
Vol.:(0123456789)

Formal Methods in System Design
https://doi.org/10.1007/s10703-024-00454-1

SAT solving for variants of first‑order subsumption

Robin Coutelier1 · Jakob Rath1 · Michael Rawson1 · Armin Biere2 · Laura Kovács1

Received: 20 January 2024 / Accepted: 6 May 2024
© The Author(s) 2024

Abstract
Automated reasoners, such as SAT/SMT solvers and first-order provers, are becoming the
backbones of rigorous systems engineering, being used for example in applications of sys-
tem verification, program synthesis, and cybersecurity. Automation in these domains crucially
depends on the efficiency of the underlying reasoners towards finding proofs and/or counter-
examples of the task to be enforced. In order to gain efficiency, automated reasoners use dedi-
cated proof rules to keep proof search tractable. To this end, (variants of) subsumption is one
of the most important proof rules used by automated reasoners, ranging from SAT solvers to
first-order theorem provers and beyond. It is common that millions of subsumption checks
are performed during proof search, necessitating efficient implementations. However, in con-
trast to propositional subsumption as used by SAT solvers and implemented using sophisti-
cated polynomial algorithms, first-order subsumption in first-order theorem provers involves
NP-complete search queries, turning the efficient use of first-order subsumption into a huge
practical burden. In this paper we argue that the integration of a dedicated SAT solver opens
up new venues for efficient implementations of first-order subsumption and related rules. We
show that, by using a flexible learning approach to choose between various SAT encodings of
subsumption variants, we greatly improve the scalability of first-order theorem proving. Our
experimental results demonstrate that, by using a tailored SAT solver within first-order reason-
ing, we gain a large speedup in solving state-of-the-art benchmarks.

Keywords First-order theorem proving · SAT solving · Saturation · Subsumption

Robin Coutelier and Jakob Rath have contributed equally to this work.

 * Robin Coutelier
 robin.coutelier@tuwien.ac.at

 Jakob Rath
 jakob.rath@tuwien.ac.at

 Michael Rawson
 michael@rawsons.uk

 Armin Biere
 biere@cs.uni-freiburg.de

 Laura Kovács
 laura.kovacs@tuwien.ac.at

1 TU Wien, Vienna, Austria
2 University of Freiburg, Freiburg, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s10703-024-00454-1&domain=pdf

 Formal Methods in System Design

1 Introduction

Most formal verification approaches use automated reasoners in their backend to, for
example, discharge verification conditions [1–3], produce/block counter-examples [4–7],
or enforce security and privacy properties [8–11]. All these approaches crucially depend
on the efficiency of the underlying reasoning procedures, ranging from SAT/SMT solv-
ing [12–14] to first-order proving [15–18]. In this paper, we focus on effective extensions
of first-order theorem proving with SAT-based reasoning, improving the state-of-the-art in
proving first-order (program) properties.

Saturation-Based Theorem Proving The leading algorithmic approach in first-
order theorem proving is saturation [16, 17]. While the concept of saturation is relatively
unknown outside of the theorem proving community, similar algorithms that are used in
other areas, such as Gröbner basis computation [19], can be considered examples of satu-
ration algorithms. The key idea in saturation theorem proving is to reduce the problem of
proving the validity of a first-order formula A to the problem of establishing unsatisfiability
of ¬A by using a sound inference system. That is, instead of proving A, we refute ¬A , by
selecting and applying inferences rules. In this paper, we focus on saturation algorithms
using the superposition calculus, which is the most commonly used inference system for
first-order logic with equality [20].

Saturation with Redundancy During saturation, the first-order prover keeps a set of
usable clauses C1,… ,Ck with k ≥ 0 . This is the set of clauses that the prover considers
as possible premises for inferences. After applying an inference with one or more usable
clauses as premises, the consequence Ck+1 is added to the set of usable clauses. The number
of usable clauses is an important factor for the efficiency of proof search. A naive satura-
tion algorithm that keeps all derived clauses in the usable set would not scale in practice.
One reason is that first-order formulas in general yield infinitely many consequences. For
example, consider the clause

where x is a universally quantified variable ranging over the algebraic datatype list,
where list elements are integers; positive is a unary predicate over list such that
positive(x) is valid iff all elements of x are nonnegative integers; and reverse is a unary
function symbol reversing a list. As such, clause (1) asserts that the reverse of a list x
of nonnegative integers is also a list of nonnegative integers (which is clearly valid).
Note that, when having clause (1) as a usable clause during proof search, the clause
¬positive(x) ∨ positive(reversen(x)) can be derived for any n ≥ 1 from clause (1). Add-
ing ¬positive(x) ∨ positive(reversen(x)) to the set of usable clauses would, however, blow
up the search space unnecessarily. This is because ¬positive(x) ∨ positive(reversen(x))
is a logical consequence of clause (1), and hence, if a formula A can be proved using
¬positive(x) ∨ positive(reversen(x)) , then A is also provable using clause (1). Yet, storing
¬positive(x) ∨ positive(reversen(x)) as usable formulas is highly inefficient as n can be arbi-
trarily large.

To avoid such and similar cases of unnecessarily increasing the set of usable formu-
las during proof search, first-order theorem provers implement the notion of redundancy
[21], by extending the standard superposition calculus with term/clause ordering and
literal selection functions. These orderings and selection functions are used to elimi-
nate so-called redundant clauses from the search space, where redundant clauses are
logical consequences of smaller clauses w.r.t. the considered ordering. In our example

(1)¬positive(x) ∨ positive(reverse(x)),

Formal Methods in System Design

above, the clause ¬positive(x) ∨ positive(reversen(x)) would be a redundant clause as it is
a logical consequence of clause (1), with clause (1) being smaller (i.e. using fewer sym-
bols) than ¬positive(x) ∨ positive(reversen(x)) . As such, if clause (1) is already a usa-
ble clause, saturation algorithms implementing redundancy should ideally not store
¬positive(x) ∨ positive(reversen(x)) as usable clauses. To detect and reason about redun-
dant clauses, saturation algorithms with redundancy extend the superposition inference
system with so-called simplification rules. Simplification rules do not add new formu-
las to the set of (usable) clauses in the search space, but instead simplify and/or delete
redundant formulas from the search space, without destroying the refutational complete-
ness of superposition: if a formula A is valid, then ¬A can be refuted using the superpo-
sition calculus extended with simplification rules. In our example above, this means
that if ¬A can be refuted using ¬positive(x) ∨ positive(reversen(x)) , then ¬A can be
refuted in the superposition calculus extended with simplification rules, without using
¬positive(x) ∨ positive(reversen(x)) but using clause (1) instead.

Ensuring that simplification rules are applied efficiently for eliminating redundant
clauses is, however, not trivial. In this paper, we show that SAT-based approaches can
effectively identify the application of simplification rules during saturation, improving thus
the efficiency of saturation algorithms with redundancy.

Subsumption for Effective Saturation While redundancy is a powerful criterion for
keeping the set of clauses used in proof search as small as possible, establishing whether
an arbitrary first-order formula is redundant is as hard as proving whether it is valid. For
example, in order to derive that ¬positive(x) ∨ positive(reversen(x)) is redundant in our
example above, the prover should establish (among other conditions) that it is a logical
consequence of (1), which essentially requires proving based on superposition. To reduce
the burden of proving redundancy, first-order provers implement sufficient conditions
towards deriving redundancy, so that these conditions can be efficiently checked (ideally
using only syntactic arguments and no proofs). One such condition comes with the notion
of subsumption, yielding one of the most impactful simplification rules in superposition-
based theorem proving [22] and SAT solving [23].

The intuition behind first-order subsumption is that a (potentially large) instance of a
clause C does not convey any additional information over C, and thus it should be avoided
to have both C and its instance in the set of usable clauses; to this end, we say that the
instance of C is subsumed by C. More formally, a clause C subsumes another clause
D if there is a substitution � such that �(C) is a submultiset of D.1 In such a case, sub-
sumption removes the subsumed clause D from the clause set. To continue our example
above, a unit clause positive(reversem(x)) , with m ≥ 1 , would prevent us from deriving
¬positive(x) ∨ positive(reversen(x)) for any n ≥ m , and hence eliminate an infinite branch of
clause derivations from the search space.

To detect possible inferences of subsumption and related rules, state-of-the-art prov-
ers use a two-step approach [24]: (i) retrieve a small set of candidate clauses, using literal
filtering methods, and then (ii) check whether any of the candidate clauses represents an
actual instance of the rule. Step (i) has been well researched over the years, leading to
highly efficient indexing solutions [24–26]. Interestingly, step (ii) has not received much
attention, even though it is known that checking subsumption relations between multi-lit-
eral clauses is an NP-complete problem [27]. Although indexing in step (i) allows the first-
order prover to skip step (ii) in many cases, the application of (ii) in the remaining cases

1 we consider a clause C as a multiset of its literals.

 Formal Methods in System Design

may remain problematic (due to NP-hardness). For example, while profiling subsumption
in the world-leading theorem prover Vampire [16], we observed subsumption applications,
and in particular calls to the literal-matching algorithm of step (ii), that consume more than
20 s of running time. Given that millions of such matchings are performed during a typical
first-order proof attempt, we consider such cases highly inefficient, calling for improved
solutions towards step (ii). In this paper we address this demand and show that a tailored
SAT-based encoding can significantly improve the literal matching, and thus subsumption,
in first-order theorem proving. We also advocate the flexibility of SAT solving for variants
of subsumption, in particular when combining subsumption with resolution.

Our Contributions We bring the following main contributions.

(1) We propose a generic SAT-based encoding for capturing potential applications of both
subsumption and subsumption resolution in first-order theorem proving (Sects. 4–5).

 A solution to our SAT-based encoding gives a concrete application of subsumption
and/or subsumption resolution, allowing the first-order prover to apply that instance
of subsumption (resolution) as a simplification rule during saturation. Moreover, our
encoding is complete in the sense that any instance of subsumption (resolution) is a
model of our SAT problem (Theorems 4, 6 and 7).

(2) We tailor encodings of subsumption and subsumption resolution for effective SAT-
based redundancy elimination (Sect. 6). Importantly, we adjust unit propagation and
conflict resolution in SAT solving towards efficient handling of subsumption and sub-
sumption resolution (Sect. 6.1). Our resulting SAT-based redundancy approaches are
directly integrated in saturation (Sect. 7), without changing the underlying design of
efficient saturation.

(3) We establish a flexible learning approach to choose between encodings with different
properties. We detail how to train decision trees to obtain the best complexity-efficiency
trade-off in choosing encodings for subsumption resolution (Sect. 8). As part of an
empirical study, we analyse the utility of solving subsumption and subsumption reso-
lution problems for a large portion of our computation budget. We introduce a method
to choose an appropriate cutoff threshold and stop the SAT search prematurely. We
empirically show that solely solving simple instances of subsumption and subsumption
resolution is not a good solution, even with an educated timeout strategy.

(4) We implemented our SAT-based redundancy approach as a new SAT solver in the
Vampire theorem prover. We empirically evaluate our approach on the standard bench-
mark library TPTP (Sect. 9). Our experiments demonstrate that using SAT solving for
deciding and applying subsumption and subsumption resolution brings clear improve-
ments in the saturation process of first-order proving, for example, improving the (time)
performance of the prover by a factor of 1.36 when both subsumption and subsumption
resolution are enabled.

Extension of Previous Works This paper is an extended version of the conference
papers “First-Order Subsumption via SAT Solving” [28] and “SAT-Based Subsumption
Resolution” [29] published at FMCAD 2022 and CADE 2023, respectively.

In Sect. 5, we extend the SAT-based subsumption framework of [28] to subsumption
resolution and complemented [29] with unifying support for both subsumption and sub-
sumption resolution. In Sect. 6 we extend the SAT solving algorithms of [28, 29] to solve
both subsumption and subsumption resolution. As such, Sects. 4–6 unify the approaches
of [28, 29] into a flexible technique for SAT-based redundancy checking in saturation. Our

Formal Methods in System Design

paper therefore adjusts the texts of [28, 29] and extends their results with formal theoretical
arguments and proofs.

In addition, this paper brings the following new contributions when compared to our
papers [28, 29]. First, we introduce a symbolic approach to combine SAT-based encodings
with learning heuristics to dynamically select the most promising encoding during run-
time (Sect. 8.2). Second, we expand preprocessing via pruning techniques and use our SAT
solver only on hard(er) problems (Sect. 6.2). Here, we provide a faster multilayered filter
to detect unsatisfiable instances before they even reach the SAT engine. Third, we bring
in an empirically motivated approach to trade completeness of SAT-based subsumption
(resolution) for computation time, by cutting off early the harder instances of subsump-
tion and subsumption resolution (Sect. 8.1). We show that subsuming simple clauses is not
enough in practice, strengthening our argument for more scalable algorithms in the context
of redundancy elimination.

2 Preliminaries

We consider standard multi-sorted first-order logic, where we support all standard Boolean
connectives ∧ , ∨ , → , ¬ and quantifiers ∀ and ∃ . We assume that the language contains the
logical constants ⊤ and ⊥ for always true and always false formulas, respectively. Let V
denote the set of first-order variables. For the purpose of our work, we also use B to denote
a set of Boolean variables, where Boolean variables (constants, atoms) are written as b.
Throughout the paper, we write x, y, z for first-order variables; c, d for constants; f, g for
function symbols; and p, q, r for predicates. The set of first-order terms T consists of vari-
ables, constants, and function symbols applied to other terms; we denote terms by t. First-
order atoms, or simply atoms, are predicates applied to terms. Atoms and negated atoms
are also called first-order literals, and denoted by � , s , m . First-order clauses, or simply
clauses, are disjunctions of literals, denoted by C, D, S , M . For convenience, the literals of
a clause will often be written with subscripted lower case letters, e.g., S = s1 ∨ s2 ∨⋯ ∨ sk .
For simplicity, the notation used throughout this paper may possibly use indices.

A clause that consists of a single literal is called a unit clause. Clauses are often viewed
as multisets of literals; that is, a clause S = s1 ∨ s2 ∨… ∨ sk is considered to be the multiset
{s1, s2,… , sk}.

An expression E is a term, literal, or clause. We denote the set of variables occurring in
the expression E by V(E) . A substitution is a partial function � ∶ V → T ; we occasionally
write it as a set of mappings � = {x1 ↦ t1,… , xn ↦ tn} . The function � is extended to arbi-
trary expressions E by simultaneously replacing each variable x in E by �(x) , for all vari-
ables x on which � is defined. We say an expression E1 can be matched to an expression E2
if there exists a substitution � such that �(E1) = E2 . Additionally, we make the distinction
between positive and negative polarity matches. A positive polarity match � matches two
literals s and m such that �(s) = m , whereas a negative (or opposite) polarity match would
complement one of the literals (i.e., �(s) = ¬m).

Saturation and Subsumption Most first-order theorem provers, see e.g. [15–17],
implement saturation with redundancy, using the superposition calculus [22]. A clause S
subsumes a clause M iff there exists a substitution � such that 𝜎(S) ⊑ M , where S and M
are treated as multisets of literals and ⊑ is the multiset inclusion operator. Subsumption
is a simplification rule that deletes subsumed clauses from the search space during sat-
uration. Subsumption gives a powerful basis for other simplification rules. For example,

 Formal Methods in System Design

subsumption resolution [16, 17], also known as contextual literal cutting or self-subsuming
resolution, is the combination of subsumption with binary resolution. On the other hand,
subsumption demodulation [30] results from combining subsumption with demodulation/
rewriting.

SAT Solving Modern SAT solvers, see e.g. [31–33], are based on conflict-driven clause
learning (CDCL) [34], with the core procedures to decide, unit-propagate, and resolve-
conflict. The SAT solver maintains a partial assignment of truth values to the Boolean vari-
ables. Unit propagation (also called Boolean constraint propagation), that is unit-propagate
in a SAT solver, propagates clauses w.r.t. the partial assignment. If exactly one literal l in
a clause remains unassigned in the current assignment while all other literals are false, the
solver sets l to true to avoid a conflict. The two-watched-literal scheme [35] is the standard
approach for efficient implementation of unit propagation.

If no propagation is possible, the solver may choose a currently unassigned variable b
and set it to true or false; hence, decide in SAT solving. The number of variables in the cur-
rent assignment that have been assigned by decision is called the decision level.

If all literals in a clause are false in the current assignment, the solver enters conflict res-
olution, via the resolve-conflict block of SAT solving. If the current decision level is zero,
the conflict follows unconditionally from the input clauses and the solver returns “unsatis-
fiable” (UNSAT). Otherwise, by analysing how the literals in the conflicting clause have
been assigned, the SAT solver may derive and learn a conflict lemma, undo some deci-
sions, and continue solving.

3 Subsumption and subsumption resolution

In this section we formally define subsumption and subsumption resolution. These con-
cepts yield important deletion/simplification rules during saturation.

Definition 1 (Subsumption) A clause S subsumes a clause M iff there exists a substitution
� such that

where ⊑ denotes multiset inclusion.
We call S the side premise of subsumption, and M the main premise of subsumption.

Subsumed clauses are redundant [22] and can thus be deleted from the search space
without compromising the completeness of the saturation algorithm. Removing subsumed
clauses M from the search space F is implemented through a simplifying rule, checking
condition (2) over pairs of clauses (S,M) from F. To check condition (2) for a clause pair
(S,M) , every literal in S is matched to some literal in M ; if a compatible set of matches is
found and no literal in M is matched more than once, then M can be removed from F.

Example 1 Consider the clause M ∶= p(g(c, d)) ∨ ¬p(f (d)) ∨ ¬q(y1).

• S1 ∶= p(g(x1, x2)) ∨ ¬q(x3) subsumes M , as witnessed by the substitution
� = {x1 ↦ c, x2 ↦ d, x3 ↦ y1}.

• S2 ∶= p(g(x1, x2)) ∨ ¬q(x1) , does not subsume M . This is because the first literal of
S2 imposes x1 ↦ c , while the second literal requires x1 ↦ y1 in order to have M sub-

(2)𝜎(S) ⊑ M,

Formal Methods in System Design

sumed. Note that the substitution is applied only to the side premise; we do not unify
the clauses.

• S3 ∶= p(g(x1, d)) ∨ p(g(c, x2)) ∨ ¬q(x3) does not subsume M , because only set inclu-
sion can be satisfied, rather than multi-set inclusion.

When subsumption (2) for a clause pair (S, M) fails, it might still be possible to sim-
plify the clause M by deleting one of its literals. Subsumption resolution, referred to
as SR in the sequel, aims exactly to remove one redundant literal from a clause and is
defined below.

Definition 2 (Subsumption Resolution) Clauses S and M are the side premise and main
premise of subsumption resolution SR , respectively, iff there is a substitution � , a set of
literals S′ ⊆ S , and a literal m� ∈ M such that

implying that M can be replaced by M⧵{m�} . Subsumption resolution SR is hence the rule

We indicate the deletion of a clause M by drawing a line through it, that is (). We
refer to the literal m′ of M as the resolution literal of SR. Intuitively, subsumption reso-
lution is binary resolution followed by subsumption of one of its premises by the con-
clusion. However, by combining two inferences into one it can be treated as a simplify-
ing inference, which is advantageous from the perspective of efficient proof search.

Example 2 Consider clause M ∶= p(g(c, d)) ∨ ¬p(f (d)) ∨ ¬q(y1) from Example 1.

• S4 ∶= ¬p(g(x1, x2)) ∨ ¬q(x3) allows subsumption resolution with main premise M
using the substitution � = {x1 ↦ c, x2 ↦ d, x3 ↦ y1} . Under this substitution, we
have �(S4) = ¬p(g(c, d)) ∨ ¬q(y1) . We resolve �(S4) and M to obtain the conclusion
¬p(f (d)) ∨ ¬q(y1) , which subsumes M . We thus have

• S5 ∶= ¬p(g(x1, d)) ∨ ¬p(g(c, x2)) ∨ ¬q(x3) allows subsumption resolution with M with
the same substitution � and conclusion as used for S4 . In contrast to S4 , two literals
of S5 are mapped to the resolution literal.

• S6 ∶= p(f (x1)) ∨ q(x2) does not allow subsumption resolution with M , because at
most one opposite polarity match is permitted.

• S7 ∶= p(g(c, x1)) ∨ p(f (x1)) ∨ ¬p(f (x2)) does not allow subsumption resolution with
M . While we can find a candidate resolution literal by matching p(f (x1)) to ¬p(f (d)) ,

(3)𝜎(S�) = {¬m�} and 𝜎(S ⧵ S�) ⊆ M ⧵ {m�},

 Formal Methods in System Design

there is no possible match for ¬p(f (x2)) since same-polarity matches to the resolution
literal are not permitted.

• S8 ∶= p(g(c, x1)) ∨ p(f (x1)) ∨ r(x2) does not allow subsumption resolution with M ,
because there is no possible match for r(x2).

We note that subsumption and subsumption resolution are NP-complete problems
[24, 27]. In this paper, we advocate the use of state-of-the-art SAT solving and pro-
vide tailored SAT encodings for subsumption and subsumption resolution, as follows. In
Sect. 4, we express subsumption and subsumption resolution through constraints, allow-
ing us to encode subsumption (resolution) as a SAT problem in Sect. 5.

4 Subsumption constraints

Throughout the remainder of the paper, we assume that clauses do not have duplicate
literals and do not contain both a literal and its negation, as expressed by Assump-
tion 1 below. Only substitutions may collapse several literals into one, as illustrated in
Example 1.

Assumption 1 (No Duplicates) We assume that a clause C = 𝓁1 ∨ 𝓁2 ∨⋯ ∨ 𝓁k does not
have duplicate atoms. That is, C does not contain duplicate literals, nor a literal and its
negation.

We first show that the application of subsumption (Theorem 1) and subsumption resolu-
tion (Theorem 2) can precisely be captured by substitution constraints, as follows.

Theorem 1 (Subsumption Constraints) Consider two clauses S = s1 ∨ s2 ∨⋯ ∨ sk and
M = m1 ∨ m2 ∨⋯ ∨ mn , where M does not contain duplicate literals.

S subsumes M iff there exists a substitution � that satisfies the following two properties:

Proof Because M does not contain duplicate literals, the subsumption condition 𝜎(S) ⊑ M
amounts to the two statements (i) each element of �(S) is an element of M and (ii) the mul-
tiplicity of elements in �(S) is at most one, i.e., there are no duplicates in �(S).

Statement (i) is equivalent to partial completeness (5).
Given (5), multiplicity conservation (6) can be rewritten into

which is equivalent to statement (ii). ◻

Note that the partial completeness property (5) ensures that all literals �(si) have a
literal mj to which they match. Partial completeness (5) alone would, however, encode a

(4)
no duplicates for any C = 𝓁1 ∨ 𝓁2 ∨⋯ ∨ 𝓁k ∶ ∀i i�.

(
i ≠ i� ⇒ 𝓁i ≠ 𝓁i� ∧ 𝓁i ≠ ¬𝓁i�

)

partial completeness ∀i.∃j.�(si) = mj (5)

multiplicity conservation ∀i i� j.
(
i ≠ i� ∧ �(si) = mj ⇒ �(si�) ≠ mj

)
(6)

∀i i�.
(
i ≠ i� ⇒ �(si) ≠ �(si�)

)
,

Formal Methods in System Design

simple subset inclusion. The multiplicity conservation constraint (6) ensures the preser-
vation of the cardinality of the multi-set. In fact, due to Assumption 1, M is a simple set,
and multiplicity conservation (6) prevents the substition � from collapsing several literals
into one. As a result of Theorem 1, only one literal in S can be matched to any literal of M.

Similarly to Theorem 1, we show that subsumption resolution can be formalised through
four constraints, as follows.

Theorem 2 (Subsumption Resolution Constraints) The clauses M = m1 ∨ m2 ∨⋯ ∨ mn
and S = s1 ∨ s2 ∨⋯ ∨ sk are respectively the main and side premises of an instance of the
subsumption resolution rule SR iff there exists a substitution � that satisfies the following
four properties:

Proof It is easy to see that the constraints (7)–(10) hold whenever subsumption resolu-
tion applies. For the other direction, we assume that the four constraints (7)–(10) hold,
and prove that subsumption resolution applies on (S, M). Let S,M and � such that the four
constraints hold. Existence (7) implies that there exists at least one literal m� ∈ M and a
non-empty set S′ ⊆ S such that ¬m� ∈ �(S�) . Uniqueness (8) asserts that m′ is unique, and
therefore {¬m�} = �(S�) . We can now divide the literals of S into two groups: S′ and S∗ such
that �(S�) = {¬m�} and S∗ = S⧵S� . Coherence (10) ensures that m� ∉ �(S∗).

From completeness (9), we derive 𝜎(S∗) ⊆ M . Furthermore, m′ is unique and
m� ∉ �(S∗) . Therefore, 𝜎(S∗) ⊆ M⧵{m�} . Putting everything together, we obtain
𝜎(S�) = {¬m�} ∧ 𝜎(S∗) ⊆ M⧵{m�} ; hence SR over (S, M) applies. ◻

5 SAT formalization of subsumption constraints

Based on the subsumption constraints of Theorems 1 and 2, we provide tailored SAT
encodings for subsumption and subsumption resolution, allowing us to devise custom SAT
solving algorithms in Sect. 6.1 and integrate them in saturation Sect. 7. In what follows,
we fix two arbitrary clauses S = s1 ∨ s2 ∨⋯ ∨ sk and M = m1 ∨ m2 ∨⋯ ∨ mn , and give all
definitions relative to (S,M) . Intuitively, the constraints defined in this section encode the
existence of a substitution � which witnesses subsumption or subsumption resolution.

Variables and substitutions Given the side premise S and main premise M of sub-
sumption or subsumption resolution, we introduce two Boolean variables b+

i,j
 and b−

i,j
 for

each literal pair (si,mj) , as follows:

existence ∃i j.�(si) = ¬mj (7)

uniqueness ∃j�.∀i j.
(
�(si) = ¬mj ⇒ j = j�

)
(8)

completeness ∀i.∃j.
(
�(si) = ¬mj ∨ �(si) = mj

)
(9)

coherence ∀j.
(
∃i.�(si) = mj ⇒ ∀i.�(si) ≠ ¬mj

)
(10)

(11)b+
i,j
⇔ �(si) = mj

(12)b−
i,j
⇔ �(si) = ¬mj

 Formal Methods in System Design

We also define a set of substitutions Σ+
i,j

 and Σ−
i,j

 , called substitution constraints, such that
Σ+
i,j
(si) = mj , and Σ−

i,j
(si) = ¬mj . In the following, we write Σ±

i,j
 to refer to the substitution

constraints of Σ+
i,j

 or Σ−
i,j

 ; when no such substitution exists, we write Σ̃ . For example, let
s1 = p(x, y) and m1 = ¬p(f (c), d) . The two variables b+

1,1
 , b−

1,1
 are associated to the pair

(s1,m1) and the substitutions Σ+
1,1

= Σ̃ , Σ−
1,1

= {x ↦ f (c), y ↦ d}.

Definition 3 (Match set) We define a match set Π(S,M) associated to clauses S and M to
contain a set of Boolean variables and positive/negative polarity matches for each literal
pair (si,mj) of (S,M) . That is,

Compatibility constraints Detecting the application of subsumption and/or subsump-
tion resolution requires finding a substitution � such that the subsumption constraints of
Theorems 1–2 are satisfied. We achieve this by imposing that the substitution constraints
Σ±
i,j
⊆ 𝜎 are true iff Σ±

i,j
 are compatible with a global substitution � , in the following sense.

Definition 4 (Substitution Compatibility) A substitution Σ is compatible with another sub-
stitution Σ� if they do not map the same variable to different terms. Formally, Σ is compat-
ible with Σ� iff

The compatibility of the substitution constraints Σ±
i,j
⊆ 𝜎 with � is encoded using the

Boolean variables b±
i,j

 , as follows:

Note that Σ+
i,j

 is a substitution constraint between si and mj . Further, Σ+
i,j
⊆ 𝜎 ⇔ 𝜎(si) = mj .

Using Σ+
i,j

 together with (15), we derive b+
i,j
⇒ �(si) = mj . A similar result is obtained for

compatibility of Σ−
i,j

.

5.1 SAT encoding of subsumption

Note that Definition 1 and Theorem 1 imply that subsumption is restricted to only positive
matches between literals of S, M. As such, b−

i,j
 need not to be considered for subsumption.

Using (11)–(12), we rewrite the subsumption constraints of Theorem 1 by replacing
substitution constraints with the Boolean variable b+

i,j
 , yielding:

(13)
Π(S,M) =

{(
b+
i,j
,Σ+

i,j

)
,
(
b−
i,j
,Σ−

i,j

) ||| si ∈ S ∧ mj ∈ M ∧ Σ+
i,j
(si) = mj ∧ Σ−

i,j
(si) = ¬mj

}

(14)∀x.(Σ(x) = t ∧ Σ�(x) = t� ∧ t ≠ x ∧ t� ≠ x) ⟹ t = t�.

(15)positive compatibility
⋀
i

⋀
j

(
b+
i,j
⇒ Σ+

i,j
⊆ 𝜎

)

(16)negative compatibility
⋀
i

⋀
j

(
b−
i,j
⇒ Σ−

i,j
⊆ 𝜎

)

Formal Methods in System Design

where AMO({b+
i,j
∣ i = 1, ..., k}) is an at-most-one constraint ensuring that at most one vari-

able b+
i,j

 is true at the same time.

Theorem 3 Assume that clause M does not have duplicate atoms, as in (4). Let
Π(S,M) =

{(
b±
i,j
,Σ±

i,j

)}
 be the match set of S and M . Positive compatibility (15) and

SAT-based partial completeness (17) imply Σ+
i,j
⊆ 𝜎 ⇒ b+

i,j
.

Proof Towards a contradiction, assume there exist i, j such that Σ+
i,j
⊆ 𝜎 and b+

i,j
= ⊥ . Con-

dition (17) implies that there exists j′ such that b+
i,j�

= ⊤ ; then, by constraint (15) we have
Σ+
i,j�

⊆ 𝜎 , that is, Σ+
i,j�
(si) = mj� . Since both Σ+

i,j
 and Σ+

i,j�
 impose a mapping on the same literal

si , the mappings are on the same variables. Therefore, for Σ+
i,j

 and Σ+
i,j�

 to be compatible with
� simultaneously, they must be identical. Hence, mj = Σ+

i,j
(si) = Σ+

i,j�
(si) = mj� , which con-

tradicts Assumption 1. ◻

We have now all the ingredients to introduce our SAT-based encoding of subsumption.

Definition 5 (SAT-Based Subsumption Encoding) The SAT-based subsumption encoding
E�(S,M) of the clauses S and M is the conjunction of positive compatibility (15), SAT-
based partial completeness (17), and SAT-based multiplicity conservation (18).

As a consequence of Theorem 3, we obtain the following corollary.

Corollary 1 A model of the subsumption encoding E�(S,M) satisfies ∀i, j. b+
i,j
⇔ �(si) = mj.

Corollary 1 ensures that ∀i, j. b+
i,j
⇔ Σ+

i,j
⊆ 𝜎 , based on which soundness of our SAT-

based subsumption encoding is derived.

Theorem 4 (Soundness) Assume M does not contain duplicate literals. Clause S subsumes
M iff the subsumption encoding E�(S,M) is satisfiable.

Proof Corollary 1 implies that, if E�(S,M) is satisfied, all propositional variables b+
i,j

 can
be replaced by �(si) = mj . SAT-based partial completeness (17) yields

⋀
i

⋁
j �(si) = mj ,

that is ∀i∃j. �(si) = mj . Using the at-most-one constraint of (18), if b+
i,j
≠ b+

i,j�
 then

b+
i,j

⟹ ¬b+
i,j�

 . Based on (11), we hence obtain that if E�(S,M) is satisfiable, then 𝜎(S) ⊑ M
by Theorem 1.

For the other direction, assume S subsumes M ; that is, S ⊑ M . Based on Assumption 1,
M has no duplicate literals. For �(S) to be a sub-multiset of M , it should not contain dupli-
cates either. Therefore, there exists a total bijective function j(i) such that �(si) = mj(i) .
From this function, one can build a model such that b+

i,j(i)
= ⊤ for all i, and all other varia-

bles are false. This model satisfies positive compatibility (15). Indeed, since �(si) = mj(i) ,
we have Σ+

i,j(i)
⊆ 𝜎 . SAT-based partial completeness (17) is also satisfied since j(i) is a

SAT-based partial completeness
⋀
i

⋁
j

b+
i,j

(17)

SAT-based multiplicity conservation
⋀
j

AMO({b+
i,j
∣ i = 1, ..., k}) (18)

 Formal Methods in System Design

total function. SAT-based multiplicity conservation (18) is ensured by the bijectivity of
j(i). In summary, if S ⊑ M , then E� is satisfiable. ◻

Example 3 (Subsumption with E�(S,M)) Consider the following clause pair S = s1 ∨ s2 ∨ s3
and M = m1 ∨ m2 ∨ m3 , with

We first construct the substitution constraints matching the different literal pairs (si,mj):

The SAT encoding E�(S,M) of subsumption is given by:

Our tailored SAT solver from Sect. 6 returns a model {b+
1,1
, b+

2,2
,¬b+

2,3
,¬b+

3,2
, b+

3,3
} that sat-

isfies E�(S,M) . We build the final substitution � witnessing that 𝜎(S) ⊑ M , and hence S
subsumes M, as the union of all the substitutions bound to variables assigned to true. This
gives � = {x1 ↦ c, x2 ↦ d}.

5.2 Direct SAT encoding of subsumption resolution

Similarly to subsumption, we translate the constraints of Theorem 2 into SAT, while also
considering both positive compatibility (15) and negative compatibility (16). The follow-
ing SAT constraints are derived from Theorem 2:

s1 = q(x1) m1 = q(c)

s2 = p(x1, x2) m2 = p(c, d)

s3 = p(x2, x1) m3 = p(d, c)

Σ+
i,j
=

⎛
⎜⎜⎝

{x1 ↦ c} Σ̃ Σ̃

Σ̃ {x1 ↦ c, x2 ↦ d} {x1 ↦ d, x2 ↦ c}

Σ̃ {x1 ↦ d, x2 ↦ c} {x1 ↦ c, x2 ↦ d}

⎞⎟⎟⎠

b+
1,1

⇒ {x1 ↦ c} ⊆ 𝜎 positive compatibility

b+
2,2

⇒ {x1 ↦ c, x2 ↦ d} ⊆ 𝜎 positive compatibility

b+
2,3

⇒ {x1 ↦ d, x2 ↦ c} ⊆ 𝜎 positive compatibility

b+
3,2

⇒ {x1 ↦ d, x2 ↦ c} ⊆ 𝜎 positive compatibility

b+
3,3

⇒ {x1 ↦ c, x2 ↦ d} ⊆ 𝜎 positive compatibility

b+
1,1

SAT-based partial completeness

b+
2,2

∨ b+
2,3

SAT-based partial completeness

b+
3,2

∨ b+
3,3

SAT-based partial completeness

AMO({b+
1,1
}) SAT-based multiplicity conservation

AMO({b+
2,2
, b+

3,2
}) SAT-based multiplicity conservation

AMO({b+
2,3
, b+

3,3
}) SAT-based multiplicity conservation

Formal Methods in System Design

Theorem 5 Assume that clause M does not have duplicate atoms, as in (4). Let
Π(S,M) =

{(
b±
i,j
,Σ±

i,j

)}
 be the match set of S and M . Positive compatibility (15), nega-

tive compatibility (16), and completeness (21) ensures that Σ+
i,j
⊆ 𝜎 ⇒ b+

i,j
 and

Σ−
i,j
⊆ 𝜎 ⇒ b−

i,j
.

Proof We use a similar argumentation as in proving Theorem 3. We only prove the claim
for si,mj such that Σ+

i,j
⊆ 𝜎 and b+

i,j
= ⊥ ; the other case is similar. SAT-based complete-

ness (21) ensures that there exists j′ such that b+
i,j�

∨ b−
i,j�

 . Using compatibility (15)–(16),
we have b+

i,j�
∨ b−

i,j�
⇒ (�(si) = mj� ∨ �(si) = ¬mj�) . Similarly as in Theorem 3, we obtain

Σ+
i,j
(si) = Σ+

i,j�
(si) ∨ Σ+

i,j
(si) = ¬Σ−

i,j�
(si) , which is equivalent to mj = mj� ∨ mj = ¬mj� . Since

Σ+
i,j
⊆ 𝜎 , we have Σ+

i,j
≠ Σ̃ . Therefore, Σ−

i,j
 is the incompatible substitution Σ̃ ; that is, Σ−

i,j
= Σ̃ .

From Σ−
i,j
= Σ̃ , we infer b−

i,j
= ⊥ . In short, we have ¬b+

i,j
∧ ¬b−

i,j
∧ (b+

i,j�
∨ b−

i,j�
) , therefore j ≠ j′

and (4) of Assumption 1 is violated. In conclusion, (4) ∧ (15) ∧ (16) ∧ (21) implies (11) ∧
(12). ◻

Following upon Theorem 5, the (direct) SAT formalization of subsumption resolution is
given below.

Definition 6 (Direct SAT Encoding of Subsumption Resolution) The direct SAT encoding
of subsumption resolution Ed

��
(S,M) for the side and main premises S and M is the conjunc-

tion of positive compatibility (15), negative compatibility (16), existence (19), unique-
ness (20), completeness (9) and coherence (22).

Corollary 2 A model of the direct subsumption resolution encoding Ed
��
(S,M) satisfies

∀i, j. b+
i,j
⇔ �(si) = mj and ∀i, j. b−

i,j
⇔ �(si) = ¬mj.

Towards finding an effective SAT-solving approach, Theorem 6 yields a direct algorith-
mic solution to subsumption resolution.

Theorem 6 (Soundness) Assume M does not contain duplicate atoms. Clauses S and M
are respectively the side and main premises of subsumption resolution iff Ed

��
(S,M) is

satisfiable.

Proof Similarly to Theorem 4, we use Corollary 2 together with the definition of b±
i,j

 to
obtain the SAT constraints of Ed

��
(S,M) from Theorem 2.

SAT-based existence
⋁
i

⋁
j

b−
i,j

(19)

SAT-based uniqueness
⋀
j

⋀
i

⋀
i�≥i

⋀
j�>j

¬b−
i,j
∨ ¬b−

i�,j�
(20)

SAT-based completeness
⋀
i

⋁
j

b+
i,j
∨ b−

i,j
(21)

SAT-based coherence
⋀
j

⋀
i

⋀
i�

¬b+
i,j
∨ ¬b−

i�,j
(22)

 Formal Methods in System Design

Assume S and M are the side and main premises of subsumption resolution. There exists
a substitution � , a literal m� ∈ M and a set of literals S′ ⊆ S such that
𝜎(S�) = {¬m�} ∧ 𝜎(S⧵S�) ⊆ M⧵{m�} . We can build a model for b±

i,j
 that satisfies each con-

straint of Ed
��
(S,M) . Without loss of generality, let m� = m1 . For each literal in si� ∈ S� , we

set b−
i�,1

= ⊤ . All other variables b±
i�,j

 are set to false. Let S∗ = S⧵S� and M∗ = M⧵{m�} . If
𝜎(S∗) ⊆ M∗ , then there exists a function j∗(i∗) such that for each literal si∗ , we have
�(si∗) = mj∗(i∗) . For each literal si∗ , we set b+

i∗,j∗(i∗)
= ⊤ and all other variables are false. This

assignment is indeed a model of Ed
��
(S,M) . ◻

Example 4 (Subsumption Resolution with Ed
��
(S,M)) Consider the following clause pair

S = s1 ∨ s2 ∨ s3 and M = m1 ∨ m2 ∨ m3 , with

We build the following match sets:

We can express the direct subsumption resolution encoding Ed
��
(S,M) as

s1 = p(f (x1), x2) m1 = ¬p(f (c), d)

s2 = ¬p(x2, x1) m2 = ¬p(d, c)

s3 = p(f (x3), x1) m3 = p(f (y1), c)

Σ+
i,j
=

⎛
⎜⎜⎝

Σ̃ Σ̃ {x1 ↦ y1, x2 ↦ c}

{x1 ↦ d, x2 ↦ f (c)} {x1 ↦ c, x2 ↦ d} Σ̃

Σ̃ Σ̃ {x1 ↦ c, x3 ↦ y1}

⎞⎟⎟⎠

Σ−
i,j
=

⎛
⎜⎜⎝

{x1 ↦ c, x2 ↦ d} Σ̃ Σ̃

Σ̃ Σ̃ {x1 ↦ c, x2 ↦ f (y1)}

{x1 ↦ d, x3 ↦ c} Σ̃ Σ̃

⎞⎟⎟⎠

Formal Methods in System Design

Our SAT solver from Sect. 6 derives the model {¬b+
1,3
,¬b+

2,1
, b+

2,2
, b+

3,3
, b−

1,1
,¬b−

2,3
,¬b−

3,1
} of

Ed
��
(S,M) , as detailed in Example 6. The substitution � is correct and is composed of the

union of all the substitutions bound to variables assigned true:

that is,

The conclusion clause of SR is built from the model by removing m1 from the main prem-
ise because b−

1,1
= ⊤ . This gives us the resolution clause M⧵{m1} = ¬p(d, c) ∨ p(f (y1), c) ,

which subsumes M.

5.3 Indirect SAT encoding of subsumption resolution

The direct SAT encoding Ed
��
(S,M) of subsumption resolution has a potential inefficiency

due to the fact that the uniqueness constraint (20) may create a quartic number of clauses
in the worst case. We circumvent this issue by trading off constraints for variables, resulting
in an indirect SAT encoding Ei

��
(S,M) of subsumption resolution. Doing so, we introduce a

b+
1,3

⇒ {x1 ↦ y1, x2 ↦ c} ⊆ 𝜎 positive compatibility

b+
2,1

⇒ {x1 ↦ d, x2 ↦ f (c)} ⊆ 𝜎 positive compatibility

b+
2,2

⇒ {x1 ↦ c, x2 ↦ d} ⊆ 𝜎 positive compatibility

b+
3,3

⇒ {x1 ↦ c, x3 ↦ y1} ⊆ 𝜎 positive compatibility

b−
1,1

⇒ {x1 ↦ c, x2 ↦ d} ⊆ 𝜎 negative compatibility

b−
2,3

⇒ {x1 ↦ c, x2 ↦ f (y1)} ⊆ 𝜎 negative compatibility

b−
3,1

⇒ {x1 ↦ d, x3 ↦ c} ⊆ 𝜎 negative compatibility

b−
1,1

∨ b−
2,3

∨ b−
3,1

SAT-based existence

¬b−
1,1

∨ ¬b−
2,3

SAT-based uniqueness

¬b−
2,3

∨ ¬b−
3,1

SAT-based uniqueness

b−
1,1

∨ b+
1,3

SAT-based completeness

b+
2,1

∨ b+
2,2

∨ b−
2,3

SAT-based completeness

b−
3,1

∨ b+
3,3

SAT-based completeness

¬b−
1,1

∨ ¬b+
2,1

SAT-based coherence

¬b−
3,1

∨ ¬b+
2,1

SAT-based coherence

¬b−
2,3

∨ ¬b+
1,3

SAT-based coherence

¬b−
2,3

∨ ¬b+
3,3

SAT-based coherence

𝜎 =
⋃{

Σ+
i,j
|| b+i,j = ⊤

}
∪
⋃{

Σ−
i,j
|| b−i,j = ⊤

}

� = {x1 ↦ c, x2 ↦ d} ∪ {x1 ↦ c, x3 ↦ y1} ∪ {x1 ↦ c, x2 ↦ d}

= {x1 ↦ c, x2 ↦ d, x3 ↦ y1}

 Formal Methods in System Design

new set of propositional variables cj such that cj is true iff mj is the resolution literal of SR.
In other words, cj ⇔ ∃i. �(si) = ¬mj.

We encode the role of cj with constraint (23) given below:

Using variables cj , the constraints of Theorem 2 are turned into the following SAT
formulas:

Definition 7 (Indirect SAT Encoding of Subsumption Resolution) The indirect SAT encod-
ing for subsumption resolution Ei

��
(S,M) for clauses S and M is the conjunction of posi-

tive compatibility (15), negative compatibility (16), structurality (23), revised exist-
ence (24), revised uniqueness (25), completeness (26), and revised coherence (27).

With this new indirect encoding Ei
��
(S,M) , the number of clauses is only quadratic with

respect to the length of the clauses.

Theorem 7 (Soundness) Assume M does not contain duplicate literals, as in (4). Clauses S
and M are the side and main premise of subsumption resolution iff Ei

��
(S,M) is satisfiable.

Proof From Theorem 5, if (15) ∧ (16) ∧ (26) is satisfiable, then ∀i, j. b+
i,j
⇔ �(si) = mj

and ∀i, j. b−
i,j
⇔ �(si) = ¬mj . Using (23), we obtain ∀j. cj ⇔ ∃i. �(si) = ¬mj . Based on

(24)-(27), we obtain the subsumption resolution constraints of Theorem 2. Therefore, if
Ei
��
(S,M) is satisfiable, then subsumption resolution can be applied over (S,M).
For the other direction, assume subsumption resolution can be applied over (S,M) . Then,

we can build a model that satisfies Ei
��
(S,M) , as follows. There exists a substitution � , a

literal m� ∈ M and a set of literals S′ ⊆ S such that 𝜎(S�) = {¬m�} ∧ 𝜎(S⧵S�) ⊆ M⧵{m�} .
Without loss of generality, let m1 = m� be the resolution literal of SR. We set c1 = ⊤ and
all the other cj to false. For each literal in si� ∈ S� , we set b−

i�,1
= ⊤ and b−

i�,j
= ⊥ , for j ≠ 1 ;

further, b+
i�,j

= ⊥ , for all j. Let S∗ = S ⧵ S� . For each literal si∗ ∈ S∗ , there exists a literal
mj∗ ∈ M ⧵ {m1} such that �(si∗) = mj∗ . We set b+

i∗,j∗
= ⊤ ; b+

i∗,j
= ⊥ , for j ≠ j∗ ; and b−

i∗,j
= ⊥ ,

for all j. This is indeed a model of Ei
��
(S,M).

 ◻

We note that, in practice, the number of clauses of the indirect SAT encoding can be greater
than the direct SAT encoding, even for large clauses. Indeed, it is not necessary to define

(23)SAT-based structurality
⋀
j

[
¬cj ∨

⋁
i

b−
i,j

]
∧
⋀
j

⋀
i

(
cj ∨ ¬b−

i,j

)

SAT-based revised existence
⋁
j

cj (24)

SAT-based revised uniqueness AMO({cj, j = 1, ..., |M|}) (25)

SAT-based completeness
⋀
i

⋁
j

b+
i,j
∨ b−

i,j
(26)

SAT-based revised coherence
⋀
j

⋀
i

(
¬cj ∨ ¬b+

i,j

)
(27)

Formal Methods in System Design

variables for literal pairs that we know in advance cannot be matched. If Σ+
i,j
= Σ̃ , we do not

define b+
i,j

 because the constraint b+
i,j
⇒ Σ+

i,j
⊆ 𝜎 will be reduced to b+

i,j
⇒ ⊥ and b+

i,j
 is always

false. We do not need to add the clauses containing ¬b+
i,j

 , and we remove the literals b+
i,j

 where it
appears. In practice, most instances of subsumption and subsumption resolution have a sparse
Boolean variable set, and behave quite well even with the direct SAT encoding. Choosing which
encoding to use is discussed in Sect. 8.2.

Example 5 (Subsumption Resolution with Ei
��
(S,M)) Consider clauses from Example 4.

Namely, S = s1 ∨ s2 ∨ s3 and M = m1 ∨ m2 ∨ m3 , with

In the indirect SAT encoding Ei
��
(S,M) , we introduce two extra variables c1 and c3 such that

c1 is true iff ∃i. b−
i,1

 , and c3 is true iff ∃i. b−
i,3

 . It is not necessary to define c2 since no nega-
tive polarity matches exist towards m2 , and c2 is set to false. The SAT constraints identical
to the direct SAT encoding Ed

��
(S,M) are written below in light gray to better highlight the

difference between Ed
��
(S,M) and Ei

��
(S,M).

s1 = p(f (x1), x2) m1 = ¬p(f (c), d)

s2 = ¬p(x2, x1) m2 = ¬p(d, c)

s3 = p(f (x3), x1) m3 = p(f (y1), c)

 Formal Methods in System Design

Using the above indirect encoding Ei
��
(S,M) , our SAT solver in Sect. 6 finds the same

model (substitution) of subsumption resolution as in Example 4, with c1, c2 being assigned
true and false respectively.

We remark that the indirect encoding Ei
��
(S,M) does not seem to have much of an

advantage on small examples similar to Example 5. Indeed, structurality (23) adds a few
clauses that are not necessary with the direct encoding Ed

��
(S,M) . In Sect. 8.2 we empiri-

cally show that the indirect encoding Ei
��
(S,M) of subsumption resolution performs better

on larger clauses.

6 SAT solving for subsumption variants

We now describe our approach for solving the SAT-based encodings E�(S,M) , Ed
��
(S,M)

and Ei
��
(S,M) of Sect. 5 for subsumption and subsumption resolution. We first introduce

our SAT solver adjusted for the efficient handling of subsumption (resolution) constraints,
important for reasoning about substitution constraints Σ±

i,j
⊆ 𝜎 and at-most-one constraints

(Sect. 6.1). We then describe pruning-based preprocessing steps of subsumption (resolu-
tion) instances (Sect. 6.2), with the purpose of improving SAT-based solving of subsump-
tion and subsumption resolution.

Lightweight SAT Solving We use the term lightweight SAT Solving to highlight an
important engineering aspect when designing a SAT solver for subsumption and subsump-
tion resolution. A typical run of a first-order theorem prover involves a large number of
simple subsumption (resolution) tests and a small number of hard tests. Even after pruning,
most instances that make it to the SAT solver are solved quickly (see also Sect. 8.1 and
Fig. 1). As a result, some care must be taken to ensure that setup of the SAT instances is
efficient, because a large overhead may easily outweigh gains in solving efficiency.

6.1 SAT solver for subsumption encodings

Recall that the SAT-based encodings E�(S,M) , Ed
��
(S,M) and Ei

��
(S,M) of subsumption and

subsumption resolution use substitution constraints Σ±
i,j
⊆ 𝜎 and at-most-one constraints

(AMO), which are out of scope for standard SAT solvers [31, 32]. A naïve SAT approach
of handling such constraints would be translating Σ±

i,j
⊆ 𝜎 and AMO formulas into purely

propositional clauses. However, such a translation would either require additional prop-
ositional variables to encode AMO constraints or would come with a quadratic2 number
of propositional clauses [36]; a similar situation also occurs for substitution constraints
Σ±
i,j
⊆ 𝜎 . To ensure efficient solving of subsumption (resolution), solving our SAT encod-

ings needs to be lightweight in order to be practically feasible during redundancy checking
in a first-order theorem prover.

As a remedy to overcome the increase in propositional variables/clauses in a naïve SAT
translation approach, we support substitution constraints as in (15) and (16), as well as
AMO constraints as in SAT-based multiplicity conservation (18) and revised unique-
ness (25), natively in SAT solving. In particular, we adjust unit propagation and conflict

2 Quadratic in the size of the AMO constraint.

Formal Methods in System Design

resolution in CDCL-based SAT solving for handling propositional formulas with substitu-
tion constraints and AMO constraints.

At-most-one constraints Consider the constraint AMO({b1, b2,… , bn}) , which is
equivalent to the following purely propositional formula:

To keep our encoding of AMO constraints lightweight, we combine SAT solving with
AMO constraints in a way similar to SMT solving, as follows.

When the constraint AMO({b1, b2,… , bn}) is added to the SAT solver, each of the vari-
ables b1, b2,… , bn watches the constraint. Whenever one of the variables bi is assigned
true, all bj with j ≠ i must be false in order not to violate AMO({b1, b2,… , bn}) ; hence bj
are propagated to false. The reasons of these propagations are exactly the clauses ¬bi ∨ ¬bj
of (28); however, these clauses do not need to be explicitly constructed. Conflict analysis
in SAT solving then behaves as usual, without special considerations for AMO constraints.

Compatibility constraints Similar to AMO constraints, a compatibility constraint is
equivalent to a set of binary clauses, as given in (15)-(16). Let Σ1 ⋒ Σ2 denote that the
substitutions Σ1 and Σ2 are incompatible; based on Definition 4, there exists thus a variable
x such that Σ1(x) ≠ Σ2(x) . Let F be the set of constraints under consideration. The purely
propositional semantics of the compatibility constraints (15)-(16) is the clause set:

We remark that it is not necessary to generate the clauses (29) explicitly. Conceptually, our
SAT solver updates a global substitution �� whenever a Boolean variable b with associated
substitution constraint Σ ⊆ 𝜎 is assigned true. Our SAT solver then ensures that the follow-
ing invariant holds:

where � is the current set of assigned literals of the SAT solver (i.e., the trail). Our SAT
solver uses �� to propagate any Boolean variables bound to incompatible substitutions to
false.

We note that, in practice, it is not necessary to keep �� explicitly; instead it suffices
to maintain a lookup table that allows propagating such incompatible substitutions. Con-
cretely, each first-order variable x watches the set Bindings(x) of Boolean variables b that
impose a binding on x along with the bound term t:

When the global substitution �� is updated with a variable x newly mapped to a term t, our
SAT solver uses Bindings(x) to retrieve all the Boolean variables b′ with an associated sub-
stitution constraint Σ� ⊆ 𝜎 such that Σ�(x) ≠ t . The solver then propagates b′ to false, and
the propagation reason is the binary clause ¬b ∨ ¬b� , where b is the Boolean variable that
caused �� (x) = t.

As a result, our SAT solver ensures that Σ� ⋒ � implies ¬b� . We perform this propagation
of incompatible substitution constraints immediately when a Boolean variable is assigned
true. This way, we enforce the invariant (30) and guarantee there can be no conflict due to
substitution constraints. Indeed, if b ⇒ Σ ∈ � and Σ ⋒ �� , then b would have been assigned
false before.

(28)
⋀
i

⋀
j>i

¬bi ∨ ¬bj

(29)
{
¬b ∨ ¬b� ∣ (b ⇒ Σ ⊆ 𝜎) ∈ F ∧ (b� ⇒ Σ� ⊆ 𝜎) ∈ F ∧ Σ ⋒ Σ�

}

(30)𝜎𝜏 =
⋃{

Σ || b ⇒ (Σ ⊆ 𝜎) ∈ F ∧ b ∈ 𝜏
}
,

Bindings(x) = {(b, t) ∣ b → (Σ ⊆ 𝜎) ∈ F ∧ t = Σ(x)}

 Formal Methods in System Design

Example 6 (SAT Solving of the SAT-Based Direct Encoding of Subsumption Resolution)
We illustrate the main steps of our SAT solver using the direct encoding Ed

��
(S,M) of sub-

sumption resolution from Example 4.
A potential execution of our SAT solver on Ed

��
(S,M) decides b+

1,3
= ⊤ . This imposes,

among others, the mapping x1 ↦ y1 , and due to the compatibility constraints all other
Boolean variables are immediately propagated to false. This leads to conflicts with the
existence and some completeness constraints. Assume the solver discovers the conflict
with b−

3,1
∨ b+

3,3
 . As explained above, the reasons for propagating these literals are the

implicit binary clauses ¬b+
1,3

∨ ¬b−
3,1

 and ¬b+
1,3

∨ ¬b+
3,3

 , and after resolution, the solver will
backtrack, learn the asserting clause ¬b+

1,3
 , and propagate b+

1,3
= ⊥ . With completeness

b−
1,1

∨ b+
1,3

 , the solver propagates b−
1,1

= ⊤ , which imposes the mappings x1 ↦ c and x2 ↦ d
on �� . By compatibility, the solver now propagates b+

2,1
= ⊥ , b−

2,3
= ⊥ , and b−

3,1
= ⊥ . With

the remaining completeness constraints, the solver now propagates b+
2,2

= ⊤ and b+
3,3

= ⊤ .
At this point, all Boolean variables are assigned and all constraints are satisfied, yielding
the model {¬b+

1,3
,¬b+

2,1
, b+

2,2
, b+

3,3
, b−

1,1
,¬b−

2,3
,¬b−

3,1
} of Ed

��
(S,M) from Example 4.

6.2 Pruning subsumption variants for SAT solving

Reducing the number of (trivially unsat) instances of subsumption and subsumption reso-
lution is an important preprocessing step for increasing the effectiveness of our SAT solv-
ing engine from Sect. 6.1.

Pruning subsumption We prune unsat subsumption instances between (S,M) by check-
ing multiset inclusion between the predicateof atoms of S,M , together with their polarities.
Intuitively, this pruning step allows to easily determine that there exists no bijective func-
tion j(i) such that �(si) = mj(i) if the atom cardinalities do not match.

More formally, let P(�) compute the predicate corresponding to literal � and Q(�)
denote the polarity of � . Our pruning criterion for subsumption is:

Theorem 8 (Pruning Subsumption) If the pruning criterion (31) is unsat, then S does not
subsume M.

Proof The multisets {(P(si),Q(si)) ∣ si ∈ S} and {(P(mj),Q(mj)) ∣ mj ∈ M} are projections
� of the multisets of literals of S and M respectively. This projection � has the property
to make its argument substitution agnostic. That is, if there exists � such that �(si) = mj ,
then si and mj are projected on the same location; that is, (�(si) = mj) ⇒ (�(si) = �(mj)) .
Therefore, if �(si) ≠ �(mj) , then there exist no matching substitution between si and mj . If
formula (31) is unsat, then 𝜋(S)⊑𝜋(M) , implying that there exists no substitution � such
that 𝜎(S) ⊑ M ; as such, subsumption cannot be applied between (S,M) . ◻

Pruning subsumption resolution We similarly prune unsat instances of subsumption
resolution, by using a weaker version of (31). Namely, for pruning unsat subsumption reso-
lution instances, we only check set inclusion between the predicate sets of S and M:

(31)
{(

P(si),Q(si)
) || si ∈ S

}
⊑
{(

P(mj),Q(mj)
) || mj ∈ M

}

Formal Methods in System Design

Theorem 9 Validity of the subsumption pruning criterion (31) implies validity of the sub-
sumption resolution pruning criterion (32).

Proof The sets {P(si) ∣ si ∈ S} and {P(mj) ∣ mj ∈ M} are obtained by a projection � from
{(P(si),Q(si)) ∣ si ∈ S} and {(P(mj),Q(mj)) ∣ mj ∈ M} , respectively. Therefore, for each
pair of elements (e, e�) ∈ {(P(si),Q(si)) ∣ si ∈ S} × {(P(mj),Q(mj)) ∣ mj ∈ M} , if e = e� ,
then �(e) = �(e�) , and the multiset inclusion is preserved.

As S1 ⊑ S2 (multiset inclusion) implies S1 ⊆ S2 (set inclusion), we obtain that (31)
implies (32). ◻

The following is an immediate consequence of Theorems 8-9.

Corollary 3 If the pruning criterion (32) is not satisfied, then S does not subsume M.

Similarly to Theorem 8, we use the pruning criterion (32) to detect (and delete) unsat
subsumption resolution instances between (S,M).

Theorem 10 (Pruning Subsumption Resolution) If the pruning criterion (32) is unsat, then
S and M are not side and main premises of subsumption resolution.

Proof Similarly to Theorem 8, if criterion (32) is not satisfied, then there exists a lit-
eral si ∈ S that cannot be matched with any literal in M ; as such, the completeness con-
straint (9) of subsumption resolution is violated. ◻

Fast implementations of pruning To represent the predicate sets used in our pruning
criterion, we use an array A of unsigned integers whose index is the index of the predicate.
We first build the multiset with the predicates of the main premise M . When a predicate is
hit, the value stored in A is incremented, we check that S contains a sub-multiset of predi-
cates, and decrement the previously stored value within A.

Storing A entries while applying pruning checks may be memory-expensive. Reset-
ting the memory before each pruning is also an expensive operation. We therefore use a
time stamp t such that ∀i. A[i] < t + |M| holds. Intuitively, before pruning is applied,
∀i. A[i] < t holds. Algorithm 1 summarizes our pruning procedure using time stamps.

(32)
{
P(si)

|| si ∈ S
}
⊆
{
P(mj)

|| mj ∈ M
}

 Formal Methods in System Design

Algorithm 1 Pruning algorithm for subsumption and subsumption resolution

Pruning after building match sets While our pruning criteria (31)-(32) are fast to com-
pute, they do not reason about substitutions needed for subsumption (resolution). However,
while building the match sets Π(S,M) , we may also detect unsat instances of subsumption
and subsumption resolutions. For example, let si = p(f (x)) be a literal of S . If M does not
contain any literal of the form p(f (⋅)) , there is no unifying substitution between (S,M) . The
non-existence of such substitutions would not necessarily be detected by (31)-(32), but could
be recorded while building the substitution sets.

We therefore use the following additional pruning criteria for subsumption:

(33)∀i∃j. Σ+
i,j
≠ Σ̃

Formal Methods in System Design

Theorem 11 [Substitution Sets for Pruning Subsumption] Let Π(S,M) =
{(

b±
i,j
,Σ±

i,j

)}
 be

the match set of S and M . If (33) is unsat, then S does not subsume M.

Proof Theorem 4 implies that, if S subsumes M , then ∀i∃j. b+
i,j

 and ∀i, j. b+
i,j
⇒ Σ+

i,j
⊆ 𝜎 .

Hence, ∀i∃j. Σ+
i,j
⊆ 𝜎 , which is equivalent to (33) since Σ̃ ∈ 𝜎 ⇒ ⊥ . Therefore, if S sub-

sumes M , then (33) is valid. ◻

A pruning criterion similar to (33) can be applied to subsumption resolution:

Theorem 12 [Substitution Sets for Pruning Subsumption Resolution] Let
Π(S,M) =

{(
b±
i,j
,Σ±

i,j

)}
 be the match set of S,M . If (34) is unsat, then S and M are not

side and main premises of subsumption resolution.

Proof Similarly to the proof of Theorem 11, the compatibility and completeness con-
straints of Ed

��
(S,M) imply (34). Based on Theorem 6, if S,M are side and main premises of

subsumption resolution, then (34) is valid. ◻

We remark that the pruning criterion (32) is a special case of Theorem 12. Therefore,
if (32) is unsat, then (33) is also unsat and no subsumption resolution is possible. Fur-
thermore, if there are no negative polarity substitutions, then the existence constraint of
Ed
��
(S,M) does not hold. As such, a further pruning criterion for (unsat) subsumption reso-

lution instances is:

Theorem 13 [Polarities for Pruning Subsumption Resolution] Let Π(S,M) =
{(

b±
i,j
,Σ±

i,j

)}

be the match set of S,M . If (35) is unsat, then S and M are not premises of subsumption
resolution.

Proof Based on Theorem 4, if Ed
��
(S,M) is satisfiable, then the existence property ∃i, j. b−

i,j

is satisfiable and the compatibility constraint is satisfied by the same assignment. There-
fore, if Ed

��
(S,M) is satisfiable, then ∃i, j. Σ−

i,j
≠ Σ̃ . ◻

Finally, if there exist two literals in S such that they do not have positive matches to
literals in M and the respective predicates of the literals are different, then subsumption
resolution is not possible. This yields our final pruning criterion:

(34)∀i∃j. Σ+
i,j
≠ Σ̃ ∨ Σ−

i,j
≠ Σ̃

(35)∃i, j. Σ−
i,j
≠ Σ̃

(36)∀i, i�. (i ≠ i�) ⇒ (P(si) = P(si�) ∨ ∃j Σ+
i,j
≠ Σ̃ ∨ ∃j Σ+

i�,j
≠ Σ̃)

 Formal Methods in System Design

Theorem 14 (Predicate Matches for Pruning Subsumption Resolution) Let
Π(S,M) =

{(
b±
i,j
,Σ±

i,j

)}
 be the match set of S,M . If (36) is unsat, then S and M are not

side and main premises of subsumption resolution.

Proof By contradiction, assume that subsumption resolution could be applied to (S,M) .
Then, there exists a unique m′ such that �(S�) = {m�} . However, if (36) is unsat, there exist
two different literals in S that can only be mapped negatively to m′ (or not at all). These
literals have a different predicate, therefore they cannot be both matched to the same liter-
als (∀�, l, l�. P(l) ≠ P(l�) ⇒ �(l) ≠ �(l�)). If one of these literals cannot be matched to the
resolution literal of SR, and has no positive match, then it cannot be matched to any literal
in M ; hence and subsumption resolution cannot be applied. ◻

Remark 1 It is easy to see that Algorithm 1 is a very cheap procedure. During our experi-
ments (Sect. 9, we observed that more than 95% of instances of subsumption are filtered
out by the pruning criterion (31) alone, and more than 50% are also pruned by (32). When
it comes to subsumption resolution, in our experiments 90% of subsumption resolution
instances are pruned by (32). The more restrictive nature of (34) and (35) prunes an addi-
tional 5 % of subsumption resolution instances. As a result, our experiments show that
pruning is indeed an important and cheap preprocessing step. Thanks to pruning, in our
experiments only 5% of subsumption (resolution) instances need to use more expensive
SAT-based computation steps, using our SAT solver from Sect. 6.1.

7 SAT‑based subsumption variants in saturation

In this section, we discuss the direct integration of the SAT solving engine of Sect. 6 within
the saturation loop of first-order theorem proving. Such an integration greatly improves
redundancy checking in theorem proving, without making significant changes to the under-
lining saturation algorithms of the prover.

Algorithm 2 Forward simplification with SAT-based subsumption resolution

Formal Methods in System Design

To design a saturation algorithm, one important aspect is to understand how to organise
redundancy elimination during proof search. One common design principle in this respect comes
with so-called given clause algorithms [37], where inference selection is implemented using
clause selection. At each iteration of the algorithm, a clause from the proof search is selected
and inferences are performed between this clause and previously selected clauses. When a new
clause is generated, this clause should only be kept if it is not redundant or it cannot be simpli-
fied by another existing clause; we refer to such redundancy checks over a new clause as forward
redundancy, implementing forward simplification. On the other hand, a newly generated clause
could make existing clauses in the search space redundant; we call such redundancy checks with
a new clause as backward redundancy, implementing backward simplification.

Using the SAT solver of Sect. 6 for detecting subsumption (resolution) in saturation
needs therefore to (i) address both forward and backward variants of subsumption and sub-
sumption resolution, and (ii) organize proof search with these subsumption variants solved
via SAT. In the rest of this section, we mainly focus on forward simplification via sub-
sumption and subsumption resolution, and briefly discuss differences with respect to back-
ward simplification.

Forward simplification Intuitively, as subsumption is a stronger inference than sub-
sumption resolution, subsumption should be performed first. As such, a standard forward
simplification loop for subsumption (resolution) would be:

1. From a selected clause M , search some subsumption candidate clauses {Sk ∣ k = 1,…}
using a generalisation term index [24];

2. For each clause in {Sk ∣ k = 1,…} , check if Sk subsumes M . If this is the case, then stop
and remove M from the clause set.

3. For each clause in {Sk ∣ k = 1,…} , check if Sk can delete a literal from M using sub-
sumption resolution. If it is the case, then replace M by the conclusion of subsumption
resolution SR and stop.

Algorithm 3 SAT-based subsumption in saturation

 Formal Methods in System Design

In this approach, finding the substitutions of subsumption (resolution) comes with
a significant computation burden. Further, as subsumption checks do not succeed most
of the time, the match sets Π(Sk,M) must be cached or recomputed. Therefore, when
integrating our SAT-based solving of subsumption (resolution) in saturation using Algo-
rithm 2, we use pruning-based preprocessing and build match sets before checking sub-
sumption and subsumption resolution. Our Algorithm 2 yields thus a new, SAT-based
forward simplification loop for subsumption (resolution) in saturation. Algorithm 2 uses
Algorithm 3 to possibly prune both subsumption and subsumption resolution and then
set up a complete match set. Even though subsumption alone does not require the nega-
tive polarity substitutions, these substitutions are computed for subsumption resolution.
Then, Algorithm 4 benefits from the work done by subsumption, since it only requires
to create the propositional clause set.

Remark 2 In Algorithm 2, when a subsumption resolution check was successful, no other
is performed, but the algorithm still searches for a subsumption. In this case, only a partial
match set is necessary and subsumption will not fill negative polarity matches.

The index used to provide candidate clauses returns clauses on a literal by literal man-
ner. That is, for each literal m ∈ M , the index returns clauses that have at least one literal
that is a generalisation of m . However, for subsumption resolution, we also get clauses with
a generalisation of complemented literals ¬mj . In this case, we do not need to check for
subsumption, and only subsumption resolution is performed. Yet, subsumption resolution
still sets up the match set.

Algorithm 4 SAT-based subsumption resolution in saturation—with subsumption already
set up via Algorithm 3

Backward simplification Backward simplifications use newly generated clauses S to sim-
plify the current clause set F. Given a newly generated clause S , backward subsumption (reso-
lution) thus checks whether S subsumes some clauses M ∈ F (or can remove a literal from
M). In this case, performing subsumption resolution right after subsumption is almost free.
Indeed, since backward simplifications do not stop after simplifying one clause, the only cost
of performing subsumption resolution right after subsumption is to setup the full match set,
rather than simply setting up the positive polarity matches.

Extensions of subsumption variants in saturation Our SAT-based approach for solv-
ing subsumption (resolution) in saturation is very flexible. Indeed, the SAT solver can handle

Formal Methods in System Design

different types of matches to the same literal pair, yielding further extensions of the standard
subsumption and subsumption resolution framework.

In the case of symmetric predicates, such as equality, two different substitutions are pos-
sible. Consider the literals si ∶= x = y and mj ∶= c = f (c) . To match these two literals,
one can either use the substitution {x ↦ c, y ↦ f (c)} or {x ↦ f (c), y ↦ c} . In this case,
both substitutions would be added to the match set Π(si,mj) of si,mj . That is, the matches
({x ↦ c, y ↦ f (c)},+, b+

i,j
) and ({x ↦ f (c), y ↦ c},+, b�+

i,j
) are added to Π(si,mj) . In our

implementation of the match set, it provides a list of matches (b±
i,j
,Σ±

i,j
) with either i or j fixed.

When enumerating over this list to build the clauses, we ignore the second index. If several
variables have the same index (i, j), the system will not be broken. Therefore, even when add-
ing more than one match to the same literal pair, the SAT encoding remains the same. In addi-
tion, both substitutions are distinct, since otherwise one of the literals of si or mj is a tautology
and the respective clause would be removed. Handling of symmetric predicates brings great
practical improvements, see Remark 3.

In the case of subsumption resolution, one may use the most general unifier on the reso-
lution literal m′ , if the variable set of m′ is disjoint from the variables in M⧵{m�} . However,
within the splitting approach of the AVATAR framework [38] of first-order theorem proving,
the prover would split upon the main premise M ; hence, using most general unifiers on the
literal m′ of M would not be triggered.

8 Solving heuristics for subsumption variants

Section 7 introduced efficient algorithms for integrating SAT-based subsumption reasoning
in saturation. In this section, we further improve our methods from Sect. 7 by identifying
and fine-tuning the key parameters of our SAT-based subsumption algorithm in saturation.
Doing so, we (i) impose a solving timeout on particularly difficult subsumption and sub-
sumption resolution instances (Sect. 8.1), and (ii) devise a framework for choosing the best
SAT encodings for subsumption resolution (Sect. 8.2).

8.1 Cutting off the SAT search

We present how to fine-tune a timeout strategy for our SAT solver from Sect. 6, in order
to prevent getting it stuck on unnecessary/difficult subsumption instances, while solving
still as many positive instances as possible.

8.1.1 Measuring SAT solver progress

In general, the solver behaviour should be as deterministic as possible to ensure results
are consistent and reproducible. Elapsed wall-clock time depends on many factors such
as the type of machine and current load, and elapsed CPU time and number of CPU
instructions easily change when refactoring code. As such, these measures are unsuit-
able when a deterministic solver behavior, and respective progress measure, is expected.

For evaluating our SAT solving approach in saturation, we therefore follow the Kissat
methodology [39]: we count the number of elapsed ticks, which is a rough approxima-
tion of the number of memory cache lines accessed during unit propagation and conflict
analysis.

 Formal Methods in System Design

8.1.2 Empirical observations

In our experiments (see Sect. 9), we evaluated our approach using the TPTP problem
library [40]. Here, we logged the number of ticks the SAT solver performs on each
problem and whether its search was successful. Figure 1a shows how the success rate
of subsumption drops close to zero when our SAT solver runs longer. This effect is even
more noticeable with subsumption resolution, as can be seen on Fig. 1b. We note that
the performance jumps of Fig. 1a, b when crossing 10k ticks are due to the non-linear
scale used when aggregating data. We keep two significant digits to reduce the size of
the files. Therefore, when jumping from 9.9 ⋅ 10k−1 to 1.0 ⋅ 10k , the size of the interval
is multiplied by 10, hence a greater number of instances are gathered, and the line is
discontinuous.

For improved solving progress, we aim to estimate a good trade-off between losing solu-
tions by stopping the search early and the number of ticks saved. To do so, (i) we compute
the number of ticks that the SAT solver has performed on instances that would be timed
out; (ii) subtract the number of ticks ran before the timeout; and (iii) divide the result by
the total number of ticks. Figure 2 shows that, when using a cutoff of 150, less than 1% of
the successful instances are lost, while around 50% of ticks are saved for subsumption and
35% for subsumption resolution. Interestingly, when using a cutoff of 5000, we loose less
than 0.01% of problems while still saving 10% of ticks.

8.2 Choosing SAT encodings for subsumption resolution

Section 5 introduced two different encodings for subsumption resolution over (S,M) . The
direct encoding Ed

��
(S,M) has O(|S|2 ⋅ |M|2) clauses and O(|S| ⋅ |M|) variables, while the

indirect encoding Ei
��
(S,M) contains O(|S| ⋅ |M|) clauses with O(|S| ⋅ (|M| + 1)) vari-

ables. Intuitively, the direct encoding Ed
��
(S,M) should to be more light weight and faster

for smaller instances of subsumption resolution, whereas the indirect encoding Ei
��
(S,M)

should scale better on harder instances. In this section, we present a procedure to choose
which encoding to use for a given instance of subsumption resolution.

8.2.1 Problem setup

We focus on the problem of choosing SAT encodings of subsumption resolution. We
approximate this problem via a random distribution D(y|x) , where

• input x, drawn from another distribution X , is a vector of features x1,… , xn;
• output y is a pair of values (y0, y1) , where y0 is the encoding and SAT solving time of

the direct encoding Ed
��
(S,M) and y1 is the encoding and SAT solving time of the indi-

rect encoding Ei
��
(S,M).

Objective function Let a function family F be a set of functions f ∶ ℝ
n
→ {0, 1} . We

define our objective function over D(y|x) and X as follows:

(37)
arg min

f∈F

�
x ∼ X

(y0, y1) ∼ D(⋅|x)
[yf (x)]

Formal Methods in System Design

Intuitively, our objective function (37) computes a classifier f whose choice, given a set of
features, minimises the expected run time of the respective SAT encoding and solving of
subsumption resolution.

Features For any classification problem, identifying relevant features is important. We
chose the following features for our classifier f computed by (37):

1. the number n of literals of the main premise M;

(a) Solving subsumption instances.

(b) Solving subsumption resolution instances using a direct SAT encoding

Fig. 1 Success rates of the SAT solver depending on the number of ticks (ticks are displayed on the hori-
zontal axes). The problems taking the longest time are less likely to succeed

 Formal Methods in System Design

2. the number k of literals of the side premise S;
3. the “sparsity” of the match set Π(S,M) , computed as: |Π|

k⋅n
 , where |Π| denotes the size of

the match set Π(S,M).

The relevance of the respective lengths k, n of the premises S,M is fairly self-explanatory,
as the numbers of clauses of both SAT encodings grow differently with the number of liter-
als of S,M . The sparsity of the match set Π(S,M) is a measure of how many matches are
found between literals of the main and side premises M, S . Sparsity of the match set is a

(a) Subsumption (b) SR direct encoding

(c) SR indirect encoding

Fig. 2 Trade-off between positive instances lost when cutting off, and the number of ticks saved

Formal Methods in System Design

good indicator of the difficulty of the subsumption resolution problem. Indeed, if the match
set Π(S,M) is very sparse, then the subsumption resolution problem is easy: there are few
matches to consider and the purely propositional clauses are already very constrained. On
the other hand, if the match set Π(S,M) is dense, then the subsumption resolution problem
is hard.

Remark 3 The sparsity of the match set may be greater than 1. Indeed, in practice, we per-
form matching modulo the symmetry of equality (see Sect. 7). In such cases, one could use
more than one match for a given literal pair.

8.2.2 Model architecture

The problem described in Sect. 8.2.1 is formalized as a classification problem in (37).
Indeed, given a set of features x, we classify our problems sample into one of two
classes: using the direct encoding Ed

��
(S,M) (class value 0) or using the indirect encod-

ing Ei
��
(S,M) (class value 1). For solving the problem of Sect. 8.2.1, we select the SAT

encoding of subsumption resolution over (S,M) that is likely to be solved the fastest
way. Our classification procedure should thus be fast to compute at runtime. We there-
fore use a decision tree as our classifier, where our decision tree is a set of if then
else expressions.

We used the scikit-learn [41] library to train our decision tree.

8.2.3 Building the dataset

Sampling We construct the set of samples (x, y) from the distributions X , D0 and D1 ,
respectively corresponding to the subsumption resolution input (S,M) drawn from the dis-
tribution X and their direct Ed

��
(S,M) and indirect encodings Ei

��
(S,M) modeling the dis-

tribution D0(y0 | x) and D1(y1 | x) respectively. To do so, we recorded the saturation run-
ning time of any subsumption resolution inference that reaches the SAT solving procedure.
Indeed, if the subsumption instance is pruned, both encoding will behave exactly the same
and the sample is irrelevant. We also recorded the features of the subsumption resolution
check, that is, the length of the premises, and the sparsity. Each problem is run twice, once
with the direct encoding Ed

��
(S,M) , and another with the indirect encoding Ei

��
(S,M) . As a

result, we obtain two sets of samples samples (x, y), one for each encoding of subsumption
resolution. We pair these samples to form (x, y0, y1).

Condensing the dataset Decision trees cannot be trained online, nor with mini-batches.
Traditionally, when facing a large dataset, the classical method is to segment it into small
batches, and train the model on randomly sampled batches [42]. However, this approach is
not supported within the decision trees of the scikit-learn library. We therefore build
a new dataset by summing the run times of all the samples that have the same features.
That is, we build a new dataset S of (x, ŷ0, ŷ1) samples, where x describes the feature and
ŷ0 and ŷ1 are the respective sums of the run times of all the samples that have the same
features x.

Modified objective function We adjust our objective function to our new dataset S , as
follows:

 Formal Methods in System Design

where H is the step function, i.e., H(a) = 1 if a ≥ 0 , and H(a) = 0 otherwise.
The optimisation problem (38) is an empirical version of (37). Intuitively, (38) intro-

duces more weight to samples with a large difference of efficiency between both SAT
encodings |ŷ0 − ŷ1| . A choice of a SAT encoding of subsumption resolution is considered
“wrong" if (i) f(x) predicted 0 and the indirect encoding Ei

��
(S,M) is faster than the direct

encoding Ed
��
(S,M) ; or (ii) f(x) predicted 1 and the indirect encoding Ei

��
(S,M) is slower

than the direct encoding Ed
��
(S,M) . That is, f (x) − H(ŷ0 − ŷ1) is 1 or −1 on wrong choices

of SAT encodings, and 0 on correct choices.
Evaluating the model We introduce a metric called the advantage of the model over a

function to evaluate the performance of our classifier f from (38). We introduce three base-
line classifiers to compare our model to:

1. the direct encoding d(x) = 0 always chooses the direct encoding Ed
��
(S,M) for sample x;

2. the indirect encoding i(x) = 1 always chooses the indirect encoding Ei
��
(S,M) for sample

x;
3. the perfect model pS(x) always chooses the fastest encoding for sample x, being defined

as:

We then set the advantage of the model f over a function g on a dataset S as:

Naturally, the higher the advantage Adv(f , g,S) is, the better the model f performs. Note
that advantage over the perfect model is always less than or equal to 1.

8.2.4 Choosing the depth of the decision tree

Training, validation and test sets We divided our dataset into a test set and a set of pairs
of training and validation sets. More precisely, we chose to segment our dataset S into 11
segments, namely S0,… ,S10 . Here, S0 is kept for the final testing phase while the remain-
ing 10 segments of S are used to generate pairs (Si,

⋃
j≠i Sj) for i = 1,… , 10.

Choosing the right depth Decision trees have the ability to match arbitrary functions
if they are deep enough and the training set is sufficiently large. However, this is not desir-
able for two reasons: (i) the deeper the tree is, the more code will have to be added; and
(ii) the deeper the tree is, the more susceptible it is to overfitting. We therefore need to find
a proper depth for our decision tree. To do so, for each i = 1,… , 10 , we train a decision
tree for each depth d = 1,… , 15 on the set

⋃
j≠i Sj and evaluate the performance on the

validation set Si . Figure 3 shows that the performance gains are mostly achieved by trees of
depth lower than 3. As such, we empirically chose to use a decision tree of depth 3 in our
framework,

(38)argmin
f∈F

∑
(x,ŷ0,ŷ1)∈S

[
|ŷ0 − ŷ1| ∗

(
f (x) − H(ŷ0 − ŷ1)

)2]

(39)pS(x) =

{
0 if ∃(x, ŷ0, ŷ1) ∈ S ∧ ŷ0 < ŷ1
1 otherwise

(40)Adv(f , g,S) =

∑
(x,ŷ0,ŷ1)∈S

�
ŷg(x)

�
∑

(x,ŷ0,ŷ1)∈S

�
ŷf (x)

�

Formal Methods in System Design

Figure 4c summarizes the decision tree resulting from the training. As only two leaves
prefer the direct encoding, this tree can be summarised and optimised into the following
pseudo-code on Fig. 5.

Evaluating the model Once our decision tree is trained, we can evaluate its perfor-
mance on the test set. Because of the very large dataset available and the limited num-
ber of features, no overfitting was observed. The predictor has an advantage of 1.024 over
the indirect encoding, and 0.995 over the ideal predictor. This method could be further
improved by adding new encodings, or by increasing the feature space.

9 Experimental results

We implemented our SAT-based framework for solving subsumption and subsumption res-
olution in the Vampire theorem prover [16]. We next discuss the evaluation and results of
our approach.

Benchmarks We use the TPTP library [40] (version 8.1.2) as the benchmark source for
our experiments. This version of the TPTP library contains altogether 25,257 problems in
various languages. Out of these examples, 24,973 problems have been included in our eval-
uation of SAT-based subsumption and subsumption resolution in Vampire. The remaining
TPTP problems that we did not use for our experiments requires features that Vampire cur-
rently does not support (e.g., higher-order logic with theories).

Experimental Setup All our experiments were carried out on a cluster at TU Wien,
where each compute node contains two AMD Epyc 7502 processors, each of which has
32 CPU cores running at 2.5 GHz. Each compute node is equipped with 1008 GiB of
physical memory that is split into eight memory nodes of 126 GiB each, with eight logi-
cal CPUs assigned to each node. We used the runexec engine from the benchmarking
framework Benchexec [43] to assign each benchmark process to a different CPU core and
its corresponding memory node, aiming to balance the load across memory nodes. Further,
we used GnU parallel [44] to schedule 32 benchmark processes in parallel.

Ensuring consistent progress For several of the subsequent experiments, we per-
form relatively expensive computation and/or logging in addition to the measured solving

Fig. 3 Advantage of the model
over the perfect model for differ-
ent depths. The green dashed line
shows the baseline advantage of
the indirect SAT encoding over
the perfect model

 Formal Methods in System Design

process. While this instrumentation does not affect the measurements per se, it will reduce
the progress the solver can make in the saturation algorithm within a fixed duration of

(a) Depth 1

(b) Depth 2

(c) Depth 3

Fig. 4 Decision trees of different depths. The orange nodes choose the indirect encoding, and the blue
nodes choose the direct encoding

Formal Methods in System Design

wall-clock time. To avoid this effect, we first performed a run of Vampire without any
expensive instrumentation and a time limit of 60 s, and report for each TPTP problem the
number of times the forward simplification loop has been called. For all subsequent Vam-
pire runs that involve instrumentation, we do not impose a time limit, but instead terminate
after performing the previously reported number of forward simplification loops.

9.1 Measuring speed improvements for subsumption

We first measured the cost of subsumption checks in isolation. A similar evaluation has
previously been done for indexing techniques in first-order provers, see [25].

Methods Considered We first ran Vampire with a timeout of 60 s on each TPTP prob-
lem, while logging each subsumption check into a file. Each of these files then contains a
sequence of subsumption checks, which we call the subsumption log for a problem. This
preparatory step led to a large number of benchmarks that are representative for subsump-
tion checks that appear during actual proof search. These benchmarks occupy 1.79 TiB
of disk space in compressed form, and contain about 278 billion subsumption checks in
total. About 0.6 % of these subsumption checks are satisfiable (1.7 billion), while the rest
is unsatisfiable. We note that we removed 5530 TPTP problems from this experiment,
because Vampire was unable to parse back the output it generated during the logging phase.
format for higher-order problems that we have been unable to correct in time. However, the
successfully replayed subsumptions amount to about 258 billion subsumption checks (93 %
of the collected).

Next, we executed the checks listed in each subsumption log and measured the total run-
ning times, once for the existing backtracking-based subsumption algorithm of Vampire,
and once for our SAT-based subsumption approach in Vampire.

Results The results of this experiment are given in Fig. 6 and Table 1. Each mark in
Fig. 6 represents one subsumption log from a TPTP problem, and compares the total
running time of executing all subsumption checks contained in the log with the old
backtracking-based algorithm vs. the new SAT-based algorithm. The dashed line indi-
cates equal runtime, hence, our SAT-based approach was faster for marks below the line.
In Table 1, we give the cumulative time used for subsumption. For the six TPTP prob-
lems LCL673+1.015, LCL673+1.020, NLP023+1, NLP023-1, NLP024+1, and
NLP024-1, the old backtracking-based subsumption algorithm of Vampire did not termi-
nate within a time limit of 1200s; these problems are not included in the cumulative sum.

Overall, our results show a clear improvement of the running time of subsumption in
Vampire, yielding an improvement by a factor of 2.5.

Fig. 5 Decision tree from Fig. 4c
in pseudo-code

 Formal Methods in System Design

9.2 Measuring speed improvements for subsumption resolution

Whereas subsumption instances can be separated from the rest of the execution, efficient
subsumption resolution cannot. As explained in Sect. 6, subsumption resolution is applied
in a simplification loop that optimised the setup between subsumption and subsumption
resolution. It would thus be an unfair comparison to isolate subsumption resolution from
subsumption. This is why we decided to measure the runtime of subsumption and sub-
sumption resolution together in a forward simplification loop.

Our experimental procedure is summarized in Algorithm 5 and commented below.

Table 1 Total time spent on
subsumption checks, summed
over 19437 TPTP problems

Note that Vampire
M

 timed out on 6 problems during subsumption
replay; these have not been included in the total

Prover Subsumption Boost

Vampire
M

35.86 h

Vampire
SAT

13.68 h 2.62 x

Fig. 6 Total running time (in
seconds) of backtracking-based
vs. SAT-based subsumption,
where each mark represents a
TPTP problem. For marks below
the dashed line, our SAT-based
approach was faster

Formal Methods in System Design

Algorithm 5 Evaluation of SAT-based subsumption resolution

• The conclusion clause of the subsumption resolution rule SR is not necessarily unique.
Therefore, different versions of subsumption resolution, including our work based on
direct and indirect SAT encodings, may not return the same conclusion clause of SR.
Hence, applying different versions of subsumption resolution over the same clauses
may change the saturation process.

• Saturation with our SAT-based subsumption resolution takes advantage of subsump-
tion checking (see Algorithms 2–4). Therefore, only checking subsumption resolution
on pairs of clauses is not a fair nor viable comparison, as isolating subsumption checks
from subsumption resolution is not what we aimed for (due to efficiency).

• CPU cache influences results. For example, two consecutive runs of Algorithm 2 may
be up to 25% faster on second execution, due to cache effects.

• CHECKCOHERENCE(r, r�) is an empiric check that ensures that the result of the oracle is
compatible with the result of the benchmarked method.

Oracle The oracle used in our experiments is the fastest method overall. The motivation of
this choice is to maximise the number of sample points compared to the total computation
time. Indeed, a slower oracle will prevent Vampire to progress faster. The oracle therefore
runs the dynamic encoding (heuristic encoding selection) with loop optimisation.

Methods considered We compared the following versions of Vampire:

• VampireM—the master branch of Vampire (commit a47e1dca9), without SAT-based
subsumption and subsumption resolution;

• VampireD—the SAT-based version of Vampire using the direct encoding Ed
��

;
• VampireI—the SAT-based version of Vampire using the indirect encoding Ei

��
;

• VampireH—the SAT-based version of Vampire using the heuristic discussed in
Sect. 8.2;

• Vampire∗
E
—using the loop optimisation discussed in Sect. 7 with the encoding E (note

that the loop optimisation does not apply to the non-SAT version);
• Vampire-cutoff-n—uses a cutoff at n ticks, as discussed in Sect. 8.1.

Results In Table 2, the average and standard deviation of the runtime of the forward simpli-
fication loop have been logged for the considered versions. The column Boost is the ratio
between the average runtime of VampireM and the method considered. From the table, we
can see that the simplest version of our algorithm, that is, the direct encoding without loop

 Formal Methods in System Design

optimisation, already performs better than the old backtracking-based algorithm. Introduc-
ing the indirect encoding creates a large drop in variance, indicating that Ei

��
 is more sta-

ble and scalable. The loop optimisation further improved performance by sharing work
in the encoding setup. Finally, choosing the encoding based on the heuristic discussed in
Sect. 8.2 brings another small improvement boost. Overall, we obtained an improvement in
performance by a factor of 1.36 on the simplification loop.

When considering these results with our previous analysis of subsumption alone
(Sect. 9.1), it is worth mentioning that they are not comparable. While the evaluation
method in Sect. 9.1 allows a direct comparison of the backtracking-based subsumption
implementation to the SAT-based approach, such an evaluation is not suitable for subsump-
tion resolution, especially when considering the optimized simplification loop (Sect. 7).
Indeed, our second benchmarking technique (this section) includes all components of the
simplification loop, including obtaining candidate clauses. In particular, this means we also
measure improvements obtained by optimizing the simplification loop itself.

Remark 4 In [29], we observed a large drop in variance from the standard to the optimised
simplification loop. Improving the memory usage of the pruning algorithms in Sect. 6.2
greatly reduced this unexpected behaviour. In [29], we used a standard C++ vector that
was cleared between pruning runs. However, some problems in the TPTP library have
very large signatures. On these instances, the subsumption execution time has been greatly
impacted by the calls to our simpler pruning algorithm from [29]. Namely, in the stand-
ard saturation loop, pruning was executed once for subsumption and once for subsumption
resolution. As discussed in Sect. 6, a large proportion of subsumption pruning checks are
unnecessary if the subsumption resolution pruning criterion fails first. Our fast implemen-
tations of pruning from Sect. 6.2 greatly reduced this effect from [29].

Figure 7 shows the cumulative number of forward simplification loops performed in
less then t �s for some methods. We can visually see that our method performs better than
the previous implementation even for the easier instances, and further increasing its advan-
tage on harder instances. The loop optimisation shows most its strength in the 10 to 20 �s
region before almost getting caught up by the non-optimised loop. The reason is that the
optimisation only improves the polynomial setup of the algorithm, that becomes less rel-
evant as the exponential nature of the problem takes over.

Table 2 Average time spent
in the forward simplify loop.
Vampire∗

H
 is the fastest method,

closely followed by the Vampire∗
I

The versions Vampire∗
E
 integrate the loop optimisation discussed in

Sect. 7 into VampireE

Prover Average Std. Dev. Boost

Vampire
M

33.63 μs 1839.25 μs 1.00
Vampire

D
28.74 μs 1245.88 μs 1.17

Vampire
I

28.36 μs 243.38 μs 1.19
Vampire

H
28.16 μs 233.87 μs 1.19

Vampire∗
D

25.38 μs 1241.86 μs 1.32
Vampire∗

I
24.93 μs 196.38 μs 1.35

Vampire∗
H

24.73 μs 190.69 μs 1.36

Formal Methods in System Design

9.3 Overall Vampire runs

We finally analysed the the number of problems Vampire solves depending on various
implementations of the subsumption and subsumption resolution procedure. Table 3 sum-
marizes our findings and we draw the following conclusions.

• Each SAT-based configuration of subsumption solves more problems than the previous,
backtracking-based implementation of subsumption, showing the superiority of our
method in solving subsumption and subsumption resolution.

• Our heuristic approach using decision trees of Sect. 8 solves slightly more problems
than the other SAT-based only methods of Sect. 7. We remark that we trained our
decision trees on a dataset built from the exact problems we are testing our methods
against, with the purpose of maximizing the number of solved problems. We note that
our methodology might suffer from (minimial) overfitting: we used a very rigid classi-
fication algorithm with a very low potential for overfitting. It is unlikely that a decision
tree with such a low depth and few features will learn how to solve specific problems,
but not learn general trends.

• Our cutoff method from Sect. 8.1 did not bring great improvements. While this result
may sound discouraging, we believe it actually strengthens our contributions from
Sect. 7. Indeed, it shows that only finding the simple subsumption and subsumption
resolution instances is not an effective strategy. While our methods from Sect. 7 might
not be the fastest for small clauses, they scale well with the complexity of the problem.

• The saturation loop optimisation techniques, e.g. forward simplifcation from Sect. 7,
bring the largest increase in number of problems solved. This follows our intuition built
from Table 2. We however note that our loop optimisation techniques may lose slightly
more problems than their un-optimised loop versions. This is because our loop opti-
misation methods may perform some unnecessary and potentially hard subsumption
resolutions, slightly increasing the likelihood of being stuck on difficult combinatorial
problems.

Fig. 7 Cumulative instances of applying subsumption resolution, using the TPTP examples. A point (t, n)
on the graph means that n forward simplify loops were executed in less than t �s . The higher the curve,
the faster the Vampire version is. The difference between the different encoding being small relative to the
difference the optimisation brings, we only displayed the dynamic encoding to avoid superposition of plot
lines

 Formal Methods in System Design

10 Related work

Subsumption and subsumption resolution are some of the most powerful and frequently
used redundancy criteria in saturation-based first-order theorem proving.

Subsumption While efficient literal- and clause-indexing techniques have been pro-
posed [26, 45], optimising the matching step among multisets of literals, and hence clauses,
has so far not been addressed. Our work shows that SAT solving methods can provide effi-
cient solutions in this respect, further improving first-order theorem proving.

A related approach that integrates multi-literal matching into indexing is given in
[24], using code trees. Code trees organise potentially subsuming clauses into a tree-like
data structure with the aim of sharing some matching effort for similar clauses. How-
ever, the underlying matching algorithm uses a fixed branching order and does not learn
from conflicts, and will thus run into the same issues on hard subsumption instances as
the standard backtracking-based matching.

The specialised subsumption algorithm DC [46] is based on the idea of separating
the clause S into variable-disjoint components and testing subsumption for each compo-
nent separately. However, the notion of subsumption considered in that work is defined
using subset inclusion, rather than multiset inclusion. For subsumption based on mul-
tiset inclusion, the subsumption test for one variable-disjoint component is no longer
independent of the other components.

An improved version of [46] comes with IDC [47], whereupon each recursion level
is checked whether each literal of S by itself subsumes M under the current partial
substitution, which is a necessary condition for subsumption. The backtracking-based
subsumption algorithm of Vampire uses this optimisation as well, and our SAT-based
approach also implements it as propagation over substitution constraints.

By combining subsumption and resolution into one simplification rules, subsump-
tion resolution is supported as contextual literal cutting in [17], along with efficient
approaches for detecting multiset inclusions among clauses [15, 26, 48]. Special cases
of unit deletion as a by-product of subsumption tests are also proposed in [45], with

Table 3 Number of TPTP
problems solved by the
considered versions of Vampire

The run was made using the options -sa otter -av off with
a timeout of 60 s. The Gain/Loss column reports the difference of
solved instances compared to Vampire

M
 . The versions Vampire∗

E
 inte-

grate the loop optimisation discussed in Sect. 7 into VampireE

Prover Total solved Gain/loss

Vampire
M

10,728 Baseline
Vampire

D
10,762 (+62 , −28)

Vampire
I

10,760 (+63 , −31)
Vampire

H
10,764 (+64 , −28)

Vampire–cutoff-5000
H

10,766 (+65 , −27)
Vampire–cutoff-150

H
10,739 (+56 , −45)

Vampire∗
D

10,791 (+94 , −31)
Vampire∗

I
10,785 (+92 , −35)

Vampire∗
H

10,794 (+97 , −31)
Vampire–cutoff-5000∗

H
10,790 (+97 , −35)

Vampire–cutoff-150∗
H

10,768 (+93 , −53)

Formal Methods in System Design

further refinements of term indexing to drastically reduce the set of candidate clauses
checked for subsumption (resolution).

SAT- and SMT-based techniques have previously been applied to the setting of first-
order saturation-based proof search, e.g. in the form of the aVatar architecture [38].
These techniques are, however, independent from our work, as they apply the SAT- or
SMT-solver over an abstraction of the input problem, while in our work we use a SAT
solver to speed up certain inferences.

Some solvers, such as the pseudo-boolean solver minicard [49] and the ASP solver
clasp [50], support cardinality constraints natively, in a similar way to our handling of
at-most-one constraints. Our encoding, however, requires only at-most-one constraints
instead of arbitrary cardinality constraints, thus simplifying the implementation.

Note that clausal subsumption can also be seen as a constraint satisfaction problem
(CSP). In this view, the boolean variables b+

ij
 in our subsumption encoding represent the

different choices of a non-boolean CSP variable, corresponding to the so-called direct
encoding of a CSP variable [51]. A well-known heuristic in CSP solving is the mini-
mum remaining values heuristic: always assign the CSP variable that has the fewest
possible choices remaining. We adapted this heuristic to our embedded SAT solver and
used it to solve subsumption instances [28]; however, it does not fit the subsumption
resolution encodings well, especially the indirect encoding. Moreover, the advantage
over the well-known variable-move-to-front (VMTF) heuristic [52] is minor even for
subsumption, which is why we now always use VMTF for variable selection in the SAT
solver.

We finally remark that redundancy is explored in SAT-based equivalence checking [53],
by using first-order and QBF reasoning for subsumption checks [23]. In particular, first-
order backward subsumption [24] has become a key preprocessing techniques in SAT solv-
ing, in particular in bounded variable elimination [54, 55]. Our work complements this line
of research by showcasing that SAT solving also improves solving variants of first-order
subsumption, not just the other way around.

11 Conclusion

We promote tailored SAT solving to solve clausal subsumption and subsumption resolution
in first-order theorem proving. We introduce substitution constraints to encode subsump-
tion constraints as SAT instance. For solving such instances, we adjust unit propagation
and conflict resolution in SAT solving towards a specialized treatment of substitution con-
straints and at-most-one constraints. Crucially, our encoding together with our SAT solver
enables efficient setup of subsumption and subsumption resolution instances. We show that
the resulting SAT solver can directly be integrated within the saturation loop of first-order
theorem proving, solving both subsumption and subsumption resolution. Our experimen-
tal results indicate that SAT-based subsumption and subsumption resolution significantly
improves the performance of first-order proving. Extending subsumption with theory rea-
soning with equality, possibly in the presence of (arithmetic) first-order theories, is an
interesting task for future work. We believe this would open up potentially new venues for
using SMT solving instead of SAT solving for subsumption reasoning.

Acknowledgements We thank Pascal Fontaine (University of Liège, Belgium) for fruitful discussions. We
acknowledge partial support from the ERC Consolidator Grant ARTIST 101002685, the FWF SFB project
SpyCoDe F8504, the Austrian FWF project W1255-N23, the WWTF ICT22-007 Grant ForSmart, and the

 Formal Methods in System Design

TU Wien Trustworthy Autonomous Cyber-Physical Systems Doctoral College. Initial results on this work
have been established during a research internship of Robin Coutelier at TU Wien, while he was still a
master student at the University of Liège, Belgium, This research was funded also in part by the Austrian
Science Fund (FWF) [10.55776/F85, 10.55776/W1255], for open access purposes; the authors have applied
a CC BY public copyright license to any accepted manuscript version arising from this submission.

Funding Open access funding provided by TU Wien (TUW).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. Leino KRM (2017) Accessible software verification with Dafny. IEEE Softw 34(6):94–97
 2. Clochard M, Marché C, Paskevich A (2020) Deductive verification with ghost monitors. In: Proceed-

ings of POPL, pp 2–1226
 3. Georgiou P, Gleiss B, Kovács L (2020) Trace logic for inductive loop reasoning. In: Proceedings of

FMCAD, pp 255–263
 4. Komuravelli A, Gurfinkel A, Chaki S (2016) SMT-based model checking for recursive programs.

Form Methods Syst Des 48(3):175–205
 5. Padon O, McMillan KL, Panda A, Sagiv M, Shoham S (2016) Ivy: safety verification by interactive

generalization. In: Proceedings of PLDI, pp 614–630
 6. Asadi S, Blicha M, Hyvärinen AEJ, Fedyukovich G, Sharygina N (2020)Incremental verification by

SMT-based summary repair. In: Proceedings of FMCAD, pp 77–82
 7. Garcia-Contreras I, K, HGV, Shoham S, Gurfinkel A (2023) Fast approximations of quantifier elimina-

tion. In: Proceedings of CAV, pp 64–86 (2023). https:// doi. org/ 10. 1007/ 978-3- 031- 37703-7_4
 8. Pick L, Fedyukovich G, Gupta A (2020) Automating modular verification of secure information flow.

In: Proceedings of FMCAD, pp 158–168
 9. Martínez G, Ahman D, Dumitrescu V, Giannarakis N, Hawblitzel C, Hritcu C, Narasimhamurthy M,

Paraskevopoulou Z, Pit-Claudel C, Protzenko J, Ramananandro T, Rastogi A, Swamy N (2019) Meta-
F⋆ : proof automation with SMT, tactics, and metaprograms. In: Proceedings of ESOP, pp 30–59

 10. Veronese L, Farinier B, Bernardo P, Tempesta M, Squarcina M, Maffei M (2023) WebSpec: towards
machine-checked analysis of browser security mechanisms. In: SP, pp 2761–2779 . https:// doi. org/ 10.
1109/ SP462 15. 2023. 10179 465

 11. Brugger LS, Kovács L, Komel AP, Rain S, Rawson M (2023) CheckMate: automated game-theoretic
security reasoning. In: CCS, pp 1407–1421. https:// doi. org/ 10. 1145/ 35769 15. 36231 83

 12. Biere A (2008) PicoSAT essentials. J Satisf Boolean Model Comput 4(2–4):75–97
 13. De Moura L, Bjørner N (2008) Z3: an efficient SMT solver. In: Proceedings of TACAS, pp 337–340
 14. Barbosa H, Barrett CW, Brain M, Kremer G, Lachnitt H, Mann M, Mohamed A, Mohamed M, Niem-

etz A, Nötzli A, Ozdemir A, Preiner M, Reynolds A, Sheng Y, Tinelli C, Zohar Y (2022) CVC5: a
versatile and industrial-strength SMT solver. In: Proceedings of TACAS, pp 415–442

 15. Weidenbach C, Dimova D, Fietzke A, Kumar R, Suda M, Wischnewski P (2009) SPASS version 3.5.
In: Proceedings of CADE, pp 140–145

 16. Kovács L, Voronkov A (2013) First-order theorem proving and vampire. In: CAV, pp 1–35
 17. Schulz S, Cruanes S, Vukmirovic P (2019) Faster, higher, stronger: E 2.3. In: Proceedings of CADE,

pp 495–507
 18. Cruanes S (2017) Superposition with structural induction. In: Proceedings of FroCoS, pp 172–188
 19. Buchberger B (2006) Bruno Buchberger’s PhD thesis 1965: an algorithm for finding the basis elements

of the residue class ring of a zero dimensional polynomial ideal. J Symb Comput 41(3–4):475–511.
https:// doi. org/ 10. 1016/j. jsc. 2005. 09. 007

 20. Nieuwenhuis R, Rubio A (2001) Paramodulation-based theorem proving. In: Handbook of automated
reasoning, pp 371–443. https:// doi. org/ 10. 1016/ b978- 04445 0813-3/ 50009-6

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-031-37703-7_4
https://doi.org/10.1109/SP46215.2023.10179465
https://doi.org/10.1109/SP46215.2023.10179465
https://doi.org/10.1145/3576915.3623183
https://doi.org/10.1016/j.jsc.2005.09.007
https://doi.org/10.1016/b978-044450813-3/50009-6

Formal Methods in System Design

 21. Robinson JA (1965) A machine-oriented logic based on the resolution principle. J ACM 12(1):23–41.
https:// doi. org/ 10. 1145/ 321250. 321253

 22. Bachmair L, Ganzinger H (1994) Rewrite-based equational theorem proving with selection and simpli-
fication. J Log Comput 4(3):217–247

 23. Biere A (2004) Resolve and expand. In: Proceedings of SAT. https:// doi. org/ 10. 1007/ 11527 695_5
 24. Sekar R, Ramakrishnan IV, Voronkov A (2001) Term indexing. In: Handbook of automated reasoning,

pp 1853–1964
 25. Nieuwenhuis R, Hillenbrand T, Riazanov A, Voronkov A (2001) On the evaluation of indexing tech-

niques for theorem proving. In: Proceedings of IJCAR, pp 257–271
 26. Schulz S (2013) Simple and efficient clause subsumption with feature vector indexing. In: Automated

reasoning and mathematics—essays in memory of William W. McCune, pp 45–67
 27. Kapur D, Narendran P (1986) NP-completeness of the set unification and matching problems. In: Pro-

ceedings of IJCAR, pp 489–495
 28. Rath J, Biere A, Kovács L (2022) First-order subsumption via SAT solving. In: FMCAD, p 160
 29. Coutelier R, Kovács L, Rawson M, Rath J (2023) SAT-based subsumption resolution. In: Proceedings

of CADE, pp 190–206. https:// doi. org/ 10. 1007/ 978-3- 031- 38499-8_ 11
 30. Gleiss B, Kovács L, Rath J (2020) Subsumption demodulation in first-order theorem proving. In: Pro-

ceedings of the of IJCAR, pp 297–315
 31. Eén N, Sörensson N (2003) An extensible SAT-solver. In: Proceedings of SAT, pp 502–518. https://

doi. org/ 10. 1007/ 978-3- 540- 24605-3_ 37
 32. Biere A, Froleyks N, Wang W (2023) CadiBack: extracting backbones with CaDiCaL. In: Proceedings

of SAT, pp 3–1312. https:// doi. org/ 10. 4230/ LIPICS. SAT. 2023.3
 33. Fleury M, Biere A (2022) Mining definitions in Kissat with Kittens. Formal Methods Syst Des

60(3):381–404. https:// doi. org/ 10. 1007/ S10703- 023- 00421-2
 34. Marques-Silva J, Lynce I, Malik S (2021) Conflict-driven clause learning SAT solvers. In: Handbook

of satisfiability. frontiers in artificial intelligence and applications, vol 336, pp 133–182. Chapter 4
 35. Moskewicz MW, Madigan CF, Zhao Y, Zhang L, Malik S (2001) Chaff: engineering an efficient SAT

solver. In: Proceedings of DAC, pp 530–535
 36. Frisch AM, Giannaros PA (2010) SAT encodings of the at-most-k constraint. some old, some new,

some fast, some slow. In: Proceedings of WS on constraint modelling and reformulation
 37. McCune W, Wos L (1997) Otter—the CADE-13 competition incarnations. J Autom Reason

18:211–220
 38. Voronkov A (2014) AVATAR: the architecture for first-order theorem provers. In: Proceedings of CAV,

pp 696–710. https:// doi. org/ 10. 1007/ 978-3- 319- 08867-9_ 46
 39. Biere A, Fazekas K, Fleury M, Heisinger M (2020) cadical, Kissat, paracooBa, plinGelinG and

treenGelinG entering the SAT competition 2020. In: Proceedings of SAT competition 2020: solver and
benchmark descriptions, pp 50–53. http:// hdl. handle. net/ 10138/ 318450

 40. Sutcliffe G (2017) The TPTP problem library and associated infrastructure. From CNF to TH0, TPTP
v6.4.0. J Autom Reason 59(4):483–502

 41. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P,
Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E
(2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830

 42. Goodfellow IJ, Bengio Y, Courville AC (2016) Deep learning. Adaptive computation and machine
learning. http:// www. deepl earni ngbook. org/

 43. Beyer D, Löwe S, Wendler P (2017) Reliable benchmarking: requirements and solutions. J. Softw
Tools Technol Transf 21(1):1–29

 44. Tange O (2018) GNU parallel 2018
 45. Tammet T (1998) Towards efficient subsumption. In: Proceedings of CADE, pp 427–441
 46. Gottlob G, Leitsch A (1985) On the efficiency of subsumption algorithms. J ACM 32(2):280–295
 47. Gottlob G, Leitsch A (1985) Fast subsumption algorithms. In: Proceedings of EUROCAL ’85, pp

64–77
 48. Kovács L, Voronkov A (2013) First-order theorem proving and vampire. In: CAV, pp 1–35. https:// doi.

org/ 10. 1007/ 978-3- 642- 39799-8_1
 49. Liffiton MH, Maglalang JC (2012) A cardinality solver: more expressive constraints for free. In: Pro-

ceedings of SAT, pp 485–486
 50. Gebser M, Kaminski R, Kaufmann B, Schaub T (2009) On the implementation of weight constraint

rules in conflict-driven ASP solvers. In: Proceedings of ICLP, pp 250–264
 51. Walsh T (2000) SAT v CSP. In: Proceedings of CP, pp 441–456
 52. Ryan L (2004) Efficient algorithms for clause-learning SAT solvers. Master’s thesis, Simon Fraser

University

https://doi.org/10.1145/321250.321253
https://doi.org/10.1007/11527695_5
https://doi.org/10.1007/978-3-031-38499-8_11
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.4230/LIPICS.SAT.2023.3
https://doi.org/10.1007/S10703-023-00421-2
https://doi.org/10.1007/978-3-319-08867-9_46
http://hdl.handle.net/10138/318450
http://www.deeplearningbook.org/
https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.1007/978-3-642-39799-8_1

 Formal Methods in System Design

 53. Heule MJH, Kiesl B, Biere A (2020) Strong extension-free proof systems. J Autom Reason 64(3):533–
554. https:// doi. org/ 10. 1007/ S10817- 019- 09516-0

 54. Eén N, Biere A (2005) Effective preprocessing in SAT through variable and clause elimination. In:
Proceedings of SAT, vol 3569, pp 61–75. https:// doi. org/ 10. 1007/ 11499 107_5

 55. Biere A, Järvisalo M, Kiesl B (2021) Preprocessing in SAT solving. In: Handbook of satisfiability—
second edition. Frontiers in artificial intelligence and applications, vol 336, pp 391–435. https:// doi.
org/ 10. 3233/ FAIA2 00992

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1007/S10817-019-09516-0
https://doi.org/10.1007/11499107_5
https://doi.org/10.3233/FAIA200992
https://doi.org/10.3233/FAIA200992

	SAT solving for variants of first-order subsumption
	Abstract
	1 Introduction
	2 Preliminaries
	3 Subsumption and subsumption resolution
	4 Subsumption constraints
	5 SAT formalization of subsumption constraints
	5.1 SAT encoding of subsumption
	5.2 Direct SAT encoding of subsumption resolution
	5.3 Indirect SAT encoding of subsumption resolution

	6 SAT solving for subsumption variants
	6.1 SAT solver for subsumption encodings
	6.2 Pruning subsumption variants for SAT solving

	7 SAT-based subsumption variants in saturation
	8 Solving heuristics for subsumption variants
	8.1 Cutting off the SAT search
	8.1.1 Measuring SAT solver progress
	8.1.2 Empirical observations

	8.2 Choosing SAT encodings for subsumption resolution
	8.2.1 Problem setup
	8.2.2 Model architecture
	8.2.3 Building the dataset
	8.2.4 Choosing the depth of the decision tree

	9 Experimental results
	9.1 Measuring speed improvements for subsumption
	9.2 Measuring speed improvements for subsumption resolution
	9.3 Overall Vampire runs

	10 Related work
	11 Conclusion
	Acknowledgements
	References

