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The ultimate goal of any numerical scheme for partial differential equations (PDEs) is to 
compute an approximation of user-prescribed accuracy at quasi-minimal computation time. To 
this end, algorithmically, the standard adaptive finite element method (AFEM) integrates an 
inexact solver and nested iterations with discerning stopping criteria balancing the different error 
components. The analysis ensuring optimal convergence order of AFEM with respect to the overall 
computational cost critically hinges on the concept of R-linear convergence of a suitable quasi

error quantity. This work tackles several shortcomings of previous approaches by introducing a 
new proof strategy. Previously, the analysis of the algorithm required several parameters to be 
fine-tuned. This work leaves the classical reasoning and introduces a summability criterion for 
R-linear convergence to remove restrictions on those parameters. Second, the usual assumption of 
a (quasi-)Pythagorean identity is replaced by the generalized notion of quasi-orthogonality from 
Feischl (2022) [22]. Importantly, this paves the way towards extending the analysis of AFEM 
with inexact solver to general inf-sup stable problems beyond the energy minimization setting. 
Numerical experiments investigate the choice of the adaptivity parameters.

1. Introduction

Over the past three decades, the mathematical understanding of adaptive finite element methods (AFEMs) has matured; see, 
e.g., [20,43,6,46,12,11,23] for linear elliptic PDEs, [48,19,4,29] for certain nonlinear PDEs, and [9] for an axiomatic framework 
summarizing the earlier references. In most of the cited works, the focus is on (plain) convergence in [20,43,48,19,29] and optimal 
convergence rates with respect to the number of degrees of freedom, i.e., optimal rates, in [6,12,11,4,29,23].

The adaptive feedback loop strives to approximate the unknown and possibly singular exact PDE solution 𝑢⋆ on the basis of 
a posteriori error estimators and adaptive mesh rfinement strategies. Employing AFEM with exact solver, detailed in Algorithm A
below, generates a sequence (𝓁)𝓁∈ℕ0

of successively rfined meshes together with the corresponding finite element solutions 𝑢⋆𝓁 ≈ 𝑢⋆

and error estimators 𝜂𝓁(𝑢⋆𝓁 ) by iterating

𝚜𝚘𝚕𝚟𝚎 ⟶ 𝚎𝚜𝚝𝚒𝚖𝚊𝚝𝚎 ⟶ 𝚖𝚊𝚛𝚔 ⟶ 𝚛𝚎𝚏𝚒𝚗𝚎 (1)
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A key argument in the analysis of (1) in [12] and succeeding works for symmetric PDEs consists in showing linear convergence of the 
quasi-error

Δ⋆
𝓁 ≤ 𝑞lin Δ⋆

𝓁−1 with Δ⋆
𝓁 ∶=

[| | |𝑢⋆ − 𝑢⋆𝓁 | | |2 + 𝛾 𝜂𝓁(𝑢⋆𝓁 )
2]1∕2 for all 𝓁 ∈ ℕ, (2)

where 0 < 𝑞lin, 𝛾 < 1 depend only on the problem setting and the marking parameter 𝜃. Here, | | | ⋅ | | | is the PDE-induced energy norm 
providing a Pythagorean identity of the form

| | |𝑢⋆ − 𝑢⋆𝓁+1| | |2 + | | |𝑢⋆𝓁+1 − 𝑢⋆𝓁 | | |2 = | | |𝑢⋆ − 𝑢⋆𝓁 | | |2 for all 𝓁 ∈ℕ0. (3)

The work [9] showed that a tail summability of the estimator sequence

∞ ∑
𝓁′=𝓁+1

𝜂𝓁′ (𝑢⋆𝓁′ ) ≤ 𝐶 ′
lin
𝜂𝓁(𝑢⋆𝓁 ) for all 𝓁 ∈ℕ0

or, equivalently, R-linear convergence

𝜂𝓁(𝑢⋆𝓁 ) ≤ 𝐶lin𝑞
𝓁−𝓁′
lin

𝜂𝓁′ (𝑢⋆𝓁′ ) for all 𝓁 ≥ 𝓁′ ≥ 0, (4)

with 0 < 𝑞lin < 1 and 𝐶lin,𝐶
′
lin

> 0, suffices to prove convergence. An extension of the analysis to nonsymmetric linear PDEs can 
be done by relaxing the Pythagorean identity to a quasi-Pythagorean estimate in [11,23,5]. However, this comes at the expense 
that either the initial mesh has to be sufficiently fine as in [11], (2) only holds for 𝓁 ≥ 𝓁0 ∈ ℕ0 [5], or (2) holds in the general 
form (4) below, where the constants depend on the adaptively generated meshes in [23]. Additional to R-linear convergence (4), a 
sufficiently small marking parameter 𝜃 leads to optimal rates in the sense of [46,12]. This can be stated in terms of approximation 
classes from [6,47,12] by mathematically guaranteeing the largest possible convergence rate 𝑠 > 0 with

sup 
𝓁∈ℕ

(#𝓁)𝑠𝜂𝓁(𝑢⋆𝓁 ) <∞. (5)

However, due to the incremental nature of adaptivity, the mathematical question on optimal convergence rates should rather 
refer to the overall computational cost (resp. the cumulative computation time). This, coined as optimal complexity in the context 
of adaptive wavelet methods from [14,15], was later adopted for AFEM in [46,10]. Therein, optimal complexity is guaranteed for 
AFEM with inexact solver, provided that the computed iterates 𝑢𝑘𝓁 are sufficiently close to the (unavailable) exact discrete solutions 
𝑢⋆𝓁 . This theoretical result requires that the algebraic error is controlled by the discretization error multiplied by a sufficiently small 
solver-stopping parameter 𝜆. However, numerical experiments in [10] indicate that also moderate choices of the stopping parameter 
suffice for optimal complexity. Hence, the interrelated stopping criterion led to a combined solve-estimate module in the adaptive 
algorithm

𝚜𝚘𝚕𝚟𝚎 & 𝚎𝚜𝚝𝚒𝚖𝚊𝚝𝚎 ⟶ 𝚖𝚊𝚛𝚔 ⟶ 𝚛𝚎𝚏𝚒𝚗𝚎 (6)

Driven by the interest in AFEMs for nonlinear problems in [21,16,27,34,35], recent papers [26,33,30] aimed to combine linearization 
and algebraic iterates into a nested adaptive algorithm. Following the latter, the algorithmic decision for either mesh rfinement or 
linearization or algebraic solver step is steered by a posteriori-based stopping criteria with suitable stopping parameters. This allows to 
balance the error components and compute the inexact approximations 𝑢𝑘𝓁 ≈ 𝑢⋆𝓁 given by a contractive solver with iteration counter 
𝑘 = 1,… , 𝑘[𝓁] on the mesh 𝓁 . Accordingly, the sequential loop (6) leads to a double index set  ⊂ℕ2

0 endowed with a lexicographic 
order through the step counter |𝓁, 𝑘| ∈ℕ0 for all (𝓁, 𝑘) ∈; see Algorithm B below.

Due to an energy identity (coinciding with (3) for symmetric linear PDEs), the works [26,33] prove full R-linear convergence for 
the quasi-error Δ𝑘

𝓁 ∶=
[| | |𝑢⋆ − 𝑢𝑘𝓁| | |2 + 𝛾 𝜂𝓁(𝑢𝑘𝓁)

2]1∕2 with respect to the lexicographic ordering |⋅, ⋅|, i.e.,

Δ𝑘
𝓁 ≤ 𝐶lin𝑞

|𝓁,𝑘|−|𝓁′,𝑘′|
lin

Δ𝑘′

𝓁′ for all (𝓁′, 𝑘′), (𝓁, 𝑘) ∈ with |𝓁′, 𝑘′| ≤ |𝓁, 𝑘|, (7)

which is guaranteed for arbitrary marking parameter 𝜃 and stopping parameter 𝜆 (with constants 𝐶lin > 0 and 0 < 𝑞lin < 1 depending 
on 𝜃 and 𝜆). Moreover, [26] proves that full R-linear convergence is also the key argument for optimal complexity in the sense that 
it ensures, for all 𝑠 > 0,

𝑀(𝑠) ∶= sup 
(𝓁,𝑘)∈

(#𝓁)𝑠Δ𝑘
𝓁 ≤ sup 

(𝓁,𝑘)∈
( ∑

(𝓁′ ,𝑘′)∈|𝓁′ ,𝑘′|≤|𝓁,𝑘|
#𝓁′

)𝑠
Δ𝑘
𝓁 ≤ 𝐶cost(𝑠) 𝑀(𝑠), (8)

where 𝐶cost(𝑠) > 1 depends only on 𝑠, 𝐶lin, and 𝑞lin. Since all modules of AFEM with inexact solver as displayed in (6) can be 
implemented at linear cost (#𝓁), the equivalence (8) means that the quasi-error Δ𝑘

𝓁 decays with rate 𝑠 over the number of elements 
#𝓁 if and only if it decays with rate 𝑠 over the related overall computational work (and hence total computation time).

In essence, optimal complexity of AFEM with inexact solver thus follows from a perturbation argument (by taking the stopping 
parameter 𝜆 sufficiently small) as soon as full linear convergence (7) of AFEM with inexact solver and optimal rates of AFEM with 
exact solver (for sufficiently small 𝜃) have been established; see, e.g., [9,26].
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In this paper, we present a novel proof of full linear convergence (7) with contractive solver that, unlike [26,33], avoids the 
Pythagorean identity (3), but relies only on the quasi-orthogonality from [9] (even in its generalized form from [22]). The latter is 
known to be sufficient and necessary for linear convergence (4) in the presence of exact solvers [9]. In particular, this opens the door 
to proving optimal complexity for AFEM beyond symmetric energy minimization problems. Moreover, problems exhibiting additional 
difficulties such as nonsymmetric linear elliptic PDEs, see [7], or nonlinear PDEs, see [30], ask for more intricate (nested) solvers that 
treat iterative symmetrization/linearization together with inexact solving of the arising linear SPD systems. This leads to computed 
approximations 𝑢𝑘,𝑗𝓁 ≈ 𝑢⋆𝓁 with symmetrization/linearization iteration counter 𝑘 = 𝑘[𝓁] and algebraic solver index 𝑗 = 𝑗[𝓁, 𝑘]. The new 
proof of full linear convergence allows to improve the analysis of [7,30] by relaxing the choice of the solver-stopping parameters. 
Additionally, in the setting of [7], we are able to show that the full linear convergence holds from the arbitrary initial mesh onwards 
instead of the a priori unknown and possibly large mesh threshold level 𝓁0 > 0. In particular, unlike the previous works [11,23,5,7] 
that employ a quasi-Pythagorean identity, the new analysis shows that the constants in the full R-linear convergence are independent 
of 0 and/or the sequence of adaptively generated meshes and therefore fixed a priori. Furthermore, the new analysis does not only 
improve the state-of-the-art theory of full linear convergence leading to optimal complexity, but also allows the choice of larger 
solver-stopping parameters which also leads to a better numerical performance in experiments.

The remainder of this work is structured as follows: As a model problem, Section 2 formulates a general second-order linear elliptic 
PDE together with the validity of the so-called axioms of adaptivity from [9] and the quasi-orthogonality from [22]. In Section 3, 
AFEM with exact solver (1) is presented in Algorithm A and, for completeness and eased readability of the later sections, Theorem 1
summarizes the proof of R-linear convergence (4) from [9,22]. Section 4 focuses on AFEM with inexact contractive solver (6) detailed 
in Algorithm B. The main contribution is the new and more general proof of full R-linear convergence of Theorem 2. Corollary 1 proves 
the important equivalence (8). The case of AFEM with nested contractive solvers, which are useful for nonlinear or nonsymmetric 
problems, is treated in Section 5 by presenting Algorithm C from [7] and improving its main result in Theorem 4. In Section 6, we 
discuss the impact of the new analysis on AFEM for nonlinear PDEs. We show that Theorem 4 applies also to the setting from [30], 
namely strongly monotone PDEs with scalar nonlinearity. Numerical experiments and remarks are discussed in-depth in Section 7, 
where the impact of the adaptivity parameters on the overall cost is investigated empirically.

Throughout the proofs, the notation 𝐴 ≲𝐵 abbreviates 𝐴 ≤ 𝐶𝐵 for some positive constant 𝐶 > 0 whose dependencies are clearly 
presented in the respective theorem and 𝐴 ≃𝐵 abbreviates 𝐴≲ 𝐵 ≲𝐴.

2. General second-order linear elliptic PDEs

On a bounded polyhedral Lipschitz domain Ω ⊂ℝ𝑑 , 𝑑 ≥ 1, we consider the PDE

−div(𝑨∇𝑢⋆) + 𝒃 ⋅∇𝑢⋆ + 𝑐𝑢⋆ = 𝑓 − div𝒇 in Ω subject to 𝑢⋆ = 0 on 𝜕Ω, (9)

where 𝑨,𝒃, 𝑐 ∈𝐿∞(Ω) and 𝒇 , 𝑓 ∈𝐿2(Ω) with, for almost every 𝑥 ∈Ω, positive definite 𝑨(𝑥) ∈ℝ𝑑×𝑑
sym , 𝒃(𝑥),𝒇 (𝑥) ∈ℝ𝑑 , and 𝑐(𝑥), 𝑓 (𝑥) ∈

ℝ. With ⟨⋅, ⋅⟩𝐿2(Ω) denoting the usual 𝐿2(Ω)-scalar product, we suppose that the PDE fits into the setting of the Lax–Milgram lemma, 
i.e., the bilinear forms

𝑎(𝑢, 𝑣) ∶= ⟨𝑨∇𝑢,∇𝑣⟩𝐿2(Ω) and 𝑏(𝑢, 𝑣) ∶= 𝑎(𝑢, 𝑣) + ⟨𝒃 ⋅∇𝑢+ 𝑐𝑢, 𝑣⟩𝐿2(Ω)

are continuous and elliptic on 𝐻1
0 (Ω). Then, indeed, 𝑎(⋅, ⋅) is a scalar product and | | |𝑢| | | ∶= 𝑎(𝑢, 𝑢)1∕2 dfines an equivalent norm on 

𝐻1
0 (Ω). Moreover, the weak formulation

𝑏(𝑢⋆, 𝑣) = 𝐹 (𝑣) ∶= ⟨𝑓, 𝑣⟩𝐿2(Ω) + ⟨𝒇 , ∇𝑣⟩𝐿2(Ω) for all 𝑣 ∈𝐻1
0 (Ω)

admits a unique solution 𝑢⋆ ∈𝐻1
0 (Ω). Let 0 < 𝐶ell ≤ 𝐶bnd denote the continuity and ellipticity constant of 𝑏(⋅, ⋅) with respect to | | | ⋅ | | |, 

i.e., there holds

𝐶ell | | |𝑣| | |2 ≤ 𝑏(𝑣, 𝑣) and |𝑏(𝑣,𝑤)| ≤ 𝐶bnd | | |𝑣| | | | | |𝑤| | | for all 𝑣,𝑤 ∈  .
Remark 1. We stress that the analysis below extends to problems where the associated bilinear form 𝑏(⋅, ⋅) is not coercive but satifies 
only a Gårding-type inequality allowing for well-posed more general second-order linear elliptic PDEs. In this context, it is well-known 
that the well-posedness of the discrete FEM problems and validity of a uniform inf-sup condition require that the triangulations (i.e., 
the initial triangulation 0 below) are sufficiently fine; see, e.g., [5]. However, the question of an optimal algebraic solver for the 
resulting linear systems is beyond the scope of this work and is left for future research.

Let 0 be an initial conforming triangulation of Ω ⊂ ℝ𝑑 into compact simplices. The mesh rfinement employs newest-vertex 
bisection (NVB). We refer to [47] for NVB with admissible 0 and 𝑑 ≥ 2, to [39] for NVB with general 0 for 𝑑 = 2, and to the recent 
work [18] for NVB with general 0 in any dimension 𝑑 ≥ 2. For 𝑑 = 1, we refer to [1]. For each triangulation 𝐻 and 𝐻 ⊆ 𝐻 , 
let ℎ ∶= refine(𝐻,𝐻 ) be the coarsest conforming rfinement of 𝐻 such that at least all elements 𝑇 ∈𝐻 have been rfined, 
i.e., 𝐻 ⊆ 𝐻 ⧵ ℎ. To abbreviate notation, we write ℎ ∈ 𝕋 (𝐻 ) if ℎ can be obtained from 𝐻 by finitely many steps of NVB and, 
in particular, 𝕋 ∶= 𝕋 (0).
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For each 𝐻 ∈ 𝕋 , we consider conforming finite element spaces

𝐻 ∶= {𝑣𝐻 ∈𝐻1
0 (Ω) ∶ 𝑣𝐻 |𝑇 is a polynomial of total degree ≤ 𝑝 for all 𝑇 ∈ 𝐻}, (10)

where 𝑝 ∈ℕ is a fixed polynomial degree. We note that ℎ ∈ 𝕋 (𝐻 ) yields nestedness 𝐻 ⊆ ℎ of the corresponding discrete spaces.

Given 𝐻 ∈ 𝕋 , there exists a unique Galerkin solution 𝑢⋆
𝐻
∈ 𝐻 solving

𝑏(𝑢⋆
𝐻
,𝑣𝐻 ) = 𝐹 (𝑣𝐻 ) for all 𝑣𝐻 ∈ 𝐻. (11)

Moreover, there holds the following Céa lemma

| | |𝑢⋆ − 𝑢⋆
𝐻
| | | ≤ 𝐶Céa min 

𝑣𝐻∈𝐻 | | |𝑢⋆ − 𝑣𝐻 | | | with a constant 1 ≤ 𝐶Céa ≤ 𝐶bnd∕𝐶ell, (12)

where 𝐶Céa → 1 as adaptive mesh rfinement progresses as shown in [5, Theorem 20].

We consider the residual error estimator 𝜂𝐻 (⋅) dfined, for 𝑇 ∈ 𝐻 and 𝑣𝐻 ∈ 𝐻 , by

𝜂𝐻 (𝑇 , 𝑣𝐻 )2 ∶= |𝑇 |2∕𝑑 ‖− div(𝑨∇𝑣𝐻 − 𝒇 ) + 𝒃 ⋅∇𝑣𝐻 + 𝑐 𝑣𝐻 − 𝑓‖2
𝐿2(𝑇 )

+ |𝑇 |1∕𝑑 ‖[ [(𝑨∇𝑣𝐻 − 𝒇 ) ⋅ 𝑛] ]‖2
𝐿2(𝜕𝑇∩Ω),

(13a)

where [ [⋅] ] denotes the jump over (𝑑 −1)-dimensional faces. Clearly, the well-posedness of (13a) requires more regularity of 𝑨 and 𝒇
than stated above, e.g., 𝑨|𝑇 ,𝒇 |𝑇 ∈𝑊 1,∞(𝑇 ) for all 𝑇 ∈ 0. To abbreviate notation, we dfine, for all 𝐻 ⊆ 𝐻 and all 𝑣𝐻 ∈ 𝐻 ,

𝜂𝐻 (𝑣𝐻 ) ∶= 𝜂𝐻 (𝐻,𝑣𝐻 ) with 𝜂𝐻 (𝐻,𝑣𝐻 ) ∶=
( ∑
𝑇∈𝐻

𝜂𝐻 (𝑇 , 𝑣𝐻 )2
)1∕2

. (13b)

From [9], we recall that the error estimator satifies the following properties.

Proposition 1 (Axioms of adaptivity). There exist constants 𝐶stab,𝐶rel,𝐶drel,𝐶mon > 0, and 0 < 𝑞red < 1 such that the following properties 
are satified for any triangulation 𝐻 ∈ 𝕋 and any conforming rfinement ℎ ∈ 𝕋 (𝐻 ) with the corresponding Galerkin solutions 𝑢⋆

𝐻
∈ 𝐻 , 

𝑢⋆
ℎ
∈ ℎ to (11) and arbitrary 𝑣𝐻 ∈ 𝐻 , 𝑣ℎ ∈ ℎ.

(A1) stability. |𝜂ℎ(ℎ ∩ 𝐻,𝑣ℎ) − 𝜂𝐻 (ℎ ∩ 𝐻,𝑣𝐻 )| ≤ 𝐶stab | | |𝑣ℎ − 𝑣𝐻 | | |.
(A2) reduction. 𝜂ℎ(ℎ∖𝐻,𝑣𝐻 ) ≤ 𝑞red 𝜂𝐻 (𝐻∖ℎ, 𝑣𝐻 ).
(A3) reliability. | | |𝑢⋆ − 𝑢⋆

𝐻
| | | ≤ 𝐶rel 𝜂𝐻 (𝑢⋆

𝐻
).

(A3+) discrete reliability. | | |𝑢⋆
ℎ
− 𝑢⋆

𝐻
| | | ≤ 𝐶drel 𝜂𝐻 (𝐻∖ℎ, 𝑢⋆𝐻 ).

(QM) quasi-monotonicity. 𝜂ℎ(𝑢⋆ℎ ) ≤ 𝐶mon 𝜂𝐻 (𝑢⋆
𝐻
).

The constant 𝐶rel depends only on uniform shape regularity of all meshes 𝐻 ∈ 𝕋 and the dimension 𝑑, while 𝐶stab and 𝐶drel additionally 
depend on the polynomial degree 𝑝. The constant 𝑞red reads 𝑞red ∶= 2−1∕(2𝑑) for bisection-based rfinement rules in ℝ𝑑 and the constant 𝐶mon

can be bounded by 𝐶mon ≤min{1 +𝐶stab(1 +𝐶Céa) 𝐶rel , 1 +𝐶stab 𝐶drel}. □

In addition to the estimator properties in Proposition 1, we recall the following quasi-orthogonality result from [22] as one 
cornerstone of the improved analysis in this paper.

Proposition 2 (Validity of quasi-orthogonality). There exist 𝐶orth > 0 and 0 < 𝛿 ≤ 1 such that the following holds: For any sequence 
𝓁 ⊆ 𝓁+1 ⊂𝐻1

0 (Ω) of nested finite-dimensional subspaces, the corresponding Galerkin solutions 𝑢⋆𝓁 ∈ 𝓁 to (11) satisfy

(A4) quasi-orthogonality. 
𝓁+𝑁∑
𝓁′=𝓁

| | |𝑢⋆𝓁′+ 1− 𝑢⋆𝓁′ | | |2≤𝐶orth(𝑁 + 1)1−𝛿| | |𝑢⋆− 𝑢⋆𝓁 | | |2 for all 𝓁,𝑁 ∈ℕ0.

Here, 𝐶orth and 𝛿 depend only on the dimension 𝑑, the elliptic bilinear form 𝑏(⋅, ⋅), and the chosen norm | | | ⋅ | | |, but are independent of the 
spaces 𝓁 . □

Remark 2. Quasi-orthogonality (A4) is a generalization of the Pythagorean identity (3) for symmetric problems. Indeed, if 𝒃 = 0
in (9) and 𝑎(⋅, ⋅) ∶= 𝑏(⋅, ⋅) is a scalar product, the Galerkin method for nested subspaces 𝓁 ⊆ 𝓁+1 ⊂𝐻1

0 (Ω) guarantees (3). Thus, the 
telescopic series proves (A4) with 𝐶orth = 1 and 𝛿 = 1. We highlight that [22] proves (A4) even for more general linear problems and 
Petrov–Galerkin discretizations, where it is only needed that the continuous and discrete inf-sup constants are uniformly bounded 
from below. In particular, this applies to a wide range of mixed FEM formulations, but also to general second-order linear elliptic 
PDEs that only satisfy a Gårding-type inequality; see Remark 1 above.
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A closer look at the proofs of R-linear convergence in Section 3--5 below reveals that they rely only on the properties (A1),

(A2), (A3), (A4), and (QM), but not on (A3+), the Céa lemma (12), or linearity of the PDE. Hence, Algorithms A, B, and C and the 
corresponding Theorems 1, 2, and 4 below apply beyond the linear problem (9); see Section 6 for a nonlinear PDE.

3. AFEM with exact solution

To outline the new proof strategy, we first consider the standard adaptive algorithm (see, e.g., [12]), where the arising Galerkin 
systems (11) are solved exactly.

Algorithm A (AFEM with exact solver). Given an initial mesh 0, polynomial degree 𝑝 > 0, and adaptivity parameters 0 < 𝜃 ≤ 1 and 
𝐶mark ≥ 1, iterate the following steps for all 𝓁 = 0,1,2,3,… :

(i) Solve: Compute the exact solution 𝑢⋆𝓁 ∈ 𝓁 to (11).

(ii) Estimate: Compute the rfinement indicators 𝜂𝓁(𝑇 , 𝑢⋆𝓁 ) for all 𝑇 ∈ 𝓁 .

(iii) Mark: Determine a set 𝓁 ∈𝕄𝓁[𝜃, 𝑢⋆𝓁 ] of quasi-minimal cardinality satisfying the Döfler marking criterion

#𝓁 ≤ 𝐶mark min  ⋆
𝓁
∈𝕄𝓁 [𝜃,𝑢⋆𝓁 ]

# ⋆
𝓁 , where 𝕄𝓁[𝜃, 𝑢⋆𝓁 ] ∶=

{𝓁 ⊆ 𝓁 ∶ 𝜃𝜂𝓁(𝑢⋆𝓁 )
2 ≤ 𝜂𝓁(𝓁 , 𝑢

⋆
𝓁 )

2}. (14)

(iv) Rfine: Generate 𝓁+1 ∶= 𝚛𝚎𝚏𝚒𝚗𝚎(𝓁 ,𝓁).

The following theorem asserts convergence of Algorithm A in the spirit of [9], and the proof given below essentially summarizes 
the arguments from [22]. It will, however, be the starting point for the later generalizations, i.e., for the adaptive algorithms below 
with inexact solvers.

Theorem 1 (R-linear convergence of Algorithm   A). Let 0 < 𝜃 ≤ 1 and 𝐶mark ≥ 1 be arbitrary. Then, Algorithm A guarantees R-linear 
convergence of the estimators 𝜂𝓁(𝑢⋆𝓁 ), i.e., there exist constants 0< 𝑞lin < 1 and 𝐶lin > 0 such that

𝜂𝓁+𝑛(𝑢⋆𝓁+𝑛) ≤ 𝐶lin 𝑞
𝑛
lin
𝜂𝓁(𝑢⋆𝓁 ) for all 𝓁, 𝑛 ∈ℕ0. (15)

Remark 3. For vanishing convection 𝒃 = 0 in (9) and 𝑎(⋅, ⋅) ∶= 𝑏(⋅, ⋅), [12] proves linear convergence of the quasi-error (2). Together 
with reliability (A3), this yields R-linear convergence of the estimator sequence

𝜂𝓁+𝑛(𝑢⋆𝓁+𝑛) ≤
(𝐶2

rel
+ 𝛾)1∕2

𝛾1∕2
𝑞𝑛ctr 𝜂𝓁(𝑢

⋆
𝓁 ) for all 𝓁, 𝑛 ∈ℕ0.

In this sense, Theorem 1 is weaker than linear convergence (2) from [12], but provides a direct proof of R-linear convergence even if 
𝑏(⋅, ⋅) ≠ 𝑎(⋅, ⋅). Moreover, while the proof of (2) crucially relies on the Pythagorean identity (3), the works [23,5] extend the analysis 
to the general second-order linear elliptic PDE (9) using

∀0 < 𝜀 < 1 ∃𝓁0 ∈ℕ0 ∀𝓁 ≥ 𝓁0 ∶ | | |𝑢⋆ − 𝑢⋆𝓁+1| | |2 ≤ | | |𝑢⋆ − 𝑢⋆𝓁 | | |2 − 𝜀 | | |𝑢⋆𝓁+1 − 𝑢⋆𝓁 | | |2. (16)

From this, contraction (2) follows for all 𝓁 ≥ 𝓁0 and allows to extend the AFEM analysis from [46,12] to general second-order linear 
elliptic PDE. However, the index 𝓁0 depends on the exact solution 𝑢⋆ and on the sequence of exact discrete solutions (𝑢⋆𝓁 )𝓁∈ℕ0

. 
Moreover, 𝓁0 = 0 requires sufficiently fine 0 in [11,5] while the constants in (15) depend on 𝑢⋆ and the sequence (𝑢⋆𝓁 )𝓁∈ℕ0

in [23]. 
In the present work however, R-linear convergence (15) from Theorem 1 holds with 𝓁0 = 0 and any initial mesh 0, and the constants 
are independent of 𝑢⋆ and (𝑢⋆𝓁 )𝓁∈ℕ0

, thus clearly improving the previous state of the art.

The proof of Theorem 1 relies on the following elementary lemma that extends arguments implicitly found for the estimator 
sequence in [22] but that will be employed for certain quasi-errors in the present work. Its proof is found in Appendix A.

Lemma 1 (Tail summability criterion). Let (𝑎𝓁)𝓁∈ℕ0
, (𝑏𝓁)𝓁∈ℕ0

be scalar sequences in ℝ≥0. With given constants 0 < 𝑞 < 1, 0 < 𝛿 < 1, and 
𝐶1,𝐶2 > 0, suppose that

𝑎𝓁+1 ≤ 𝑞𝑎𝓁 + 𝑏𝓁 , 𝑏𝓁+𝑁 ≤ 𝐶1 𝑎𝓁 , and

𝓁+𝑁∑
𝓁′=𝓁

𝑏2𝓁′ ≤ 𝐶2 (𝑁 + 1)1−𝛿 𝑎2𝓁 for all 𝓁,𝑁 ∈ ℕ0. (17)

Then, (𝑎𝓁)𝓁∈ℕ0
is R-linearly convergent, i.e., there exist 𝐶lin > 0 and 0< 𝑞lin < 1 with

𝑎𝓁+𝑛 ≤ 𝐶lin 𝑞
𝑛
lin
𝑎𝓁 for all 𝓁, 𝑛 ∈ℕ0. (18)

Proof of Theorem 1. We employ Lemma 1 for the sequences dfined by 𝑎𝓁 = 𝜂𝓁(𝑢⋆𝓁 ) and 𝑏𝓁 ∶= 𝐶stab | | |𝑢⋆𝓁+1 − 𝑢⋆𝓁 | | |. First, we note 
that

Computers and Mathematics with Applications 180 (2025) 102–129 

106 



P. Bringmann, M. Feischl, A. Miraçi et al. 

| | |𝑢⋆𝓁′′ − 𝑢⋆𝓁′ | | | (A3)

≲ 𝜂𝓁′′ (𝑢⋆𝓁′′ ) + 𝜂𝓁′ (𝑢⋆𝓁′ )
(QM)

≲ 𝜂𝓁(𝑢⋆𝓁 ) for all 𝓁,𝓁′,𝓁′′ ∈ℕ0 with 𝓁 ≤ 𝓁′ ≤ 𝓁′′. (19)

In particular, this proves 𝑏𝓁+𝑁 ≲ 𝑎𝓁 for all 𝓁,𝑁 ∈ℕ0. Moreover, quasi-orthogonality (A4) and reliability (A3) show

𝓁+𝑁∑
𝓁′=𝓁

| | |𝑢⋆𝓁′+1 − 𝑢⋆𝓁′ | | |2 ≤ 𝐶orth 𝐶
2
rel

(𝑁 + 1)1−𝛿 𝜂𝓁(𝑢⋆𝓁 )
2 for all 𝓁,𝑁 ∈ ℕ0. (20)

In order to verify (17), it thus only remains to prove the perturbed contraction of 𝑎𝓁 . To this end, let 𝓁 ∈ℕ0. Then, stability (A1) and 
reduction (A2) show

𝜂𝓁+1(𝑢⋆𝓁 )
2 ≤ 𝜂𝓁(𝓁+1 ∩ 𝓁 , 𝑢⋆𝓁 )2 + 𝑞2

red
𝜂𝓁(𝓁∖𝓁+1, 𝑢⋆𝓁 )2 = 𝜂𝓁(𝑢⋆𝓁 )

2− (1 − 𝑞2
red

) 𝜂𝓁(𝓁∖𝓁+1, 𝑢⋆𝓁 )2.
Moreover, Döfler marking (14) and rfinement of (at least) all marked elements lead to

𝜃𝜂𝓁(𝑢⋆𝓁 )
2

(14)≤ 𝜂𝓁(𝓁 , 𝑢
⋆
𝓁 )

2 ≤ 𝜂𝓁(𝓁∖𝓁+1, 𝑢⋆𝓁 )2.
The combination of the two previously displayed formulas results in

𝜂𝓁+1(𝑢⋆𝓁 ) ≤ 𝑞𝜃 𝜂𝓁(𝑢⋆𝓁 ) with 0 < 𝑞𝜃 ∶=
[
1 − (1 − 𝑞2

red
)𝜃
]1∕2

< 1.

Finally, stability (A1) thus leads to the desired estimator reduction estimate

𝜂𝓁+1(𝑢⋆𝓁+1)
(A1)≤ 𝑞𝜃 𝜂𝓁(𝑢⋆𝓁 ) +𝐶stab | | |𝑢⋆𝓁+1 − 𝑢⋆𝓁 | | | for all 𝓁 ∈ℕ0. (21)

Altogether, all the assumptions (17) are satified and Lemma 1 concludes the proof. □

4. AFEM with contractive solver

Let Ψ𝐻 ∶ 𝐻 →𝐻 be the iteration mapping of a uniformly contractive solver, i.e.,

| | |𝑢⋆
𝐻
−Ψ𝐻 (𝑣𝐻 )| | | ≤ 𝑞alg | | |𝑢⋆𝐻 − 𝑣𝐻 | | | for all 𝐻 ∈ 𝕋 and all 𝑣𝐻 ∈ 𝐻. (22)

Examples of such iterative solvers include an optimally preconditioned conjugate gradient method from [13] or an optimal geometric 
multigrid method from [49,37]. The following algorithm is thoroughly analyzed in [26] under the assumption that the problem is 
symmetric (and hence the Pythagorean identity (3) holds).

Algorithm B (AFEM with contractive solver). Given an initial mesh 0, polynomial degree 𝑝 > 0, adaptivity parameters 0 < 𝜃 ≤ 1 and 
𝐶mark ≥ 1, a solver-stopping parameter 𝜆 > 0, and an initial guess 𝑢00 ∈ 0, iterate the following steps (i)--(iv) for all 𝓁 = 0,1,2,3,… :

(i) Solve & Estimate: For all 𝑘 = 1,2,3,… , repeat (a)--(b) until

| | |𝑢𝑘𝓁 − 𝑢𝑘−1𝓁 | | | ≤ 𝜆 𝜂𝓁(𝑢𝑘𝓁). (23)

(a) Compute 𝑢𝑘𝓁 ∶= Ψ𝓁(𝑢𝑘−1𝓁 ) with one step of the contractive solver.

(b) Compute the rfinement indicators 𝜂𝓁(𝑇 , 𝑢𝑘𝓁) for all 𝑇 ∈ 𝓁 .

(ii) Upon termination of the iterative solver, dfine the index 𝑘[𝓁] ∶= 𝑘 ∈ ℕ.

(iii) Mark: Determine a set 𝓁 ∈𝕄𝓁[𝜃, 𝑢
𝑘

𝓁] satisfying (14) with 𝑢⋆𝓁 replaced by 𝑢𝑘𝓁 .

(iv) Rfine: Generate 𝓁+1 ∶= 𝚛𝚎𝚏𝚒𝚗𝚎(𝓁 ,𝓁) and employ nested iteration 𝑢0𝓁+1 ∶= 𝑢
𝑘

𝓁 .

The sequential nature of Algorithm B gives rise to the countably ifinite index set

 ∶=
{
(𝓁, 𝑘) ∈ℕ2

0 ∶ 𝑢𝑘𝓁 ∈ 𝓁 is defined in Algorithm B
}

together with the lexicographic ordering

(𝓁′, 𝑘′) ≤ (𝓁, 𝑘) ∶⟺ 𝑢𝑘
′

𝓁′ is defined not later than 𝑢𝑘𝓁 in Algorithm B

and the total step counter

|𝓁, 𝑘| ∶= #
{
(𝓁′, 𝑘′) ∈ ∶ (𝓁′, 𝑘′) ≤ (𝓁, 𝑘)

}
∈ℕ0 for all (𝓁, 𝑘) ∈.

Defining the stopping indices

𝓁 ∶= sup{𝓁 ∈ℕ0 ∶ (𝓁,0) ∈} ∈ℕ0 ∪ {∞}, (24a)

𝑘[𝓁] ∶= sup{𝑘 ∈ℕ0 ∶ (𝓁, 𝑘) ∈} ∈ℕ ∪ {∞}, whenever (𝓁,0) ∈, (24b)
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we note that these definitions are consistent with that of Algorithm B(ii). We abbreviate 𝑘 = 𝑘[𝓁], whenever the index 𝓁 is clear from 
the context, e.g., 𝑢𝑘𝓁 ∶= 𝑢

𝑘[𝓁]
𝓁 or (𝓁, 𝑘) = (𝓁, 𝑘[𝓁]).

As  is an ifinite set, the typical case is 𝓁 =∞ and 𝑘[𝓁] <∞ for all 𝓁 ∈ ℕ0, whereas 𝓁 <∞ implies that 𝑘[𝓁] = ∞, i.e., non

termination of the iterative solver on the mesh 𝓁 . The following theorem states convergence of Algorithm B. In particular, it shows 
that 𝓁 <∞ implies 𝜂𝓁(𝑢⋆𝓁 ) = 0 and consequently 𝑢⋆ = 𝑢⋆𝓁 by reliability (A3).

Theorem 2 (Full R-linear convergence of Algorithm   B). Let 0 < 𝜃 ≤ 1, 𝐶mark ≥ 1, 𝜆 > 0, and 𝑢00 ∈ 0 be arbitrary. Then, Algorithm B
guarantees R-linear convergence of the modfied quasi-error

H𝑘
𝓁 ∶= | | |𝑢⋆𝓁 − 𝑢𝑘𝓁| | |+ 𝜂𝓁(𝑢𝑘𝓁), (25)

i.e., there exist constants 0< 𝑞lin < 1 and 𝐶lin > 0 such that

H𝑘
𝓁 ≤ 𝐶lin𝑞

|𝓁,𝑘|−|𝓁′,𝑘′|
lin

H𝑘′

𝓁′ for all (𝓁′, 𝑘′), (𝓁, 𝑘) ∈ with |𝓁′, 𝑘′| ≤ |𝓁, 𝑘|. (26)

Remark 4. Unlike [26] (and [12]), Theorem 2 and its proof employ the quasi-error H𝑘
𝓁 from (25) instead of Δ𝑘

𝓁 ∶=
[| | |𝑢⋆ − 𝑢𝑘𝓁| | |2 +

𝛾 𝜂𝓁(𝑢𝑘𝓁)
2]1∕2 analogous to (2). We note that stability (A1) and reliability (A3) yield Δ𝑘

𝓁 ≲ H𝑘
𝓁 , while the converse estimate follows 

from the Céa lemma (12).

Remark 5. The work [26] extends the ideas of [12] (that proves (2) for AFEM with exact solver) and of [25] (that extends (2) to 
the final iterates for AFEM with contractive solver). For the scalar product 𝑏(⋅, ⋅) = 𝑎(⋅, ⋅) and arbitrary stopping parameters 𝜆 > 0, it 
shows that the quasi-error Δ𝑘

𝓁 from Remark 4 satifies contraction

Δ𝑘
𝓁 ≤ 𝑞ctr Δ𝑘−1

𝓁 for all (𝓁, 𝑘) ∈ with 0 < 𝑘 < 𝑘[𝓁], (27a)

Δ0
𝓁+1 ≤ 𝑞ctr Δ

𝑘−1
𝓁 for all (𝓁, 𝑘) ∈ (27b)

with contraction constant 0 < 𝑞ctr < 1, along the approximations 𝑢𝑘𝓁 ∈ 𝓁 generated by Algorithm B. The proof of (27) can be general

ized similarly to Remark 3, see [7]: With the quasi-Pythagorean estimate (16), the contraction (27) transfers to general second-order 
linear elliptic PDEs (9) under the restriction that (27b) holds only for all 𝓁 ≥ 𝓁0, where 𝓁0 ∈ ℕ0 exists, but is unknown in practice. 
While, as noted in Remark 3, contraction (27) implies full R-linear convergence (26), the proof of Theorem 2 works under much 
weaker assumptions than that of [26] and covers the PDE (9) with 𝓁0 = 0.

The proof of Theorem 2 relies on Lemma 1 and the following elementary result essentially taken from [9, Lemma 4.9]. Its proof 
is found in Appendix A.

Lemma 2 (Tail summability vs. R-linear convergence). Let (𝑎𝓁)𝓁∈ℕ0
be a scalar sequence in ℝ≥0 and 𝑚> 0. Then, the following statements 

are equivalent:

(i) tail summability: There exists a constant 𝐶𝑚 > 0 such that

∞ ∑
𝓁′=𝓁+1

𝑎𝑚𝓁′ ≤ 𝐶𝑚 𝑎
𝑚
𝓁 for all 𝓁 ∈ ℕ0. (28)

(ii) R-linear convergence: There holds (18) with certain 0< 𝑞lin < 1 and 𝐶lin > 0.

Proof of Theorem 2. We want to briefly summarize the proof strategy. First, we show that the estimator reduction together with 
the contraction (27) of the algebraic solver leads to tail summability of a weighted quasi-error on the mesh level 𝓁. Second, we show 
that the quasi-error from (25) is contractive in the algebraic solver index 𝑘 and is stable in the nested iteration. Finally, we combine 
these two steps to prove R-linear convergence of the quasi-error (26).

The proof is split into two steps.

Step 1 (tail summability with respect to 𝓵). Let 𝓁 ∈ ℕ with (𝓁 + 1, 𝑘) ∈. Algorithm B guarantees nested iteration 𝑢0𝓁+1 = 𝑢
𝑘

𝓁
and 𝑘[𝓁 + 1] ≥ 1. This and contraction of the algebraic solver (22) show

| | |𝑢⋆𝓁+1 − 𝑢
𝑘

𝓁+1| | | (22)≤ 𝑞𝑘[𝓁+1]
alg

| | |𝑢⋆𝓁+1 − 𝑢
𝑘

𝓁| | | ≤ 𝑞alg | | |𝑢⋆𝓁+1 − 𝑢
𝑘

𝓁| | | (29)

As in the proof of Theorem 1, one obtains the estimator reduction

𝜂𝓁+1(𝑢
𝑘

𝓁+1)
(21)≤ 𝑞𝜃 𝜂𝓁(𝑢

𝑘

𝓁) +𝐶stab | | |𝑢𝑘𝓁+1− 𝑢𝑘𝓁| | |(29)≤ 𝑞𝜃 𝜂𝓁(𝑢
𝑘

𝓁) + (𝑞alg + 1)𝐶stab | | |𝑢⋆𝓁+1− 𝑢𝑘𝓁| | |. (30)

Choosing 0 < 𝛾 ≤ 1 with 0 < 𝑞ctr ∶= max{𝑞alg + (𝑞alg + 1)𝐶stab𝛾 , 𝑞𝜃} < 1, the combination of (29)--(30) reads
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𝑎𝓁+1 ∶= | | |𝑢⋆𝓁+1 − 𝑢
𝑘

𝓁+1| | |+ 𝛾 𝜂𝓁+1(𝑢
𝑘

𝓁+1) ≤ 𝑞ctr

[| | |𝑢⋆𝓁+1 − 𝑢
𝑘

𝓁| | |+ 𝛾 𝜂𝓁(𝑢
𝑘

𝓁)
]

≤ 𝑞ctr

[| | |𝑢⋆𝓁 − 𝑢
𝑘

𝓁| | |+ 𝛾 𝜂𝓁(𝑢
𝑘

𝓁)
]
+ 𝑞ctr | | |𝑢⋆𝓁+1 − 𝑢⋆𝓁 | | | =∶ 𝑞ctr 𝑎𝓁 + 𝑏𝓁 .

(31)

Moreover, estimate (19) from the proof of Theorem 1 and stability (A1) prove that

| | |𝑢⋆𝓁′′ − 𝑢⋆𝓁′ | | |(19)

≲ 𝜂𝓁(𝑢⋆𝓁 )
(A1)

≲ | | |𝑢⋆𝓁 − 𝑢
𝑘

𝓁| | |+ 𝜂𝓁(𝑢
𝑘

𝓁) ≃ 𝑎𝓁 for 𝓁 ≤ 𝓁′ ≤ 𝓁′′ ≤ 𝓁 with (𝓁, 𝑘) ∈, (32)

which yields 𝑏𝓁+𝑁 ≲ 𝑎𝓁 for all 0 ≤ 𝓁 ≤ 𝓁 +𝑁 ≤ 𝓁 with (𝓁, 𝑘) ∈. As in (20), we see

𝓁+𝑁∑
𝓁′=𝓁

𝑏2𝓁′ ≃
𝓁+𝑁∑
𝓁′=𝓁

| | |𝑢⋆𝓁′+1 − 𝑢⋆𝓁′ | | |2 (A4)

≲ (𝑁 + 1)1−𝛿 | | |𝑢⋆ − 𝑢⋆𝓁 | | |2 (A3)

≲ (𝑁 + 1)1−𝛿 𝜂𝓁(𝑢⋆𝓁 )
2

(A1)

≲ (𝑁 + 1)1−𝛿
[
𝜂𝓁(𝑢

𝑘

𝓁) + | | |𝑢⋆𝓁 − 𝑢
𝑘

𝓁| | |]2 ≃ (𝑁 + 1)1−𝛿 𝑎2𝓁 for all 0 ≤ 𝓁 ≤ 𝓁 +𝑁 < 𝓁.

(33)

Hence, the assumptions (17) are satified and Lemma 1 concludes tail summability (or equivalently R-linear convergence by Lemma 2) 
of H𝑘

𝓁 ≃ 𝑎𝓁 , i.e.,

𝓁−1 ∑
𝓁′=𝓁+1

H𝑘

𝓁′
≲H𝑘

𝓁 for all 0 ≤ 𝓁 < 𝓁. (34)

Step 2 (tail summability with respect to 𝓵 and 𝒌). First, for 0 ≤ 𝑘 < 𝑘′ < 𝑘[𝓁], the failure of the termination criterion (23) and 
contraction of the solver (22) prove that

H𝑘′

𝓁

(23)

≲ | | |𝑢⋆𝓁 − 𝑢𝑘
′

𝓁 | | |+ | | |𝑢𝑘′𝓁 − 𝑢𝑘
′−1

𝓁 | | | (22)

≲ | | |𝑢⋆𝓁 − 𝑢𝑘
′−1

𝓁 | | | (22)

≲ 𝑞𝑘′−𝑘
alg

| | |𝑢⋆𝓁 − 𝑢𝑘𝓁| | | (25)≤ 𝑞𝑘′−𝑘
alg

H𝑘
𝓁 .

Second, for (𝓁, 𝑘) ∈, it holds that

H𝑘

𝓁

(A1)

≲ | | |𝑢⋆𝓁 − 𝑢
𝑘

𝓁| | |+ 𝜂𝓁(𝑢
𝑘−1
𝓁 ) + | | |𝑢𝑘𝓁 − 𝑢

𝑘−1
𝓁 | | | ≤H𝑘−1

𝓁 + 2 | | |𝑢⋆𝓁 − 𝑢
𝑘

𝓁| | | (22)≤ (1 + 2 𝑞alg) H
𝑘−1
𝓁 for all (𝓁, 𝑘) ∈.

Hence, we may conclude

H𝑘′

𝓁 ≲ 𝑞𝑘
′−𝑘

alg
H𝑘
𝓁 for all 0 ≤ 𝑘 ≤ 𝑘′ ≤ 𝑘[𝓁]. (35)

With | | |𝑢⋆𝓁+1 − 𝑢⋆𝓁 | | | ≲ 𝑎𝓁 ≃H𝑘

𝓁 from (19), stability (A1) and reduction (A2) show

H0
𝓁+1 = | | |𝑢⋆𝓁+1 − 𝑢

𝑘

𝓁| | |+ 𝜂𝓁+1(𝑢
𝑘

𝓁) ≤H𝑘

𝓁 + | | |𝑢⋆𝓁+1 − 𝑢⋆𝓁 | | | ≲H𝑘

𝓁 for all (𝓁, 𝑘) ∈. (36)

Overall, the geometric series proves tail summability (28) via

∑
(𝓁′ ,𝑘′)∈|𝓁′ ,𝑘′|>|𝓁,𝑘|

H𝑘′

𝓁′ =
𝑘[𝓁] ∑

𝑘′=𝑘+1
H𝑘′

𝓁 +
𝓁∑

𝓁′=𝓁+1

𝑘[𝓁′]∑
𝑘′=0 

H𝑘′

𝓁′

(35)

≲H𝑘
𝓁 +

𝓁∑
𝓁′=𝓁+1

H0
𝓁′

(36)

≲ H𝑘
𝓁 +

𝓁−1 ∑
𝓁′=𝓁

H𝑘

𝓁′

(34)

≲ H𝑘
𝓁 +H𝑘

𝓁

(35)

≲ H𝑘
𝓁 for all (𝓁, 𝑘) ∈.

Since  is countable and linearly ordered, Lemma 2 concludes the proof of (26). □

The following comments on the computational cost of implementations of standard finite element methods underline the impor

tance of full linear convergence (26).

• Solve & Estimate. One solver step of an optimal multigrid method can be performed in (#𝓁) operations, if smoothing is done 
according to the grading of the mesh as in [49,37]. Instead, one step of a multigrid method on 𝓁 , where smoothing is done on 
all levels and all vertex patches needs (∑𝓁

𝓁′=0 #𝓁′ ) operations. The same remark is valid for the preconditioned CG method 
with optimal additive Schwarz or BPX preconditioner from [13]. One solver step can be realized via successive updates in (#𝓁 )
operations, while (∑𝓁

𝓁′=0 #𝓁′
)

is faced if the preconditioner does not respect the grading of the mesh hierarchy.

• Mark. The Döfler marking strategy (14) can be realized in linear complexity (#𝓁); see [46] for 𝐶mark = 2 and [45] for 
𝐶mark = 1.

• Rfine. Local mesh rfinement (including mesh closure) of 𝓁 by bisection can be realized in (#𝓁) operations; see, e.g., [6,46].

Since the adaptive algorithm depends on the full history of algorithmic decisions, the overall computational cost until step (𝓁, 𝑘) ∈, 
i.e., until (and including) the computation of 𝑢𝑘𝓁 , is thus proportionally bounded by

∑
(𝓁′ ,𝑘′)∈|𝓁′ ,𝑘′|≤|𝓁,𝑘|

#𝓁′ ≤ 𝚌𝚘𝚜𝚝(𝓁, 𝑘) ≤ ∑
(𝓁′ ,𝑘′)∈|𝓁′ ,𝑘′|≤|𝓁,𝑘|

𝓁′∑
𝓁′′=0

#𝓁′′ .
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Here, the lower bound corresponds to the case that all steps of Algorithm B are done at linear cost (#𝓁). The upper bound cor

responds to the case that solve & estimate, mark, and rfine are performed at linear cost (#𝓁), while a suboptimal solver leads to 
cost (∑𝓁

𝓁′′=0 #𝓁′′ ) for each mesh 𝓁 . In any case, the following corollary shows that full R-linear convergence guarantees that 
convergence rates with respect to the number of degrees of freedom dim𝓁 ≃ #𝓁 and with respect to the overall computational 
cost 𝚌𝚘𝚜𝚝(𝓁, 𝑘) coincide even for a suboptimal solver. Moreover, the corollary shows that, under R-linear convergence, the optimal 
convergence rate with respect to the number of degrees of freedom as well as with respect to the overall computational cost is 
non-zero.

Corollary 1 (Rates = complexity). For 𝑠 > 0, full R-linear convergence (26) yields

𝑀(𝑠) ∶= sup 
(𝓁,𝑘)∈

(#𝓁)𝑠H𝑘
𝓁 ≤ sup 

(𝓁,𝑘)∈
( ∑

(𝓁′ ,𝑘′)∈|𝓁′ ,𝑘′|≤|𝓁,𝑘|
𝓁′∑

𝓁′′=0
#𝓁′′

)𝑠
H𝑘
𝓁 ≤ 𝐶cost(𝑠) 𝑀(𝑠),

where the constant 𝐶cost(𝑠) > 0 depends only on 𝐶lin, 𝑞lin, and 𝑠. Moreover, there exists 𝑠0 > 0 such that 𝑀(𝑠) <∞ for all 0 < 𝑠 ≤ 𝑠0 with 
𝑠0 =∞ if 𝓁 <∞.

The previous corollary is an immediate consequence of the following elementary lemma for 𝑎|𝓁,𝑘| ∶= H𝑘
𝓁 and 𝑡|𝓁,𝑘| ∶= #𝓁 .

Lemma 3 (Rates = complexity criterion). Let (𝑎𝓁)𝓁∈ℕ0
and (𝑡𝓁)𝓁∈ℕ0

be sequences in ℝ≥0 such that

𝑎𝓁+𝑛 ≤ 𝐶1𝑞
𝑛 𝑎𝓁 and 𝑡𝓁+1 ≤ 𝐶2 𝑡𝓁 for all 𝓁, 𝑛 ∈ℕ0. (37)

Then, for all 𝑠 > 0, there holds

𝑀(𝑠) ∶= sup 
𝓁∈ℕ0

𝑡𝑠𝓁 𝑎𝓁 ≤ sup 
𝓁∈ℕ0

( 𝓁∑
𝓁′=0

𝓁′∑
𝓁′′=0

𝑡𝓁′′
)𝑠
𝑎𝓁 ≤ 𝐶cost(𝑠) 𝑀(𝑠), (38)

where the constant 𝐶cost(𝑠) > 0 depends only on 𝐶1, 𝑞, and 𝑠. Moreover, there exists 𝑠0 > 0 depending only on 𝐶2 and 𝑞 such that 𝑀(𝑠) <∞
for all 0 < 𝑠 ≤ 𝑠0.

Proof. By definition, it holds that

𝑡𝓁 ≤𝑀(𝑠)1∕𝑠 𝑎−1∕𝑠𝓁 for all 𝓁 ∈ℕ0.

This, assumption (37), and the geometric series prove that

𝓁′∑
𝓁′′=0

𝑡𝓁′′ ≤𝑀(𝑠)1∕𝑠
𝓁′∑

𝓁′′=0
𝑎
−1∕𝑠
𝓁′′

(37)≤𝑀(𝑠)1∕𝑠 𝐶1∕𝑠
1 𝑎

−1∕𝑠
𝓁′

𝓁′∑
𝓁′′=0

(𝑞1∕𝑠)𝓁′−𝓁′′ ≤𝑀(𝑠)1∕𝑠
𝐶

1∕𝑠
1

1 − 𝑞1∕𝑠
𝑎
−1∕𝑠
𝓁′

for all 𝓁′ ∈ℕ0.

A further application of (37) and the geometric series prove that

𝓁∑
𝓁′=0

𝑎
−1∕𝑠
𝓁′

(37)≤ 𝐶1∕𝑠
1 𝑎

−1∕𝑠
𝓁

𝓁∑
𝓁′=0

(𝑞1∕𝑠)𝓁−𝓁′ ≤ 𝐶
1∕𝑠
1

1 − 𝑞1∕𝑠
𝑎
−1∕𝑠
𝓁 for all 𝓁 ∈ℕ0.

The combination of the two previously displayed formulas results in

𝓁∑
𝓁′=0

𝓁′∑
𝓁′′=0

𝑡𝓁′′ ≤
( 𝐶

1∕𝑠
1

1 − 𝑞1∕𝑠

)2
𝑀(𝑠)1∕𝑠 𝑎−1∕𝑠𝓁 for all 𝓁 ∈ ℕ0.

Rearranging this estimate, we conclude the proof of (38). It remains to verify 𝑀(𝑠) <∞ for some 𝑠 > 0. Note that (37) guarantees 
that

0 ≤ 𝑡𝓁 ≤ 𝐶2 𝑡𝓁−1 ≤ 𝐶𝓁
2 𝑡0 for all 𝓁 ∈ℕ.

Moreover, R-linear convergence (37) yields that

0 ≤ 𝑎𝓁
(37)≤ 𝐶1𝑞

𝓁 𝑎0 for all 𝓁 ∈ℕ0.

Multiplying the two previously displayed formulas, we see that

𝑡𝑠𝓁 𝑎𝓁 ≤ (𝐶𝑠
2𝑞)

𝓁𝐶1 𝑡
𝑠
0 𝑎0 for all 𝓁 ∈ ℕ0.

Note that the right-hand side is uniformly bounded, provided that 𝑠 > 0 guarantees 𝐶𝑠
2𝑞 ≤ 1. This concludes the proof with 𝑠0 ∶=

log(1∕𝑞)∕ log(𝐶2). □
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With full linear convergence (26), the following theorem from [26, Theorem 8] can be applied and thus Algorithm B guarantees 
optimal convergence rates with respect to the overall computational cost in the case of sufficiently small adaptivity parameters 𝜃 and 
𝜆. To formalize the notion of achievable convergence rates 𝑠 > 0, we introduce nonlinear approximation classes from [6,46,12,9]

‖𝑢⋆‖𝔸𝑠
∶= sup 

𝑁∈ℕ0

((
𝑁 + 1

)𝑠 min opt∈𝕋𝑁
𝜂opt(𝑢⋆opt)

)
,

where 𝜂opt(𝑢⋆opt) is the estimator for the (unavailable) exact Galerkin solution 𝑢⋆opt on an optimal mesh opt ∈ 𝕋𝑁 ∶= {𝐻 ∈ 𝕋 ∶ #𝐻 −
#0 ≤𝑁}.

Theorem 3 (Optimal complexity of Algorithm   B, [26, Theorem   8]). Suppose that the estimator satifies the axioms of adaptivity (A1), (A2),

(A3+), and suppose that quasi-orthogonality (A4) holds. Suppose that the parameters 𝜃 and 𝜆 are chosen such that

0 < 𝜆 < 𝜆⋆ =min
{
1,

1 − 𝑞alg

𝑞alg

𝐶−1
stab

}
and 0 <

(𝜃1∕2 + 𝜆∕𝜆⋆)2(
1 − 𝜆∕𝜆⋆

)2 < 𝜃⋆ ∶=
(
1 +𝐶2

stab
𝐶2

drel

)−1
.

Then, Algorithm B guarantees for all 𝑠 > 0 that

𝑐opt‖𝑢⋆‖𝔸𝑠
≤ sup 

(𝓁,𝑘)∈
( ∑

(𝓁′ ,𝑘′)∈|𝓁′ ,𝑘′|≤|𝓁,𝑘|
#𝓁′

)𝑠
H𝑘
𝓁 ≤ 𝐶opt max{‖𝑢⋆‖𝔸𝑠

,H0
0}.

The constant 𝑐opt > 0 depends only on 𝐶stab, the use of NVB rfinement, and 𝑠, while 𝐶opt > 0 depends only on 𝐶stab, 𝑞red, 𝐶drel, 𝐶lin, 𝑞lin, 
#0, 𝜆, 𝑞alg, 𝜃, 𝑠, and the use of NVB rfinement. □

Remark 6. Considering the nonsymmetric model problem (9), a natural candidate for the solver is the generalized minimal residual 
method (GMRES) with optimal preconditioner for the symmetric part. Another alternative would be to consider an optimal precondi

tioner for the symmetric part and apply a conjugate gradient method to the normal equations (CGNR). However, for both approaches, 
a posteriori error estimation and contraction in the PDE-related energy norm are still open. Instead, [7] follows the constructive proof 
of the Lax–Milgram lemma to derive a contractive solver. Its convergence analysis, as given in [7], is improved in the following 
Section 5.

5. AFEM with nested contractive solvers

While contractive solvers for SPD systems are well-understood in the literature, the recent work [7] presents contractive solvers for 
the nonsymmetric variational formulation (11) that essentially fit into the framework of Section 4 and allow for the numerical analysis 
of AFEM with optimal complexity. To this end, the proof of the Lax–Milgram lemma as proposed by [50] is exploited algorithmically 
(while the original proof in [41] relies on the Hahn–Banach separation theorem): For 𝛿 > 0, we consider the Zarantonello mapping 
Φ𝐻 (𝛿; ⋅) ∶ 𝐻 →𝐻 dfined by

𝑎(Φ𝐻 (𝛿;𝑢𝐻 ), 𝑣𝐻 ) = 𝑎(𝑢𝐻 , 𝑣𝐻 ) + 𝛿
[
𝐹 (𝑣𝐻 ) − 𝑏(𝑢𝐻 , 𝑣𝐻 )

]
for all 𝑢𝐻 , 𝑣𝐻 ∈ 𝐻. (39)

Since 𝑎(⋅, ⋅) is a scalar product, Φ𝐻 (𝛿;𝑢𝐻 ) ∈ 𝐻 is well-defined. Moreover, for any 0 < 𝛿 < 2𝛼∕𝐿2 and 0 < 𝑞⋆sym ∶= [1 − 𝛿(2𝛼 −
𝛿𝐿2)]1∕2 < 1, this mapping is contractive, i.e.,

| | |𝑢⋆
𝐻
−Φ𝐻 (𝛿;𝑢𝐻 )| | | ≤ 𝑞⋆sym | | |𝑢⋆

𝐻
− 𝑢𝐻 | | | for all 𝑢𝐻 ∈ 𝐻 ; (40)

see also [34,35]. Note that (39) corresponds to a linear SPD system. For this, we employ a uniformly contractive algebraic solver 
with iteration function Ψ𝐻 (𝑢♯

𝐻
; ⋅) ∶ 𝐻 →𝐻 to approximate the solution 𝑢♯

𝐻
∶= Φ𝐻 (𝛿;𝑢𝐻 ) to the SPD system (39), i.e.,

| | |𝑢♯
𝐻
−Ψ𝐻 (𝑢♯

𝐻
;𝑤𝐻 )| | | ≤ 𝑞alg | | |𝑢♯𝐻 −𝑤𝐻 | | | for all 𝑤𝐻 ∈ 𝐻 and all 𝐻 ∈ 𝕋 , (41)

where 0 < 𝑞alg < 1 depends only on 𝑎(⋅, ⋅), but is independent of 𝐻 . Clearly, no knowledge of 𝑢♯
𝐻

is needed to compute Ψ𝐻 (𝑢♯
𝐻
;𝑤𝐻 )

but only that of the corresponding right-hand side 𝑎(𝑢♯
𝐻
, ⋅) ∶ 𝐻 →ℝ; see, e.g., [13,49,37].

Algorithm C (AFEM with nested contractive solvers). Given an initial mesh 0, polynomial degree 𝑝 > 0, the Zarantonello parameter 
𝛿 > 0, adaptivity parameters 0 < 𝜃 ≤ 1 and 𝐶mark ≥ 1, solver-stopping parameters 𝜆sym, 𝜆alg > 0, and an initial guess 𝑢0,00 ∶= 𝑢

0,𝑗
0 ∈ 0, 

iterate the following steps (i)--(iv) for all 𝓁 = 0,1,2,3,… :

(i) Solve & estimate: For all 𝑘 = 1,2,3,… , repeat the following steps (a)--(c) until

| | |𝑢𝑘,𝑗𝓁 − 𝑢
𝑘−1,𝑗
𝓁 | | | ≤ 𝜆sym 𝜂𝓁(𝑢

𝑘,𝑗

𝓁 ) (42)

(a) Dfine 𝑢𝑘,0𝓁 ∶= 𝑢
𝑘−1,𝑗
𝓁 and, only as a theoretical quantity, 𝑢𝑘,⋆𝓁 ∶= Φ𝓁(𝛿;𝑢

𝑘−1,𝑗
𝓁 ).
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(b) Inner solver loop: For all 𝑗 = 1,2,3,… , repeat the steps (I)--(II) until

| | |𝑢𝑘,𝑗𝓁 − 𝑢
𝑘,𝑗−1
𝓁 | | | ≤ 𝜆alg

[
𝜆sym𝜂𝓁(𝑢

𝑘,𝑗

𝓁 ) + | | |𝑢𝑘,𝑗𝓁 − 𝑢
𝑘−1,𝑗
𝓁 | | |]. (43)

(I) Compute one step of the contractive SPD solver 𝑢𝑘,𝑗𝓁 ∶= Ψ𝓁(𝑢
𝑘,⋆

𝓁 ;𝑢𝑘,𝑗−1𝓁 ).
(II) Compute the rfinement indicators 𝜂𝓁(𝑇 , 𝑢

𝑘,𝑗

𝓁 ) for all 𝑇 ∈ 𝓁 .

(c) Upon termination of the inner solver loop, dfine the index 𝑗[𝓁, 𝑘] ∶= 𝑗 ∈ ℕ.

(ii) Upon termination of the outer solver loop, dfine the index 𝑘[𝓁] ∶= 𝑘 ∈ℕ.

(iii) Mark: Determine a set 𝓁 ∈𝕄𝓁[𝜃, 𝑢
𝑘,𝑗

𝓁 ] satisfying (14) with 𝑢⋆𝓁 replaced by 𝑢
𝑘,𝑗

𝓁 .

(iv) Rfine: Generate 𝓁+1 ∶= 𝚛𝚎𝚏𝚒𝚗𝚎(𝓁 ,𝓁) and dfine 𝑢0,0𝓁+1 ∶= 𝑢
0,𝑗
𝓁+1 ∶= 𝑢

𝑘,𝑗

𝓁 .

Extending the index notation from Section 4, we dfine the triple index set

 ∶= {(𝓁, 𝑘, 𝑗) ∈ℕ3
0 ∶ 𝑢𝑘,𝑗𝓁 is used in Algorithm C}

together with the lexicographic ordering

(𝓁′, 𝑘′, 𝑗′) ≤ (𝓁, 𝑘, 𝑗) ∶⟺ 𝑢
𝑘′ ,𝑗′

𝓁′
is defined not later than 𝑢𝑘,𝑗𝓁 in Algorithm C

and the total step counter

|𝓁, 𝑘, 𝑗| ∶= #{(𝓁′, 𝑘′, 𝑗′) ∈ ∶ (𝓁′, 𝑘′, 𝑗′) ≤ (𝓁, 𝑘, 𝑗)} ∈ ℕ0 for (𝓁, 𝑘, 𝑗) ∈. (44)

Moreover, we dfine the stopping indices

𝓁 ∶= sup{𝓁 ∈ ℕ0 ∶ (𝓁,0,0) ∈} ∈ℕ0 ∪ {∞}, (45a)

𝑘[𝓁] ∶= sup{𝑘 ∈ ℕ0 ∶ (𝓁, 𝑘,0) ∈} ∈ℕ ∪ {∞}, whenever (𝓁,0,0) ∈, (45b)

𝑗[𝓁, 𝑘] ∶= sup{𝑗 ∈ℕ0 ∶ (𝓁, 𝑘, 𝑗) ∈} ∈ℕ ∪ {∞}, whenever (𝓁, 𝑘,0) ∈. (45c)

First, these definitions are consistent with those of Algorithm C(b) and Algorithm C(ii). Second, there holds indeed 𝑗[𝓁, 𝑘] <∞ for 
all (𝓁, 𝑘,0) ∈; see [7, Lemma 3.2]. Third, 𝓁 <∞ yields 𝑘[𝓁] =∞ and 𝜂𝓁(𝑢⋆𝓁 ) = 0 with 𝑢⋆𝓁 = 𝑢⋆; see [7, Lemma 5.2].

The following theorem improves [7, Theorem 4.1] in the following sense. First, we prove R-linear convergence for all 𝓁 ≥ 𝓁0 = 0, 
while 𝓁0 ∈ℕ is unknown in practice and depends on 𝑢⋆ and the non-accessible sequence (𝑢⋆𝓁 )𝓁∈ℕ0

in [7]. Second, [7] requires severe 
restrictions on 𝜆alg beyond (46) below. We note that (46) is indeed satified, if the algebraic system is solved exactly, i.e., 𝜆alg = 0, 
so that Theorem 4 is a consistent generalization of Theorem 2.

Theorem 4 (Full R-linear convergence of Algorithm   C). Let 0 < 𝜃 ≤ 1, 𝐶mark ≥ 1, 𝜆sym, 𝜆alg > 0, and 𝑢0,00 ∈ 0. With 𝑞𝜃 ∶= [1 − (1 −
𝑞2

red
)𝜃]1∕2, suppose that

0 <
𝑞⋆sym + 2 𝑞alg

1−𝑞alg
𝜆alg

1 −
2 𝑞alg

1−𝑞alg
𝜆alg

=∶ 𝑞sym < 1 and 𝜆alg𝜆sym <
(1 − 𝑞alg)(1 − 𝑞⋆sym)(1 − 𝑞𝜃)

8 𝑞alg𝐶stab

. (46)

Then, Algorithm C guarantees R-linear convergence of the quasi-error

H𝑘,𝑗

𝓁 ∶= | | |𝑢⋆𝓁 − 𝑢
𝑘,𝑗

𝓁 | | |+ | | |𝑢𝑘,⋆𝓁 − 𝑢
𝑘,𝑗

𝓁 | | |+ 𝜂𝓁(𝑢
𝑘,𝑗

𝓁 ), (47)

i.e., there exist constants 0< 𝑞lin < 1 and 𝐶lin > 0 such that

H𝑘,𝑗

𝓁 ≤ 𝐶lin𝑞
|𝓁,𝑘,𝑗|−|𝓁′,𝑘′,𝑗′|
lin

H𝑘′ ,𝑗′

𝓁′
for all (𝓁′, 𝑘′, 𝑗′), (𝓁, 𝑘, 𝑗) ∈ with |𝓁′, 𝑘′, 𝑗′| ≤ |𝓁, 𝑘, 𝑗|. (48)

As proven for Corollary 1 in Section 4, an immediate consequence of full linear convergence (and the geometric series) is that 
convergence rates with respect to the number of degrees of freedom and with respect to the overall computational cost coincide.

Corollary 2 (Rates = complexity). For 𝑠 > 0, full R-linear convergence (48) yields

𝑀(𝑠) ∶= sup 
(𝓁,𝑘,𝑗)∈

(#𝓁)𝑠H𝑘,𝑗

𝓁 ≤ sup 
(𝓁,𝑘,𝑗)∈

( ∑
(𝓁′ ,𝑘′ ,𝑗′)∈|𝓁′ ,𝑘′ ,𝑗′|≤|𝓁,𝑘,𝑗|

∑
(𝓁′′ ,𝑘′′ ,𝑗′′)∈|𝓁′′,𝑘′′ ,𝑗′′|≤|𝓁′ ,𝑘′ ,𝑗′|

#𝓁′′
)𝑠
H𝑘,𝑗

𝓁 ≤ 𝐶cost(𝑠) 𝑀(𝑠),

where the constant 𝐶cost(𝑠) > 0 depends only on 𝐶lin, 𝑞lin, and 𝑠. Moreover, there exists 𝑠0 > 0 such that 𝑀(𝑠)<∞ for all 0 < 𝑠 ≤ 𝑠0. □
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The proof of Theorem 4 requires the following lemma (which is essentially taken from [7]). It deduces the contraction of the 
inexact Zarantonello iteration with computed iterates 𝑢

𝑘,𝑗

𝓁 ≈ 𝑢𝑘,⋆𝓁 from the exact Zarantonello iteration. For the inexact iteration, 

the linear SPD system (39) is solved with the contractive algebraic solver (41), i.e., 𝑢𝑘,⋆𝓁 ∶= Φ𝓁(𝛿;𝑢
𝑘−1,𝑗
𝓁 ) and 𝑢𝑘,𝑗𝓁 ∶= Ψ𝓁(𝑢

𝑘,⋆

𝓁 ;𝑢𝑘,𝑗−1𝓁 )
guarantee

| | |𝑢⋆𝓁 − 𝑢𝑘,⋆𝓁 | | | ≤ 𝑞⋆sym | | |𝑢⋆𝓁 − 𝑢
𝑘−1,𝑗
𝓁 | | | for all (𝓁, 𝑘, 𝑗) ∈ with 𝑘 ≥ 1. (49)

We emphasize that contraction is only guaranteed for 0 < 𝑘 < 𝑘[𝓁] in (50) below, while the final iteration 𝑘 = 𝑘[𝓁] leads to a perturbed 
contraction (51) thus requiring additional treatment in the later analysis. The proof of Lemma 4 is given in Appendix A.

Lemma 4 (Contraction of inexact Zarantonello iteration). Under the assumptions of Theorem 4, the inexact Zarantonello iteration used in 
Algorithm C satifies

| | |𝑢⋆𝓁 − 𝑢
𝑘,𝑗

𝓁 | | | ≤ 𝑞sym | | |𝑢⋆𝓁 − 𝑢
𝑘−1,𝑗
𝓁 | | | for all (𝓁, 𝑘, 𝑗) ∈ with 1 ≤ 𝑘 < 𝑘[𝓁] (50)

as well as

| | |𝑢⋆𝓁 − 𝑢
𝑘,𝑗

𝓁 | | | ≤ 𝑞⋆sym | | |𝑢⋆𝓁 − 𝑢
𝑘−1,𝑗
𝓁 | | |+ 2 𝑞alg

1 − 𝑞alg

𝜆alg𝜆sym 𝜂𝓁(𝑢
𝑘,𝑗

𝓁 ) for all (𝓁, 𝑘, 𝑗) ∈. (51)

Proof of Theorem 4. The building blocks of the proof are the following: First, we show that a suitably weighted quasi-error involving 
the final iterates of the inexact Zarantonello iteration is tail-summable in the mesh-level index 𝓁. Second, we show that the quasi

errors are tail-summable in the Zarantonello index 𝑘 and, third, in the algebraic-solver index 𝑗 and that they are stable in the nested 
iteration. Finally, combining these ideas leads to tail summability with respect to the total step counter. The proof is split into six 
steps. The first four steps follow the proof of Theorem 2 using

H𝑘
𝓁 ∶= | | |𝑢⋆𝓁 − 𝑢

𝑘,𝑗

𝓁 | | |+ 𝜂𝓁(𝑢
𝑘,𝑗

𝓁 ) for all (𝓁, 𝑘, 𝑗) ∈. (52)

By contraction of the algebraic solver (41) as well as the stopping criteria for the algebraic solver (43) and for the symmetrization 
(42), it holds that

| | |𝑢𝑘,⋆𝓁 − 𝑢
𝑘,𝑗

𝓁 | | | (41)

≲ | | |𝑢𝑘,𝑗𝓁 − 𝑢
𝑘,𝑗−1
𝓁 | | | (43)

≲ 𝜂𝓁(𝑢
𝑘,𝑗

𝓁 ) + | | |𝑢𝑘,𝑗𝓁 − 𝑢
𝑘−1,𝑗
𝓁 | | | (42)

≲ 𝜂𝓁(𝑢
𝑘,𝑗

𝓁 ) ≤H𝑘

𝓁 .

In particular, this proves equivalence

H𝑘

𝓁 ≤H𝑘

𝓁 + | | |𝑢𝑘,⋆𝓁 − 𝑢
𝑘,𝑗

𝓁 | | | =H
𝑘,𝑗

𝓁 ≲H𝑘

𝓁 for all (𝓁, 𝑘, 𝑗) ∈. (53)

Step 1 (auxiliary estimates & estimator reduction). For (𝓁, 𝑘, 𝑗) ∈, nested iteration 𝑢𝑘,0𝓁 = 𝑢
𝑘−1,𝑗
𝓁 and 𝑗[𝓁, 𝑘] ≥ 1 yield

| | |𝑢𝑘,⋆𝓁 − 𝑢
𝑘,𝑗

𝓁 | | | (41)≤ 𝑞
𝑗[𝓁,𝑘]
alg

| | |𝑢𝑘,⋆𝓁 − 𝑢
𝑘,0
𝓁 | | | ≤ 𝑞alg | | |𝑢𝑘,⋆𝓁 − 𝑢

𝑘−1,𝑗
𝓁 | | |. (54)

From this, we obtain that

| | |𝑢⋆𝓁 − 𝑢
𝑘,𝑗

𝓁 | | | ≤ | | |𝑢⋆𝓁 − 𝑢
𝑘,⋆

𝓁 | | |+ | | |𝑢𝑘,⋆𝓁 − 𝑢
𝑘,𝑗

𝓁 | | |(54)≤ (1 + 𝑞alg) | | |𝑢⋆𝓁 − 𝑢
𝑘,⋆

𝓁 | | |+ 𝑞alg | | |𝑢⋆𝓁 − 𝑢
𝑘−1,𝑗
𝓁 | | |

(49)≤ [
(1 + 𝑞alg)𝑞⋆sym + 𝑞alg

] | | |𝑢⋆𝓁 − 𝑢
𝑘−1,𝑗
𝓁 | | | ≤ 3 | | |𝑢⋆𝓁 − 𝑢

𝑘−1,𝑗
𝓁 | | |. (55)

For (𝓁 + 1, 𝑘, 𝑗) ∈, contraction of the inexact Zarantonello iteration (50), nested iteration 𝑢
0,𝑗
𝓁+1 = 𝑢

𝑘,𝑗

𝓁 , and 𝑘[𝓁 + 1] ≥ 1, show that

| | |𝑢⋆𝓁+1 − 𝑢
𝑘−1,𝑗
𝓁+1 | | |(50)≤ 𝑞

𝑘[𝓁+1]−1
sym | | |𝑢⋆𝓁+1 − 𝑢

0,𝑗
𝓁+1| | | ≤ | | |𝑢⋆𝓁+1 − 𝑢

𝑘,𝑗

𝓁 | | |. (56)

The combination of the previous two displayed formulas shows

| | |𝑢⋆𝓁+1 − 𝑢
𝑘,𝑗

𝓁+1| | |(55)≤ 3 | | |𝑢⋆𝓁+1 − 𝑢
𝑘−1,𝑗
𝓁+1 | | |(56)≤ 3 | | |𝑢⋆𝓁+1 − 𝑢

𝑘,𝑗

𝓁 | | |. (57)

Analogous arguments to (30) in the proof of Theorem 1 establish

𝜂𝓁+1(𝑢
𝑘,𝑗

𝓁+1)
(30)≤ 𝑞𝜃 𝜂𝓁(𝑢

𝑘,𝑗

𝓁 ) +𝐶stab | | |𝑢𝑘,𝑗𝓁+1 − 𝑢
𝑘,𝑗

𝓁 | | | (57)≤ 𝑞𝜃 𝜂𝓁(𝑢
𝑘,𝑗

𝓁 ) + 4𝐶stab | | |𝑢⋆𝓁+1 − 𝑢
𝑘,𝑗

𝓁 | | |. (58)

Step 2 (tail summability with respect to 𝓵). With 𝜆 ∶= 𝜆alg𝜆sym, we dfine

𝛾 ∶=
𝑞𝜃(1 − 𝑞⋆sym)

4 𝐶stab

, 𝐶(𝛾, 𝜆) ∶= 1 +
2 𝑞alg

1 − 𝑞alg

𝜆

𝛾
, and 𝛼 ∶= 𝜆

𝛾

(46)
< 

(1 − 𝑞alg)(1 − 𝑞𝜃)
2 𝑞alg𝑞𝜃

.
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By definition, it follows that

𝐶(𝛾, 𝜆) = 1 +
2 𝑞alg

1 − 𝑞alg

𝛼 < 1 +
1 − 𝑞𝜃
𝑞𝜃

= 1 
𝑞𝜃
.

This ensures that

𝑞𝜃 𝐶(𝛾, 𝜆) < 1 as well as 𝑞⋆sym + 4 𝐶stab𝐶(𝛾, 𝜆) 𝛾 < 𝑞⋆sym +
4 𝐶stab

𝑞𝜃
𝛾 = 1. (59)

With contraction of the inexact Zarantonello iteration (51), Step 1 proves

| | |𝑢⋆𝓁+1 − 𝑢
𝑘,𝑗

𝓁+1| | |+ 𝛾 𝜂𝓁+1(𝑢
𝑘,𝑗

𝓁+1) 
(51)≤ 𝑞⋆sym | | |𝑢⋆𝓁+1 − 𝑢

𝑘−1,𝑗
𝓁+1 | | |+𝐶(𝛾, 𝜆) 𝛾 𝜂𝓁+1(𝑢

𝑘,𝑗

𝓁+1)
(56)≤ 𝑞⋆sym | | |𝑢⋆𝓁+1 − 𝑢

𝑘,𝑗

𝓁 | | |+𝐶(𝛾, 𝜆) 𝛾 𝜂𝓁+1(𝑢
𝑘,𝑗

𝓁+1)
(58)≤ (

𝑞⋆sym + 4 𝐶stab 𝐶(𝛾, 𝜆) 𝛾
) | | |𝑢⋆𝓁+1 − 𝑢

𝑘,𝑗

𝓁 | | |+ 𝑞𝜃 𝐶(𝛾, 𝜆) 𝛾 𝜂𝓁(𝑢
𝑘,𝑗

𝓁 )

≤ 𝑞ctr

[| | |𝑢⋆𝓁+1 − 𝑢
𝑘,𝑗

𝓁 | | |+ 𝛾 𝜂𝓁(𝑢
𝑘,𝑗

𝓁 )
]

for all (𝓁 + 1, 𝑘, 𝑗) ∈,

(60)

where (59) ensures the bound

0 < 𝑞ctr ∶= max
{
𝑞⋆sym + 4 𝐶stab 𝐶(𝛾, 𝜆) 𝛾 , 𝑞𝜃 𝐶(𝛾, 𝜆)

}
< 1.

Altogether, we obtain

𝑎𝓁+1 ∶= | | |𝑢⋆𝓁+1 − 𝑢
𝑘,𝑗

𝓁+1| | |+ 𝛾 𝜂𝓁+1(𝑢
𝑘,𝑗

𝓁+1)
(60)≤ 𝑞ctr

[| | |𝑢⋆𝓁 − 𝑢
𝑘,𝑗

𝓁 | | |+ 𝛾 𝜂𝓁(𝑢
𝑘,𝑗

𝓁 )
]
+ 𝑞ctr | | |𝑢⋆𝓁+1 − 𝑢⋆𝓁 | | |

=∶ 𝑞ctr 𝑎𝓁 + 𝑏𝓁 for all (𝓁, 𝑘, 𝑗) ∈,
which corresponds to (31) in the case of a single contractive solver (with 𝑢

𝑘,𝑗

𝓁 replacing 𝑢𝑘𝓁 in (31)). Together with (32)--(33) (with 

𝑢
𝑘,𝑗

𝓁 replacing 𝑢𝑘𝓁), the assumptions (17) of Lemma 1 are satified. Therefore, Lemma 1 proves tail summability

𝓁−1 ∑
𝓁′=𝓁+1

H𝑘

𝓁′
(52)
≃ 

𝓁−1 ∑
𝓁′=𝓁+1

[| | |𝑢⋆𝓁′ − 𝑢
𝑘,𝑗

𝓁′
| | |+ 𝛾 𝜂𝓁′ (𝑢

𝑘,𝑗

𝓁′
)
]
≲ | | |𝑢⋆𝓁 − 𝑢

𝑘,𝑗

𝓁 | | |+ 𝛾 𝜂𝓁(𝑢
𝑘,𝑗

𝓁 )
(52)
≃ H𝑘

𝓁 for all (𝓁, 𝑘, 𝑗) ∈.
Step 3 (auxiliary estimates). First, we employ (55) to deduce

H𝑘

𝓁

(A1)

≲ | | |𝑢⋆𝓁 − 𝑢
𝑘,𝑗

𝓁 | | |+ | | |𝑢𝑘,𝑗𝓁 − 𝑢
𝑘−1,𝑗
𝓁 | | |+ 𝜂𝓁(𝑢

𝑘−1,𝑗
𝓁 )

(52)≤ H𝑘−1
𝓁 + 2 | | |𝑢𝑘,𝑗𝓁 − 𝑢

𝑘−1,𝑗
𝓁 | | |

(55)≤ H𝑘−1
𝓁 + 8 | | |𝑢⋆𝓁 − 𝑢

𝑘−1,𝑗
𝓁 | | | ≤ 9 H𝑘−1

𝓁 for all (𝓁, 𝑘, 𝑗) ∈.
(61)

Second, for 0 ≤ 𝑘 < 𝑘′ < 𝑘[𝓁], the failure of the stopping criterion for the inexact Zarantonello symmetrization (42) and contrac

tion (50) prove that

H𝑘′

𝓁

(42)

≲ | | |𝑢⋆𝓁 − 𝑢
𝑘′ ,𝑗

𝓁 | | |+ | | |𝑢𝑘′ ,𝑗𝓁 − 𝑢
𝑘′−1,𝑗
𝓁 | | | (50)

≲ | | |𝑢⋆𝓁 − 𝑢
𝑘′−1,𝑗
𝓁 | | | (50)

≲ 𝑞𝑘′−𝑘sym | | |𝑢⋆𝓁 − 𝑢
𝑘,𝑗

𝓁 | | |. (62)

Moreover, for 𝑘 < 𝑘′ = 𝑘[𝓁], we combine (61) with (62) to get

H𝑘

𝓁

(61)

≲ H𝑘[𝓁]−1
𝓁

(62)

≲ 𝑞(𝑘[𝓁]−1)−𝑘sym | | |𝑢⋆𝓁 − 𝑢
𝑘,𝑗

𝓁 | | | ≃ 𝑞
𝑘[𝓁]−𝑘
sym | | |𝑢⋆𝓁 − 𝑢

𝑘,𝑗

𝓁 | | |. (63)

The combination of (62)--(63) proves that

H𝑘′

𝓁 ≲ 𝑞𝑘
′−𝑘

sym | | |𝑢⋆𝓁 − 𝑢
𝑘,𝑗

𝓁 | | | ≲ 𝑞𝑘
′−𝑘

sym H𝑘
𝓁 for all (𝓁,0,0) ∈ with 0 ≤ 𝑘 ≤ 𝑘′ ≤ 𝑘[𝓁], (64)

where the hidden constant depends only on 𝐶stab, 𝜆sym, and 𝑞sym. Third, we recall

| | |𝑢⋆𝓁 − 𝑢⋆𝓁−1| | | (19)

≲ 𝜂𝓁−1(𝑢⋆𝓁−1)
(A1)

≲ 𝜂𝓁−1(𝑢
𝑘,𝑗

𝓁−1) + | | |𝑢⋆𝓁−1 − 𝑢
𝑘,𝑗

𝓁−1| | | =H𝑘

𝓁−1.

Together with nested iteration 𝑢
𝑘,𝑗

𝓁−1 = 𝑢
0,𝑗
𝓁 , this yields that

H0
𝓁 = | | |𝑢⋆𝓁 − 𝑢

𝑘,𝑗

𝓁−1| | |+ 𝜂𝓁(𝑢
𝑘,𝑗

𝓁−1) ≤ | | |𝑢⋆𝓁 − 𝑢⋆𝓁−1| | |+H𝑘

𝓁−1 ≲H𝑘

𝓁−1 for all (𝓁,0,0) ∈. (65)
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Step 4 (tail summability with respect to 𝓵 and 𝒌). The auxiliary estimates from Step 3 and the geometric series prove that

∑
(𝓁′ ,𝑘′ ,𝑗)∈|𝓁′ ,𝑘′ ,𝑗|>|𝓁,𝑘,𝑗|

H𝑘′

𝓁′ =
𝑘[𝓁] ∑

𝑘′=𝑘+1
H𝑘′

𝓁 +
𝓁∑

𝓁′=𝓁+1

𝑘[𝓁] ∑
𝑘′=0

H𝑘′

𝓁′

(64)

≲ H𝑘
𝓁 +

𝓁∑
𝓁′=𝓁+1

H0
𝓁′

(65)

≲ H𝑘
𝓁 +

𝓁−1 ∑
𝓁′=𝓁

H𝑘

𝓁′
≲H𝑘

𝓁 +H𝑘

𝓁

(64)

≲H𝑘
𝓁 for all (𝓁, 𝑘, 𝑗) ∈.

(66)

Step 5 (auxiliary estimates). Recall H𝑘

𝓁 ≤H
𝑘,𝑗

𝓁 from (53). For 𝑗 = 0 and 𝑘 = 0, the definition 𝑢0,0𝓁 ∶= 𝑢
0,𝑗
𝓁 ∶= 𝑢0,⋆𝓁 leads to H0,0

𝓁 =H0
𝓁 . 

For 𝑘 ≥ 1, nested iteration 𝑢𝑘,0𝓁 = 𝑢
𝑘−1,𝑗
𝓁 and contraction of the Zarantonello iteration (49) imply

| | |𝑢𝑘,⋆𝓁 − 𝑢𝑘,0𝓁 | | | ≤ | | |𝑢⋆𝓁 − 𝑢𝑘,⋆𝓁 | | |+ | | |𝑢⋆𝓁 − 𝑢
𝑘−1,𝑗
𝓁 | | | (49)≤ (𝑞⋆sym + 1) | | |𝑢⋆𝓁 − 𝑢

𝑘−1,𝑗
𝓁 | | | ≤ 2 H𝑘−1

𝓁 .

Therefore, we derive that

H𝑘,0
𝓁 ≤ 3 H(𝑘−1)+

𝓁 for all (𝓁, 𝑘,0) ∈, where (𝑘− 1)+ ∶= max{0, 𝑘− 1}. (67)

For any 0 ≤ 𝑗 < 𝑗′ < 𝑗[𝓁, 𝑘], the contraction of the Zarantonello iteration (49), the contraction of the algebraic solver (41), and the 
failure of the stopping criterion for the algebraic solver (43) prove

H𝑘,𝑗′

𝓁 ≤ | | |𝑢⋆𝓁 − 𝑢𝑘,⋆𝓁 | | |+ 2 | | |𝑢𝑘,⋆𝓁 − 𝑢
𝑘,𝑗′

𝓁 | | |+ 𝜂𝓁(𝑢
𝑘,𝑗′

𝓁 )
(49)

≲ | | |𝑢𝑘,𝑗′𝓁 − 𝑢
𝑘−1,𝑗
𝓁 | | |+ | | |𝑢𝑘,⋆𝓁 − 𝑢

𝑘,𝑗′

𝓁 | | |+ 𝜂𝓁(𝑢
𝑘,𝑗′

𝓁 )
(41)

≲ | | |𝑢𝑘,𝑗′𝓁 − 𝑢
𝑘−1,𝑗
𝓁 | | |+ | | |𝑢𝑘,𝑗′𝓁 − 𝑢

𝑘,𝑗′−1
𝓁 | | |+ 𝜂𝓁(𝑢

𝑘,𝑗′

𝓁 )
(43)

≲ | | |𝑢𝑘,𝑗′𝓁 − 𝑢
𝑘,𝑗′−1
𝓁 | | | (41)

≲ | | |𝑢𝑘,⋆𝓁 − 𝑢
𝑘,𝑗′−1
𝓁 | | | (41)

≲ 𝑞
𝑗′−𝑗
alg

| | |𝑢𝑘,⋆𝓁 − 𝑢
𝑘,𝑗

𝓁 | | |
≲ 𝑞

𝑗′−𝑗
alg

H𝑘,𝑗

𝓁 .

For 𝑗′ = 𝑗[𝓁, 𝑘], it follows that

H
𝑘,𝑗

𝓁

(A1)

≲ H
𝑘,𝑗−1
𝓁 + | | |𝑢𝑘,𝑗𝓁 − 𝑢

𝑘,𝑗−1
𝓁 | | |(41)

≲H
𝑘,𝑗−1
𝓁 + | | |𝑢𝑘,⋆𝓁 − 𝑢

𝑘,𝑗−1
𝓁 | | |(47)≤ 2 H

𝑘,𝑗−1
𝓁 ≲ 𝑞

𝑗[𝓁,𝑘]−𝑗
alg

H𝑘,𝑗

𝓁 .

The combination of the previous two displayed formulas results in

H𝑘,𝑗′

𝓁 ≲ 𝑞
𝑗′−𝑗
alg

H𝑘,𝑗

𝓁 for all (𝓁, 𝑘,0) ∈ with 0 ≤ 𝑗 ≤ 𝑗′ ≤ 𝑗[𝓁, 𝑘], (68)

where the hidden constant depends only on 𝑞⋆sym, 𝜆sym, 𝑞alg, 𝜆alg, and 𝐶stab.

Step 6 (tail summability with respect to 𝓵, 𝒌, and 𝒋). Finally, we observe that

∑
(𝓁′ ,𝑘′ ,𝑗′)∈|𝓁′ ,𝑘′ ,𝑗′|>|𝓁,𝑘,𝑗|

H𝑘′ ,𝑗′

𝓁′
=

𝑗[𝓁,𝑘] ∑
𝑗′=𝑗+1

H𝑘,𝑗′

𝓁 +
𝑘[𝓁] ∑

𝑘′=𝑘+1

𝑗[𝓁,𝑘′]∑
𝑗′=0 

H𝑘′ ,𝑗′

𝓁 +
𝓁∑

𝓁′=𝓁+1

𝑘[𝓁′]∑
𝑘′=0 

𝑗[𝓁′ ,𝑘′]∑
𝑗′=0 

H𝑘′ ,𝑗′

𝓁′

(68)

≲ H𝑘,𝑗

𝓁 +
𝑘[𝓁] ∑

𝑘′=𝑘+1
H𝑘′ ,0
𝓁 +

𝓁∑
𝓁′=𝓁+1

𝑘[𝓁] ∑
𝑘′=0

H𝑘′ ,0
𝓁′

(67)

≲ H𝑘,𝑗

𝓁 +
∑

(𝓁′ ,𝑘′ ,𝑗)∈|𝓁′,𝑘′ ,𝑗|>|𝓁,𝑘,𝑗|
H𝑘′

𝓁′

(66)

≲ H𝑘,𝑗

𝓁 +H𝑘
𝓁

(53)

≲ H𝑘,𝑗

𝓁 +H
𝑘,𝑗

𝓁

(68)

≲ H𝑘,𝑗

𝓁 for all (𝓁, 𝑘, 𝑗) ∈.

Since  is countable and linearly ordered, Lemma 2 concludes the proof of (48). □

The final theorem, following from [8, Theorem 4.3], states that for sufficiently small adaptivity parameters 𝜃, 𝜆sym, and 𝜆alg, 
Algorithm C achieves optimal complexity.

Theorem 5 (Optimal complexity of Algorithm   C, [8, Theorem   4.3]). Suppose that the estimator satifies the axioms of adaptivity (A1)--(A3+) 
and suppose that quasi-orthogonality (A4) holds. Assume full R-linear convergence from Theorem 4. Dfine the constants 𝜃⋆, 𝜆⋆sym by

𝜃⋆ ∶=
(
1 +𝐶2

stab
𝐶2

drel

)−1
, and 𝜆⋆sym ∶= min{1,𝐶−1

stab
𝐶−1

alg
} with 𝐶alg ∶=

1 
1 − 𝑞⋆sym

( 2 𝑞alg

1 − 𝑞alg

𝜆⋆
alg

+ 𝑞⋆sym

)
.

Suppose that the constants 𝜃, 𝜆sym, and 𝜆alg are sufficiently small in the sense that, additionally to (46), there holds

0 < 𝜆sym < 𝜆⋆sym and 0 <

(
𝜃1∕2 + 𝜆sym∕𝜆⋆sym

)2(
1 − 𝜆sym∕𝜆⋆sym

)2 < 𝜃⋆ < 1.
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Then, Algorithm C guarantees for all 𝑠 > 0

𝑐opt‖𝑢⋆‖𝔸𝑠
≤ sup 

(𝓁,𝑘,𝑗)∈
( ∑

(𝓁′ ,𝑘′ ,𝑗′)∈|𝓁′,𝑘′ ,𝑗′|≤|𝓁,𝑘,𝑗|
#𝓁′

)𝑠
H𝑘,𝑗

𝓁 ≤ 𝐶opt max{‖𝑢⋆‖𝔸𝑠
,H0,0

0 }.

The constant 𝑐opt > 0 depends only on 𝐶stab, the use of NVB rfinement, and 𝑠, while 𝐶opt > 0 depends only on 𝐶stab, 𝑞red, 𝐶drel, 𝐶lin, 𝑞lin, 
#0, 𝜆sym, 𝑞⋆sym, 𝜆alg, 𝑞alg, 𝜃, 𝑠, and the use of NVB rfinement. □

6. Application to strongly monotone nonlinear PDEs

In the previous sections, the particular focus was on general second-order linear elliptic PDEs (9). However, the results also apply 
to nonlinear PDEs with strongly monotone and Lipschitz-continuous nonlinearity as considered, e.g., in [28,29,16,27,34,35,26,30, 
33,36,31,42] to mention only some recent works.

Given a nonlinearity 𝑨∶ ℝ𝑑 →ℝ𝑑 , we consider the nonlinear elliptic PDE

−div
(
𝑨(∇𝑢⋆)

)
= 𝑓 − div𝒇 in Ω subject to 𝑢⋆ = 0 on 𝜕Ω. (69)

We dfine the nonlinear operator  ∶ 𝐻1
0 (Ω)→𝐻−1(Ω) ∶=𝐻1

0 (Ω)
∗ via 𝑢 ∶= ⟨𝑨(∇𝑢),∇(⋅)⟩𝐿2(Ω), where we suppose that the 𝐿2(Ω)

scalar product on the right-hand side is well-defined. Then, the weak formulation of (69) reads

⟨𝑢⋆, 𝑣⟩ = 𝐹 (𝑣) ∶= ⟨𝑓, 𝑣⟩𝐿2(Ω) + ⟨𝒇 ,∇𝑣⟩𝐿2(Ω) for all 𝑣 ∈𝐻1
0 (Ω), (70)

where ⟨⋅, ⋅⟩ on the left-hand side denotes the duality brackets on 𝐻−1(Ω) ×𝐻1
0 (Ω).

Let 𝑎(⋅, ⋅) be an equivalent scalar product on 𝐻1
0 (Ω) with induced norm | | | ⋅ | | |. Suppose that  is strongly monotone and Lipschitz 

continuous, i.e., there exist 0 < 𝛼 ≤𝐿 such that, for all 𝑢, 𝑣,𝑤 ∈𝐻1
0 (Ω),

𝛼 | | |𝑢− 𝑣| | |2 ≤ ⟨𝑢−𝑣, 𝑢− 𝑣⟩ and ⟨𝑢−𝑣,𝑤⟩ ≤𝐿 | | |𝑢− 𝑣| | | | | |𝑤| | |. (71)

Under these assumptions, the Zarantonello theorem from [50] (or main theorem on strongly monotone operators [51, Section 25.4]) 
yields existence and uniqueness of the solution 𝑢⋆ ∈𝐻1

0 (Ω) to (70). For 𝐻 ∈ 𝕋 and 𝐻 ⊆𝐻1
0 (Ω) from (10) with polynomial degree 

𝑝 = 1, it also applies to the discrete setting and yields existence and uniqueness of the discrete solution 𝑢⋆
𝐻

∈ 𝐻 to

⟨𝑢⋆
𝐻
,𝑣𝐻 ⟩ = 𝐹 (𝑣𝐻 ) for all 𝑣𝐻 ∈ 𝐻, (72)

which is quasi-optimal in the sense of the Céa lemma (12).

As already discussed in Section 5, the proof of the Zarantonello theorem relies on the Banach fixed-point theorem: For 0 < 𝛿 <

2𝛼∕𝐿2, dfine Φ𝐻 (𝛿; ⋅) ∶ 𝐻 →𝐻 via

𝑎(Φ𝐻 (𝛿;𝑢𝐻 ), 𝑣𝐻 ) = 𝑎(𝑢𝐻 , 𝑣𝐻 ) + 𝛿
[
𝐹 (𝑣𝐻 ) − ⟨(𝑢𝐻 ), 𝑣𝐻 ⟩] for all 𝑢𝐻 , 𝑣𝐻 ∈ 𝐻. (73)

Since 𝑎(⋅, ⋅) is a scalar product, Φ𝐻 (𝛿;𝑢𝐻 ) ∈ 𝐻 is well-defined. Moreover, for 0< 𝛿 < 2𝛼∕𝐿2 and 0< 𝑞⋆sym ∶= [1−𝛿(2𝛼−𝛿𝐿2)]1∕2 < 1, 
this mapping is a contraction, i.e.,

| | |𝑢⋆
𝐻
−Φ𝐻 (𝛿;𝑢𝐻 )| | | ≤ 𝑞⋆sym | | |𝑢⋆

𝐻
− 𝑢𝐻 | | | for all 𝑢𝐻 ∈ 𝐻 ;

see also [34,35]. Analogously to Section 5, the variational formulation (73) leads to a linear SPD system for which we employ a 
uniformly contractive solver (41). Overall, we note that for the nonlinear PDE (69), the natural AFEM loop consists of

• discretization via a conforming triangulation 𝓁 (leading to the non-computable solution 𝑢⋆𝓁 to the discrete nonlinear system (72)),

• iterative linearization (giving rise to the solution 𝑢𝑘,⋆𝓁 = Φ𝓁(𝛿;𝑢
𝑘−1,𝑗
𝓁 ) of the large-scale discrete SPD system (73) obtained by 

linearizing (72) in 𝑢
𝑘−1,𝑗
𝓁 ),

• and an algebraic solver (leading to computable approximations 𝑢𝑘,𝑗𝓁 ≈ 𝑢𝑘,⋆𝓁 ).

Thus, the natural AFEM algorithm takes the form of Algorithm C in Section 5.

So far, the only work analyzing convergence of such a full adaptive loop for the numerical solution of (69) is [30], which uses 
the Zarantonello approach (73) for linearization and a preconditioned CG method with optimal additive Schwarz preconditioner for 
solving the arising SPD systems. Importantly and contrary to the present work, the adaptivity parameters 𝜃, 𝜆sym, and 𝜆alg in [30] 
must be sufficiently small to guarantee full linear convergence and optimal complexity, while even plain convergence for arbitrary 𝜃, 
𝜆sym, and 𝜆alg is left open. Instead, the present work proves full R-linear convergence at least for arbitrary 𝜃 and 𝜆sym and the milder 
constraint (46) on 𝜆alg.

To apply the analysis from Section 5, it only remains to check the validity of Proposition 1 and Proposition 2. The following result 
provides the analogue of Proposition 1 for scalar nonlinearities. Note that, first, the same assumptions are made in [30] and, second, 

Computers and Mathematics with Applications 180 (2025) 102–129 

116 



P. Bringmann, M. Feischl, A. Miraçi et al. 

only the proof of stability (A1) (going back to [29]) is restricted to scalar nonlinearities and lowest-order discretizations, i.e., 𝑝 = 1
in (10), while reduction (A2), reliability (A3), and discrete reliability (A3+) follow as for linear PDEs and thus hold for all 𝑝 ≥ 1.

Proposition 3 (See, e.g.,   [29, Section   3.2] or   [9, Section   10.1]). Suppose that 𝑨(∇𝑢) = 𝑎(|∇𝑢|2)∇𝑢, where 𝑎 ∈ 𝐶1(ℝ≥0) satifies

𝛼(𝑡− 𝑠) ≤ 𝑎(𝑡2)𝑡− 𝑎(𝑠2)𝑠 ≤ 𝐿

3 
(𝑡− 𝑠) for all 𝑡 ≥ 𝑠 ≥ 0.

Then, there holds (71) for | | |𝑣| | | ∶= ‖∇𝑣‖𝐿2(Ω) and the standard residual error estimator (13) for lowest-order elements 𝑝 = 1 (with 𝑨∇𝑣𝐻
understood as 𝑨(∇𝑣𝐻 ) and 𝒃 = 0 = 𝑐) satifies stability (A1), reduction (A2), reliability (A3), discrete reliability (A3+), and quasi

monotonicity (QM) from Proposition 1. □

Under the same assumptions as in Proposition 3, quasi-orthogonality (A4) is satified. For the convenience of the reader, we 
include a sketch of the proof, which also shows that the quasi-orthogonality holds for any 𝑝 ≥ 1 with 𝐶orth =𝐿∕𝛼 and 𝛿 = 1.

Proposition 4. Under the assumptions of Proposition 3 and for any sequence of nested finite-dimensional subspaces 𝓁 ⊆ 𝓁+1 ⊂𝐻1
0 (Ω), 

the corresponding Galerkin solutions 𝑢⋆𝓁 ∈ 𝓁 to (72) satisfy quasi-orthogonality (A4) with 𝛿 = 1 and 𝐶orth =𝐿∕𝛼, i.e.,

∞ ∑
𝓁′=𝓁

| | |𝑢⋆𝓁′+1 − 𝑢⋆𝓁′ | | |2 ≤ 𝐿

𝛼
| | |𝑢⋆ − 𝑢𝓁| | |2 for all 𝓁 ∈ℕ0.

Sketch of proof. One can prove that the energy

𝐸(𝑣) ∶= 1
2 ∫

Ω 

|∇𝑣(𝑥)|2
∫
0 

𝑎(𝑡) d𝑡 d𝑥− 𝐹 (𝑣) for all 𝑣 ∈𝐻1
0 (Ω)

is Gâteaux-differentiable with d𝐸(𝑣) =𝑣− 𝐹 . Then, elementary calculus (see, e.g., [27, Lemma 5.1] or [35, Lemma 2]) yields the 
equivalence

𝛼

2 
| | |𝑢⋆

𝐻
− 𝑣𝐻 | | |2 ≤𝐸(𝑣𝐻 ) − 𝐸(𝑢⋆

𝐻
) ≤ 𝐿

2 
| | |𝑢⋆

𝐻
− 𝑣𝐻 | | |2 for all 𝐻 ∈ 𝕋 and all 𝑣𝐻 ∈ 𝐻. (74)

In particular, we see that 𝑢⋆
𝐻

is the unique minimizer to

𝐸(𝑢⋆
𝐻
) = min 

𝑣𝐻∈𝐻 𝐸(𝑣𝐻 ), (75)

and (74)--(75) also hold for 𝑢⋆ and 𝐻1
0 (Ω) replacing 𝑢⋆

𝐻
and 𝐻 , respectively.

From this and the telescopic sum, we infer that

𝛼

2 

𝓁+𝑁∑
𝓁′=𝓁

| | |𝑢⋆𝓁′+1 − 𝑢⋆𝓁′ | | |2 (74)≤
𝓁+𝑁∑
𝓁′=𝓁

[
𝐸(𝑢⋆𝓁′ ) −𝐸(𝑢⋆𝓁′+1)

]
=𝐸(𝑢⋆𝓁 ) −𝐸(𝑢⋆𝓁+𝑁+1)

(75)≤ 𝐸(𝑢⋆𝓁 ) −𝐸(𝑢⋆)

(74)≤ 𝐿

2 
| | |𝑢⋆ − 𝑢⋆𝓁 | | |2 for all 𝓁,𝑁 ∈ℕ0.

Since the right-hand side is independent of 𝑁 , we conclude the proof for 𝑁 →∞. □

Thus, full R-linear convergence from Theorem 4 and optimal complexity from Theorem 5 apply also to the nonlinear PDE (69)

under the assumptions on the nonlinearity from Proposition 3. Unlike [30], we can guarantee full R-linear convergence (48) for 
arbitrary 𝜃, arbitrary 𝜆sym, and a weaker constraint (46) on 𝜆alg. As in [30, Theorem 5], optimal complexity follows if the adaptivity 
parameters are sufficiently small.

Remark 7. The cost-optimal numerical solution of nonlinear PDEs is widely open beyond the case of strongly monotone and Lipschitz 
continuous nonlinearities considered here. We stress that this problem class even excludes the 𝑝-Laplacian, for which linear conver

gence in [19] and optimal convergence rates in [4] are known under the constraint of the exact solution of the arising nonlinear 
discrete systems. Convergent linearization strategies for the 𝑝-Laplacian are the topic of recent research, e.g., [17,3,32]. However, 
optimal complexity appears to be still out of reach. Nevertheless, the present work could outline potential strategies also in this 
respect.
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7. Numerical experiments

The following numerical experiments employ the Matlab software package MooAFEM from [38].1 The first numerical example 
illustrates the performance of Algorithm B for a symmetric linear elliptic PDE with a strong jump in the diffusion coefficient and 
compares Algorithm B to the Algorithm A with exact solution. The second numerical example demonstrates the efficiency of Algo

rithm C for a nonsymmetric general second-order linear elliptic PDE with a moderate convection. The numerical behavior of the 
adaptive algorithm proposed in Section 6 for a strongly monotone and Lipschitz continuous nonlinear PDE concludes the numerical 
experiments. All numerical experiments showcase the performance of the adaptive algorithms for different selections of the involved 
adaptivity parameters.

7.1. AFEM for a symmetric linear elliptic PDE with strong jump in the diffusion coefficient

Following [40], we consider the square domain Ω ∶= (−1,1)2 and the jumping diffusion coefficient 𝑨(𝑥) ∶= 𝑎(𝑥) 𝐼2×2 ∈𝐿∞(Ω) for 
𝑎(𝑥) ∶= 161.4476387975881 if 𝑥1𝑥2 > 0 and 𝑎(𝑥) ∶= 1 if 𝑥1𝑥2 < 0. In order to measure the performance of Algorithm B, we consider 
the interface problem

−div
(
𝑨∇𝑢⋆

)
= 0 in Ω. (76)

The exact weak solution in polar coordinates reads 𝑢⋆(𝑟,𝜙) ∶= 𝑟𝛼𝜇(𝜙) where the constants are set to be 𝛼 = 0.1, 𝛽 = 
−14.92256510455152, 𝛿 = 𝜋∕4, and 𝜇(𝜙) is dfined as

𝜇(𝜙) ∶=

⎧⎪⎪⎨⎪⎪⎩
cos((𝜋∕2 − 𝛽)𝛼) cos((𝜙− 𝜋∕2 + 𝛿)𝛼) if 0 ≤ 𝜙 < 𝜋∕2,
cos(𝛿𝛼) cos((𝜙− 𝜋 + 𝛽)𝛼) if 𝜋∕2 ≤ 𝜙 < 𝜋,

cos(𝛽𝛼) cos((𝜙− 𝜋 − 𝛿)𝛼) if 𝜋 ≤ 𝜙 < 3𝜋∕2,
cos((𝜋∕2 − 𝛿)𝛼) cos((𝜙− 3𝜋∕2 − 𝛽)𝛼) if 3𝜋∕2 ≤ 𝜙 < 2𝜋.

The exact solution determines the inhomogeneous Dirichlet boundary conditions 𝑢D(𝑥) ∶= 𝑢⋆(𝑥) for 𝑥 ∈ 𝜕Ω. The parameter 𝛼 gives 
the regularity of the solution 𝑢 ∈𝐻1+𝛼−𝜀(Ω) for all 𝜀 > 0, having a strong point singularity at the origin where the interfaces intersect. 
Fig. 1 illustrates the initial triangulation 0 , the adaptively generated mesh 15 with 518 triangles, and the exact solution 𝑢⋆, and 
the computed solutions 𝑢𝑘15. We see that the adaptive algorithm captures the singularity induced by the strong jump in the diffusion 
coefficient and rfines around the origin. Let Π𝑝−1

𝐸
be the 𝐿2(𝐸)-orthogonal projection onto the space of polynomials of degree at 

most 𝑝− 1 on the boundary face 𝐸 ⊂ 𝜕Ω and 𝜕𝑢D∕𝜕𝑠 denote the arc-length derivative of 𝑢D. We approximate the boundary data 𝑢D

by nodal interpolation from [44,24], leading to an additional boundary-data oscillation term (for sufficiently smooth 𝑢D, see, e.g., 
[2]), in the error estimator

𝜂𝐻 (𝑇 , 𝑣𝐻 )2 ∶= |𝑇 | ‖div(𝑨∇𝑣𝐻 )‖2
𝐿2(𝑇 ) + |𝑇 |1∕2 ‖[𝑨∇𝑣𝐻 ⋅ 𝑛]‖2

𝐿2(𝜕𝑇 ⧵𝜕Ω) +
∑

𝐸⊂𝜕𝑇∩𝜕Ω
|𝑇 |1∕2‖(1 − Π𝑝−1

𝐸
) 𝜕𝑢D∕𝜕𝑠‖𝐿2(𝐸).

Fig. 2 shows that Algorithm B leads to optimal convergence rates −𝑝∕2 with respect to the number of degrees and the overall com

putation time for arbitrary polynomial degrees 𝑝 ∈ {1,2,3,4} and a moderate marking parameter 𝜃 = 0.5 and fixed algebraic solver 
parameter 𝜆 = 0.01. Furthermore, the reduced elliptic regularity leads to convergence rates −1∕10 for uniform mesh rfinement and 
any polynomial degree 𝑝. In Fig. 3, we observe that even moderate values of the algebraic solver parameter 𝜆 lead to optimal conver

gence rates −1 for polynomial degree 𝑝 = 2 with respect to the number of degrees and the overall computation time. Fig. 4 verfies 
that Algorithm B in combination with the optimal ℎ𝑝-robust geometric multigrid solver from [37] outperforms the Matlab built-in

mldivide in terms of the cumulative computation time. Table 1 summarizes the optimal selection of the adaptivity parameters for 
the interface problem in (76) with polynomial degree 𝑝 = 2. The best performance is observed for the marking parameter 𝜃 ∈ {0.5,0.7}
and the algebraic solver parameter 𝜆 = 0.9. 

7.2. AFEM for a general second-order linear elliptic PDE

On the L-shaped domain Ω= (−1,1)2 ⧵ [0,1) × [−1,0), we consider

−Δ𝑢⋆ + 𝒃 ⋅∇𝑢⋆ + 𝑢⋆ = 1 in Ω and 𝑢⋆ = 0 on 𝜕Ω with 𝒃(𝑥) = 𝑥; (77)

see Fig. 5 for the geometry and some adaptively generated meshes.

Optimality of Algorithm C with respect to large solver-stopping parameters 𝜆sym and 𝜆alg. We choose 𝛿 = 0.5, 𝜃 = 0.3, and the poly

nomial degree 𝑝 = 2. Fig. 6 presents the convergence rates for fixed 𝜆alg = 0.7 and several symmetrization parameters 𝜆sym ∈
{0.1,0.3,0.5,0.7,0.9}. We observe that Algorithm C obtains the optimal convergence rate −1 with respect to the number of de

grees of freedom and the cumulative computation time for any selection of 𝜆sym. Moreover, the same holds true for fixed 𝜆sym = 0.7

1 The experiments accompanying this paper will be provided under https://www.tuwien.at/mg/asc/praetorius/software/mooafem.
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Fig. 1. Illustration of the initial triangulation 0 , the adaptively generated mesh 15 with 518 triangles, the exact solution 𝑢⋆ and the computed solution 𝑢𝑘15 for the 
Kellogg benchmark problem (76) with polynomial degree 𝑝= 2, marking parameter 𝜃 = 0.5, and algebraic solver parameter 𝜆= 0.01.

Fig. 2. Convergence history plot of the error estimator 𝜂𝓁(𝑢𝑘𝓁 ) with respect to the number of degrees of freedom (left) and the cumulative computation time (right) for 
the Kellogg benchmark problem (76) for different polynomial degrees 𝑝∈ {1,2,3,4} with fixed marking parameter 𝜃 = 0.5 and algebraic solver parameter 𝜆= 0.01.

and any choice of the algebraic solver parameter 𝜆alg ∈ {0.1,0.3,0.5,0.7,0.9} as depicted in Fig. 7. Table 2 illustrates the weighted 
cumulative computation time of Algorithm C and shows that a smaller marking parameter 𝜃 = 0.3 in combination with larger solver

stopping parameters 𝜆sym and 𝜆alg is favorable. Furthermore, Fig. 9 shows that Algorithm C guarantees optimal convergence rates 
−𝑝∕2 for several polynomial degrees 𝑝 with fixed 𝛿 = 0.5, marking parameter 𝜃 = 0.3, and moderate 𝜆sym = 𝜆alg = 0.7.

Optimality of Algorithm C with respect to large marking parameter 𝜃. We choose the polynomial degree 𝑝 = 2, 𝛿 = 0.5, and solver

stopping parameters 𝜆alg = 𝜆sym = 0.7. Fig. 8 shows that also for moderate marking parameters 𝜃, Algorithm C guarantees optimal 
convergence rates with respect to the number of degrees of freedom and the cumulative computation time. Moreover, we observe 
that a very small as well as a large choice of 𝜃 lead to a worse performance. 
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Fig. 3. Convergence history plot of the error estimator 𝜂𝓁(𝑢𝑘𝓁 ) for different algebraic solver parameters 𝜆∈ {0.001,0.01,0.1,0.5,1} and fixed polynomial degree 𝑝= 2
and marking parameter 𝜃 = 0.5 with respect to the number of degrees of freedom (left) and the cumulative computation time (right) for the Kellogg benchmark 
problem (76).

Fig. 4. Comparison of the cumulative computation time for the algebraic solver (Algorithm B) from [37] with the Matlab built-in mldivide (Algorithm A) over the 
cumulative number of degrees of freedom to solve the Kellogg benchmark problem (76) with polynomial degree 𝑝 ∈ {1,4}, marking parameter 𝜃 = 0.5, and algebraic 
solver parameter 𝜆= 0.01.

Fig. 5. Illustration of the initial triangulation 0 and the sequence of adaptively generated meshes 0,… ,4 for the experiment (77). 
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Table 1
Optimal selection of the parameters for the Kellogg bench

mark problem (76) with polynomial degree 𝑝 = 2. For 
the comparison, we consider the weighted cumulative time [
𝜂𝓁 (𝑢

𝑘

𝓁 ) 
∑|𝓁′ ,𝑘′ |≤|𝓁,𝑘| time(𝓁′)

]
with stopping criterion 𝜂𝓁(𝑢𝑘𝓁 ) <

10−2 𝜂0(𝑢00) for various choices of marking parameter 𝜃 and alge

braic solver parameter 𝜆. The best choice per column is marked in 
yellow, per row in blue, and for both in green. For all fixed mark

ing parameter 𝜃, the best performance is observed for 𝜆 = 0.9, 
while overall best results are achieved for 𝜃 ∈ {0.5,0.7}.

Table 2
Optimal selection of parameters with respect to the computational costs for the nonsymmetric experiment (77) with 𝑝 = 2 and 𝛿 = 0.5. For the comparison, we consider 
the weighted cumulative time [𝜂𝓁 (𝑢𝑘,𝑗𝓁 ) ∑|𝓁′ ,𝑘′ ,𝑗′ |≤|𝓁,𝑘,𝑗| time(𝓁′)

]
(values in 10−4) with stopping criterion 𝜂𝓁 (𝑢

𝑘,𝑗

𝓁 ) < 5 ⋅ 10−5 for various choices of 𝜆sym, 𝜆alg , and 𝜃. In 
each 𝜃-block, we mark in yellow the best choice per column, in blue the best choice per row, and in green when both choices coincide. The best choices for 𝜆alg and 
𝜆sym are observed for 𝜃 = 0.3 and 𝜃 = 0.5.

7.3. AFEM for a strongly monotone and Lipschitz continuous nonlinearity

On the Z-shaped domain Ω ∶= (−1,1)2 ⧵ conv{(−1,0), (0,0), (−1,−1)} and with the nonlinearity 𝑎(𝑥, 𝑡) = 1 + log(1 + 𝑡)∕(1 + 𝑡) for 
all 𝑥 ∈Ω and 𝑡 ≥ 0, we consider the quasi-linear elliptic PDE with homogeneous Dirichlet boundary conditions

−div
(
𝑎(⋅, |∇𝑢⋆|2) ∇𝑢⋆)+ 𝑢⋆ = 1 in Ω and 𝑢⋆ = 0 on 𝜕Ω (78)

Hence, the nonlinearity 𝑎(⋅) satifies the growth condition in Proposition 3 with constants 𝛼 ≈ 0.9582898017 and 𝐿 ≈ 1.542343818. In 
the experiments, we use the optimal damping parameter 𝛿 = 1∕𝐿 and the fixed polynomial degree 𝑝 = 1. Fig. 10 illustrates the initial 
triangulation 0, the adaptively generated mesh 7 with 1483 triangles, and the computed solution 𝑢

𝑘,𝑗

7 . In the Figs. 11--13, we observe 
that the strategy from Algorithm C applied to this nonlinear problem guarantees optimal convergence rates −1∕2 with respect to the 
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Fig. 6. Convergence history plot of the error estimator with respect to the number of degrees of freedom (left) and the computation time (right) for the nonsymmetric 
experiment (77) with 𝑝 = 2 and 𝛿 = 0.5 for several symmetrization parameters 𝜆sym ∈ {0.1,0.3,0.5,0.7,0.9} and fixed algebraic solver parameter 𝜆alg = 0.7 and marking 
parameter 𝜃 = 0.3.

Fig. 7. Convergence history plot of the error estimator with respect to the number of degrees of freedom (left) and the computation time (right) for the nonsymmetric 
experiment (77) with 𝑝 = 2 and 𝛿 = 0.5 for several algebraic solver parameters 𝜆alg ∈ {0.1,0.3,0.5,0.7,0.9} and fixed symmetrization parameter 𝜆sym = 0.7 and marking 
parameter 𝜃 = 0.3.

number of degrees of freedom and the cumulative computation time for arbitrary marking parameters 𝜃, linearization parameters 𝜆lin, 
and algebraic solver parameters 𝜆alg. In particular, even large values of 𝜃, 𝜆lin, and 𝜆alg lead to optimal convergence rates. Table 3
summarizes the optimal selection of the adaptivity parameters for the nonlinear problem (78) and indicates that moderate values of 
𝜃 in combination with large values of 𝜆lin and 𝜆alg are benficial in terms of computational cost.
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Appendix A. Proofs of Lemma 1, Lemma 2, and Lemma 4

Proof of Lemma 1. The proof is split into four steps.
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Fig. 8. Convergence history plot of the error estimator with respect to the number of degrees of freedom (left) and the computation time (right) for the nonsymmetric 
experiment (77) with 𝑝 = 2 and 𝛿 = 0.5 for several Döfler marking parameters 𝜃 ∈ {0.1,0.3,0.5,0.7,0.9} and fixed solver-stopping parameters 𝜆sym = 𝜆alg = 0.7.

Fig. 9. Convergence history plot of the error estimator with respect to the number of degrees of freedom (left) and with respect to the overall computation time (right) 
for the nonsymmetric experiment (77) with 𝛿 = 0.5 for several polynomial degrees 𝑝= 1,2,3,4, and fixed marking parameter 𝜃 = 0.3 and solver-stopping parameters 
𝜆sym = 𝜆alg = 0.7.

Step 1. We consider the perturbed contraction of (𝑎𝓁)𝓁∈ℕ0
from (17). By induction on 𝑛, we see with the empty sum understood 

(as usual) as zero that

𝑎𝓁+𝑛 ≤ 𝑞𝑛𝑎𝓁 +
𝑛 ∑

𝑗=1 
𝑞𝑛−𝑗𝑏𝓁+𝑗−1 for all 𝓁, 𝑛 ∈ℕ0.

From this and the geometric series, we infer that

𝑎𝓁+𝑛 ≤ 𝑞𝑛𝑎𝓁 +𝐶1

( 𝑛 ∑
𝑗=1 

𝑞𝑛−𝑗
)
𝑎𝓁 ≤ (

1 +
𝐶1
1 − 𝑞

)
𝑎𝓁 =∶ 𝐶3 𝑎𝓁 for all 𝓁, 𝑛 ∈ℕ0. (A.1)

Step 2. Next, we note that the perturbed contraction of (𝑎𝓁 )𝓁∈ℕ0
from (17) and the Young inequality with sufficiently small 𝜀 > 0

ensure

0 < 𝜅 ∶= (1 + 𝜀) 𝑞2 < 1 and 𝑎2𝓁+1

(17)≤ 𝜅 𝑎2𝓁 + (1 + 𝜀−1) 𝑏2𝓁 for all 𝓁 ∈ℕ0.

This and the summability of (𝑏𝓁)𝓁∈ℕ0
from (17) guarantee
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Fig. 10. Initial triangulation 0 , adaptively generated mesh 7 with 1483 triangles, and the computed solution 𝑢𝑘,𝑗7 for the nonlinear experiment (78) with polynomial 
degree 𝑝= 1, optimal damping parameter 𝛿 = 1∕𝐿, marking parameter 𝜃 = 0.3, linearization parameter 𝜆lin = 0.7, and algebraic solver parameter 𝜆alg = 0.7.

Fig. 11. Convergence history plot of the error estimator 𝜂𝓁(𝑢
𝑘,𝑗

𝓁 ) with respect to the number of degrees of freedom (left) and the cumulative computation time (right) for 
the nonlinear experiment (78) with polynomial degree 𝑝= 1 and optimal damping parameter 𝛿 = 1∕𝐿 for several linearization parameters 𝜆lin ∈ {0.001,0.01,0.1,0.5,1}
and fixed marking parameter 𝜃 = 0.3 and algebraic solver parameter 𝜆alg = 0.7.

𝓁+𝑁∑
𝓁′=𝓁+1

𝑎2𝓁′ =
𝓁+𝑁−1∑
𝓁′=𝓁

𝑎2𝓁′+1

(17)≤ 𝜅

𝓁+𝑁−1∑
𝓁′=𝓁

𝑎2𝓁′ + (1 + 𝜀−1)𝐶2𝑁
1−𝛿 𝑎2𝓁 .

Rearranging the estimate, we arrive at
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Fig. 12. Convergence history plot of the error estimator 𝜂𝓁(𝑢
𝑘,𝑗

𝓁 ) with respect to the number of degrees of freedom (left) and the cumulative computation time 
(right) for the nonlinear experiment (78) with polynomial degree 𝑝 = 1 and optimal damping parameter 𝛿 = 1∕𝐿 for several algebraic solver parameters 𝜆alg ∈
{0.001,0.01,0.1,0.5,1} and fixed marking parameter 𝜃 = 0.3, and linearization parameter 𝜆lin = 0.7.

Fig. 13. Convergence history plot of the error estimator 𝜂𝓁(𝑢
𝑘,𝑗

𝓁 ) with respect to the number of degrees of freedom (left) and the cumulative computation time (right) 
for the nonlinear experiment (78) with polynomial degree 𝑝 = 1 and optimal damping parameter 𝛿 = 1∕𝐿 for several marking parameters 𝜃 ∈ {0.1,0.3,0.5,0.7,0.9}
and solver parameters 𝜆lin = 𝜆alg = 0.7.

𝓁+𝑁∑
𝓁′=𝓁

𝑎2𝓁′ ≤
[
1 +

𝜅 + (1 + 𝜀−1)𝐶2𝑁
1−𝛿

1 − 𝜅

]
𝑎2𝓁 =∶𝐷𝑁 𝑎2𝓁 for all 𝓁,𝑁 ∈ℕ0, (A.2)

where we note that 1 ≤ 𝐷𝑁 ≃𝑁1−𝛿 as 𝑁 → ∞. In the following, we prove that this already guarantees that (A.2) holds with an 
𝑁 -independent constant (instead of the constant 𝐷𝑁 growing with 𝑁); see also Lemma 2 below.

Step 3. We show by mathematical induction on 𝑛 that (A.2) implies

𝑎2𝓁+𝑛 ≤
( 𝑛 ∏
𝑗=1 

(1 −𝐷−1
𝑗 )

) 𝓁+𝑛 ∑
𝓁′=𝓁

𝑎2𝓁′ for all 𝓁, 𝑛 ∈ℕ0. (A.3)

Note that (A.3) holds for all 𝓁 ∈ℕ0 and 𝑛 = 0 (with the empty product interpreted as 1). Hence, we may suppose that (A.3) holds for 
all 𝓁 ∈ℕ0 and up to 𝑛∈ ℕ0. Then,

𝑎2𝓁+(𝑛+1) = 𝑎2(𝓁+1)+𝑛

(A.3)≤ 
( 𝑛 ∏
𝑗=1 

(1 −𝐷−1
𝑗 )

) (𝓁+1)+𝑛∑
𝓁′=𝓁+1 

𝑎2𝓁′ =
( 𝑛 ∏
𝑗=1 

(1 −𝐷−1
𝑗 )

)( 𝓁+(𝑛+1)∑
𝓁′=𝓁

𝑎2𝓁′ − 𝑎2𝓁

)

Computers and Mathematics with Applications 180 (2025) 102–129 

125 



P. Bringmann, M. Feischl, A. Miraçi et al. 

Table 3
Optimal selection of parameters with respect to the computational costs for the nonlinear experiment (78) with 𝑝 = 1 and 𝛿 = 1∕𝐿. For the comparison, we consider 
the weighted cumulative time [𝜂𝓁 (𝑢𝑘,𝑗𝓁 ) ∑|𝓁′ ,𝑘′ ,𝑗′ |≤|𝓁,𝑘,𝑗| time(𝓁′)

]
(values in 10−3) with stopping criterion 𝜂𝓁(𝑢

𝑘,𝑗

𝓁 ) < 5 ⋅ 10−2 𝜂0(𝑢
0,0
0 ) for various choices of 𝜆lin, 𝜆alg, and 

𝜃. In each 𝜃-block, we mark in yellow the best choice per column, in blue the best choice per row, and in green when both choices coincide. The best choices for 𝜆lin

and 𝜆alg are observed for 𝜃 = 0.5 and 𝜃 = 0.7.

(A.2)≤
( 𝑛 ∏
𝑗=1 

(1 −𝐷−1
𝑗 )

)( 𝓁+(𝑛+1)∑
𝓁′=𝓁

𝑎2𝓁′ −𝐷−1
𝑛+1

𝓁+(𝑛+1)∑
𝓁′=𝓁

𝑎2𝓁′

)
=
(𝑛+1 ∏
𝑗=1 

(1 −𝐷−1
𝑗 )

) 𝓁+(𝑛+1)∑
𝓁′=𝓁

𝑎2𝓁′ .

This concludes the proof of (A.3).

Step 4. From (A.2)--(A.3), we infer that

𝑎2𝓁+𝑛 ≤
( 𝑛 ∏
𝑗=1 

(1 −𝐷−1
𝑗 )

)
𝐷𝑛 𝑎

2
𝓁 for all 𝓁, 𝑛 ∈ ℕ. (A.4)

Note that

𝑀𝑛 ∶= log
[( 𝑛 ∏

𝑗=1 
(1 −𝐷−1

𝑗 )
)
𝐷𝑛

]
=

𝑛 ∑
𝑗=1 

log(1 −𝐷−1
𝑗 ) + log𝐷𝑛.

With 1 − 𝑥 ≤ exp(−𝑥) for all 0 < 𝑥 < 1, it follows for 𝑥 =𝐷−1
𝑗

that

𝑀𝑛 ≤ log𝐷𝑛 −
𝑛 ∑

𝑗=1 
𝐷−1
𝑗 ≃ (1 − 𝛿) log𝑛−

𝑛 ∑
𝑗=1 

1 
𝑗1−𝛿

𝑛→∞
←←←←←←←←←←←←←←←←←←←←←→ −∞,

since log𝑛 ≤∑𝑛
𝑗=1(1∕𝑗). Fix 𝑛0 ∈ ℕ such that 𝑀𝑛0

< 0. It follows from (A.4) that

𝑎2𝓁+𝑖𝑛0
≤ 𝑞𝑖0 𝑎

2
𝓁 for all 𝓁, 𝑖 ∈ℕ0, where 0 < 𝑞0 ∶= exp(𝑀𝑛0

) < 1. (A.5)

Let 𝓁 ∈ ℕ0. For general 𝑛 ∈ ℕ0, choose 𝑖, 𝑗 ∈ ℕ with 𝑗 < 𝑛0 such that 𝑛 = 𝑖𝑛0 + 𝑗. With (A.5) and quasi-monotonicity (A.1) of 𝑎𝓁 , we 
derive

𝑎2𝓁+𝑛 = 𝑎2(𝓁+𝑗)+𝑖𝑛0

(A.5)≤ 𝑞𝑖0 𝑎
2
𝓁+𝑗

(A.1)≤ 𝐶2
3 𝑞

𝑖
0 𝑎

2
𝓁 = 𝐶2

3 𝑞
−𝑗∕𝑛0
0 𝑞

𝑛∕𝑛0
0 𝑎2𝓁 ≤ (𝐶2

3 ∕𝑞0) (𝑞
1∕𝑛0
0 )𝑛𝑎2𝓁 .

This completes the proof of (18) with 𝐶lin ∶= 𝐶2
3 ∕𝑞0 > 0 and 0 < 𝑞lin ∶= 𝑞

1∕𝑛0
0 < 1. □

Proof of Lemma 2. First, observe that (𝑎𝓁)𝓁∈ℕ0
is R-linearly convergent in the sense of (ii) if and only if (𝑎𝑚𝓁 )𝓁∈ℕ0

is R-linearly 
convergent in the sense of (ii) with 𝐶lin replaced by 𝐶𝑚

lin
and 𝑞lin replaced by 𝑞𝑚

lin
. Therefore, we may restrict to 𝑚 = 1.
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The implication (ii) ⟹ (i) follows from the geometric series, i.e.,

∞ ∑
𝓁′=𝓁+1

𝑎𝓁′
(ii)≤ 𝐶𝑎𝓁

∞ ∑
𝓁′=𝓁+1

𝑞𝓁
′−𝓁 ≤ 𝐶𝑞

1 − 𝑞
𝑎𝓁 for all 𝓁 ∈ ℕ0.

Conversely, (i) yields that

(𝐶−1
1 + 1)

∞ ∑
𝓁′=𝓁+1

𝑎𝓁′
(i)≤ 𝑎𝓁 +

∞ ∑
𝓁′=𝓁+1

𝑎𝓁′ =
∞ ∑

𝓁′=𝓁
𝑎𝓁′ for all 𝓁 ∈ ℕ0.

Inductively, this leads to

𝑎𝓁+𝑛 ≤
∞ ∑

𝓁′=𝓁+𝑛
𝑎𝓁′

(i)≤ 1 
(𝐶−1

1 + 1)𝑛

∞ ∑
𝓁′=𝓁

𝑎𝓁′
(i)≤ 

1 +𝐶1

(𝐶−1
1 + 1)𝑛

𝑎𝓁 for all 𝓁, 𝑛 ∈ℕ0.

This proves (ii) with 𝐶lin ∶= 1 +𝐶1 and 𝑞lin ∶= (𝐶−1
1 + 1)−1. □

Proof of Lemma 4. Let (𝓁, 𝑘, 𝑗) ∈  with 𝑘 ≥ 1. Contraction of the Zarantonello iteration (39) proves

| | |𝑢⋆𝓁 − 𝑢
𝑘,𝑗

𝓁 | | | ≤ | | |𝑢⋆𝓁 − 𝑢𝑘,⋆𝓁 | | |+ | | |𝑢𝑘,⋆𝓁 − 𝑢
𝑘,𝑗

𝓁 | | | (39)≤ 𝑞⋆sym | | |𝑢⋆𝓁 − 𝑢
𝑘−1,𝑗
𝓁 | | |+ | | |𝑢𝑘,⋆𝓁 − 𝑢

𝑘,𝑗

𝓁 | | |.
From the termination criterion of the algebraic solver (43), we see that

| | |𝑢𝑘,⋆𝓁 − 𝑢
𝑘,𝑗

𝓁 | | | ≤ 𝑞alg

1 − 𝑞alg

| | |𝑢𝑘,𝑗𝓁 − 𝑢
𝑘,𝑗−1
𝓁 | | | (43)≤ 

𝑞alg

1 − 𝑞alg

𝜆alg

[
𝜆sym𝜂𝓁(𝑢

𝑘,𝑗

𝓁 ) + | | |𝑢𝑘,𝑗𝓁 − 𝑢
𝑘−1,𝑗
𝓁 | | |].

With the termination criterion of the inexact Zarantonello iteration (42), it follows that

| | |𝑢𝑘,⋆𝓁 − 𝑢
𝑘,𝑗

𝓁 | | | (42)≤ 
2 𝑞alg

1 − 𝑞alg

𝜆alg

{
𝜆sym𝜂𝓁(𝑢

𝑘,𝑗

𝓁 ) for 𝑘 = 𝑘[𝓁],| | |𝑢𝑘,𝑗𝓁 − 𝑢
𝑘−1,𝑗
𝓁 | | | for 1 ≤ 𝑘 < 𝑘[𝓁].

For 𝑘 = 𝑘[𝓁], the preceding estimates prove (51). For 𝑘 < 𝑘[𝓁], it follows that

| | |𝑢⋆𝓁 − 𝑢
𝑘,𝑗

𝓁 | | | ≤ 𝑞⋆sym | | |𝑢⋆𝓁 − 𝑢
𝑘−1,𝑗
𝓁 | | |+ 2 𝑞alg

1 − 𝑞alg

𝜆alg

[| | |𝑢⋆𝓁 − 𝑢
𝑘,𝑗

𝓁 | | |+ | | |𝑢⋆𝓁 − 𝑢
𝑘−1,𝑗
𝓁 | | |].

Provided that 2 𝑞alg

1−𝑞alg
𝜆alg < 1, this proves

| | |𝑢⋆𝓁 − 𝑢
𝑘,𝑗

𝓁 | | | ≤ 𝑞⋆sym + 2 𝑞alg

1−𝑞alg
𝜆alg

1 −
2 𝑞alg

1−𝑞alg
𝜆alg

| | |𝑢⋆𝓁 − 𝑢
𝑘−1,𝑗
𝓁 | | | (46)

= 𝑞sym | | |𝑢⋆𝓁 − 𝑢
𝑘−1,𝑗
𝓁 | | |,

which is (50). This concludes the proof. □

Data availability

No data was used for the research described in the article.
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