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In most peer-to-peer (P2P) networks, peers are placed randomly or based on their geographical position, which can lead to
a performance bottleneck. Tis problem can be solved by using peer clustering algorithms. In this paper, the signifcant results of
the paper can be described in the following sentences.We propose two innovative swarm-basedmetaheuristics for peer clustering,
slime mold and slime mold K-means. Tey are competitively benchmarked, evaluated, and compared to nine well-known
conventional and swarm-based algorithms: artifcial bee colony (ABC), ABC combined with K-means, ant-based clustering, ant
K-means, fuzzy C-means, genetic K-means, hierarchical clustering, K-means, and particle swarm optimization (PSO). Te
benchmarks cover parameter sensitivity analysis and comparative analysis made by using 5 diferent metrics: execution time,
Davies–Bouldin index (DBI), Dunn index (DI), silhouette coefcient (SC), and averaged dissimilarity coefcient (ADC).
Furthermore, a statistical analysis is performed in order to validate the obtained results. Slime mold and slime mold K-means
outperform all other swarm-inspired algorithms in terms of execution time and quality of the clustering solution.
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1. Introduction

In the Internet, there are many popular fle-sharing appli-
cations like Gnutella [1] or Napster [1], which were designed
as P2P networks [2]. Established patterns like load balancing
[3] or load clustering [4] can be used in such a system, when
sufering from high loads. Unfortunately, these patterns are
not ideal, if the positioning of the peers is the performance
bottleneck. Tis is not unusual and it results in facing sig-
nifcant problems regarding the overall performance of the
system because in most P2P networks, peers are placed
randomly or based on their geographical position [5]. So, the
performance in such networks can be extremely poor. Te
problem can be solved by peer clustering, i.e., grouping
peers, which has certain characteristics in common, together
as neighbors [4, 6].

However, some characteristics of P2P systems [2] make
clustering a challenging task: (1) although peers in a P2P
system are autonomous, autonomy is violated by data
clustering since peers are enforced to store some specifc
data; (2) the very dynamic nature of P2P environments
implies that clusters formed need to dynamically adapt to the
frequent changes. Te lack of global knowledge of data and
peer interests also causes a serious difculty in forming
clusters in P2P systems. Due to the fact that peers are leaving
and entering the network dynamically, also peer clustering
has to be a dynamic procedure. With peer clustering, query
performance can be signifcantly improved compared to
a random network topology. Tat means requests are routed
more efciently and only to nodes which are likely to ft the
request. Besides, if a cluster containing a node, which is
likely to ft the request, can be found, query fooding through
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the whole network is not necessary. Consequently, this
means that workload on nodes, which are probably not
ftting the request, can be reduced [6].

High dynamics in the P2P environments emphasize the
necessity of fnding an intelligent, adaptable, and robust
solution. Terefore, the problem of peer clustering is very
specifc as it should encompass all issues numbered above
that characterize the environment. So, it requires advanced,
intelligent, and self-organized approaches that are capable to
cope with dynamics in the system.

In this paper, we propose an intelligent peer clustering in
a fully unstructured P2P overlay network. In such envi-
ronment, dynamic processes are extremely emphasized (e.g.,
nodes can spontaneously join or leave).

For the benchmarking process, a set of clustering al-
gorithms is implemented: artifcial bee colony (ABC), ABC
combined with K-means, ant-based clustering, ant K-means,
fuzzy C-means, genetic K-means, hierarchical clustering, K-
means, and particle swarm optimization (PSO) together
with the proposed slime mold and slime mold K-means are
plugged in and compared. Tese algorithms are chosen
because of the following reasons: (1) Dd-slime mold algo-
rithm is a part of our previous work with promising results
[8, 9]. (2) Ant-based and bee-based algorithms as well as
PSO are popular swarm-intelligent algorithms [10]. (3)
Genetic K-means [11] and fuzzy C-means [12, 13], hierar-
chical clustering [14, 15], K-means [16, 17] are typical
conventional approaches. Additionally, all selected algo-
rithms have a satisfactory part of the theoretical basement
(e.g., clear mathematical modeling) [9]. Te evaluation part
at the end of this work provides a comparison of these
clustering algorithms and is expected to show which algo-
rithms perform particularly well in certain scenarios.

Slime mold intelligence is a novel approach for peer
clustering. A motivation of choice of this intelligent ap-
proach is based on following reasons: (1) in our previous
work, we obtained promising and satisfactory results
employing this type of intelligent approach [7, 8]; (2)
according to our experiences working with this type of
intelligence, it addresses successfully also the “corner” cases,
which are sometimes “neglected” applying other types of
intelligence; and (3) the slime molds compute the optimal
solution for the amount of resources involved [17].

Terefore, the research questions are as follows.
Can swarm intelligence efectively cope with peer

clustering in fully unstructured P2P networks? How ef-
ciently slime mold intelligence solves the problem of peer
clustering in fully unstructured P2P networks?

1.1. Contribution of the Paper. Before presenting the con-
tribution of the paper, we provide a kind of support2 to help
readers progress through the paper.

1.1.1. Regarding Methodology. Our methodology used can
be explained schematically as shown in Figure 1. Tat is, we
treat a problem by using a multidisciplinary approach that
includes mathematical methods, interdisciplinary methods,
and software engineering methods.

1.1.1.1. M1: Mathematical Models. After the analysis of
swarm mechanisms in nature, the behaviors that exist in
a respective swarm mechanism and govern natural phe-
nomena must be described using mathematical represen-
tations as the abstraction of the reality, i.e., by using
stochastic modeling and discrete mathematics tools.

1.1.1.2. M2: Mathematical Proofs. Te algorithms them-
selves must be analyzed and their behavior explained and
theoretically proven (this part is out of scope of this paper).

1.1.1.3. I1: Swarm-Inspired Algorithms (SW-Inspired).
Swarm-inspired algorithms appear as a consequence of used
mathematical models. For each investigated swarm mech-
anism in nature, one must analyze how it can be mapped to
IT terminology. In mapping, software agents play the role of
a particular swarm and perform self-organized actions
characteristic for the respective swarm colony.

1.1.1.4. I2: Parameters and Metrics. Te so-called best pa-
rameter settings must be derived for each algorithm for each
considered problem scenario, as all swarm inspired algo-
rithms are characterized by a huge number of diferent
environmental parameters infuencing the behavior of ar-
tifcial swarms. Evaluation criteria and specifcation of
suitable metrics for scalability, performance, quality of so-
lution, etc. must be identifed.

1.1.1.5. I3: Impact Analysis. A feedback loop to improve the
mathematical models based on the benchmark results is
suggested.

1.1.1.6. SE1: Algorithms. Te newly invented algorithms
must be implemented based on the mathematical and al-
gorithmic description (see I1).

1.1.1.7. SE2: Coordination Generics. Reusable generic co-
ordination mechanisms must be extracted for each use case
as “patterns” which can be understood as universal blue
prints. Tey must be implemented as reusable components.
Teir designs shall be inspired by multiagent technologies.

1.1.1.8. SE3: Frameworks for Self-Organization. A generic
framework with self-organizing properties as a composition
of the components described above must be designed and
developed. Te framework allows the exchange of diferent,
swarm-inspired as well as other algorithms simply through
“plugging” and must support many diferent network to-
pology settings through confguration. Te plugging ap-
proach is achieved by a component-based design, where
each agent represents a certain exchangeable policy or be-
havior.Tis allows fair comparison of diferent algorithms in
a neutral framework.

1.1.1.9. SE4: Test Bench. A test environment for automati-
cally running and interpreting benchmarks in all desired
framework confgurations and algorithm combinations
must be developed.

2 International Journal of Intelligent Systems
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1.1.1.10. SE5: Middleware. In order to achieve SE2 and SE4,
suitable middleware architecture must be selected.

1.1.1.11. SE6: Benchmarking. Finally, the benchmarks need
to be performed and the results evaluated using the pa-
rameters and metrics of I2.

Note: Recall that out of scope of this paper are the
following from Figure 1: mathematical proofs (M2) and
explanation of the framework used and the middleware
(SE2, SE3, and SE5). Recognize that the main focus is on the
swarm-inspired algorithms (I1 as well as I2 and I3), ac-
companied mathematical models (M1) and the algorithm
development (SE1), and consequently on the benchmarking
(SE4 and SE6).

1.1.2. Regarding the Problem at Hand. Recall that in the
scope of this paper, we consider an intelligent peer clustering
in a fully unstructured P2P overlay network.

1.1.3. Regarding the Swarm-Based Algorithms (I1) Applied.
We applied two innovative intelligent algorithms for peer
clustering based on the slime mold life cycle and also we
further adapted 5 swarm-based algorithms.

For better understanding the slime mold life cycle, we
provide a short biological background of slime mold in
nature.

Te slime moldDictyostelium discoideum (Dd) is a social
collective of self-organizing amoebas that goes through a life
cycle. Te goal of Dd amoebas is their feeding and therefore
a constant supply of food that consists of bacteria and
decaying material in the soil. Te Dd life cycle has several

stages (Figure 2): vegetative movement, aggregation, mound,
slug movement, fruiting body formation, and spore
dispersal [19].

In the vegetative movement, amoebas navigate through
the soil on their own, using tentacle-like pseudopods, and
search for food. Furthermore, in this state of adequate
nourishment, amoebas may procreate by fssion. An amoeba
stays in this state until the food supply shrinks. If not enough
food supply is available, an amoeba begins to starve [19]. At
this point, the collaboration of amoebas begins and the
aggregation stage of the life cycle starts. Amoebas in this
stage communicate indirectly by emitting a pheromone
called cyclic adenosine monophosphate (cAMP). More
specifcally, one of the amoebas takes the role of the pace-
maker, which releases cAMP and therefore causes all others
to be drawn to it until a mound is formed [19]. When
aggregating to amound, the amoebas emit a slimy substance.
In themound, amoebas start to organize themselves into two
categories, prespore and prestalk, based on their ftness level.
Te ftness level is determined on the basis of an amoeba’s
level of nourishment, i.e., how efcient collecting food in the
vegetative stage was. Prespore amoebas move to one end of
the mound and form the head, while the prestalk amoebas
form the slime mold tail [19]. At the end of this aggregation
process, the mound of amoebas has formed a slug and starts
moving to a source of light. Te amoebas try to reach the
surface of the soil until they die [19]. If they succeed to reach
the surface, amoebas start organizing themselves into
a fruiting body. Te least ft amoebas, which formed the tail
of the mound, sacrifce themselves and die after forming the
stalk of the fruiting body. After that, the head amoebas climb
the stalk and transform into spores. Spores are dispersed by

M2: mathematical
proofs

M1: mathematical
models

I1: SW-inspired
algorithms

I2: parameters
and metrics

SE1: algorithm
development

SE3: frameworks
for self-∗

SE6:
benchmarking

SE2: coordination
generics SE4: test bench

SE5: middleware

I3: impact
analysis

Mathematical
methods

Inter-disciplinary
methods

Software
engineering
methods

Figure 1: Interplay of mathematical (M), software engineering (SE), and interdisciplinary (I) methods. Note: “Self-∗ ” means diferent
aspects of self-organizing properties such as self-healing, self-repairing, and self-confguring [18].
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environmental factors such as animals or the wind. After the
dispersal and the process of germination, spores become
active amoebas and the life cycle begins again at the vege-
tative stage [19].

Recall that the objective of the paper is to answer the
research questions presented in the frst part of Section 1
(before Subsection 1.1).

So, to revise, the novelty and contribution of this paper
include the following:

• Two cutting-edge intelligent algorithms for peer
clustering, inspired by the life cycle of the Dd slime
mold, are presented: slime mold and slime mold K-
means.

• Adaptation of 5 swarm-based algorithms for the
problem of peer clustering.

• A “fair” comparison (based on the peer model
framework) between selected algorithms: ABC, ABC
combined with K-means, ant-based clustering, ant K-
means, fuzzy C-means, genetic K-means, hierarchical
clustering, K-means, PSO, slime mold, and slime mold
K-means.

Tis paper is structured as follows. In Section 2, the
related work is discussed according to the proposed
methodology used in the scope of this research. Section 3
covers the implemented swarm-inspired peer clustering
algorithms. In Section 4, the benchmark methodology is
defned and the benchmark results are evaluated. Finally,
Section 5 discusses possible future improvements and
contains the conclusion.TeAppendix contains the raw data
results.

2. Related Work

Te target area of the state of the art covers approaches and
algorithms exclusively for peer clustering in P2P networks. In
the following section, diferent approaches for clustering
peers are discussed.

In [20], a semantic overlay network (SON) is created. For
this purpose, peers with similar contents, like music genre,
are connected to each other, consequently building a se-
mantic cluster. Terefore, the peers, the queries, and the
documents themselves, respectively, have to be classifed in
order to determine to which cluster(s) they belong. Tus,
queries can directly be routed to the respective SON, actually
improving the search performance.

In [21], the authors proposed a model for forming
groups of peers implicitly, called communities, based on
common interests. Tose communities are formed as peers
claim their interests analogous to social networks and are
possibly overlapping. A peer’s interests can be provided
explicitly by the peer or implicitly identifed from past
queries. Furthermore, they present a search technique,
which is based on the ability of the peers to form
communities.

In [5], a similar model like in [21] is introduced, but here
for the interests, a predefned ontology is used instead of
letting the peers claim their interests freely. Tis makes it
easier for a peer to fnd other peers with similar interests.Te
authors proposed a model that uses social network concepts
as the main physical structure for clustering peers. Nodes in
the model are grouped into several communities and sub-
communities with similar interests. Te order and relation
among communities are defned and controlled by a shared
ontology.

In [22], a peer’s interests are found out by extracting
keywords from text documents in their storage.Te keyword
extraction afects the global keyword vocabulary and is
treated as a decision problem. Although this is an interesting
approach, it is only applicable for text documents.

In [6], two algorithms are proposed.Tey aim at creating
an overlay network by clustering similar peers and are based
on Schelling’s model. One unique property is used to cluster
peers having this property in common, and thus they do not
overlap. Schelling’s model explains the existence of segre-
gated neighborhoods in America. It consists of a 2-
dimensional grid where two thirds of the cells are ran-
domly populated with blue and red turtles. Te turtles wish
to have at least a certain percentage of neighbors having the
same color as them. If this is not the case, the turtle moves to
an adjacent cell. Tis continues until all turtles are satisfed
with their neighbors.

In [23], the authors proposed a cluster-based P2P sys-
tem, called PeerCluster, for sharing data over the Internet. In
PeerCluster, all participant computers are grouped into
various interest clusters, each of which contains computers
that have the same interests.

Further, papers [24, 25] investigate forming clusters by
using P2P networks, but they are focused specifcally on
electricity and energy markets, i.e., very problem-specifc
oriented.

However, all existing approaches are very problem
specifcally oriented or take in consideration only some
properties of the system, and it would be difcult to apply
them on the general problem of peer clustering. In order to
analyze abovementioned related work approaches, Table 1 is

Slug

Mound

Stream
formation

Aggregation

Vegetative
movement

Vegetative
amoebas

Spores
Stalk

Slug
movement

Culmination
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fruiting body
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Figure 2: Life cycle of Dictyostelium discoideum [19].
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created. A table encompasses necessary properties required
in the evaluation methodology [18]:

• Provisioning of a general framework3: As there is no
“one-fts-all” solution, in order to fnd the best algo-
rithm for a use case, a generalized framework is needed
that allows the testing and tuning of diferent algo-
rithms for a specifc use case and environment. We
diferentiate between the complete solution for a do-
main specifc use case and the algorithm(s) integrated/
used by the solution. A framework does not per se
solve the entire use case but serves as a necessary base
for the spectrum of algorithms used.

• Composability of the architecture: Te architecture
must be fexible, so that neither new requirements on
specifc algorithms nor other assumptions on the
network infrastructure become “architecture
breakers.” Te fexible exchange of components and
algorithms as well as combinations of diferent com-
ponents within the framework shall be possible.

• Autonomy and self-organizing properties: Intelligent
algorithms require agents as they are advantageous
in situations that are characterized by high dynamics,
unforeseeable events, and heterogeneity. Use cases
with huge complexity, diversity of requirements, and
dynamically changing confgurations force identifying
new solutions based on self-organization, autonomic
computing, and mobile agents.

• Support of arbitrary confgurations: It targets problem
and domain independency that allow arbitrary net-
work topologies.

• Benchmarking in diferent environments: Bench-
marking shall be possible in diferent environments
providing a “fair” comparison of presented ap-
proaches/algorithms.

• Intelligent algorithm’s support: As already written,
high dynamics in the P2P environments emphasize the

necessity of fnding an intelligent, adaptable, and ro-
bust solution.

3. Swarm-Inspired Algorithms for
Peer Clustering

Swarm-based algorithms are inspired by nature and aim at
imitating the behavior of life forms organized in swarms and
apply it to the solution of problems. Te most widely used
groups of swarm-inspired clustering algorithms are ant-
based algorithms, closely followed by bee-inspired algo-
rithms. Similar to P2P systems, swarms are also perceived to
be decentralized and self-organized systems. Tus, swarm-
inspired algorithms are likely to provide satisfying results.

At the beginning of this section, the problem formula-
tion is given. Tat is, as the frst step, a model for the P2P
lookup requirements is described as it is necessary further to
defne the problem formulation. Also, the criteria for
clustering are introduced.

Later, the swarm-inspired algorithms used for peer
clustering are described. Tus, after a general, abstract ex-
planation of an algorithm, its mapping and adaptation to the
peer clustering problem are discussed. Two innovative al-
gorithms for peer clustering based on the slime mold life
cycle are presented in Subsections 3.9 and 3.10. At the end of
these subsections, their main characteristics are listed.

3.1. P2P Resource. A resource in the P2P system can be
defned as a combination of content and its metadata. For
reasons of simplicity, only the fle name is taken into account
for the formal defnition. Terefore, r stands for a fle re-
source and q stands for a query request. In the following, we
defne the storage peer as a peer storing data and processing
data queries and the worker peer as a peer accepting and
performing job requests like computations.

Sample instances of a request and two fle resources are
shown below.

Query Request: ("flename.txt")

Matching File Resource: ("flename.txt")

Non-Matching File Resource: ("fle.txt")

In contrast to a fle resource, a job is no concrete
resource. It is a metaphorical concept, defned as
a combination of a job type, a descriptive categorization
of the job, and a computational power. Nevertheless, it
defned as a tuple j � (j1, j2), where j1 depicts the job

categories and j2 is the currently available computational
power, i.e., the available resources. A job request is
structured in the same manner. Terefore, a worker peer
doing job jr can only accept a job request jq if and only if
j

q
1 ∈ jr

1 ∧ jr
2 ≥ j

q
2.

International Journal of Intelligent Systems 5
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In order to clarify the formalism above, an illustrative
example is provided by presenting sample instances of a job
resource and three job requests.

Job Resource: ("sorting, optimization", 3.2)
Acceptable Job Request: ("sorting", 2.3)
Non-Acceptable Job Request: ("hash value calculation", 2.3)
Non-Acceptable Job Request: ("optimization", 3.3)

3.2. Clustering Criteria. Diferent criteria are used for
clustering storage and worker peers. For storage peers, the
main criterion is the topic interest. For reasons of simplicity,
it is used the fle name of the respective fle resource for that

purpose.Temore topic interests two peers share, the higher
is the probability of sharing the same cluster. For reasons of
clarifcation, an example is given below.

Storage Peer 1: ("sorting, optimization")
Storage Peer 2: ("sorting")
Storage Peer 3: ("hash value calculation")

In the example, storage peer 1 and storage peer 2 would
be sharing a cluster, due to the fact that they have a topic
interest in common, whereas storage peer 3 would be placed
in another cluster.

On the contrary, for worker peers, there are two main
criteria for clustering: the job types processed by a worker
peer and its currently available computational power. Tus,

both of these criteria are taken into account in equal pro-
portions when examining whether two peers are similar to
each other or not. Te below given example will
illustrate this.

Worker Peer 1: ("sorting, optimization", 4.4) 
Worker Peer 2: ("sorting", 4.3) 
Worker Peer 3: ("sorting", 1.2)

In the example given above, worker peer 1 and worker
peer 2 are very likely to share a cluster. Although worker peer
3 also shares the same job type, its probability of being part
of the same cluster as worker peer 1 and worker peer 2 is not
that high as its computational power is considerably lower.

3.3. Distance Measurement. Distance measurement is im-
portant for peer clustering in order to learn which cluster is
most suitable for a certain peer. Tus, the measurement of
how well a peer fts into a cluster, in most algorithms called
ftness value, is based on distance measurement. All mea-
surements are based on the Euclidean distance4 formula,
which measures the distance between two points p and q in

an n-dimensional space. However, as components might not
be numbers, equation (1) presents an adapted measurement
called “mean square distances,” MSD, where each dimension
has its own distance function:

MSD �

������������

􏽘
i

di pi, qi( 􏼁
2
,

􏽳

(1)

where di is the distance along dimension i. Te smaller the
distance is, the more similar the two measurement objects
are. Vice versa, the larger the distance between two mea-
surement objects is, the more dissimilar they are.

In this paper, the measurement type is chosen by the
preference of the respective algorithm, if there is given any.

International Journal of Intelligent Systems 7
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To quantify the dissimilarity of strings, a variation of the
Levenshtein distance [26] is used. Te Levenshtein distance
of strings and the numerical distance are expressed as
a percentage, where the latter is based on the following
equation5:

pd(p, q) �
|p − q|

p + q/2
. (2)

3.3.1. P2P Distance. P2P distance is used to calculate the
distance between two peers. Peer-to-cluster distance is used
to calculate the distance between a peer and a cluster mean.
A cluster mean is embodied by its three most frequent
keyword occurrences combined with their frequency of
occurrence and the average available computational power.
Cluster-to-cluster distance is used to calculate the distance
between two clusters.

3.3.2. Jaccard Distance. In addition to the abovementioned
distance measurement, all types of distance measures were
also implemented using the Jaccard distance, based on the
Jaccard index. Furthermore, as the distance measurements
are, just as the peer clustering algorithms, implemented in
a Plug and Play manner, they are easily interchangeable.
Also, in this type of distance measurement, the numerical
distance is expressed as a percentage (equation (3)) Te
formula for the Jaccard distance6 is given as

dJ(p, q) � 1 −
|p∩ q|

|p∪ q|
. (3)

An illustration of distance calculations is provided in the
Appendix.

3.4. ABC. Te ABC algorithm [27] is based on the foraging
behavior of honey bees. A possible solution is represented
by a food source and the food source’s nectar amount
complies with the ftness or quality of the associated so-
lution. In an artifcial bee hive, the foraging tasks are di-
vided between employed bees and onlooker bees.
Employed bees go to the food sources visited by them
before, whereas an onlooker bee waits for the employed
bee, giving them quality information about the visited food
source. Ten, the onlooker bee chooses a food source to
exploit on the basis of the nectar quality. Te more nectar
a food source ofers, the larger is the probability to be
chosen by an onlooker bee. In the ABC algorithm, the
number of employed bees and onlooker bees equals the
number of food sources. Terefore, each food source is
visited by only one employed bee.

In each iteration step, each employed bee produces
a modifcation of the current solution vi depending on the
local information [27]:

vi � zi + ϕ zi –zk( 􏼁, (4)

where zi is the current solution and zk is a randomly selected
food source difering from zi. ϕ is a random number between
− 1 and 1. After producing the new source, its nectar amount
is tested. Terefore, the ftness of the solution is calculated
the following way [27]:

fiti �
1

1 + fi

, (5)

where fi is the sum of all instances of MSD between an
instance and the associated cluster center, divided by the
number of instances. A greedy selection is applied to the
newly produced solution and the current one, where the
better one is kept in memory. After all employed bees have
completed the search, the nectar information of the food
sources is shared with the onlooker bees. Terefore, the
probability value pi has to be calculated for each solution
[27]:

pi �
fiti

􏽐
SN
n�1fitn

, (6)

where SN is the number of food sources equaling the
number of employed bees and onlooker bees.

Based on this probability value, each onlooker bee
chooses one food source. Te higher the probability value of
a certain solution is, the higher is the chance to be chosen by
an onlooker bee. Tus, if a solution has a very high prob-
ability value, it may be chosen by multiple onlooker bees.
Te onlooker bee then produces a new solution based on the
selected food source using equation (4). Te ftness value of
this solution is computed by equation (5) and, just as in the
employed bees phase, a greedy selection process is applied
between the newly produced solution and the probabilis-
tically chosen one. Te richest food source shall be mem-
orized across all iterations (see Algorithm 1).

Te algorithm is mapped to the peer clustering problem
the following way.

At the initialization, the given number of food sources
noSources, i.e., solutions to the clustering problem, is cre-
ated. Tis happens by randomly assigning the peers to be
clustered to a given number of clusters k.Tis is done in such
a way that n peers are assigned to each cluster, where n is the
number of peers to be clustered. Ten, the rest of the peers
are assigned to a randomly chosen cluster. Afterward, in
each iteration, the following procedure is performed. Each
employed bee creates a new solution based on its own food
source and a randomly chosen one. More specifcally, for
each peer in both solutions, the associated cluster is
expressed as a numeric value. Tis makes it possible to insert
these numeric values into equation (4), resulting in a cluster
expressed as a numeric value which shall be associated to the
corresponding peer. Tus, the composition of the newly
created solution is such that this is done for each peer. Next,
the ftness value for the bee’s solution and new solution is
calculated as described above. Tis also applies to the choice
of the better solution and the calculation of the probability

8 International Journal of Intelligent Systems
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value pi for each food source. Eventually, based on the
probability value, each onlooker bee chooses a solution. Tis
means the higher the ftness value of a solution is, the higher
is pi, and consequently the higher is the probability to be
chosen by an onlooker bee. Ten, the onlooker bee’s pro-
cedure is basically the same as that of the employed bee.

3.5. Combination of ABC Algorithm and K-Means (ABCK).
Te ABCK algorithm [28] is a combination of the artifcial
bee algorithm and classical K-means. Tus, the procedure is
basically the same as the procedure of ABC, only difering in
the fact that each solution of ABCK is locally optimized by
the execution of K-means. According to [28], the K-means
algorithm is highly dependent on the centroid initialization
while being computationally light, whereas the ABC algo-
rithm is rather time-consuming.Terefore, a combination of
those two algorithms shall complement each other. Te
setting of the ABCK algorithm is basically the same as of the
ABC algorithm, regarding employed bees, onlooker bees,
and the food sources.Te procedure difers from the original
one by adding an additional K-means step. Every time a bee
produced amodifcation of a solution vi, in the employed bee
phase as well as in the onlooker bee phase, the K-means
algorithm is applied on this solution. Ten, the solution is
evaluated by means of a criterion called distortion, in-
troduced by Armano and Farmani [28] and defned as
follows:

E � 􏽘
K

k�1
􏽘

zi∈Ck

zi − Ck

����
����
2
, (7)

where zi is the ith instance belonging into cluster Ck. Te
distortion sums up the squared distance between all peers
and their associated cluster centers, using the peer-to-cluster
distance mentioned in Section 3.3. If the distortion is low,
the clustering is good, as it measures the inner distances

within each cluster and thus the distortion shall be mini-
mized. Terefore, the solution having the smaller distortion
is kept in memory. Also in this procedure, the best solution
shall be memorized across all iterations (see Algorithm 2).

Due to the fact that this algorithm is very similar to the
pure ABC algorithm, the mapping to the peer clustering
problem is exactly the same as described above, with the only
exception that each newly produced solution is locally op-
timized by applying K-means on it.

3.6. Ant-Based Clustering. In ant-based clustering [29], the
ants act on a two-dimensional grid which is populated
randomly with items. An ant is empowered to execute one of
two actions: an unloaded ant can pick up an element lying on
a feld currently visited by the ant. An ant carrying an el-
ement can drop it on a free cell. Tese actions are decisions
infuenced by the ants’ perception of the environment. In
this algorithm, an item represents the object which shall be
clustered. Tus, an item equates to a peer. In each iteration,
an ant is selected randomly. If there is an item at the ant’s
current position and the ant is not carrying one, the selected
ant can pick the item. If the location is free, a carried item
can be dropped by the ant. Te probability of picking and
dropping, respectively, is infuenced by the similarity of the
peers placed in the surrounding area, clarifed in
equation (10).

Te picking and dropping probabilities for a given
position i are calculated the following way [29]:

ppick(i) �
kpick

kpick + f(i)
􏼠 􏼡

2

, (8)

and

pdrop(i) �
2f(i), if f(i)< kdrop,

1, otherwise,
􏼨 (9)

Input: number of clusters k, number of food sources noSources, maximum number of iterations maxIteration
1 initialization;
2 for j:�1 to maxIteration do
3 for each employed bee do
4 produce new solution vi;

5 calculate ftness value;
6 apply greedy selection;
7 end
8 calculate the probability values pi for the solutions;
9 for each onlooker bee do
10 select a solution depending on pi;
11 produce new solution vi;
12 calculate ftness value;
13 apply greedy selection;
14 end
15 memorize the best solution so far;
16 end

ALGORITHM 1: Artifcial bee colony algorithm.

International Journal of Intelligent Systems 9
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where kpick and kdrop are constants and f(i) is the neigh-
borhood function of the current location i:

f(i) �

1
d
2􏽘

j

1 −
d(i, j)

α
􏼠 􏼡, if f(i)> 0,

0, otherwise,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(10)

where the sum extends over all locations j in the sur-
rounding area of location i, d(i, j) is the measurement of
dissimilarity between the items located at cells i and j and
therefore computed by using the P2P distance, α is
a scaling constant, and d2 equals the size of the local
neighborhood of i to normalize the result (see
Algorithm 3).

Tis algorithm is mapped to the peer clustering problem
as follows. Firstly, peers and ants are randomly distributed
on the grid. Ten, the ants move the peers as described
above, by picking them up and dropping them at another
location. At the end of the algorithm, a cluster is formed by
all peers which are horizontally, vertically, or diagonally
adjacent to each other.

3.7. Ant K-Means. Te ant K-means algorithm [30] is based
on combining ant colony optimization (ACO) with con-
ventional K-means clustering. It is inspired by the natural
behavior of ant colonies, as they leave a trail of pheromones
to communicate with each other. Pheromones are left by an
ant following a certain path. Tus, the more ants take the
same trail, the more pheromones lay on the trail. Conse-
quently, this particular path becomes more attractive for
other ants and the shortest route can be obtained. Tus, the
conventional K-means is modifed in such a way that it
utilizes the described behavior.

In each iteration, the pheromones of each path have to be
updated, using the following formula by Kuo et al. [30]:

τij � (1 − p)τij +
Q

TWCV
, (11)

where p is the pheromone decay parameter, Q is a constant,
and total within cluster variation (TWCV) is the total within
cluster variance, the sum of the squared distance of each peer
to its respective cluster mean.

Each ant m assigns each peer i to a cluster mean j with
a probability Pm

ij which is calculated as follows [30]:

P
m
ij �

ταijη
β
ij

􏽐
k
cτ

α
icη

β
ic

, (12)

where α is the relative importance of the trail and β is the
relative importance of the visibility η, which is the inverse of
the distance between peer i and cluster center j, i.e.,
ηij � 1/dij.

Tereafter, the cluster means are updated and the new
TWCV has to be calculated. Tis procedure is repeated
until the TWCV does not change anymore. If the new
TWCV is smaller than the global best TWCV, it is
replaced.

Next, a step called perturbation is performed in order to
not to get stuck with a local minimum. Basically, in this step,
every ant is newly initialized, just as described in the ini-
tialization step below (see Algorithm 4).

Te algorithm is mapped to the peer clustering
problem the following way: At the initialization step, the
given number of ants noAnts is created. As each ant holds
its own solution to the peer clustering problem, this
includes the initialization of k cluster means by randomly
assigning peers to it. Afterward, lay equal pheromone on
each path. Ten, in each iteration step, the pheromones
of each path are updated and each peer is assigned to
the cluster with the highest probability Pm

ij , as
described above.

Input: number of clusters k, number of food sources noSources, maximum number of iterations maxIteration.
1 initialization;
2 for j :�1 to maxIteration do
3 for each employed bee do
4 produce new solution vi;
5 apply k-means on vi;
6 calculate distortion;
7 apply greedy selection;
8 end
9 calculate the probability values pi for the solutions;
10 for each onlooker bee do
11 select a solution depending on pi;

12 produce new solution vi;
13 apply k-means on vi;
14 calculate distortion;
15 apply greedy selection;
16 end
17 memorize the best solution so far;
18 end

ALGORITHM 2: ABC algorithm combined with K-means.

10 International Journal of Intelligent Systems
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3.8.PSO. In PSO [31], an individual grouped into a swarm is
referred to as a particle. A swarm can be seen as a fock of
birds fying toward an optimum. Terefore, a particle
searches for the best solution, using the best position en-
countered by itself and its swarm. Tus, a wide area can be
searched while heading toward an optimum. Each particle i
represents a complete solution of the clustering problem and
has to maintain the information of its current position xi, its
velocity vi, and its personal best position yi, where the
personal best position is the position where the particle
obtained the highest ftness value so far. In addition to the
personal best position, there is also a global best position 􏽢y,
determined from the entire swarm.

In each iteration t, the velocity and position of a particle
are updated using the following formula [31]:

vi(t + 1) � wvi(t) + c1r1(t) yi(t) − xi(t)( 􏼁

+ c2r2(t) y(̂t) − xi(t)􏼐 􏼑,
(13)

xi(t + 1) � xi(t) + vi(t + 1), (14)

where w is the inertia weight, c1 and c1 are constants, and r1
and r1 are random values between 0 and 1.

Te particle’s ftness at the current position is computed
by means of a ftness function f encapsulating the charac-
teristics of the optimization problem and thus refecting the

Input: step size of an ant stepsize, maximumnumber of iterationsmaxIteration, picking constant kpick, dropping constant kdrop, scaling
parameter α

1 randomly distribute items on the grid;
2 randomly place ants on the grid;
3 for i:�1 to maxIteration do
4 choose ant randomly;
5 move ant randomly by stepsize;
6 if antCarriesItem and cellIsEmpty then
7 pdrop :� calculate drop probability;
8 if randomDouble≤pdrop then
9 drop item;
10 end
11 end
12 else if not (antCarriesItem) and not(cellIsEmpty) then
13 ppick :� calculate pick probability;
14 if randomDouble≤ppick then
15 pick item;
16 end
17 end
18 end

ALGORITHM 3: Algorithm for ant-based clustering.

Input: number of clusters k, number of ants noAnts, maximum number of iterations maxIteration, pheromone decay parameter p,
relative importance of the trail α, relative importance of the visibility β, constant Q.

1 initialization;
2 lay equal pheromone on each path;
3 for l:�1 to maxIteration do
4 for m:�1 to noAnts do
5 while TWCV changed do
6 update pheromones τij;
7 assign each object to a cluster with probability Pm; ij
8 update cluster centers;
9 calculate TWCV;
10 end
11 if TWCV< bestTWCV then
12 bestTWCV:�TWCV;
13 end
14 end
15 perturbation;
16 end

ALGORITHM 4: Algorithm for ant K-means.

International Journal of Intelligent Systems 11
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optimality of the solution.Ten, the personal best position is
updated by comparing the ftness value of the current po-
sition to the ftness value of the incumbent personal best
position. If the ftness value of the current position is better,
the incumbent personal best position is replaced by the
current one (see Algorithm 5).

Tis algorithm is mapped to the peer clustering problem
as follows. At the initialization step, the given number of
clusters k is initialized by randomly assigning one peer to it,
representing the cluster mean. Ten, in each iteration, the
solution of each particle has to be adapted. Tis means each
peer of the solution is assigned to the best suiting (i.e.,
nearest) cluster. Afterward, the ftness of the current solution
is calculated. Tis is done by using the ratio between the
average intracluster distance (i.e., peer-to-cluster distance)
and the average intercluster distance (i.e., cluster-to-cluster
distance).

If the ftness of the current solution is smaller than the
ftness of the personal and global best solution, respectively,
the respective best solution is replaced by the current one.
Subsequently, the centroids of each solution have to be
updated. Tis complies with the abovementioned step of
updating the velocity and position of a particle. In order to
have a nonnumeric procedure which, at the same time, is in
accordance with the formulas of equations (13) and (14), this
is done the following way. Te average of the cluster means
of the current solution and the personal best solution is
calculated, as well as of the cluster means of the current
solution and the global best solution. Next, the two results of
this operation are averaged again, resulting in the new
cluster center. Tis way the new position of a particle is
always infuenced by the personal and global best solution,
aiming at optimizing the current solution.

3.9. Slime Mold. Te slime mold Dd is a social collective of
amoebas, using spores to reproduce. Te Dd’s life cycle goes
through fve stages: vegetative movement, aggregation,
mound, slug movement, and spore dispersal [32]. At the frst
stage, vegetative movement, amoebas are searching for food.
An amoeba begins to starve if there is not enough food
supply available. Tus, an amoeba remains in this state until
the food supply diminishes. At this point, the aggregation
stage begins, where amoebas show the frst attempt of co-
operative behavior. In this stage, there are two types of
amoebas, namely, pacemakers and aggregating amoebas. A
chemical called cAMP is emitted by a pacemaker. Te ag-
gregating amoebas aggregate toward pacemakers as they are
attracted by cAMP. By this aggregation, amoebas are
forming a mound. At this stage, the amoebas organize
themselves into two groups, prestalk and prespore, based on
their ftness level, i.e., how well-fed they are. Te prestalk
amoebas will be part of the fruiting body and, therefore,
eventually die, whereas the prespore amoebas will be dis-
persed as spores. Together, the two groups form a slug,
divided into a head, composed of prestalk amoebas, and
a tail, formed by prespore amoebas. Te slug moves into
a direction where the possibility of a culmination, like a light
source, exists. Ten, at the last stage, it starts to form

a fruiting body, where the prestalk amoebas become part of
the fruiting body’s stalk and will eventually die.Te prespore
amoebas are dispersed as spores, such that the Dd’s life cycle
can start again by entering the vegetative stage [32].

Reference [7] presents a swarm intelligent algorithm,
which imitates the life cycle of the Dd slime mold. In this
section, the slime mold algorithm for peer clustering is
presented, which is based on the mentioned research [7].

At the frst stage of the life cycle, the given number of
amoebas noAmoebae is initialized. As every amoeba holds its
own solution of the clustering problem, and this is done by
randomly choosing k cluster means. In the second stage,
aggregation, the clustering begins by assigning each peer to
the nearest cluster center, representing the role of a pace-
maker. Afterward, the cluster means are updated and the
new TWCV is calculated. Tis is repeated until the old
TWCV and the new TWCV converge to a limit given by ε.
Ten, in themound stage, the one half of the amoebas having
the better TWCV is categorized as prespore, and the other
half is categorized as prestalk.

At the next stage, slug movement, the solution of each
prespore amoeba is combined with the global best solution
the same way as described in Algorithm 6, by averaging the
two cluster means. At the dispersion stage, the global best
solution is remembered by selecting the amoeba having the
smallest TWCV. In the next iteration of the algorithm, the
prespore amoebas are kept, whereas the prestalk amoebas
are replaced by newly initialized amoebas.

Te basic characteristics of the slime mold algorithm are
presented in Table 2 [9].

3.10. Slime Mold K-Means. Te slime mold K-means algo-
rithm for clustering is based on the same biological approach
as the pure slimemold for clustering.Terefore, the setting is
basically the same, but the procedure difers from the
original one by adding an additional K-means step, which is
described in Algorithm 7. Te mapping to the peer clus-
tering problem of the slime mold K-means algorithm is very
similar to the slime mold mapping. However, there are two
deviations.

In the aggregation stage, each peer is assigned to the
nearest cluster center, which represents the role of the
pacemaker. After that, there is no more local optimization
taking place.

In return, at the end of the dispersion stage, the solutions
of all prespore amoebas are locally optimized by applying K-
means.

Te basic characteristics of the slime mold K-means
algorithm are presented in Table 3 [9].

4. Evaluation

Te proposed algorithms, slime mold for peer clustering and
slimemold K-means, are benchmarked alongside ABC, ABC
combined with K-means, ant-based clustering, ant K-means,
fuzzy C-means, genetic K-means, hierarchical clustering, K-
means, and PSO. Te analysis encompasses the following
stages: ∗) frst, the parameter sensitivity analysis is done

12 International Journal of Intelligent Systems
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Input: number of clusters k, number of amoebae noAmoebae, maximum number of iterations maxIteration, restriction parameter ε
1 for j:�1 to maxIteration do
2 Procedure vegetativeMovement():
3 initialization of amoebae;
4 end
5 Procedure aggregation():
6 for i :�1 to noAmoebae do
7 while |TWCV − newTWCV|> ε do
8 assign each object to nearest cluster center;
9 update cluster centers;
10 calculate new TWCV;
11 end
12 end
13 end
14 Procedure mound():
15 divide amoebae into prespore and prestalk;
16 end
17 Procedure slugMovement():
18 for i :�1 to noPrespore do
19 combine solutioni with solutionbest;
20 end
21 end
22 Procedure dispersion():
23 remember global best solution solutionbest;
24 end
25 end

ALGORITHM 6: Algorithm for slime mold.

Table 2: Basic characteristics of slime mold.

Mechanism of exploration Vegetative movement
Mechanism of exploitation Aggregation. Slug movement

Feasibility of solution Te feasible region is the space of all candidate solutions, i.e., the set of k nonempty
clusters inhabited by all nodes in the considered network

Input: number of clusters k, number of particles noParticles, maximum number of iterations maxIteration, constant w1, constant w2
1 initialization;
2 for j :�1 to maxIteration do
3 for i :�1 to noParticles do
4 update velocity vi;
5 update position xi;
6 if f (xi)< f (yi) then
7 yi :� xi

8 end
9 if f (xi)<f(􏽢y) then
10 ŷ:� xi

11 end
12 end
13 end

ALGORITHM 5: Algorithm for PSO.

International Journal of Intelligent Systems 13
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because of many confgurable parameters; ∗) second, the
parameters which showed the best results are chosen for the
comparative analysis; and ∗) third, a statistical signifcance of
the obtained results is analyzed. Detailed information7 about
the experimental setup can be found in [33].

4.1. Metrics. In order to proceed with the evaluation of
abovementioned algorithms, metrics need to be defned.
Terefore, in this subsection, the implemented metrics are
described.

4.1.1. DBI. Te DBI [34] shall indicate the similarity of
clusters. Terefore, it uses the following formula:

DBI �
1
n

􏽘

n

i�1
max

i≠j

Si + Sj

d ci, cj􏼐 􏼑
⎛⎝ ⎞⎠, (15)

where n is the number of clusters, Si is the average distance
between the centroid of cluster i and all peers within cluster i,
and d(ci, cj) is the distance between the centroid of cluster i
and cluster j. Te DBI is nonnegative. Te smaller the index
is, the better the clustering result is.

4.1.2. DI. Te DI [12, 35] is a metric aiming at minimizing
the intracluster distance, while having well-separated clus-
ters (i.e., maximizing the intercluster distance). It uses the
following formula:

DI �
min1≤i<j≤n(d(i, j))

max1≤k≤n d′ xk , yk( 􏼁( 􏼁
, (16)

where d(i, j) is the distance between the clusters i and j and
d′(xk, yk) is the distance of any pair of peers within cluster
k. Te higher the DI is, the better the result of the peer
clustering is.

4.1.3. SC. Te SC [36] shall evaluate the validity of a clus-
tering result and is often used to fnd the optimal number of
clusters. It is calculated as follows:

a(i) �
􏽐 d(i, j)

Ci

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − 1

, (17)

which is the average distance of peer i to all other peers
within the same cluster Ci.

b(i) � min
C≠Ci

(d(i, C)), (18)

Input: number of clusters k, number of amoebas noAmoebae, maximum number of iterations maxIteration
1 for j:�1 to maxIteration do
2 Procedure vegetativeMovement():
3 initialization of amoebas;
4 end
5 Procedure aggregation():
6 for i:�1 to noAmoebae do
7 aggregate toward nearest pacemaker;
8 end
9 end
10 Procedure mound():
11 divide amoebas into prespore and prestalk;
12 end
13 Procedure slugMovement():
14 for i :�1 to noPrespore do
15 combine solutioni with solutionbest;
16 end
17 end
18 Procedure dispersion():
19 remember global best solution solutionbest;
20 for i :�1 to noPrespore do
21 apply k-means;
22 end
23 end
24 end

ALGORITHM 7: Algorithm for slime mold K-means.

Table 3: Basic characteristics of slime mold K-means.

Mechanism of exploration Vegetative movement
Mechanism of exploitation Slug movement

Feasibility of solution Te feasible region is the space of all candidate solutions, i.e., the set of k nonempty
clusters inhabited by all nodes in the considered network

14 International Journal of Intelligent Systems
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where d(i,C) is the average distance between peer i to all
peers of cluster C, for all clusters C≠Ci. Ten, those for-
mulas are used to calculate the silhouette of i s(i):

s(i) �
b(i) − a(i)

max a(i), b(i){ }
. (19)

Te overall average silhouette width, here called sil-
houette coefcient, s(k) is used to measure the validity of the
clustering result:

s(k) �
􏽐

n
i�1s(i)

n
, (20)

where n is the number of peers which were clustered.
Te SC ranges between − 1 and 1. Te higher the co-

efcient, the better the peer clustering result.

4.1.4. ADC. Te ADC is a simple metric to evaluate a peer
clustering result and is developed in the course of this re-
search. Te calculation works as follows.

First, the average distance of a peer i to all other peers in
the same cluster Cx is calculated:

a i, Cx( 􏼁 �
􏽐

Cx| |
j�1 d(i, j)

Cx

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − 1

. (21)

Tis is done for every peer in the cluster Cx. Ten, the
average cluster within distance for cluster Cx is calculated by
summing up all object distances and dividing them through
the number of cluster members:

b Cx( 􏼁 �
􏽐

Cx| |
i�1 a i, Cx( 􏼁

Cx

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

. (22)

After that, the ADC is calculated by

ADC �
􏽐

k
x�1b Cx( 􏼁

k
, (23)

where k is the number of clusters. Obviously, the smaller the
ADC is, the better the clustering result is.

4.2. Benchmark Methodology. All benchmarks are carried
out on Google Cloud Platform’s Compute Engine8. In
particular, a “n1-standard-16” instance was used, which
includes 16 vCPUs and 60GB RAM. Te following pro-
cessors are available for n1 machine types: 2.0GHz Intel
Xeon Scalable Processor, 2.2GHz Intel Xeon E5 v4, 2.3GHz
Intel Xeon E5 v3, 2.5GHz Intel Xeon E5 v2, and 2.6GHz
Intel Xeon E5.

Te general benchmark setups are the following:

1. P2P network nodes: Te amount of the nodes is
varied in three levels: low (Ln), medium (Mn), and
high (Hn), where Ln � 50, Mn � 100, and Hn � 200.
Tis means, for example, that in a network of medium
size, 100 storage peers, 100 worker peers, and 100
client peers are present. Furthermore, it shall be noted
that no churn is simulated. Tus, there is no fuctu-
ation of node participation.

2. Requests: For the sensitivity analysis, the amount of
requests per client peer is varied in three levels: low
(Lr), medium (Mr), and high (Hr), where Lr � 1,
Mr � 5, and Hr � 10 query and job requests per client
peer. On the contrary, all competitive benchmarks are
executed with exactly three queries and job requests
per client peer, as the requests have shown to have no
direct impact on the performance of the peer clus-
tering algorithms.

3. Benchmark execution: Each confguration of an al-
gorithm is executed 100 times, in order to have
a variety of diferent node initializations. Tus, in the
result data, the average metric values are recorded.

Te suggested default values are used for the rest of the
framework parameters.

Te metrics used for the evaluation are execution time,
DBI, DI, SC, and ADC. Te metric of execution time
measures the performance of the algorithms which can be
important, especially in time-critical scenarios. In order to
examine the quality of the peer clustering solutions from
diferent perspectives, three established and well-known
metrics are chosen. While the DBI [34] uses artifcial
cluster means to calculate the ratio of the within cluster
cohesion to the between cluster separation, the other two
measures use only the distances between individual nodes.
Furthermore, the DI [12, 35] uses the worst case scenarios,
i.e., the global minimum distance between two clusters and
the global maximum distance between any pair of peers
within the same cluster, to calculate the ratio between co-
hesion and separation, whereas the DBI [34] and the SC [37]
are calculated with average values. In contrast to the other
two metrics which directly calculate the ratio between co-
hesion and separation, the SC normalizes the result by
subtracting the average within-cluster distance from the
minimum between-cluster distance and dividing the result
by the greater of both numbers. Additionally, one simple
metric, ADC, is introduced. It mainly distinguishes from the
other metrics as it only focuses on the cohesion within the
clusters, while neglecting the well-separation of the clusters.

4.3. Implementation Platform. A framework based on the
Peer Model [38] is implemented for benchmarking and
comparison of clustering algorithms for unstructured P2P
networks. It is domain independent, supports arbitrary
confgurations, and serves only as a necessary basement for
the used algorithms. Te framework allows the plugging of
diferent peer clustering algorithms in order to allow an easy
exchangeability of the applied algorithms and systematic
benchmarking as well as comparison of these algorithms. It
is used to fnd the best suiting algorithm for a specifc
problem. Te main characteristics of underlying framework
are only very briefy mentioned without detailed description
because the main focus in this paper concerns the peer
clustering algorithm. Te Peer Model is a space-based co-
ordination middleware for distributed environments with
a data-driven workfow. Te strict separation of the co-
ordination from the application logic allows reusing proven
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coordination patterns. Te main component of the Peer
Model is the peer, which represents a structured, reusable,
and addressable component. More details of the Peer Model
can be found in [39, 40].

4.4.DatasetDetails. In this subsection, the dataset details are
provided including the sensitivity analysis based on these
datasets. Te goal of the sensitivity analysis is to fnd the best
combination of parameters for each benchmarked algo-
rithm. Each test case is executed 100 times (due to the
nondeterministic nature of the benchmarked algorithms)
and the recorded results are averaged and stored for future
analysis. A selection of the best set of parameters’ values is
a computationally expensive and delicate task. In order to
perform an automatic parameter tuning, racing [41] has
been chosen. Tis method focuses only on well performing
confgurations and discards those ones that do not perform
well enough. It starts by running new confgurations against
a small subset of the testing instances. Only those confg-
urations, which do not perform signifcantly worse than the
best yet found confguration, are chosen for the subsequent
runs. Te number of testing instances is increased in each
iteration until only the best confguration is left or a maxi-
mum number of test runs is reached. In order to efectively
compare the candidate confgurations, the pairwise t-test
is used.

Terefore, regarding sensitivity analysis, either recom-
mended values from the literature (cited in respective Ta-
bles 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, and 25) are used or in case of preliminary testing,
a thorough investigation is used by means of automatic
parameter tuning. Tis parameter tuning is performed on
the parameter’s value range recommended in the previous
research work or determined in preliminary benchmarks.
Regarding number of nodes in network and the number of
clusters, a selection of parameter values is done in order to
retain scalability.

As for the most benchmarked algorithms, the number of
clusters has to be parameterized, and a global range for this
value is used, depending on the number of nodes in the
network, i.e., number of clusters� {n∗0.1; n∗ 0.2; n∗ 0.3;
n∗ 0.4; n∗ 0.5}, where n is the number of nodes in the
network. Tese values are used for the following reasons: As
it makes a great diference for the quality of the clustering
solution whether 10 or 100 peers are clustered into 3 clusters,
the number of clusters shall be dependent on the number of
nodes. Furthermore, the upper limit for k is set to n/2, as
otherwise a balanced distribution would be harder to ac-
complish. As the number of clusters is required in nearly
each benchmarked algorithm, it can be considered to be one
of the most important parameters and therefore fve values
are tested, fairly distributed between 10% and 50% of the
number of nodes to be clustered.

Te number of iterations maxIteration and the number
of agents, like noAnts and noAmoebae, are also parameters
occurring more often; therefore, for them, three global
values are specifed to be tested, in case there does not exist
an expert recommendation. For the number of agents, the

Table 4: ABC parameter values before sensitivity analysis.

Parameter Value (range) Source

k n ∗ 0.1, n ∗ 0.2, n ∗ 0.3,
n ∗ 0.4, n ∗ 0.5

Preliminary
benchmarks

noSources 20 [27]
maxIteration 1000 [27]

Table 5: ABC sensitivity analysis results.

Nodes n Requests k
50 1

n ∗ 0.5

50 5
50 10
100 1
100 5
100 10

Table 6: ABCK parameter values before sensitivity analysis.

Parameter Value (range) Source

k n ∗0.1, n ∗0.2, n ∗0.3,
n ∗0.4, n ∗0.5

Preliminary
benchmarks

noSources 10 [28]
maxIteration 20 [28]

Table 7: ABCK sensitivity analysis results.

Nodes n Requests k
50 1

n ∗ 0.4

50 5
50 10
100 1
100 5
100 10

Table 8: Ant-based clustering parameter values before sensitivity
analysis.

Parameter Value (range) Source
Stepsize 1 [29]
maxIteration max(1,000,000;

�������
2000∗ n

√
) [42]

Kpick 0.1 [43]
Kdrop 0.1 [43]

α 0.3, 0.6, 0.9 Preliminary
benchmarks

Table 9: Ant-based clustering sensitivity analysis results.

Nodes n Requests α
50 1

0.3

50 5
50 10
100 1
100 5
100 10

16 International Journal of Intelligent Systems
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minimum and maximum recommended values from other
algorithms are used as lower and upper limit (10 from PSO
and 50 from genetic K-means), whereas the middle value is
the average. Tus, the number of agents is tested for the

values 10, 30, and 50. For the number of iterations, the lower
limit is also defned by the minimum recommended value
(20 from ABCK), whereas the upper limit is set to 100 as it is
a value twice recommended (from genetic K-means and
PSO) and due to performance reasons. Te middle value is

Table 10: Ant K-means parameter values before sensitivity
analysis.

Parameter Value (range) Source

k n ∗ 0.1, n ∗0.2, n ∗0.3,
n∗0.4, n ∗ 0.5 Preliminary benchmarks

noAnts 10, 30, 50 Preliminary benchmarks
maxIteration 20, 50, 100 Preliminary benchmarks
p 0.9 [29]
α 0.5 [29]
β 1 [29]
Q 1 [29]

Table 11: Ant K-means sensitivity analysis results.

Nodes n Requests k noAnts maxIteration
50 1

n ∗ 0.1 10 20

50 5
50 10
100 1
100 5
100 10

Table 12: Fuzzy C-means parameter values before sensitivity
analysis.

Parameter Value (range) Source

c
n ∗ 0.1, n ∗ 0.2,

n ∗ 0.3,
n∗0.4, n ∗ 0.5

Preliminary benchmarks

m 1.5, 2.2, 3.0 [11]
acceptanceBorder 1 c [44]

Table 13: Fuzzy C-means sensitivity analysis results.

Nodes n Requests c m
50 1

n ∗ 0.1 1.5

50 5
50 10
100 1
100 5
100 10

Table 14: Genetic K-means parameter values before sensitivity
analysis.

Parameter Value (range) Source

k
n ∗ 0.1, n ∗ 0.2,

n ∗ 0.3,
n∗0.4, n ∗ 0.5

Preliminary benchmarks

maxGeneration 100 [10]
nrOf chromosomes 50 [10]
c 2 [10]
alleleModifer 1, 5, 10 Preliminary benchmarks
mutationProbability 0.05 [10]

Table 15: Genetic K-means sensitivity analysis results.

Nodes n Requests k alleleModifer
50 1

n ∗ 0.1 10

50 5
50 10
100 1
100 5
100 10

Table 16: Hierarchical clustering parameter values before sensi-
tivity analysis.

Parameter Value (range) Source

k
n ∗ 0.1, n ∗ 0.2,
n ∗ 0.3, n∗0.4,

n ∗ 0.5
Preliminary benchmarks

Table 17: Hierarchical clustering sensitivity analysis results.

Nodes n Requests k
50 1

n ∗ 0.5

50 5
50 10
100 1
100 5
100 10

Table 18: K-means parameter values before sensitivity analysis.

Parameter Value (range) Source

k n ∗ 0.1, n ∗ 0.2, n ∗ 0.3,
n∗0.4, n ∗ 0.5 Preliminary benchmarks

Table 19: K-means sensitivity analysis results.

Nodes n Requests k
50 1

n ∗ 0.5

50 5
50 10
100 1
100 5
100 10

Table 20: PSO parameter values before sensitivity analysis.

Parameter Value (range) Source

k n∗ 0.1, n∗ 0.2, n∗ 0.3,
n∗ 0.4, n∗ 0.5 Preliminary benchmarks

noParticles 10 [31]
maxIteration 100 [31]
w1 0.5 [31]
w2 0.5 [31]
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set to 50. Tus,maxIteration is tested for the values 20, 50,
and 100. Also, other nonrecommended parameters are
tested with three values. In detail, for all peer clustering
algorithm parameters being subject of the sensitivity
analysis, the optimal parameter value is determined based
on the metrics mentioned above for all combinations of
network sizes (Ln, Mn) and request levels (Lr, Mr, Hr).
Tese optimal values are then used in the competitive
benchmarks.

4.4.1. ABC. As many other algorithms, the ABC peer
clustering algorithm requires a given number of clusters k, in
which to cluster the nodes. Terefore, as mentioned before,
a global range is used which depends on the number of
nodes n participating in the network, i.e., the number of
objects to be clustered. Terefore, the value of k ranges
between n/10 and n/2. Te values of all other parameters
used for the competitive benchmark are based on the rec-
ommendations in [27]. Te parameter values and ranges,
respectively, are shown in Table 4, whereas the results of the
sensitivity analysis are depicted in Table 5. As can be seen, for
each combination of network sizes and request levels, the
value of k performed best with k� n ∗ 0.5. Terefore, in
a network consisting of 100 nodes, k� 50.

4.4.2. ABCK. Also for the peer clustering algorithm ABCK,
the number of clusters k has to be determined. Te other
parameter values of the algorithm are recommended in [28].

Te parameter values and value ranges are listed in
Table 6.

In contrast to ABC, the ABCK algorithm performs best
with a value of k� n∗ 0.4 for each combination setup, which
is stated in Table 7. It may be noticeable that the values for
noSources and maxIteration difer for ABC and ABCK, al-
though the algorithms are rather similar. Tis is because it
was decided to use recommended values for each algorithm
if available.

4.4.3. Ant-Based Clustering. Te ant-based clustering al-
gorithm is the only benchmarked algorithm which does not
require a parameterized number of clusters. Te values for
maxIteration, kpick, kdr op and stepsize are suggested in
[29, 42, 43], respectively. Te only parameter to be de-
termined through sensitivity analysis is the scaling param-
eter α. α ranged between 0 and 1 and was therefore tested
with the values given below.

Te parameter values and value ranges before the sen-
sitivity analysis, respectively, can be seen in Table 8, whereas
its results are shown in Table 9.

As presented in Table 9, for each combination of network
sizes and request level, the value of α� 0.3 outperformed the
other inspected values for the scaling parameter α.

4.4.4. Ant K-Means. Te ant K-means algorithm has three
parameter values to be determined, namely, k, noAnts, and
maxIteration.Te values for the parameters p, α, β, andQ are
recommended in [30]. Te parameter values and value
ranges are shown in Table 10.

Te results of the sensitivity analysis can be seen in
Table 11. It illustrates that the values k� n ∗ 0.1,
noAnts� 10, andmaxIteration� 20 performed best across all
combination setups.

4.4.5. Fuzzy C-Means. For the fuzzy C-means algorithm, the
number of clusters c has to be determined. According to
[44], a fuzzifer m chosen between 1.5 and 3.0 gives good
results for most data. Te value for the acceptanceBorder is

Table 21: PSO sensitivity analysis results.

Nodes n Requests k
50 1

n ∗ 0.5

50 5
50 10
100 1
100 5
100 10

Table 22: Slime mold parameter values before sensitivity analysis.

Parameter Value (range) Source

k n∗ 0.1, n∗ 0.2, n∗ 0.3,
n∗ .4, n∗ 0.5 Preliminary benchmarks

noAmoebae 10, 30, 50 Preliminary benchmarks
maxIteration 20, 50, 100 Preliminary benchmarks
ε 0.3, 0.6, 0.9 Preliminary benchmarks

Table 23: Slime mold sensitivity analysis results.

Nodes n Requests k noAmoebae maxIteration ε
50 1

n∗ 0.5 10 20 0.6

50 5
50 10
100 1
100 5
100 10

Table 24: Slime mold K-means parameter values before sensitivity
analysis.

Parameter Value (range) Source

k n∗ 0.1, n∗ 0.2, n∗ 0.3,
n∗ 0.4, n∗ 0.5 Preliminary benchmarks

noAmoebae 10, 30, 50 Preliminary benchmarks
maxIteration 20, 50, 100 Preliminary benchmarks

Table 25: Slime mold K-means sensitivity analysis results.

Nodes n Requests k noAmoebae maxIteration
50 1

n∗ 0.5 10 20

50 5
50 10
100 1
100 5
100 10
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suggested in [44]. Te parameter values and value ranges,
respectively, can be seen in Table 12, whereas the sensitivity
analysis results are shown in Table 13. As illustrated in
Table 13, for each combination of network sizes and request
levels, the values of c� n ∗ 0.1 and m� 1.5 performed best.

4.4.6. Genetic K-Means. Most of its parameter values are
recommended in [10]. Only the values of the number of
clusters k and the alleleModifer have to be determined by the
sensitivity analysis. According to [10], alleleModifer is 1;
therefore, its lower limit is 1, whereas the upper limit is set to
10 due to preliminary benchmarks. Ten, the natural
number 5 is chosen for the middle value, as it is about the
mean. Table 14 shows the values and value ranges, re-
spectively, while the results of the sensitivity analysis can be
seen in Table 15.

Te genetic K-means algorithm performs best with
a value of k� n ∗ 0.1 and alleleModifer� 10 for each
combination setup. Tis indicates that the algorithm per-
forms better when the probability for mutation is higher.

4.4.7. Hierarchical Clustering. For the hierarchical cluster-
ing algorithm, the number of cluster k has to be determined.
Te parameter value range is shown in Table 16, whereas its
results can be inspected in Table 17.

Across all combination setups, the hierarchical clus-
tering algorithm performs best with a value of k� n∗ 0.5,
shown in Table 17.

4.4.8. K-Means. Te K-means algorithm only has the
number of clusters parameter k to be determined by the
sensitivity analysis. Terefore, Table 18 lists the value range,
whereas Table 19 shows the sensitivity analysis results.

Te sensitivity analysis shows that K-means also per-
forms best with a parameter value of k� n ∗ 0.5.

4.4.9. PSO. For the PSO peer clustering algorithm, only the
number of clusters parameter k has to be determined, as all
other parameter values used for the competitive benchmark
are recommended in [31]. Te parameter value and value
ranges before the sensitivity analysis, respectively, are listed
in Table 20, while its results are presented in Table 21.

As can be seen in Table 20, for each combination of
network sizes and request levels, the PSO algorithm’s value
of k performs best with k� n ∗ 0.5.

4.4.10. Slime Mold. Te slime mold peer clustering algo-
rithm hasmultiple parameter values to be investigated by the
sensitivity analysis. Tose parameter value ranges are pre-
sented in Table 22. Te threshold value ε has to be carefully
chosen, as it is important for the local optimization. If the
lower limit is chosen too small, the algorithm could be stuck
at local optimization at the expense of performance;
therefore, it is set to 0.3. If the upper limit is chosen too big,
the local optimization ends too early which may afect the
quality of the clustering solution negatively. Terefore, the

upper limit is set to 0.9, whereas the mean of 0.6 is taken for
the middle value.

Te results of the sensitivity analysis can be seen in
Table 23. Also, the slime mold algorithm performs best with
the same values for all combination of network sizes and
request levels, i.e., k� n∗ 0.5, noAmoebae� 10,
maxIteration� 20, and ε� 0.6.

4.4.11. Slime Mold K-Means. Just like the slime mold al-
gorithm, all of the slime mold K-means algorithm’s pa-
rameter values have to be determined. Te parameter values
and value ranges are listed in Table 24.

Te results of the sensitivity analysis can be seen in
Table 25. It shows that the values k� n∗ 0.5,
noAmoebae� 10, and maxIteration� 20 performed best
across all combinations of network size and request level.

4.5. Simulation Results. Tis subsection provides simulation
results graphically presented and based on the raw data
results (see Appendix, Tables A1, A2, A3, A4, A5, A6, A7,
A8, A9, A10, and A11).

In Figure 3, the execution time for all benchmarked
algorithms is depicted. Figure 4 provides a closer look into
these algorithms.

Figure 5 presents the overall results for the DBI for all
benchmarked algorithms. In Figure 6, the comparison of the
DBI results between worker and storage peer clustering is
depicted for ABC, ABCK, ant-based clustering, and ant K-
means, whereas in Figure 7, it is shown for genetic K-means,
hierarchical clustering, K-means, PSO, slime mold, and
slime mold K-means.

In Figure 8, the DI results for all benchmarked algo-
rithms are depicted. Figure 9 provides the comparison of the
DI results between worker peer clustering and storage peer
clustering for ABC, ABCK, ant-based clustering, ant K-
means, and fuzzy C-means, while Figure 10 provides it
for genetic K-means, hierarchical clustering, K-means, PSO,
slime mold, and slime mold K-means.

Figure 11 presents the overall results for the SC for all
benchmarked algorithms. In Figure 12, the comparison of
the SC results between worker and storage peer clustering is
depicted for ABC, ABCK, ant-based clustering, ant K-
means, and fuzzy C-means, whereas in Figure 13, it is
shown for genetic K-means, hierarchical clustering, K-
means, PSO, slime mold, and slime mold K-means.

In Figure 14, the ADC results for all benchmarked al-
gorithms are depicted. Figure 15 provides the comparison of
the ADC results between worker peer clustering and storage
peer clustering for ABC, ABCK, ant-based clustering, ant K-
means, and fuzzy C-means, while Figure 16 provides it for
genetic K-means, hierarchical clustering, K-means, PSO,
slime mold, and slime mold K-means.

4.6. Discussion and Evaluation. In Figure 1, the execution
time for all benchmarked algorithms is depicted. Figure 2
provides a closer look into these algorithms. Tose fve
algorithms, fuzzy C-means, ant-based clustering,
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hierarchical clustering, slimemold and slimemold K-means,
are quite close to each other. Te ant-based clustering al-
gorithm shows a very constant execution time for each
network size level. Tis efect is due to the fact that it is the
only benchmarked algorithm which does not depend on the
number of peers to be clustered. Its complexity is only

dependent on the number of iterations and the number of
ant agents moving across the grid. Te ant-based clustering
algorithm is also the only one where the execution time of
worker peer clustering and storage peer clustering difers
notably, as storage peer clustering takes about twice as long
as worker peer clustering.

Table A1: ABC raw result data.

Type Nodes Time (s) DBI DI SC ADC

Worker
50 25.20 1.5053 0.2619 0.0662 0.6160
100 85.14 1.7040 0.2287 0.0037 0.7146
200 278.20 1.6696 0.2247 − 0.0458 0.8456

Storage
50 25.77 1.4112 0.4041 0.0429 0.5350
100 87.53 1.5507 0.3165 − 0.0261 0.6021
200 263.67 1.6591 0.4167 − 0.1685 0.9457

All
50 25.48 1.4583 0.3330 0.0545 0.5755
100 86.34 1.6274 0.2726 − 0.0112 0.6583
200 270.93 1.6643 0.3207 − 0.1072 0.8957

Table A2: ABCK raw result data.

Type Nodes Time (s) DBI DI SC ADC

Worker
50 2.10 1.1258 0.3534 0.2230 0.6745
100 8.27 1.1541 0.3273 0.2102 0.6581
200 37.53 1.1948 0.3233 0.1979 0.6403

Storage
50 1.87 1.0744 0.6046 0.3326 0.4196
100 7.81 1.1352 0.5528 0.3207 0.4499
200 36.61 1.2013 0.5086 0.2908 0.4471

All
50 1.98 1.1001 0.4790 0.2778 0.5470
100 8.04 1.1447 0.4400 0.2654 0.5540
200 37.07 1.1980 0.4160 0.2443 0.5396

Table A3: Ant-based clustering raw result data.

Type Nodes Time (s) DBI DI SC ADC

Worker
50 0.51 2.2532 0.3566 − 0.0826 1.2113
100 0.55 2.3191 0.3311 − 0.1141 1.2045
200 0.57 2.3400 0.3061 − 0.1303 1.1831

Storage
50 1.17 1.9799 0.5667 − 0.0443 0.9695
100 2.01 2.0073 0.7000 − 0.0640 0.9593
200 2.11 2.1104 0.6000 − 0.0655 0.9437

All
50 0.84 2.1165 0.4617 − 0.0634 1.0986
100 0.79 2.1632 0.5156 − 0.0891 1.1002
200 0.83 2.2252 0.4531 − 0.0979 1.0802

Table A4: Ant K-means raw result data.

Type Nodes Time DBI DI SC ADC

Worker
50 6.18 1.5582 0.4922 0.0711 1.0180
100 66.94 1.6239 0.4426 0.0512 1.0069
200 524.95 1.7113 0.5143 0.0324 0.9760

Storage
50 5.19 1.5636 1.0000 0.0798 0.8721
100 42.82 1.6277 0.9539 0.0704 0.8941
200 482.40 1.6542 0.9333 0.0567 0.9176

All
50 5.68 1.5609 0.7461 0.0755 0.9472
100 54.88 1.6258 0.6982 0.0608 0.9531
200 503.68 1.6828 0.7238 0.0445 0.9407
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Te slime mold algorithm and the slime mold K-means
algorithm show a good execution time in general and specif-
ically compared to other swarm intelligent algorithms. Tey
start with a comparable execution time at network size level Ln,
and slime mold is 21% faster at level Mn and 30% faster at level
Hn. Tus, the execution time of slime mold increases by

3.7 times (Ln to Mn) and by 3.9 times (Mn to Hn), while the
execution time of slime mold K-means increases by a factor of
4.2 (Ln toMn) and by a factor of 4.4 (Mn toHn).Tus, the slime
mold algorithm outperforms all other algorithms in terms of
scalability related to execution time. Interestingly, while K-
means algorithm scales rather good from network size

Table A5: Fuzzy C-means raw result data.

Type Nodes Time DBI DI SC ADC

Worker
50 0.02 — 0.0182 − 0.0789 1.1150
100 0.09 — 0.0041 − 0.0462 1.1076
200 0.79 — 0.0015 0.0135 1.0900

Storage
50 0.09 — 0.7500 0.000 0.9696
100 0.29 — 0.5333 0.000 0.9877
200 1.68 — 0.5667 0.000 0.9940

All
50 0.05 — 0.3841 − 0.0395 1.0423
100 0.19 — 0.2687 − 0.0231 1.0476
200 1.23 — 0.2841 0.0068 1.0420

Table A6: Genetic K-means raw result data.

Type Nodes Time (s) DBI DI SC ADC

Worker
50 10.38 1.5802 0.3919 0.0773 0.8903
100 35.31 1.5587 0.3918 0.0767 0.8950
200 138.773 1.5644 0.3876 0.0707 0.8877

Storage
50 10.14 1.6621 0.7243 0.1535 0.7294
100 38.46 1.6271 0.7113 0.1576 0.7627
200 139.21 1.6046 0.7124 0.1436 0.7441

All
50 10.26 1.6212 0.5581 0.1154 0.8099
100 36.89 1.5929 0.5515 0.1172 0.8289
200 138.99 1.5845 0.5500 0.1071 0.8159

Table A7: Hierarchical clustering raw result data.

Type Nodes Time (s) DBI DI SC ADC

Worker
50 0.14 0.8281 0.3958 0.4112 0.3437
100 0.67 0.8781 0.3698 0.4158 0.3194
200 3.86 0.9201 0.3490 0.4166 0.3359

Storage
50 0.14 0.8965 0.6594 0.4558 0.2547
100 0.70 0.9485 0.6155 0.4557 0.2835
200 4.22 0.9489 0.5729 0.4294 0.3858

All
50 0.14 0.8620 0.5231 0.4335 0.2992
100 0.68 0.9133 0.4927 0.4358 0.3015
200 4.04 0.9345 0.4610 0.4230 0.3108

Table A8: K-means raw result data.

Type Nodes Time (s) DBI DI SC ADC

Worker
50 0.01 1.0458 0.2785 0.2777 0.5110
100 0.03 1.0726 0.2300 0.2770 0.5056
200 27.02 1.1965 0.3663 0.2494 0.4940

Storage
50 0.01 0.9889 0.4886 0.3791 0.3080
100 0.04 1.0378 0.4637 0.3825 0.3363
200 27.56 1.2395 0.6393 0.3107 0.3279

All
50 0.01 1.0173 0.3835 0.3284 0.4095
100 0.04 1.0552 0.3469 0.3298 0.4210
200 27.29 1.2180 0.5028 0.2801 0.4109
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level Ln to Mn, it then shows an increase by a factor of about
682 to level Hn, which may be due to the fact that the
algorithm is repeated until no more cluster changes occur.
Consequently, six algorithms require more than 20 s for
their execution, frst and foremost ant K-means with an
average execution time of 503.68 s for a network size of
level Hn. Tus, in terms of execution time, ant K-means
algorithm scales defnitely worst with a time increase of
about 10 times each network size level, as it is also repeated
until no peer changes its cluster anymore.

As execution time is an important factor for clustering
algorithms, but by far not the only one, four metrics measuring
the quality of the peer clustering result are now discussed.

Figure 3 presents the overall results for the DBI for all
benchmarked algorithms. In Figure 4, the comparison of the
DBI results between worker and storage peer clustering is
depicted for ABC, ABCK, ant-based clustering, and ant K-
means, whereas in Figure 5, it is shown for genetic K-means,

hierarchical clustering, K-means, PSO, slime mold, and slime
mold K-means.

Te smaller theDBI is, the better the clustering result is.Te
hierarchical clustering algorithm includes a low increase rate of
6% (Ln to Mn) and 2% (Mn to Hn). It is followed by PSO, K-
means, andABCK, where PSO andK-means scale rather poorly
in comparison. While ABCK increases by 4% (Ln to Mn) and
5% (Mn to Hn), PSO increases by 9% and 7% per network size
level and K-means even by 4% and 15%.Tismay be due to the
fact that in hierarchical clustering, in contrast to the other al-
gorithms, no random cluster initialization is made, but instead
the two globally best matching clusters are merged together,
starting with each peer having its own cluster. Slime mold K-
means and slime mold follow immediately, scaling fairly well
with an increase of 1% (Ln to Mn) and 2% (Mn to Hn), and 3%
and 2%, respectively. Slime mold and slime mold K-means
impress in terms of scalability regarding efectiveness. Te al-
gorithm which defnitely performed worst regarding the DBI is

Table A9: PSO raw result data.

Type Nodes Time (s) DBI DI SC ADC

Worker
50 4.07 0.9781 0.2625 0.2792 0.4929
100 17.34 1.0523 0.1916 0.2670 0.5047
200 70.54 1.1410 0.1282 0.2559 0.5131

Storage
50 4.00 0.9397 0.4874 0.3780 0.3060
100 17.29 1.0413 0.4699 0.3766 0.3284
200 72.77 1.1066 0.4671 0.3580 0.3067

All
50 4.04 0.9589 0.3749 0.3286 0.3994
100 17.31 1.0468 0.3307 0.3218 0.4165
200 71.43 1.1238 0.2977 0.3069 0.4099

Table A10: Slime mold raw result data.

Type Nodes Time (s) DBI DI SC ADC

Worker
50 0.79 1.2406 0.3168 0.1701 0.6459
100 2.93 1.2816 0.3035 0.1596 0.6467
200 11.39 1.3102 0.2678 0.1599 0.6403

Storage
50 0.81 1.2235 0.5935 0.2416 0.5136
100 2.97 1.2519 0.5462 0.2379 0.5450
200 11.55 1.2716 0.4995 0.2190 0.5215

All
50 0.80 1.2320 0.4552 0.2058 0.5798
100 2.95 1.2667 0.4249 0.1988 0.5959
200 11.47 1.2909 0.3837 0.1895 0.5809

Table A11: Slime mold K-means raw result data.

Type Nodes Time (s) DBI DI SC ADC

Worker
50 0.92 1.2091 0.3210 0.1933 0.6436
100 3.88 1.2328 0.2965 0.1893 0.6362
200 16.67 1.2422 0.2545 0.2067 0.6155

Storage
50 0.87 1.1828 0.6008 0.2678 0.5047
100 3.61 1.1815 0.5531 0.2792 0.5258
200 16.01 1.2160 0.5186 0.2487 0.5216

All
50 0.89 1.1960 0.4609 0.2305 0.5742
100 3.75 1.2071 0.4248 0.2342 0.5810
200 16.34 1.2991 0.3865 0.2277 0.5685
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the ant-based clustering algorithm. Also, it is the algorithm
which shows the most discrepancy between worker peer
clustering and storage peer clustering, with storage peer
clustering being 12% (50 nodes), 13% (100 nodes), and 10%
(200 nodes) more efective than worker peer clustering. Tis
could be caused by the randomness of how the peers are
distributed on the grid on which the ants move around.

Overall, genetic K-means and hierarchical clustering are the
only benchmarked algorithms which show better results for
worker peer clustering than for storage peer clustering.
Furthermore, K-means algorithm performs better in storage
peer clustering on network size levels Ln and Mn but shows
better results for worker peer clustering on a network
consisting of 200 nodes.
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Figure 3: Execution time results.
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Figure 4: Execution time results zoomed in.
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Figure 5: Davies–Bouldin results for all network size levels.
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Figure 6: Comparison of Davies–Bouldin index results between
worker and storage peers for ABC, ABCK, ant-based clustering,
and ant K-means for all network size levels.
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In Figure 6, the DI results for all benchmarked al-
gorithms are depicted. Figure 7 provides the comparison
of the DI results between worker peer clustering and
storage peer clustering for ABC, ABCK, ant-based

clustering, ant K-means, and fuzzy C-means, while
Figure 8 provides it for genetic K-means, hierarchical
clustering, K-means, PSO, slime mold, and slime mold K-
means.
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Figure 7: Comparison of Davies–Bouldin index results between
worker and storage peers for genetic K-means, hierarchical clus-
tering, K-means, PSO, slime mold, and slime mold K-means for all
network size levels.
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Figure 8: Dunn index results for all network size levels.
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Figure 9: Comparison of Dunn index results between worker and
storage peers for ABC, ABCK, ant-based clustering, ant K-means,
and fuzzy C-means for all network size levels.
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Figure 10: Comparison of Dunn index results between worker and
storage peers for genetic K-means, hierarchical clustering, K-means,
PSO, slime mold, and slime mold K-means for all network size levels.
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Te higher the DI is, the better the clustering result is.
By far, the ant K-means algorithm shows the best results
for the average DI, as it is 34% (50 nodes), 27% (100
nodes), and 32% (200 nodes) more efective than its
successor genetic K-means, indicating that ant K-means

has less worst case scenario solutions, i.e., low cohesion
and well-separation. By contrast, genetic K-means has
only an average decrease rate of 1%, whereas ant

Hierarchical clustering
K-means
PSO
Slime mold
Slime mold K-means

ABC
ABCK
Ant-based clustering
Ant K-means
Fuzzy C-means
Genetic K-means

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Si
lh

ou
et

te
 co

ef
fic

ie
nt

100 20050

Nodes

Figure 11: Silhouette coefcient results for all network size levels.
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Figure 12: Comparison of silhouette coefcient results between
worker and storage peers for ABC, ABCK, ant-based clustering, ant
K-means, and fuzzy C-means for all network size levels.

Genetic K-means S
Hierarchical clustering S
K-means S
PSO S
Slime mold S
Slime mold K-means S

Genetic K-means W
Hierarchical clustering W
K-means W
PSO W
Slime mold W
Slime mold K-means W

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Si
lh

ou
et

te
 co

ef
fic

ie
nt

100 20050
Nodes

Figure 13: Comparison of silhouette coefcient results between
worker and storage peers for genetic K-means, hierarchical clus-
tering, K-means, PSO, slime mold, and slime mold K-means for all
network size levels.
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Figure 14: Averaged dissimilarity coefcient results for all network
size levels.
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K-means algorithm frst decreases by 6% (Ln to Mn), but
then again increases by 4% (Mn to Hn). Tis indicates that
genetic K-means algorithm is much more stable than ant

K-means. Slime mold and slime mold K-means have very
similar results for the DI. Tey have a decrease of around
7% from network size level Ln to Mn and a decrease of
around 9% from network size level Mn to Hn. Fuzzy C-
means and ABC share the last rank, showing a similar
unstable behavior as ant K-means. Interestingly, K-
means algorithm frst exhibits a decrease of 9% (Ln to
Mn), but then extraordinarily increases by 45% (Mn to
Hn). Overall, it can be said that according to the DI
results, every benchmarked algorithm performs by far
better for storage peer clustering than for worker peer
clustering.

Figure 9 presents the overall results for the SC for all
benchmarked algorithms. In Figure 10, the comparison of
the SC results between worker and storage peer clustering is
depicted for ABC, ABCK, ant-based clustering, ant K-
means, and fuzzy C-means, whereas in Figure 11, it is
shown for genetic K-means, hierarchical clustering, K-
means, PSO, slime mold, and slime mold K-means.

Te higher the SC is, the better the clustering result is.
Hierarchical clustering increases by 0.5% (Ln to Mn) and
then slightly decreases by 3% (Mn to Hn), whereas K-
means algorithm has an increase of 0.4% (Ln to Mn) and
then a decrease of 15% (Mn to Hn). Slime mold K-means
algorithm outperforms slime mold by 12% (50 nodes),
18% (100 nodes), and 20% (200 nodes). Tus, slime mold
K-means algorithm frst slightly increases by about 2%
from network size level Ln to Mn, and then decreases by
3% from network size level Mn to Hn, while slime mold
has a decrease of 3% from network size level Ln to Mn and
5% from network size level Mn to Hn. Tis, also con-
sidering the results of the DBI and execution time, in-
dicates that the application of K-means in the dispersion
phase instead of the optimization by convergence to
threshold value ε in the aggregation phase requires more
time but seems to be more efcient. For the DBI results,
the ant-based clustering algorithm also performs worst
regarding the SC, which, as already mentioned, could be
caused by its randomness. While fuzzy C-means algo-
rithm starts of with the second-worst rank, it then
massively increases by 42% (Ln to Mn) and 129% (Mn to
Hn). Te ABC algorithm starts with the third-worst result,
but shows a drastical decrease of 121% (Ln to Mn) and
857% (Mn to Hn). Additionally, ABC is the only algorithm
which shows better SC results for worker peer clustering
than for storage peer clustering.

In Figure 12, the ADC results for all benchmarked al-
gorithms are depicted. Figure 13 provides the comparison of
the ADC results between worker peer clustering and storage
peer clustering for ABC, ABCK, ant-based clustering, ant K-
means, and fuzzy C-means, while Figure 14 provides it for
genetic K-means, hierarchical clustering, K-means, PSO,
slime mold, and slime mold K-means.

Te smaller the ADC is, the better the clustering result
is. Also, for the ADC, hierarchical clustering provides 25%
(50 nodes), 28% (100 nodes), and 24% (200 nodes) and is
more efective than its successor PSO, which is followed
immediately by K-means with similar results. Slime mold
and slime mold K-means provide similar results, while
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Figure 15: Comparison of averaged dissimilarity coefcient results
between worker and storage peers for ABC, ABCK, ant-based clus-
tering, ant K-means, and fuzzy C-means for all network size levels.
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Figure 16: Comparison of averaged dissimilarity coefcient results
between worker and storage peers for genetic K-means, hierar-
chical clustering, K-means, PSO, slime mold, and slime mold K-
means for all network size levels.
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both slightly have an increase of 3% and 1% for network
size level Ln to Mn and then a decrease of 3% and 2% for
network size level Mn to Hn, respectively. Te ant-based
clustering algorithm again performs worst regarding the
ADC, just as for the DBI and the SC. While all bench-
marked peer clustering algorithms scale rather fairly re-
garding the ADC, ABC falls out of line and increases
massively by 14% (Ln to Mn) and 36% (Mn to Hn), which
may be caused by the fact that the algorithm does not
apply any local optimization such as an additional K-
means step like its modifcation ABCK. Furthermore,
ABC, just like all other algorithms, frst shows better
results for storage peer clustering than for worker peer
clustering, but for 200 nodes, it has better performance
when clustering worker peers.

4.7. Statistical Signifcance of the Results. In order to evaluate
and compare slime mold and slime mold K-means to the
other benchmarked peer clustering algorithms profoundly,
a statistical analysis as described in [7] is done. In detail, one-

way ANOVA tests are performed with the following setup
[7]: H0 is the null hypothesis, which states that no signifcant
diference between metric M of the two algorithms A and B
exists, whereas H1 is the corresponding alternative hy-
pothesis. Consequently, if H0 is rejected, there are not
enough data available to determine whether algorithm A or
B is signifcantly better than the other one. Furthermore, H1
is concluded if H0 is rejected [7].

Slime mold and slime mold K-means are tested sepa-
rately for all combinations of network size levels
(Ln, Mn, Hn) and exactly three queries and job requests.Te
ADC particularly focuses on the cohesion within the clus-
ters. Te signifcance level for the ANOVA tests is chosen as
α� 0.05. At frst, slimemold is taking the role of algorithmA,
whereas all other benchmarked algorithms, including slime
mold K-means, embody algorithm B. Table 26 shows the
results of these tests. After that, slime mold K-means al-
gorithm embodies algorithmA, while all other benchmarked
algorithms, including slime mold, take the role of algorithm
B. For both result tables, it applies, if H0 is concluded, the
column h in the table has the value 0. If there is a signifcant

Table 26: Slime mold ANOVA results.

Mean± stdev p value h
50 nodes

ABC 0.5755± 0.0008 0.790185171 0
ABCK 0.5470± 0.0008 0.073269084 0
Ant-based clustering 1.0986± 0.0007 5.77062E − 10 1
Ant K-means 0.9472± 0.0001 5.65653E − 10 1
Fuzzy C-means 1.0423± 0.0001 5.55717E − 11 1
Genetic K-means 0.8099± 0.0003 6.20493E − 08 1
Hierarchical clustering 0.2992± 0.0003 1.21269E − 08 − 1
K-means 0.4095± 0.0005 1.84906E − 06 − 1
PSO 0.3994± 0.0003 4.03503E-07 − 1
Slime mold 0.5798± 0.0004 — —
Slime mold K-means 0.5742± 0.0002 0.63865944 0

100 nodes
ABC 0.6583± 0.0003 0.000417622 1
ABCK 0.5540± 0.0001 0.001271288 − 1
Ant-based clustering 1.1002± 0.00023 1.65439E − 11 1
Ant K-means 0.9531± 0.0002 2.38008E − 10 1
Fuzzy C-means 1.0476± 2.57904E-05 5.79645E − 12 1
Genetic K-means 0.8289± 0.0002 9.53206E − 09 1
Hierarchical clustering 0.3015± 0.0001 6.28362E − 10 − 1
K-means 0.4210± 0.0001 3.0251E − 08 − 1
PSO 0.4165± 0.0003 1.6151E − 07 − 1
Slime mold 0.5959± 0.0002 — —
Slime mold K-means 0.5810± 0.0001 0.130135878 0

200 nodes
ABC 0.8957± 0.0220 0.001496328 1
ABCK 0.5396± 0.0004 0.004216221 − 1
Ant-based clustering 1.0802± 0.0003 3.19957E − 11 1
Ant K-means 0.9407± 2.90152E − 05 1.03927E − 11 1
Fuzzy C-means 1.0420± 1.15583E − 05 9.97955E − 13 1
Genetic K-means 0.8159± 0.0002 2.82205E − 09 1
Hierarchical clustering 0.3108± 7.25302E − 05 2.23741E − 10 − 1
K-means 0.4109± 5.80434E − 05 6.94393E − 09 − 1
PSO 0.4099± 7.33879E − 05 8.5432E − 09 − 1
Slime mold 0.5809± 0.0002 — —
Slime mold K-means 0.5685± 0.0001 0.136412571 0
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diference between the tested peer clustering algorithms, i.e.,
H0 is rejected, h takes the value of 1 if algorithm A performs
signifcantly better than algorithm B; otherwise, h has the
value of − 1.

Te test proves that there exists a signifcant diference of
the ADC metric values. Terefore, slime mold performs
signifcantly better than ABC at this confguration and h is
set to 1. As shown in Table 25, while for a network size of

Table 27: Slime mold K-means ANOVA results.

Mean± stdev p value h
50 nodes

ABC 0.5755± 0.0008 0.927539959 0
ABCK 0.5470± 0.0008 0.095272996 0
Ant-based clustering 1.0986± 0.0007 2.14993E − 10 1
Ant K-means 0.9472± 0.0001 6.28834E − 11 1
Fuzzy C-means 1.0423± 6.00725E − 05 4.33966E − 12 1
Genetic K-means 0.8099± 0.0003 1.15244E − 08 1
Hierarchical clustering 0.2992± 0.0003 3.06358E − 09 − 1
K-means 0.4095± 0.0005 8.33325E-07 − 1
PSO 0.3994± 0.0003 1.16171E − 07 − 1
Slime mold 0.5798± 0.0003 0.63865944 0
Slime mold K-means 0.5742± 0.0002 — —

100 nodes
ABC 0.6583± 0.0003 4.63782E − 05 1
ABCK 0.5540± 0.0001 0.005729103 − 1
Ant-based clustering 1.1002± 0.0002 4.18507E − 12 1
Ant K-means 0.9531± 0.0002 5.35059E − 11 1
Fuzzy C-means 1.0476± 2.57904E − 05 5.68231E − 13 1
Genetic K-means 0.8289± 0.0002 2.01672E − 09 1
Hierarchical clustering 0.3015± 0.0001 2.38163E − 10 − 1
K-means 0.4210± 0.0001 1.38983E − 08 − 1
PSO 0.4165± 0.0003 1.36687E − 07 − 1
Slime mold 0.5959± 0.0002 0.130135878 0
Slime mold K-means 0.5810± 0.0001 — —

200 nodes
ABC 0.8957± 0.0220 0.001170781 1
ABCK 0.5396± 0.0004 0.018074686 − 1
Ant-based clustering 1.0802± 0.0003 1.49938E − 11 1
Ant K-means 0.9407± 2.90152E − 05 1.54553E − 12 1
Fuzzy C-means 1.0420± 1.15583E − 05 1.29002E − 13 1
Genetic K-means 0.8159± 0.0002 8.03541E − 10 1
Hierarchical clustering 0.3108± 7.25302E − 05 8.94089E − 11 − 1
K-means 0.4109± 5.80434E − 05 3.17742E − 09 − 1
PSO 0.4099± 7.33879E − 05 4.31318E − 09 − 1
Slime mold 0.5809± 0.0002 0.136412571 0
Slime mold K-means 0.5685± 0.0001 — —

Table A12: Abbreviations used in Tables A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, and A11.

Abbreviation Explanation

Type Specifes whether the results are from worker peer clustering, storage peer
clustering, or the average of both

Nodes Number of worker peer, storage peer, and client peer nodes participating in the
benchmark

Time Average execution time of one algorithm execution in seconds. Rounded to 2
decimals

DBI Average Davies–Bouldin index of one clustering result. Rounded to 4 decimals
DI Average Dunn index of one clustering result. Rounded to 4 decimals
SC Average silhouette coefcient of one clustering result. Rounded to 4 decimals

ADC Average averaged dissimilarity coefcient of one clustering result. Rounded to 4
decimals
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50 nodes, no signifcant diference between slime mold
and ABC and ABCK, respectively, can be determined, for
all other benchmarked algorithms, the result is the same
for all network size levels. As can be seen in Table 27,
slime mold K-means algorithm achieves rather similar
results, but exactly the same fnal outcomes regarding
signifcant diferences. Also, on each network size level,
no signifcant diference between slime mold and slime
mold K-means exists.

5. Conclusion

Managing data in P2P systems is complex and challenging
due to the network’s large scale and the highly transient
nature of its peers. In addition to clustering data, grouping
peers based on their interests or data into peer clusters is
benefcial. Peer clustering enhances querying perfor-
mance and results in higher quality outcomes. Beyond
clustering data, organizing peers into clusters based on
their interests or data is advantageous.Tis peer clustering
improves querying performance and yields higher quality
results.

Certain characteristics of P2P systems make clustering
particularly challenging. Te high dynamics of P2P envi-
ronments necessitate an intelligent, adaptable, and robust
solution. Consequently, the problem of peer clustering is
unique and must address all the issues inherent to the en-
vironment. Tis requires advanced, intelligent, and self-
organizing approaches capable of handling the system’s
dynamics.

Tis paper proposes an innovative approach to efective
peer clustering based on swarm intelligence, introducing two
novel algorithms: slime mold and slime mold K-means,
which mimic the life cycle of the Dd slime mold. Tese
algorithms are benchmarked, evaluated, and compared
against several well-known conventional and swarm-based
algorithms, including ABC, ABC combined with K-means,
ant-based clustering, ant K-means, fuzzy C-means, genetic
K-means, hierarchical clustering, K-means, and PSO. All
implemented algorithms are thoroughly benchmarked and
evaluated.

5.1. Discussion and Evaluation. Te slime mold and slime
mold K-means algorithms exhibit strong performance in
terms of execution time, both generally and specifcally when
compared to other swarm intelligence algorithms. Tese
algorithms outperform all other swarm-inspired algorithms
in both execution time and clustering solution quality.
Although typically mid-range in their results, they avoid the
unwanted signifcant increases or decreases in clustering
efectiveness seen with other peer clustering algorithms.

Tey scale well in terms of both execution time and efec-
tiveness, maintaining consistent performance. In contrast,
many other algorithms either display undesirable fuctua-
tions in efectiveness or show great efectiveness with poor
execution time, or vice versa.

Limitations of the current studies include benchmarking
on middle scale tests and no churn. Benchmarks in larger
environments would be of great interest. Additionally, the
fuctuation of node participation (churn) is not simulated
during the benchmark execution.

5.2. Future Work. Future work includes

• Combination of diferent algorithms, for example,
[45–50]: an investigation of a hybrid approach.

• Combination of diferent approaches: a topic of in-
terest is to investigate the efectiveness of combining
peer clustering with load balancing and load cluster-
ing, as it would ofer even more sophisticated ways of
resource allocation.

• Regarding the implementation of slime mold and
slime mold K-means, the following aspects could lead
to an improvement when being researched:

o Vegetative movement: In the vegetative movement
phase, amoebas are initialized randomly, i.e., the
given number of cluster means is initialized ran-
domly, as it is done for many other algorithms. An
interesting approach to analyze would be to in-
vestigate the algorithms’ behavior and performance
when using a more sophisticated way of cluster
mean initialization.

• Combination with hierarchical clustering: Although
the slime mold combination with K-means shows
fairly satisfactory results, a combination of slime mold
with hierarchical clustering would be an interesting
research issue.

• Investigating abovementioned limitations of the cur-
rent studies.

• A detailed statistical analysis of the obtained results
that takes in consideration (besides ANOVA) also
some other tests, e.g., Friedman test [51, 52].

Appendix

A. Raw Result Data

In the following tables, the raw result data of the competitive
benchmarks are shown.Te tables contain the average result
for each network size and show the separate results for
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worker peer clustering, storage peer clustering, and the
average of both. For reasons of representation, the metrics
used are abbreviated. Table A12 provides the corresponding
explanations.

B. Distance Measurement Calculation

P2P distance: An example of how exactly the calculation is
performed is provided below.

Worker Peer 1 (p): ("sorting, optimization", 4.4) 
Worker Peer 2 (q): ("sorting", 1.2) 

MSD �

����������������������������������������������������

levenstein sorting, optimization″,″sorting″( 􏼁( 􏼁
2

+
4.4 − 1.2
4.4 + 1.2/2

􏼒 􏼓
2

􏽳

�

�������������

(0.5)
2

− (1.14)
2

􏽱

� 1.24. (B.1)

Peer-to-cluster distance: Te calculation of the distance
between a peer and a cluster mean is illustrated below.

Cluster (p): ("sorting: 2, optimization: 1", 4.4) 
Worker Peer (q): ("sorting", 1.2) 

MSD �

�����������������������������������������������������������

levenstein sorting, sorting, optimization″,″sorting″( 􏼁( 􏼁
2

+
4.4 − 1.2
4.4 + 1.2/2

􏼒 􏼓
2

􏽳

�

��������������

(0.33)
2

− (1.14)
2

􏽱

� 1.19. (B.2)

Cluster-to-cluster distance: Tis calculation is illus-
trated by the example given below.

Cluster (p): ("sorting: 2, optimization: 1", 4.4) 
Cluster (q): ("validity: 1", 1.2) 

MSD �

�����������������������������������������������������������

levenstein sorting, sorting, optimization″,″validity″( 􏼁( 􏼁
2

+
4.4 − 1.2
4.4 + 1.2/2

􏼒 􏼓
2

􏽳

�

�����������

(1)
2

− (1.14)
2

􏽱

� 1.52. (B.3)

To demonstrate the calculation of the P2P distance using
the Jaccard distance measurement, an example is given
below:

WorkerPeer1 (p): ("sorting,optimization", 4.4)
WorkerPeer2 (q): ("sorting", 1.2)

J(p, q) �
dJ(p, q) + pd(p, q)

2
�
1 − | sorting, optimization􏼈 􏼉∩ sorting􏼈 􏼉|/2 +|4.4 − 1.2|/4.4 + 1.2/2

2

�
1 − | sorting􏼈 􏼉|/| sorting, optimization􏼈 􏼉| + 1.14

2
�
1 − 1/2 + 1.14

2
�
0.5 + 1.14

2
� 0.82.

(B.4)
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Te calculation of the peer-to-cluster distance using the
Jaccard distance is illustrated by the example given below:

Cluster (p): ("sorting:2,optimization:1", 4.4)
WorkerPeer (q): ("sorting", 1.2)

J(p, q) �
dJ(p, q) + pd(p, q)

2
�
1 − | sorting, optimization􏼈 􏼉∩ sorting􏼈 􏼉|/| sorting, optimization􏼈 􏼉∪ sorting􏼈 􏼉| +|4.4 − 1.2|/4.4 + 1.2/2

2

�
1 − | sorting􏼈 􏼉|/| sorting, optimization􏼈 􏼉| + 1.14

2
�
1 − 1/2 + 1.14

2
�
0.5 + 1.14

2
� 0.82.

(B.5)

An example how the cluster-to-cluster distance is
performed is provided below:

Cluster (p): ("sorting:2,optimization:1", 4.4)
Cluster (q): ("validity:1", 1.2)

J(p, q) �
1 − | sorting, optimization􏼈 􏼉∩ validity􏼈 􏼉|/| sorting, optimization􏼈 􏼉∪ validity􏼈 􏼉| +|4.4 − 1.2|/4.4 + 1.2/2

2

�
1 − (|{ }|/| sorting, optimization, validity􏼈 􏼉|) + 1.14

2
�
1 − 0/3 + 1.14

2
�
1 + 1.14

2
� 1.07.

(B.6)

C. A Sample: Ant-Based Clustering
Versus ACO

Ant-based clustering and ACO are both inspired by the
behavior of ants, but they are used for diferent purposes and
work in diferent ways.

Ant-based clustering is a method inspired by the natural
clustering behavior of ants, particularly how they group
similar items (like food or brood) together. It is used for data
clustering and pattern recognition. Te idea is to group
similar data points together based on certain features,
mimicking how ants cluster similar objects in nature.

A mechanism can be described in the following way: In
ant-based clustering, artifcial ants move through a virtual
environment where data items (representing objects, docu-
ments, etc.) are scattered. Ants pick up and drop items based on
local similarity measures (e.g., similarity to nearby items). Over
time, similar items are grouped together as ants repeatedly
move items around, leading to the emergence of clusters.

ACO is a general-purpose optimization algorithm in-
spired by the foraging behavior of ants, particularly how they
fnd the shortest path to food sources by laying down
pheromones. ACO is used for solving diferent combina-
torial optimization problems where the goal is to fnd the
optimal solution from a large set of possibilities.

A mechanism can be described in the following way:
Artifcial ants construct solutions by moving through

a solution space, guided by pheromone trails (which represent
accumulated knowledge of good solutions) and heuristic in-
formation. Ants probabilistically choose paths based on the
amount of pheromone present and the quality of the solution
associated with those paths. Over time, paths that lead to better
solutions get reinforced with more pheromone, while less
optimal paths evaporate (lose pheromone concentration),
helping ants to converge on the best solution.
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Endnotes
1Note: Tere are many innovative, attractive algorithms that
could be potentially used like [45–50]. However, they should
be either clustering algorithms or should be carefully con-
sidered for further modeling andmodifcation for clustering.

2According to Bloom’s taxonomy.
3A general, reusable architectural solution that con-

tributes to solving the communication and coordination
generics found in a certain use case.

4https://www.sciencedirect.com/topics/mathematics/
euclidean-distance.

5https://www.mathsisfun.com/percentage-diference.html.
6https://www.statisticshowto.com/jaccard-index/.
7https://repositum.tuwien.at/handle/20.500.12708/18441.
8Google Compute Engine. https://cloud.google.com/

compute/.
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