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Introduction - Moiré Excitons in a Nutshell

• Twisting two layers of a two-dimen-
sional quantum material leads to an
effective moiré potential where
excitons localise at the minima

• intralayer excitons: strong light-matter
coupling, short lifetimes (~ps)
• interlayer excitons: indirect excitons (long

lifetime ~ns), weak light-matter coupling,
strong dipole-dipole interactions (~meV)
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Quantum Materials with a Twist Effective Bose-Hubbard Model
• The lowest band of hybridised moiré excitons can

described in terms of effective (long-range) Bose-
Hubbard model on a triangular lattice [1]

• The hopping and interaction strength are determined
by twist angle

• Nearest-neighbour hopping is
dominant hopping contribution

• On-site and nearest-neighbour
interaction are relevant

•
•
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Two-dimensional bilayer materials combine deep subwavelength lattice
spacing ( ) with strong interactions and offer an interesting
platform for (many-body) quantum optics!

Exciton-Exciton Scattering - Bound States
Repulsively Bound Pairs in a Moiré Lattice

• Repulsively bound pair is unable to convert interaction (binding) energy to
kinetic energy due to finite width of Bloch band [2]

• In one and two dimensions, repulsively bound pairs exist for arbitrarily small
(on-site) interactions strengths bound state wave functions
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• Additional (loosely) bound states appear below a
critical twist angle (above critical interaction
strength) due to long-range interactions
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• The upper polariton experiences splitting on resonance due to coupling to
repulsively bound state, the lower polariton does not experience this splitting
• Below (above) resonance, the shift is attractive (repulsive)

• Photon transmission is proportional to photonic part
of the (many-body) Green's function

• Use exciton interaction to induce effective photon-photon interaction

• Scattering resonances lead to strong interaction-induced shifts
of the polariton transmission line

• Scattering matrix has narrow
resonance at the bound state energy

photon dynamics in 2D plane exciton-photon coupling

photon dynamics in 2D plane exciton-photon coupling

nonlinear transmission coefficient
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Exciton-Polariton Scattering and Nonlinearity
Exciton-Polaritons

Photon Nonlinearity

• Exciton scattering is modified due to the light-matter coupling
(scattering in the presence of polariton background)

• We restrict the analysis to on-site interactions (still due to dipolar
interactions within one moiré cell!)

: energy of lower/upper polariton

: (hybrid) exciton contribution to lower/upper polariton
(Hopfield coefficient)

Modified Exciton-Polariton Scattering
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