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Abstract

Gravitational waves, ripples in spacetime predicted by General Relativity, have
transformed our understanding of astrophysical phenomena. IMBHs bridge the
gap between stellar black holes and super massive black holes, offering unique
insights into astrophysics and cosmology. This thesis focuses on advancing our
understanding of gravitational waves from IMBH systems, particularly through
the study of higher-order modes and parameter estimation biases.

This work analyses higher-order modes in gravitational waveforms, identifying
patterns and quantifying their relative power. It also evaluates how waveform
approximants in Bayesian parameter estimation introduce biases, affecting source
characterization and population studies.

These findings highlight the role of higher order modes from Intermediate Mass
Black Holes (IMBH) systems with high mass ratios and specific inclinations. It
draws attention to the need to carefully choose waveform models in order to avoid
systematic biases.

Abstract

Gravitationswellen, als Raumzeitkräuselungen von der Allgemeinen Relativitäts-
theorie vorhergesagt, haben unser Verständnis astrophysikalischer Phänomene rev-
olutioniert. IMBHs (Intermediate-Mass Black Holes) schlagen eine Brücke zwis-
chen stellaren und supermassiven Schwarzen Löchern und bieten einzigartige Ein-
blicke in die Astrophysik und Kosmologie. Diese Arbeit konzentriert sich darauf,
unser Verständnis von Gravitationswellen aus IMBH-Systemen zu vertiefen, ins-
besondere durch die Untersuchung höherer Ordnungen (higher-order modes) und
der Verzerrungen in der Parameterabschätzung.

Diese Arbeit analysiert höhere Ordnungen in Gravitationswellenformen, identi-
fiziert Muster und quantifiziert deren relative Stärke. Zudem wird untersucht,



wie Wellenform-Approximationen in der Bayesschen Parameterabschätzung Verz-
errungen einführen, die die Charakterisierung von Quellen und Populationsstudien
beeinflussen können.

Diese Ergebnisse unterstreichen die Rolle höherer Ordnungsmoden bei Systemen
mit IMBH, die hohe Massenverhältnisse und bestimmte Neigungen aufweisen. Sie
weisen auf die Notwendigkeit hin, Wellenformmodelle sorgfältig auszuwählen, um
systematische Fehler zu vermeiden.
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1. Introduction

Gravitational waves, the ripples in the fabric of spacetime predicted by Einstein’s
General Theory of Relativity, represent one of the most transformative discoveries
in modern physics. These waves, caused by the most extreme cosmic events—such
as the mergers of black holes or neutron stars—have opened an entirely new obser-
vational window into the universe. Their detection provides not only confirmation
of theoretical physics but also an unparalleled opportunity to study astrophysical
phenomena that were previously beyond reach. The first direct detection in 2015
by the LIGO-Virgo collaboration marked a monumental achievement, laying the
foundation for the burgeoning field of gravitational wave astronomy.

Among the many discoveries made through gravitational waves, intermediate-
mass black holes (IMBHs) stand out as particularly interesting. IMBHs occupy
the mass range between stellar-mass black holes, which are formed from the col-
lapse of massive stars, and supermassive black holes, which dominate the centers
of galaxies. Despite their theoretical importance, IMBHs have remained elusive,
with few detected candidates. Their formation mechanisms and evolution remain
open questions. The detection of events such as GW190521, which provided com-
pelling evidence of an IMBH merger, has propelled these enigmatic objects into
the spotlight, challenging existing theories and highlighting the need for deeper
exploration.

This thesis focuses on advancing our understanding of gravitational waves from
IMBH systems, tackling two critical challenges: the influence of higher-order modes
in gravitational waveforms and the biases introduced in parameter estimation by
waveform approximants. Higher-order modes, often overshadowed by the domi-
nant quadrupole mode, become increasingly significant in systems with large mass
ratios or specific orbital inclinations. Their inclusion in waveform models is essen-
tial for accurately interpreting signals from IMBH systems, where such effects are
more pronounced. Ignoring these contributions can lead to incomplete or biased
astrophysical inferences.

In addition to exploring higher-order modes, this work evaluates the impact of
waveform approximants on parameter estimation. The approximants used in
Bayesian inference methods introduce biases that affect the accuracy of recovered
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source parameters, such as mass, spin, and distance. These biases are particu-
larly consequential for IMBH systems, where accurate characterization is critical
for understanding their formation and population dynamics. By identifying and
quantifying these biases, this thesis aims to provide insights that can guide the
development of more accurate waveform models and analysis pipelines.

By combining theoretical insights with numerical simulations, this study con-
tributes to the growing understanding of IMBH systems and their gravitational
wave signals. It highlights areas for improvement in current methods, empha-
sizing the importance of higher-order modes and accurate parameter estimation
techniques. The findings presented here not only deepen our understanding of
gravitational wave science but also provide a foundation for refining detection
techniques, improving data analysis methods, and advancing astrophysical and
cosmological interpretations. Through this work, the thesis aspires to bridge gaps
in our knowledge and pave the way for more comprehensive studies of IMBHs and
their role in the universe.

This thesis utilized different software tools to assist the generation of results. The
Python libraries PyCBC [53] and GWSurrogate [14] for waveform simulation, bilby
[10] for parameter estimation matplotlib [36] for generating visualizations and Gen-
erative AI tools [55] for assistance in writing.
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2. Theoretical Framework

In this chapter, we establish the theoretical foundation underlying the study of
gravitational waves and their astrophysical sources. The discussion begins with
an exploration of General Relativity, Einstein’s revolutionary framework that re-
defined our understanding of gravity as the curvature of spacetime. This sets
the stage for examining Einstein’s Field Equations, the mathematical backbone of
gravitational theory, and their implications for the existence of phenomena such as
black holes and gravitational waves. We delve into the linearized approximation
of General Relativity to describe gravitational waves, deriving key equations that
govern their dynamics, propagation, and interaction with matter. Building on
this, the multipole expansion technique is introduced to capture the complexities
of higher-order modes that arise in strong-field scenarios. The chapter concludes
with an overview of gravitational wave sources, with particular emphasis on the
astrophysical events that generate these ripples in spacetime, such as binary black
hole mergers and gravitational wave bursts. This theoretical framework provides
the essential tools and insights for understanding the observational and computa-
tional studies that follow in later chapters.

2.1. General Relativity

Albert Einstein developed the General Theory of Relativity in 1915 as an extension
of his earlier work on Special Relativity, aiming to address the limitations of New-
tonian gravity. While Newton’s theory treated gravity as an instantaneous force
acting at a distance, Einstein’s GR redefined gravity as the curvature of spacetime
caused by mass and energy. This new approach resolved key issues such as the
precession of Mercury’s orbit and the bending of light by gravity (Gravitational
lensing), effects that Newtonian mechanics could not fully explain [39].

2.1.1. Einstein’s Field Equations

At the heart of General Relativity lie the Einstein Field Equations, a set of ten
coupled differential equations that form the theoretical backbone of modern grav-
itational theory [18]. The equations relate the geometry of spacetime to the dis-
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tribution of matter and energy, captured succinctly as

Rµν − 1

2
R gµν + Λgµν =

8π G
c4

Tµν (2.1)

Each term in this equation carries profound meaning, revealing how matter influ-
ences spacetime itself:

• Rµν : This is the Ricci curvature tensor, describing how spacetime is curved
by the presence of mass and energy in a specific direction. It encapsulates the
"local" curvature that reflects how matter affects the bending of spacetime
in nearby regions.

• R: The scalar curvature, a single value derived from the Ricci tensor, rep-
resents the overall curvature of spacetime at a given point. It gives a more
global sense of how spacetime is shaped by all sources of gravity.

• gµν : This is the metric tensor, which defines the structure of spacetime, in-
cluding distances and angles. It acts as the foundational "map" of spacetime
that the other terms modify according to the presence of mass and energy.

• Λ: Known as the cosmological constant, this term accounts for the energy
density of empty space, or "dark energy." It was initially introduced by
Einstein to allow for a static universe, but today it is used to explain the
observed accelerated expansion of the universe.

• Tµν : The stress-energy tensor, which encompasses the distribution and flow
of energy and momentum in spacetime. It includes all forms of energy, such
as matter, radiation, and even pressure, thus representing the "source" term
in the equation.

The equation as a whole tells us that spacetime geometry (Rµν , R, and gµν) is
shaped directly by the presence and distribution of matter and energy (Tµν), mod-
ulated by universal constants like Newton’s gravitational constant G and the speed
of light c. This concept is encapsulated by John Archibald Wheeler’s well-known
summary [50]:

“Space(time) tells matter how to move
Matter tells space(time) how to curve”1

1The original quote uses "space" instead of "spacetime." "Time" is included here in brackets
for clarity.

4



2.1.2. Black Holes

One of the most significant consequences of Einstein’s Field Equations is the pre-
diction of black holes. First theorized by Schwarzschild in 1916 [62] and later re-
formulated by Droste [30], Hilbert [35], and Weyl [72] in 1917, black holes emerged
as peculiar yet inevitable consequences of Einstein’s theory of gravitation. These
objects represent regions of spacetime where gravity is so extreme that nothing,
not even light, can escape. Within this boundary, defined by the event horizon,
lies a gravitational singularity where the curvature of spacetime becomes infinite.

In the early 20th century, theoretical work by Landau [45] and Chandrasekhar
[21] [22] demonstrated that black holes are potentially the natural endpoints of
massive stars collapsing under their own gravity. However, black holes remained
a theoretical concept until 1972, when the "dark" companion in the Cygnus X-1
binary system was dynamically confirmed to have several solar masses [71], firmly
establishing it as a stellar-mass black hole. This breakthrough was followed by
numerous observations of black hole X-ray binaries [57] [19], further supporting
the abundance of stellar-mass black holes in the Universe. The detection of gravi-
tational waves in 2015 [1] from binary black hole mergers provided direct evidence
of their existence and properties, marking a new era in black hole astrophysics.

While the mathematical derivation and detailed properties of black hole solutions
are of significant interest, these aspects will not be the focus here. A comprehensive
mathematical treatment can be found in standard sources such as [50] [18].

Classification of Black Holes

Black holes can be classified into categories based on their masses: primordial,
stellar, intermediate, and supermassive black holes. Each class reflects unique
physical characteristics and astrophysical origins.

Primordial black holes (PBHs) are hypothetical black holes that may have formed
in the early universe due to density fluctuations shortly after the Big Bang [33].
Unlike stellar-mass black holes, PBHs are not remnants of stellar evolution but
rather the result of regions of spacetime collapsing under extreme conditions in
the universe’s first moments. Depending on their formation mechanisms, PBHs
can span a wide mass range, from subatomic scales to hundreds of solar masses.
While no conclusive evidence for PBHs exists, they remain an active area of re-
search, particularly as potential candidates for dark matter.

Stellar-mass black holes, on the other hand, are formed from the gravitational
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collapse of massive stars (> 8M⊙) at the end of their life cycles, typically as a
result of supernova explosions. Their masses range from a few solar masses to ap-
proximately 100 solar masses [20]. These black holes are often observed in binary
systems, where they accrete matter from a companion star. This accretion process
generates X-rays, making them detectable through X-ray astronomy. Gravita-
tional waves emitted by merging stellar-mass black holes have also been detected,
providing a powerful tool for studying these systems.

Supermassive black holes (SMBHs) dominate the centers of most, if not all, massive
galaxies, with masses ranging from 105M⊙ to 1010M⊙. Their formation remains
a subject of intense research, with proposed mechanisms including the direct col-
lapse of gas clouds in the early universe, prolonged accretion of matter over cosmic
timescales, and mergers of smaller black holes. The presence of SMBHs was first
suggested in the 1970s, based on dynamical measurements of stellar motions near
galactic centers [61]. Subsequent observational evidence has solidified this hypoth-
esis, with notable examples including the 4 million M⊙ SMBH at the center of the
Milky Way and the imaging of the SMBH in M87 by the Event Horizon Telescope
[23].

Intermediate Mass Black Holes

Intermediate-mass black holes occupy a unique position in the black hole mass
spectrum, with masses ranging from 102M⊙ to 105M⊙. They are hypothesized
to bridge the gap between stellar-mass black holes, which form from the collapse
of individual stars, and supermassive black holes, which dominate the centers of
galaxies. Despite their theoretical importance, the existence and formation of
IMBHs have remained enigmatic due to the constraints imposed by stellar physics
and astrophysical processes.

A central challenge to the formation of IMBHs arises from the phenomena of
the pair-instability supernova (PISN) and pulsation pair instability supernova
(PPISN). Stars in a specific mass range, experience conditions in their cores where
thermal radiation becomes energetic enough to produce electron-positron pairs
[73]. This process reduces the radiation pressure supporting the core against grav-
itational collapse, leading to a runaway contraction. The contraction heats the
core further, igniting explosive thermonuclear reactions that result in either a com-
plete disruption of the star or significant mass loss. Consequently, no black hole
remnants are expected to form from stars in this range, creating what is known
as the "PISN mass gap." Black holes with masses between 50M⊙ and 130M⊙
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should, therefore, be exceedingly rare, as the progenitor stars are entirely dis-
rupted. These processes impose strict constraints on the formation of black holes
in the low intermediate-mass range.

Several alternative formation mechanisms have been proposed to explain the ex-
istence of IMBHs. A comprehensive discussion can be found in [11]:

• Population III and Metal-Poor Stars: IMBHs can form as remnants of very
massive stars (VMSs) with initial masses exceeding 200M⊙, particularly in
the early universe where metallicity was extremely low. These stars evolve
over a few million years and may directly collapse into black holes with
masses exceeding 100M⊙ [48]. For metal-poor stars (Population II), weak
stellar winds due to low metallicity allow VMSs with zero-age main sequence
masses ≳ 250M⊙ to retain most of their mass during evolution. These stars
could also directly collapse to form IMBHs without undergoing supernova
explosions [66].

• Formation in Dense Stellar Environments: IMBHs can also form through
dynamic processes in dense stellar systems such as globular clusters, nuclear
star clusters, and young massive clusters. The high stellar densities in these
environments promote gravitational interactions, leading to the formation
and growth of massive black holes. An overview is given in figure 2.1. One of
the most prominent theories is the Repeated or hierarchical mergers of stellar-
mass BHs. In clusters where stellar-mass black holes are retained, dynamical
friction causes them to segregate into the cluster core. There, stellar black
holes interact gravitationally, forming binary systems that eventually merge
via gravitational wave emission. The merged black holes can repeat this
process, growing into more massive black holes [59] [9].

Despite their elusive nature, compelling evidence for IMBHs has begun to emerge
in recent years. Observations of ultraluminous X-ray sources have revealed objects
with luminosities too high to be explained by stellar-mass black holes, suggesting
IMBHs as potential sources. Dynamical measurements of stellar motions in some
globular clusters, such as 47 Tucanae, also hint at the presence of central black
holes with intermediate masses [49].

A breakthrough in the search for IMBHs came with the detection of the gravita-
tional wave event GW190521 in 2019. This event involved the merger of two black
holes, resulting in a remnant with a total mass of approximately 150M⊙, firmly
placing it in the intermediate-mass range. The component black holes themselves
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Figure 2.1.: Illustration of potential pathways for the growth of IMBHs in star clus-
ters: (A) Mergers of dynamically formed binary black holes through
gravitational wave emission within the cluster. (B) In extremely dense
star clusters (≳ 106 M⊙ pc−3), runaway mergers between stars can oc-
cur, resulting in the formation of a very massive star (greater than a
few hundred M⊙), which may collapse into an IMBH of similar mass.
(C) Growth of black holes through the tidal disruption or direct colli-
sions with stars in the cluster. (D) Evolution of binary systems, where
two massive stars merge to form a single large black hole, or accretion
of material from a companion star by a black hole in a binary system,
contributing to black hole growth. (E) Accretion of interstellar gas by
black holes within the cluster, leading to further mass increase [11].

had masses of 85M⊙ and 66M⊙, placing one of them within the PISN gap. This
discovery challenged our understanding of stellar evolution and black hole forma-
tion, suggesting that alternative processes, such as hierarchical mergers, may play
a significant role in producing IMBHs [27].

2.2. Gravitational Waves in linearized Gravity

The Einstein Field Equations establish the profound relationship between matter
and spacetime curvature, illustrating that mass and energy shape the very fabric
of spacetime itself. However, to get a feeling of dynamic phenomena like gravi-
tational waves let’s get more technical and consider a regime where gravitational
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fields are weak. In this weak-field limit, we can linearize the Einstein Field Equa-
tions, simplifying them to describe small perturbations in spacetime rather than
full curvature.

This linearization process allows us to derive the equation of motion for gravita-
tional waves, which reveals how these waves propagate and interact with matter.
In the following technical sections, we derive the equations of motion for linearized
gravity, discuss gravitational wave solutions, examine their effects, and explore
their production. This foundation for understanding gravitational waves is pri-
marily based on Carroll’s comprehensive resource [18].

In the following discussion, we adopt natural units where c = 1, simplifying the
equations by setting the speed of light to unity. Additionally, the metric conven-
tion (−,+,+,+) is used, which assigns a negative sign to the time component and
positive signs to the spatial components of the metric.

2.2.1. Equation of motion

The metric in the weak field approximation can be decomposed into the flat
Minkowski metric and a small pertubation

gµν = ηµν + hµν , |hµν | ≪ 1 (2.2)

This assumptions allows us to ignore terms of O(h2). Therefore the metric with
upper indices is given by 2

gµν = ηµν − hµν (2.3)

The goal now is to find the equations of motion which governs the dynamics of
the pertubation hµν . These can be derived by evaluating Einsteins equations to
first order. since the derivation of the Ricci tensor and Ricci scalar requires the
Riemann tensor, we must first construct the linearized Riemann tensor and then
trace its indices. The Riemann tensor itself is expressed in terms of the Christoffel
symbols Γ and their products Γ2. Because the Christoffel symbols are first order
quantities the only contribution comes from the derivative of the Γ-terms while
neglecting the O(Γ2)

Γρ
µν =

1

2
ηρλ (∂µgν λ + ∂νgµλ − ∂λgµν)

=
1

2
ηρλ (∂µhν λ + ∂νhµλ − ∂λhµν) (2.4)

2Derivation can be found in A.1
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The linearized Riemann tensor, with only lower indices for convenience, can there-
fore be expressed as

Rµν ρσ = ηµλ∂ρΓ
λ
ν σ − ηµλ∂σΓ

λ
ν ρ

=
1

2
(∂ρ∂νhµσ + ∂σ∂µhν ρ − ∂ρ∂µhν σ − ∂σ∂νhµρ) (2.5)

Contracting3 over σ and ρ yields the linearized Ricci tensor

Rµν =
1

2

(︀
∂α∂νh

α
µ + ∂µ∂

αhν α − ∂µ∂νh−□hµν

)︀
(2.6)

where □ = −∂2
t + ∂2

x + ∂2
y + ∂2

z denotes the d’Alembertian operator in flat space.
The final contraction gives the linearized Ricci scalar

R = ∂µ∂νh
µν −□h (2.7)

Combining all terms, we obtain the following expression for the left-hand side4(2.1)

Rµν − 1

2
ηµνR =

1

2

(︀
∂α∂νh

α
µ + ∂µ∂

αhν α − ∂µ∂νh−□hµν − ηµν∂α∂βh
αβ − ηµν□h

)︀
(2.8)

Equation 2.2 does not fully determine the coordinate system, as redundant degrees
of freedom remain. This redundancy implies that different perturbations can de-
scribe the same physical situation, differing only by terms that can be eliminated
through coordinate transformations, commonly referred to as gauge transforma-
tions. The pertubation transforms under an infinitesimal coordinate transforma-
tion as5

h′
µν = hµν − ∂µξν − ∂νξµ. (2.9)

Before we now set a specific gauge condition it is useful to decompose the pertu-
bation into pieces that transform only into themselves under SO(3)6. Similar to
how the Field strenght tensor in electrodynamics can be decomposed into E and
B. We focus on the rotation group SO(3) because gravitational waves primarily
manifest through spatial distortions in spacetime. Consequently, we do not employ
the full irreducible representations of the Poincaré group7, as incorporating boosts
introduces additional complexity by mixing spatial and temporal components of
the metric perturbations. Furthermore, translations are neglected since they only
affect the overall position in spacetime without altering the local structure of the

3Rµν = ησ αηραRµν ρσ
4Replacing gµν = ηµν + hµν in gµνR leaves only ηµνR, as hµνR is second order.
5Derived in A.2
6spatial rotations
7underlying symmetry group of relativity
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perturbations in a manner that necessitates decomposition based on their trans-
formation properties. The components of the perturbation hµν are given by

h00 = −2Φ, h0i = wi, hij = 2sij − 2Ψδij, (2.10)

where Ψ encodes the trace of hij as

Ψ = −1

6
δijhij, (2.11)

and the strain sij is traceless

sij =
1

2

(︂
hij − 1

3
δijδ

k lhk l

)︂
. (2.12)

Utilizing the transverse gauge which is similar to the Coulomb gauge8 in Electro-
dynamics fixes the strain to be spatially transverse by imposing

∂is
ij = 0

∂iw
i = 0 (2.13)

These conditions transform Einstein’s equations into its transverse gauge

2∇2Ψ = 8π GT00 (2.14)

−1

2
∇2wj + 2∂0∂jΨ = 8π GT0j (2.15)(︀

δij∇2 − ∂i∂j
)︀
(Φ−Ψ)− ∂0∂(iωj) + 2δij∂2

0Ψ−□sij = 8π GTij (2.16)

Now we want to study the freely propagating degrees of freedom of the gravitational
field that do not require any local sources for their existence. Therefore, we set
the stress-energy tensor to zero, Tµν = 0. This results in the following equations:
For the 00-component

∇2Ψ = 0, (2.17)

for the 0i-component
∇2wj = 0, (2.18)

and, taking the trace of the ij-component, we obtain

∇2Φ = 0. (2.19)

Since all three equations are Laplace equations for Ψ, wj, and Φ, respectively, the
solutions must be unique under specific boundary conditions, leading to ψ = 0,

8∂iA
i = 0
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wj = 0, and Φ = 0 throughout the domain. According to the uniqueness theorem
for Laplace’s equation, if Ψ, wj, and Φ satisfy ∇2Ψ = 0, ∇2wj = 0, and ∇2Φ = 0
within a domain and are zero on the boundary, then the only solution consistent
with these conditions is Ψ = 0, wj = 0, and Φ = 0 everywhere inside the domain
[32].9

We are therefore only left with the trace-free part of the ij-equation which be-
comes a wave equation for the traceless strain tensor

□sij = 0 (2.20)

Although it has been convenient to work with sij, it is common in the literature to
express the equations in terms of the total metric perturbation hµν while adopting
an ansatz that isolates the other degrees of freedom (Ψ, Φ, ωi)10. This approach
is commonly referred to as the transverse-traceless gauge, with the metric pertur-
bation written as

hTT
µν =

��
0 0 0 0
0
0 2sij
0

�� . (2.21)

which ultimately leads to its equation of motion

□hTT
µν = 0 (2.22)

2.2.2. Gravitational Wave solutions

This is the first significant equation in linearized gravity without sources, show-
ing that a small disturbance can exhibit modes that act as dynamic degrees of
freedom, propagating through spacetime while satisfying the wave equation 2.22.
These propagating solutions are what we refer to as gravitational waves.

To solve this equation of motion, a particularly useful approach is to consider
a plane wave solution of the form

hTT
µν = Cµνe

ikσxσ

(2.23)

where Cµν is trivially traceless and purely spatial

C0ν = 0
ηµνCµν = 0 (2.24)

9This result also applies in unbounded domains when Ψ, wj , and Φ are assumed to vanish
at infinity.

10with sij taken to be transverse
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Plugging this plane wave ansatz into 2.22 yields

0 = □hTT
µν (2.25)

= ηρσ∂ρ∂σh
TT
µν (2.26)

= ηρσ∂ρ
(︀
ikσh

TT
µν

)︀
(2.27)

= −ηρσkρkσh
TT
µν (2.28)

= −kσk
σhTT

µν (2.29)

Since we are interested in the non trivial solution to this equation where hTT
µν ̸= 0

we get the following condition for the wave vector

kσk
σ = 0 (2.30)

Our ansatz satisfies the equation of motion provided that the wave vector is null,
which implies that both the phase velocity vp and the group velocity vg of gravi-
tational waves are equal to the speed of light11.

Furthermore, we must ensure that the ansatz is transverse. This requirement
translates to

0 = ∂µh
µν
TT

= iCµνkµe
ikσxσ

, (2.31)

which leads to the condition
kµC

µν = 0, (2.32)

indicating that the wave vector kµ is orthogonal to the coefficient tensor Cµν .

Let us consider a more concrete example by specifying propagation in the x3

direction such that12

kµ = (ω , 0, 0, k3) = (ω , 0, 0, ω) (2.33)

Conditions 2.32 and 2.24 imply that all coefficients with at least one index equal
to 0 or 3 are zero. Therefore, the only nonzero components of Cµν are C11, C12,
C21, and C22.

11see Appendix A.3
12Utilizing the null property of the wave vector.
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To ensure that Cµν is both symmetric and traceless, we must impose the following
constraints:

C22 = −C11, (2.34)
C12 = C21. (2.35)

Consequently, the coefficient tensor Cµν takes the following form

Cµν =

��
0 0 0 0
0 C11 C12 0
0 C12 −C11 0
0 0 0 0

�� (2.36)

2.2.3. Effect of gravitational waves

In order to understand the impact of gravitational waves on matter, consider two
particles separated by a separation vector Sµ. Let’s analyze this scenario in the
comoving frame, where the two particles exhibit no relative motion toward or
away from each other. In this frame, each particle follows its own geodesic13 while
the separation vector Sµ quantifies the spacetime distance between these geodesics.

When a gravitational wave, which can be conceptualized as a localized curva-
ture disturbance, traverses the region containing the two geodesics, it induces
specific distortions in their paths. The geodesic deviation equation characterizes
the relative acceleration, or the change in the separation vector, between the two
geodesics. This equation is expressed as

D2Sµ

dτ 2
= Rµ

ν ρσU
νUρSσ, (2.37)

where D is the directional covariant derivative D
dτ

= dxµ

dτ
∇µ. This equation de-

scribes how spacetime curvature, as encoded in the Riemann tensor, affects the
relative acceleration between nearby geodesics.

Since the particles are stationary in their rest frame, their four-velocity through
spacetime is

U ν = (1, 0, 0, 0). (2.38)

Substituting the four-velocity U ν into Equation (2.37) simplifies the computation
of the Riemann tensor. Therefore we only need to calculate components Rµ

00σ or
13the straightest possible path in a given spacetime
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equivalently Rµ00σ. Recalling the linearized expression for the Riemann tensor
from Equation 2.5, we have

Rµ00σ =
1

2

(︀
∂0∂0h

TT
µσ + ∂σ∂µh

TT
00 − ∂σ∂0h

TT
µ0 − ∂µ∂0h

TT
σ0

)︀
, (2.39)

However, in the TT gauge, the perturbation hTT
µν is purely spatial, as established

in Equation 2.24. This implies that hTT
µ0 = 0. Consequently, the Riemann tensor

simplifies to

Rµ00σ =
1

2
∂0∂0h

TT
µσ . (2.40)

Utilizing the fact that, for stationary particles, the proper time τ coincides with
the coordinate time t, Equation (2.37) reduces to

∂2Sµ

∂ t2
=

1

2
Sσ ∂

2hTTµ
σ

∂ t2
. (2.41)

Consider a gravitational wave propagating exclusively in the x3-direction (z-direction).
In this scenario, only the spatial components S1 and S2 of the separation vector
Sµ are affected, as the components involving the x3 index vanish due to the prop-
agation direction of the wave.

Since the gravitational wave is characterized by two polarization states, we de-
fine the polarization amplitudes as follows for convenience

h+ = C11,

h× = C12. (2.42)

With these definitions, the coefficient tensor Cµν has the form

Cµν =

��
0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

�� . (2.43)

Let us look at the two polarizations independelty starting with the case h× = 0.
Equation 2.41 simplifies to

∂2

∂ t2
S1 =

1

2
S1 ∂

2

∂ t2
(︀
h+e

ikσxσ)︀
(2.44)

and
∂2

∂ t2
S2 = −1

2
S2 ∂

2

∂ t2
(︀
h+e

ikσxσ)︀
(2.45)
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We now proceed to solve the governing equations. Due to the symmetry of the
equations, it suffices to solve one of them. The solution to the other can be obtained
by incorporating the appropriate negative sign. Considering that h+ represents a
small perturbation, we adopt a first-order perturbative approach. This implies
that the separation vector S1 deviates only slightly from its unperturbed state
S1(0). Consequently, the separation vector can be approximated to first order as

S1(t) = S1(0) + δ S1(t). (2.46)

Substituting this ansatz into equation (2.44), the equation simplifies to

∂2S1

∂ t2
≈ 1

2
S1(0)

∂2

∂ t2
(︀
h+e

ikσxσ)︀
. (2.47)

Integrating this expression twice and applying the initial conditions - namely, that
the initial velocity is zero and the initial separation corresponds to the unperturbed
state - we obtain

S1(t) =
(︂
1 +

1

2
h+e

ikσxσ

)︂
S1(0). (2.48)

Similarly, for S2, the solution is

S2(t) =
(︂
1− 1

2
h+e

ikσxσ

)︂
S2(0). (2.49)

These results indicate that the separation vector in the x1-direction remains aligned
with the x1-axis but undergoes oscillatory shrinking and squeezing. If particles are
arranged in a ring, they would oscillate back and forth, maintaining a plus-shaped
configuration.

Performing a similar analysis for the case where h+ = 0 yields the solutions

S1(t) = S1(0) +
1

2
h+e

ikσxσ

S2(0), (2.50)

and
S2(t) = S2(0) +

1

2
h+e

ikσxσ

S1(0). (2.51)

These solutions imply that the ring of particles oscillates in an ×-shaped pattern,
ultimately clarifying the used notation.

These independent modes can be combined to construct also circular polarized
modes by defining

hR =
1

2
(h+ + ih×)

hL =
1

2
(h+ − ih×) (2.52)
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We can relate the polarization states of classical gravitational waves to the type
of particles that would emerge upon quantization. The spin of a quantized field
is determined by the angle under spatial rotations that leaves the polarization
invariant, and is given by

S =
360◦

θ
(2.53)

As shown in the Appendix A.4, for gravitational waves this angle is θ = 180◦,
indicating that gravitons would have

S = 2 (2.54)

2.2.4. Production of gravitational waves

In the previous section, we only considered the possible modes of gravitational
waves that can propagate through spacetime. Now, we will examine their produc-
tion. To do so, we must consider a non-vanishing energy-momentum tensor Tµν .
For this analysis, the transverse-traceless gauge is not the most suitable. Instead,
we work with the full perturbation hµν and solve for the produced gravitational
waves far from the source, where we can then impose the transverse-traceless gauge.
Some simplifications can be made in advance. Let us define the trace-reversed per-
turbation14

h̄µν = hµν − 1

2
hηµν (2.55)

A suitable gauge choice for this investigation is the Lorenz gauge15

∂µh̄
µν

= 0 (2.56)

Using this gauge, along with Equation 2.8, yields the Einstein equations in this
gauge, which reduce to a wave equation for each component

□h̄µν = −16π GTµν (2.57)

This equation can be solved using Green’s functions. Here, we outline the method
as presented in [70].

The Green function G(xσ − yσ) for the d’Alembertian operator □ satisfies the
wave equation for a delta-like source

□xG(xσ − yσ) = δ(4)(xσ − yσ) (2.58)

14h̄ = −h, hence the name trace-reversed
15∂µA

µ = 0 in Electromagnetism
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Using the Green function, the general solution16 of Equation 2.57 can be expressed
as

h̄µν = −16π G
∫︁

G(xσ − yσ)Tµν(y
σ) d4y (2.59)

The solution to Equation 2.58 is the retarded Green function

G(xσ − yσ) = − 1

4π|x− y|δ(|x− y| − (x0 − y0))θ(x0 − y0) (2.60)

Substituting this into Equation 2.59 and using the delta function to integrate over
y0 yields

h̄µν(t,x) = 4G
∫︁

1

|x− y|Tµν (t− |x− y|,y) d3y (2.61)

This expression shows that the disturbance at time t and position x is influenced
by the energy-momentum tensor at the retarded time tr = t− |x− y|.

To proceed, we examine the problem in the frequency domain by applying a Fourier
transform to the metric disturbance

h̃µν(ω ,x) =
1√
2π

∫︁
dt eiω th̄µν(t,x)

=
4G√
2π

∫︁
dt d3y eiω tTµν(t− |x− y|,y)

|x− y|
=

4G√
2π

∫︁
dtr d

3y eiω treiω|x−y|Tµν(tr,y)

|x− y|

= 4G
∫︁

d3y eiω|x−y| T̃ µν(ω ,y)
|x− y| (2.62)

In this derivation, the first line defines the Fourier transform, the second substi-
tutes the solution from Equation 2.61, the third involves a change of variables, and
the last applies the Fourier transform to Tµν .

To simplify the calculation of gravitational waves from a distant source, we make
three key assumptions: the source is isolated, far from the observer, and mov-
ing slowly. This allows us to approximate the source as centered at a distance r
from the observer, with each part of the source located at r + δ r, where δ r ≪ r.
This means the size of the source is small compared to the distance to the observer.

Since the source is slowly moving, the radiation it emits has relatively low fre-
quencies ω such that the characteristic size of the source δ r is much smaller than

16No factor
√−g is needed since the background is flat
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the wavelength of the emitted waves (δ r ≪ ω−1). This allows us to treat the phase
of the wave as nearly uniform across the source, as light propagates much faster
than any internal motion within the source.

With these approximations, the term eiω|x−y|/|x−y|, which describes the phase and
amplitude of the wave as it travels from each point in the source to the observer,
can be approximated by eiω r/r and taken outside the integral. This simplification
yields

h̃µν(ω ,x) = 4G
eiω r

r

∫︁
d3y T̃ µν(ω ,y). (2.63)

The Lorenz gauge in Fourier Space implies

h̃
0ν

=
i

ω
∂ih̃

iν
(2.64)

Therefore, we only need to consider the spatial components and subsequently
recover the timelike components using the relation meantioned before. We begin
by setting ν = j to determine h̃

0j
from h̃

ij
, which in turn allows us to find h̃

00

and h̃
ij
. Starting from the integral in equation (2.63), we focus on the spacelike

components. We proceed by performing integration by parts in reverse∫︁
d3y T̃

ij
(ω ,y) =

∫︁
∂k

(︁
yiT̃

k j)︁
d3y −

∫︁
yi
(︁
∂kT̃

k j)︁
d3y . (2.65)

The first term is a surface integral, which vanishes due to the source being isolated.
The second term can be related to T̃

0j
using the Fourier-space version of the

conservation law ∂µT
µν = 0

−∂kT̃
k µ

= iω T̃
0µ
. (2.66)

Thus, ∫︁
d3y T̃

ij
(ω ,y) = iω

∫︁
yiT̃

0j
d3y

=
iω

2

∫︁ (︁
yiT̃

0j
+ yjT̃

0i
)︁
d3y

=
iω

2

∫︁ [︁
∂l

(︁
yiyjT̃

0l
)︁
− yiyj

(︁
∂lT̃

0l
)︁]︁

d3y

= −ω2

2

∫︁
yiyjT̃

00
d3y . (2.67)

The second line is justified by the symmetry of the left-hand side in the indices
i and j. The third and fourth lines result from performing reverse integration by
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parts and applying the conservation of T µν .

Subsequently, we define the quadrupole moment tensor of the energy density of
the source as follows:

Iij(t) =
∫︁

yiyjT 00(t,y) d3y . (2.68)

Substituting this into 2.63 and transforming back to the time domain, we obtain
the quadrupole formula:

h̄ij(t,x) =
2G

r

d2Iij
dt2

(tr) (2.69)

This formula indicates that the gravitational wave produced by an isolated, non-
relativistic source is proportional to the second derivative of the quadrupole mo-
ment of the energy density, evaluated at the point where the past light cone of the
observer intersects the source.

In electromagnetic radiation, the primary contribution typically arises from the
variation of the dipole moment of the charge distribution. This distinction from
gravitational radiation originates from the fundamental differences between elec-
tromagnetism and gravitation. Specifically, a changing dipole moment corresponds
to motion in the center of the source’s charge density for electromagnetism, or
energy density in the case of gravitation. Unlike the charge distribution in electro-
magnetism, which can oscillate freely, the center of mass of an isolated gravitational
system cannot oscillate without violating momentum conservation. In an isolated
gravitational system, any movement in the center of mass would necessitate a com-
pensating motion in the surrounding environment to conserve momentum.

Consequently, the quadrupole moment, which characterizes the shape or spatial
distribution of the source, becomes the leading order term in gravitational radia-
tion. Since the quadrupole moment is generally smaller than the dipole moment,
gravitational radiation is inherently weaker than electromagnetic radiation. This
difference is further amplified by the relatively weak coupling of matter to grav-
ity, making gravitational radiation substantially weaker than its electromagnetic
counterpart.

2.3. Multipole expansion and higher order modes

In the study of gravitational waves, the linearized gravity approximation provides
a valuable starting point, especially for systems with weak gravitational fields
and slow motion. In this linear framework, the quadrupole formula emerges as
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a powerful result, capturing the dominant wave-generating mechanism for many
astrophysical sources. However, the linear approximation only captures a fraction
of the complexities involved in gravitational wave generation, particularly when
internal gravitational fields are stronger or when relativistic effects become signif-
icant.

The limitations of the linear approximation manifest in its restriction to the
quadrupole mode as the primary source of radiation, neglecting the contributions
of higher-order modes. These higher-order modes become increasingly relevant
in strong-field scenarios, such as the late inspiral and merger phases of binary
black hole coalescences. In such regimes, the gravitational waves exhibit complex
structures beyond the quadrupole mode, and capturing these additional modes is
essential for accurately modeling the full waveform.

To extend beyond the limitations of linearized theory, one can use a full mul-
tipole expansion approach in general relativity, where Einstein’s equations are
solved without reducing the problem to a weak-field approximation. This method
involves a systematic expansion of the gravitational field into multipole moments,
effectively decomposing the field into terms associated with the mass and current
distributions of the source. This approach accounts for the nonlinearities inherent
in general relativity by including each "mass moment” and "current moment” up
to arbitrarily high orders, with each moment contributing uniquely to the radiative
structure of the gravitational waves. Consequently, higher-order modes naturally
emerge from this expansion, enriching the waveform to reflect the full complexity
of the source’s dynamics.

A thorough treatment of the full formalism and technical intricacies involved in
multipole expansions for gravitational radiation would go beyond the scope of this
thesis. However, Kip Thorne has provided an outstanding and unified approach
in his comprehensive 1980 review, which consolidates the various multipole for-
malisms and presents them in a cohesive notation [68].

An alternative to fully model complex relativistic systems is numerical relativity
[7] [56], where the Einstein equations are solved numerically, allowing the simula-
tion of the full, non-linear dynamics of gravitational waves. Numerical relativity
is particularly valuable for modeling complex systems, such as binary black hole
mergers, as it naturally includes all higher-order modes that arise from strong-field
interactions.
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2.4. Sources of Gravitational Waves

As discussed in the previous sections, gravitational waves arise from the time-
dependent multipole moments of mass distributions. For a system to produce
strong gravitational-wave emission, several conditions are necessary: large masses,
rapid motion, and intense gravitational fields. These factors influence the system’s
characteristic timescale, which ultimately determines the primary frequency band
of gravitational-wave emission. In binary systems, the orbital frequency primarily
governs the gravitational-wave frequency, while signal duration is defined by the
rate of energy loss through gravitational radiation, leading to gradual orbital decay
and, eventually, coalescence, at which point the gravitational-wave emission ends.

This section is based on the discussion provided in Gravitational-Wave Physics
and Astronomy by Creighton and Anderson [29], which outlines the key principles
and conditions for gravitational-wave emission in different astrophysical scenarios.

Gravitational-wave sources are often categorized by the frequency range in which
they emit. Systems producing gravitational waves in the high-frequency range -
typically between approximately 1 Hz and 10 kHz - fall within the detection range
of ground-based observatories.

Another useful classification method is based on the nature of the dynamical pro-
cesses involved, which imprint unique signatures on the gravitational-wave wave-
form.

The primary categories include:

• Continuous-wave signals: These signals are generated by sources exhibit-
ing steady, periodic motion over long timescales, often exceeding the ob-
servational period. An example would be a rotating neutron star that as
a non-axial deformation. Due to their frequency stability, continuous-wave
signals are relatively well-modeled and can be identified through targeted
searches.

• Stochastic background: Another type of continuous signal emerges from
random, persistent processes in the universe, forming a gravitational-wave
background analogous to the cosmic microwave background in the electro-
magnetic spectrum. This background is typically the incoherent sum of grav-
itational waves from countless independent sources. Although such signals
persist beyond observational timescales, their stochastic nature complicates
simple modeling, hence they are classified as a stochastic gravitational-wave
background.
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• Burst signals: These are short-duration signals, where the emission dura-
tion17 is shorter than the observational period.

Since gravitational-wave bursts were a central focus of this research, we will ex-
amine their nature in greater depth.

2.4.1. Gravitational Wave Bursts

Burst signals generally arise from violent events, including the coalescence of com-
pact binaries, supernovae from stellar core-collapse, or other highly energetic,
short-lived phenomena. For this research, the most relevant of these events are
binary coalescences.

As mentioned earlier gravitational wave bursts resulting from binary inspiral and
merger events are typically divided into three distinct phases: inspiral, merger,
and ringdown. During the inspiral phase, the binary components orbit each other
with relatively low velocities, allowing post-Newtonian (PN) methods to accu-
rately model the gravitational radiation as the orbit decays due to energy loss
from gravitational waves [15]. As the system progresses to the merger phase, the
velocities become highly relativistic and the gravitational fields strong, rendering
PN approximations insufficient and necessitating the use of numerical relativity
to simulate the complex, non-linear dynamics of the collision [7] [56]. Follow-
ing the merger, the resulting black hole undergoes the ringdown phase, where it
settles into a stable state by emitting gravitational waves characterized by quasi-
normal modes [44]. While these modeling techniques provide a robust framework
for understanding gravitational wave bursts, they are limited by several factors.
Post-Newtonian methods fail in the highly relativistic merger phase and cannot
adequately account for tidal interactions or significant spin effects, especially in
systems with misaligned angular momenta. Numerical relativity, although power-
ful, is computationally intensive and struggles with extreme mass ratio inspirals
due to the vast difference in scales between the binary components.

17within the relevant frequency band
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Figure 2.2.: Simulation of a Gravitational waveform, in the A) time domain B) fre-
quency domain, depicting the inspiral, merger, and ringdown phases of
a binary black hole coalescence. The waveform was generated using the
IMRPhenomPv2 approximant with the following parameters: primary
mass m1 = 20M⊙, secondary mass m2 = 10M⊙, non-spinning black
holes (χ1 = χ2 = 0), and a luminosity distance of 1 Gpc. The shaded
regions highlight each distinct phase Inspiral (light blue), Merger
(light red), and Ringdown (light green). Vertical dashed lines indi-
cate the boundaries between these phases, with the merger occurring
at t = 0 seconds.
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3. Gravitational Wave Detection

Gravitational waves are detected using specialized instruments, such as ground-
based laser interferometers. These detectors, with kilometer-scale arms, are most
sensitive in the frequency band of approximately 10 Hz to 1 kHz. In this chapter,
we focus on these detectors, following the description in [29]. We begin by dis-
cussing the basic Michelson interferometer and proceed to more advanced versions,
as illustrated in Figure 3.1.

3.1. Michelson Interferometer

A Michelson interferometer operates by splitting a laser beam into two orthogonal
paths using a beam splitter. The two beams propagate towards mirrors placed
at the ends of each arm, reflect back, and are recombined at the beam splitter,
where they interfere. If the arms are of equal length1, the returning light is en-
tirely directed back toward the laser due to destructive interference in all other
directions. Conversely, if the arm lengths differ by a non-integer multiple of the
wavelength, the destructive interference away from the laser is incomplete, and
light is captured by a photodiode.

The interferometer is typically configured such that no light reaches the photo-
diode in the absence of external perturbations. When a gravitational wave passes
through the interferometer, it induces a strain2 h := Δl /l, where Δl := Δl1 −Δl2
is the change in the arm length l. This strain alters the interference pattern, lead-
ing to a detectable signal at the photodiode. For a gravitational wave signal to
be measurable, the induced change in arm length Δl must be comparable to the
wavelength of the laser light, Δl ≈ λlaser.

To estimate the metric perturbation h detectable by a laser interferometer, we
consider a simplified high-level calculation. Assume an infrared laser with a wave-
length of approximately λlaser = 1 µm and detector arm lengths l = 1km. The

1Up to an integer multiple of the laser’s wavelength.
2h is of the order of the metric perturbation.
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strain sensitivity can be expressed as

h :=
Δl

l
≈ λlaser

l
≈ 10−6 m

103 m
= 10−9 (3.1)

This sensitivity, h ≈ 10−9, is far from sufficient to detect gravitational waves orig-
inating from black hole binaries, which typically induce metric perturbations on
the order of h ≈ 10−20 or smaller. To bridge this gap, advanced techniques are
required to enhance the sensitivity of ground-based interferometers.

One such method involves increasing the optical path length in the detector arms
by incorporating optical cavities. These cavities allow the laser light to bounce
multiple times, effectively increasing the arm length ℓ to an effective optical path
ℓeff. However, when ℓeff approaches the gravitational wavelength λGW, given by
λGW ≈ c/fGW, the sensitivity begins to degrade due to phase differences intro-
duced by the gravitational wave.

Extending our calculation, targeting fGW ≈ 300 Hz implies λGW ≈ 1000 km.
Using multiple bounces, the strain sensitivity improves to:

h ≈ λlaser

λGW
≈ 10−6 m

106 m
= 10−12. (3.2)

While this represents a significant enhancement, it is still far from the required
sensitivity of minimum h ≈ 10−20. Further improvements necessitate refining the
measurement of the changes in the optical path lengths. Sensitive photodiodes
play a crucial role in achieving this by enabling detection of changes much smaller
than the laser wavelength λlaser.

The primary challenge in this context is shot noise, which limits the precision
of photon detection. Photon arrivals follow a Poisson process, resulting in natural
fluctuations of order

√︀
Nphotons. To detect a meaningful change in light intensity,

the optical path difference must satisfy:

Δℓ ≈
√︀

Nphotons

Nphotons
λlaser. (3.3)

The number of photons collected depends on the laser power Plaser, the photon
energy hc/λlaser, and the observation time τ , which is limited by the gravitational
wave period τ ≈ 1/fGW. Therefore

Nphotons =
Plaserτ

hc/λlaser
=

Plaserλlaser

hcfGW
. (3.4)
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For a typical setup with Plaser = 1 W, λlaser = 1 µm, and fGW = 300 Hz, we find
Nphotons ≈ 1016. The corresponding strain sensitivity is

h ≈ Δℓ

ℓeff
≈

√︀
Nphotons · λlaser

λGW
≈ 10−8 · 10−6 m

106 m
= 10−20. (3.5)

This level of sensitivity aligns with the strain amplitude h expected from astro-
physical sources of gravitational waves.

To further improve sensitivity one can increase the laser power, which reduces
shot noise. However, practical constraints on laser stability and power output are
mitigated through power recycling. This technique reflects otherwise lost light
back into the interferometer, boosting the circulating power by roughly one order
of magnitude improvement in sensitivity. Beyond power recycling, advanced tech-
niques such as signal recycling and quantum squeezing are employed to further
optimize sensitivity, particularly in specific frequency bands critical for gravita-
tional wave detection.

Figure 3.1.: Optical configurations of: A) Michelson Interferometer, B) Michelson
Interferometer with Fabry-Perot cavities, and C) Michelson Interfer-
ometer with Fabry-Perot cavities and Power Recycling [29].

3.2. Detector Noise

As we have seen, the antisymmetric port of the power-recycled Fabry–Pérot Michel-
son interferometer is designed to remain dark when the light is resonant within
the interferometer. However, imperfections and the necessity to measure minuscule
changes in arm lengths introduce challenges that result in detectable signals at the
antisymmetric port. These signals encompass contributions from gravitational-
wave-induced strains as well as various noise sources that limit sensitivity. To
assess the impact of these noise sources, it is essential to describe them in terms of
amplitude spectral density and power spectral density. These metrics characterize
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how noise power is distributed across different frequencies, enabling the identi-
fication of the detector’s sensitivity to gravitational wave signals within specific
frequency bands.

At the core of sensor noise are quantum effects, primarily shot noise and radi-
ation pressure noise. Shot noise arises from the quantum fluctuations in the num-
ber of photons detected, constraining the precision of the interferometric mea-
surements. Mitigating shot noise typically involves increasing the light power
within the Fabry–Pérot cavities, thereby reducing shot noise at higher frequencies.
However, this approach introduces radiation pressure noise, a low-frequency noise
source resulting from fluctuations in the radiation field that exert forces on the
test masses (mirrors). The radiation pressure force

Frad =
2I

c

where c is the speed of light and I is the power of the light hitting the mirror
induces mirror position fluctuations which affect the overall sensor noise. The
interplay between shot noise and radiation pressure noise defines the Standard
Quantum Limit (SQL), a fundamental sensitivity benchmark rooted in quantum
measurement theory and the Heisenberg uncertainty principle. The SQL repre-
sents the optimal balance between these two noise sources and depends on the
interferometer’s physical parameters, such as mirror mass M and arm length L.

Beyond quantum noise, environmental factors significantly impact detector sen-
sitivity. Seismic noise, originating from ground motion due to natural and anthro-
pogenic activities, for instance, trains passing near the LIGO Livingston detector
contribute to low-frequency ground vibrations that can couple into the sensitive
frequency band of the interferometer [31], primarily affects the detector at fre-
quencies below approximately 40 Hz. Advanced seismic isolation systems, includ-
ing pendulum suspensions and multi-layer mass-spring stacks, reduce this noise,
achieving substantial suppression at higher frequencies where seismic noise would
otherwise dominate.

Thermal noise, arising from the Brownian motion of mirror molecules and suspen-
sion systems, becomes the dominant noise source in the intermediate frequency
range up to about 100 Hz. The fluctuation–dissipation theorem relates this noise
to the material’s internal losses, characterized by the loss angle φ. Cryogenic cool-
ing and optimized suspension designs are crucial in minimizing thermal noise.

Gravity gradient noise, caused by density fluctuations in the ground and atmo-
sphere, imposes additional low-frequency noise. While negligible in first-generation
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detectors, it becomes increasingly relevant in advanced and future interferome-
ters due to improved seismic isolation. Mitigation strategies for gravity gradient
noise may include subterranean installations and real-time compensation tech-
niques based on local density measurements.

Together, these noise sources—quantum and environmental - define the sensitivity
landscape of interferometric gravitational - wave detectors.

Figure 3.2.: The noise budget of advanced LIGO (aLIGO), illustrating the contri-
butions of key noise sources to the total noise. Quantum noise, encom-
passing shot noise and radiation pressure noise, defines the high- and
low-frequency limits of sensitivity, respectively. Environmental noise
sources such as seismic noise, suspension thermal noise, and coating
Brownian noise dominate in the low- to mid-frequency ranges. These
noise curves highlight the challenges in achieving optimal detector sen-
sitivity across different frequency bands [24].

3.3. Ground based Detectors

Ground-based gravitational wave detectors are currently the most important in-
struments in the field of gravitational wave detection. Among these detectors, the
Laser Interferometer Gravitational-Wave Observatory (LIGO), Virgo, and KA-
GRA stand out as the most prominent and operational facilities.
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3.3.1. aLIGO (Advanced Laser Interferometer Gravitational
Wave Detectors

aLIGO, operated by the National Science Foundation, comprises two geographi-
cally separated interferometers located in Hanford, Washington, and Livingston,
Louisiana, in the United States. Each LIGO detector employs a Michelson inter-
ferometer configuration with two perpendicular arms, each extending 4 kilometers
in length. The design integrates advanced laser systems, high-precision mirrors,
and Fabry-Pérot cavities. Additionally, LIGO utilizes power recycling among other
signal recycling techniques [67].

Figure 3.3.: Advanced LIGO optical layout: Laser light is recycled and amplified
between mirrors (ITM, ETM) in a 4 km interferometer. Key compo-
nents include beam splitter (BS), power recycling mirrors (PR2/PR3),
and signal recycling mirrors (SR2/SR3) [67].

The significance of LIGO cannot be overstated, as it achieved a groundbreaking
milestone in September 2015 with the first direct detection of gravitational waves
(GW150914) emanating from a binary black hole merger [1]. This monumental
discovery not only confirmed one prediction of Einstein’s General Relativity but
also inaugurated a new era in astrophysics. Since then, LIGO has consistently de-
tected numerous gravitational wave events, including event GW190521 [27], where
IMBHs had their first central stage.

3.3.2. Advanced Virgo (AdV)

Located in Cascina and operated by the Euopean Gravitational Wave Observatory,
Italy, AdV is a key player in the global network of gravitational wave detectors.
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Similar to LIGO, Virgo employs a Michelson interferometer design, featuring two
3-kilometer-long arms. The detector utilizes advanced laser technology and high-
precision mirrors within Fabry-Pérot cavities. Furthermore, Virgo incorporates
sophisticated seismic isolation systems to minimize environmental noise [5] [6].

Virgo plays a critical role in the global gravitational wave detection network. Its
strategic location in Europe, alongside LIGO’s facilities in the United States, com-
plements for superior localization of gravitational wave sources. Together they
contributed to many first observations and the publication of three "catalog" pa-
pers [3] [26] [4]. A notable achievement of was its instrumental role in the first
multi-messenger observation of a binary neutron star merger GW170817 in Au-
gust 2017 [25], which was simultaneously detected in form of the gamma-ray burst
GRB 170817A[34], measured by Fermi-GBM 1.7 seconds after the coalescence.

3.3.3. KAGRA

KAGRA, formerly known as the Large-scale Cryogenic Gravitational wave Tele-
scope, and operated by the ministry of Education, Culture, Sports, Science and
Technology-Japan, is the third detector within the Ligo-Virgo-Kagra collaboration
(LVK). located in Kamioka, Gifu, Japan. Located in Kamioka, Gifu, Japan inside
the Mt. Ikenoyama mine, KAGRA features a Michelson interferometer with two
3-kilometer-long arms arranged in an L-shape. Distinguished as a 2.5 generation
GW detector, KAGRA incorporates unique technological advancements such as
underground construction and cryogenic operation of sapphire mirrors.

Operational since 2019, KAGRA is the first major gravitational wave detector
built underground and the first to utilize cryogenic mirror cooling, which are key
technologies of the third generation large scale detectors. These innovations posi-
tion KAGRA as a pioneering facility in the field, enhancing the global gravitational
wave network’s sensitivity and sky coverage. KAGRA’s integration into the LVK
collaboration strengthens the LVK network’s ability to detect and precisely localize
gravitational wave sources.
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Figure 3.4.: Overhead view of the underground KAGRA gravitational wave obser-
vatory, featuring 3 km-long arms forming an L-shaped tunnel [40].

3.3.4. The LVK Collaboration (LIGO-Virgo-KAGRA)

The LVK collaboration represents a unified international effort among the LIGO,
Virgo, and KAGRA detectors to enhance the detection and analysis of gravita-
tional wave events. This set of detectors uses the unique strengths and capabilities
of each detector to form a highly sensitive and geographically dispersed network.
This significantly improves the overall performance and scientific output of gravi-
tational wave astronomy.

The detectors operate in observing runs (denoted as O1, O2, O3, etc.), alter-
nating with periods of no data collection. During these non-operational periods,
known as commissioning phases, the detectors undergo maintenance, upgrades,
and calibration to improve their sensitivity and reliability [2]. Observing runs are
the active data-gathering phases, typically lasting several months to over a year,
during which all participating detectors are synchronized to maximize the detec-
tion of gravitational waves. The current and planned states of operation can be
seen in 3.6. Their respective PSD per observation run can be seen in
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Figure 3.5.: Timeline of observing runs and sensitivity ranges for the LIGO, Virgo,
and KAGRA detectors. The figure shows the progression of observing
runs O1 through O5, with corresponding binary mergers, detection
ranges in megaparsecs (Mpc). Sensitivity improvements are indicated
for each detector: LIGO reaching up to 160+ Mpc in O4 and projected
240–325 Mpc in O5, Virgo achieving up to 80 Mpc in O4, and KAGRA
improving from 1–3 Mpc in O4 to a projected range of 25–128 Mpc in
O5 [52].

Figure 3.6.: Strain sensitivity curves for LIGO (top left), Virgo (top right), and
KAGRA (bottom) during observing runs. Sensitivity improvements
over time are shown, with corresponding binary neutron star (BNS)
detection ranges in megaparsecs (Mpc). Projected sensitivities for
future runs (O4 and O5) indicate significant advancements in detection
capabilities [2].
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3.3.5. Future Expansion of the LVK Collaboration

Einstein Telescope

The Einstein Telescope (ET) is the European initiative for a third-generation grav-
itational wave (GW) detector, designed to significantly advance GW astronomy
by detecting sources throughout cosmic history, including those from the early
Universe. ET’s reference configuration features a triangular geometry composed
of three nested detectors, each with 10-kilometer-long arms, and employs a "xylo-
phone" setup that integrates interferometers optimized for both high and low fre-
quencies, operating at cryogenic temperatures. Furthermore is will be positioned
200-300 meters underground to mitigate seismic noise. This design enhances sensi-
tivity by an order of magnitude compared to second-generation detectors like Ad-
vanced LIGO and Advanced Virgo, and broadens the detectable frequency range.
In figure 3.7 one can see the optical layout proposed for the ET [16].

Figure 3.7.: General overview of the Einstein Telescope (ET) layout, featuring
three detectors arranged in a 10 km equilateral triangle. Bottom left:
Each detector consists of two interferometers, optimized for high fre-
quencies (HF) and low frequencies (LF). The core design is based on
a Michelson interferometer with Fabry-Perot cavities in the arms and
recycling techniques [60].

Laser Interferometer Space Antenna (LISA)

While the focus of this section is on ground-based detectors, it is essential to
acknowledge the complementary role of space-based observatories like LISA. Op-

34



erating in the low-frequency range between 0.1 mHz and 1 Hz, LISA targets grav-
itational waves with much longer wavelengths compared to those detectable by
ground-based instruments. This distinct frequency range allows LISA to observe a
different set of gravitational wave sources, including ultra-compact binaries within
our Galaxy, mergers of supermassive black holes, and extreme mass ratio inspirals.

LISA consists of three spacecraft forming an equilateral triangle with arm lengths
of approximately one million miles. Positioned in space, LISA avoids terrestrial
noise and leverages its extensive arm lengths to access regions of the gravitational
wave spectrum that are inaccessible from Earth. By covering a broader frequency
spectrum, LISA significantly broadens the detection landscape, enabling the ex-
ploration of a wider variety of astrophysical phenomena and providing invaluable
data that complements the observations made by ground-based detectors within
the global gravitational wave network [51].

Figure 3.8.: A schematic illustration of LISA within the solar system. (Cre-
ated by Simon Barke, University of Florida. Licensed un-
der CC BY 4.0. Source: https://news.ufl.edu/2024/02/
uf-contributes-to-lisa-mission/

Other Detector projects

LIGO-India is a joint initiative between the U.S. National Science Foundation’s
LIGO Laboratory and three prominent Indian institutions: the Raja Ramanna
Center for Advanced Technology in Indore, the Institute for Plasma Research in
Ahmedabad, and the Inter-University Centre for Astronomy and Astrophysics in
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Pune. This collaboration aims to enhance the network’s geographical diversity,
thereby improving source localization and polarization measurement capabilities,
which are crucial for accurate gravitational wave astronomy [46].

Cosmic Explorer, the United States’ contribution to the next-generation obser-
vatory network, features two L-shaped interferometers with 40-kilometer and 20-
kilometer arms, respectively. It is designed to achieve an order of magnitude
increase in sensitivity over current detectors, which will enable the detection of
a vastly greater number of gravitational wave events with significant precision,
including those from intermediate-mass black hole mergers [28].
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4. Data Analysis

Gravitational-wave (GW) astronomy has opened a new window into the cosmos,
enabling the observation of phenomena that are otherwise invisible through elec-
tromagnetic means. However, detecting and interpreting GW signals poses signifi-
cant challenges due to their inherently weak nature and the presence of substantial
noise within the detectors. This section follows the review of [29] and outlines the
fundamental principles of GW data analysis, focusing on the characterization of de-
tector noise, the concept of power spectral density, and the two pivotal techniques
of matched filtering and Bayesian parameter estimation. These methodologies
are essential for optimizing the extraction of GW signals from noisy data and for
accurately determining the properties of their astrophysical sources.

4.1. Fundamentals of Detector Noise

Ligo and Virgo, is limited by various noise sources that obscure the faint GW sig-
nals. Detector noise is often modeled as Gaussian because many independent noise
contributions - such as thermal noise, seismic noise, and quantum noise - combine
according to the Central Limit Theorem, resulting in a Gaussian distribution. This
assumption is only valid when the noise is the sum of a large number of small, in-
dependent disturbances, each contributing minimally to the overall noise. This
approach greatly simplifys the analysis.

Modeling detector noise as Gaussian implies that the noise is fully described by
its first two moments: the mean (typically zero) and the covariance (or power
spectral density). This property facilitates the use of linear filtering techniques,
such as matched filtering, which are optimal for maximizing the signal-to-noise
ratio (SNR) in the presence of Gaussian noise. Additionally, Gaussian noise al-
lows for the derivation of analytical expressions for the probability of false alarms
and detection efficiencies, which are crucial for assessing the reliability of GW
detections.
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4.1.1. Power Spectral Density (PSD)

The power spectral density (PSD) is a fundamental concept in GW data analysis,
quantifying how the power of a signal or noise is distributed across different fre-
quency components.

For a stationary random process x(t), the power spectral density (PSD) Sx(f)
is defined as the Fourier transform of its autocorrelation function Rx(τ):

Sx(f) = 2
∫︁ ∞

0

Rx(τ)e
−2π if τ dτ (4.1)

The PSD provides a frequency-dependent measure of the noise power, enabling
the characterization of noise properties across the detector’s sensitive band. Un-
derstanding the PSD is crucial for designing filters that can effectively distinguish
GW signals from noise by emphasizing frequency ranges where the detector is most
sensitive as we will see later.

4.2. Matched Filtering

Matched filtering is the currently most relevant technique for detecting GW signals
within noisy data. It leverages the known or hypothesized waveform shapes of
potential GW sources to maximize the SNR, thereby enhancing the probability of
signal detection. It involves correlating the detector data s(t), which may contain
both noise n(t) and a potential gravitational wave (GW) signal h(t), with a set of
theoretical waveform templates h(λ) parameterized by λ:

s(t) = n(t) + h(t;λ) (4.2)

The goal is to compute the inner product between the data and each template,
weighted by the inverse of the PSD Sn(f):

(s, h) = 4Re
∫︁ ∞

0

s̃(f)h̃
∗
(f)

Sn(f)
df (4.3)

where s̃(f) and h̃(f) are the Fourier transforms of s(t) and h(t), respectively. This
inner product, known as the matched filter output, effectively measures the over-
lap between the data and the template, scaled by the noise characteristics.

In the absence of a gravitational wave (GW) signal (h(t;λ) = 0), the matched filter
output is a Gaussian random variable with zero mean and variance σ2 = (h, h).
When a signal is present, the output becomes a Gaussian random variable with
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mean Aσ2 (where A is the signal amplitude) and the same variance σ2. The
signal-to-noise ratio (SNR) ρ is defined as

ρ =
(s, h)
σ

(4.4)

A higher SNR indicates a more significant detection, as the probability of false
alarms decreases exponentially with increasing ρ.

To detect a signal, a discrete collection of templates is used to cover the rele-
vant parameter space. A dense template bank ensures that any real signal closely
aligns with at least one template, reducing the loss of SNR caused by parameter
mismatches. The matched filter then systematically analyzes the data, comparing
it against each template to find the best match, ultimately identifying potential
gravitational wave signals based on the highest overlap with the data.

4.3. Baysian Parameter Estimation

Once a GW signal is detected, the next critical step is to accurately estimate the
parameters that characterize the source of the signal. Bayesian parameter esti-
mation provides a comprehensive framework for inferring the posterior probability
distributions of these parameters, integrating both the observed data and prior
knowledge.

Bayesian parameter estimation relies on Bayes’ theorem, which relates the pos-
terior probability P (λ | s) of the parameters λ given the data s to the likelihood
P (s | λ) and the prior P (λ)

P (λ | s) = P (s | λ)P (λ)

P (s)
(4.5)

Here, P (s) is the evidence, which acts as a normalizing factor. In the context of
gravitational wave (GW) data analysis, λ typically includes intrinsic parameters,
such as the masses and spins of the binary components, as well as extrinsic pa-
rameters like the distance and orientation of the source.

The posterior probability distribution P (λ | s) provides a complete statistical
description of the uncertainties in the estimated parameters. The peak of this
distribution, often referred to as the maximum a posteriori (MAP) estimate, cor-
responds to the most probable set of parameters given the data and prior infor-
mation.
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When assuming Gaussian noise, the likelihood function is given by:

P (s | λ) ∝ exp

(︂
−1

2
(s− h(λ), s− h(λ))

)︂
(4.6)

where h(λ) is the gravitational wave waveform model dependent on the parameters
λ, and (·, ·) denotes the noise-weighted inner product. This formulation encapsu-
lates how well the waveform h(λ) matches the observed data s(t) within the noise
characteristics.

Accurate parameter estimation highly depends on the waveform models used. Sys-
tematic errors arise when there are discrepancies between the true GW signal and
the modeled waveforms.

4.4. Nested Sampling

While Bayesian parameter estimation provides a powerful framework for inferring
the posterior distributions of GW source parameters, the computational complex-
ity of calculating a high dimensional posterior distribution posses some challenges.

Nested Sampling, introduced by John Skilling in 2004 [64], is a computational
algorithm designed to efficiently compute the Bayesian evidence1

P (s) =
∫︁

P (s | λ)P (λ)dλ (4.7)

while simultaneously generating samples from the posterior distribution.

It operates by iteratively exploring regions of parameter space with increasing
likelihood, effectively "nesting" the search within higher likelihood contours. The
algorithm maintains a set of active points 2 that sample the prior distribution under
the constraint of increasing likelihood. At each iteration, the point with the lowest
likelihood is replaced with a new sample drawn from the prior, constrained to have
a higher likelihood than the discarded point. This process continues, progressively
narrowing down the parameter space to regions of higher posterior probability.

1or marginal likelihood
2live points
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4.4.1. Step-by-Step Algorithm

1. Initialization

a) Select Number of Live Points (N): Choose a set number of active sam-
ples (live points) to explore the parameter space. The choice of N
balances computational efficiency with the accuracy of the evidence es-
timate.

b) Sample Initial Live Points: Draw N independent samples {λ1, λ2, . . . , λN}
from the prior distribution P (λ).

c) Define the Likelihood function L

d) Initialize the prior volume X0 to 1, representing the entire parameter
space

e) Initialize the evidence P0(s) to zero

2. Iterative Sampling (For each iteration i):

a) Identify the Lowest Likelihood Live Point:

θmin = argmin{L(λ1), L(λ2), . . . , L(λN)}, (4.8)

b) Estimate Prior Volume Shrinkage (ΔXi):

ΔXi = Xi−1ti, where ti ≈ e−1/N 3 (4.9)

c) Accumulate Evidence:

P (s) ≈ P (s) + LminΔXi. (4.10)

d) Replace the Discarded Live Point: Draw a new sample λnew from the
prior P (λ) subject to the constraint:

P (s | λnew) > Lmin. (4.11)

Add λnew to the set of live points, maintaining the number of live points
N .

e) Update Prior Volume:

Xi = Xi−1 −ΔXi. (4.12)
3ti is inherently a random variable because the shrinkage depends on the specific realization

of live points and their likelihoods, but the expected shrinkage in each iteration is on average
e−1/N .
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3. Termination

The algorithm continues iterating until either the estimated remaining evi-
dence from the live points falls below a predefined threshold 𝜖, ensuring that
the majority of the evidence has been accounted for or a number of iterations
were made or a certain number of iterations were made.

4. Posterior Sampling

Throughout the iterative process, the discarded points λmin and their associ-
ated weights ΔXi form a representative sample of the posterior distribution
P (λ | s).
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5. Gravitational Wave Burst
Simulations

Simulating gravitational wave bursts is crucial for detecting and interpreting sig-
nals from events like binary black hole mergers, neutron star collisions, and su-
pernovae. This chapter focuses on the methodologies for simulating these bursts,
the limitations of pure numerical relativity, and the practical use of surrogate and
phenomenological models as efficient alternatives, with key examples highlighted.

5.1. Methodologies for Simulating Gravitational
Wave Bursts

5.1.1. Numerical Relativity

Numerical Relativity involves discretizing Einstein’s equations on a computational
grid and evolving them over time to simulate the merger and ringdown phases of
compact binary systems. This approach captures the full nonlinear dynamics of
spacetime, including effects like gravitational wave emission, black hole horizons,
and matter interactions in neutron star mergers.

NR provides the most accurate waveforms available, capturing all nonlinear and
complex interactions during the merger process including higher order modes. This
high fidelity is crucial for:

• Validating and calibrating approximate waveform models.

• Accurately modeling the late inspiral, merger, and ringdown phases where
analytical approximations break down.

Currently NR simulations are computationally expensive, often requiring super-
computers with extensive computational resources and weeks of computation time
for a single simulation. This high computational cost limits the number of sim-
ulations that can be feasibly performed, restricting coverage of the vast param-
eter space of compact binary systems. Therefore scaling NR to cover extensive
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populations or to perform real-time analyses is impractical. The prohibitive com-
putational demands makes it unsuitable for real-time GW detection and parame-
ter estimation or large-scale population studies requiring thousands to millions of
waveforms.

5.1.2. NRSur7dq4: A Surrogate Model for Gravitational
Waveforms

Surrogate models have emerged as a powerful tool to bridge the gap between the
high accuracy of Numerical Relativity and the computational efficiency required
for large-scale gravitational wave data analysis. NRSur7dq4 [69] is a prominent
surrogate model that enables rapid and accurate waveform generation for precess-
ing binary black hole systems.

Surrogate models like NRSur7dq4 are constructed using a systematic process to
combine the accuracy of Numerical Relativity simulations with computational ef-
ficiency. The process begins with generating a dataset of NR waveforms by solving
Einstein’s equations for a representative set of parameters, such as mass ratios
and spin vectors, within the target parameter space. The resulting waveforms are
then decomposed into simpler components using techniques such as singular value
decomposition. These components are parameterized and interpolated using em-
pirical methods to create a surrogate model capable of generating waveforms for
arbitrary parameter values within the training range. Once developed, NRSur7dq4
generates waveforms with similar accuracy to direct NR simulations but at speeds
orders of magnitude faster, effectively addressing the computational limitations of
numerical relativity [13].

However, NRSur7dq4 is constrained to the parameter ranges covered by its un-
derlying NR simulations, and extrapolations beyond these ranges can lead to in-
accuracies. While the model provides significant efficiency gains for waveform
generation, its initial development requires a substantial investment in NR simu-
lations and computational resources, making the creation and extension of such
models resource-intensive.

5.1.3. IMRPhenomPv2: A Phenomenological Waveform
Model

Phenomenological waveform models play a crucial role in gravitational wave data
analysis by providing computationally efficient approximations to the complex
waveforms predicted by Numerical Relativity. IMRPhenomPv2 is a widely used
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within the community as a state of the art phenomenological waveform model
that incorporates spin precession effects, making it suitable for analyzing signals
from precessing binary black hole systems.

IMRPhenomPv2 is constructed by fitting analytical expressions to NR simulations,
capturing the essential features of GW signals from compact binary mergers. The
model spans the inspiral, merger, and ringdown phases of the waveform, integrat-
ing spin precession to account for the dynamics of systems with misaligned spins.

The development of IMRPhenomPv2 involves:

1. Inspiral Modeling: Utilizing post-Newtonian approximations to model the
early inspiral phase where the binary components are well-separated.

2. Merger and Ringdown Fitting: Employing NR simulations to fit the
waveform during the highly nonlinear merger and subsequent ringdown phases.

3. Spin Precession Incorporation: Incorporating the effects of spin preces-
sion by modeling the waveform in a co-precessing frame and then transform-
ing it to the inertial frame.

IMRPhenomPv2 is designed to generate waveforms rapidly even faster than the
surrogate models, making it also suitable for the points numerical relativity was
missing.

Phenomenological models are designed to be accurate, but they rely on approx-
imations that can miss subtle nonlinear effects captured by numerical relativity
(NR) or lead to errors in parts of the parameter space that aren’t well-represented
by the fitting process.

IMRPhenomPv2 is extensively utilized in GW data analysis pipelines for Matched-
filtering searches to detect BBH mergers, Bayesian parameter estimation to in-
fer the physical properties of detected GW events or Multi-messenger astron-
omy, where rapid waveform generation is essential for coordinating electromagnetic
follow-ups [41].

5.1.4. Efficient Waveform Generation with PyCBC and
GWSurrogate

The advent of sophisticated software libraries has significantly streamlined the
process of gravitational wave waveform generation, enabling researchers to pro-
duce complex waveforms with minimal computational effort. Libraries such as
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PyCBC [53] and GWSurrogate [14] provide user-friendly interfaces that facilitate
the rapid generation of waveforms using state-of-the-art models like NRSur7dq4
and IMRPhenomPv2.

Waveforms from various models can be easily generated with PyCBC. For instance,
the IMRPhenomPv2 model can be used with the following command

from pycbc.waveform import get_td_waveform
hp, hc = get_td_waveform(

approximant="IMRPhenomPv2",
mass1=20,
mass2=10,
dist_mpc=5000,
f_lower = 10,
delta_t=1/4069

)

Generating waveforms with GWSurrogate requires first downloading the desired
surrogate model and specifying its path, but the process remains simple. Once the
surrogate is available, waveforms can be generated with the following command

import gwsurrogate
sur = gwsurrogate.LoadSurrogate(’NRSur7dq4’)
t, h_full, dyn = sur(

q=1.2,
M=200,
dist_mpc=5000,
chiA0=[0,0,0],
chiB0=[0,0,0],
units="mks",
f_low=10

)
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6. Research

Sophisticated online pipelines developed by the LIGO, Virgo, and KAGRA collab-
orations play a crucial role in the real-time detection and analysis of gravitational
waves. These systems enable rapid identification of GW events, timely alerts for
multi-messenger astronomy, and in-depth astrophysical studies of the universe’s
most extreme phenomena.

The online search pipelines used by these collaborations are broadly categorized
into modeled and unmodeled searches, each designed to detect distinct classes of
GW signals. Modeled searches, also known as Compact Binary Coalescence (CBC)
searches, specifically target signals originating from the mergers of compact binary
systems, including binary neutron stars, neutron star black hole binaries , and bi-
nary black holes. These searches utilize matched-filtering techniques, employing
discrete banks of waveform templates that encapsulate the expected signal char-
acteristics of these mergers. Prominent examples of modeled pipelines include
PyCBC Live [17] [54] and GstLAL [8].

Conversely, unmodeled searches, commonly referred to as Burst searches, are en-
gineered to detect a broader spectrum of GW signals without relying on specific
waveform models. This versatility allows them to identify signals from a variety of
astrophysical sources beyond compact binary mergers, including the core-collapse
of massive stars, magnetar star-quakes, and more speculative origins like intersect-
ing cosmic strings or other yet-to-be-discovered GW sources. Notable examples
of unmodeled pipelines include cWB [42] [43], oLIB[47], and MLy (“Emily”) [63],
each employing distinct methodologies to reconstruct and identify transient GW
signals across multiple detectors [37].

Central to the efficacy of modeled searches is the construction and utilization
of template banks. These banks consist of waveform templates generated using
specific approximants, which are mathematical models that approximate the true
GW signals produced by compact binary mergers. The choice of approximant is
important, as waveforms produced by different approximants, even when based
on identical physical parameters, can exhibit significant discrepancies. Such dif-
ferences can lead to residuals differences between the actual GW signal and the
closest matching template - that are substantial enough to mimic or be mistaken

47



for genuine GW signals. For instance, a residual from a mismatched approximant
might be as large as another independent GW event, potentially leading to false
detections or missed signals as seen in 6.1.

Figure 6.1.: Comparison of waveforms and residuals between surrogate model NR-
Sur7dq4 and phenomenological approximants with equal parameters.
Top panels show the strain waveforms for NRSur7dq4 against IMR-
PhenomPv2 (left) and IMRPhenomPv3HM (right). Bottom panels
display the corresponding residuals.

Therefore template banks must be dense enough to ensure that for most of
GW signals, there exists a template closely matching its waveform. This density
prevents the loss of detections due to the absence of a suitably similar template
within the bank. Additionally, the inherent limitations of waveform approximants
introduce the possibility that a GW signal may be matched to a template with
parameters that do not precisely reflect the true source characteristics. This phe-
nomenon arises from the approximations and simplifications embedded within the
waveform models, which may omit certain physical effects or fail to capture com-
plex dynamics accurately. Consequently, a signal may be erroneously associated
with a template possessing different parameters.

Following the detection of a gravitational wave (GW) signal, parameter estima-
tion is essential for uncovering the physical properties of the source. This process
typically relies on Bayesian parameter estimation techniques, which combine prior
knowledge with observational data to derive posterior distributions for the source
parameters. A leading pipeline for this purpose is Bilby [10]. For all detected
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events, an automated Bilby analysis is conducted, where the choice of approxi-
mant depends on the initial chirp mass estimate provided by the search pipeline.
Notably, all approximants used in this analysis are phenomenological models [38].

The result of Bayesian parameter estimation is dependent on the accurate speci-
fication of both priors and waveform models (approximants) used in the analysis.
The selection of an inappropriate waveform model can potentially introduce biases
in the estimated parameters, skewing the properties of the event. Similarly, poorly
chosen priors can compound these biases, particularly if the priors. For example,
utilizing a phenomenological waveform model that lacks higher-order modes, as
opposed to a more accurate surrogate model that incorporates these modes, can
result in systematic biases in parameter estimation. Such biases could be par-
ticularly pronounced in the context of intermediate mass black holes, where the
omission of higher-order modes can significantly distort the inferred properties.
This poses substantial challenges for accurately characterizing IMBHs, necessitat-
ing a focused investigation into the interplay between waveform approximants and
parameter estimation accuracy.

This chapter explores the gravitational waves generated by intermediate mass
black hole mergers, with a particular emphasis on higher-order modes. We be-
gin by introducing the characteristics of higher order modes in IMBHs. Through
visual inspections and the development of the relative power measure, we quan-
tify the impact of higher order modes in waveforms across different parameters.
Finally, we assess the impact of Approximant choice in parameter estimation ac-
curacy, highlighting potential biases and their implications for future gravitational
wave astronomy.

6.1. Visual Inspection of Gravitational Waves
from IMBHs

In order to get a feeling of the impact and size of higher-order modes, it is useful to
first visually analyze the decomposition of these waveforms. This visual inspection
allows us to observe how different physical parameters, such as mass ratio, spin, and
inclination angle, influence the gravitational waveforms emitted by intermediate
mass black hole mergers. By breaking down the waveforms into their individual
modes and examining them graphically, we can identify patterns, trends, and
unique features.
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6.1.1. Methodology

The waveforms analyzed in this visual study are generated using the GWsurrogate
library, which provides a convenient interface for simulating gravitational wave-
forms. For waveform generation, we employ the approximant NRSUR7dq4. As
discussed in 5.1.2, this approximant is based on numerical relativity, ensuring
that the generated waveforms naturally include higher-order modes. Unlike phe-
nomenological models that may require additional techniques to incorporate these
modes, NRSur7dq4 provides built-in support for higher-order modes up to ℓ = 4.
This eliminates the need for any specialized methods to extract or compute the
higher-order contributions.

Once the gravitational waveform for a given set of parameters is generated, it
is output as a complex-valued superposition of the plus and cross polarizations,
given by h = h× − ih+. Since only real-valued functions can be directly plotted,
the cross polarization h× is chosen for visualization.

The library simplifies the process of generating gravitational waveforms, allow-
ing for straightforward simulation and decomposition into their individual modes.
This ease of use enables efficient exploration of how different parameters, such as
mass ratio and spin, influence the higher-order mode contributions to the wave-
form.

The results of the visual analysis are presented in a 2D grid of subplots. In this
grid, the vertical axis represents the increasing mass ratio q, ranging from q = 1
(equal masses) at the top to q = 3 at the bottom, in steps of 0.5. Along the hori-
zontal axis, a second parameter is varied, depending on the specific visualization.
The parameters explored on the horizontal axis include the total mass M , varied
from 100M⊙ to 400M⊙ in steps of 100M⊙, and the inclination angle, ranging from
0 to π /2 in steps of π /6. This arrangement allows for systematic comparisons
across multiple parameter configurations within a single visual framework, facili-
tating the identification of trends and correlations.

To ensure consistency and maintain focus on the chosen varying parameters, cer-
tain other parameters are held constant throughout the analysis. Specifically, the
luminosity distance is fixed at 5Gpc, and the spin vectors of the black holes are
aligned with the z-axis, each with a magnitude of χ = 1. Depending on the param-
eters being varied, additional parameters are also fixed. For the analysis of mass
ratio versus total mass, the inclination angle is fixed at zero. Conversely, for the
analysis of mass ratio versus inclination, the total mass is fixed at M = 200M⊙, as
this value is slightly less than in the middle of the observed total mass range. These
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fixed parameters are chosen to simplify the analysis and reduce the dimensionality
of the parameter space, while still allowing meaningful exploration of waveform
variations driven by mass ratio, total mass and inclination.

6.1.2. Results

The results of this study are presented through a systematic exploration of the
gravitational waveforms. By examining the full waveforms, the higher-order modes
in isolation, and their combined contributions, we uncover the significant role
of higher-order modes in shaping the gravitational wave signal under different
parameter configurations.

Mass Ratio vs. Total Mass

The first set of plots in 6.2 illustrates the full waveforms for different mass ra-
tios and total masses. In symmetric systems, where the mass ratio is q = 1, the
waveforms are highly symmetric and dominated by the quadrupole mode. The am-
plitude of the waveform grows smoothly as the binary system approaches merger,
and the oscillatory behavior remains regular throughout the inspiral phase.

The waveform remains stable with varying mass ratio but as the total mass in-
creases the waveforms change significantly. Systems with low total masses pro-
duce waveforms with higher frequencies and more oscillations. As M increases,
the waveform shifts to lower frequencies, with fewer oscillations, and the signal
appears stretched in time.
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Figure 6.2.: Full gravitational waveforms for varying mass ratios (q) and total
masses (M). The vertical axis represents increasing mass ratio (q = 1
to q = 3), while the horizontal axis represents increasing total mass
(M = 100M⊙ to M = 400M⊙). Each plot shows the strain (h×) as a
function of time (t) for the given parameter combination.

The second set of plots in Figure 6.3 show the higher order modes isolated. For
symmetric systems, the higher-order modes are almost negligible. Their ampli-
tudes and their oscillatory contributions are miniscule. This is consistent with the
expectation that symmetric binaries primarily emit gravitational waves dominated
by the quadrupole mode.

In contrast, as the total mass increases, one can now clearly see that the higher-
order modes become significantly more pronounced. Their amplitudes are much
larger, and the oscillatory behavior becomes more complex.
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Figure 6.3.: Higher-order mode contributions to the gravitational waveforms for
varying mass ratios (q) and total masses (M). The vertical axis cor-
responds to increasing mass ratio (q = 1 to q = 3), while the hor-
izontal axis corresponds to increasing total mass (M = 100M⊙ to
M = 400M⊙). Each plot shows the strain (h×) as a function of time
(t) for the isolated higher-order modes.

The third set of plots overlays the full waveform with the higher-order modes, vi-
sually illustrating the relative contributions of the higher-order modes to the overall
signal. While this visualization provides a qualitative sense of how higher-order
modes influence the full waveform, especially near the merger phase, it becomes
increasingly challenging to evaluate their precise impact with just a visual inspec-
tion. The complexity of the waveforms, particularly for systems with high mass
ratios and large total masses, makes it difficult to quantify the trends and relative
significance of the higher-order modes purely by eye.
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Figure 6.4.: Comparison of the full gravitational waveforms (red) and the higher-
order mode contributions (green) for varying mass ratios (q) and total
masses (M). The vertical axis represents increasing mass ratio (q = 1
to q = 3), while the horizontal axis represents increasing total mass
(M = 100M⊙ to M = 400M⊙). Each plot shows the strain (h×) as a
function of time (t), with the full waveform and higher-order modes
overlaid.

While the analysis so far has fixed the inclination angle, we now turn to a similar
investigation where the inclination is systematically varied and the total mass is
fixed. This analysis will provide insights into how the relative orientation of the
binary system with respect to the observer influences the contributions of higher-
order modes, complementing the trends observed in the mass ratio and total mass
study.

Mass ratio vs inclination angle

In Figure 6.5, which displays the full waveform, it is evident that the signal am-
plitude is highest when the system is observed in the face-on orientation. As the
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inclination angle increases, the signal gradually decreases in amplitude likely due
to the reduced projection of the dominant quadrupole mode. A notable feature
is that as the inclination approaches the edge-on configuration the difference in
amplitude between the inspiral and merger phases diminishes. This results in a
less pronounced transition between these phases.

Another observation is that for systems with higher mass ratios and larger incli-
nation angles, the waveform begins to deform significantly, losing its characteristic
shape. The waveform at the bottom-right corner of the grid nearly loses a clear
distinction between the inspiral and merger phases, appearing quite distorted.

Figure 6.5.: Full gravitational waveforms for varying mass ratios and inclination.
The vertical axis represents increasing mass ratio, while the horizontal
axis represents increasing inclination. Each plot shows the strain (h×)
as a function of time for the given parameter combination.

Figure 6.6 displays the higher-order modes in isolation. For the first column,
corresponding to the face-on orientation, the waveform remains relatively stable
across different mass ratios, with minimal variation in amplitude. However, as
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the inclination angle increases, the amplitude of the higher-order modes grows
significantly, becoming much more pronounced. Additionally, the inspiral phase
exhibits a distinct periodicity that deviates from the typical waveform structure,
further emphasizing the contribution of higher-order modes. These observations
indicate that higher-order modes play a crucial role in shaping the waveform at
larger inclination angles, particularly in asymmetric systems.

Figure 6.6.: Higher order modes for varying mass ratios and inclination. The ver-
tical axis represents increasing mass ratio , while the horizontal axis
represents increasing inclination. Each plot shows the strain (h×) as
a function of time for the given parameter combination.

The last figure, 6.7, presents a different behavior compared to its counterpart
with varying total mass. As the overall amplitude of the waveform decreases with
increasing inclination, the contribution of the higher-order modes grows progres-
sively. By the last column, corresponding to edge-on orientation, the higher-order
modes dominate the majority of the signal. This observation confirms that incli-
nation is a critical parameter when considering the contribution of higher-order
modes to the gravitational waveform.
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Figure 6.7.: Comparison of the full gravitational waveforms (red) and the higher-
order mode contributions (green) for varying mass ratios and incli-
nation. The vertical axis represents increasing mass ratio, while the
horizontal axis represents increasing total mass. Each plot shows the
strain (h×) as a function of time , with the full waveform and higher-
order modes overlaid.

6.1.3. Summary

This initial analysis provides valuable insights into how different parameters, such
as total mass, mass ratio, and inclination, affect gravitational waveforms and the
contributions of higher-order modes.

However, while this qualitative approach is useful for understanding broad pat-
terns, it becomes challenging to quantify the relative impact of higher-order modes.

This limitation highlights the need for a more rigorous quantitative analysis, which
forms the focus of the next chapter. There, we will build upon the visual insights
gained in this study and systematically quantify the contributions of higher-order
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modes. Specifically, we aim to measure their relative power and evaluate how
these modes influence key waveform parameters, providing a more detailed and
objective understanding of their role in gravitational waveforms.

6.2. Quantitative Analysis of Higher-Order Modes
in Gravitational Waveforms

While insightful, these comparisons are inherently qualitative and do not provide a
clear numerical assessment of the significance of individual modes. This limitation
motivates the adoption of a quantitative framework to measure the contribution
of each mode dynamically throughout phases.

6.2.1. Methodology

To address this, the contribution of each gravitational-wave mode is quantified
through its relative power, P rel

i , which is defined as the fraction of the total power
in the waveform attributable to a specific mode:

P rel
i =

Pi

P tot , (6.1)

where Pi represents the power of the i-th mode, computed as:

Pi =
1

N

N∑︁
j=1

(︂
∂ hi(tj)

∂ t

)︂2

, P tot =
∑︁
i

Pi. (6.2)

Here, hi(tj) is the strain amplitude of the i-th mode at the j-th discrete time
step. Since waveform simulations are inherently discrete, the analysis must ac-
count for this discretization. The derivative ∂ hi(tj)

∂ t is approximated numerically
using Python’s np.gradient function. This method ensures accurate calculation
of the derivative, even at the edges of the sampled time range, by employing a
second-order finite difference scheme.

The power Pi of each mode is calculated as the squared magnitude of these numer-
ically computed derivatives, summed over N discrete time steps. The summation
over j effectively averages the power contribution across all time steps, ensuring
that Pi reflects the overall contribution of the mode throughout the signal’s evo-
lution. The total power P tot is then obtained by summing the individual mode
powers Pi over all modes.
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This approach provides a dynamic, quantitative measure of each mode’s signifi-
cance relative to the total signal. By isolating the relative power P rel

i , the method-
ology highlights how individual modes contribute to the overall waveform across
different stages of the signal’s evolution.

The analysis extends across specific parameter space, systematically varying the
mass ratio, total mass, and inclination angle to understand their influence on mode
contributions. The results are presented through a set of contour and 2D plots,
which effectively visualize the dependence of relative power on specific parameters
or combinations thereof.

6.2.2. Results

Figure 6.8 illustrates the relative power contributions of gravitational wave modes,
comparing the dominant 2nd-order modes (ℓ = 2) with the subdominant higher-
order modes (2 < ℓ ≤ 4) for several values of total Mass inclination and mass ratio.

The 2nd-order and higher-order modes are complementary components of the
gravitational-wave signal. For most configurations, the 2nd-order modes contribute
the majority of the power, often exceeding 90% across the parameter space. Their
dominance is particularly evident at low inclinations, where symmetry in the bi-
nary’s radiation pattern suppresses higher-order contributions. However, as the
inclination increases toward edge-on configurations, the relative power of higher-
order modes grows significantly up until 25%.

Mass ratio also plays a crucial role in determining the balance between these
modes. For symmetric binaries (q ≈ 1), the 2nd-order modes dominate across all
inclinations, while higher-order contributions remain minimal. As the mass ratio
increases, the gravitational field asymmetry becomes more pronounced, leading to
enhanced contributions from higher-order modes, particularly at high inclinations.
This interplay is visible in the contour plots, where higher-order contributions
increase with q, particularly in the regions of parameter space corresponding to
edge-on orientations.

Interestingly, while the total mass does impact the gravitational-wave frequency
spectrum, it appears to have little to no effect on the relative power distribution
between the 2nd-order and higher-order modes within the considered mass range.
The trends observed in relative power as a function of inclination and mass ra-
tio remain consistent across all four mass values. This suggests that the relative
balance between the 2nd-order and higher-order modes is governed primarily by
the geometry and asymmetry of the binary, rather than the absolute scale of the
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system’s mass.

Figure 6.8.: Contour plots showing the relative power contributions of 2nd-order
modes (top row) and higher-order modes (bottom row) for total masses
M = 100, 200, 500, 1000M⊙, as functions of mass ratio and inclina-
tion. The color intensity represents the proportion of total power
contributed by each set of modes.

Figure 6.9 focuses on the individual contributions of higher-order modes as a
function of q. As the mass ratio increases, certain modes, particularly (3,±3),
exhibit a noticeable increase in their relative power contributions. For symmetric
systems (q ≈ 1), the contributions from all higher-order modes remain minimal.
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Figure 6.9.: Relative power contributions of individual higher-order modes (ℓ > 2)
as a function of mass ratio (q).

On the other side Figure 6.10 shows the individual contributions of 2nd-order
modes (ℓ = 2). For these modes, the relative power contributions remain relatively
stable or show a slight decline as the mass ratio increases. Among these modes,
the (2,±2) modes overwhelmingly dominate the relative power, contributing a
significant fraction of the total signal across all mass ratios. This behavior is
consistent with the dominant role of 2nd-order modes in gravitational-wave signal.
The contributions of other 2nd-order modes, such as (2,−1), (2, 0), (2, 1), and
(2, 2), are almost negligible in comparison.
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Figure 6.10.: Relative power contributions of individual 2nd order modes (ℓ = 2)
as a function of mass ratio (q).

Figure 6.11 illustrates the cumulative relative power contribution of all higher-
order modes (ℓ > 2) as a function of mass ratio. As q increases, the gravitational
field asymmetry enhances the higher-order mode contributions significantly, with
the total relative power exceeding 16% at the highest mass ratios analyzed.
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Figure 6.11.: Relative power contributions of all higher order modes (ℓ > 2)
summed as a function of mass ratio.

6.2.3. Summary

This study quantitatively assessed the relative power contributions of 2nd-order
(ℓ = 2) and higher-order (ℓ > 2) gravitational-wave modes across a range of binary
parameters, including mass ratio, inclination angle, and total mass.

The results show that 2nd-order modes dominate the signal in symmetric bi-
naries (q ≈ 1) and low inclinations, contributing over 90% of the total power.
Higher-order modes become significant with increasing mass ratio and inclination,
contributing up to 25% of the total power in highly asymmetric systems. The
total mass had minimal impact on the relative power distribution, emphasizing
that geometry and asymmetry primarily govern mode contributions.

6.3. Parameter Estimation Bias

This study focuses on evaluating the biases introduced by waveform approximant
mismatches between injection signals produced with waveform model NRSur7dq4
and estimation signals produced by approximant IMRPhenomPv2 during the pa-
rameter estimation process. By creating a synthetic population of GW events
representative of IMBH systems and utilizing the Bilby pipeline with the Dynesty
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nested sampling algorithm [65], this analysis aims to quantify deviations in recov-
ered source parameters resulting from the use of different waveform approximants.
The methodology involves systematically estimating key source parameters, and
comparing the results against the true values. The detailed setup of the population
generation process and the steps for parameter recovery are outlined below.

6.3.1. Methodology

A synthetic population of GW events is generated, simulating IMBH systems by
sampling uniformly selected parameters within predefined ranges and fixing others
at constant values. The parameter distributions used for population generation
are summarized in Table 6.1.

Table 6.1.: Parameter Distributions for Population Generation
Parameter Description Estimate Range
mass_1 Mass of the primary black hole (solar

masses)
True 120 – 200

mass_2 Mass of the secondary black hole (solar
masses)

True 50 – 100

a_1 Spin magnitude of the primary black
hole

False 0 – 0

a_2 Spin magnitude of the secondary black
hole

False 0 – 0

tilt_1 Tilt angle of the primary spin (radians) False 0 – 0
tilt_2 Tilt angle of the secondary spin (radi-

ans)
False 0 – 0

phi_12 Azimuthal angle between the spins (ra-
dians)

False 0 – 0

phi_jl Azimuthal angle between total and or-
bital angular momentum (radians)

False 0 – 0

luminosity
_distance

Luminosity distance to the source
(megaparsecs)

True 1000 – 1000

theta_jn Inclination angle (radians) False 0 – 0
psi Polarization angle (radians) False 0 – 0
phase Phase at coalescence (radians) False 0 – 0
ra Right ascension of the source (radians) False 0 – 0
dec Declination of the source (radians) False 0 – 0

Notes:
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• Parameters marked as False are fixed at zero.

• mass_1 and mass_2 are randomly sampled within the specified ranges to
simulate a diverse set of IMBH systems.

• luminosity_distance is held constant at 1000 megaparsecs to standardize
signal strength across the population.

For each GW event in the generated population, parameter estimation is conducted
using the IMRPhenomPv2 waveform model, initialized with signals generated by
NRSur7dq4. The pipeline estimates the key parameters (mass_1, mass_2, and
luminosity_distance) through the following steps:

1. Waveform Injection: Use NRSur7dq4 to generate the injection signal.

2. PE Execution: Use IMRPhenomPv2 in the PE pipeline to estimate source
parameters.

3. Parameter Extraction: Extract posterior distributions of the estimated
parameters.

To quantify biases arising from approximant mismatches, the following calculations
are performed:

• Mass Bias:

Δm1 = m1,estimated −m1,real, Δm2 = m2,estimated −m2,real

• Total Mass Bias:

ΔM = (m1,estimated +m2,estimated)− (m1,real +m2,real)

• Luminosity Distance Bias:

ΔDL = DL,estimated −DL,real

For each parameter (mass_1, mass_2, total mass, and luminosity_distance),
histograms of the bias distributions are constructed to visualize systematic offsets
caused by the waveform approximant mismatch.
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6.3.2. Results

Figure 6.12 illustrates that the primary mass m1 exhibits a pronounced bias to-
wards overestimation, with a mean overestimation of 31M⊙. This trend can also
clearly be seen in Figure 6.15 as it shows a consistent offset of the redline which
indicates perfect predictions. This indicates a systematic trend in the parame-
ter estimation, where the heavier component of the binary system is consistently
overestimated. Figure 6.18 and Figure 6.15 also indicate that there seems to be
a cutoff and the algorithm actually wants to estimate the primary mass even higher.

In contrast, the secondary mass m2 demonstrates a more balanced, more gaussian-
like distribution with a mean underestimation of 4M⊙, suggesting that the bias for
m2 is less severe and more symmetrically distributed around its true value, which
is also confirmed by having a slightly higher density below the red line in 6.16.
This discrepancy between m1 and m2 biases highlights the differing sensitivities of
the waveform model to the individual masses in the binary system.

When examining the total mass, Figure 6.13 reveals that the combined effects of
m1 and m2 result in a Gaussian-like bias distribution with a mean bias of 27M⊙.
This suggests that while the biases in m1 and m2 may partially offset each other in
some cases, their combined contribution still leads to a consistent overestimation
of the total mass. This observation aligns with the expected behavior, as the to-
tal mass is a direct sum of the individual components, amplifying any systematic
deviations present in m1 and m2.

Additionally, the luminosity distance shows a consistent positive bias across the
population, as depicted in Figure 6.13. This indicates a systematic tendency to
overestimate the distance to the source, which could significantly impact astro-
physical interpretations.

Figure 6.14 further examines the bias in the total mass and remnant mass by
plotting the absolute values, which confirm a concentrated bias in both at around
30M⊙. Said trend is also clearly visible in 6.17 as an offset from the red line.
This analysis reinforces the conclusion that there is a systematic overestimation of
the total mass and remnant mass across this population of events. The consistent
magnitude of the absolute bias highlights the robustness of this trend, irrespective
of whether individual events show larger or smaller relative biases.
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Figure 6.12.: Bias distribution for primary and secondary mass

Figure 6.13.: Bias distribution for total mass and luminosity distance
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Figure 6.14.: Bias distribution of the absolute value of the total mass and remnant
mass

Figure 6.15.: Scatter plot between true and estimated primary mass
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Figure 6.16.: Scatter plot between true and estimated secondary mass

Figure 6.17.: Scatter plot between true and estimated remnant mass
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Figure 6.18.: Poserior distribution of primary mass m1 and secondary mass m2

for a single gravitational wave event, showing joint 2D contours and
marginalized 1D distributions.

6.3.3. Summary

In conclusion, this study highlights significant biases in the parameter estimation of
IMBH systems, particularly the systematic overestimation of primary, total mass
and remnant mass alongside a consistent bias in luminosity distance. These find-
ings emphasize the need for improved waveform models and parameter estimation
methods to reduce systematic errors.
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6.4. Conclusion

This thesis explored the theoretical and practical aspects of gravitational wave
science, with a particular focus on waveform modeling and parameter estimation
for intermediate-mass black hole systems. The work was structured to provide
a comprehensive overview of gravitational wave theory, detection methods, data
analysis techniques, and the challenges in waveform modeling.

The initial chapters laid the foundation by introducing the theoretical framework
of General Relativity and gravitational waves, including their production, propa-
gation, and detection. The discussion of gravitational wave detection detailed the
principles of Michelson interferometry, sources of detector noise, and the global
network of detectors, including LIGO, Virgo, and KAGRA. These chapters pro-
vided the necessary context for understanding the complexities of data analysis
and waveform modeling.

The thesis then delved into the principles of GW data analysis, with an emphasis
on matched filtering, Bayesian parameter estimation, and nested sampling meth-
ods. These techniques are fundamental for extracting information from GW signals
and were essential for the subsequent research presented in this study.

The core research focused on simulating GW signals from IMBH systems and
assessing the impact of higher order modes on waveform signals and waveform ap-
proximant selection on parameter estimation accuracy. By comparing two promi-
nent waveform models, NRSur7dq4 (a surrogate model) and IMRPhenomPv2 (a phe-
nomenological model), the study quantified biases in key source parameters such
as masses and luminosity distance.

The results revealed that higher-order modes play a crucial role in accurately mod-
eling IMBH mergers, especially in cases with higher mass ratios and larger incli-
nations, where their contribution becomes more pronounced. These modes signifi-
cantly affect the morphology of gravitational wave signals. Furthermore, the study
demonstrated that relying on less accurate approximants, such as IMRPhenomPv2,
leads to systematic biases in the estimation of key source parameters.

In summary, this thesis serves as a foundational contribution to IMBH research,
providing a comprehensive theoretical and methodological framework while of-
fering original insights into waveform modeling and parameter estimation. The
findings presented here highlight the trade-offs between accuracy and efficiency in
current approaches and lay the groundwork for future advancements in gravita-
tional wave data analysis and astrophysical modeling, paving the way for further
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progress in this emerging field.

Despite its contributions, the study is subject to certain limitations. Addressing
these limitations in future work could enhance the robustness and applicability of
the findings.

6.5. Future Work

This study lays the groundwork for exploring systematic biases in parameter esti-
mation, but several avenues remain open for future research. One natural extension
is to increase the statistical robustness of the results by analyzing a larger popula-
tion of gravitational wave events beyond the 500 considered here. Expanding the
study to cover different regions of the parameter space would also provide insights
into how the biases observed in this work vary across diverse IMBH configurations.
Furthermore, other waveform approximants could be employed to test their accu-
racy and assess how biases change when different modeling techniques are used. A
broader range of priors could also be considered to evaluate the influence of prior
assumptions on parameter estimation biases. Another promising direction involves
exploring how bias evolves dynamically by varying one parameter at a time, such
as inclination or mass ratio, to identify potential trends or correlations.

For the related studies involving higher-order modes, future work could exam-
ine the role of other critical parameters, such as spin magnitudes and orientations,
to determine their impact on the waveform structure. Additionally, more focused
investigations could target specific phases of the waveform - such as the merger or
ringdown - where nonlinear effects are most pronounced, enabling a more detailed
understanding of the influence of higher-order modes in these regimes. These di-
rections would not only build upon the findings of this study but also enhance the
broader understanding of gravitational waveforms and their astrophysical implica-
tions.
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A. Theoretical Framework

A.1. Derivation of the Inverse Metric in
Linearized Gravity

In the framework of linearized gravity, the metric tensor is expressed as

gµν = ηµν + hµν , with |hµν | ≪ 1, (A.1)

where ηµν is the flat Minkowski metric and hµν represents small perturbations to
the metric. The inverse metric gµν satisfies the condition:

gµαgαν = δµν . (A.2)

Assuming a linear expansion for the inverse metric, we write

gµν = ηµν + δ gµν , (A.3)

where δ gµν denotes the perturbative correction to the inverse metric. Substituting
the expansions of gµν and gµν into the inverse condition (A.2), we obtain

(ηµα + δ gµα)(ηαν + hαν) = δµν . (A.4)

Expanding the left-hand side and retaining terms up to first order in h and δ g, we
have

ηµαηαν + ηµαhαν + δ gµαηαν = δµν . (A.5)

Simplifying using ηµαηαν = δµν , the equation reduces to

δµν + ηµαhαν + δ gµαηαν = δµν . (A.6)

Subtracting δµν from both sides yields

ηµαhαν + δ gµαηαν = 0. (A.7)

Multiplying both sides by ην β, we obtain

ην βηµαhαν + ην βδ gµαηαν = 0. (A.8)
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Simplifying using ην βηαν = δβα, the equation becomes

ηµαh β
α + δ gµβ = 0. (A.9)

Thus, the perturbative correction to the inverse metric is

δ gµβ = −ηµαh β
α . (A.10)

Since h β
α = ηβ γhαγ, we have

δ gµν = −hµν . (A.11)

A.2. Gauge Transformation in linearized gravity

[50] Consider an infinitesimal change in coordinates given by

x′µ = xµ + ξµ(x), (A.12)

where ξµ(x) is a small vector field satisfying

|ξµ| ≪ 1. (A.13)

This transformation represents a slight shift from the original coordinates xµ to the
new coordinates x′µ. Under the coordinate transformation, the spacetime metric
in the new coordinates x′µ can be expressed using the tensor transformation law:

g′αβ(x
′) =

∂ xµ

∂ x′α
∂ xν

∂ x′β gµν(x). (A.14)

Given that ξµ is small, we can expand the partial derivatives to first order in ξµ:

∂ xµ

∂ x′α ≈ δµα − ∂αξ
µ, (A.15)

∂ xν

∂ x′β ≈ δνβ − ∂βξ
ν , (A.16)

where δµα is the Kronecker delta. Substituting these approximations into the metric
transformation, we obtain:

g′αβ(x
′) ≈ (δµα − ∂αξ

µ)
(︀
δνβ − ∂βξ

ν
)︀
(ηµν + hµν)

= ηµνδ
µ
αδ

ν
β + hµνδ

µ
αδ

ν
β − ηµν

(︀
δµα∂βξ

ν + δνβ∂αξ
µ
)︀

= ηαβ + hαβ − ∂βξα − ∂αξβ. (A.17)

Here, we have lowered the indices on ξµ using the Minkowski metric ηµν :

ξα = ηαµξ
µ. (A.18)

The new metric perturbation h′
αβ in the transformed coordinates is thus given by

h′
αβ = hαβ − ∂βξα − ∂αξβ. (A.19)
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A.3. Phase and Group velocity of gravitational
waves

A wave vector kµ is termed null or lightlike if it satisfies the condition:

kµkµ = 0. (A.20)

In Minkowski spacetime this condition expands to:

−
(︁ω
c

)︁2

+ |k|2 = 0 ⇒ ω = c|k|, (A.21)

where ω is the angular frequency of the wave and k is the spatial wave vector with
magnitude |k|. [12]

The phase velocity vp is defined as the rate at which the phase of the wave
propagates in space [32]

vp =
ω

|k| . (A.22)

Substituting Equation (A.21) into Equation (A.22) yields:

vp =
c|k|
|k| = c. (A.23)

Thus, the phase velocity equals the speed of light.

The group velocity vg is the velocity at which the waves envelope1 propagates
through space [32]

vg = ∇kω . (A.24)

For a null wave vector, where ω = c|k|, the gradient with respect to k is:

vg = ∇k(c|k|)
= c∇k|k|
= c

k

|k| . (A.25)

The magnitude of the group velocity is therefore:

vg = |vg| = c. (A.26)

Hence, the group velocity also equals the speed of light.
1the overall shape of the wave’s amplitudes
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A.4. Invariance of Gravitational Wave
Polarization States under Rotation

To determine the angle of rotation that leaves the polarization states invariant, we
perform a coordinate rotation and analyze the transformation of the polarization
tensors under this rotation. A rotation in the xy-plane by an angle θ is represented
by the rotation matrix [58]

R(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 (A.27)

Under rotation, the polarization tensors transform according to:

e′ij = Rik(θ)Rj ℓ(θ)ek ℓ (A.28)

= R(θ)eijR
T (θ) (A.29)

Our goal is to find the angle θ such that:

e
′(+)
ij = e

(+)
ij and e

′(×)
ij = e

(×)
ij (A.30)

To find the angle θ that satisfies both conditions, we solve the resulting equations
from the above transformations. Upon solving, we find that the smallest non-trivial
angle that satisfies both conditions is

θ = 180◦ (A.31)
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