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1 Introduction

In convex geometry, affine quermassintegrals are important quantities in the for study
of geometric inequalities. Lutwak introduced two types of these integrals: the dual
affine quermassintegrals, denoted by ®; and the affine quermassintegrals, denoted by
®y.. Of special interest are the isoperimetric inequalities associated with these integrals.
For the dual affine quermassintegrals @y, this involves finding sharp upper bounds and
identifying the convex bodies of a given volume that achieve equality. For the affine
quermassintegrals ®;, the goal is to establish sharp lower bounds and determine the
convex bodies that minimize them.

The isoperimetric inequality for the dual affine quermassintegrals ®,. was proven ear-
lier, with the inequality shown in and the cases of equality discussed by Grinberg
in . In contrast, the isoperimetric inequality for the affine quermassintegrals @y
remained an unsolved problem for many years. It was only in 2022 that this inequality
was finally proven by E. Milman and Yehudayoff in [MY23].

In this thesis, we give a self-contained presentation of the proofs of the isoperimetric
inequalities for @), and @y, establish the equality cases, and examine some of their prop-
erties. Additionally, we will discuss some consequences of the isoperimetric inequality
and highlight important special cases that serve as fundamental tools in affine convex

geometry.

Acknowledgments 1 would like to thank my supervisor, Professor Franz Schuster,
for his support and guidance during the writing of this thesis. My sincere thanks also

go to my parents for their continuous support throughout my studies.
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2 Notation

As usual, we denote the n-dimensional Euclidean space by R™ with origin 0 and standard
basis e, ..., e, equipped with inner product (z,y) = = -y = zy and induced norm |.|.
Let |z| also denote the absolute value of z € R, and let RT denote the positive reals,
whereas R~ denotes the negative reals. For x € R we denote 27 = z; = max(z,0)
and 2~ = x_ = max(—x,0), where we use the + index either as a superscript or a
subscript to avoid collisions with other indices. Additionally, 2 should be understood
component-wise if = is a vector. Furthermore, for v € R” and A C R", we set ut =
{reR":z-u=0}and At ={z € R": x-a =0 Va € A}. With int(A), cl(A) and
bd(A), we denote the topological interior, closure and boundary of A.

We denote by GL,, the set of linear and bijective maps ¢ : R® — R", represented by
matrices with non-zero determinant, det(¢) # 0. The subgroup SL,, of GL,, consists of
matrices with det(¢) = 1. We write SO,, for the set of all orthogonal matrices ¢ with
det(¢) = 1. If ¢ is a linear map we write ¢* for its adjoint, ¢! for its inverse and
¢! for its transposed. We denote by Ker¢ the kernel of ¢ and by Im the image of ¢.
Furthermore, the composition of two maps ¢, 1 in general will be denoted ¢ o 1), for the
restriction of ¢ on a set E we write ¢|E.

The set of k-dimensional linear subspaces of R" will be denoted as G(n, k) and, the set
of k-dimensional linear subspaces contained in a linear subspace L C R" will be denoted
G(L,k). With A @ B we will denote the direct sum of two linear subspaces A and B.
Furthermore, for A C R™ we write 14 for the indicator function, i.e. 14(z) = 1 for

x € A and 14(x) = 0 otherwise.
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3 Geometric Preliminaries

We start with some basic definitions. For A, B C R", we define the Minkowski sum of
A and B
A+B={a+b:ac A be B}.

A set A C R" is called convez if, for every z,y € A, the line segment from x to y
[z y] ={Az+ (1= Ay:0<A <1}

is contained in A. We denote by K(R"™) the set of non-empty, compact, and convex sets.
Moreover, a conver body K C R™ is a compact, convex set with a non-empty interior.
The set of convex bodies will be denoted K™. Given a convex body K C R", we denote
the support function of K by hx(x) = max{z-y:y € K}, € R". Furthermore, we can
equip K(R™) with the Hausdorff metric 6,

d(K,D) = max{max{d(k,D) : k € K}, max{d(K,d):de D}}, K,DeK",

where d(k,D) = d(D, k) = min{|k — d| : d € D}. The polar body K° of a convex body

K C R" containing the origin in its interior is defined as follows,
Ke={zxeR":z-y<lforallyeK}.

With the n-dimensional Lebesgue measure A, we have a notion of volume on K" and
denote by k, the volume of the n-dimensional unit ball B” = {z € R" : |z| < 1}, i.e.
Kn = Ap(B™). If K is a measurable set in R", we define By as the ball centered at the
origin and with the same Lebesgue measure as K. Furthermore, the n — 1-dimensional
sphere is denoted by S" ! = {z € R" : |z| = 1}. If H is a subspace of R" then
By is the unit ball in H, Py : R® — H is the projection onto H, and we often write
A|H = Py (A) for A C R™. By span(H ), we denote the linear hull of H, i.e. the set of all
linear combinations of elements of H. The dimension dim(A) of a set A C R" is defined
as the dimension of the affine hull of A. For u € S"~!, the set {y € R" : y-u = hx(u)}
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3 Geometric Preliminaries

is called the supporting hyperplane to K with outer normal u.

We call a set L C R"™ star-shaped at the origin if [0,2] C L for every x € L. For such
L, we define its radial function pr(x) = max{\ > 0 : Ax € L}. Furthermore, a star
body is a compact, star-shaped set with a positive, continuous radial function. The set
of star bodies will be denoted by S™. For K, L € S™, we define the radial sum K+L as
the star body with radial function px + pr. The projection body 11K of K is defined
via hiig (z) = Ap_1(K|2z") and the intersection body of K is the convex body IK with
prx(r) = A\_1(K Nat). Furthermore, the Minkowski functional of K € K" will be
denoted

||z||k = inf{t >0:2 € tK}.

For L € 8™, the polar coordinate formula for volume holds

We call a function f : R™ — R conver if

f((I=tz+ty) < (1 -1)f(x) +tf(y),

for all z,y € R” and 0 <t <1, and concave, if —f is convex.

We will need the following important classical theorems. Theorem Blaschke’s
Selection Theorem, can be found in , Theorem the Brunn-Minkowski In-
equality, Theorem [3.0.3] and Theorem the Dual Brunn-Minkowski Inequality, can
be found in and for Theorem m Brunn’s concavity principle, we refer to

[Gru07].

Theorem 3.0.1. Every uniformly bounded sequence in K(R™) admits a convergent sub-

sequence.
Theorem 3.0.2. Let K, L CR" be convex bodies with non-empty interior, then

A (K + LYY > X (K™ 4+ 0, (L)Y

with equality if and only if K and L are homothetic (i.e. L = aK + x for some a > 0
and x € R"™).

Theorem 3.0.3. For convex bodies K; C R",i € {1,...,m}, the volume of their Minkowski
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3 Geometric Preliminaries

sum is a polynomial with non-negative coefficients in the scaling parameters, i.e.

A (WKL + ot b Kon) = Y iy £, V(G 0, KG) (3.2)

1<it,.ein<m

fort; > 0. The non-negative coefficients V (K;,, ..., K;,,) in are called mized volumes
of (Kiy,.... Kj,).

If in particular the first k entries of V(...) are Ky and the following n — k entries are
Ko, then we simply write V (K1, k; Ko,n — k).

Theorem 3.0.4. Let K, L C R"™ be star bodies. Then,
An(KFL)Y™ < Ny (B)Y™ 4+ M (L)Y,
where equality holds if and only if K arises from L through scaling.
Theorem 3.0.5. If K C R"™! is a convex body and u € S™, then the function
i 1/n
t»—>)\n(Kﬁ(tu+u )) , teR

18 concave on its support.
Finally, the following formula of Fedotov can be found in [Sch13|, Theorem 5.3.1.

Theorem 3.0.6. Let F € G(n,k) for 1 < k <n—1, and let Ly,...,L,_;, C F* be
non-empty compact convex sets. Then, for Ky, ..., K € KC(R™) it holds that

n
<k>V(K1’ vy Ky Lyy ooy Ly ) = Vp(PpKy, ..., PEKy) Ve (L1, ooy L),

with Vg, E € {F, F+}, denoting the mized volume in the subspace E.

3.1 The Lowner Ellipsoid

We will prove that for a compact set C' with positive measure, there exists a unique
centered ellipsoid of minimal volume that contains C'. This result will be used to prove

some important characterization theorems for ellipsoids. The results of this section can

be found in |Gar06].
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3 Geometric Preliminaries

Definition 3.1.1. An affine transformation is a map ¢ : R" — R™ with ¢(x) = Az + ¢,
where A is n x n-matrix with det(A) = £1 and ¢t € R™. An ellipsoid in R" is the image
of a ball under an affine transformation. We call an ellipsoid E centered if —x € E

whenever z € E.

Remark 3.1.2. Note that in the above definition, det(A) = =+1 ensures that affine

transformations are volume-preserving.

Theorem 3.1.3. (Weighted arithmetic-geometric mean inequality) For numbers 1, ..., x, >

0 and weights w1, ...,w, > 0 with w = w1 + ... + w, > 0 we have

wixr1 + ... +wpx /
141 n”zwxiﬂl...m%"
w

with equality if and only if all the xp with wy > 0 are equal.

Proof. We can assume that all wy, are positive, since the terms with zero weights have no
influence on the inequality. By the fact that the natural logarithm is concave, Jensen’s

inequality yields

(wlxl + ...+ wpz,
In

) > ﬂln:cl—i—...—l—%lnsﬂn
w w w

_ w1 w
=In {/xy" - 2p”.

Since the natural logarithm is increasing, we obtain the desired inequality.

Clearly, equality holds if all x; with wy > 0 are equal. If at least two of the x; are not
equal, the above inequality obtained by Jensen is strict, and since the natural logarithm
is strictly increasing we also have strict inequality in W > m O

Theorem 3.1.4. Let C C R" be compact with A\, (C) > 0. There exists a unique centered
n-dimensional ellipsoid, known as the Lowner ellipsoid, of minimal volume containing

C.

Proof. To prove the existence let £ be the class of centered n-dimensional ellipsoids
containing C' and a = inf{\,(E) : E € £} > 0. There is a sequence E,, in £ with
M (Ep) — a for m — oo. Because each of the E,, is an n-dimensional Ellipsoid we
obtain a sequence A,, € GL, of regular n x n matrices such that E,, = A,,B". Since C
is bounded, the entries of A,, are also bounded and therefore there exists a subsequence

m(j) such that A, converges to some n x n matrix A. Furthermore, we get from
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3 Geometric Preliminaries

A (Ep,) = | det Ay, |Ky, that

M (B s
7( m(J)) — i, for j — oo.
Rn, Rn,

| det Am(j) | =
Thus |det A| # 0 and E = AB" is the n-dimensional ellipsoid we were looking for.

To prove uniqueness, suppose that E1, F» are two such centered n-dimensional ellip-
soids containing C' with least volume a. We can find ¢ € SL,, such that E] = ¢F) is a
ball with radius b and F), = ¢FE5 a centered ellipsoid, i.e.

n

Ei={zeR": Zx? < b},
i=1

n

E;:{xeR":Z

i=1

<1}

@\
S

for some aq, ...,a, > 0. Since ¢ is volume preserving, we get
= M(E}) ="k = M (E)) = ajas - - - apkin.

From ¢C C E| and ¢C C El, we obtain > i, 27 < b* and Y 1,

< 1 for all x € ¢C.

‘H
SIS

Since such x € ¢C' also satisfy

Z (b2 +a?) <1

=1

we conclude that ¢C' is also contained in the centered ellipsoid Ef = {x € R" :
SO 2 b+ a;?) < 1}. This gives us A, (E}) > a. On the other hand the weighted
arithmetic-geometric mean inequality yields

An (Eé) = Ky, H V2ba; (62 + a?)_l/2
i=1

SﬁnH(baz)l/2 )\ (EI)I/Q)\n (Eé)l/Qza’
i=1

Hence A, (E%) = a, and from the equality cases in the arithmetic geometric mean in-

equality, we obtain b = a; for 1 < i < n. This gives Ej = E}, and therefore Fy = Ey. [
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3 Geometric Preliminaries

3.2 Steiner Symmetrization

To establish some characterizations of ellipsoids, we introduce the important concept of

Steiner symmetrization and specifically prove that a convex body converges to a ball

under successive Steiner symmetrizations. As a reference, we cite [Gar06], [Gru07], and

[Scho5).

Definition 3.2.1. Let K C R” be a convex body, v € S" ! and [, € R" the line
through the origin spanned by u. The Steiner symmetral S, K of K in the direction
of u is defined as follows: For every x € u' with the property that (I, + 2) N K # 0,
let ¢(x) be the line segment parallel to u with center = and length A;((l, + z) N K). If
(Iy +x) N K = (), then set ¢(x) = (). The union of all ¢(x) is S, K.

More formally, since (I, + ) N K is a line segment, we may write it in the form

{r+z2u:2z€R, z(x) <z<zZ(x)}

with two functions z : K|ut — R and Z : K|ut — R. In particular, the difference
Z(xz) — z(z) is the length of the line segment (I, + 2) N K. Therefore

clx)={z+z2u:zeR, —% (Z(x) — z(z)) <z < %(E(m) —z(x))},

and we obtain the Steiner symmetral as

zEK|ut

Proposition 3.2.2. Suppose K,D C R™ are convex bodies and v € S™' is a given

direction. The Steiner symmetral has the following properties:

(1) z is convex and lower semi-continuous, Z is concave and upper semi-continuous,
(i) Su.K is symmetric with respect to reflection in u™*,
(7i1) Sy K CR"™ is a convex body,

(iv) Su(AK) = ASy K (up to translations) for A > 0,
(v) Su(K) + Su(D) C Su(K + D) (up to translations),

(vi) if K C D, then Sy (K) C Sy,(D),
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3 Geometric Preliminaries

(vii) Sy : K" — K™ is a continuous map.
(viii) A (SuK) = M (K).

Proof. (i): Since K is convex, it is easy to check that also z is convex. To prove the
lower semi-continuity, suppose that 2 € K|u’ such that there is an € > 0 and a sequence
yi,i € Nin K|ut with y; — o but z(y;) < z(z) — e. We can assume that z(y;) converges
to some real number a, since if not, we replace y; with a suitable subsequence. Since
yi + z(yi)u € K and y; + z(yi)u — x + au we obtain z + au € K and therefore, the
contradiction z(x) < a < z(x) — €. The statements for z follow analogously.

(3): Trivial.

(#41): The boundedness of S, K and S, K # () is obvious. To show that S, K is closed
let y;,7 € R™ be a sequence in S, K converging to some y € R". Then y; = x; + z;u for
some z; € K|ut,z € Rand z; — x, 2 — 2, y =  + zu. Since K|L is closed, we obtain
r € K|u*. The inequality 2|z;| < Z(x;) — z(x;) and the semi-continuity yield

2|2| = lim 2|z < ligri)sogp?i(xi) —liminf 2(2;) < Z(2) — z(2),
and thus y € Sy (K). The convexity of S, K follows from the fact that the function z—z
is concave.

(7v): Trivial.

(v): Let x +y € Su(K) + Su(D), that means we can write x = h+1land y =k +m
for some h, k € ut and I, m € I, with

1 1
| < EAl(Kﬁ(lu—l—a})) and |m| < §A1(Dﬂ(lu+y)).
Since 1, and u' are subspaces, we have h + k € H and [ + m € L and therefore

z+y=(h+k)+(1+m)ecut+1,
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3 Geometric Preliminaries

Because of

L+ m| < || + |m|
< %(Al(Kﬂ (Lo +2)) + M(D N (L + )

_ %Al(Kﬂ(Zu—kx)—FDﬂ(lu-f'?/))
%)\1((1{+D)ﬂ(lu+x+y))

IN

we obtain z +y € S, (K + D).

(vi): Trivial.

(vii): Let Cy,,n € N, be a sequence in K™ converging to some C' € K™ with respect to
the Hausdorff metric. We may assume 0 € int(C'). For € > 0 and sufficiently large n we

have
(1-6)CCCpC(1+¢C.

Applying (iv) and (v) yields
(1 —¢)S,C C Su(Cp) C (1+¢)S,C.

Because of 0 € int(S,(C)) we obtain the convergence of S,(Cy) to S,(C) in K.
(viii): Applying Fubini’s Theorem, we obtain

A (Su k) :/R)\l(c(x))d:n:/R)\l((lu—i—x)ﬂK) iz = A(K),

where we set c¢(x) = 0 for x ¢ K|u*. O

3.3 Characterization of Centered Ellipsoids

With the notion of the Lowner ellipsoid and the results regarding Steiner symmetrization
in hand, we can now prove some important characterization theorems for ellipsoids. As
a reference for this section, we cite |Gar06|.

Theorem 3.3.1. Let K C R™ be a convex body and assume the sequence of directions
Um € S" 1 m € N, with the property outlined in Lemma . If for every m € N, the
set of midpoints M,, of all chords of K parallel to u,, lie in a hyperplane passing through

the origin, then K is a centered ellipsoid.

10
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3 Geometric Preliminaries

Proof. We will show, that for every m € N there is a ¢ € SL, with S, K = ¢K.
Therefore fix m and let € R”. There are y € u" and s € R such that z = y + suy,.
Denote by S the hyperplane which contains M,,, and let z € S be the unique point
with z = y + tu for some t € R. We define ¢z = x — (z — y). Since y is the orthogonal
projection of 2 onto u' and z depends linearly on y, we get that also ¢ is linear. By the
Cavalieri principle and the property of ¢ being a translation in each line parallel to u,
it follows that ¢ € SL,. It is easy to check that S, K = ¢K holds.

Like in the previous lemma let K, = S, Su,, ,---Su, K. We just showed that K,, is
the image of finitely many volume preserving linear transformations of K and therefore
of just one such transformation which we denote by ,,. Let E be the Lowner ellipsoid of
K. Then ¢, F is the Lowner ellipsoid of K, with A, (¢, E) = A\, (F). Since K, converge
to a ball rB™ with with the same volume as K and the ellipsoids ¥, X converge to the
Lowner ellipsoid of rB™, which is rB"™ itself, we obtain A\,(E) = A\, (rB") = A\, (K).
Since K C F we get K = F. ]

Lemma 3.3.2. If E is an ellipsoid containing the origin, then the polar E° is also an

ellipsoid that contains the origin.
Proof. First, if a € intB, then, by the relation between the support and the radial

function, we obtain for u € S?~!

- 1 - 1
" @) 1tau

P(B"+a)° (u)
In particular, it holds that

P(Br+aye (W) =1 = ppnya)e (w)u - a,

which if # = (21, ..., %n) = p(Bryq)e (u)u can be rewritten as

n n 2
Zaz?: (1—26@@) .
i=1 i=1

The above equation is quadratic, (B+a)° is convex, thus, by 15.4.7 in [BCL09|, (B +a)°
is an ellipsoid. Let ¢ € GL,, be such that £ = ¢(B + a), a € intB. Because of
1 1

ho(Bra) (W) = = = higige(d tu) = hy- ey (1),
o) = @ pprale ) (O = R ()

11
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3 Geometric Preliminaries

we obtain
E° = (¢(B+a))®=¢""((B+a)°),

which shows that E° is an ellipsoid containing the origin. O

Remark 3.3.3. Suppose that (P) is a property of convex bodies and we proved that K
has property (P) whenever all its projections K|S, S € G(n,n — 1) have property (P).
Then if 1 < k < n —1 and it holds that K has property (P) whenever all K|S,S €
G(n, k) have property (P). To see this, we argue by induction as follows: Assume that
H € G(n,3) and all projections K|S,S € G(n,2) fulfill property (P). If we identify
H with R? we can apply our assumption (with n = 3 and k& = 2) to get that K|H
has property (P). By induction on the dimension of the subspaces, we conclude that K

possesses property (P).

Lemma 3.3.4. Let 1 <k <n—1 and K CR" be a compact convez set such that K|S
is an ellipsoid for every S € G(n, k). Then K is an ellipsoid.

Proof. By Remark it suffices to show it for £k = n — 1. If dim K < n there is
S € G(n,n — 1) containing a translate of K. Thus K is just a translate of K|S, and
therefore an ellipsoid.

Now let dim K = n, that means K is a convex body. We can find pi,ps in bdK
such that the line segment [p,p/] is a diameter of K. Without loss of generality let
p = (—1,0,...,0) and p’ = (1,0,...,0). Suppose H is a supporting plane to K which is
parallel to [p,p’] and let S € G(n,n — 1) be such that [p,p'] C S and S is orthogonal to
H. Thus, K|S is an ellipsoid with [p,p/] as one axis. The body K|S is supported by
H NS at one point, which is contained in {z; = 0} = {z = (21, ...,z,) € R" : 1 = 0},
hence H N K C {x; = 0}. Therefore, £ = K|{z; = 0} = KN {x; = 0}, so E is an
ellipsoid and as readily observed also centered.

Now let ¢ : R™ — R™ be an affine map, which lets [p,p] invariant and maps F
onto a ball D in {z; = 0} with the origin as its center. Since ¢ maps ellipsoids onto
ellipsoids, showing that ¢(K) is an ellipsoid of revolution finishes the proof. So, for
every P € G(n,2) the projection ¢(K)|P is an ellipse. Let ¢,q¢ be so that [¢,q'] is a
diameter of the ball D. If we apply the above argument with K replaced by ¢(K) and
[p,P'] by [q,q'], we get that the intersection of the hyperplane, which is orthogonal to
[q,¢'], and ¢(K) is an ellipsoid E’. Furthermore, the line [p,p'] is an axis of E’, and
for every subspace P € G(n,2) containing [p, p'], the intersection P N ¢(K) is an ellipse

12
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with the two axes [p,p’] and a diameter of D. That shows that ¢(K) is an ellipsoid of

revolution. 0

Lemma 3.3.5. Suppose that K C R" is compact, convex and containing the origin in
its relative interior and let 1 < k < mn — 1. If for all S € G(n,k) the body K NS is an
ellipsoid, then K 1is an ellipsoid.

Proof. Due to Remark we can assume k = n — 1. For dim K < n, that means
K C S for some S € G(n,n — 1), it follows directly that K is an ellipsoid. So let K be
full dimensional, i.e. K € K". For every S € G(n,n — 1) and u € SN S"! we have

1 1
P(KO\S)O(U) = hK()lS(u) = hKo (’LL) = PKo° (u) - pKﬂS(u)a

where we used K°° = K and the relation px = 1/hx between radial and support
function. Thus (K*|S)° = K N S is an ellipsoid and therefore, by Lemma [3.3.2]
(K°|S)°° = K°|S is also an ellipsoid for every S € G(n,n — 1). Lemma yields
that K° must be an ellipsoid and thus this also holds for K, again by Lemma |3.3.2, [

13
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4 Two Essential Stochastic Results

In this chapter, we will prove two crucial stochastic results. The first result will be
essential for proving the isoperimetric inequality for dual affine quermassintegrals, The-
orem [6.0.6] while the second will be used for the corresponding inequality for affine
quermassintegrals, Theorem [7.5.1] As a reference for the first stochastic theorem and
the preliminary work we cite , Section 7.3, and for the second we refer to ,
Theorem 7.2.6.

But first, recall that G(n, k) is the set of k-dimensional linear subspaces of R". On
G(n,k) we assume the usual topology. Furthermore, we equip G(n,k) with a suit-
able normalized SO, invariant Borel measure and denote the integral of a function

f:G(n,k) — R with respect to the measure by

/ F(F)dF.
G(n,k)

We begin with a few definitions and statements that are not yet of a stochastic nature.

Definition 4.0.1. Let G be a topological group, that is, a group G with a topology T
such that the group operation and the inversion map are continuous. A homogeneous
G-space is a pair (X, ¢), where X is a topological space and ¢ : G x X — X a transitive

and continuous operation of G on X with ¢(.,p) being an open map for every p € X.

Remark 4.0.2. We will argue that every homogeneous G-space X can be viewed as
a quotient space G/H with a subgroup H of G. Indeed, let H be a subgroup of G,
equipped with the subspace topology, and G/H = {aH : a € G}, the quotient space
with the quotient topology. We define a natural operation ( of G on G/H as follows

((g,aH)=gaH forge G, aH € G/H.

With that, (G/H, ) becomes a homogeneous G-space. On the other hand if (X, ¢) is a
homogeneous G-space, fix an arbitrary p € X and set S, = {g € G : ¢(9,p) = p}. Then

14
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4 Two Essential Stochastic Results

the map
5:G/Sp_>X7 gSP'_)¢(g7p)

is a homeomorphism from G/S, to X with §(gaS,) = ¢(g,8(aSy)) for all g € G and
aSp, € G/Sp. In this sense the homogeneous G-spaces (X, ¢) and (G/S), () are isomor-
phic.

Definition 4.0.3. Let G be a locally compact topological group and C.(G) the set of
continuous functions f : G — R. Then, for a € G we define the function a.f : G — R as

follows

(a.f)(z) = f(a™tz), =zeG.

Furthermore we call a functional I on C.(G) an integral on G if I is linear, positive
and non-zero everywhere. If H is a subgroup of G and x : G — R a given function, we
call an integral I on G/H relative invariant with multiplier x if I(a.f) = x(a)I(f) for
all f € C.(G/H) and a € G. By the Riesz—Markov—Kakutani representation theorem
every Integral on G/H corresponds to a unique regular Borel measure p on G/H which
satisfies I(f) = fG/H f(z)dp(z) for f € C.(G/H). Analogous, p is said to be relative

invariant with multiplier x : G — R if
p(gA) = x(g9)p(A),  for g € G and a Borel setA on G/H.
Note that the measure p is relative invariant if and only if the corresponding integral

is relative invariant.

Definition 4.0.4. A Borel measure p on G is called left invariant if p(gA) = p(A) for
all g € G and Borel sets A on G.

For the following Theorem, we refere to [Coh80].

Theorem 4.0.5. Let G be a locally compact topological group. Then there is (up to
a positive factor) a unique left invariant regular Borel measure on G, the so-called left

Haar measure.

Our aim is to show that with given multiplier x there is up to a factor only one
relative invariant measure on G/H. Therefore we establish a connection between C.(G)
and C.(G/H) in the following way: For f € C.(G) we define

f(x) = /H fay)dn(y), z€G,

15
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where 7 denotes the Haar measure as in Theorem The function f’ is constant on

every left coset. Indeed, for x = zh € zH we have
F@)= [ feh)inw = [ 1) = 1)
H H

Therefore, we obtain a unique function f* : G/H — R with f'(z) = fT(zH) for all

x e G.
The following can be found in [SW92], 7.3.2.

Lemma 4.0.6. The map f — [T is a linear bijective function from C.(G) onto C.(G/H).
With this in hand, we can prove the following important theorem.

Theorem 4.0.7. Let G be a locally compact topological group, H a closed subgroup of
G and x a given multiplier. Up to a constant factor there is only one relative invari-
ant measure on G/H, or equivalent, up to a constant factor there is only one relative

invariant integral on G/H.

Proof. Let p be a relative invariant measure on G/H and a € G. By the invariance of p

we obtain

| @h@do(@) =x(a) [ h(o)dola)
G/H

G/H

for h € C.(G/H). Moreover, for f € C.(G) it is readily seen that (a.f)* = a.(f1).

Since x is a homomorphism y = y(a)a.x. Therefore,

() =i (2) e ()

For readability, we will not explicitly note the integration variable in the following. Let

us define a positive linear functional

= . <£>+ dp for | € CL(G).

o=, (32) e [, (2)

Since

16



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

4 Two Essential Stochastic Results

I is a left invariant integral on C.(G) and therefore, up to a constant factor, uniquely

determined. Suppose that p is another relative invariant measure on G/ H with multiplier

X. Then
+ +
IRORIMOR
G/H \X G/H \X

for all f € C.(G) and some constant ¢. By Lemma every function of C.(G/H)
corresponds to suitable (f/x)" and therefore p = cp. O]

With these tools established, we can now prove the important stochastic result men-
tioned earlier. The corollary that follows from this result will be used to prove the

isoperimetric inequality for dual affine quermassintegrals.

Theorem 4.0.8. Let [ be a Borel function on the product space (R”)i, where 1 <1 <

n — 1. Then there is a constant ¢ € R, depending only on n and i, such that
/ o[ fp1,-opi)dprec - dpi
n Rn

:C/ /H'/f(pl,.“7pi))\i([0’p1"'"pi])n_idpl"'dpids,
G(nyi) JS S

Proof. The idea of the proof is to view both sides as functionals of f and then apply
Theorem [£.0.7] to obtain the constant. For that we have to show that

Il(f):/n"' Rnf(Pla---,pi) dpy - -~ dp;

and

Iy(f) :/g(n,i)/sm/sf(pl’m7pi)>\i([07p17”"pi])ni dpy -~ dp;dS

are positive, linear and relative invariant integrals on C.(X) with the same multiplier.
Here X denotes the set of all tuples (p1, ..., p;), where the p; are linear independent, i.e. X
is the set of (n, ) matrices with rank 7. Let us define a topological group G = SO,, x GL;,
where the topology is the product of the standard topology. We can now equip X with

a transitive operation
¢ ((D, M), (p1, ..., pi)) = D(p1, ..., pi) M,

for (D,M) € G and (p1,...,pi) € X. Therefore (X, ¢) is a homogeneous G-space. Note
that by Remark (X, ¢) can be seen as a quotient space G/ H for a suitable subgroup

17
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H and therefore the assumptions in Theorem are fulfilled for X.

Positivity and linearity of I; and Is are clear. By the rotation invariance of the
Lebesgue measure and the fact that the linear map (p1, ..., p;) — (p1, ..., pi)M has deter-
minant (det M)", we obtain for f € C.(X) and (D, M) € G,

L((D / / Ypry.. p)M) dpy - dp;
— | det M1, (f).

Furthermore, if we define £(p1,...,p;) = i ([o,p1,...,pi]) and fix S € G(n,i) we have

Lo [P0 e p)M ) N o) -,
= | det M]Z/ / F (D (p1s-op) € ((p1y oo i) M) dpy -+ - dp;
= ]detM]”/ / F 1o p) €1y ey pi)" ™ dpr - - dp;
D-18 D-18
By the rotation invariance of the measure on G(n,?) we obtain
L((D, M).f) = [det M["I5(f),

and thus, I1, I are relative invariant with the same multiplier. Theorem [£.0.7] yields

I = ¢l for some constant.
O

For the following corollary, which will be crucial for the proof of the isoperimetric
inequality for dual affine quermassintegrals, we will use functions g,, », which will be
defined later in Definition [6.0.1]

Corollary 4.0.9. If C' C R" is a compact set and 1 < i <mn — 1, it holds that
)\n(C)i = c/ gn_m’(c N S)dS
(n,%)

where ¢ € R depends only on n and i.

Proof. Applying Theorem to the function f(p1,...,pi) = Lo (p1)--- 1o (p;) and
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the fact that

/---/110(p1)---1lc(pi)>\i([0,p1,-.-,pz-])"_idpr--dpi
S S

SnC sSnC

= gn—i,i(C'NS)
for S € G(n,1i), yields the claimed equality. O

We now turn to the second stochastic result.

Definition 4.0.10. For a linear subspace L C R" let us denote by G(L,q) the set of
all g-dimensional linear subspaces contained in L if ¢ < dim(L), and if ¢ > dim(L)
containing L. Furthermore, let SO, 1 := {U € SO,, : UL = L,Ux = x for x € L*}.
Then, a SO,, ;-invariant measure can be defined on G(L, ¢), as done in reference ,
Section 13.2, allowing us to integrate functions defined on G(L, q).

Let Lq,..., L be linear subspaces of R"” with either

k
ZdimLi =m<n (4.1)
=1
or
k
> dimL; > (k- Ln. (4.2)
=1

We call Ly, ..., L in general position if, in case (4.1))

dimlin (L1 U...ULg) =dimL; + ... +dim Ly,

holds, or in case (4.2)) if
dlm(L1 ﬂ...ﬂLk) =dimL;+...+dimL; — (k‘— 1)7’L

Note that, Li,..., L are in general position if and only if Li,... ,Lé‘ are in general
position. Now, we define the subspace determinant, denoted by [L1, ..., L], as follows.
In case of we choose an orthonormal basis in each L; and define [Ly, ..., L] as the
m-~dimensional volume of the parallelepiped spanned by the union of these bases. When

(4.2) holds, we define
Ly, L) = [Lf,...,Lﬁ] ,
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Furthermore, if ¢ € N,ry,...,rg € {1,...,n — 1} and (Ly,...,Ly) € G(n,71) X ... X
G(n,ry), we denote by
[le"'qu]T = [Ll,...,Lq],

where r := (r1,...,74) serves as a multi-index. Moreover, if we fix a linear subspace Ly,
we may also set

[L1,...,Lq,Lo], :=[L1,...,Lg, Lo]

re

Therefore, for r := (r1,...,ry), the determinants [-,...,-]; and [-,...,-, Lo, are both

functions defined on G(n,ry) x ... X G(n,ry).
The proof of the following can be found in [SWO08|, Theorem 7.2.6.

Theorem 4.0.11. For given integers si,...,5q € {1,...,n — 1} and sp € {1,...,n}
with
si+...+s;—(g—1)n=:m>n— s,

a linear subspace Ly € G(n, sp), and a non-negative measurable function f : G(n,s;) X

.. xG(n,sq) = R, we have

/ FFy, oo Fy) d(Fy, o) Fy)
G(n,s1)%...xG(n,sq)

F(FL s Fy) - [Py, ooy By, Lo 0™ d(Fy, ..., Fy) dL,

=c
/G(L07m+so—n) /G(L,sl)x.,.xG(L,sq)
(4.3)
where s := (s1,...,5q), baq := % and

1 b 2d—m—sg)(d—s;
C = bSO(dfm) H ( 0)( J) .

i bad—s,)

In [SWOS], Theorem 7.2.1, one can also find an alternative proof of Theorem as
well as a demonstration of how Theorem .0.11] follows from Theorem [7.3.71
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5 Affine and Dual Affine Quermassintegrals -

Definitions and Basic Properties

In this section, we recall the definition of the affine quermassintegral ®;(K) and the
dual affine quermassintegral (ka(K ) for a convex body K, and establish some basic
properties. These include the log-concavity of ®; with respect to the Minkowski sum,
and the corresponding properties of ®; with respect to the radial sum. Additionally,
we will prove the affine invariance of both ®; and ®; and conclude by exploring their
connections to other classical isoperimetric inequalities.

The k-th affine quermassintegral ®; was originally defined by Lutwak in [Lut84].

Definition 5.0.1. Let K C R™ be a convex body, and 1 < k < n. The k-th affine
quermassintegral of K is defined by

3=

Kn

OL(K) = / Me(K|F)™ " dF
R G(n,k)

Lutwak also defined the dual affine quermassintegrals.

Definition 5.0.2. Let C' C R" be a compact set and 1 <7 < n. The quantities
1/n
~ Kn n
B, 4(C) =" / M(C N S)mds
Ri \/G(n.i)
are called the dual affine quermassintegrals of C.

5.1 Log-Concavity

In this section, we will prove the log-concavity of ®, and P, with respect to the

Minkowski sum and the radial sum, respectively.
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5 Affine and Dual Affine Quermassintegrals - Definitions and Basic Properties

5.1.1 Log-Concavity of the Dual Affine Quermassintegral

As a reference, we cite |Gar07].

Definition 5.1.2. Let us denote by B™ the class of bounded Borel sets in R" and B,
the class of sets of B", which are star-shaped with respect to the origin. If a subset
C™ C B" is closed under intersections with linear subspaces, radial sums, and dilatations
we call it admissible. A function f defined on such C" is said to be radially convex if,
forall C;DeC”and 0 <t <1,

f(A=t)CH+tD) < (1 —1)f(C) +tf(D).

Furthermore, we call f positively homogeneous of degree 1 if f(rC) = rf(C) for all r > 0.

To prove log-concavity of the dual affine quermassintegrals we need the following

lemma.

Lemma 5.1.3. Fizxp > 1 and 1 < i < n—1. If f is a non-negative function on
an admissible class C™ that is homogeneous and radially conver on any i-dimensional

subspace, and such that f(C N )P is integrable on G(n,1i), then the function g : C" — R,

1/p
9(C) = ( L f(CﬂS)pdS> ,

is homogeneous and radially convex.

Proof. 1t is easy to check that g is homogeneous. To show that g is radially convex, let
0<t<1and C,D € C". Since the radial sum z+y of z,y € R" can be defined by

- x4y if x,y, and o are collinear,
r+y =
o otherwise,

we have, for each S € G(n, 1),

(1-t)CHD)NS =(1—-t)(CNS)Ft(DNS).
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5 Affine and Dual Affine Quermassintegrals - Definitions and Basic Properties

Minkowski’s inequality for integrals yields
1/p
g((1 —=t)C+tD) = </ fl(1=t)C+tD) N S)pdS>
G(n,i)

1/p
< (/ (1=0f(CNS)+tf(DN S))pd8>
G(n,i)

1/p 1/p
<(1-1) / FCensyds|  +t / F(DNS)dS
G(n,i) G(n,i)

= (1-1)g(C) +tg(D),
(5.1)

which proves the statement. O

With this in hand, we are able to prove log-concavity of the dual affine quermassinte-

grals.

Theorem 5.1.4. For K,L € B}, and 0 <1i <n —1 it holds that

(i)i(K_T_L)l/(n—i) < &)Z(K)l/(n—z) + (i)l(L)l/(n—z)
where equality holds if and only if K is a dilatate of L, modulo a set of measure zero.

Proof. The case i = 0 corresponds to the usual dual Brunn-Minkowski inequality, The-
orem [3.0.4] So, let 1 <i<n—1and 0 <t < 1. Note that the class B, is admissible.
Furthermore, let S € G(n,i) and C, D € BT, with C,D C S. The function A/* defined
on S is homogeneous. If we identify S with R?, the dual Brunn-Minkowski inequality
yields

Ai((1 =) CHD)Y < (1= )X (C)Y? + tAi (D)

where equality holds if and only if C' is a dilatate of D, modulo a set of measure zero.
The function f = )\3 /s homogeneous and radially convex on S. Therefore, Lemma
with p = ni implies that the function (k;/k,) ®!,_; is radially convex. Replacing i
by n — % yields the claimed inequality.

We are left to address the cases of equality. If that is the case, equality also holds in
for f = )\Z-l /t and p = ni. This implies that we have equality in the dual Brunn-
Minkowski inequality, Theorem where n = i and K and L are replaced by K NS
and LN S, respectively, for almost every S € G(n, 7). We conclude that KNS is a dilatate

of LN S, modulo a set of A\;-measure zero, for almost every S € G(n,i). But \,_; is the
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unique Borel-regular, rotation-invariant measure on S™~! so that the measure of S~

is nky,. Thus,
Nknp

[5 Mf(u) du = i /g - [5 e f(u) dudS

If we substitute f = px on the left-hand side and f = cgpr, on the right-hand side, where

cs is a constant possibly depending on S, the above equality remains true. However, the
same equation must also be true if px(u) = cspr(u) for all w € S"1 N S. We deduce
that the constant cg is independent of S. But this means that K is a dilatate of L,

modulo a set of measure zero. O

5.1.5 Log-Concavity of the Affine Quermassintegral

As a reference, we cite [Had57].

Definition 5.1.6. A functional on a subset M C KC(R") U {0} with ) € M is a map
¢ : M — R with ¢(0) = 0. We will call ¢ homogeneous of degree 1 if ¢p(aA) = ap(A)
for every a € R and A € M. Furthermore, ¢ is said to be concave if

¢(aA+ BB) = ap(A) + Bo(B)

for every A, B € M and o, > 0 with o + 8 = 1. Finally, we call ¢ strictly defined if
¢(A) >0 for all A e M, A # 0.

For proving the log-concavity of the affine quermassintegrals, we need two lemmas.

Lemma 5.1.7. Let M C K(R™) U {0} be a set of convex bodies, such that ) € M and
A CC for every A € M and a suitable cube C'. If ¢ is continuous on M, then it is also
uniformly continuous on M, i.e. for every e > 0 there is an o > 0 with |p(A)—¢(B)| < €
whenever 6(A, B) < a.

Proof. Assume that the statement is false. There would be sequences Ay, Bi, k € N in
M with 6(A,, By) — 0 but |¢p(A,,) — ¢(By)| > € for a suitable choice of €. Concerning
the selection theorem of Blaschke, Theorem [3.0.1], we can assume A,, —+ A and B, — B
in M, which yields 6(A, B) = 0, so A = B. Since ¢ is continuous, we have ¢(A,,) — ¢(A)
and ¢(By) — ¢(B), thus |¢(A,) — ¢(By)| — 0, a contradiction. O

Lemma 5.1.8. Let ¢ be a functional homogeneous of degree 1 on K(R™) U {0} with
d(K) > 0 for every K # (. Then ¢ is concave if and only if there exists p > 0, such
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that the function V(K) = ¢p(A)P, K € K(R™) fulfills
V(aK + D) > 1

for every o, B >0 with o+ 3 =1 and ¥(K) = ¥(D) =1.

Proof. First, let ¢ be concave, and K, D, «, and /5 as above. Then ¢(K) = ¢(D) =1
and therefore
9(aK + BD) > ag(K) + B#(D) = 1,

so U(aK + D) > 1. Conversely, let K, D € K(R™) be non-empty, and let ¢(K) = 1/k
and ¢(D) = 1/d for k,d > 0. Since ¢ is homogeneous of degree 1, we have ¢(kK) =
¢(dD) =1 and therefore ¥(kK) = ¥(dD) = 1. For given o, f > 0 with a + 5 = 1, we

define
ak B

T e— d —_— _

Bkt+ad " Bktad
Since £ + 7 = 1, we can apply our assumption and get ¥((kK + ndD) > 1, thus
¢(ékK +ndD) > 1. Finally,

£

Bk +ad

¢(aK + D) > d

ad(K) + fo(D).
O

Since we aim to deduce the concavity of functionals on all convex bodies from their

concavity on lower-dimensional convex bodies, we introduce the following definition.

Definition 5.1.9. For a k-dimensional subspace H € G(n,k) of R", 1 <k <n —1, we
define K%, , € K(IR™) as the set of all convex bodies in H, in particular, with non-empty

relative interior. Furthermore, set

o= U K
HegG(n,k)

Theorem 5.1.10. Let p > —1, p #0, 1 < k < n —1 and let ¢ be a strictly defined,
continuous functional on K}t U {0}, which is homogeneous of degree 1 and concave on
K%, for every H € G(n,k). Then, the map

—1/p
b(4) = / GAIH) P dH)| . Aek™,
G(n,k)

25



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

5 Affine and Dual Affine Quermassintegrals - Definitions and Basic Properties

is a strictly defined, continuous, homogeneous of degree 1 and concave functional on

Kru{0}.

Proof. Since ¢ and the map H — A|H are continuous, the integrand is continuous. It
is also bounded due to the fact that ¢ is strictly defined, and therefore, ¢(A|H) remains
uniformly positive for H € G(n,k). Thus, the integral exists for A € K" and ¢ is
well-defined.

That 1 is homogeneous of degree 1 and strictly defined is readily seen. Since ¢ is
continuous, we can apply Lemma yielding the uniform continuity of A — ¢(A|H)
on every uniformly bounded M C K™. Therefore, we conclude the continuity of .

We are left to show that ¢ is concave. Let «, 8 > 0 with a+ 8 = 1. Since ¢ is concave
and for A, B € K™ and H € G(n, k)

(aA+ BB)|H = o(A|H) + 3(B|H),

we obtain

¢((aA+ BB)|H) > a¢(A|H) + Bo(B|H).

In case of —1 < p < 0, the concavity of the power function x — =P yields
¢((aA+ BB)|H) ™" > ad(A|H) ™" + o(B|H) .
If we set W(A) =(A)"P, then
U(aA+ B) > aV(A) + fY(B).

In particular, whenever A, B are such that W(A) = ¥(B) = 1, we get ¥(aA + 5B) > 1.
Applying Lemma yields the concavity of 4. If p > 0, the power function z — 7?7 is

convex. Thus,

6((a A+ BB)|H)™ < a¢(A[H)™ + B6(B|H) .

We now set W(A) = (A)? and get
U(aA +BB)™t > aW(A)~ ' 4 pY(B)~ L

Again, U(A) = ¥(B) = 1 implies ¥(wA + SB) > 1 and by Lemma [7.3] the concavity of
1) follows. O

26



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

5 Affine and Dual Affine Quermassintegrals - Definitions and Basic Properties

With this theorem in hand, the log-concavity of the affine quermassintegrals becomes

an easy consequence.

Corollary 5.1.11. Let K, L € K" and 0 <i<n—1. Then
(I)i(K + L)l/(n—i) < (I)i(K)l/(n—i) + (I)i(L)l/(n_i)_

Proof. We will prove the equivalent statement that the function K — &;(K )1/ (n=i) jg
concave. But that is just the case p = n and ¢(K) = N(K|F),F € G(n,i) of Theorem
0. 1.10

O

5.2 Proof of the Affine Invariance of i)k and o,

To do this, we introduce the concept of a multiplier function. The results of this section

can be found in [Gri91].

Definition 5.2.1. Let G denote a topological group and M a topological G-space,
meaning that we have a continuous map G x M — M denoted by (g,2) — gz, which
satisfies ex = 2z and (¢'¢")x = ¢’ (¢"z). Furthermore, let Z(G, M) be the group of
functions o : G x M — R™ satisfying

o (g/g//7$) — Y (g',g”a:) o (g//)x)
for every ¢',¢" € G,x € M and let B(G, M) C Z(G, M) be the subgroup of multiplier

functions that are of the form

o(g,z) = f(gx)/f(x),

where f : M — RT is a continuous function (not to be confused with the notion of
multipliers as in Definition {4.0.3)).

Theorem 5.2.2. If K C R" is a convex body and g an affine transformation, then
Op(K) = (gK) for 1 <k <n-—1.

Proof. As shown in [FT71], the function

_ A(g(KNH))
or(g,H) = Wa
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5 Affine and Dual Affine Quermassintegrals - Definitions and Basic Properties

where ¢ is an affine transformation and H € G(n, k), is a multiplier function as well as

the Radon-Nikodym derivative

dg~'H

Furthermore, it is shown in [FT71] that the following equation holds

n

Ug(n,k)(ga H) = Gk(gv H)_ :
We conclude the proof by computing

1/n
D, 1(gK) = kp </H€g( Y Me(9K N H)/rg)" dH)
, 1/n
= Kn </ (A\k(gK NgH)/kg)" d(gH)>
gHeG(n,k)

1/n
= Kn (/ ok(g, H)" (\(K N H)/kg)" d(gH)>
Heg(n,k)

1/n
= Knp, (/ ()\k(KﬂH)/I-{k)ndH>
HeG(n,k)
=&, _(K).

O

To prove affine invariance for ®; we again use the notion of multipliers. But first, we

need to establish a projection volume identity.

Lemma 5.2.3. Let K CR" be a convex body, H € G(n,k), and ¢ € SL,,. Then
Me(@K|H) = N (K|¢'H) oy (¢', H) .

Proof. In case that ¢ is an orthogonal matrix, the above is trivial. If ¢ is a lower

triangular matrix with respect to the coordinate system {H H l}, then ¢'H = H and

¢:(g;).

the matrix of ¢ has the form
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5 Affine and Dual Affine Quermassintegrals - Definitions and Basic Properties

We deduce

Ae(KH) = M\ (A(K|H)) = M\ (K[H)oy (A, H),

where the last equation follows from the definition of oj. This completes the proof for

the lower triangular case. For the general case ¢ € SL,, we may write ¢ as the product of

a lower triangular matrix and an orthogonal matrix and apply the above arguments. [

Theorem 5.2.4. If K C R" is a convex body and g an affine transformation, then
Op(K) = Pp(gK) for 1 <k <n-—1.

Proof. Applying Lemma [5.2.3] yields

q)n—k(gK)

And finally,

—1/n

o (fg () )
o </H€Q(n,k) <)\k(i|z;th)> : (ot H)) dH)

_ —1/n
o </H€Q(n,k) ( Kk > ( : (9 ' H)) d(g H)>

—1/n

_ —1/n
Me(K|H " _ - _ -
= in (/ <'“(H> (on(g' g H)) " (09", H)) ndH)
HEG(n,k) Kk
due to the multiplier property of oy,
M(EEN T\
Do 1(9K) = i (/ (M) dH)
HeG(n,k) Kk
=®, i(K).
O
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6 Isoperimetric Inequality for Dual Affine

Quermassintegrals

With the geometric and stochastic preliminaries in place, we are now ready to prove

the isoperimetric inequality for dual affine quermassintegrals. As a reference, we cite

|Gar06].

We begin with the definition of the useful functions g,, . and then proceed by showing

that g, decreases under Steiner symmetrization.

Definition 6.0.1. For 1 < k < n the k-dimensional simplex in R" with vertices
0,p1,-..,pk is denoted by [o,p1,...,px]. Let C be a compact set with C' C S for some
S € G(n,k). For each m € N we set

gm,k(c)_/ "‘/)\k([o,pl,...7pk])mdp1...dpk.
c C

For k = n we simply write

(@) = (€)= [ o+ [ Nalloupree o)) dpi -
Lemma 6.0.2. For a convex body K C R™ and u € S" ', we have

gm(K) > gm (SuK), meN,

with equality if and only if the midpoints of all chords of K parallel to u lie in a hyperplane

containing the origin.

Proof. Let 1 < j < n and p; € S, K. For every j, we find unique y; € ut and sj € R
with p; = y; + s;ju, and unique t; € R" such that ¢; = y; + tju € K transforms to
pj by the process of Steiner symmetrization in ut. With [, being the line spanned
by u, let z; be the center of the line segment K N (I, +y;). Thus ¢; € K N (I, +y;).

Furthermore, let us denote by ¢; = y; + t}u the reflection of g; in z; on the line l,. We

obtain s; = (tj — t;) /2,1 <j<n.
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6 Isoperimetric Inequality for Dual Affine Quermassintegrals

Without loss of generality, we can assume that u is the hyperplane {z € R" : z,, = 0}.
We write py, ; for the £ th component of p; and similarly for the other vectors. The fact
that u is paralell to the x, axis yields py; = yx; = qxj = q;”. for1 <k <n-—1and

Pnj = Sjy Gnj = tj, @5, ; = t;. With that and the formula for the volume of a simplex,

we obtain
P11 oo Pin
1 . .
An([oaplv"‘vpn]):j det
s Pn—-11 -+ Pn—1n
Pn,1 oo Pn,n
Y11 e UYin
1 . .
= *‘ det
- Yn—11 -+ Yn—1n
Sp,1 .- Snn

Because of s; = (tj — t;) /2 and the linearity of the determinant, the last expression is

equal to
qi,1 oo Q1in Qh S q/1,n
) . .
F det —
n: n-11 -+ Gn-1n 11 - Gno1n
A U thy o tha
1

< 5 ()\n ([OaQIa--~aQn])+)‘n([0’q/17""qil]))‘

Applying Jensen’s inequality leads to

m 1 m 1 m
)\n([oaph"'?pn]) Si)\n([07Q17"'7QR]) +§)‘n([0>q/177%/1])

Finally we get
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6 Isoperimetric Inequality for Dual Affine Quermassintegrals

Im (SuK) n([0,p1,. -, pn])™ dp1 -+ - dpy,

Il
\

IN

l\DM—‘ DO | =

.../SuK)\
.../K)\n([o,ql,...,qn])md(h"‘dQn

/ n([o,dl,. .. d,)) " dd) - dd),

/ / OQI77Qn])mdq1dQR

= gm(K
It remains to prove the equality cases. Let us assume equality. Since the volume of a
simplex is a function of its vertices, the previous inequalities must hold as equalities for

every choice of pj,1 < j < n, which yields det (¢;) = — det (q;k> Since
An ([0, 21, ... 2n]) = |det (2j1)| /n!
where 2, =y for 1 <k <n—1and zj, = <tj + t;) /2 leads to
An ([0y21, -+ 2n]) = 0.

In particular the points z;,1 < j < n, lie in a hyperplane containing the origin. O

Lemma 6.0.3. Let K,,,,m € N be a sequence in K™ and K € K" its limit. If there is a
convez body K with S K,, — K € K" for a fized direction v € S"™ ', then K C S, K.

Proof. Fixx € K. Thereis a sequence T, in Sy K, with x,,, — z. Indeed, if we define x,,
as the unique point in S, K, with least distance to x, we obtain |x—x,,| < 0(K, K,,) — 0,
where here ¢ denotes the Hausdorff metric. Let ox,, be the reflection of z,, with respect
to u’, then we can choose ¥, zm € (ly + 2m) N Ky with [ym — 2m| > |Tm — oz, If
we replace y,, and z, with suitable subsequences, we find that y,, — y and z,, — z for
some y,z € Gz N K. Thus |y — z| > |z — oz| and therefore z € S, K. O

The following theorem demonstrates that any convex body converges to a ball through

successive suitable Steiner symmetrizations.

Lemma 6.0.4. Suppose that K C R" is a convex body. Then there exist directions
Um € S 1,m € N, such that the sequence of successive Steiner symmetrals K.
St Sup_1 -+ Suy KK converge with respect to the Hausdorff metric to a centered ball with

the same volume as K.
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6 Isoperimetric Inequality for Dual Affine Quermassintegrals

Proof. For L € K™ let us denote by R(L) the radius of the smallest ball centered at the
origin that contains L. Furthermore let S(K) be the set of convex bodies obtained by

finitely many Steiner symmetrizations of K in various directions and
Ro = inf{R(K") : K' € S(K)}.
Since S(K) is bounded, we obtain a sequence K, in S(K) with

lim R(K,,) =Ry and lim K, = Kye K"

m—r0o0 m—r0o0

The continuity of R implies R(Ky) = Rp, and since Steiner symmetrization preserves
volume we have A\, (K) = A\, (Kp).

We will prove that K is the (closed) ball By centered at the origin with radius Ry.
Suppose, for the sake of contradiction, that there is z € By with z ¢ K. Let C be a

ball centered at z with C'N Ky = (). For an arbitrary direction v € S~ ! we have
BoNnCNS,Kg=0 and BygnNoCnNS,Ky=10,

where as in the proof before o denotes the reflection with respect to u*. We can cover
By by finitely many balls C1, ..., C; which are congruent to C. Let us write H; = uf- for
the hyperplane, which cuts C' and C; in half. The body S*(Ko) = Sy;...Su, Ko satisfies
S*(Ko) N By = 0. Moreover, since S*(Kj) is compact, we obtain R(S*(Ky)) < Rp.
Without loss of generality we can assume S*(K,,) — K € K", and by Lemma we
get K C S*(Kp). Thus R(K) < Ry and R(S*(K,,)) < Rg for m sufficiently large. Since
S*(Km) € S(K) we get a contradiction. O

Corollary 6.0.5. Suppose that K C R"™ is a convez body and r > 0 such that A\, (K) =
An(rB™). Then for m € N

gm(K) > gm(TBn)a
where equality holds if and only if K is a centered ellipsoid.

Proof. Lemma shows that the sequence K of successive Steiner symmetrals of K
converge to a ball rB™ with A, (rB™) = \,(K). By Lemma we get

Im(K) 2 gm (K1) > ... > gm(Kj).
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6 Isoperimetric Inequality for Dual Affine Quermassintegrals

Taking the limit j — oo leads to the claimed inequality. The equality cases follow
directly from those of Lemma and Theorem [3.3.1 O

We are now able to prove the isoperimetric inequality for dual affine quermassintegrals.

Theorem 6.0.6. Let K C R" be a convex body and 1 <i<mn—1. Then
TN (K > @i (K).

For i > 1, equality holds if and only if K is a centered ellipsoid, and for i = 1 if and
only if K is centered.

Proof. We will prove the following equivalent version of the inequality

An(K) > ”g/ N(K N S)"dS.
Ky JG(n,i)

Therefor we fix S € G(n,i). By Corollary applied to K NS with dimension 7 and
m = n — i we obtain
In—ii(KNS) > gn—ii(rsB"NS),

for rg > 0 with \;(K NS) = \i(rgB™ N S). Furthermore, according to Corollary
we have

)\n(K)Z > c/ Gn—ii(rsB"NS) dS
G(n,i)

and
Ao (rB")! = c/ Ggn—ii(rB" N S)dS = cgn—ii(rB"NS),
G(n,i)

with ¢ € R only depending on n and . The last equality holds because the integral is

taken over a constant function. Combining these yields

(K > / An (rsB™)" dS
g(nz)

/ (rsB"N S)" dS
G(n,i)

= 3

@3‘3@ &3

/ M(K 1S)" dS.
G(n,i)

It remains to prove the equality cases. Since all the integrands from above are continu-
ous in S, equality holds if and only if g,—; ;(KNS) = gn—ii (r¢B" N S) for all S € G(n, 7).
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6 Isoperimetric Inequality for Dual Affine Quermassintegrals

This is, according to Corollary equivalent to K N S being a centered ellipsoid for
all S € G(n,i). By Lemma if 1 <4 < n —1 this holds precisely when K is a
centered ellipsoid. In case of ¢ = 1, it is easy to check that equality holds if and only if
K is centered. O

As a corollary of the preceding theorem, we obtain the Busemann intersection inequal-

ity involving the intersection body I K of K.

Corollary 6.0.7. Suppose that K C R" is a convex body with the origin in its interior.
Then

n
(K,
n

M(IEK) <

=

where equality holds if and only if K is a centered ellipsoid.

Proof. By the polar coordinate formula for volume ({3.1]), we obtain

1 1 n
)\n(IK) = /Sﬂ1 p]K(u)" du = — /Sn1 )\n,1 (KQUL> du

n n

== K,n/ An—l (K N S)n ds.
G(n,n—1)

Applying Theorem with ¢ = n — 1 yields the claimed inequality. The equality cases
follow directly from those of Theorem [6.0.6] O
6.0.8 Relation to the Isoperimetric Inequality for Dual Quermassintegrals

Dual quermassintegrals were introduced by Lutwak in [Lut75] in a slightly different way,
and the formula in the following definition was later demonstrated by Lutwak in [Lut79].

Definition 6.0.9. Let K C R™ be a convex body, and 1 < k < n. The k-th dual
quermassintegral of K is defined by

W p(K) = 2 / Mo(E N S)dS.
Kk JG(n,k)

Remark 6.0.10. Note that the W}, are invariant under rotations, see [Lut75], whereas
the @), are invariant under affine transformations, see Theorem

By Jensen Inequality and the fact Wy (Bg) = ®x(Bk) it is easy to see that Theorem
implies the isoperimetric inequality for dual affine quermassintegrals.
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< k<n. Then

y and 1

Theorem 6.0.11. Let K C R"™ be a convex bod

with equality if and only if K is a ball.
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7 Isoperimetric Inequalities for Affine

Quermassintegrals

In this chapter, we delve into the proof of the isoperimetric inequality for ®, a result
that was recently established in 2023, see . To summarize, we will prove that
the function ®j decreases under Steiner symmetrization and then, using a standard
argument, we will derive the desired inequality. Since the cases of equality involve

significantly more work, we will cover them in Chapter [§

7.1 Preliminaries

In this section, we will introduce the basic definitions needed for what follows and prove

some lemmas.

Definition 7.1.1. Let u € S"! and T : R*™! — R" denote the projection onto R™
parallel to en4+1 + tu, i.e., T is a projection which is the identity on R™ and sends e,
to —tu. A shadow system in the direction of w is a family K(t) € K(R™),¢ € R such
that there exists K € K1 with K (t) = T(K).

Definition 7.1.2. Let K C R" be a convex body and u € S"~! a direction. For a
set A C R" and y € ut, we denote by AW the one-dimensional section of A in the
direction of u over y. Furthermore, we define the following linear reflection shadow

system associated to K in the direction of u

14t

(K, () KW 4 %(RUK)(Z’), for t € R and y € ut, (7.1)

where R, denotes the reflection about ut.
We obtain the following lemma in a straightforward manner.

Lemma 7.1.3. Suppose that K C R™ is a convex body, u € S" ' is a direction, and
K,(t),t € R are defined by (7.4). Then the following holds
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7 Isoperimetric Inequalities for Affine Quermassintegrals

(1) Ru(Ku(t)) = Ku(—t) for allt € R,
(i4) in particular Ku(1) = K and Ky(—1) = R K,
(ifi) K.(0) = SuK,

(1) An(Ku(t)) = M(K) fort € [~1,1] and

(v) t s Ky(t),t € R is a continuous map.

Lemma 7.1.4. If {K(t)}icr is a shadow system in the direction of u, and y € u™, then
(K((1 = a)to+at))¥) (1 —a)(K (t)™ + a(K (tr))¥ (7.2)

for all a € R and tg,t1 € R.

Proof. Since for ty = t; there is nothing to prove, let to # t; and set K; = K(t;),1 =
0,1. Shepard showed that this implies P,1 Ky = P,1 K1, see reference [She64], (4).
Furthermore, also as proved by Shepard, there is a maximal shadow system { Kax(t) }1er
implying K (t) C Kax(t), t € R for every shadow system {K(t)}ser, and having the form
Kax(t) = T#(Kmax), where

EKumax 1= (T38) ™ (Ko) N (1)~ (K1),
or equivalently,

(Kmax((1 — a)tg + atl))(y) =(1— Oé)(K())(y) + a(Kl)(y), forac R,y e ut

In particular, K(t) C Kmax(t) for all t € R, which proves the assertion. O

Definition 7.1.5. Let 1 <k <n—-1, E € G(n,k—1) and x € R". For K € K" we
define
‘PE/\IK| = |PE’J-'T| Ak (Pspan(E,m)K) s

and in case of E = {0}, we will simply write [P, K| := [#|A1 (Pspan(x) K)-

Lemma 7.1.6. With the notation of the previous definition, the map defined by
G(n,k—1)xR" =R (E,z) — |Pers K|

18 continuous.
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7 Isoperimetric Inequalities for Affine Quermassintegrals

Proof. 1f we apply Theorem to F' = span(FE, x), we obtain for x ¢ F,

<Z>V (K, k; |PEL$‘ﬁ BpingL,n— k?) = Ak (PSpan(E,:E)K) |Ppral M (Bpe),

where V(...) denotes the mixed volume as defined in Theorem [3.0.3] Therefore, if z ¢ E,

then .
(x)

Rn—k

|Ppp K| = % (K ki |Ppiz| ™ Bgiyi,n— k) .

Since for x € E both sides are zero, the above holds for all x € R"™. Obviously, the
1
map (E,z) — |Pgix|"F Bpi~,1 is continuous in (Ep,xo) whenever z9 ¢ Ep. In case
1
xo € Ep, it is also continuous, since | Py x|"—F converges to zero as (E,x) — (Eo,zo).

By the continuity of mixed volume, we also get that (E, z) — |Pga, K] is continuous. [

Definition 7.1.7. Let K C R" be a convex body and E € G(n,k—1) with 1 <k <n-—1.
We call the set
Li(K) = {x € Bt |PprK| < 1} c Bt

the E-projected polar body of K.

As can easily be shown, Lg(K) is origin-symmetric, closed, and contains the origin
in its interior. Since K has non-empty interior Lz (K), is bounded in E+ and hence
compact. Thus, the following Lemma shows that Lg(K) is convex, i.e. a convex body
in B+

Lemma 7.1.8. Let K CR"™ be a conver body and E € G(n,k — 1) with 1 <k <n —1.
Then, the map x — |Ppr. K|,z € R™ is convex and its level set Lg(K) is also convez.

Proof. If E = {0}, clearly |P,K| = hg(x) + hg(—=z) is convex. So let E # {0}. For
w € PpK, we define
K" := (K —w)NE*.

We obtain for z € B+,

Pspan(E,a:)K = U (w + PSp&n(x)Kw) :
weEPp K

By Fubini’s Theorem and homogeneity, we get for z € E-+,

Pp K| = / 1P| dw = / (hicw (2) + hicw (=) duw. (7.3)
PpK PpK
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Observe that the above gives a useful expression for ||z||z, k). Since |Pra. K| is only
depending on Py z, it suffices to show convexity for z € E-+. But this is, by the above

expression, now clear since the support functions hgw are convex. 0
Definition 7.1.9. Suppose that £ € G(u',k — 1), with 1 < k < n — 1. We define, for

a convex body K C R",

Vi = {(E,m) " EecGutk—1),ze EL},

Liu(K) = {(E,a:) EcGutk—1),z¢ LE(K)} C Vi

and for s € R
LE’U’S(K) - {y € E* n ut ’PE/\(ersu)Kl < 1} ’
The set Ly ,,(K) is called the k-dimensional projection rolodex of K relative to ut.

Remark 7.1.10. Ly, s(K) is the section of Lg(K') perpendicular to u at height s € R,
and hence convex. Due to dim(E+ Nu') = n — k, the dimension of Lg , s(K) is n — k.
1

By Brunn’s concavity principle, Theorem the map s — Ay (Lpu,s(K))»—F is
concave on its support, and so we obtain that s — A\, (Lg . s(K)) is measurable on R.

Furthermore, the set Vj, is closed, and for a convex body K C R", Lemma
implies that the map

VkM _>R+7 (E,J}) = ‘PE/\JZK‘

is continuous, and therefore the sub-level set
{(B,2) € Vit [Peno K| <1} = {(B.2) : B € Gt k= 1), @ € Lp(K) | = Liu(K)

is closed in V4. In case of int K # (), the k-dimensional projection rolodex Ly, (K) is

bounded and therefore compact.

7.2 Convexity of Projections of Shadow System

In this section we well proof that the function (y,t) — ‘PE Ay+su) K (t)} is jointly convex.

Definition 7.2.1. For z,...,zx € R", let A(x,...,2x) denote the k-dimensional

Lebesgue measure of the parallelepiped [0,z1] + ...+ [0, z;]. Furthermore, we write

|Pw1/\..,/\sz‘ = A (Pspan {xl,...,zk}K) A (xlv ) l'k) K e K"
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Considering Definition if £ € G(n,k — 1) is spanned by an orthonormal basis
{z1,...,25_1} we have
|PEAsz| = |Px1/\.../\xk,1/\ka .

We need the following linear algebra lemma.

Lemma 7.2.2. Let T : R™ — R" be a linear map, and E C R™ a subspace such that
T*|p : E — T*E is injective. Then, there is a linear map S : T*E — E with

PgpoT =50 Pp«g.

Proof. Since the operator defined as M = T™ o Pg o T is self-adjoint, we obtain that
ImM C T*E is an invariant subspace with respect to M. Because of Ker M =
(Im M)+ 2 (T*E)*, we find a self-adjoint linear map N : T*E — T*E such that

T*OPEOT:M:NOPT*E,

The claimed equality now holds for § = (T*|,) "' o N. O

Lemma 7.2.3. Suppose T : R™ — R" is a linear map and x1, ...,z € R™. Then, for a

compact set A CR"™, we have

|P561/\/\ka(A)‘ = ‘PT*(:rl)/\..,/\T*(xk)A| .

Proof. If the x; are linearly dependent, both sides are zero, so we may assume linear
independence. Let E = span{xj,...,zx}. Since Pg o T maps onto E if and only if
(ImT)* N E = {0} and, therefore, precisely if Ker 7* N E = {0}, we may also assume

T*| to be injective, because otherwise both sides would be zero again. Applying Lemma

yields
)\k (PE 9 T(A)) = )\k (S 9} PT*E(A)) = ’detT*E%E S’ . )\k (PT*E(A» s

where |detp_,¢ L| denotes the Jacobian of a linear map L : P — @ between two isomor-
phic vector spaces P and Q. Note that |detp_g L| = v/detp_.p L*L = \/detQHQ LL*.
Combining this with again Lemma and SS* = SPpr«gS*, we obtain

|detT*E_>E S| = \/detE—>E SS* = \/detE_>E PrTT*Pg = |detE—>T*E(T*|E) |,
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and therefore
| PoyAna, T(A)]

= A(z1,...,21) M (PET(A))
= A(x1,...,21) - |detprp T 5| - M (Pr-(A))
=A (T z1,...,T %) - M\g (Pr<p(A))
= ‘PT*(ml)/\.../\T*(:Bk)A‘ :
O

Definition 7.2.4. Let V, W be two vector spaces over R. A function f:V xW — R is

said to be jointly convez if
f v+ (1 =)0 o+ (1= Aw') < Af(v,w) + (1= N)f(v',w)

for every A € [0,1] and v,v" € V,w,w’ € W.

Proposition 7.2.5. Suppose that K(t),t € R is a shadow system in the direction of
uwe 8", and let E € G(ut,k —1). For fized s € R, the function

uL XR— R+7 (y7 t) = ’PE/\(y—l—su)K(t)}

is jointly convex.

Proof. Let K € K(R™) be such that K(t) = T*(K). Recall that T} is a projection
which is the identity on R™ and sends e,11 to —tu, see Definition It is easy to
see that (T{*)" is the identity on u® and therefore on E C u'. Furthermore (T}*)* (u) =
u — tep41 and by Lemma [7.2.3]

|PE/\(su+y)K(t)‘ = ’PEA(su—sten+1+y)K

for y € ut. (for the case E = {0}, see also reference |CG06|, (5)). Since the map
(t,y) — su—stey+1+y is affine for every s € R, Lemma yields that ‘PE/\(ersu)K(t)}

is jointly convex. O

9

7.3 A Blaschke-Petkantschin-Type Formula

Now, we will invoke the stochastic result from Chapter [4 to prove the following theorem,

which will be essential for the proof of the isoperimetric inequality.
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Theorem 7.3.1. Let u € S"~'. Then there is a constant cnk > 0, only depending on n
and k, with

cn,k/ f(F)dF = / / f(span(E,0)) - |6 - ul*~t dodE
G(n.k) G(ut k—1) JSn—1nE+

for every measurable function f:G(n,k) — RT.

Proof. The proof is an application of Theorem [£.0.11} with ¢ =1,m = s; = k,so =n—1
and Lo = u". Indeed, the inner integral of (4.3)) has the form

| s [R] ok (dF)
G(E.k)

whereas in Definition[7.6.7 G(E, k) denotes the set {F € G(n,k) : F D E} equipped with
its uniform Haar probability measure, denoted by ofj, which is invariant under the
action of SO, g := {U € SO,, : UE = E}, and [F, uL] is the subspace determinant
also defined in Definition [7.6.7] Every F € G(E,k) can be written as F' = span(F, 6)
for some # € S"~! N E+. That, and because of the invariance of the Haar measure d6
on S"~ !N E+ under the action of S On.E, the uniqueness of the Haar measure up to a

multiplicative constant implies that we can rewrite the above integral as

1
Mk (Sn_l N EL)

[ spanm,0) [spanE,0), 0] ao.
Sn—inEL

By definition we have [span(E, 9),ui] = [span(E, G)L,span(u)], where, by Definition
7.6.7, [L1, L] is (when b = dim L; + dim Ly < n) the b-dimensional volume of the
parallelepiped spanned by the union of any orthonormal bases of L; and Ls. Finally,
due to E Cut and § € B+,

[span(E,H)l,Span(u)] = [span(E,Q)L @E,Span(u)] = [span(@)l,span(u)} =10 - ul.

The specific value of ¢, i, is not important for us, but can be found in [SW08|, Theorem
7.2.6. =

7.4 ®;(K) Decreases under Steiner Symmetrization

We start by defining a Borel measure on Vj,,.
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Definition 7.4.1. For v € S ! and 1 < k < n— 1, we define the Borel measure [, OTL
Viu as follows. Let 0,1 4 denote the usual normalized SOy, invariant Borel measure
on G(ut,k—1), and let H"*+1 denote the n — k + 1-dimensional Hausdorff measure on

R™. Then pi,, is defined as the restriction of the product measure
ot g1 (dE) @ (]w : u|k_1H"_k+1(dx)> on G(ut,k—1) x R"

to the closed subset V.. Note that, since Ly, (K) is a closed subset of V},,,, it is Borel

measurable.

Lemma 7.4.2. Suppose that K C R" is a convex body, and u € S*~*. Then

Cnk 1
Ly (K))=— / ———dF. 7.4
Proof. If we set p(z) = |z - u/F~!, then integrating in polar coordinates on E* and
Theorem yield
b (LK) = | Atsiso(Bo2) - pla) dod
(ut k—1) JEL

o 35—

/ / g, ) (B, 70) - p(rf)r" " drdod 5
ut k—1) JSn—knEL Jo ’

1/>\k(Pspam(]:?ﬂ) (K))
/ p(0) / "L drdddE
G(ut,k—1) JSn—knEL 0
1
/ / =10 - u*"tdodE
G(ut k—1) Jsn—rnpt Ak (Papan(s,0)K)

n,k 1
= o . ___dF.
n /g(n,k) A (PrpK)

(

Il
S

Il
o I~

O]

Remark 7.4.3. According to the Fubini-Tonelli theorem, the equation ([7.4) applies
to any K € K(R"™). However, if K has empty interior, notice that both sides of (7.4)
could be infinite. But these expressions will definitely be finite when K has non-empty

interior, i.e. when K is a convex body.

With this Lemma in hand we are able to show that ®; decreases under Steiner sym-

metrization, which will be essential in the proof of the isoperimetric inequality.
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Theorem 7.4.4. Suppose K C R" is a convex body, and v € S" ' a fized direction.
Then
Dp(K) > Pp(SuK)

foreveryl <k <n-—1.
Proof. By Lemma [7.4.2] it suffices to show that

Mk (Lk,u(K)) < Mk (Lk,u (SuK)) . (75)

Decomposing E+ into span(u) @ (El N uL), and applying Fubini’s theorem yields

(el E) = [ 1 (B ol dedE
G(ut k—1) JEL
- [ L tirngica(Bas) (w4 su) - u dydsaE
G(ut k—1) JR JELNut

_ k—1
B /Q(u%kl) /R ‘S‘ /J;EinuL ]1|PE/\(!J+SM)K|§1(E’ Y S) ddedE

:/g( » 1)/R\s\k1 \Lp.us(K)| dsdE,
7 (7.6)

where Lg, ¢(K) was shown to be convex, see Remark and hence measurable,
and R > s — A\, (LEus(K)) was shown to be measurable as well.

The Borel measurability of the inner integral in £ € G,1 j,_; is a consequence of the
Fubini-Tonelli theorem, applied to the iterated integral of the Borel function 1 Li.u(K) (E,x)
with respect to 0,1 ;1 (dE) @ (o - u[* 7 "H" " (dx)).

If we apply Proposition to the linear reflection shadow system associated to K

in the direction of u, see|7.1.2] we obtain for every fixed s € R that the function
(EL mﬁ) xR — R,

(yat) = f(s) (yvt) = ‘PE/\(y+su)Ku(t)‘

is jointly convex. Moreover, since K, (—t) = R, (K,(t)), the function f)(y,t) is even.
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We conclude,

f(S)(_yv _t) = ‘PEA(—y—&-su)Ku(_t)‘ = }PRHE/\Ru(—y—i—su)Ku(t)‘

(7.7)
= ‘PE/\(—y—su)Ku(t)‘ = ‘PE/\(y-i—su)Ku(t)‘ = f(s) (y, t),

and therefore the level sets
Lpus = {(y,t) c (EL mﬁ) X R ¢ | Py Kult)| < 1},

are origin-symmetric convex bodies. Note that the ¢-section of L E,u,s 1S precisely Lp s (K (t)).
By Lemma we have K,(1) = K and K,(0) = S,K. Since [:E,u,s is convex and

origin-symmetric, we obtain

Lgays(SuK) 2 = (Lgus(K) — Lpus(K)). (7.8)

N |

and therefore, by the Brunn-Minkowski inequality,

>\n—k (LE,u,s (SuK)) 2 )\n—k (LE,u,s(K)) . (79)

Note that the last equation is also true in case L, ¢(K) = (). If we now plug this back
into ((7.6)) and roll everything back, we finally obtain ((7.5)). O

Furthermore, we can prove a theorem that we will need in the proof of the equality

cases.

Theorem 7.4.5. Let K C K" be a convex body and let u € S*~1. Then,
Fis D(Ku(t) = Dp(Ku(—1), te R,

s a monotone non-decreasing function.

1
Proof. As noted in Remark [7.1.10, the function ¢ — X\,_g(Lgus(Kyu(t)))"F,t € R is
concave on its support. Furthermore, since L E,u,s is origin-symmetric, the above function

is even. So,
t = Mk (LEus(Kyu(t)) = M—k(Lgus(Ku(—t))), teR,

is non-increasing. Now, if we integrate this according to (7.6 and apply Lemma we
get the desired assertion. O
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7.5 The Isoperimetric Inequality

With Theorem in hand, we are now able to prove the isoperimetric inequality for

affine quermassintegrals.

Theorem 7.5.1. Let K C R" be a convex body, and 1 < k <n —1. Then
P (K) > ®x(Bk),

where equality holds if and only if K is an ellipsoid.

Proof. By Theorem we obtain a sequence K; of Steiner symmetrals of K such
that K; — By, where By has the same volume as K. Applying Theorem [7.4.4] and the
continuity of ®; on K", yields

By(K) > Op(Ky) > ... > Op(Ki) \ Or(By).

Since the cases of equality require considerably more work, we will address them in the
separate Chapter O

Since for origin-symmetric convex bodies K, the (—n)-power of the first affine quer-
massintegral ® " is proportional to the volume of the polar body K°, we get that the case
k =1 in Theorem corresponds to the Blaschke-Santalé inequality Ay, (K)A,(K°) <

2
Ki.

Corollary 7.5.2. Let K CR" be a convex body. Then

A (KM (K°) < K2

ns

where equality holds if and only if K is an ellipsoid.

Note that for general convex bodies K, Theorem is weaker than the Blaschke-
Santalé inequality, since the latter holds for K, which are first centered at their Santald
point, see for a reference.

Conversely, since the (—n)-power of the n—1-th affine quermassintegral ®_", is propor-
tional to the volume of the polar of the projection body (ITK)°, the case k = n—1 in The-
orem [7.5.1]amounts to the Petty projection inequality stating A, ((ILK)°) < A, ((ILBk)°)
with equality if and only if K is an ellipsoid, see for a proof.
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Corollary 7.5.3. Let K CR" be a convex body. Then
An((ITK)%) < An((I1Bk)®),
where equality holds if and only if K is an ellipsoid.

7.5.4 Relation to the Isoperimetric Inequality for Quermassintegrals

Theorem 7.5.5. If K C R"™ is a convex body, then the volume of the outer parallel body
K +tB™ is a polynomial in t > 0 of degree n,

(K +tB™) = i( ) K)t"F, (7.10)

k=0

Moreover, Kubota’s formula holds, i.e., the coefficients Wi (K), called quermassintegrals,

can be computed as

Wi(K) = ””/g( . Mo(K|F) dF

Kk
A proof of (7.10]) can be found in [Sch13|, page 223 and (4.8). For Kubota’s formula,
see [Sch13|, page 301, and [SWO08|, page 222.

Remark 7.5.6. Note that the W, are invariant under motions (translations and rota-
tions), see [Had57], page 210, whereas the @, are invariant under affine transformations,
see Theorem [5.2.4]

One can easily derive the isoperimetric inequality for quermassintegrals, Theorem
[757 from the isoperimetric inequality for affine quermassintegrals, Theorem [7.5.1] by
applying Jensen’s inequality and the fact Wy(Bg) = ®x(Bgk). Alternatively, one can
deduce the above inequality by applying the Alexandrov-Fenchel inequality for the mixed

volumes, see Theorem 7.3.1 in [Sch13].

Theorem 7.5.7. Let K C R" be a convex body and 1 < k <n—1. Then
Wi (K) > Wy(Bk)

with equality if and only if K is a ball.

Remark 7.5.8. The case k = n — 1 in Theorem corresponds to the sharp isoperi-
metric inequality for surface area, while the case k = 1 recovers the sharp isoperimetric

inequality for the mean width.
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7.6 Some Additional Convexity Properties

We will now establish further convexity properties to prove Theorem [7.6.10, which will

be a crucial ingredient for analyzing the equality cases of Theorem [7.5.1]

7.6.1 A Generalization of Proposition [7.2.5|

Definition 7.6.2. If {K(t)}scr is a shadow system in the direction of u € S"71, we
may introduce the following notation. For a € (0,1) and sg, s1 € RT, we define
1 1-a «

— = -, A=A > = )
Sa S0 + s1 o (50, 51) asp+ (1 —a)s;

Qs

and for yg,y1 € ul and tg,t; € R,
yx = (1= Nyo + Ay, to == (1 —a)tg + aty.

Furthermore, we will use the conventions s, = 0 if sps1 =0, and A = « if 59 = 51 = 0.

Proposition 7.6.3. With the notation from above, for any E € G(u,k — 1),
| Pentsaw) K (ta)| < (1= X) | Peagyotson) K (t0)| + X | Pear4si K (t1)] . (7.11)
and therefore
LEuse (K (ta)) 2 (1 = N Lpus, (K (to)) + ALpus (K (t1)) (7.12)
as well as
A t(LBuse (K (ta)) = Ank(LEu,s (K (00))' - A r(Lpus (K (0) (7.13)

Proof. We first prove for yo,y1 € E+ Nut, which is sufficient, because |Pr, K|
only depends on Pp x. Recall, K¥ = (K —w) N E+ for w € PgK. In case the
shadow system has the form K(t) = T#(K) for some K € K (R™1!), we may define
Kv := (K —w) N E+, with B+ denoting the orthogonal complement of E in R"!.
Furthermore, if we set K" (t) := T} (f(“’) for w € PpK, due to u € E*, we have
K(t)" = K"(t). Therefore to prove (7.11]), by (7.3), we may show that

|Pyx+saqu (ta)’ < (1 - >‘) ’Pyo+80qu (t0)| + A |Py1+51qu (tl)‘
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for every w € PpK. Since all projections are one-dimensional intervals, we can param-
eterize E+ by
{(a,b) —a+bu:ac Etnut,be R}.

If we write a plus (or minus) next to a real number z, it means max(z,0) (or max(—=z,0)).
If z is a vector, this is to be understood component-wise. Now, let x € {+,—} and

i € {0,1}, we compute

[ Pys+saut” (L)l

= . —a_ a(by —b_
= e (o (s — )+ s (b — b))

]_ —
< max Yr- (ar —a-) +sa ((1 = a)rg +ary)
(as,ry)EK™ (t;) (1= a)ry +ary)

+
O""o

= max — a4 —a— _TO
= (a*ﬂ?)eKw(ti) {((1 )\)yo + )\yl) ( + ) ( T Asy Tf_ — ) > }

<(1-A (ay —a_)+so(rg —rg
<( )(a*,r(*?)lgl}éw(to){yo (ar —a—)+so(rg —rg)}

+A (ay —a_)+s1 (rf —rf
(a*J‘IIl)’lgf);w(tl) {yl (a+ ¢ ) 81 (Tl Tl)}

= (L= A) [PyotsouB™ (t0)[ + APy 45, K (£1)] -

The first of the above inequalities is a consequence of Lemma [7.1.4] and the following

equation follows from

(1 —a)sq =(1—A)sg, asq = Asy.

By Definition [7.1.9] and (7.11]), we immediately get (7.12)). Furthermore, ([7.13) is
obtained as an application of ([7.12)) and the Brunn-Minkowski inequality, Theorem
U

The above Proposition is indeed a generalization of Proposition [7.2.5] since setting
sp = s1 = s € R, which implies A\ = «, leads to the joint convexity of (y,t)
}PE/\(y+su)K(t) ‘ :
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7.6.4 The s-Moment Function is Convex
Definition 7.6.5. Let u € S"~! and E € G(u", k — 1), then we define

~1/k

—1/k
My (Lg (Ku(1))) = (/L o) Iﬂf'UIk_ldfﬂ> = </R|3|k_1)\n—k(LE,u,s (Ku(t)))d5> :

Note that this expression appeared in ([7.6)).
For the following Theorem by Ball, we refer to [Bal88|, page 74.

Theorem 7.6.6. Let f,g,h: RT — RT be measurable functions with the property that
h (Sa) > f (30)1_/\0‘(80’51) g (31>/\a(50751)

for some a € (0,1), and all sg,s1 € RT, where s, and A\, (S0, 1) are as in Definition

7.6.9. Then, if we set I(w) = (fooo sp_lw(s)ds)_l/p, it holds that for all p > 0

Ip(h) < (1 = a)Ip(f) + ady(g),

A simple consequence is the following corollary.

Corollary 7.6.7. Let {K(t)}icr be a shadow system in the direction of u € S"~1, and
let B € G(ut,k— 1), then the function

~1/k

“1/k .
£ / (r-w)ilde | = ( / sk_l)\nk(LE,w(K(t)))ds) L teR,
Lu(K() 0

1S convex.

Proof. This follows by setting h(s) = wy,(s), f(s) = w,(s) and g(s) = wy, (s), where
wi(s) = M—i(Lpus(K(t))) and t, = (1 — a)ty + at1, and applying Theorem and
(7.13). Observe that, due to Remark [7.1.10] the map s — A\, (Lpus(K(t))),s € R is

measurable. 0

Theorem 7.6.8. The function t — My (Lg (Ku(t))),t € R, is convex and even.

Proof. Due to Corollary [7.6.7, applied to {K,(t)}, and due to Lemma K,(—t) =
R,K,(t), and the definition of L, ¢(K), Definition and (7.7)) yields

LE,u,s (Ku(_t)) = LE,u,—s (Ku(t)) = _LE,u,s (Ku(t)) - _LE,u,—s (Ku(_t)) )
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7 Isoperimetric Inequalities for Affine Quermassintegrals

which concludes the proof. O

7.6.9 A Dichotomy for t — &y (K, (t))

We are now able to prove the following theorem, which we will need for proving the

equality cases.

Theorem 7.6.10. Let K C R™ be a convex body, v € S !, and tg € R. Then the
equality (K (t1)) = @r(Ky(to)) holds for some t1 with |t1| < |to| if and only if it holds
for every t1 with |t1]| < |to].

Proof. Suppose that @5 (K, (t1)) = ®x (K4 (to)) holds true for some ¢; with [t1] < [to].

u
Due to Lemma this means g,y (Liu (Ky (1)) = ptku (Liu (Ko (t0))). From (7.6)
and the subsequent discussion, we obtain

b (Lo (K (1)) = /g oy M (L (Eu(0) ™ dE. (7.14)

Since by Theorem [7.6.8] the map ¢t — My, (Lg (Ku(t))) = My (Lg (Kyu(—t))),t € R4 is

monotone non-decreasing for all £ € G,,1 ;_;, we deduce that
My (L (Ky (£41))) = Mk (Lg (Ku (+0)))

for almost every £ € G(u*, k—1). Applying again Theoremyields that the map t —
My, (Lg (Ku(t))),t € [~ |to], |to]] has to be constant for almost every E € G(u’,k — 1).
Finally, due to the expression and Lemma [7.4.2] we get @y (K, (t)) = @ (K, (t0))
for all t € [— |to|, |tol]- O
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8 Cases of Equality of ¢, (K) > ¢ (By)

To analyze the cases of equality, we will establish the following Theorem which is
proven in two cases k < n—1 and k =n — 1. Once we have this, the actual proof of the

equality cases of @y (K) > ®p(Bg) can be easily conducted as described below.

Theorem 8.0.1. Let K C R™ be a conver body and 1 < k < n —1. Then ®y(K) =
. (SuK) for all u € S~ if and only if K is an ellipsoid.

Proof. The straightforward part of Theorem follows from the well-known fact (see
Lemma 2 in [BLMO06]), that Steiner symmetrization transforms an ellipsoid into another
ellipsoid of the same volume, along with Theorem the affine invariance of ®y.
The proof of the nontrivial part involves multiple steps, which are elaborated on in the

following sections. O

If Theorem [8.0.1] is proven, we can derive the equality cases of Theorem [7.5.1] as

follows.

Theorem 8.0.2. Let K C R"™ be a convex body and 1 < k < n —1. Then $p(K) =
O (Bg) holds true if and only if K is an ellispoid.

Proof. As stated above, if K is an ellipsoid, then ®4(K) = ®;(Bg). So, let us assume
that equality holds for a convex body K C R", and denote by {K,(t)} the linear
reflection shadow system from (7.1). Since A\, (Ky(t)) = A\ (K) for every ¢ € [—1,1],
the continuity of the map ¢ — K, (t) with respect to the Hausdorff metric implies that
for every u € S"71 there is € € (0,1) with @ (K,(1 —€)) > ®x(K) for all t € [-1,1].
Conversely, applying Theorem yields @y (K) > &y (K,(t)) for t € [—1,1], and
therefore equality holds at ¢t = 1 — €. In fact, due to Theorem we get equality for
every t € [—1,1], especially for ¢ = 0, that means ®;(K) = P (S,K). This holds for
every u € S"1 and therefore, by Theorem K is an ellipsoid. O

8.1 The Case k<n—1

Step 1 - Point of Symmetry
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8 Cases of Equality of ®4(K) > ®;(Bk)

Lemma 8.1.1. Let K C R" be a convex body and 1 < k <n — 1. Then the map
G(n,k—1)—- K", Ew~ Lg(K),

18 continuous.

Proof. Since by Remark [7.1.10, g7, (x)(0) = ‘Pspan(E79)K| for all € S"71 N E+, we

obtain ) )
for all £ € G(n,k—1), where r = minpeg(n k) |[PrK| > 0 and R = maxpegn ) |PrK| >
0. The map E %B L is continuous for E € G(n,k — 1) and therefore, to conclude
the proof, it suffices to show that F' — |PpK]| is continuous for F' € G(n, k). But this is

immediate by the continuity of mixed volumes and, as in the proof of Lemma

(1)

Rn—k

|PrK| = V(K,k;Bpi,n—k) VF e€G(n,k).

O

Note that L, +(K) is the section of Lg(K) perpendicular to u at height s € R. In

particular
Lpus(K) = (Lp(K) — su) Nu™ C E-Nnut, (8.1)

and hence Lg,, s(K) is convex and compact. So, if Lg, (K) # 0, then Lg, s(K) is a
convex body. The set of these (E,s) will be denoted by

GH(K) = {(E, s) € Gut k—1) xR : LK) # @} .

Since all Lg(K) are compact, Lemma yields that G¥(K) is a closed (in fact compact)
set (since, if L, s(K) = 0, then su+u’ has to be at a positive distance from Lg(K)).
We get the following

Corollary 8.1.2. If (E,s) € G(u*,k — 1) x R is such that int Lg(K) N (su+ ut) # 0,
we have (E,s) € int GF(K).

Lemma 8.1.3. Let K C R” be a convex body, u € S" ' and 1 < k < n —1. Then the
map
gﬁ(K) — Ry, (Ev 5) = An—k (LE,U,S(K)) )
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8 Cases of Equality of ®4(K) > ®;(Bk)

18 continuous.

Proof. By and Lemma [8.1.1] the map (E,s) — Lp,s(K) € K™ is continuous on
Gu(K). Also, the map E + Byyan(g,u) € K" is continuous on G(ut,k — 1), where Bp
denotes the unit ball in the subspace F. Since Lg , s(K) is a convex body in Etnut
and dim (EJ- N uJ-) =n — k, we have, as in the proof of Lemma [7.1.6

)\n—k (LE,U,,S(K)) = E'::k)v (Bspan(E,u)a k7 LE,u,S(K)7 n— k) .

The asserted continuity now follows from the continuity of mixed volume. O

Corollary 8.1.4. The map
Glut k—1) xR =R, (E,s) = Mg (Lpus(K)),

is Borel measurable.

Proof. This follows since the map is continuous on the compact set G¥(K) and zero
outside of it. O

In (7.8) and (7.9) we showed for all s € R,

LE,u,s (SuK) 2 (LE,u,s(K) - LE,u,s(K)) (8'2)

N |

and
)\nfk (LE,u7s (S’LLK)) > )\nfk (LE,u,s(K)) . (83)

So we obtain G¥(K) C GF (S, K).

Proposition 8.1.5. Suppose K C R" is a convex body, u € S ', and 1 <k <n—1
with @ (K) = O (S, K). Then

)\n—k (LE,u,s (SUK)) = )\n—k (LE,u,s(K)) (8'4)
for all s € R and E € G(u", k —1). Furthermore, we have for some QEus € Etnut,
Lpus(K) = Lpus (Sul) + apus (85)

Proof. Due to Lemma and Remark the assumption implies fug,, (L o (K)) =
Pk (Lk,u (SUK)) < Q.
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8 Cases of Equality of ®4(K) > ®;(Bk)

Considering and , equation (8.4)) must hold for o1, ; ® Aj-almost every
(E,s) € G(ut,k —1) x R, where 0yt —1 @ L denotes the product measure of the usual
measure o,1 1 on G (ut,k — 1) and \; the one-dimensional Lebesgue measure on R.
Due to Corollary and Lemma applied to K and S, K, the inclusion GF(K) C
Gk (S,K) yields that is true for all (E,s) € G(ut,k — 1) x R. Thus, the set int
Lg(K) N (su+ut) is non-empty.

Let B € G(ut,k — 1) and let ¥ # 0 be the interior of the compact interval

P. ()L g(K), which we can view as an open interval in R, via su <> s. The equation

span

holds for every s € ¥, and furthermore, both sides are continuous maps in s on
their support, by . We conclude that holds true for all s € cl(Xg), where
cl(Xg) denotes the closure of .

In case of s ¢ cl(Sg), Lp(K) N (su+ut) =0 and Ay (LEus(K)) = 0, for almost
every FE € G(ut,k — 1) it holds that

M-k (LEu,s (SukK)) =0
for all s ¢ cl(Xg), that means
Lg (S,K)N (su + uL> = 0.
Thus, for almost every E € G(u™, k — 1), we obtain
Lg (S,K) Ccl(Sp)u+ut. (8.6)
But concerning Lemma [8.1.1] the maps
E—cl(Xg) and Ew~ Lg(S,K), EcGut,k—1),

are continuous with respect to the Hausdorff topology, and therefore holds true for
E € G(ut,k —1). To put it in another way,

An—k(LE,u,s (SUK)) =0= An—k(LE,u,s(K))

for all E € G(ut,k — 1) and s ¢ cl(Xg), that means we proved (8.4) for all E €
G(ut,k—1) and s € R.
By the equality case of the Brunn-Minkowski inequality, (8.2)) and (8.4)) imply that for
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8 Cases of Equality of ®;(K) > ®,(Bx)

every E € G(ut, k—1) and s € X, equality must hold with some a g, s € EXNu’t.
Conversely, we already know Lg, s(K) = Lgas (SuK) = 0 for s ¢ cl(Xg), therefore
also holds true for s ¢ cl(Xg) as well. By and continuity of the section of a
convex body with respect to the Hausdorff topology, (8.5) is true for sy € bd(Xg) with

QF u,s90 = hmZE3s%so QF u,s- [

Definition 8.1.6. We say that a set K C R"” has a point of symmetry if there is v € R"
with K —v = —(K —v).

Corollary 8.1.7. For E € G(n,k—1),u € S" " 'NEL and s € R, the set L, s(K) has

a point of symmetry.

Proof. Suppose that ®;(K) = ®, (S, K) for all u € S~ 1. In the proof of Theorem
we showed that L, s (S, /) is the level-set of the even function f(s)(-, 0), see 1) and
therefore origin-symmetric. Now, implies that Lg, ¢(K) has a point of symmetry
forall E € G(n,k—1),u € S" ' NE*, and s € R. O

Step 2 - Brunn’s Characterization Theorem We now make use of the following
characterization theorem of ellipsoids by Brunn. As a reference, we cite [Bru89).

Theorem 8.1.8. If K C R" is a convex body, n > 3, and let 2 < k <n — 1, then K
s an ellipsoid if and only if every k-dimensional section of K that passes through its

interior has a point of symmetry.

If £ € G(n,k— 1), then (8.1) and the fact that for every u € S" ' N E+ and s € R
the set Lg, +(K) has a point of symmetry, implies that in case dim Et=n—k+1>3,
ie. k <n—2, that Lg(K) must be an ellipsoid in E=*.

Step 3 - Distinguished Orthonormal Basis

Lemma 8.1.9. Let K CR"™ be a convex body and E € G(n,k — 1) with 1 <k <n — 2.
Then there is a positive-definite linear map Tg : R™ — R™, which is the identity on
E, and on E* it maps the ball By onto Lg(K). For an orthonormal basis u;,i =

1,...n—k+1 of E+ consisting of eigenvectors of Tg we have
Lg (S, TeK) = Lg (TeK) = Bg.,

foralll1<i<n-—Fk+1.
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8 Cases of Equality of ®4(K) > ®;(Bk)

Proof. Lemma [7.2.3] yields
Li(T(A)) = {& € B |PpnT(4) < 1}

— {2 € B |PorremA| <1} = T (Lp(4))

for any non-empty compact and convex A € K (R") and an invertible linear map T,
which is invariant on E. Because of the fact that Lg(K) C E+ is an origin-symmetric
ellipsoid, we can find a positive-definite linear map Tr on R™, which is the identity on
E, and on E* it maps the ball By. onto Lg(K). If we set Kg := TgK, we obtain

Lp(Kp) =Tg" (Le(K)) = By (8.7)

Let u;,i € {1,...,n—k+1} represent an orthonormal basis of £ made up of eigenvectors
of Tp. Therefore, since Tg acts diagonally in this basis and consequently the actions of

Sy, and Tp commute, we derive
Lp (SwKg) = Lg (Su,Te(K)) = Lg (Tp (Su,K)) = Tg" (Le (S, K)) - (8.8)
By and for every s € R there is an ap ,, s € ui- so that
(Lp(K) — su;) Nui = (Lg (Su, K) — su;) Nui + apa,.s. (8.9)

The map T acts invariantly on span (u;) and u, and therefore, along with and
1) applying 7™ to 1@} yields

(Bpr — sui) Nui = (Lg (Su, Kg) — su;) Nui + Tg* (0p.u,.s)

for all s € R and i € {1,....,n — k + 1}. The fact that (Lg (S, K) — su) Nu’ is origin-
symmetric in E Nwu't, and this property does not change if applying a linear transfor-
mation, we deduce that (Lg (Sy,Kg) — su;) Nuj is also origin-symmetric in B+ N u;-
for every s € R. Furthermore, (Bp1 — su;) N uf‘ is origin-symmetric too, which implies
Ty" (apu,,s) = 0. Finally,

Lg (S, Kp)=Lg (Kg) = Bp.

forallie{l,...,n—k+1}. O
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8 Cases of Equality of ®4(K) > ®;(Bk)

Step 4 - Invariance under Reflections of K"
Recall, K% := (K —w) N E* for w € PpK.

Lemma 8.1.10. Suppose that K C R"™ is a convex body, and let E € G(n,k — 1) with
1 <k<n-—1. If Lg(S,K) = Lg(K) for some u € E*, then, up to translation in
the direction of u, we have S, K" = K"Y for every w € int PgK. In particular, K% is

invariant under reflections about u'.

Proof. Fix z € E+. In ([7.3)), we showed that

P duw — / (hicw (2) + hicw(—2)) duw.

2|2 () = | PEAK] —/
PRk

PpK
The assumption Lg (S, K) = Lg(K) implies (S, K)" = S,KY for all w € PgK and

therefore

[ @)+ b dw = [ (g (a) + s () do
PpK PpK

Since S, K C 1 (K" 4+ R,K"™), we get

N |

hs,kw <

Furthermore, hg, xw(§) = hgw (R,€) implies

/ (g (€) + g (—€)) duw
PpK

1

<o [ e ©) 4 B (Ru) + B (=€) + e (~ o) duv
PpK

If we apply this to &€ = 6 and & = R,6 for §# € E+ and sum both equalities, we get
/ (hicu (8) + hic (=0) + i (Rub) + hiw (= Ruf)) duw
PpK

(8.11)
< [ (o (6) + e (Ra) + Ieco(=6) + e (<) duv
PpK

Both sides are equal, so we must have equality for a.e. w € PgK in the 4 instances of

the inequality (8.10) we used in the directions & € {6, —6, R0, —R,0} to derive (8.11)).

Since the corresponding functions are continuous on their support we get equality for
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8 Cases of Equality of ®4(K) > ®;(Bk)

all w € PpK. Hence )

hs,ww(€) = 5 (hicw (€) + hp,xe (€))
for all w € PpK and ¢ € {0,—0, R,0,—R,0}. Given that 6 was arbitrary, we get for all
w € PpK,

S K" = = (K" + R,K")

1
2
Applying the Brunn-Minkowski inequality yields

1 w 1 w
A= (e—1) (") = Ay (=1 (SuE™) = A (1) (K™) 2 Ay (1) (R K*) 2 = Ay (o= 1) (K,

and from the equality cases we deduce that R, K" and K" are translates whenever int
K" # (. And in particular, whenever w € int P K. As no translation perpendicular to

u is possible, the proof is complete. O

Corollary 8.1.11. Let K C R" be a conver body and w € int Pp K. Then, K¥ has a

point of symmetry.

Proof. For w € int PgK, Lemma [.1.10] and Lemma yield that R,, K} = K} up
to translations in the direction of u;. But the u;’s are all orthogonal, so there is a single
translation of K% such that R,, K3 = K3 holds for all i = 1,...,n — k + 1. Since the
composition of all R,,’s is —Id on E, we obtain that K} has a point of symmetry.
Furthermore, since Kp = Tp(K) and Tg is the identity Id on E, we find that K* must

also have a point of symmetry. O

Step 5 - Concluding the Proof when 1 <k <n—1
We proved that for every £ € G, .1 the section KN (w + EL) = w+ K" of K through
its interior has a point of symmetry. Thus, by Brunn’s Theorem [8.1.8] in case of n > 3
and dimEt =n—k+4+1>2 ie k<n—1, K has to be an ellipsoid.

This concludes the proof for the case ¥ < n — 1 and we will now address the case
k=n-—1.

8.2 The Case k=n—1

Since dim E+ = 2 for E € G(n, k—1), we cannot use Theorem for the case k = n—1.

In the following, we establish a way to circumvent Step 2 from the previous section

60



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

8 Cases of Equality of ®4(K) > ®;(Bk)

Linear Boundary Segments
Recall that
L(K) = Lip(K) = (K - K)°.

Proposition 8.2.1. Suppose that K(t),t € R, is a shadow system in R? in the direction
of ea and let S, T C R be non-empty open intervals. If there are functions a,¥ : S — R
with (a(s) 4+ ¥(s)t,s) € bd(L(K(t))) for all s € S and t € T, then there ezist c4,c— € R
such that ¥(s) = cys4y —c_s_ for all s € S.

Proof. By definition, we have K (t) = Tf*(K) K € K (R?), where Tf? : R® — R? denotes
a projection onto R? parallel to e3 + tes. As in the proof of Proposition we obtain

1y )l L)) = Py, ) + hiey (Y, —s)
= hf((y> S, _St) + hf((_yv -5, St) = ”(97 S, _St)HL(f()'

Now, due to our assumption, we have a local parametrization of the surface bd(L(K))
by
F(s,t) == (a(s) + ¥(s)t, s, —st) € bd(L(K)), s€S teT.

Since L(K) is convex, we may represent its boundary locally by a convex function f,
which is therefore Lipschitz. Rademacher’s theorem, see e.g. for a reference,
implies that f is differentiable almost-everywhere. Furthermore, due to Alexandrov’s
theorem (for a reference, we cite , Chapter 2), f is twice differentiable in Alexan-
drov’s sense almost-everywhere. At points of first differentiability, we have two tangent

vectors to the boundary, which are linearly independent and given by
OsF (s,t) = (d(s) + W' (s)t,1,—t), OF(s,t) = (¥(s),0,—s),
therefore, the normal to the boundary in the direction is
N := (s, —sd'(s) — sW'(s)t + t¥(s), U(s)) .

Furthermore, at points of second differentiability, the surface has a second-order Taylor

expansion
Il := (92F,N/|N|) ds® + 2 (0,0,F, N/|N|) dtds + (9} F, N/|N|) dt*,

which is governed by the second fundamental form. Concerning 9?F = 0 and (9,0, F, N) =
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8 Cases of Equality of ®;(K) > ®,(Bx)

sU'(s)—W¥(s), we obtain that unless that last term above vanishes, the form II has strictly
negative determinant. This implies that the surface must have a saddle at this point,
which is a contradiction to convexity.

We state that the only locally Lipschitz functions W, solving s¥’(s) — ¥U(s) = 0 for
almost every s € S are of the form W(s) = cysy — c_s_. Therefore, let us write
Sy and S_ for the open subsets of S where the continuous W is positive and negative,
respectively. Since on S, the equation (log ¥)'(s) = (log s)’ holds true, the local absolute
continuity of log ¥ implies that ¥(s) = ¢;s, ¢; # 0 on each connected component Si of
S. Furthermore, ¥ vanishes at the end-points of each connected component which lie
in S. We deduce that there can be at most one connected component in each of SNR™
and S NR™, and that the end-points of them in S have to be at s = 0. Similarly, one

can conclude for S_, and thus ¥ must be of the stated form. O

Step 1 - Segments of Constant Projections of K
Recall that the definition of f(*) for s € R, F € G(n,k — 1) and v € S*~' N E* is given
by

(EL mﬁ) xR — R,

(y7 t) = f(s) (y, t) = ‘PE/\(y+su)Ku(t)‘ :

Lemma 8.2.2. For every y € E+ Nut such that f)(y,0) = R, it holds that f©*) = R
on the two segments
{(iy + RaE,u,s/Rta t) 1t e [_17 1]}

for some ap, s r € R.

Proof. Let E € G(n,k — 1) and v € S" ' N E+. The argument from Step 1 in the
previous section reveals more information than was previously mentioned. For s € R

the function f() is convex and even in (y,t), and therefore, its level set
Lpus = {(y,t) S (EL mﬁ) xR: fO(y,t) < 1}

is convex and origin-symmetric. Obviously, Lz ,.s(t) = Lgu.s (Ku(t)), where Lg , s(t)

the t-section of EE,U s- Analogous to the proof of Theorem [7.6.10, Brunn’s concavity
~ 1

principle, Theorem implies that the function ¢ — A\,_p(LE.s(t)) %, t € R, is

even and concave on its support.
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8 Cases of Equality of ®4(K) > ®;(Bk)

When @ (K) = & (S, K) holds true, we obtain
)\n—k(f/E,u,s(l)) = )\n—k(f/E,u,s(_l)) = )\n—k(f/E,u,s(O))a

and therefore the function t + A\, x(Lg.us(t)), t € [~1,1] has to be constant. Let us
write X for the non-empty interior of the compact interval Fpan(u)L p(K), viewed as
an open interval in R. The equality case of the Brunn-Minkowski inequality, Theorem
implies that for all s € Xp, the set L, sN{t € [~1,1]} has to be a tilted cylinder
over the origin-symmetric base ﬂE,%s(O) =Lgas (SuK) C Efnut, ie.,

LE,u,s (Ku(t>) = LE,u,s (SuK) + CVE,u,st7

for all s € ¥g and t € [—1,1]. Proceeding as in Proposition yields that the above
extends to all s € R, a generalization of (8.5)).
Let us define for R > 0

Lousr:={:t) € (B* nut) xR: fO(y,0) < R].
Since f*)(y,t) is homogeneous in (y, s), a rescaling yields
Liusi(t)=RLg,sr1(t),

for all t € [—1, 1] and therefore

Liusr(t) = RLEg sk (SuK) + Rag . s/rt,
again for all ¢t € [—1,1]. Concerning evenness, we finally conclude

f®) = R on both segments {(xy+ Rag . s/rt t):te[-1,1]}

for every y € B+ Nut with f&)(y,0) = R. O

Step 2 - Segments of Constant Projections of K%

For given w € int PpK, the set K = (K —w) N E+ has a non-empty relative interior
in B+ and thus is a convex body. Since all (K¥), (t),t € R, are convex bodies as
well, {L ((K™),, (t))},cg are origin-symmetric convex bodies in E+. Since (K¥),, (t) =
(K, (t))" holds true, we may simply write K”(t) for the latter. If for s € R, we define
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8 Cases of Equality of ®4(K) > ®;(Bk)

the function
I t) = 1P L W], (b € (BXnut) xR,

we have

LEL®) = {y+su: [0 <1},

and, due to (7.3,

Oy, 1) = 5y, 1) dw.
PpK

Furthermore, Proposition implies that flgf) is convex and even in (y,t). Let us write
Yy (t) for the non-empty interior of the compact interval Py, L (K (t)), viewed as

an open interval in R. We claim that

holds true for all ¢ € [—1,1]. Since the projection of the polar body equals the polar

body of the section, we obtain
Pspan(u)L (K;U(t)) = Pspan(u) (K;U(t) - K;U(t))o = ((K;U(t) - K;U(t)) N Span(u))o :

Because of

Ert)y = | @+ ot +[~tw), twy)) w)
yer | Kv

for all t € [—1, 1], we deduce that

(K (1) = Ky () nspan(u) = ) [=26u(y), 260 ()] u
yepP L KV

is independent of t.
Now, let wg € int P K and let +y, + su € bd(L (K'°(0))) for s € ¥,,,, amounting to
5,50) (+ys,0) = 1. Furthermore, let us define Ry, s := £ (+ys,0). Because of the fact
that the function w — fé)s) (x),w € PgK is continuous for every = = (y,t) as well as
féf) are all convex and f(*) = R, s on both segments {(ys + Ry, sapus/Ry, st,t) : t €
[—1,1]}, we can deduce from Step 2, that each fﬁ) must be constant on these segments

as well. Especially

ffui) = 1 on both segments {(j:ys + Rys,saE’u,s/Rysyst,t) te -1, 1]} .

64



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

8 Cases of Equality of ®4(K) > ®;(Bk)

Since fq_(uso) is convex, we can conclude that
Ys + Ry, sQpu,s/R,, b+ su € bA(L (K, (1)),
for all s € ¥y,,t € [—1,1] and +ys + su € bd(L (K7°(0))).

Step 3 - Using k=n—1

If k = n—1, it holds that dim E+ = 2, and therefore, for all w € int PgK, the set K% is a
two-dimensional convex body. For a set A C E+, we write A(s) for the one-dimensional
chord (A — su)N (EJ- N uJ-), which can be identified as a subset of R. Step 2’s analysis

leads to the conclusion that
L(KY(t))(s) = [—aw(s), aw(s)] + Ty(s)t, SE Ny, te[-1,1] (8.12)

for all w € int PpK.

Proposition implies that W,(s) = c{sy — c”s_ for some ¢ € R and all
s € cl(Xw) = Papan(u) L (K (1)), where the assertion on 3, extends by continuity of
the mid-point to cl(X,). Since L (K™) is origin-symmetric as well as setting ¢ = 1 in
, we obtain that W,, must be odd, and therefore we may define ¢ := c = c?.
Finally, the mid-point of the chord of L (K™), which is perpendicular to u at height s,
is ¢“s for all those s for which the chord is non-empty. That means, all mid-points lie

on one single line. Notice that this holds true for every v € S~ N E*L.

The following Theorem by Betrand-Brunn can be found in [MMO19|, Theorem 2.12.1.

Theorem 8.2.3. A convez body K C R" is an ellipsoid if and only if for any v € S"~!

the mid-points of all (one-dimensional) chords of K parallel to u lie in a hyperplane.

The above Theorem of Bertrand-Brunn implies that for all w € int PpK, the set
L (K"™) must be an (origin-symmetric) ellipsoid. We are now able to conclude the proof

for the case k =n — 1.

Step 4 - Finalizing the Proof
We are now able to establish the equality cases for K = n—1. Since for every w € int Pp K
we have L (K™) = T,, (Bg.) for some linear T, : E+ — E* and furthermore

L(K™) (s) = L(S.K™) (5) + cus Vs,
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8 Cases of Equality of ®4(K) > ®;(Bk)

applying Lemma yields the existence of two orthogonal directions w1, us € S*~1N
B+ with
L(SUsz (Kw)) :L(Tw (Kw)) :BEJ_ 1= 1,2.

Moreover, due to Lemma [8.1.10} the map T,, (K") is invariant (up to translation in the
direction of u;) under reflection about u;-. Thus, T, (K) has a point of symmetry for all
w € int Pp K, and so this holds for K" as well. Since this is true for all £ € G(n,n —2),
every two-dimensional section of K through its interior has a point of symmetry. In the
case n > 3, applying Theorem yields that K must be an ellipsoid. If n = 2, we
have E' = {0} and therefore intPp K = {0} and K = K" for w = 0. Furthermore, since

To(K) = xo + C for an origin-symmetric convex body C, and
(20)° = (To(K) - To(K))° = L (To(K)) = B2,

this finally yields C' = %B%, which implies that K is an ellipsoid.

66



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

Bibliography

[Balgs]

[BCLOY]

[BLMO6]

[Brus9)

[BS60]

[CGO6]

[Coh80]

[FT71]

[Gar06]

[Gar07]

[Griol]

[Gru07]

Keith Ball. “Logarithmically concave functions and sections of convex sets
in Rn}”. eng. In: Studia Mathematica 88.1 (1988), pp. 69-84.

M. Berger, M. Cole, and S. Levy. Geometry II. Universitext. Springer Berlin
Heidelberg, 2009. 1sBN: 9783540170150.

J. Bourgain, J. Lindenstrauss, and V.D. Milman. “Estimates related to
Steiner symmetrizations”. In: vol. 1376. Nov. 2006, pp. 264-273. 1SBN: 978-
3-540-51303-2.

H. Brunn. Uber Curven ohne Wendepunkte. Ackermann, 1889.

H. Busemann and E. G. Straus. “Area and Normality”. In: Pacific Journal
of Mathematics (1960).

Stefano Campi and Paolo Gronchi. “On volume product inequalities for con-
vex sets”. In: Proceedings of the American Mathematical Society 134 (Aug.
2006).

D.L. Cohn. Measure Theory. Birkhauser, 1980.

H. Furstenberg and I. Tzkoni. “Spherical functions and integral geometry”.
In: Israel J. Math. (1971).

Richard J. Gardner. Geometric Tomography. 2nd ed. Encyclopedia of Math-
ematics and its Applications. Cambridge University Press, 2006.

R.J. Gardner. “The dual Brunn-Minkowski theory for bounded Borel sets:
Dual affine quermassintegrals and inequalities”. In: Advances in Mathematics
216.1 (2007), pp. 358-386. 1sSN: 0001-8708.

Eric L. Grinberg. “Isoperimetric inequalities and identities fork-dimensional
cross-sections of convex bodies”. In: Mathematische Annalen 291 (1991),
pp. 75-86.

P.M. Gruber. Convex and Discrete Geometry. Grundlehren der mathematis-
chen Wissenschaften. Springer Berlin Heidelberg, 2007. 1SBN: 9783540711339.

67



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

Bibliography

[Hadb7]

[Lut75]

[Lut79]

[Lut84]

[Mag12]

[MMO19]

[MY?23]

[San49]

[SchO05]

[Sch13]

[She64]

[SWOS]

[SW92

H. Hadwiger. Vorlesungen iber Inhalt, Oberfliche und Isoperimetrie. Com-
prehensive studies in mathematics. Springer, 1957. 1SBN: 9780387021515.

Erwin Lutwak. “Dual Mixed Volumes”. In: Pacific Journal of Mathematics
58 (1975), pp. 531-538.

Erwin Lutwak. “Mean dual and harmonic cross-sectional measures.” In: Ann.
Mat. Pura Appl (1979).

Erwin Lutwak. “A General Isepiphanic Inequality”. In: Proceedings of the
American Mathematical Society 90.3 (1984), pp. 415-421. 1sSN: 00029939,
10886826.

Francesco Maggi. Sets of Finite Perimeter and Geometric Variational Prob-
lems: An Introduction to Geometric Measure Theory. Cambridge Studies in
Advanced Mathematics. Cambridge University Press, 2012.

Horst Martini, L. Montejano, and Deborah Oliveros. Bodies of Constant
Width: An Introduction to Convexr Geometry with Applications. Jan. 2019.
ISBN: 978-3-030-03866-3.

Emanuel Milman and Amir Yehudayoff. “Sharp Isoperimetric Inequalities
for Affine Quermassintegrals”. In: Journal of the American Mathematical
Society 36, 1061-1101, (2023).

L. A. Santal6. “An affine invariant for convex bodies of n-dimensional space
(Spanish)”. In: Portugal. Math. 8 (1949).

R. Schneider. Konvexgeometrie, Vorlesung im WS 2004/05. 2004/05.

Rolf Schneider. Convexr Bodies: The Brunn—Minkowski Theory. 2nd ed. En-
cyclopedia of Mathematics and its Applications. Cambridge University Press,
2013.

Geoffrey C. Shephard. “Shadow systems of convex sets”. In: Israel Journal
of Mathematics 2 (1964), pp. 229-236.

Rolf Schneider and Wolfgang Weil. Stochastic and integral geometry. Vol. 1.
Springer, 2008.

R. Schneider and W. Weil. Integralgeometrie. Teubner Skripten zur Mathe-
matischen Stochastik. Vieweg+Teubner Verlag, 1992. 1sBN: 9783519027348.

68



	Introduction
	Notation
	Geometric Preliminaries
	The Löwner Ellipsoid
	Steiner Symmetrization
	Characterization of Centered Ellipsoids

	Two Essential Stochastic Results
	Affine and Dual Affine Quermassintegrals - Definitions and Basic Properties
	Log-Concavity
	Log-Concavity of the Dual Affine Quermassintegral
	Log-Concavity of the Affine Quermassintegral

	Proof of the Affine Invariance of k and k

	Isoperimetric Inequality for Dual Affine Quermassintegrals
	Relation to the Isoperimetric Inequality for Dual Quermassintegrals

	Isoperimetric Inequalities for Affine Quermassintegrals
	Preliminaries
	Convexity of Projections of Shadow System
	A Blaschke-Petkantschin-Type Formula
	k(K) Decreases under Steiner Symmetrization
	The Isoperimetric Inequality
	Relation to the Isoperimetric Inequality for Quermassintegrals

	Some Additional Convexity Properties
	A Generalization of Proposition 7.2.5
	The s-Moment Function is Convex
	A Dichotomy for t k(Ku(t))


	Cases of Equality of k(K) k(BK)
	The Case k < n-1
	The Case k = n-1

	Bibliography

