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Abstract

Cancer is the second most common cause of death in the world, responsible for approx-
imately 10 million deaths in 2019. Survival rates have improved significantly in the last
50 years, and the increase in life expectancy after a radiation therapy resulted in an
increase in the incidence of recurrences and new cancers in people who have already
undergone radiotherapy in the past. Hence, there is a growing usage of re-irradiation in
recent practice. For patient safety, it is necessary to use registration in order to localize
previously irradiated tissue from a former treatment and consider it as background of
the new treatment. However, there is no common standard or protocol for re-irradiation
and a lack of clinical consensus, as well as common ground for the studies done on this
subject. Moreover, the evaluation of dose mapping is complicated as there is no ground
truth to compare results to. This thesis uses data from the ReCare trial to explore pos-
sible data analysis strategies and aims to calculate the best estimate of dose deformation
by combining different registrations, and derive dosimetric uncertainties from it. It was
also an additional goal of the project to determine whether it would be possible to use an
AI-powered segmentation tool as QA for the manual registrations coming from different
institutions in the ReCare cohort.

"Whole body" segmentations were performed with TotalSegmentator on 3D Slicer and
compared with the manual segmentations on RayStation with HD and DSC metrics.
To increase the number of organs to compare, the AI-colon and AI-spinal cord were
modified to a pseudo-AI rectum and a pseudo-AI cauda equina, matching the ReCare
segmentations. On RayStation, a rigid image registration (RIR) was performed, and,
using ANACONDA, an intensity-based deformable image registration (DIR) (noCont-
ROI), as well as two hybrid DIRs (ContROI & Wall). On 3D Slicer, an intensity-based
DIR was performed using Elastix (SDIR). The calculation of dosimetric uncertainties in
dose deformation was based on a best estimate made of the five registrations, assuming
that a geometry-based registration could deform dose because of the spatial correlation
between anatomy and dose distribution. The highest 1% and average standard deviation
of dose (uD,1% & uD,av) were recorded for each organ-at-risk (OAR) and the PTVs of
the second treatments.

A very good similarity (lowest Dice similarity coefficient (DSC): Rectum 0.79) was found
between AI and manual segmentation. However, a low structure correspondence was
found: only three organs are segmented by both methods, whereas the list of OARs in
the ReCare trial counts ten of them.
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Moreover, the theoretical time gain could not be made profitable because of the capac-
ities of the computer used. The general DSC means retrieved were 0.81 for ContROI,
0.74 for noContROI, and 0.70 for SDIR. The general HD means measured were 1.57 for
ContROI, 1.87 for noContROI and 1.69 for SDIR. DIR performed particularly better
for filling organs such as the bladder, the bowel and the rectum, which all exhibited
significant differences between algorithms. Significant DSC differences were also found
between the two intensity-based algorithms, ANACONDA gave better DSC values, while
Elastix performed better for HD measurements. Dosimetric uncertainties were found to
be generated by a complex combination of geometric uncertainties, a steep gradient
dose distribution, and a certain dose magnitude. Geometric variations were found to be
due to image information, to the use of controlling structures, and to differences in the
handling of body contours. For intensity-caused variations, the anal canal region was
identified as being prone to dosimetric uncertainties. The presence or absence of the
RIR in the calculation of dosimetric uncertainties was not found to be significant in the
majority of OARs or in the PTVs. The PTVs’ uD,av range from 0.30% to 13.90%, which
highlights how case-specific the impact of dosimetric uncertainties is on the patient’s
safety.

The lack of structure correspondence between manual and AI-segmentation limits the
use of TotalSegmentator as a QA tool for the ReCare manual segmentations. The reg-
istration analysis resulted in the observation that hybrid DIR gives better results than
intensity-based DIRs, as it offers more subjectivity to match the specificity of each case.
The differences between the two intensity-base DIRs were found to be due to their use
of different optimization metrics. The significant dosimetric uncertainties in the body
contour were attributed to the inability of the RIR to correct for them. Quantifying and
localizing dosimetric uncertainties, such as those extracted in the new treatment PTVs,
demonstrates how incorporating these uncertainties into treatment planning can poten-
tially increase patient safety. Further research using additional patients is necessary to
strengthen the results, confirm the trends identified, and deepen the analysis of factors
of dosimetric uncertainties. Additionally, examining other anatomical regions where To-
talSegmentator might be more suitable and DIR algorithms could yield different results
would be an interesting direction for further investigations.
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1 Introduction

1.1 Physical background

1.1.1 Physical principles of external radiation

X-rays are able to damage cells’ DNA because they belong to ionizing radiation. Ioniz-
ing an atom stands for ejecting an orbital electron and hence forming a positive ion [1].
This ionization process can take place in a direct or indirect manner. A direct ioniza-
tion radiation interacts directly with the target in the cell that needs to be damaged,
which is most of the time the DNA. Indirect ionization radiation will interact with other
molecules or atoms, and by ejecting an orbital electron, they will create free radicals
[2]. It is the free radicals that will then damage the target, and not directly the beam’s
particles. Which of these two processes will take place depends on the radiation source.
Charged particles are involved in direct ionization while uncharged particles will reach
the target indirectly [3].

In brachytherapy, β-rays (which have mass and charge) and γ-rays (which have no mass
or charge) originating from the radioactive decay of the radionuclide, can also be used
to reach the target. The difference between X-rays and γ-rays is their origin. X-rays
are produced by bremsstrahlung, while γ-rays are emitted by excited nuclei, but their
energies are similar [4]. These two particles are therefore functionally identical and will
damage the DNA in the same way.
In clinical EBRT, LINACs are used to generate megavoltage X-rays (4-25 MV). Monoen-
ergetic electrons of energies between 4 and 25 MeV are used as a source to produce the
X-ray beam [5]. An X-ray beam is created by accelerating electrons to energies where
Compton scattering and pair-production are predominant. The electrons are accelerated
by a tuned-cavity waveguide, where a radiofrequency is used to create a standing or trav-
elling wave. Electrons then undergo a rapid deceleration on a high Z target material
that will produce an X-ray spectrum by bremsstrahlung radiation, into which a part of
the electrons’ kinetic energy has been converted [6]. LINACs have many advantages as
they not only produce a reliable, flexible and accurate radiation beam, but the machine
can also be turned off when not needed and its use doesn’t require heavy shielding but
the one to protect from radiation.
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In LINACs, collimators are used to change the shape and size of the beam. Newest
technologies use multileaf collimators (MLC), made of more than 50 tungsten leaf pairs
able to move independently into the beam path during a step-and-shoot or dynamic
process, allowing to create a limitless number of beam shapes [7]. Techniques in photon
external beam radiotherapy evolve constantly, however there are three main techniques,
evolutions of one another, that are the most commonly clinically used.
3D conformal radiation therapy (3DCRT) uses a 3D CT scan to plan the treatment.
Multiple cross firing is used to deliver the dose to the target, which means that the
conformal beams are fired from different angles [8].

(a) 3DCRT (b) IMRT (c) VMAT

Figure 1.1: Dose distribution of different technologies’ treatment plans [9].

Intensity-modulated radiation therapy (IMRT) allows not only to change the shape of
the beam but also its intensity profile, which makes this technique more efficient than
3DCRT (Figure 1.1) [10]. The beam is broken up into many smaller beam ‘segments’
in order to design an appropriate fluence profile. The tuning of specific segments of
the beam makes this technique very precise. An increased precision also leads to the
possibility of using higher doses, as it is assured that it won’t reach healthy tissues.
Volumetric modulated arc therapy (VMAT) is an evolution of IMRT, or, more precisely,
its dynamic application. Indeed, IMRT sends beams of varying doses of radiation from a
sequence of fixed angles. Hence, the MLC will be modified following the step-and-shoot
process. However, in VMAT, the gantry doesn’t have to stop to deliver radiation, forcing
the MLC to change in a dynamic way to allow the continual adjustment of the beam
shape. Each rotation is called an arc, and multiple arcs can be used depending on the
complexity of the treatment. VMAT allows a more precise dose-to-target delivery, as
well as a time gain because of its dynamic nature.
Image-guided radiation therapy (IGRT) is an enhancement that is typically used in
conjunction with both IMRT and VMAT, using an imaging technique to validate the
tumor position improves the precision and accuracy of these radiation delivery tech-
niques. With this technique, corrections in the beam can be made for differences in the
patient positioning or anatomy before the administration of the treatment [10]. Indeed,
the tumor can shift in the body, but also shrink due to the treatment, and if a new image
isn’t done, the high dose doesn’t reach (only) the target and damages healthy tissues.
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Making new images before every fraction adds some treatment time and costs, and de-
pending on the imaging technique, also adds radiation exposure to the patient. However,
it makes the treatment a lot more accurate and minimizes drastically the risk of deliver-
ing high doses to healthy tissues. Moreover, it allows to reduce the safety margins and
again, reduce toxicity to healthy tissues.

1.1.2 Photon-matter interactions

Once the dose prescription and the tumor volume are defined, the X-ray beams’ energies
and positions will be calculated for an optimized treatment. For these calculations to
have a realistic rendering of the beam’s path in the body and of the actual dose reaching
the target, they take into account the interactions taking place between the photons and
the matter. Photon-matter interactions are of interest because they can scatter photons,
hence change the beam trajectory, or they can also absorb photons, hence attenuate the
beam. Different types of interactions can take place between photons that constitute
the beam and the medium it goes through. The type of interaction that will most likely
take place will depend on the photon energy and the atomic number of the absorber
(Figure 1.2). The effective atomic number of soft tissue is close to the one of water (10)
and can be estimated to 7.4 [11].

The energy level of the X-ray beams used for treatment will depend on the location
of the cancer, more precisely on how deep in the body it seats [12]. For skin cancers,
superficial X-rays are used, in the range of 10 keV and 100 keV. Orthovoltage X-rays
(100-500 keV) are used for slightly deeper tissues. For reaching deep-seated tumors,
megavoltage X-rays are used. They range from 1 MeV up to 25 MeV (X-rays above
15 MeV are rarely used). In this context, there are three different types of photon
interactions: photoelectric scattering, Compton scattering, and pair production [11].
Each of them is dominant in different contexts.

Figure 1.2: Relative importance of the three main photon interaction processes with
atomic number (Z) and photon energy [13]
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The photoelectric effect, or photoelectric absorption, takes place when the photon inter-
acts with an inner shell electron of the atom, then called "photoelectron", and removes
it from its shell. The incident photon is completely absorbed in the interaction (Fig-
ure 1.3a). Once the photoelectron has left the atom, it needs to be stabilized and will
use an outer-shell electron to fill the vacancy left in the inner shell. Such rebalancing
transmits energy as the electron drops to the inner shell, this energy will be then be
emitted as characteristic radiation (Figure 1.3b) or Auger electron (Figure 1.3c) [14].

(a) Interaction (b) Characteristic
radiation

(c) Auger electron

Figure 1.3: Photoelectric effect (a) and alternative ways of excess energy release after an
inner electron shell vacancy is filled (b)&(c). [11]

In this interaction, the energy is conserved: the energy of the incident photon is firstly
used to remove the photoelectron from the shell, the remaining energy is then used as
kinetic energy for the photoelectron. The probability of occurrence follows:

p

�
Z3

E3

	
(1.1.1)

with p, the physical density of the attenuation medium, Z, its atomic number, and E,
the energy of the incident photon [15].
It is also more likely to take place when the energy of the incident photon is equal or
slightly greater than the binding energy of the electron in the atom, hence the probabil-
ity becomes really small once the energy reaches 140 keV.

Compton scattering is dominant in human tissues with radiation energies between 30
keV and 30 MeV. It takes place between a photon and a free electron, or a loosely bound
valence shell electron. It is an inelastic scattering process as the resultant incident pho-
ton changes direction and transfers energy to the recoil electron (Figure 1.4). Indeed,
the loss in the photon energy corresponds to the gain in energy of the recoil electron.
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This energy loss generates an increase in wavelength (λ), which is called Compton shift
and determined by:

h

(moc)
(1− cos(θ)) (1.1.2)

with h, Planck’s constant, mo, the rest mass of the electron, c, the speed of light, and
θ, the angle through which the photon is scattered [16].

Hence showing the significant role of the scattering angle theta in the energy redistribu-
tion, as energy can be defined as Eλ = hc/λ [16]. The energy of the scattered photon
decreases with increasing scattering angle. The probability of the Compton effect taking
place is directly proportional to the electron density and the physical density of the
absorbing material, but only weakly dependent on the photon energy [17].

Figure 1.4: Compton effect [11]

The third interaction is pair production and takes place when a photon interacts with
the electric field of a nucleus. The photon undergoes a change of state and the creation
of a subatomic particle and its antiparticle takes place, resulting in the total attenuation
of the incident photon (Figure 1.5). In this interaction, the principle that energy and
mass are interchangeable (E = mc2) is used as matter is created from energy of the
massless photon [18]. Therefore, for this interaction to take place, the energy of the
incident photon needs to be of at least the sum of the resting masses of the resulting
particles. Different pairs can be created by this effect, but in the energy range used in
radiotherapy, the most common pair is an electron and a positron, which necessitates a
high energy incident photon of at least 1.022 MeV. If the energy of the incident photon
is greater than 1.022 MeV, it will be shared between the two particles as kinetic energy.

The probability of pair production follows

ZE(−1.022)p (1.1.3)

with Z, the atomic number of the attenuator, E, the incident photon energy, and p,the
physical density [15].
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Figure 1.5: Pair production [11]

In medical imaging, techniques can be used to reduce the photon-matter interactions
for a better image. However, in the context of radiotherapy, these interaction cannot be
avoided but are instead taken into account for a more realistic treatment approach.

1.2 Medical background

1.2.1 Cancer

Cancer is defined as uncontrolled cell growth and multiplication. It is a disruption of
regulating mechanisms that leads to the formation of an abnormal tissue mass, called
a neoplasm or tumor, made of the body’s own degenerate cells. What makes a tumor
cancerous is its behavior, or dignity. A malignant (cancerous) tumor has for example a
rapid growth, blurred limits, is invasive or even destructive, spreads and forms metastases
[19]. The starting point of any cancer is an abnormal growth of cells. However, the
location of these cells can vary, as any cell in the human body can be the origin of a
tumor.

Cancers are differentiated depending on where it began. Carcinomas originates in the
epithelium, sarcomas in the mesenchyme, leukemia in blood and lymphomas in the
lymphatic system. At the beginning, the tumor is small and can get the nutrients and
oxygen that it needs from the nearby blood vessels. As it grows, it will push the tissues
cells nearby, damaging or even destroying them. The consequences of such a growth
can be the loss of function of the neighboring organs, stenoses, circulatory disorders,
bleedings due to vascular erosion or important disturbances of the metabolism [20].

As stated above, the limits of a tumor are blurred, which means that the cells don’t
really stick together, which makes it easier to spread. The tumor tissue can then be
carried away via bloodstream, lymphatic system or even into a cavity, and will then
create daughter tumors with no continuity to the primary one called metastases [21].
This is considered an advanced stage of cancer. However, a tumor can also be at a pre-
cancerous stage, which means that the structural and functional changes have already
taken place in the cells, but the tumor has not been invasive to neighboring tissues yet.
This is the best stage for a cancer to be diagnosed in, as it is still localized, and the
chances are higher to eradicate it completely [22].
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Cancer is caused by a gene damage leading to cell mutation. This genetic change will
modify the orders that any cell follows about when to grow, work, divide and die. These
genetic mutations can be inherited, i.e. passed on by one parent, or acquired during
lifetime. The most common risk factors for acquired genetic changes are usually age,
smoking and sun exposure [23]. Some genes are considered specific to cancer, when
these genes are silenced, they cannot do their work anymore, increasing the chances
for a tumor to develop. Furthermore, when talking about mutation, it is important to
stress that it is not necessary a single mutation that will cause cancer but more likely a
build-up of mutations acquired during a period of time [24].

1.2.2 Treatment of cancer

The choice of treatment type for a patient with cancer can vary a lot depending on
the situation. The most common factors assessed to choose a treatment are the type
of cancer, its location, its stage and whether it has spread or is affecting other organs.
However, the general health of the patient as well as their age and medical history must
also be considered [25]. A treatment can have different goals: cure, control, or palliation.
A treatment with curative goal will aim to eliminate the tumor. A controlling treatment
will manage cancer as a chronic disease by trying to stop the tumor from growing and
therefore, improving the patient’s quality of life and life expectancy. When the cancer
is at an advanced stage and/or cannot be controlled, treatment can be used to ease
the symptoms caused by the tumor, this use of treatment is considered as palliative.
The most common treatments in patients with cancer are surgery, radiation therapy,
chemotherapy, and more recently, immunotherapy.

Surgery is the oldest form of cancer treatment, it acts locally and will physically remove
cancer. It works best for solid tumors that are contained in one area, often meaning that
the cancer is in its early stages. Furthermore, it can be considered as curative in these
cases. However, surgery cannot be an option for leukemia, lymphomas or any cancer
that has spread, as it is a local treatment. Another restricting factor can be the location
of the tumor. Whether it is near sensitive tissues, vital organs, or major blood vessels,
it might be too dangerous to perform a surgery or even inaccessible for any surgical
method. Curative surgery will remove the tumor as well as some healthy tissue around
it (surgical margins). The lymph nodes neighboring the tumor can also be removed to
determine whether the cancer has spread or not and establish if further treatment is
needed [26]. Surgery can also be used as a supportive treatment, to debulk the tumor.
Debulking means that only a part of the tumor will be removed to reduce its size and
make other treatments easier or lower the damage that the tumor is making to another
organ. In a preventive goal, an organ can be surgically removed before any cancer has
developed. The risks in cancer surgery are the same as for any other surgery and include
pain, infection, bleeding and, depending on what was removed during surgery, loss or
alteration of organ function [27].
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Radiotherapy is mainly used as a local treatment in many different types of cancers
including some lymphomas, leukemia, brain cancers, and spinal cord cancers [28]. Fur-
thermore, it can be used to treat metastasis, but only locally. The main operating
principle of radiation therapy is based on the capacity of ionizing radiation to kill cells.
More precisely, it will attack cells that divide rapidly and struggle to repair their DNA.
This especially triggers cancer cells as they divide quickly and cannot repair damage,
hence having a higher chance to die as their neighboring healthy cells. Used for a control-
ling or palliative purpose, radiotherapy will shrink a tumor, hence reducing symptoms
caused by the spread of the tumor in neighboring organs [29].
Radiotherapy is divided into two main techniques: external and internal radiation. This
means that the ionizing radiation can come from an external beam of γ-rays or X-rays or
accelerated particles such as electrons or hadrons, or from a radioactive nuclide placed
inside the patient. Internal radiation, more commonly called brachytherapy, is used for
cancers located in the head and neck, breast, cervix, prostate, and eye [29]. The main
challenge in any radiation technique is to find a balance between deposited dose being
high enough to have an effect on cancer cells but not too high that it would affect healthy
cells. This problem is addressed in brachytherapy, as the source is very close or even in
the tumor, and in external beam radiotherapy (EBRT), with new techniques allowing
dose to reach more precisely the target. The side effects will depend on the size of the
area treated, the dose used and the type of tissues in the close neighborhood of the tar-
get. An important limiting factor to radiation is that every tissue has a tolerance limit
to radiation dose [29]. Once reached, the risk of suffering severe side effects becomes
dangerously high.

Chemotherapy is a systemic treatment, which means that the drugs travel throughout
the whole body. Indicating that it can reach cancerous cells anywhere, even the ones
that have metastasized and are far from the primary tumor [30]. Chemotherapy encom-
passes the use of different drugs that all have a similar functioning, which is to inhibit
mitosis or induce DNA damage in a way that it will interfere with cell division as well as
damage cells and lead to their death [31]. Different drugs will attack different cell tar-
gets, at different times during the cell cycle. In the same way as in radiotherapy, cancer
cells are more prone to be affected by chemotherapy because they divide more quickly
than healthy cells and cannot repair DNA damage. However, cancer cells can have very
different reactions to these drugs, furthermore, they can also build resistance to them.
Therefore, to reduce the chances of this happening and to destroy as many cancer cells
as possible, several drugs are often used together, one after the other or in combination.
The drugs can be delivered in many different ways, some of them are intravenous, oral,
injected or even topical [32]. Side effects will affects cells in the bone marrow, the diges-
tive tract or in the hair follicles leading respectively to immunosuppression, mucositis,
and alopecia [33].
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Immunotherapy is an expanding field in oncology and has significantly changed the
cancer treatment landscape and research is still ongoing to expand its application. As
its name suggests, immunotherapy will make use of the immune system of the patient
to attack cancerous cells. Indeed, cancer cells have antigens that can trigger an immune
response. However, cancer cells can be difficult to recognize for the immune system
because they start in normal cells [34]. By boosting the immune system, immunotherapy
will improve its ability to kill cancer cells [35].
Two main types of immunotherapy are available, the passive and active types [36]. The
passive, or "off-the-shelf" treatment, will stimulate the immune response in general, in
a non-specific way. For example, checkpoint inhibitors will block checkpoints in the im-
mune system to allow a stronger immune response. The active therapy is, on the other
hand, very specific to the type of cancer that is treated or even to the patient. Adoptive
cell-based therapies will remove cells from the tumor, change them in the lab to make
them stronger, and putting them back in the patient. Cancer vaccines are also of the
active type as they will teach the immune system to react to a specific cancer, the same
way vaccines are used against viruses [37]. Therefore, immunotherapy is best suited for
cancers showing special characteristics either for easier identification or because of their
link with the immune system [35]. Treatment duration and side effects can vary greatly
depending on the immunotherapy administered to the patient. However, the side effects
will be caused by the overreaction of the immune system, causing for example rashes
and itching of the skin, gastrointestinal problems and joints inflammation.

In many cases, the treatment types are paired for a more efficient handling of the cancer.
The structure of such a treatment is as follows [25]:

• Neoadjuvant treatment: secondary therapy used before the primary treatment to
make it easier.

• Primary treatment: main therapy that aims to completely remove cancer and kill
all cancer cells.

• Adjuvant treatment: secondary therapy that aims to kill any remaining cancer cell
after primary treatment, hence reducing the chances of cancer recurrence.

It is also interesting to note that certain chemotherapy drugs, when used during radio-
therapy, will enhance the effects of radiation [38].
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1.2.3 Radiation therapy

As explained in the previous paragraph, there are two main radiation techniques that
differentiate themselves on the origin of the radiation: from the inside of the body or
from the outside. The advantage of having different techniques lies in having different
treatment approaches for the variety of cancers. In external beam radiation, a high
energy beam is aimed at the tumor from outside the body. The beam can be made of
different particles, like photons (X-rays or γ-rays), ions, or electrons. The interesting
difference between these particles is their interaction with tissues when they reach the
body. Photons will penetrate deep in the body and scatter along their way while protons
will not scatter as much, allowing them to deposit the majority of their energy at the
exact place they stop (calculated to be the tumor). Electrons, at the energies typically
used in radiation therapy, cannot penetrate deeply in the body and will therefore be
used only for tumors at the surface of the skin [39]. To create the beam, the particles
need to be accelerated, while photons are produced by directing a high energy electron
beam onto a metal target. A linear accelerator (LINAC) will be used to accelerate
electrons and other relatively lightweight particles, for heavier particles synchrotrons or
(syncro)-cyclotrons are preferred.
In order to give the healthy cells some time to recover from the radiation, the treatment
is organized in fractions. This also allows the dose to the target to be higher. The
fractions usually take place 5 days a week, using the weekend as recovery time [40].

Brachytherapy is a type of internal radiation therapy, where a radioactive source is
placed inside or near the tumor. There are many application techniques of this type of
treatment, and they vary along three main parameters, where the device is put, for how
long, and what source is used. The implant takes the form of seeds, pellets, capsules, or
tubes and contain a sealed radiation source. They are usually put in place with the help
of a catheter or an applicator. It can either be interstitial, which means directly into the
tumor, or intracavity, indicating they are put within a natural body cavity, or a cavity
created by a surgery, or even episcleral, which typically means it is attached to the eye
[41]. These implants can be of low dose rate and will be kept for several days. High-
dose rate implants can only be kept inside the body for a few minutes. There are also
permanent implants that will never be removed because the radiation will get weaker
and will almost completely go away [41]. Sources mostly produce γ-rays, which have
the same effect on cancer cells as X-rays, and the most used are Iridium-192, Iodine-
125 and Caesium-131 [42]. The choice of these different treatment parameters mostly
depends on the type of cancer, its location, the patient’s health, and treatment history.
Brachytherapy is most popular for cancers like prostate, cervical, uterine, vaginal, eye,
breast, or liver cancer [43]. It is important to note that for implants that can stay in,
whether it is for days or indefinitely, the radiation safety for others must be considered
as the patient becomes a radioactive source [43].
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1.2.4 Radiobiology

The human body is made of eukaryotic cells, where the nucleus holds the genetic infor-
mation, the DNA. There are two main categories of cells, somatic and germ cells, the
latter will evolve to be a reproductive cell while all of the other cells in the body are
somatic. Both cell categories propagate through a division process; called meiosis for
germ cells and mitosis for somatic cells. Both processes are divided in different time
periods, as illustrated in Figure 1.6, it includes the division period (M phase), the DNA
synthesis (S phase) which are separated by two gap phases: G1 and G2.

Figure 1.6: Cell cycle [44]

The first factor influencing the radiosensitivity of the cells is the phase they’re in at the
time of damage. Radiosensitivity is increased when the cell is in the division phase and
in the G2 phase. On the contrary, cells are more resistant when they are in the late S
phase [45].
Cells exist in the body in different states such as stem cells, transit cells and mature
cells. Stem cells are cells that will self-perpetuate and produce cells for differentiated
cell populations. Differentiated cells are specialized cells performing specific functions
in the body. Transient cells are in the process of maturing and becoming differentiated
these populations. Mature cells, however, are fully differentiated and will not divide
anymore. As the state of a cell has an impact on their dividing rate, it has an indirect
effect on their radiosensitivity [46].
Irradiated cells can react in different ways [47]:

- No effect
- Delay in division
- Apoptosis, cell death before it can divide
- Reproductive failure, where the cell dies as it attempts to divide

The radiation damage can also be classified as either lethal, hence irreversible, or sub-
lethal, which can be repaired in hours. Malignant cells have a shorter cell cycle than
healthy ones and their abilities to repair damage are impaired, hence making them very
sensitive to reproductive failure [47]. Healthy cells have the time to repair the damage
made before they attempt the subsequent mitosis.
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Bergonié & Tribondeau’s law state that “radiosensitivity of a biological tissue is di-
rectly proportional to the mitotic activity and inversely proportional to the degree of
differentiation of its cells” [48]. This is because, as explained above, cells are more sen-
sitive when they are in M and G2 phases, hence a cell that has a high reproductive rate
has a higher probability of being in these phases at the time of irradiation. Moreover,
a less differentiated cell will divide faster than more differentiated cells, hence they will
also have a higher chance of being in a sensitive phase of mitosis. This means that cells
are more radiosensitive when they have an increased rate of cell division, a low level of
cell specialization, and an increased length of time where they are actively proliferating
[49].

Another factor that has a big impact on radiosensitivity that was not clearly stated in
Bergonié & Tribondeau’s law but is indirectly linked to their observation is the presence
of oxygen. The oxygen effect is due to the fact that O2 reacts with free radicals (induced
by ionizing radiation) and produces very reactive species that generate irreparable dam-
age [45]. The presence of oxygen in the cell can be due to a highly active metabolism,
which is usually the case for cells with a high division rate. This means that cells are
more radiosensitive when they have a higher metabolic rate, an increased oxygenation
and are well nourished. Differences in radiosensitivity of cells leads to differences in
radiosensitivity of tissues.

Cell survival curves (Figure 1.7) are used to describe the surviving fraction of cells and
absorbed dose. Different models are used to describe the survival of cells depending on
the radiation. The linear-quadratic model allows to describe cells’ reactions to sparsely
ionizing radiation and shows an initial slope followed by a shoulder region and becomes
nearly straight at high doses.

Figure 1.7: Cell survival curve [50]
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The model describes the fraction of cells S surviving a dose D as:

S(D) = e−αD−βD2
(1.2.1)

α : constant describing the initial slope of the cell’s survival curve
β : smaller constant describing the quadratic component of cell killing
This model assumes two death mechanisms: a single lethal event, and the accumulation
of sublethal damages that leads to cell death. Hence, the ratio α/β gives the dose at
which both mechanisms are equal [47].

The factors that can be altered to decrease healthy cells’ radiosensitivity are, on one
hand aiming to decrease the oxygen effect and on the other hand, aiming to increase the
chance of damage repair. The first goal can be reached by removing oxygen to put the
cells in a hypoxic state or by adding chemical radical scavengers that will convert radi-
cals into non-radical products [47, 51]. The second goal is achieved by the fractionation
of the treatment. For the same radiation dose, if the radiation is delivered at a lower
dose rate, it will kill less healthy cells. This is because the time between the fractions
allows for cells to repair sublethal damages that occurred during irradiation. This sends
the constant β -accounting for deaths coming later in time- towards zero [45].
Dividing dose into multiple fractions is based on the “4Rs” theory [52], it:

- Spares normal tissues through:
– Repair of sublethal damage between fractions
– Repopulation: rapid proliferation of surviving tissue after cell-killing induced

radiation
- Increases tumor damage through:

– Reoxygenation: due to reduced demand from dying tumor cells
– Redistribution: cells tend to pile up at a G2 checkpoint after being exposed

to radiation, making them more sensitive in subsequent radiation

As mentioned when introducing cell survival curves, the type of radiation has a role to
play in the cells’ response to it. To define the quality of an ionizing radiation beam, the
linear energy transfer (LET) value is used. This value describes the density of energy
deposition in a material, and more precisely the linear rate of energy absorption by the
absorbing medium as the charged particle traverses it. In the context of external beam
radiation therapy, the secondary charged particles produced by X-rays and γ-rays are
low LET radiations so they deposit only a small amount of energy along their path in
the body [45]. Higher LET radiations will mean higher abilities to perpetrate biological
damage. The quantification of this observation is made through the relative biological
effectiveness (RBE), which is a ratio between a dose of standard radiation known to
produce a given biological effect, and a dose of a test radiation that produces the same
biological effect [45].
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RBE can vary according to various parameters such as the type of radiation, the target
tissue, the biological effect in question, the dose rate, and its fractionation. Hence, the
therapeutic use of RBE comes in when the RBE value is higher for healthy tissues than
for cancerous ones.

The overall intended outcome from radiotherapy is cancerous cell damage, or death. As
explained, it can also be caused on healthy cells that are not the target of the treatment,
although it is avoided as much as possible. The damage to healthy cells creates side
effects, which vary in severity, causes, and delay. First factor differentiating side effects
is determined by the dose and the time when the side effects appear.
An acute side effect will show soon after a short time exposure to a high dose radiation.
High dose radiation kill cells and the effects can vary greatly, going from vomiting to
death. On the contrary, a chronic side effect is delayed and takes place after long term
irradiation to low dose. Low dose irradiation only causes damage to cells which explains
that the effect can only be observed later in time.
Chronic side effects can again be separated in two types: somatic and genetic. Genetic
side effects will only be suffered by the offspring of the person that was irradiated.
Somatic side effects, on the other hand, will be suffered by the person during their
lifetime. One of the most common somatic late effects is carcinogenesis, or in other
words, radiation-induced cancer.
The last categories used to differentiate the side effects relates to threshold dose. In
deterministic effects, which are mostly acute but can be chronic, the severity of the
symptoms increases with the dose. In stochastic effects, which are mostly chronic but
can be acute, the probability of occurrence increases with the dose. However, the severity
does not depend on the dose, it is therefore said that there are no threshold doses for
stochastic effects [47].

One of the most frequently discussed side effect is radiation-induced cancer because of its
counterintuitivity, it is however not the only late side effect of a radiotherapy treatment.
Radiation can damage tissues and induce fibrosis, which creates permanent scar tissue
instead of parenchymal tissue [53]. This causes the tissues to be less flexible, which can
lead to vascular constriction and nerve compression [54]. The lymphatic system can also
be damaged and cause swelling and obstructive symptoms [55]. When blood vessels are
damaged by radiation; thrombotic, inflammatory and fibrogenic complications can take
place [56]. Radiation necrosis can also be caused by damaged blood vessels, reducing
blood supply to healthy tissue and causing it to die by ischemia [57]. Nerves are ra-
diosensitive, and are hence prone to damage. Damage takes place in three phases: (1)
micro-vascular injury, (2) capillary damage, (3) nerve demyelination [58]. Bones can also
be victim of radiation damage although they are not very radiosensitive, the damage
can cause weakening of the bones, osteoporosis, or even osteonecrosis [59].
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In the context of pelvic radiation, the organs suffering of these damages are the bladder,
the rectum, the bowel and the reproductive organs. The effects to the bladder can be
an overactive functioning due to the shrinking of the organ, and hence reduced urine
quantity holding capacity, because of damage of the tissue making it less flexible. Incon-
tinence can happen if the pelvic floor muscles and the urethral sphincter were weakened.
On the contrary, another side effect can be urine retention caused by damage to the
nerves near the bladder which will affect the muscles’ work, making it impossible to
empty the bladder completely. Other side effects can be pain and burning when passing
urine as well as haemeturia (blood in urine) [60]. For the bowel, atrophy of the organ,
fibrosis and vascular changes can cause intestinal problems like pain, diarrhea, steator-
rhea and bleeding which can lead to malabsorption of nutriments like vitamin B12 [61].
The effects to the rectum are increased stool frequency, urgency, rectal bleeding, pain,
as well as variable degrees of incontinence and strictures [62]. Infertility can be a side
effect to both male and female reproductive systems. However, women can also suffer
from early menopause, vaginal bleeding, vaginal dryness, fibrosis of the vaginal tissues,
and vagina stenosis [55]. Nerve damage taking place because of pelvic irradiation can
cause tingling, weakness, or loss of sensation in one or both legs [63].

1.3 Radiation therapy process

1.3.1 CT scan

Treatment plans are based on CT scans in treatment position, it is therefore important
to know what this data shows. A CT scan is made of an X-ray tube and a row of
detectors rotating around the patient, allowing to take measurements at multiple angles
and positions and can be reconstructed as slices afterwards. Although it uses an X-ray
beam like in EBRT, for imaging purposes, the energies of the X-rays are lower as in
therapy and are set around 20-150 keV, where photoelectric and Compton effects rule
the interaction between the X-rays and matter [64]. The underlying principle of CT scan
is to measure the intensity of the X-ray beam after it has crossed different tissues. Their
different capacities to attenuate X-rays are visually translated with different shades of
grey, which can be modified with windowing. A high absorption of X-rays translates
most of the time a high atomic number, hence a high physical density as well as a high
electron density [65]. The shade of grey showing at the exit of the tissues represents the
proportional sum of the attenuation coefficients of all the tissues the beam has traversed
[64]. The Hounsfield unit (HU) offers a quantitative interpretation of the different shades
of grey, and links it to the attenuation coefficients in the form of a linear transformation
of attenuation coefficient, based on the arbitrarily-assigned radiodensities of air and pure
water.
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HU = 1000
µ− µwater

µwater − µair
(1.3.1)

with µair = −1000, µwater = 0 and µ, the average linear attenuation coefficient of the
voxel [66].
Moreover, CT scans gives a good contrast for tissues that have "extreme" densities,
like bones showing very bright or lungs filled with air showing very dark. However, the
contrast between different organs made of soft tissues can be very light and make it
difficult to differentiate the organs.

1.3.2 Treatment planning

Treatment planning consists of the customization of therapy and delivery according to
the patient’s tumor burden and anatomy. The planning of the treatment involves the
choice of the technique used, the dose administered, the duration of the treatment, as
well as its fractionation. The principal factors influencing these decisions are the local-
ization, size, density, and sensitivity of the tumor [67]. Here, the discussed treatment
planning refers to external beam radiation therapies. The shape and angles of the beam
will have to be established after analysis of the anatomic location of the target site via
a simulation made on the latest CT scans [68].

In order to assure that the patient will be in the same position from simulation to treat-
ment, as well as from fraction to fraction, but also assure that they will not move during
the treatment, immobilization devices are used as part of the patient setup. These de-
vices include masking tape, velcro belts, elastic bonds, or even sharp fixation systems
[69]. The patient position is determined with the help of a scout image, which is a survey
of the region of interest that will also be used to select the dedicated image acquisition
area [47].

The patient data retrieved from the CT scan are the external shape of the patient, as
well as the adjacent areas, like the couch, to account for scattered radiation. However,
MR imaging plays an increasing role in treatment planning, as it offers a better soft
tissue contrast than CT scans. MR based treatment planning has however some issues
such as the physical dimensions of the machine reducing the position possibilities as well
as the choice of immobilization devices, electron density is also lacking, and geometrical
artifacts and distortions are still present in this imaging device [70]. Therefore, when
used for treatment planning, MR images should be registered or fused with CT data to
combine information.
It is necessary to define the volumes of interest by delineating the relevant organs and
tissues.
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Figure 1.8: GTV, CTV, PTV, and ITV schematic definitions (ICRU Report 62) [71]

For the tumor’s delineation, different volumes are defined for different uses (Figure 1.8)
[72]. The gross tumor volume (GTV) will highlight the visible extent of the tumor.
Around the target, the OARs surrounding the tumor are delineated. Then, the GTV
will be extended to delineate the real target, which is called the clinical target volume
(CTV). It is defined as the true target because, compared to GTV, it includes margins
surrounding the visible tumor’s boundaries which might contain cancerous cells and
are part of the volume to be eliminated for safety. Now the CTV is expanded to the
planning volume target (PTV), which will account for technical set up margins. It
should take all possible geometrical variations into consideration to make sure that the
CTV will actually receive the prescribed dose [73]. The PTV takes all uncertainties and
dose variations into account as it includes the internal margin as well as an additional
margin for set up uncertainties, machine tolerances and intra-treatment variations. More
precisely, the internal target volume (ITV) is defined as the CTV and the internal margin,
which accounts for organ motion [72]. Then, the PTV consists of the sum of the ITV
and the external margin.
Furthermore, it can be stated that the PTV considers systematic and random errors.
The treatment preparation creates systematic errors such as setup errors, organ mo-
tion during planning CT, delineation errors, or equipment calibration errors. While the
treatment execution introduces random errors which are due to inter- and intra-fraction
changes. These different volumes are either volume defined or geometric concepts [74].
Indeed, the GTV, the CTV and even the OAR, have an anatomical basis to their delin-
eation, hence it is a result of a medical judgment. However, the PTV, as well as other
volumes like the ITV or the planning organ-at-risk volume (PRV), are constructed vol-
umes to ensure the correct dose delivery to the CTV and OARs. These volumes consist
only of the addition of the correct margins for the respective indication and patient.
Moreover, the PTV depends on the irradiation technique while the CTV does not.
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Margins are essential to radiotherapy to assure safety of the dose delivery (assure that
the target is in the treated field 90% to 95% of the time [75]). It is however important to
remember that, as margins are three dimensional, a small margin increase translates in
a large volume increase. The dose delivered to the target should be as homogeneous as
possible, although some heterogeneity is accepted due to technical reasons. The ICRU
report 50 recommends a target dose uniformity within +7% and -5% relative to the dose
delivered to a well defined prescription point within the target [76].

To visualize treatment beam axis and outlined structures for a virtual treatment simula-
tion, a cone beam CT is used (CBCT). The anatomy is then compared with the planning
CT, and modifications can be made if necessary. Such imaging method provides volu-
metric images and allows a precise localization of the target area and hence, an accurate
dose calculation. Moreover, as it is mounted on the LINAC gantry, it enables beam
adjustments based on real-time images. This is part of the optimization process in the
virtual treatment simulation, as the radiotherapy technologists (RTTs) or the medical
physicists will be trying to ensure the highest effect on the tumor while excluding the
healthy tissues and organs in the vicinity of the target dose. In the most common cases,
the target dose is between 40 and 70 Gy [67]. It could however be tuned accordingly to
the patient’s specific reaction to radiation. This prescription is made by the radiation
oncologist and will vary also on the aim of the treatment, whether it is curative or pal-
liative as well as whether it is primary or adjuvant. Depending on the sensitivity of the
OARs and their position to the high dose area, it can be necessary to modify the beam
arrangement or even the dose to spare them [77].
Every treatment plan has to be evaluated in order to assess the quality of the plan, more
precisely to assure that the calculated dose distribution of the dose treatment plan com-
plies with the clinical goals of the treatment [78]. Isodose distribution is one of the tools
used to check that the coverage of the target as well as the protection of the surrounding
tissues. Another step is patient QA (PSQA), which can be done by recalculation of the
treatment plan using a different dose calculation algorithm and/or dose measurements
of the treatment plan calculated on the geometry of a dedicated QA phantom.

As explained in above section (1.2.4), dose delivered in fractions gives better results as it
allows healthy cells to recover from radiation damage while providing maximum tumor
control. Indeed, the dose will be administered in daily fractions (5 times a week) over
several weeks. The dose given in one fraction ranges from 2 Gy up to 36 Gy, depending on
the fractionation. Hyperfractionation allows small doses as the treatment is given twice
a day over the same total treatment duration. On the other hand, hypofractionation
delivers higher doses per fraction but there are less fractions, and the treatment is
shorter. There is also accelerated fractionation, which uses smaller doses multiple times
a day and on a shorter period [79].
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This description of the treatment planning process, highlights the interdisciplinary na-
ture of radiotherapy, and how important communication, standardization and harmo-
nization are essential for a proper functioning. The ICRU reports serve, to a certain
extent, this purpose.

1.3.3 AI segmentation

Segmentation is a key component of the radiotherapy workflow. More precisely it is
crucial in registration, whether it is to be used as controlling structure or as a quality
assurance metric, as well as in treatment planning for the target or organs at risk (OARs)
definition. Tools currently used in clinics such as intensity analysis, shape modeling,
thresholding, and region growing already make use of deep learning [80]. However, they
leave an important role to manual editing, which has to be carried out by experts.
Although it is a validated and widely used process, it has three main disadvantages [81].
Firstly, it is very time consuming and significantly contributes to the treatment planning
duration. Secondly, although there are some guidelines on how segmentation should be
performed, in the end, there is no "ground-truth" of what a perfect good segmentation
should look like. Thirdly, as manual input is necessary there is a high inter- and even
intra-observer variability, which makes this process practically impossible to reproduce.
The two last arguments also make it difficult for any multi-institutional comparison.
That is when AI-powered segmentation comes into play. Here, convolutional neural net-
works (CNN) are used. They have the ability to extract low-level image features through
hidden layers and are developed using retrospective peer-reviewed treatment contours
[81]. They offer a real difference in segmentation as they can handle a wider variety
of complex anatomical structures and variations (Figure 1.9). Moreover, deep convolu-
tional neural networks (DCNN) also learn independently a hierarchical representation
of the input data, but need however a large input data to do so effectively.

Figure 1.9: Schematic representation of CNN segmentation [82]

The CNNs used in medical practice are adapted from the ones used in conventional
image segmentation, but the nature of medical data complicates the adaptation. These
difficulties consist of the scarce training data, the high number of modalities, the 3D
nature of tomographic imaging, and the domain shifts between medical practices or
protocols [83].
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For medical segmentations, the most common CNN architecture used is U-Net [81].
These models have a encoder-decoder structure, each made of four levels, giving it a U
shape (visible on Figure 1.10), which it is named after. The encoder uses convolutional
layers and max pooling as a contracting path, where it reduces the spatial the information
(size of input halves with each level) and increases the feature information (number of
channels doubles with each level). This part of the model is responsible for identifying
the relevant features in the input image, but in image segmentation, the location of the
features play an important role. Therefore, the expansive path (the decoder) will work
on locating the features as well as decoding the encoded data.
The decoder has the same structure as the encoder for each level, but in order to up-
sample the image, it uses transposed convolution, also called deconvolution, instead of
convolution layers. To retrieve spatial information lost in the encoding, the decoder uses
skip connections ("copy and crop" gray arrows on Figure 1.10), which give access to
information that do not go through all of the convolution layers.

Figure 1.10: U-Net architecture [84]

AI segmentation could accelerate the treatment process, as well as increase its quality
and reproducibility. Introducing it into clinical workflow could then reduce effort and
bias, and offer efficiency and consistency, which would be a notable advancement in ra-
diotherapy patient care. It has indeed been proven to outperform physicians in similarity
metrics as well as time [81, 85].

20



1.3 Radiation therapy process Maude CORNU

It should however still further demonstrate robustness when presented to different pa-
tient populations, diversity in patient anatomies, and changing tumor treatments and
protocols. Before being implemented into clinics, these models should assure adaptabil-
ity and flexibility to structures with significant variability. Moreover, it should be able
to manage the differences between the training data and the actual patients, which can
arise from different demographic characteristics or the choices of contouring guidelines.
Although the progress in computing power in the last years pushes beyond the earlier
limitations of performance of these models, it also translates a huge dependence on new
technology which reduces the accessibility to the tool [86].

Implementing these models into clinics would also be very challenging on the user side.
Firstly because, although it is an automated process, the results will be used in human
conducted parts of the treatment planning and verifications will always be performed
by a clinician. Explainability in AI models is crucial when they are part of a decision
making process. Users should also deeply understand how to operate the tool, as well as
its intended use and scope [87]. Correct interpretation and verification of the results are
essential to the patient’s safety. Hence education of the workforce, as well as implemen-
tation and utilization guidelines are necessary for an effective and competent use of AI
models in clinics [88]. Another dimension of this transparency is to ask the algorithm
provider for details about the data used for training [89].
The use of AI in radiation oncology can cause changes in the work and required skills of
professionals in the domain such as dosimetrists, physicists, and radiation oncologists,
hence their tasks might have to be refocused [90].

1.3.4 Re-irradiation

Re-irradiation is a new course of treatment, either to a previously irradiated volume or
where the cumulative dose raises concerns of toxicity [91]. It takes place in patients with
recurrent cancer, metastatic cancer, or new malignancies following an initial course of
radiotherapy. There is an increasing interest and use of re-irradiation, which are probably
caused by an increase in the long-term cancer survivors, earlier detection, better staging,
an improvement in treatment modalities like precision in planning and delivery, and the
improvement of multidisciplinary approaches.
However, before administering a re-irradiation treatment, it should be made sure that
the patient can clinically tolerate a second irradiation, that the information about the
first irradiation is sufficient to plan a safe second radiation and that the technique used
for re-irradiation is the most adequate [92]. The factors from the first radiation that
will be looked at are: the dose that was prescribed, the volume irradiated, the chosen
fractionation, the time between the two treatments, and the type of organs that were
the targets or OAR [93].
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Indeed, a large targeted volume will be more problematic, as well as a high dose, but it is
also very dependent on the irradiated area, whether the neighboring tissues and organs
are radiosensitive or not [94]. Tissues also have different recovery factors, meaning that
the cells could have totally recovered from the first irradiation. For example, rapidly
proliferating tissues will tolerate re-irradiation to almost full dose as they recover well
from the initial radiation. Nevertheless, not only is this factor very tissue-specific, but
it is also very patient-specific and not very well known [93].
However, the main concern in a re-irradiation treatment is identifying how much overlap
actually exists between the two treatments in order to measure the dose accumulation in
the treated area. For a realistic treatment planning, biologically equivalent doses should
be calculated to account for the delivered dose, and this voxel-by-voxel [95].

There are multiple late side effects that can be induced by radiation, and more impor-
tantly, their probability of occurring increases with dose. For this reason, the treatment
planning in the case of a re-irradiation should not be handled as if it was a first-time
treatment. Therefore, as explained above, the dose already received by the tissue should
be considered. However, patients’ anatomies change over time. These already occur in
between fractions and are cared for in the IGRT technique. Furthermore, these changes
are even more important in re-irradiation situations, as years have gone by. These
anatomic changes lead to the impossibility of simply superposing the scans of the two
treatments. This translates the need of changes of the primary scan to match the present
one, in order to take the primary dose into account in the current treatment plan, only
then will the overlap be realistic.

1.3.5 Registration

The anatomical changes taking place between the two treatments can be of different
types and causes, they can result from surgery, changes in habitus, patient positioning,
organ filling and internal motion. These changes translate in the datasets to variations in
position and location, as well as in size. In the context of this work, registration is used
for re-irradiation, but it is also used between different modalities (e.g. CT-CBCT, CT-
MR), or between CTs in a different context such as inter-fraction images. The process
used to superpose the two scans is called image registration:

"The process of spatially aligning two or more image datasets of the same scene taken
at different times, from different viewpoints, and/or by different sensors." [96]

The two types of registrations used in re-irradiation are rigid image registration (RIR)
and deformable image reformation (DIR). As its name suggests, RIR only allows rigid
transformations of the image set, hence translations and rotations. This can improve
positional problems but cannot help size changes as it preserves the relative distance
between every pair of points. In contrast, DIR is a nonlinear process that can achieve
stretching or shrinking transformations.
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It was showed in multiple studies that DIR give better results than RIR when used
correctly [97–99]. On the representation side, RIR transformations are described by a
matrix while a displacement vector field is used in DIR.

Any basic algorithm will try to optimize transformation parameters to find a registration
that optimizes a similarity metric. A regularization term is typically included in the
similarity metric to allow only transformations that are judged desirable and physically
plausible. Different matching criteria can be used in a DIR algorithm. For example, the
criterion could be intensity-based and use intensity to optimize the registration. This
will work better for datasets with clear features and high contrast. Landmarks and/or
structures that are defined in both image sets can be used to help the optimization
process. Another criterion can be biomechanical properties, which means that modeled
physical properties of the tissues are used. These properties are modeled by finite element
methods (FEM) [100].

1.3.6 Dose accumulation

Dose summation consists of the addition of doses. However, when anatomical changes
are accounted for between the two dose plans, dose must be accumulated rather than
just summed. Dose accumulation refers to the process of summing a mapped dose with
another dose. Every dose plan is linked to a CT scan on which it is implemented.
Once the registration, either RIR or DIR, is performed between the CTs, the dose of
the first treatment can be mapped to the second one using the registration transform
(Figure 1.11).
It is assumed that the information attached to the images changed in the same way as
the anatomical changes, hence making the use of DIR transformation to warp dose valid
(Figure 1.11b). The importance of the precision and accuracy of a DIR is emphasized
in re-irradiation as the dose accumulation will be used as input of a process for planning
or delivery [101].

(a) Image registration process (b) Assumption

Figure 1.11: Schematic representation the use of image registration to map dose
distribution [101]
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Re-irradiation is in fact the intended use of dose accumulation that has the highest
impact on the patient’s health and safety because it is incorporated in the patient’s
treatment workflow (Figure 1.12). The effect of a flawed registration can be relapse,
because of a treatment not strong enough, or severe side effects, because of a treatment
too strong for the patient.

Figure 1.12: Current landscape of dose mapping use cases [101]

Notably, dose mapping uncertainties will be introduced because of uncertainties in the
registration. However, as dose distributions are highly heterogeneous, the uncertainties
in dose mapping will be present particularly in regions where high dose gradients are to
be found, which is mostly in the region close to the target [101]. Indeed, uncertainties in
steeper dose gradients regions cause stronger dose variations. Moreover, the uncertain-
ties in the deformation vector field (DVF) are spatially correlated, hence, the theoretical
impact of registration uncertainties on the mapped dose distribution can be quantified
based on the distance to dose difference [102].

As there is no "ground truth" to be judged upon, a proper registration holds in the
combination of two aspects: the degree of anatomical variations and the impact of dose
mapping variations. Furthermore, a geometrical accurate DIR, which would display a
good anatomical match does not assure an accurate dosimetric registration, as it depends
on the spatial location of the DVF errors and the dose gradients [101].
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The main factor affecting the quality of a registration is anatomical variation. The cases
of re-irradiation show the highest the degree of anatomical intra-patient variations be-
cause of the time passed between the two scans to be registered (Figure 1.13). However,
other factors can also influence a registration such as imaging artifacts, distortion, lack
of contrast, or noise [103].

Although there is no standards to qualify a good registration or a good dose mapping,
four steps can be used to perform a from of quality assurance (QA) [101]. The first step
would be to ensure that the appropriate dose mapping/accumulation (DMA) workflow is
in place. The second and third steps are QA checks of both the DIR and DMA results.
The final step would be to review the impact that DMA uncertainties could have on
clinical application. Another QA for dose mapping stands in the comparison of the dose
to the landmark from both the original and mapped dose distribution [104]. According
to Murr et al.[101], DMA uncertainties related to the registration can be considered
as first order effects, there are however also second order effects which include issues
such as energy/mass transfer, biological uncertainties, resampling, or even interpolation.
Biological uncertainties in the context of dose accumulation can refer to α/β values for
the EQD2 or BED, or to the validity of the LQ model. Actually, the final aim of dose
accumulation is to quantify the radiobiological effect of the treatment. For example,
replacing the LQ model with EQDd is a question which can have a big impact on
biological dose accumulation [105].

Figure 1.13: Illustration of the expected anatomical variations, re-irradiation suffers from
inter-treatments variations [101]
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1.4 Aim of the thesis

Thanks to the development of radiotherapy techniques and the increasing number of ac-
quired images, re-irradiation has been extensively adopted in clinical processes. However,
no agreement, or standards have been found in the radiotherapy community, whether is
it to assure the patient’s safety with an optimal use of image registration, to quantify
uncertainties and their radiobiologic effects, or to classify and report on the topic.
As none of the available deformable image registration strategies have been proven supe-
rior to the others, the aim of this thesis is to calculate the best estimate of dose deforma-
tion by combining different DIR strategies, and to derive dosimetric uncertainties. By
assessing the different registration performances and estimating geometric uncertainties,
an evaluation of the relationship between geometric and dosimetric uncertainties will be
possible. The identification anatomical regions sensitive to registration and other factors
causing dosimetric uncertainties are also an important part of the strategies’ review.
Segmentation is an essential part in treatment planning, but also in image registration
and the evaluation of the latter. Hence, in addition to the primary focus, a comparison
between manual and AI-driven segmentation will be conducted.

The thesis can be summarized in four goals:

1. The quantitative and qualitative evaluation and comparison of two registration
algorithms and their different parameters

2. The deformation of dose using these registrations and the identification of the
challenging regions in the context of re-irradiation

3. The calculation of geometric and dosimetric uncertainties in dose accumulation

4. The comparison of manual and automated segmentation
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2 Material and Methods

2.1 Patient cohort

All patient data analyzed in this project was part of the ReCare trial and was there-
fore selected to meet all criteria of re-irradiation. When made available, the data was
anonymized and regions of interest ROI) were manually delineated by a radiation on-
cologist. Within the framework of the clinical trial, the time between the two cancer
treatments must be of at least one year, but can go up to multiple years. Each of the ten
cases treated were men, suffering from a new cancer or a recurrence, needing a second
radiation treatment in the pelvic region. The most frequent irradiation targets in this
patient cohort were the prostate (bed), multiple lymph nodes and the sacrum bone. The
dataset of a patient included two CT scans of similar qualities, the two treatment plans
associated (first and second treatments), the year when they were conducted as well as
the delineation of all ROIs in both scans.
For the analysis of the pelvic area, ten organs were selected to be analyzed for every
patient (Table 2.1). The most evident criteria to draw up the list of organs was that they
should be delineated in all patients. It was also decided that the ureters would not be
considered in the analysis due to their size, and variability in position. The last ruling
was made about the sacral plexus, that can be considered as one unit or as a left and
a right one. As some dose distributions were asymmetrical, it was decided to consider
them as two distinct organs.

Organ

Left kidney
Right kidney

Bowel
Cauda equina

Left lumbar plexus
Right lumbar plexus

Rectum
Bladder
Urethra

Anal canal

Table 2.1: List of analyzed organs for the pelvic region
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2.2 RayStation

2.2.1 Treatment planning system

The principal treatment planning system (TPS) engaged in this work was RayStation
(Raysearch Laboratories AB, Stockholm, Sweden), implemented in the Department of
Radiation Oncology of the Medical University of Vienna/General Hospital of Vienna. A
TPS provides a set of computerized tools allowing professionals to create and visualize
radiotherapy treatments. RayStation offers adaptive therapy and dose tracking, which
are of special interest in re-irradiation. Additionally, RayStation can handle different
types of image registration as well as visualization. RIR can be performed manually or
with automatic parameters, and two different DIR algorithms are available.
Segmented ROIs are particularly relevant in radiation therapy for registration, dose
prescription, beam optimization, and treatment evaluation. RayStation provides dif-
ferent tools to handle them, such as copying, mapping, or performing other algebraic
operations. Statistics can also be derived from these structures, whether it is similar-
ity metrics, dimensions, or dose statistics. These numbers can be retrieved via Python
scripting directly in RayStation.
Treatment adaptation also includes dose accumulation. Hence, dose plans can be summed
or deformed in the "Plan Evaluation" part of the system. Furthermore, RayStation is
able to import DICOM data, image plans, structure sets, previous dose treatments, and
dose computed in a different TPS.

2.2.2 Deformable registration algorithm

The algorithm used for deformable registration in RayStation is the ANAtomically CON-
strained Deformation Algorithm (ANACONDA). This hybrid algorithm can use image
information and add boundary conditions computed from controlling structures to drive
its deformation processes. In other words, it can use both intensities and delineated
contours to drive the registration. The controlling structures usually are anatomical
structures called regions of interest (ROI). However, it can also be run with only image
information or only controlling structures. In this algorithm, the registration problem
is formulated as a non-linear optimization problem where the function is the weighted
sum of three non-linear terms:

• Image similarity: measured through the correlation coefficient
• Grid regularization term: designed to keep the deformed image grid smooth and

invertible
• Penalty term: added when controlling structures are used, in order to deform the

selected structure in reference to corresponding structure in target image (contour
regularization & contour matching)
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2.3 3D Slicer

3D Slicer is an open source software used for visualization and analysis of medical image
datasets. It allows users to handle DICOM data, as well as read and write other formats,
visualize in 2D and to perform volume renderings, or carry out rigid and deformable
registrations. Slicer is fully research-oriented, and therefore not intended for clinical
use or authorization by any regulatory authority. This approach offers transparency,
robustness, and reliability as it is easily inspectable and testable, which is not granted
in commercial software.
Another useful characteristic of Slicer is its modularity. It allows the creation of modules
tailored to particular tasks with minimal impact on other developers or users. It is an
ingenious strategy for systems that develop quickly (like medical imaging) and allows
different development styles, timetables, and licensing structures between modules. It
can also be downloaded online and works on major operating systems.

2.3.1 Elastix

Elastix is an open-source image registration toolbox, that can be used as an extension
module in 3D Slicer. It is built upon the Insight Segmentation and Registration Toolkit
(ITK) and has a modular structure (Figure 2.1).

Figure 2.1: Basic modules of Elastix registration [106]

Registration algorithms are usually formulated as optimization problems: trying to have
the best metric values while having geometric and time limitations. Hence the optimizer
module adjusts the parameters of the transform in order to get a better metric value.
The metric module is a mathematical function giving a quantitative criterion to be
optimized. The type of metric can be changed depending on the context. The sampler
is used to select voxels for the metric module, and the interpolator ensure the correctness
of the computed metric values after registration.
The transformation module establishes a correspondence between moving and fixed im-
age for every pixel. In Elastix, the allowable transformations should be defined. The
transformation types available are: translation, rigid (translation & rotation), isotropic
scaling, affine (scaling & shear), B-splines, and thin-plate splines. They are designed for
intensity-based registration of medical images.
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In its generic version available in Slicer, the optimizer used is a gradient descent optimizer
with an adaptive gain, and the metric is "AdvancedMattesMutualInformation", which
computes the mutual information between two images to be registered using the method
of Mattes et al. [107].

2.3.2 TotalSegmentator

TotalSegmentator is a 3D Slicer extension module for automatic segmentation of anatom-
ical structures on whole body CTs (and other image modalities). It is a deep learning
segmentation model and can segment 104 anatomic structures (some of them visible on
Figure 2.2).

Figure 2.2: Some segmented structures on whole body CT [108]

The algorithm was trained on 1204 CT slices that were randomly sampled from routine
clinical studies from different years. The random nature of this selection allows the
presence of different ages, abnormalities, scanners, body parts, sequences and sites in this
real-world dataset. It is still important to stress the fact that male patients were over-
represented in the training dataset [108]. TotalSegmentator has many advantages, like
being publicly available, easy to use, able to segment most anatomic relevant structures,
and exhibits robust performance. The training dataset is also publicly accessible, which
is an important characteristic of explainable AI (XAI).
The model used is a nnU-Net, which is based on a U-Net (see Section 1.3.3) implemen-
tation that automatically configures all hyper parameters based on the dataset charac-
teristics [108].
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Despite offering reproducibility and repeatability across the different graphic cards (GPU)
and processors (CPU), the computing time is significantly influenced by the capacities
of the GPU and CPU of the computer used to perform the segmentation. Table 2.2
shows runtime for an Intel Core i9 3.5 GHz CPU and a Nvidia RTX 3090 GPU.

1.5mm model (long) 3mm model (fast)

Image Size Runtime RAM GPU
Mem Runtime RAM GPU

Mem

Small
(512x512x280) 1 min 17 s 7.6 GB 6.1 GB 34 s 7.4 GB 5.2 GB

Medium
(512x512x458) 2 min 49 s 10.6 GB 8.5 GB 53 s 8.4 GB 7.4 GB

Large
(512x512x824) 3 min 32 s 11.8 GB 11.4 GB 1min 23 s 10.6 GB 7.5 GB

Table 2.2: Different runtime and memory requirements for whole body CT [108]

2.4 Previous work

In a previous project [109], different registrations were made with different parameters
using ANACONDA. In RayStation, a RIR registration was always acquired to set a
Frame-of-reference. After that, three different DIR methods were used:

• The first DIR was done without any controlling ROI, hence using only the intensity-
based part of the algorithm ("noContROI"). Showing an amelioration to the RIR,
this registration is able to correct for basic long term changes like weight loss/gain
and internal organ position shifts.

• Then, the algorithm was used to its full capacity as controlling ROIs were added
("ContROI"). The selected structures had to be delineated on both scans and
were selected through a trial and error process to get the best result. This use of
the algorithm allows to correct for organ filling, meaning big differences in size, as
well as tricky cases of positioning or long term changes.

• A third DIR was performed with the same controlling structures but with a cor-
rection on the organs susceptible to filling-caused size variations. The volume of
the filling organs is mostly made of matter that will later exit the body. Firstly, it
means that this matter does not exist in the other scan and the algorithm cannot
achieve a voxel-by-voxel match. Secondly, the dose will not be accumulated there,
even if highly irradiated twice, even if the volume is similar in both scans, as it
will not be the same content. Therefore, organ walls were created for the bowel
(0.5 cm), bladder (0.5 cm), rectum (0.3 cm) and anal canal (0.3 cm), and were
used as controlling ROIs in the third DIR ("Wall").
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The main concern that drove the choices in the registration parameters was safety. The
goal of a registration in the context of the treatment planning of a re-irradiation was
to take into account the accumulation of dose to the tissues where the two treatments
overlapped. Hence, in a clinical perspective, a good registration is a registration that
gives adequate results in the areas that overlap.
To identify the relevant organs in the context of re-irradiation, a distance-to-dose as-
sessment was done for each organ, in each treatment. The coincidence of relevance
in both treatments translated an overlap of dose and made the organ relevant for the
registration. The choice of the controlling structures was made on the basis of this
identification. Hence, most controlling structures were re-irradiation-relevant organs.
However, depending on the case, other organs could be used as controlling ROI. Firstly,
it could be due to the spatial vicinity of organs, making their delineation propagation
dependent on each other. Secondly, it could be due to physically unrealistic propagation.
It usually took place in the bones or the external contour, these were then added to the
controlling ROIs as tools to assure a reasonable structure. Some organs were used to
control the registration more often than others, it was however a very patient-specific
process of trial and error that allowed to get a satisfying registration.

2.5 Segmentation comparison

To respond to the fourth goal of this thesis, a comparison of segmentation techniques
was done. The segmentation of the organs given as part of the ReCare project was done
manually, while TotalSegmentator performed AI segmentation (Figure 2.3). The aim of
this comparison analysis was to determine whether the TotalSegmentator´s segmentation
could be used as QA for the multiple manual segmentations in the ReCare cohort coming
from different facilities.
In 3D Slicer, the segmentation was performed on both CTs (AI-Seg CT1 & AI-Seg CT2),
visually controlled, and then exported to RayStation in order to measure similarity with
the manually segmented structures (STR CT1 & STR CT2). However, TotalSegmen-
tator and the ReCare segmentation protocol had only three structures in common: the
right kidney, the left kidney, and the bladder.
This difference in segmentation policy was also visible in the rectum and cauda equina
segmentations. TotalSegmentator labeled the rectum as part of the colon, and the cauda
equina as part of the spinal cord, making it impossible to compare segmentations. In
order to still be able to compare the rectum and cauda equina’s segmentations, modifi-
cations were performed on the AI-segmented colon and spinal cord to create pseudo-AI-
segmented rectum and cauda equina. Similarity metrics of the five organs on the two
CTs were then retrieved to compare the segmentation methods.
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Figure 2.3: Schematic representation of the segmentation workflow

2.6 Registration evaluation

The two algorithms used to perform registrations were ANACONDA and Elastix. As
explained in Section 2.4, three methods were tested with ANACONDA and their per-
formances were analyzed in a previous project [109]. In the context of the thesis, a new
registration was carried out on 3D Slicer, the workflow established to do so is illustrated
in Figure 2.4. To perform a registration, Elastix, as any registration algorithm, needs
both moving and target CT scans (CT1 & CT2). In this module, the registration process
creates a transform (DIR transform in blue) as well as a new volume representing the
registered CT. At this point, a visual evaluation was mandatory, to check the credibility
of the registration.

Figure 2.4: Schematic representation of the registration workflow
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In order to evaluate and compare this registration with the others, it was necessary to
export it back to RayStation. However, the transform couldn’t be exported as such
to RayStation, and the registered CT cannot be used for analysis on its own. Indeed,
what was used to perform registration evaluation were similarity metrics, in particular
the Hausdorff distance (HD) and the Dice similarity coefficient (DSC), which were mea-
sured between corresponding structures. It was therefore necessary to also import the
ten manually-segmented ROIs of CT1 (STR CT1) to 3D Slicer. The DIR transform
was thereafter used to register these structures to CT2 in the transform module. The
mapped segmentation (STR CT1 DIR CT2) was then exported back to RayStation to
be compared to the target segmentation (STR CT2).

2.7 Dose mapping evaluation

In order to analyze dose deformation and its linked uncertainties, it was necessary to
generate all registrations. Indeed, the registrations were used to map the dose files using
the same transform, as it was assumed that geometric changes in the scans were equiv-
alent to the ones in dose distribution.

The two software have different approaches for dose deformation (Figure 2.5). 3D Slicer
uses the DIR transform (in blue) in the same way as it was done for the ROI structures
(STR CT1 in Figure 2.4). Hence, in order to perform this transformation, the original
first dose file (DOSE CT1) was imported into 3D Slicer.

Figure 2.5: Schematic representation of the dose accumulation workflow
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Before exporting the dose from RayStation, a weighted sum of that dose was calculated.
However, a limitation of RayStation is that even though the coefficient can be modified
by the user, it cannot be equal to 1. In order to have a summed dose file with dose
values as close as the original one as possible, a weighting factor of 0.99 was applied
first. Then, a new summed dose file was created using the first sum, with a coefficient
of 1.01, to reach 0.9999 of the original dose. Finally, this second summed dose file was
exported, and used in 3D Slicer.

The RT plans were exported as DICOM files to be handled in Python. However, the
dose files couldn’t be exported from 3D Slicer in the same format as from RayStation.
Therefore, the DOSE CT1 DIR CT2 was firstly exported from 3D Slicer to RayStation
(DIR 1) and then from RayStation in the same way as the other ones (after the creation
of the 0.99x1.01 summed dose file). These five dose files were then imported into Python,
and used to create a mean dose file (MEAN DOSE) and a standard deviation dose file
(STD DOSE) from their dose values. Then, the two new dose files (mean & standard
deviation) were re-imported into RayStation.

There, quantitative and qualitative (see Sections 2.10 & 2.11) evaluations took place.
The quantitative evaluation consisted of retrieving dose statistics for the 10 organs, both
from the mean and standard variation dose files. The qualitative evaluation consisted of
visual identification and analysis of the anatomic location of standard deviation hotspots,
in respect to anatomic variation and dose gradients.

2.8 Data Handling

In theory, it should be easy to export a segmentation, a registration, or a dose file from
3D Slicer, and import it into RayStation, as both software use DICOM files and work
from the same input (CT1 & CT2). However, in order to compare the performances of
the different programs, the data format had to be carefully tracked (Figure 2.6). The
detailed checklist established to do so is available in the appendix (Figure 5.1). Although
both treatment planning software offer similar tools to perform registration, segmenta-
tion and measurements, the communication between both software was difficult. Even
comparable formatted files were treated differently in both software and hence not easily
shared from one software to another.

Digital Imaging and Communications in Medicine (DICOM) is a technical standard de-
veloped for the communication and management of medical images and related data
[110]. This format organizes information in datasets. In DICOM, a Composite Informa-
tion Object Definition (CIOD) represents parts of several entities in the DICOM Model
of the Real-World [111]. They are not inherent to the object but rather inherent to the
related real-world objects, and usually consist of non-image data. In a CIOD, the entire
context is exchanged between application entities.
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The CT scans are stored as CT Image CIODs, segmented ROI sets are exported as RT
Structure Sets CIODs, and dose files as RT Plan CIODs [112]. Each of them have mod-
ules in common, like Patient, Clinical Trial Subject, General Study, Frame of Reference,
or General Equipment. However, they also all have modules that are specific to their
respective use. Moreover, they do not store the actual data in the same way. The CT
image CIOD makes use of the Image Plane and Image Pixel modules, the RT Structure
Set CIOD uses the Structure Set and ROI Contour modules, and the RT Plan CIOD
stores its data in the RT General Plan and RT Beams modules [112].

In order to perform image similarity measurements, both segmentations had to be on
one software, either Raystation or 3D Slicer. The major problem arising when using
3D Slicer was its requirement of CPU and GPU power while performing specific tasks.
Similarity measurements with 3D Slicer could only be performed on binary labelmaps.
In a binary labelmap, a value is attributed to each voxel to specify whether it is inside or
outside the region. However, the computing power necessary to convert a closed surface
segmentation to a binary labelmap was too demanding for the computer´s capacities.
The configuration of the computers at disposal being insufficient to ensure a smooth
handling of the measurements, it was decided that the comparison would be done on
RayStation. However, a structure file couldn’t be exported from 3D Slicer to a RT
Structure Set file on its own, it had to be exported as part of a study, containing its
corresponding CT.

In the same way as for structure sets, dose files could not be exported from 3D Slicer
on their own, but needed a CT scan to be linked with in a study. It is important to
specify that, for each patient, three different studies had to be exported. The first one
containing the AI-segmentation of CT1 (AI-Seg CT1) and CT1. The same structure
could not be used for CT2, because there were two different segmentations to export,
and the DICOM format can only accept one. Hence, the second study contained the
AI-segmentation of CT2 (AI-Seg CT2) and CT2. The third study compiled the dose file
deformed to the registration performed in 3D Slicer (DOSE CT1 DIR CT2), the ReCare
segmentation registered to CT2 in Slicer (STR CT1 DIR CT2), and the CT2.

Once uploaded to RayStation, the CTs appear as additional CTs to the patient data,
identical to the original CTs but bearing the structure sets and linked to the imported
dose file. The newly imported CTs was aligned to the original ones via a Frame-of-
Reference before the imported ROIs were copied to the original CTs. Having the original
and registered ROIs, as well as the manually- and AI-segmented ROIs, on the same CT
allowed for DSC and HD measurements, necessary for registration and segmentation
evaluations, to be done.

36



2.8 Data Handling Maude CORNU

Figure 2.6: Simplified schematic representation of the complete workflow

In the context of segmentation comparison, five structures were copied to the origi-
nal CT: the right kidney, the left kidney, the bladder, the colon, and the spinal cord.
Then, using ROI algebra, a pseudo-AI-segmented rectum and a pseudo-AI-segmented
cauda equina were created from the colon and spinal cord structures respectively. To
do so, the manually segmented structure (Rectum_ReCare or CaudaEquina_ReCare)
was selected as expression A with 5 cm margins in the right, left, anterior, and posterior
directions. The output (Rectum_3DS or CaudaEquina_ReCare) was the intersection
of the expression A and the AI-segmented structure selected as expression B. With
the brush tool, the contours were then modified in order to match the rectum rather
than the colon contour. This step was not necessary in the cauda equina case. DSC and
HD were then performed on ROIs segmented on both CTs to evaluate the segmentations.

The comparison of dose deformation did not require the segmented ROIs, but the mean
dose and its standard deviation. These two dose files were created in a Python code,
with the five dose files (four from RayStation and one from 3D Slicer) as input.
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2.9 Dose uncertainties calculation

In order quantify dose accumulation uncertainties, the mean and standard deviation
were calculated from five dose files of the same original dose and registered with differ-
ent strategies (Figure 2.5). Although this process does seem straight forward, and easily
implementable in a Python script, a major challenge arose. Because of the DIR process,
the dose files didn’t have the same dimensions as the original CT1 dose file. Further-
more, because the registrations were not all performed on the same software, the files did
not have the same dimensions once registered. Indeed, between 3D Slicer-deformed dose
files and RayStation-deformed ones, differences in each of the three dimensions (slices,
rows, columns) were accounted for in every dataset. Because the comparison was then
made on RayStation, and because there were more dose files generated by this software,
the RayStation dimensions were chosen to be used as reference.

The data had to be resampled in order to align the Slicer dose distribution to the ref-
erence and change its dimensions. It is important to mention that, as the registrations
were non-rigid, the dimension changes were not centered, nor did the pixel information
match. Therefore, a solution that would use pixel padding to re-center the dose file
and match the dimensions would not only be complicated because of location of the
padding, but also because the alignment would never be satisfying. For this reason, the
two dose files (Slicer and the RayStation reference) were converted to the ITK image
format. Indeed, an image in ITK format is not treated as an array of pixels/voxels, but
as a set of points on a grid occupying a physical region in space [113]. The definition of
the region in physical space that the image occupies is given by:

• Image origin: location in the world coordinate system of the voxel with all zeroes
coordinates

• Pixel spacing: distance between pixels (along each of the dimensions)
• Direction: cosine matrix
• Size: number of pixels in each dimensions

The benefit of using ITK rather than the pixel array retrieved from the dcmread func-
tion is highlighted by the three first parameters.

The notion of the image’s location in physical space is essential to align them. The
image origin consists of the three coordinates of the first voxel (Tx, Ty, Tz). Moreover, it
is a parameter that is given in the Image Plane Module of the DICOM file as the Image
Position Patient attribute (IPP in Figure 2.7) [114].
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Figure 2.7: DICOM data tags

Furthermore, the Direction gives the direction of each axis. It is stored in the Image
Orientation Patient (IOP in Figure 2.7) of the DICOM file as 2x3 matrix (Rnx,Rny),
giving the direction cosines of the first row and first column with respect to the patient.
The Patient-Based Coordinate System is a right handed system, i.e., the vector cross
product of a unit vector along the positive x-axis and a unit vector along the positive
y-axis is equal to a unit vector along the positive z-axis [114]. Provided as a pair, these
attributes give the input of a spatial transformation matrix as follows:

Rxx Rxy Rxz Tx

Ryx Ryy Ryz Ty

Rzx Rzy Rzz Tz

0 0 0 1

 (2.9.1)

Although it was not a problem with the datasets used in this thesis, specifying the pixel
spacing, and not assuming an isotropic spacing is important. Once again, this informa-
tion is stored in the DICOM file, under the Pixel Spacing attribute (row, column) and
the Slice Thickness attribute (slice).

The ResampleImageFilter class was used to resample the Slicer image to match the
RayStation grid by changing its orientation and origin. By using SetReferenceImage,
the filter sets the output image’s size, origin, spacing and direction to match the provided
reference image [115]. Since resampling involves mapping from one grid to another, an
interpolator was required to compute the values at positions that do not align directly
with the grid points of the output image, especially because resampling is performed
in physical space coordinates rather than voxel grid coordinates. Three interpolators
are available to choose from: linear, nearest-neighbor, and B-spline [115]. The three of
them were tested, and after visual evaluation of the results, the B-spline interpolator
was selected as the most satisfying.
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Once the Slicer dose file was the same size as the four other files, they were all used for
further calculations. Three for loops were used to go through every voxel of the datasets
and perform a mean and standard deviation calculation. However, in order to make
sure that the calculations were done on correct grounds, two verification files were also
created: checkDIR and checkWall. The checkWall was just the wall dose file re-written
in a new DICOM file (could be done with any RayStation file). It was used to check on
the loops and on the DICOM saving process, as it should not display any changes. The
checkDIR is simply the resampled 3D Slicer dose file. It was used to see and quantify
the impact of interpolation. It also allowed to perform a mean file as a summed dose file
in RayStation and check the accuracy of the Python computed mean. Although there
was nothing to compare the standard deviation calculation to, the other verifications
provided enough proof of correctness.

The new dose files then had to be saved as DICOM files. To do so, the arrays’ content
was converted to 16-bit unsigned integers, and saved on a copy of one of the RayStation
DICOM file. Before saving the new DICOM file, the file’s metadata was mostly re-used
to be sure it was correct. Metadata includes attributes such as the ones mentioned in
Figure 2.8.

Figure 2.8: Metadata
In the case of old scans where the orientation and position would be very different from
the new ones because of changes in standards, a modification of the code should be done.
A pseudo-RIR was performed in the code before using the ResampleImageFilter class.
The main goal being the translation of the origin. The rotation values were also used as
input in the code, the outcome was however not significant.

2.10 Qualitative evaluation

The subsequent analysis aimed to identify the challenging regions of dose deformation
using the mean and standard deviation dose files, and to determine the factors causing
these dosimetric uncertainties. Dosimetric uncertainties can usually be defined as a
combination of a certain dose distribution pattern and geometric uncertainties. Hence,
a side-by-side evaluation allowed to locate the standard deviation hotspots and directly
put them in perspective with the mean dose at this specific position.
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While geometric variations were examined on the "Deformation grid" tool, or by look-
ing at the similarity metrics gathered from the registration evaluation. The geometric
differences between the two CT scans were also visually inspected using the "Fusion"
tool. Moreover, data from the previous project [109], gathering evaluation of overlap
and computation of registration with controlling structures, was be accessible for a bet-
ter understanding of the geometric differences. The dose statistics to organs were also
retrieved and used for identification of patients and ROIs of interest and for analysis.

2.11 Quantitative evaluation

2.11.1 Metrics

Although a qualitative evaluation is essential for situation assessment and determination
of a registration strategy, a quantitative evaluation is necessary to confirm the results
and compare them. In this thesis, two metrics where chosen: the Dice Similarity Co-
efficient (DSC) and the Hausdorff Distance (HD). They were selected because they are
some of the most used in validation of image segmentation and registration. More-
over, they both give different information on the similarities between two sets. Both
metrics are also retrievable directly on RayStation with the function SimilarityForDe-
formablyMappedRoiGeometry().

The DSC measures the overlap between two volumes by giving a ratio of the intersection
of the two sets to their union [116]. Hence, a score of 1 would mean a full overlay of the
two sets, while a score of 0 indicates no match between the two volumes.

D =
2 | A�

B |
| A | + | B | (2.11.1)

It is important to note that the DSC is dependent on the volume of the structure and will
not give similar results for very large and very small structures for the same variation
(Figure 2.9).

Figure 2.9: DSC Volume dependence [117]
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On the other hand, the Hausdorff distance is a spatial distance based metric, evaluating
the quality of the delineation propagation [118]. This metric will give the maximal
distance from a point in one set to the closest point in the other set. As stated in the
Raystation function description, two distance transforms are computed:

• Each point (/voxel) on the surface of ROIA will be assigned the minimum distance
to a point (/voxel) on the surface of ROIB

• Each point (/voxel) on the surface of ROIB will be assigned the minimum distance
to a point (/voxel) on the surface of ROIA

The HD is then given by the maximum of the the maximum of the distances in the first
distance transform and the maximum of the distances in the second one.

δH(A,B) := max{sup
a∈A

d(a,B), sup
b∈B

d(A, b)} (2.11.2)

The smaller the HD, the better the delineation propagation. It will give information on
the shape similarities that DSC cannot provide, as illustrated in Figure 2.10.

Figure 2.10: Boundary delimitation similarities with HD [118]

Dose statistics

Dose statistics convey the quantity of dose received by a volume. It consists of how
much dose is received in a certain percentage of the volume. Dose-volume histograms
(DVH) translate this relation between radiation dose and volume. Dose statistics can
be retrieved form DVH. Hence, the D99 dose is the dose received by 99% of the volume.
For example in Figure 2.11, D1 of the bowel is of 2.76 Gy, meaning that only 1% of the
bladder receives 2.76 Gy, whereas 99% of the urethra gets 52.89 Gy. Despite giving a
precise measure of the volume receiving a certain dose, DVH does not provide spatial
information.
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Figure 2.11: Dose-volume histogram of patient n°2339

However, when retrieved from the STD DOSE (Figure 2.5), the dose values do not
represent the radiation dose to volume, but rather its variation. The dose statistics
retrieved were D1, D99 and Daverage, and give a quantitative evaluation of the dose
uncertainties in ROIs. D1 is used for the identification of hotspots, and Daverage rather
for inter-ROI or inter-patient comparisons.

2.11.2 Statistics

The registration analysis was performed on the DSC and HD values of the ten organs
belonging to the ten selected patients. The samples were paired because the performance
of the three methods were compared when applied to the same ten patients. Because
of the nature of the two metrics chosen for analysis, the data did not follow a normal
distribution. DSC data were right skewed, and HD data was left skewed. In such
situations, the application of the t-test was not possible.
In the case of DSC, it was possible to use its logit value in order to obtain a normal
distribution and perform a t-test. Hence, a two-tailed t-test was done on the logit
DSC values. The distribution of the HD values cannot be changed, hence a two-sided
Wilcoxon Rank-sum test was done on the HD values, as a symmetrical distribution of
the data was assumed.
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It is necessary to specify which standard deviation was used to calculate the standard
deviation dose file. As described in Section 2.9, the calculation was done for each voxel
one by one. Therefore, the input to the calculation is five values, one of each dose file,
and hence the sample standard deviation should be used.

σ =


�n
i=1(xi − x)2

n− 1
(2.11.3)

with n, the number of data points; xi, the individual values in sample; and x, the mean
of xi.

However, for quantitative comparison analysis, the relative standard deviation (RSD)
values was employed. As made explicit in the following equation, the RSD is the ratio
of the standard deviation and the mean, presented as a percentage.

RSD =
���σ
x

���× 100 (2.11.4)

In this work, the RSD values calculated with the values retrieved from the MEAN DOSE
and STD DOSE files were referred to as uD,1% and uD,av.
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3.1 Preliminary results

The main tendencies of the preliminary project are summarized in this section. The em-
ployed metrics indicated a lower performance of the method without controlling ROIs
(noContROI) than the two other methods, while the method with controlling ROIs
and the one using wall structures had very similar values. The statistical tests (Ta-
ble 3.1), confirmed this tendency: there was a significant difference (p<0.05) between
the ContROI and noContROI methods, as well as between the Wall and noContROI
ones. Furthermore, there was no significant difference between the two methods using
controlling structures.

Metric ContROI-noContROI Wall-noContROI Wall-ContROI

DSC p-value 5.42E-6 4.11E-6 0.612
HD p-value 1.98E-5 3.69E-5 0.373

Table 3.1: Comparison of methods (all 10 organs) from project [109]

Figure 3.1: Frequency of each organ being used as controlling ROI across cohort
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One of the goals of the prior project was to determine the most appropriate selection
of controlling structures to get the best registration in the patient-specific re-irradiation
context. The structures used as controlling ROIs have a direct impact on the quality of
registration of the ROI and its neighboring region.

As the registrations were analyzed and further used in this work, it is important to know
how often organs were used as controlling ROIs in registrations, which is summarized in
Figure 3.1. The kidneys are not mentioned in the table because they were never used as
controlling structures. Body and bones are not part of the segmented organs list, but
were still sometimes used as controlling ROIs.

3.2 Segmentations

Compared to other similarity metrics retrieved in this work, the ones presented here for
the segmentation analysis contain measures retrieved from both CTs of every patient. It
means that for each organ there were 20 samples instead of the usual 10 samples avail-
able. However, one pair (one patient) of rectum volume measurements was identified
as significant outliers and had to be removed. Therefore, the volume means, standard
deviations, and statistical analyses were performed using only 18 samples.

Table 3.2 collates the means and standard deviations of the DSC and HD between manu-
ally and AI-segmented structures. These values translate a very high similarity between
the two segmentation methods, as well as a low variability in their performance.

Metric Bladder Left kidney Right kidney Rectum Cauda
equina

DSC 0.89 ± 0.09 0.91 ± 0.02 0.92 ± 0.02 0.79 ± 0.25 0.85 ± 0.02
HD /cm 1.46 ± 1.18 2.26 ± 0.17 2.16 ± 0.46 1.34 ± 1.00 1.30 ± 0.40

Table 3.2: Means and standard deviations of the DSC and HD of the five segmented
structures

Counterintuitively, the kidneys demonstrate the highest DSC scores, but also the highest
HD ones. However, they show the lowest interquartile ranges in both metrics in this
dataset’s box plot (Figure 3.2). The bladder shows the highest HD data spread (both
IQR and whiskers), but its mean and median are considerably lower than the kidneys.
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(a) DSC (b) HD

Figure 3.2: General box plot of the four segmented structures

Figure 3.3 translates the volume differences between the two segmentations. Specifically,
this bar chart shows the mean and standard deviation of the ratio of the ReCare and
Slicer volumes for each organ. It represents the volume differences, with positive values
indicating the manual segmentation is larger and negative values indicating it is smaller
than the AI one. Thus, manual segmentation tends to delineate a larger volume for the
kidneys and rectum, while the AI segmentation volume is larger for the bladder and
cauda equina.
A value near zero means the volumes are almost identical, which is the case of the
bladder. Moreover, a one-sample t-test was performed to determine wether there is a
significant difference from zero, with conclusive p-values (p<0.05) indicated by a star in
Figure 3.3.

Figure 3.3: Volume variations of the five segmented structures
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3.3 Registrations

In order to have a better understanding of the anatomical variations in between the two
datasets, Figure 3.4 compiles for each organ, the average ratio of the bigger volume and
the smaller volume of the two CT scans. The figure demonstrates the existence of filling
organs, thus showing that their volume was more prone to variation.

Figure 3.4: Average volume variation for analyzed organs

The Elastix DIR used in 3D Slicer is intensity-based, therefore two comparisons are
of interest: one with the intensity-based ANACONDA method (noContROI), and one
with the method using controlling structures (ContROI). Table 3.3 displays the mean
and standard variation for each of these methods, and each metric highlights a ten-
dency. The DSC shows a similar performance of the two intensity based algorithms
while the ContROI method clearly outperformed them. The HD presents a contrasting
tendency, as the Slicer DIR (SDIR) clearly demonstrates a better performance than the
noContROI method, whereas the ContROI method still gives better results. Moreover,
the HD standard deviation of the Slicer DIR is substantially smaller than the two others.

Metric noContROI ContROI SDIR

DSC 0.74 ± 0.19 0.81 ± 0.22 0.70 ± 0.20
HD /cm 1.87 ± 1.69 1.57 ± 1.80 1.69 ± 1.23

Table 3.3: Means and standard deviations of the DSC and HD of the three methods
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The statistical results in Table 3.4 confirm the general trend that was already observed in
the project: both intensity-based algorithms exhibit similar performances, while using
controlling structures demonstrates a significant difference. However, for the general
DSC results, a higher p-value but still significant one arises between noContROI and
SDIR.

Metric ContROI-noContROI noContROI-SDIR ContROI-SDIR

DSC p-value 5.42E-6 0.002 9.12E-11
HD p-value 4.85E-5 0.922 2.03E-4

Table 3.4: Statistical comparisons between different methods (all 10 organs)

Although the interquartile ranges (IQR) are relatively similar, the wider spread of out-
liers in the HD box plot (Figure 3.5b) reflects the greater variability in the RayStation
data, which corresponds to the larger standard deviation mentioned earlier. The DSC
box plot (Figure 3.5a) is also similar to the previously presented data with the ContROI
method exhibiting significantly higher DSC, and noContROI showing a better perfor-
mance than SDIR. Moreover, the Slicer DIR has a median lower than 0.8.

(a) DSC (b) HD

Figure 3.5: General box plot of the three methods

Table 3.5 collates the significant results of the statistical tests on the DSCs. Significant
differences between the two RayStation methods were identified in half of the organs
analyzed: the bladder, the bowel, both sacral lumbar plexuses, and the rectum. These
values confirm the general trend as p-values are similar between ContROI and noCont-
ROI and between ContROI and SDIR. The SDIR also shows significant differences with
both RayStation registrations for the cauda equina, as well as with noContROI for both
lumbar sacral plexuses.
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Organ ContROI-noContROI noContROI-SDIR ContROI-SDIR

Bladder 0.005 0.176 0.005
Bowel 0.021 0.767 0.039

Cauda equina 0.432 0.001 0.005
Left lumbar plex. 1.61E-4 0.007 9.39E-6

Right lumbar plex. 1.42E-4 0.018 5.96E-5
Rectum 0.010 0.062 0.002

Table 3.5: Comparison of methods on selected structures (DSC p-values)

Table 3.6 compiles the results from the statistical analyses of the HDs, including only
those with p-values under 0.05. It confirms the first tendency, as the impact of controlling
structures is defined as significant against both intensity-based methods for the bladder
and the right sacral lumbar plexus.

Organ ContROI-noContROI noContROI-SDIR ContROI-SDIR

Bladder 0.006 0.625 0.004
Right lumbar plex. 0.037 0.625 0.037

Table 3.6: Comparison of methods on selected structures (HD p-values)

In Figure 3.6, both metrics of the bladder dataset exhibited a similar trend when control-
ling structures were used in ANACONDA: an improvement in performance, as well as
a decrease of the interquartile range and of the size of the box plot’s whiskers, although
some outliers remained.

(a) DSC (b) HD

Figure 3.6: Bladder box plot of the three methods
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The differences of the bowel’s HD is presented in Figure 3.7b, where a better performance
can clearly be observed when the Slicer registration was used rather than noContROI.
This difference was however not significant. For this organ, the size of the IQR is
considerably greater in ANACONDA methods. The DSC box plot (Figure 3.7a) pictures
more classical results; the hybrid method outperforms the two others. It can nevertheless
be specified that all DSCs for this organ are relatively high.

(a) DSC (b) HD

Figure 3.7: Bowel box plots of the three methods

Both sacral lumbar plexuses have very similar DSC box plot, thus only the left one is
shown in Figure 3.8a. It translates a great improvement when controlling structures
were used, confirming the extremely low p-values. The difference in the spread of HD
data between both plexuses is important and helps make sense of the asymmetry in
p-values. Focusing only on the IQR of the HD box plots, the right lumbar sacral plexus
(Figure 3.8b) shows a significantly lower range than the left one (Figure 3.8c), while the
medians are consistent between both plexuses across all methods. Furthermore, the HD
box plots clearly show lower HD medians for the ContROI method.

(a) DSC left (b) HD right (c) HD left

Figure 3.8: Lumbar plexuses box plots of the three methods
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Figure 3.9a gives a visual explanation of the statistical results of the cauda equina. The
spread of the SDIR DSC data is considerably larger than the ANACONDA methods,
and its median value is also notably lower. The HD box plot in Figure 3.9b, shows slight
differences in performance, but mostly similar median values, IQRs and whiskers’ sizes.

(a) DSC (b) HD
Figure 3.9: Cauda equina box plots of the three methods

The "filling organs" were a group of interest in the analysis of deformable registrations
as they were the ones having the biggest and most frequent volume changes. The bar
charts in Figure 3.10 illustrate how methods using controlling structures generally gave
a better mean score in both metrics. However, it also shows that they did not improve
the scores of the anal canal.

(a) HD

(b) DSC
Figure 3.10: Bar chart of the three methods’ DSC and HD for filling organs
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3.4 Dose mapping
The evaluation of the dose accumulation was mainly qualitative, dose and uncertainties
statistics (Table 3.7) were used as a tool to identify patients and ROIs with important
dosimetric variations. Out of this visual examination, four factors of dose uncertainties
were identified: dose gradients, body contours, ROI deformation (by controlling struc-
tures and image information), and the distance to target. Although these factors are
distinct, it is usual for a variation hotspot to be the result of multiple factors acting in
combination.

Uncertainties caused by steep dose gradients were observed in all patients. However, the
regions where they were identified were different for each patient as dose distributions are
case-specific. The example shown in Figure 3.11 illustrates dose variations in the steep
gradient region along the rectum contour (in orange), which was used as a controlling
structure in the two hybrid DIRs.

(a) Standard deviation (b) Mean
Figure 3.11: Dose uncertainties due to controlling ROI-caused geometric variations in

steep dose gradients. Patient 2694

Other uncertainties could be directly linked to specific organs and their deformation.
Dosimetric uncertainties located in the vicinity of a ROI used as controlling structures
were observed in nine patients. In Figure 3.12, the bladder (green), bowel (red), and
rectum (orange) were used as controlling structures and generate dosimetric uncertainties
in a region without gradient or high dose.

(a) Standard deviation (b) Mean
Figure 3.12: Dose uncertainties due to controlling structures outside of steep dose

gradient. Patient 2339
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It was also determined in six different patients that some regions, hence ROIs, were
subject to important intensity-based deformations. The region most prone to intensity-
driven deformation is the region of the anal canal as visible in Figure 3.13. This region
also shows high uD,1% and uD,av values in Table 3.7.

(a) Standard deviation (b) Mean (c) noContROI deformation grid

Figure 3.13: Dose uncertainties due to intensity-caused geometric variations. Patient 2281

It is however important to keep in mind that dosimetric uncertainties are a complex
combination of dose distribution and geometric uncertainties. Hence many significant
geometric deformations visible on the deformation grid did not induce dosimetric uncer-
tainties.

(a) Standard deviation (b) Mean

(c) Deformation grid noContROI (d) Deformation grid ContROI

Figure 3.14: Important deformation handled differently by the registrations taking place
out of the high dose region do not generate dosimetric uncertainties. Patient

2694
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The case of patient 2694 presented below shows how large variations in the contour
and the bowel (Figure 3.14c & 3.14d), handled differently in both ContROI and no-
ContROI methods (and others), did not generate large dosimetric uncertainties as they
were not close to high dose regions (Figure 3.14a & 3.14b). Conversely, small geometric
deformations taking place in a high dose distribution will induce a significant standard
deviation.

Important dosimetric uncertainties were highlighted in the external contour (Figure 3.15)
of the body in eight patients. A clear reduction of the dosimetric uncertainties is visible
between Figure 3.15a and 3.15b. To offer an even clearer visualization of the differences
in the contours caused by the removal of the RIR from the mean and standard deviation
calculations, Figure 3.15c presents the spatial distribution of the standard deviation
difference of the two dose files (all reg.& noRIR). This diminution of standard deviation
is also visible in Table 3.7, where the means and standard deviations of uD,1% and uD,av

of the body contour were found significantly (*) smaller for the noRIR calculation than
for the all reg. one.

(a) Standard deviation all reg. (b) Standard deviation noRIR

(c) Difference (a-b)
Figure 3.15: Differences in contour dose uncertainties between all reg. and noRIR.

Table 3.7 presents the means and standard deviations of the uD,1% and uD,av across all
organs from both all reg. and noRIR calculations. The significant differences between
calculation methods are marked with an asterisk. This table highlights the important
variability observed in the anal canal, rectum, and bladder-all of which are filling organs-
as well as high uD,1% values for the kidneys.
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all reg. /% noRIR /%
Organ (uD,av) (uD,1%) (uD,av) (uD,1%)

Bladder 12 ±14 * 21 ±18 * 13 ±14 * 23 ±19 *
Bowel 8 ± 5 13 ± 6 8 ± 5 13 ± 7

Canal anal 17 ±16 18 ±16 17 ±19 18 ±18
Cauda equina 3 ± 3 6 ± 5 3 ± 3 6 ± 5
Left kidney 6 ± 5 12 ±15 7 ± 5 13 ±17

Right kidney 9 ± 7 14 ±10 9 ± 8 14 ±10
Left plexus 3 ± 3 6 ± 2 * 3 ± 3 7 ± 2 *

Right plexus 4 ± 2 * 9 ± 5 4 ± 3 * 10 ± 5
Rectum 10 ± 6 19 ± 9 10 ± 6 20 ± 9
Urethra 4 ± 5 10 ± 5 * 4 ± 5 10 ± 6 *

Body contour 7 ± 3 * 11 ± 5 5 ± 3 * 9 ± 6
PTV1 4 ± 4 9 ± 8 5 ± 5 10 ± 8

Table 3.7: Mean ± std of uD,1% and uD,av for every organ

Significant differences between calculation methods were found for both uD,1% and uD,av

in the bladder (Table 3.8), only in uD,1% for the left lumbar sacral plexus and the urethra,
and only in uD,av for the right lumbar sacral plexus and the body contour.

Organ uD,av uD,1%

Bladder 0.028 0.008
Left plexus 0.061 0.038

Right plexus 0.019 0.092
Urethra 0.239 0.041

Body contour 0.014 0.083

Table 3.8: p-values for uD,1% and uD,av between all reg. and noRIR calculations

Most importantly, dosimetric uncertainties will have an impact on the patient’s safety
only in the regions where the re-irradiation will take place. Table 3.9 presents the uD
of the PTV1s (PTV with the highest dose when there were multiple PTVs for the same
treatment) of the second treatment, and it can be seen that the values vary considerably
from one patient to another.

Patient 2219 2281 2282 2319 2339 2390 2419 2551 2678 2694

uD,av /% 7.13 1.67 1.83 1.54 9.01 0.82 13.90 0.30 3.38 2.82
uD,1% /% 10.02 3.40 12.00 3.06 11.97 1.62 22.87 0.57 22.12 6.82

Table 3.9: RSD values of the PTV1 of the second treatment, all reg. calculation
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4 Discussion

4.1 Segmentations

4.1.1 Structure correspondence

The first and principal observation to discuss is the small quantity of corresponding
organs between the manually-segmented and AI-segmented structures. Indeed, only
three structures are segmented in the same manner in both methods. It represents less
than a third of the list of selected organs (Table 2.1), but furthermore, it is a very lim-
ited quantity next to the 104 structures available in TotalSegmentator’s segmentation.
Hence, this comparison doesn’t make use of the complete set of capacities provided by
the AI segmentation. It is mainly due to the fact that the focus of TotalSegmentator is
the domain of radiology while the ReCare selected organs are very radiotherapy-related,
and although radiology and radiotherapy have common imaging modalities and seg-
mentation necessities, they do not focus on the same anatomic structures. Indeed, 18
of the 104 structures segmented by TotalSegmentator are muscles and vascular struc-
tures, which segmentation represent a real achievement but are of limited interest in
the radiotherapy context. This also explains why the lumbar sacral plexuses are not
segmented by TotalSegmentator. They are of interest in radiotherapy because they are
made of nerves, which are radiosensitive tissues. However, nerves are not significant to
radiography, mainly because nerve damage is usually not visible on a CT scan.

Another challenge emerging when trying to compare these two segmentations has no
real link to their segmentation technique, or to their radiotherapy or radiography focus,
but is rather linked to a protocol choice. This can be seen for three different structures:
spinal cord - cauda equina, colon - rectum, gastrointestinal tract - bowel.

(a) Theory [119] (b) Segmentations
Figure 4.1: Difference between spinal cord and cauda equina
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The cauda equina consists of the nerves located at the end of the spinal cord (Fig-
ure 4.1a), and is most likely segmented in the ReCare context (red in Figure 4.1b)
because of the focus in the pelvic region. On the contrary, in TotalSegmentator, it is
segmented as part of the spinal cord (yellow on Figure 4.1b). The same happens for the
rectum (blue in Figure 4.2b), which is part of the TotalSegmentator’s colon delineation
(yellow in Figure 4.2b).

(a) Theory [120] (b) Segmentations

Figure 4.2: Difference between colon and rectum

The ReCare segmentation chose to use a broad delineation of the bowel (red in Fig-
ure 4.3), and then segment separately the rectum and anal canal. On the contrary, the
TotalSegmentator splits the bowel into three different segments: the duodenum (green
in Figure 4.3), the small bowel (purple), and the colon (yellow). The rough contour of
the bowel was chosen in the ReCare trial because of the difficulty to identify precisely
the boundaries of the organs, but also because of the challenge it opposes in registration
[97]. Because of the important magnitude of the anatomical changes in the bowel and
of its special shape, a loop-to-loop registration is complicated.

(a) Transversal (b) Coronal

Figure 4.3: Differences in bowel delineation
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The only evaluation available for this organ comparison is visual inspection. Hence as it
can be seen in Figure 4.3, the rough delineation of the ReCare bowel includes the three
different AI-structures. Moreover, some space is included in the ReCare bowel that does
not belong to any of the AI-organs. Depending on the anatomical location, it can be
explained either by a too broad ReCare delineation or a too tight AI-segmentation, con-
firming that the ReCare decision is a more cautious solution.

As the bones were identified to sometimes undergo unwanted deformation in the Cont-
ROI registrations, it is interesting to see that TotalSegmentator is capable of segmenting
the skeleton bone by bone. Although bone segmentation is not the most challenging task,
given that bones are easy to segment through thresholding, AI segmentation provides a
considerable time and resource advantage. It is faster and simpler than manual thresh-
olding in RayStation (which was done when bones were used as controlling ROI), as well
as a complete anatomical knowledge. Moreover, making use of some selected bones as
controlling ROIs rather than the whole skeleton could also give a better outcome.

4.1.2 Segmentation performance

The initial and general observation upon reviewing the results is the very high similar-
ity between the two segmentation methods. Moreover, the variations in the similarity
metrics are very low.

The kidneys especially exhibit high DSCs and low standard variations. This can be due
to many factors, such as their very specific shape, their low inter-patient variability in
volume and contour, as well as a good contrast to their neighboring tissues (visible in
Figure 4.4). It is indeed usual for kidneys to exhibit good segmentation results [121, 122].
On the contrary, kidneys exhibit the highest HD values along with very low variability.
Figure 4.4 demonstrates that the cause of the difference of performance between DSC
and HD is caused by the inclusion, or not, of the renal pelvis in the kidney delineation.

(a) Transversal (b) Coronal
Figure 4.4: Differences in kidneys delineation
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ReCare delineation guidelines include the renal pelvis (blue and green in Figure 4.4),
while TotalSegmentator does not (orange and pink). Indeed, the HD measures will be
sensitive to differences in contour, which does not impact the DSC to the same extent
as long as the volumes overlap. It also explains why the manual segmentation exhibits
a bigger segmentation volume than the AI-segmentation in Figure 3.3. The difference
in volume between the two kidneys could be explained by the fact that the left kidney
is positioned slightly higher than the right one and is more likely to be cut depending
on the CT’s field of view.

The bladder also exhibits a better performance in the DSC than in the HD. Here, it is
because the neighboring organs play an important role in its segmentation. Indeed, de-
pending on how the bowel (or small bowel for TotalSegmentator) is delineated, it could
change the decision of where the bladder’s contour starts, as it wouldn’t be realistic to
superpose both organs’ segmentations (Figure 4.5a & 4.5b). Moreover, TotalSegmenta-
tor also delineates the prostate, such structure will also change the contour of the bladder
(Figure 4.5b). As the two segmentation methods do not segment the same structures,
the impact of the neighboring organs on the bladder’s contour are predisposed to be dif-
ferent. Because the relative positions of organs differ for each patient and each CT, the
bladder’s HD values show significant variability. However, these delineation differences
do not generate a significant difference in segmented volumes (Figure 3.3).

(a) Sagittal (b) Transversal low (c) Transversal high

Figure 4.5: Influences on bladder delineation

It is important to keep in mind that the AI segmentation of the rectum and of the
cauda equina were not direct imports of 3D Slicer, which means that the comparison
is biased. For the cauda equina, the modifications are only done with the ROI algebra
tool in RayStation. It means that the length of the pseudo-AI organ is determined by
the length of the ReCare cauda equina (Figure 4.1b) and not the TotalSegmentator’s
segmentation or protocol. However, it also means that the significant difference in volume
segmentation relates to the thickness of the delineation rather than its length, and is
therefore a difference due to the segmentation method.
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For the rectum, two factors adding subjectivity are at play. First, both contours (Fig-
ure 4.6) were examined slide by slide to identify where modifications were needed to
adapt the colon delineation to the rectum’s. Once identified, the ReCare segmentation
was hidden to minimize direct influence from the manual segmentation. The second fac-
tor is that the modifications made with the brush tool were made without professional
segmentation or anatomical expertise.

(a) Sagittal (b) Transversal

Figure 4.6: Pseudo-AI rectum delineation process, with ReCare rectum in orange, Slicer
colon in yellow, and pseudo-AI in pink

The delineation of the anal canal can be seen (in blue inFigure 4.6a) as a continuation
of the rectum, which is an additional segmentation difference. Since the ReCare rectum
was delineated with the gastrointestinal tract considered as continuous, its end will not
be delineated in the same way as it would be if it was handled as a terminal structure,
as done in TotalSegmentator’s colon segmentation. It is also the location were most of
the volume difference originates from.

4.1.3 Outlook and limitations

In general, the performance of the AI-powered segmentation is very similar to the manual
one. However, this statement is based only on the five structures that it was possible to
analyze. This lack of correspondence in the segmented structures limits its utilization as
QA tool in the ReCare trial. Only three organs could be used as such, as the pseudo-AI
organs would ask for too much time and subjectivity for a QA task.

It is also important to stress the fact that the great theoretical time gain that the
AI segmentation can offer, should not be taken for granted. Indeed, in this thesis,
the personal computer used to perform the AI-powered segmentations was not ideal to
benefit from it.
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With a Nvidia Quadro P520 GPU rather than the RTX 3090 used to give the reference
runtimes of a few minutes (Table 2.2), and the Intel Core i7-8565U 1.80 GHz CPU instead
of the i9 3.5 GHz, the computation times were significantly higher. Indeed, computing
a "whole body" segmentation on an image of medium size on the computer described
above took between two and three hours. Moreover, as it requires intensive computer
capacities, no other tasks could be performed on the computer in the meantime. Thanks
to the Python console embedded in 3D Slicer, some parameters can be changed to have a
more efficient segmentation, like the selection of the structures to segment beforehand, or
separating the data in multiple smaller datasets. This requirement of computing power
highlights the important dependence on technology and hence the reduced accessibility
or plausible usage of this tool.
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4.2 Registrations

4.2.1 Controlling structures

The first trend shown in the general statistics (Table 3.4) is that using controlling struc-
tures gave significantly better results than using only image information. It can be
explained, firstly, by the fact that ANACONDA is then used to its full potential as a
hybrid DIR algorithm. Indeed, when controlling structures were used, two terms were
added to the non-linear optimization problem of the algorithm: the contour regular-
ization term and the contour matching term. The second aspect of this trend is that
the controlling structures can be selected, hence adjusted based on the patient, thus
more appropriate to the specificity of each case. This allows to select controlling ROIs
because of their relevance, either because they show a significant difference in the two
sets (in volume or location), or because of their importance in the treatment, hence need
in precise delineation propagation. Figure 4.7 shows a strong amelioration of the delin-
eation propagation (dotted lines) as the bladder (green), bowel (red) and both lumbar
sacral plexuses (blue) have been used as controlling ROIs. Some remaining problems
can however persist, in this case on the left lumbar sacral plexus.

(a) noContROI (b) ContROI

Figure 4.7: Example of contour improvement with controlling ROI (Patient 2281)

Filling organs are problematic because they bring differences that are not due to po-
sitioning and, contrary to fractionation, these differences can be voluntary. Indeed,
depending on the treatment, a large volume can be required to keep OARs as much
away from the high dose target as possible as part of the treatment prescription. This
was visible in the important bladder and rectum volume variations as well as in the use
of rectal balloons in some patients. The bladder and rectum both show means with a
clear better performance by the ContROI method in Figure 3.10.
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The bladder showed a significant difference in both metrics as controlling structures were
added. This is especially relevant as it is the most volume-varying organ (Figure 4.8
shows an example) and is not the most used ROI as controlling structure. The box
plots showed a clear amelioration in the values as well as in the decrease in their spread
(Figure 3.6) for the ContROI method. This can be explained by the fact that this organ
is very central, touching the rectum, bowel, urethra and bones. Hence, even when it is
not used as a controlling structure (either because it added too much constraints to the
registration or because it was not an overlap-relevant organ in that case), it will be greatly
influenced by the good propagation of the neighboring organs. The results of Romano
et al. [123] support these values, as they found that the bladder shrinking/enlargement
decreases DIR performance when no controlling or only the bladder is used as controlling
structure. It confirms the importance of controlling structures and the interdependence
of organs.

(a) Coronal plane (b) Sagittal plane

Figure 4.8: Example of significant bladder volume variation (Patient 2551)

The rectum also showed significant results in its DSC when using controlling structures
(Table 3.5), despite different challenging factors. First of all, it is a filling organ, showing
a mean volume variation of 24% in this patient cohort (Figure 3.4). Secondly, it is
located in the lower pelvic area and is thus very sensitive to positioning changes or
weight gain/loss. Therefore, the rectum’s registration can suffer from the correction
of these changes on top of volume variations. Lastly, it is directly in contact with the
bladder and the lower part of the bowel, which both vary a lot in size and location. These
challenging factors also highlight why the HD values do not show significant results.

The results obtained here showed the same tendency as the ones presented by Takayama
et al. [124] for the bladder and the rectum. The prostate and seminal vesicles cannot be
compared as they were not delineated in this patient cohort. The fact that Takayama et
al. have higher DIR DSCs can be explained by the time frame of their study: their DIR
was done on fraction CTs rather than re-irradiation ones. The performance of a DIR in
the abdominal region can be greatly reduced by the time in between the scans, as the
probability of more, and bigger changes increase with time.
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4.2.2 Data variability

The cauda equina and sacral lumbar plexuses are ROIs that illustrate very well the fo-
cus power of the controlling structures. The three structures showed DSC improvement
as controlling structures were added, showing an important increase in DSC (see Fig-
ure 3.8a), reaching significantly high scores (>0.95). Because of the geometry and the
location of these organs (Figure 4.9), using them as controlling ROIs helps keeping the
registrations anatomically realistic. However, their position also mean that if they are
not selected in the control list, they are not likely to benefit from improvements in other
organs or even rather be penalized by them. It is especially true for the plexuses as they
are in contact with other pelvic organs, and it explains why they are the organs most
used as controlling structures, alongside the rectum (Figure 3.1).

(a) coronal (b) sagittal (c) transversal

Figure 4.9: Anatomical location of the plexuses (green & blue) and cauda equina (yellow)

Although the p-values comparing the ContROI DSC to the two intensity-based methods’
registrations of the plexuses are extremely low, showing a very significant difference, the
p-values between noContROI and SDIR were also significant. Median DSC values of the
two intensity-based algorithms are considerably distant, furthermore the bigger IQR and
longer whiskers of the SDIR data (Figure 3.8) indicate a greater variability compared to
noContROI and makes it tend to significance. Indeed, t-tests account for differences in
means and in the variability within the datasets.

The impact of the SDIR dataset’s variability is also visible in the cauda equina’s box
plot in Figure 3.9a, that SDIR data shows a lower mean and median, but also a greater
variability, which then shows in the statistical results. In this case, significant differences
are visible between Elastix and RayStation rather than algorithm types.

However, the right sacral lumbar plexus also showed significant results in its HD values.
The difference of results between the two plexuses was unexpected and counterintuitive
as the two organs were presented as symmetrical. The asymmetry of the results could
be due to the placement of other organs influencing one plexus more than the other.
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It illustrates how an organ that is fairly stable in size and location can be influenced
when important changes are asked in other organs, in its vicinity. However, the box plot
(Figure 3.8) also depicts very well how the variability of data makes it more complex to
draw conclusions from statistical analysis.

4.2.3 Bowel

The loose delineation of the bowel allows to achieve good DSC values, already when
using the noContROI technique Figure 3.7a. When adding controlling structures, the
DSC differences between ContROI and the other methods are even considered significant
(Table 3.5) On the contrary, the less the size and shape correspond on both scans, the
harder it is to align them. Hence, although ContROI mean and median HD are lower
than noContROI, the outliers and the range of the data are still bigger (Figure 3.7b),
and no significant difference was found. However, the best HD mean (Figure 3.10a),
lowest variability, and lowest outlier, is visible in the SDIR data, highlighting the good
performance of the Elastix algorithm in this context.

4.2.4 DSC performance

The following tendency can be observed in the general statistical measures (Table 3.3)
and box plot (Figure 3.5): noContROI gives significantly better DSC results than SDIR.

It can be interesting to discuss what could drive such performance difference between
algorithms of the same type. The cause doesn’t stand on what information the algo-
rithms base their registration on, but rather how they look at it. As both methods are
intensity-driven, the difference isn’t caused by the registration technique but rather by
how the algorithm judges its result. Indeed, both algorithms use different metrics to
optimize and verify their registrations.
ANACONDA uses a correlation coefficient, assessing how the two images correlate by
comparing their intensity values in a pixel-by-pixel manner. Therefore, it can be sensitive
to intensity variations that are not anatomic but due to an inter-modality registration,
noise, artifacts or regions that show very homogeneous intensities.
Elastix uses Mattes mutual information, which doesn’t rely on a direct intensity match,
but rather on the statistical relationship between intensities in the two images. This
metric offers a robust performance in regions manifesting a more subtle gradient, which
are often located at the organ boundaries.

Offering a good match at the boundaries of the structures has thus a direct impact on
the HD. On the contrary, the DSC value does not focus on the exact contour matching,
but on the volume overlap.
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A trend consistent with this explanation is that the Elastix registration demonstrates
smaller HD values and reduced HD variability compared to the noContROI method.
Despite being, for example, visible in the bowel’s box plot (Figure 3.7) and in the filling
organs’ means comparison (Figure 3.10), this tendency was never judged significant.

4.2.5 Anal canal and urethra

The anal canal and the urethra are two particularly complicated organs to register.
Firstly, because they are located in the very low pelvic area and are thus extremely sen-
sitive to positioning changes or body weight gain/loss. Secondly, the structure matching
is complicated because of the small size of the structures. Hence, the differences in inten-
sity taking place around the anal canal make the delineation propagation of all methods
equivalent (Figure 3.10). The urethra could be defined as a filling organ because of its
volume variation (0.22), however its registration results were not defined as such because
the performance is more impacted by its location and reduced size rather than its filling
nature.

4.2.6 Outlook and limitations

Hybrid DIR allow to bring subjectivity into the registration with the choice of controlling
ROI, e.g. a better handling of filling organs. It was however demonstrated that the
location of certain organs makes it impossible even for the best performing algorithm to
ameliorate the delineation propagation. It was shown that the similarity metric used in
the algorithm had an impact on the its performance, depending on the metric used to
judge said performance.
It is important to emphasize the low number of patients, which undoubtedly impacts
the results, particularly the statistical analyses. Furthermore, in the case of the urethra,
the limited sample size means that when outliers have to be removed, the sample falls
below ten, which reduces the power of a statistically analysis.
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4.3 Dose mapping

Dose distributions are warped using registrations that align two CTs because it is as-
sumed that the CTs and dose distributions are spatially correlated. However, as ex-
plained before, there is no registration that proves to be fully geometrically satisfying.
Therefore, the mean dose file represents the best estimate as it compiles all of the selected
registrations, hence combining the advantages (and disadvantages) of every strategy. It
is done in that manner because there is no ground truth in the matter of dose defor-
mation, and the result cannot be validated against an expectation. In the way they
were calculated in this thesis’ context, dose uncertainties can be defined as the amount
of variation of the mean dose of all registrations, expressed in the form of standard de-
viation. However, a registration that would present no geometric uncertainties (highly
unlikely), would not lead to the absence of dose uncertainties. In this context, an ab-
sence of dose uncertainties would be caused by an exact match of the five registrations
used to generate the mean dose file.

As geometric uncertainties are introduced by the registration, it is commonly under-
stood that geometric uncertainties are correlated to dosimetric uncertainties [100, 125].
However, the relation between these two different types of uncertainties is neither direct
nor linear. Dose uncertainties are caused by a combination of geometric uncertainties,
dose gradients, and/or dose magnitude. The extent of the dose uncertainties also depend
greatly on this combination of factors. In other words, dose distribution can change the
dosimetric relevance of registration errors.

This combination of factors asserts the assumption that a registration judged as geo-
metrically good cannot be straightforwardly assumed to be good for dose deformation.
Moreover, this implies that registration should be approached with an awareness of what
dose warping could require. Acknowledging dose warping in a registration is only pos-
sible when using a hybrid algorithm, as it allows to generate an optimal patient-specific
registration. Indeed the selection of controlling ROIs can be done by considering the
dose distribution. Furthermore, the level of required accuracy depends on the dose
distribution, as a poor registration has no clinical consequence in a homogeneous dose
distribution.

4.3.1 Body contour

The uncertainties at the contour of the body are very consistent as they were identified
in eight out of ten patients. The second set of MEAN DOSE and STD DOSE files
calculated without the RIR highlights one of the main difference between RIR and DIR
methods: all DIR methods used in this work have a similar performance of contour
delineation propagation, while the RIR does not correct for it.
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This difference is visible in Figure 3.15 showing the standard deviation of both all reg and
noRIR calculations, and their difference in magnitude in Figure 3.15c. A quantitative
approach also confirms this observation, as the body contour’s uD,av are significantly
lower when the RIR is not used in the calculation (Table 3.7), as well as for the bladder,
the plexuses, and the urethra.

It is however important to keep in mind that patient safety will depend on the overlap
of the two treatments, hence only anatomical and dosimetric changes in dose-overlap
areas are of clinical relevance. For example, the dosimetric uncertainties located in the
contour were very important in the rigid registration, both in frequency and magnitude,
but they are not necessarily problematic in the re-irradiation context. Indeed, although
they are of high importance to evaluate the geometric quality of the registration, uncer-
tainties far from the target are insignificant to the patient’s safety. Hence, unless the
target is at the skin, these dosimetric uncertainties generated by the rigid registration
do not disqualify its use. Indeed, the differences between the two calculation methods
were not found significant for the PTV (Table 3.7).

In the patient cohort, only one case can be identified as sensitive to contour variations.
As the patient underwent his first treatment in 2013, the dose distribution is character-
istic for 3DCRT, i.e. steep gradients and high dose are located at the body contour as
visible in Figure 4.10b. Hence, the impact of the contour registration on the dosimetric
uncertainties are due to the radiation technique rather than to the position of the target.
Moreover, the treatment targets of other patients are either situated near a bony struc-
ture or closer to the core of the body, making them minimally influenced by variations
at the surface.

(a) Standard deviation (b) Mean

Figure 4.10: Importance of good contour match for patient 2282
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4.3.2 Gradients

A dose gradient can be defined as a dose difference, divided by the distance between
two isodose curves. Therefore, the smaller this distance is, the steeper the gradient, and
these quick transitions generate what is referred to as a heterogeneous dose distribu-
tion. Usually, the isodose curves are close to each other in high dose regions and then
become more spaced out as they move away from the high dose target. Hence, steep
dose gradients are typically situated in high dose areas. However, the opposite is not
true. It cannot be said that homogeneous regions, thus with low dose gradient, are only
situated in low dose areas. A homogeneous dose distribution area is often desired in
PTVs. It can of course also happen in the low dose areas but the dose magnitude is not
the important factor but rather the homogeneity of the distribution. The magnitude of
the dose in a low gradient becomes especially significant at the boundary of the isodose,
geometric variations at this location will create dosimetric uncertainties.

Indeed, Figure 4.11 illustrates the impact that the gradients can have on the dosimetric
uncertainties. In an homogeneous dose distribution like the 70% surface in green in
Figure 4.11b and delineated by its red isodose curve, the uncertainties are very low
(Figure 4.11a), although the dose is high. Then, between the 70% isodose in red and the
40% isodose in orange, the gradient is quite steep, and important uncertainties can be
accounted for. In the lower dose regions, the uncertainties are visible around the 30%
isodose curve in pink, and at the contours where the RIR causes geometric variations.

(a) Standard deviation (b) Mean
Figure 4.11: Impact of dose homogeneity on dosimetric uncertainties. Patient 2219

A heterogeneous distribution of dose must be combined with geometric uncertainties to
generate dosimetric uncertainties. Although the regions presenting anatomic differences
can be identified, predicting the precise location of geometric uncertainties is complicated
because it depends on how the algorithm chooses to deform these regions. The geometric
differences can be due to the different ways that algorithms handle challenging regions
with no controlling structures as in Figure 4.12, or in regions with controlling regions as
in Figure 4.13.
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(a) Standard deviation (b) Mean

Figure 4.12: Dosimetric uncertainties due to intensity-based geometric uncertainties in
steep dose gradient area. Patient 2694

(a) Standard deviation (b) Mean

Figure 4.13: Dosimetric uncertainties due to controlling structures-generated geometric
uncertainties in steep dose gradient area. Patient 2551

Although steep dose gradients are located relatively close to the target, the shape of the
dose distribution, and hence the exact contour of dose gradients are very case-specific
and can be considerably far from the target depending on the shape of the isodose
surface. Moreover, the dose gradients are non-uniform even along the same two isodose
curves. The distance to high dose was taken into account when selecting the controlling
structures for the hybrid algorithm, but not where the steep gradients were located.

Registration variations in uniform dose distributions result in small dose errors, while
the same geometric variations occurring in regions with steep dose gradients lead to
important dosimetric uncertainties. The impact of geometric variations on the dose
accuracy depends on the gradient density of the area. As there are less dose gradients
further away from the high dose target, dosimetric uncertainties also indirectly depend on
the dose magnitude in the area of the geometric errors. If it were to define an acceptable
geometric uncertainty that would ensure dosimetric uncertainties to stay under a safety
threshold, it could be stated that the the acceptable geometric uncertainty would vary
along the anatomy.
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4.3.3 Geometric uncertainties

Geometric uncertainties arise from variations in how the different registration strategies
handle the anatomic differences between the two CT scans. The registrations used to
generate the MEAN DOSE and STD DOSE files can be put in three different strategy
categories: the RIR, the image information based DIRs, and the hybrid DIRs. Eventu-
ally, the variations in how each category of strategy performs, particularly in challenging
areas, cause the observed geometric uncertainties. These can be quantified in different
ways such as low DSCs, high HDs, or the statistical analysis of these metrics between
the different methods (Table 3.5 & 3.6), but also in the volume variation of the organ
(Figure 3.4).

ROIs with the highest uD mean can be identified in Table 3.7. Although dose uncertain-
ties are always multifactorial and case-specific, when ROIs have a high mean uD, it does
imply that they have an inclination for geometric variations. The three organs exhibiting
the highest RSD are (in every category) the bladder, the anal canal, and the rectum.
These ROIs are all filling organs, which are known to be challenging areas. Their geo-
metric uncertainties are quantified in different ways: the bladder has showed significant
differences between registration methods in both metrics, while the anal canal exhibits
a low DSC, and the rectum presents a significant DSC difference in the registration
performance.

However, as presented in Figure 3.1, the organs most used as controlling structures are
not necessarily the ones noted as most challenging or exhibiting the biggest volume
variation. Indeed, as the anal canal was only used as a controlling structure in one
patient, it can therefore be concluded that the high dosimetric uncertainties in this
region are due to intensity-based geometric variations. On the contrary, the rectum was
used as a controlling structure in nine patients, its high dosimetric uncertainties can
thus be qualified as linked with controlling structures generated geometric variations.
Controlling structures can introduce geometric uncertainties because they stress on the
registration of certain ROIs delineation that are not otherwise in focus. It also puts the
propagation of these ROIs delineation in higher priority than deformations that would
be solicited by image information.

The case of the anal canal is special because of the particularly outstanding RSD. Many
reasons can explain this high variation numbers. First of all, it is a small, filling organ,
and it displays big position variations between the two CTs. Therefore, it is very com-
plicated to offer a good registration for the anal canal. Moreover, it is located near bony
structures and in the very low pelvic region, the algorithms thus don’t have a lot of flex-
ibility to offer a good geometric outcome. The similarity metrics of the anal canal, that
can be seen in Figure 3.10, clearly show that the different registrations cannot perform
differently in that region.
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Moreover, because of the targets treated in this patient cohort, the anal canal was
often situated at the border of an important isodose curve. It is also because of these
dose distributions that the urethra does not exhibit the same uD as the anal canal
despite being in the same anatomic region. Indeed, the dose distribution overlapping
the urethra is usually fairly homogeneous, while the anal canal is found in a gradient
area. This difference can even said to be significant for Dav values for both all reg. and
noRIR calculations, along with the other organs exhibiting low dose variation such as
the cauda equina, and both sacral lumbar plexuses (signified with stars in Table 3.7).
These organs, conversely to the urethra, exhibit good geometric performances.

In the context of uD,1% values, which indicate the presence of uncertainty hotspots, the
same trend does not apply, here only a significant difference between the bladder and
the cauda equina was observed. The bladder had the highest uD,1%, while the cauda
equina equina had the lowest value. Although the cauda equina showed better DSC and
HD measures than the bladder, this alone does not account for the difference, as other
organs show both superior and inferior similarity metrics than this pair. Moreover, both
the bladder and the cauda equina showed significant differences between the registra-
tion methods. Thus, the dose distribution plays a key role in the impact of geometric
uncertainties on uD,1%.

4.3.4 Systematic errors

As presented in the Material & Methods section, the data used for analysis has undergone
many steps of import and export from and to RayStation, 3D Slicer and Python. It
was also transformed spatially either by RIR or DIR. Some accuracy has been lost in
this process, principally caused by interpolation. There is of course the interpolation
mentioned in the resampling of the SDIR dose file in Python. The dose uncertainties
caused by this interpolation can be quantified with the checkDIR dose file that contains
the resampled Slicer DIR dose distribution, and is visible in Figure 4.14.

Figure 4.14: Dose difference between the original SDIR and checkSDIR files, Patient 2281
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There are however many interpolation steps that are taking place in the background
of the TPS and are not explicitly communicated to the user. An aspect that the TPS
struggles to handle is the rotation of the dose field. Indeed RIR and DIR can use 3D
rotations, which results in a change in spatial orientation, despite having the same dose
file of origin. When such a tilted file is exported from RayStation, it is automatically
straightened. This implies that if the file is re-imported without undergoing any modifi-
cation, the imported file will still exhibit differences from the original dose distribution
as visible in Figure 4.15.

Figure 4.15: Dose difference between the original Wall file and the exported and directly
re-imported Wall file, Patient 2694

This is a limitation of RayStation that could not be improved with in this thesis. These
type of introduced uncertainties should be mentioned, although they remain small in
the context of the observed dosimetric variations.

4.3.5 Second treatment

When all of these observations are put back into the context of re-irradiation, the safety
of the patient eventually depends on the dose uncertainties in the high dose region of
the second treatment. To illustrate this aspect, uD,1% and uD,av from the PTV1 from
the second treatment for each patient were retrieved and presented in Table 3.9, they
were also used for statistical analysis in Table 3.7.
The first observation that can be made from these results is the important variation
from one patient to another. This is due to the fact that every factor that can influence
dose uncertainties is different for each patient. The geometric uncertainties are different
because the anatomical changes between the scans were different. The dose distributions
are different because every patient has a different first treatment. Finally, the location
of the PTV1 is also different for every patient as it depends on their individual second
treatment. It can be seen that the lowest PTV1 uD is lower than the lowest ROI uD
(Table 3.7) for both maximal and average dose uncertainties. One of the reason for that
is the fact that the PTV values are not a mean but individual values.
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However, it can be argued that the RSD of the PTVs are quite low because they are
located in regions of low primary dose and low geometric variations. Indeed, most of the
re-irradiation PTVs have lymph nodes or bones as targets. Bones or targets located near
bony structures are known to vary in position only slightly with time. Moreover, primary
treatments commonly have targets that are more centrally located, such as the prostate
bed, which puts the secondary PTVs far from the high dose of the first treatment. It is
however essential to keep in mind that these observations are based only on this specific
patient cohort, and could vary greatly depending on the anatomies of the patients and
their treatments.

4.3.6 Outlook and limitations

Dosimetric uncertainties are a complex combination of heterogeneous dose distribution,
geometric uncertainties and dose magnitude. Although the different factors can be
identified, it is complicated to predict, particularly because the geometric uncertainties
do not necessarily manifest in (or only in) challenging regions. It is also important to
keep in mind that the dosimetric uncertainties are of importance only in specific regions
subject to re-irradiation. Hence, the big variations that were identified at the contours
were not found to create significant differences in the organs, were high dose overlap
is more likely to take place than at the skin. A limitation of the analysis done in this
thesis is the dimension in which the dose distribution was viewed. As visible in every
example previously given, the dosimetric uncertainties were evaluated in the transversal
plane as shown in Figure 4.16a and 4.16b. However some special cases of high dosimetric
uncertainties cannot be explained by the presented factors, and looking at gradients in
the other planes could help make sense of it, as exemplified in Figure 4.16d where the
largest uncertainty was found in the transversal dose gradient near the field edge.

(a) Standard deviation (b) Mean

(c) Standard deviation (d) Mean
Figure 4.16: Dose distribution in different planes. Patient 2319
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The comparison of manual and AI-powered segmentation resulted in the conclusion that
the 3D Slicer module TotalSegmentator is not appropriate to be used as a QA tool
for checking the manual segmentation of the ReCare cohort in the pelvic region at the
time this work was conducted. Although the results showed a high similarity between
the two segmentations, the number of corresponding structures was too low to fulfill
this function. The reasons identified for these differences were the radiology focus of
TotalSegmentator and some differences in the segmentation protocols. The personal
computer’s CPU and GPU capacities were identified as a limitation to the theoretical
time gain of automated segmentation, highlighting the important dependence of such
methods on powerful technology. The modifications made to create pseudo-AI structures
were also time consuming and reduced the precision of their similarity metrics. However,
if future research focuses on other anatomic regions, TotalSegmentator might be more
adequate to perform a QA task there.

The quantitative and qualitative evaluations of the different registration strategies al-
lowed to state that the best results were reached with hybrid DIRs. Using controlling
structures offers to the registration the necessary subjectivity to respond to the specificity
of each case. The differences between each intensity-based algorithm and the hybrid al-
gorithm were consistent across both DSC and HD metrics, while the two intensity-based
algorithms showed significantly different DSC results when tested against each other
due to their use of different optimization metrics. Organs offering a challenge to the
appropriate performance of the registrations were also identified.
Their challenging characteristic was mainly due to their filling nature, generating impor-
tant variations of volume and geometry. The specificity of each case, and consequently
the important differences between patients, made it unsuitable to generate a general
hybrid DIR methodology that would assure a good performance, hence the selection of
controlling structures could vary depending on the anatomical changes that took place
between the two treatments. To continue this work, more patients should be added to
the cohort in order to strengthen the results and confirm the trends identified in this the-
sis. In a second stage, other anatomic regions need to be investigated, where algorithms
might perform differently.
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The assumption made, as the dosimetric uncertainties in dose mapping were calculated
with previously performed registrations, was that there is a spatial correlation between
anatomy and dose distribution. Assuming geometric correlation between dose distri-
bution and anatomy also means that geometric uncertainties are linked to dosimetric
uncertainties. It was however observed that dosimetric uncertainties are generated by a
complex combination of geometric uncertainties, a steep gradient dose distribution, and
a certain dose magnitude. The geometric variations causing dosimetric uncertainties
were found to be a consequence of the use of controlling structures in certain regis-
trations, the different handling of intensity-based variations (e.g., anal canal) between
registrations, and the absence of contour matching in the RIR. It was also found that
the quantification of dosimetric uncertainties was especially important for patient safety
in regions of re-irradiation. PTVs, as part of the overlap region, were used to quantify
these critical dosimetric uncertainties, particularly due to the high doses involved. The
absence of the RIR in the dose uncertainties calculation was found to be significant
only for some organs and the body contour, but not for the PTVs. The communication
between 3D Slicer, RayStation, and Python appeared to be complicated, adding time-
consuming steps as well as interpolation errors. Additional work needs to focus on the
resampling errors caused by the change in dimension of the SDIR file. More patients
could confirm the results, as well as offer more special cases that could raise interest in
other factors to dose variations not yet identified. For a better prediction of dosimetric
uncertainties, steep gradients could also be identified in the first steps of the registration
workflow and taken into account when selecting the controlling structures of the hybrid
DIRs.
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Appendix

organ 2219 2281 2282 2319 2339 2390 2419 2551 2678 2694 Mean

Bladder 1 1 1 1 1 0 0 0 1 0 0.6
Bowel 1 1 1 1 1 0 1 0 1 0 0.7
Canal anal 1 0 0 0 0 0 0 0 0 0 0.1
Cauda equina 0 0 1 1 0 0 0 0 1 0 0.3
LumbSacPlex R 0 1 1 1 1 1 1 1 1 1 0.9
LumbSacPlex L 0 1 1 1 1 1 1 1 1 1 0.9
Rectum 1 0 1 1 1 1 1 1 1 1 0.9
Urethra 1 1 0 0 0 0 0 0 0 1 0.3

Table 5.1: Organs used as controlling ROIs in ContROI and Wall methods
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Figure 5.1: Checklist method
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