
2

/
31

2.
0

/
0.

0
sm

al
l_

57
89

2
/

89
2.

0
/

0.
0

88
5

/
88

5.
0

/
0.

0
88

8
/

88
7.

2
/

1.
3

88
5

/
88

3.
0

/
2.

83
sm

al
l_

58
43

4
/

43
4.

0
/

0.
0

39
3

/
39

3.
0

/
0.

0
39

3
/

39
3.

0
/

0.
0

39
3

/
39

3.
8

/
3.

63
sm

al
l_

59
58

4
/

58
4.

0
/

0.
0

55
2

/
55

2.
0

/
0.

0
55

0
/

55
0.

0
/

0.
0

55
4

/
55

4.
6

/
6.

5
sm

al
l_

60
10

84
/

10
84

.0
/

0.
0

10
14

/
10

14
.0

/
0.

0
10

09
/

10
09

.0
/

0.
0

10
08

/
10

08
.0

/
3.

94
sm

al
l_

61
24

80
/

24
80

.0
/

0.
0

24
64

/
24

64
.0

/
0.

0
24

06
/

19
83

.0
/

94
6.

43
27

1
/

27
1.

4
/

2.
3

sm
al

l_
62

15
10

/
15

10
.0

/
0.

0
14

79
/

14
79

.0
/

0.
0

14
77

/
14

77
.6

/
1.

34
14

84
/

12
29

.6
/

57
3.

33
sm

al
l_

63
14

66
/

14
66

.0
/

0.
0

14
52

/
14

52
.0

/
0.

0
46

5
/

46
5.

6
/

8.
71

43
1

/
43

3.
6

/
9.

15
sm

al
l_

64
27

2
/

27
2.

0
/

0.
0

27
0

/
27

0.
0

/
0.

0
17

0
/

17
0.

6
/

6.
23

25
9

/
25

9.
8

/
1.

92
sm

al
l_

65
12

33
/

12
33

.0
/

0.
0

11
54

/
11

54
.0

/
0.

0
11

55
/

11
55

.0
/

0.
0

11
61

/
11

62
.0

/
3.

74
sm

al
l_

66
15

4
/

15
4.

0
/

0.
0

14
5

/
14

5.
0

/
0.

0
14

6
/

14
6.

0
/

0.
0

14
3

/
14

2.
0

/
5.

15
sm

al
l_

67
18

83
/

18
83

.0
/

0.
0

18
15

/
18

15
.0

/
0.

0
47

8
/

74
5.

6
/

59
6.

7
47

8
/

47
7.

6
/

5.
86

sm
al

l_
68

35
0

/
35

0.
0

/
0.

0
28

4
/

28
4.

0
/

0.
0

22
0

/
22

0.
0

/
0.

0
21

4
/

21
6.

4
/

6.
54

sm
al

l_
69

31
9

/
31

9.
0

/
0.

0
31

9
/

31
9.

0
/

0.
0

31
9

/
31

9.
0

/
0.

0
31

9
/

31
9.

0
/

0.
0

sm
al

l_
70

26
7

/
26

7.
0

/
0.

0
25

4
/

25
4.

0
/

0.
0

26
4

/
26

3.
2

/
1.

79
24

9
/

24
8.

6
/

2.
88

C
on

tin
ue

d
on

ne
xt

pa
ge

77



B. Experimental results of metaheuristic methods
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B. Experimental results of metaheuristic methods
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B. Experimental results of metaheuristic methods
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B. Experimental results of metaheuristic methods
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Table B.2: The relative mean objective values for the hill climber (HC), Tabu Search (TS),
Reactive Tabu Search (RTS) and Reactive Tabu Search with restricted neighborhood
(RTS-RN)

HC TS RTS RTS-RN
small_1 62.0059 61.7109 1.1357 1.0
small_2 16.2133 16.136 1.0317 1.0
small_3 1.0084 1.0024 1.0 1.0044
small_4 4.0 3.9863 3.9781 1.0
small_5 7.7497 7.6607 1.0178 1.0
small_6 1.0452 1.0 1.0087 1.0002
small_7 1.0843 1.0 1.0 1.0
small_8 1.4449 1.0 1.002 1.0
small_9 1.1497 1.0099 1.0099 1.0
small_10 1.1379 1.0715 1.0206 1.0
small_11 - 1.0633 1.0 1.0407
small_12 1.0824 1.0 1.0 1.0
small_13 1.5652 1.5652 1.0 1.0333
small_14 1.0 1.0 1.0 1.0
small_15 2.3081 2.1506 1.0 2.1546
small_16 1.0441 1.0 1.0046 1.004
small_17 1.0889 1.0 1.011 1.0045
small_18 1.0186 1.0036 1.0 1.0017
small_19 1.045 1.0131 1.0072 1.0
small_20 1.0887 1.0 1.0 1.0
small_21 8.9934 8.9712 1.0 5.5808
small_22 1.1644 1.0 1.0 1.0
small_23 3.2227 3.2072 1.0 2.2159
small_24 1.049 1.0193 1.0208 1.0
small_25 1.0426 1.0 1.0089 1.0106
small_26 1.0253 1.0 1.0039 1.0136
small_27 1.3824 1.0 1.0044 1.0018
small_28 1.2544 1.2406 1.0 1.2394
small_29 2.0712 1.0068 1.0151 1.0
small_30 1.1232 1.1232 1.0 1.0
small_31 1.0645 1.0 1.0 1.0
small_32 5.6269 5.5599 5.5599 1.0
small_33 1.7019 1.6648 1.6655 1.0
small_34 - 1.0 13.4534 13.4418
small_35 1.0819 1.0 1.0205 1.0094
small_36 1.4112 1.0 1.0 1.0
small_37 1.062 1.0 1.0 1.0003
small_38 2.0376 1.0752 1.0 1.1062
small_39 1.7731 1.7688 1.7688 1.0
small_40 3.2989 3.1381 1.0 3.1396
small_41 1.0183 1.0 1.0051 1.0038
small_42 6.241 1.036 1.2878 1.0
small_43 1.2978 1.1011 1.1011 1.0
small_44 1.1067 1.0 1.0161 1.0131
small_45 - - 1.0005 1.0
small_46 1.1446 1.0 1.0 1.0
small_47 2.8346 2.8025 1.0 2.5494
small_48 1.0 1.0 1.0 1.0
small_49 1.87 1.8506 1.0014 1.0
small_50 33.3655 33.2838 1.5468 1.0
small_51 1.1206 1.1206 1.0016 1.0
small_52 1.0446 1.0054 1.0 1.0073

Continued on next page
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B. Experimental results of metaheuristic methods

Table B.2: The relative mean objective values for the hill climber (HC), Tabu Search (TS),
Reactive Tabu Search (RTS) and Reactive Tabu Search with restricted neighborhood
(RTS-RN)

HC TS RTS RTS-RN
small_53 1.1013 1.0 1.0253 1.0253
small_54 1.0305 1.0 1.0023 1.0022
small_55 1.0043 1.0043 1.0043 1.0
small_56 4.7436 4.5833 1.0962 1.0
small_57 1.0102 1.0023 1.0048 1.0
small_58 1.1043 1.0 1.0 1.002
small_59 1.0618 1.0036 1.0 1.0084
small_60 1.0754 1.006 1.001 1.0
small_61 9.1378 9.0789 7.3066 1.0
small_62 1.228 1.2028 1.2017 1.0
small_63 3.381 3.3487 1.0738 1.0
small_64 1.5944 1.5826 1.0 1.5229
small_65 1.0685 1.0 1.0009 1.0069
small_66 1.0845 1.0211 1.0282 1.0
small_67 3.9426 3.8003 1.5611 1.0
small_68 1.6174 1.3124 1.0166 1.0
small_69 1.0 1.0 1.0 1.0
small_70 1.074 1.0217 1.0587 1.0
small_71 1.0369 1.0156 1.0105 1.0
small_72 5.9426 5.842 5.8085 1.0
small_73 1.1286 1.0 1.0055 1.0007
small_74 1.7956 1.7861 1.7881 1.0
small_75 1.0165 1.0 1.0 1.0
small_76 1.0393 1.0021 1.0 1.0187
small_77 1.1256 1.0838 1.0141 1.0
small_78 1.0988 1.0334 1.0569 1.0
small_79 1.5531 1.519 1.0 1.333
small_80 1.0355 1.0003 1.0186 1.0
small_81 1.005 1.0 1.005 1.005
small_82 1.0404 1.0 1.0024 1.0038
small_83 1.3508 1.02 1.0505 1.0
small_84 1.2487 1.231 1.2336 1.0
small_85 1.1727 1.0089 1.005 1.0
small_86 40.2778 40.2778 1.0 39.4778
small_87 1.2235 1.2183 1.2183 1.0
small_88 1.351 1.0 1.0 1.0
small_89 1.0248 1.0023 1.0 1.0023
small_90 1.4871 1.4756 1.4764 1.0
small_91 1.0404 1.0 1.0 1.0009
small_92 1.0268 1.0 1.0 1.0
small_93 1.6055 1.4913 1.4775 1.0
small_94 1.0702 1.0204 1.0 1.0027
small_95 2.0573 1.2325 1.2693 1.0
small_96 1.0212 1.0171 1.0135 1.0
small_97 4.9302 1.0 1.0651 1.0
small_98 1.0 1.0 1.0 1.0
small_99 1.1812 1.0356 1.0518 1.0
small_100 1.083 1.083 1.0 1.0828
medium_1 1.1767 1.0607 1.0212 1.0
medium_2 1.0995 1.0841 1.0 1.0821
medium_3 1.2264 1.0652 1.0 1.0895
medium_4 1.0614 1.0022 1.0 1.1807
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Table B.2: The relative mean objective values for the hill climber (HC), Tabu Search (TS),
Reactive Tabu Search (RTS) and Reactive Tabu Search with restricted neighborhood
(RTS-RN)

HC TS RTS RTS-RN
medium_5 1.0863 1.0748 1.0 1.0706
medium_6 1.0617 1.0193 1.0072 1.0
medium_7 1.0517 1.0151 1.0124 1.0
medium_8 1.0114 1.0023 1.0008 1.0
medium_9 1.251 1.0948 1.0 1.0234
medium_10 1.0263 1.0039 1.0106 1.0
medium_11 1.2969 1.0321 1.0262 1.0
medium_12 1.0355 1.0223 1.0231 1.0
medium_13 1.0476 1.0107 1.0045 1.0
medium_14 1.1018 1.0 1.0094 1.0007
medium_15 1.024 1.0 1.0034 1.0269
medium_16 1.2176 1.2125 1.0 1.2103
medium_17 1.0531 1.0196 1.0 1.0172
medium_18 1.0996 1.0873 1.0 1.1036
medium_19 1.0351 1.0088 1.0116 1.0
medium_20 1.0103 1.0 1.002 1.0018
medium_21 1.2139 1.0899 1.0608 1.0
medium_22 1.0096 1.0003 1.0 1.0009
medium_23 1.037 1.0167 1.0053 1.0
medium_24 1.0491 1.0088 1.0205 1.0
medium_25 1.5311 1.0386 1.0382 1.0
medium_26 - - - -
medium_27 1.0206 1.0128 1.0111 1.0
medium_28 1.0287 1.0 1.0164 1.0073
medium_29 1.0062 1.0 1.003 1.0004
medium_30 1.0487 1.0339 1.0439 1.0
medium_31 1.0147 1.0062 1.0068 1.0
medium_32 - 1.0 1.0 1.0008
medium_33 1.1929 1.0386 1.011 1.0
medium_34 1.0901 1.0883 1.0 1.0905
medium_35 1.0409 1.0204 1.0208 1.0
medium_36 1.0258 1.0 1.0137 1.0
medium_37 1.021 1.0104 1.0104 1.0
medium_38 1.2155 1.0507 1.062 1.0
medium_39 1.0458 1.0054 1.006 1.0
medium_40 - 1.0037 1.0 1.0191
medium_41 1.0171 1.0029 1.0038 1.0
medium_42 1.0669 1.0179 1.0126 1.0
medium_43 1.1199 1.0613 1.0207 1.0
medium_44 1.0521 1.0051 1.0282 1.0
medium_45 1.1257 1.1001 1.0995 1.0
medium_46 1.3859 1.2289 1.0 1.2004
medium_47 3.2779 1.0 1.1573 1.1078
medium_48 1.0746 1.0094 1.0085 1.0
medium_49 1.5393 1.3608 1.0 1.4671
medium_50 1.0191 1.0032 1.0021 1.0
medium_51 1.0986 1.0153 1.0164 1.0
medium_52 1.0 1.0 1.0 1.0
medium_53 1.0183 1.0077 1.0077 1.0
medium_54 1.1677 1.1664 1.0 1.163
medium_55 2.9191 1.2834 1.0118 1.0
medium_56 1.031 1.0027 1.0079 1.0
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B. Experimental results of metaheuristic methods

Table B.2: The relative mean objective values for the hill climber (HC), Tabu Search (TS),
Reactive Tabu Search (RTS) and Reactive Tabu Search with restricted neighborhood
(RTS-RN)

HC TS RTS RTS-RN
medium_57 1.0164 1.0004 1.002 1.0
medium_58 1.1887 1.0083 1.0165 1.0
medium_59 1.0179 1.0079 1.0014 1.0
medium_60 1.0223 1.007 1.0 1.0089
medium_61 1.2011 1.1995 1.0 1.1993
medium_62 1.0093 1.0009 1.0005 1.0
medium_63 4.1384 1.4383 1.2574 1.0
medium_64 4.8293 1.0242 1.0953 1.0
medium_65 1.0142 1.0087 1.0 1.0003
medium_66 1.0356 1.0079 1.0141 1.0
medium_67 1.047 1.0137 1.0158 1.0
medium_68 1.0553 1.0086 1.0129 1.0
medium_69 1.0161 1.006 1.0023 1.0
medium_70 1.0475 1.0011 1.0 1.01
medium_71 1.0116 1.0064 1.0057 1.0
medium_72 1.2149 1.1324 1.0567 1.0
medium_73 1.0491 1.014 1.008 1.0
medium_74 1.0482 1.0366 1.034 1.0
medium_75 1.1507 1.0082 1.0697 1.0
medium_76 1.0144 1.0018 1.0018 1.0
medium_77 1.1009 1.0157 1.0107 1.0
medium_78 1.0594 1.0161 1.0151 1.0
medium_79 1.0683 1.043 1.0443 1.0
medium_80 1.0681 1.0052 1.0096 1.0
medium_81 1.3594 1.3594 1.0 1.3594
medium_82 1.3287 1.3252 1.0 1.3264
medium_83 1.0503 1.019 1.0308 1.0
medium_84 1.0586 1.0 1.01 1.0037
medium_85 1.1161 1.0203 1.0161 1.0
medium_86 - - - -
medium_87 1.0294 1.0021 1.0 1.0
medium_88 1.0733 1.0141 1.0158 1.0
medium_89 1.0192 1.0005 1.0 1.0037
medium_90 1.0237 1.008 1.0071 1.0
medium_91 1.0222 1.003 1.0 1.006
medium_92 1.0732 1.0491 1.0424 1.0
medium_93 1.2079 1.0636 1.0556 1.0
medium_94 1.0023 1.0005 1.0 1.0015
medium_95 1.1622 1.1487 1.0 1.1268
medium_96 1.0041 1.0 1.0 1.0
medium_97 1.0802 1.0051 1.0095 1.0
medium_98 1.1329 1.112 1.1134 1.0
medium_99 1.0523 1.0218 1.0147 1.0
medium_100 1.1162 1.0 1.0153 1.0117
large_1 1.1249 1.1238 1.1249 1.0
large_2 1.0555 1.0092 1.0059 1.0
large_3 1.0266 1.0153 1.0196 1.0
large_4 1.0354 1.0293 1.0315 1.0
large_5 1.0277 1.0209 1.0211 1.0
large_6 1.1359 1.1335 1.1359 1.0
large_7 1.0236 1.0074 1.0177 1.0
large_8 1.0546 1.0538 1.0489 1.0
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Table B.2: The relative mean objective values for the hill climber (HC), Tabu Search (TS),
Reactive Tabu Search (RTS) and Reactive Tabu Search with restricted neighborhood
(RTS-RN)

HC TS RTS RTS-RN
large_9 1.1233 1.0699 1.0884 1.0
large_10 - - - -
large_11 1.0493 1.0379 1.0432 1.0
large_12 1.008 1.0028 1.0036 1.0
large_13 1.0687 1.0574 1.0606 1.0
large_14 1.0574 1.0405 1.0429 1.0
large_15 1.0293 1.0018 1.0 1.0093
large_16 1.013 1.0081 1.0108 1.0
large_17 1.0453 1.0433 1.0423 1.0
large_18 1.0443 1.0417 1.0299 1.0
large_19 1.0031 1.003 1.0 1.0014
large_20 1.0403 1.0318 1.0281 1.0
large_21 1.2393 1.2373 1.2393 1.0
large_22 1.3291 1.1556 1.2078 1.0
large_23 1.0321 1.0255 1.0268 1.0
large_24 1.0198 1.0086 1.0 1.003
large_25 1.0311 1.009 1.0089 1.0
large_26 1.0212 1.0149 1.0163 1.0
large_27 1.0412 1.0412 1.0412 1.0
large_28 1.6735 1.3819 1.5036 1.0
large_29 1.0618 1.0397 1.046 1.0
large_30 1.0621 1.0505 1.0472 1.0
large_31 1.0569 1.0505 1.0544 1.0
large_32 1.3985 1.3894 1.3927 1.0
large_33 - 1.5302 1.4859 1.0
large_34 1.0353 1.0216 1.0321 1.0
large_35 1.0727 1.0365 1.0353 1.0
large_36 1.2181 1.0635 1.1632 1.0
large_37 1.0494 1.0465 1.0408 1.0
large_38 1.0449 1.0047 1.0233 1.0
large_39 1.0337 1.0023 1.0082 1.0
large_40 1.0416 1.0253 1.036 1.0
large_41 1.084 1.0085 1.0102 1.0
large_42 1.0147 1.0059 1.0016 1.0
large_43 1.031 1.0 1.011 1.0056
large_44 1.1644 1.136 1.1366 1.0
large_45 1.0612 1.0367 1.0324 1.0
large_46 1.0476 1.0133 1.0015 1.0
large_47 1.0175 1.0089 1.0116 1.0
large_48 1.1034 1.0328 1.0422 1.0
large_49 1.0285 1.0251 1.0251 1.0
large_50 1.0928 1.0931 1.0925 1.0
large_51 1.0435 1.0342 1.0365 1.0
large_52 1.0861 1.0309 1.0418 1.0
large_53 1.1343 1.0633 1.0629 1.0
large_54 1.0157 1.0137 1.0142 1.0
large_55 1.0558 1.0037 1.0212 1.0
large_56 - 1.2442 1.1889 1.0
large_57 1.0214 1.0197 1.0197 1.0
large_58 1.0206 1.0182 1.0177 1.0
large_59 1.0179 1.0078 1.0053 1.0
large_60 - - - 1.0
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B. Experimental results of metaheuristic methods

Table B.2: The relative mean objective values for the hill climber (HC), Tabu Search (TS),
Reactive Tabu Search (RTS) and Reactive Tabu Search with restricted neighborhood
(RTS-RN)

HC TS RTS RTS-RN
large_61 1.0476 1.0467 1.0459 1.0
large_62 1.0336 1.0197 1.0283 1.0
large_63 1.0087 1.0 1.0 1.0003
large_64 - 1.0 1.0077 1.0
large_65 1.0168 1.0053 1.0 1.007
large_66 1.0154 1.0154 1.0154 1.0
large_67 1.0182 1.0164 1.0165 1.0
large_68 1.02 1.019 1.019 1.0
large_69 - - - -
large_70 1.0027 1.0021 1.0019 1.0
large_71 1.0003 1.0 1.0 1.0001
large_72 1.0217 1.0076 1.0102 1.0
large_73 1.2583 1.2347 1.211 1.0
large_74 1.0532 1.0338 1.026 1.0
large_75 1.0714 1.0 1.0198 1.0405
large_76 1.0176 1.0 1.0105 1.0299
large_77 1.1229 1.0955 1.0944 1.0
large_78 1.0398 1.0346 1.038 1.0
large_79 1.0751 1.0753 1.0751 1.0
large_80 1.0089 1.0062 1.0062 1.0
large_81 1.4233 1.3908 1.4132 1.0
large_82 1.1069 1.0953 1.0878 1.0
large_83 3.4366 2.9423 3.2539 1.0
large_84 1.8912 1.8921 1.8927 1.0
large_85 1.014 1.0135 1.0169 1.0
large_86 1.0375 1.0164 1.0253 1.0
large_87 1.0365 1.0268 1.0289 1.0
large_88 1.0581 1.053 1.0581 1.0
large_89 1.1049 1.0839 1.0919 1.0
large_90 1.4507 1.3743 1.3221 1.0
large_91 1.0047 1.0 1.0015 1.0039
large_92 1.2817 1.2715 1.2723 1.0
large_93 1.0152 1.0081 1.0092 1.0
large_94 2.0127 1.9638 1.9969 1.0
large_95 1.2073 1.0594 1.0949 1.0
large_96 1.0398 1.0105 1.0208 1.0
large_97 1.1639 1.0961 1.125 1.0
large_98 1.0658 1.0063 1.0094 1.0
large_99 1.0719 1.0696 1.067 1.0
large_100 1.1297 1.0 1.0005 1.0205
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Overview of Generative AI Tools
Used

The tool Grammarly 1 was used throughout the thesis to correct grammar and spelling
mistakes.

1https://www.grammarly.com/
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