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1 Introduction

In convex geometry, affine quermassintegrals are important quantities in the for study

of geometric inequalities. Lutwak introduced two types of these integrals: the dual

affine quermassintegrals, denoted by Φ̃k and the affine quermassintegrals, denoted by

Φk. Of special interest are the isoperimetric inequalities associated with these integrals.

For the dual affine quermassintegrals Φ̃k, this involves finding sharp upper bounds and

identifying the convex bodies of a given volume that achieve equality. For the affine

quermassintegrals Φk, the goal is to establish sharp lower bounds and determine the

convex bodies that minimize them.

The isoperimetric inequality for the dual affine quermassintegrals Φ̃k was proven ear-

lier, with the inequality shown in [BS60] and the cases of equality discussed by Grinberg

in [Gri91]. In contrast, the isoperimetric inequality for the affine quermassintegrals Φk

remained an unsolved problem for many years. It was only in 2022 that this inequality

was finally proven by E. Milman and Yehudayoff in [MY23].

In this thesis, we give a self-contained presentation of the proofs of the isoperimetric

inequalities for Φ̃k and Φk, establish the equality cases, and examine some of their prop-

erties. Additionally, we will discuss some consequences of the isoperimetric inequality

and highlight important special cases that serve as fundamental tools in affine convex

geometry.

Acknowledgments I would like to thank my supervisor, Professor Franz Schuster,

for his support and guidance during the writing of this thesis. My sincere thanks also

go to my parents for their continuous support throughout my studies.
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2 Notation

As usual, we denote the n-dimensional Euclidean space by Rn with origin 0 and standard

basis e1, ..., en, equipped with inner product (x, y) = x · y = xy and induced norm |.|.
Let |x| also denote the absolute value of x ∈ R, and let R+ denote the positive reals,

whereas R− denotes the negative reals. For x ∈ R we denote x+ = x+ = max(x, 0)

and x− = x− = max(−x, 0), where we use the + index either as a superscript or a

subscript to avoid collisions with other indices. Additionally, x+ should be understood

component-wise if x is a vector. Furthermore, for u ∈ Rn and A ⊆ Rn, we set u⊥ =

{x ∈ Rn : x · u = 0} and A⊥ = {x ∈ Rn : x · a = 0 ∀a ∈ A}. With int(A), cl(A) and

bd(A), we denote the topological interior, closure and boundary of A.

We denote by GLn the set of linear and bijective maps φ : Rn → Rn, represented by

matrices with non-zero determinant, det(φ) ̸= 0. The subgroup SLn of GLn consists of

matrices with det(φ) = 1. We write SOn for the set of all orthogonal matrices φ with

det(φ) = 1. If φ is a linear map we write φ∗ for its adjoint, φ−1 for its inverse and

φt for its transposed. We denote by Kerφ the kernel of φ and by Im the image of φ.

Furthermore, the composition of two maps φ, ψ in general will be denoted φ ◦ψ, for the
restriction of φ on a set E we write φ|E.

The set of k-dimensional linear subspaces of Rn will be denoted as G(n, k) and, the set
of k-dimensional linear subspaces contained in a linear subspace L ⊆ Rn will be denoted

G(L, k). With A ⊕ B we will denote the direct sum of two linear subspaces A and B.

Furthermore, for A ⊆ Rn we write 1A for the indicator function, i.e. 1A(x) = 1 for

x ∈ A and 1A(x) = 0 otherwise.
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3 Geometric Preliminaries

We start with some basic definitions. For A,B ⊆ Rn, we define the Minkowski sum of

A and B

A+B = {a+ b : a ∈ A, b ∈ B}.

A set A ⊆ Rn is called convex if, for every x, y ∈ A, the line segment from x to y

[x, y] = {λx+ (1− λ)y : 0 ≤ λ ≤ 1}

is contained in A. We denote by K(Rn) the set of non-empty, compact, and convex sets.

Moreover, a convex body K ⊆ Rn is a compact, convex set with a non-empty interior.

The set of convex bodies will be denoted Kn. Given a convex body K ⊆ Rn, we denote

the support function of K by hK(x) = max{x · y : y ∈ K}, x ∈ Rn. Furthermore, we can

equip K(Rn) with the Hausdorff metric δ,

δ(K,D) = max{max{d(k,D) : k ∈ K}, max{d(K, d) : d ∈ D }}, K,D ∈ Kn,

where d(k,D) = d(D, k) = min{|k − d| : d ∈ D}. The polar body K◦ of a convex body

K ⊆ Rn containing the origin in its interior is defined as follows,

K◦ = {x ∈ Rn : x · y ≤ 1 for all y ∈ K}.

With the n-dimensional Lebesgue measure λn we have a notion of volume on Kn and

denote by κn the volume of the n-dimensional unit ball Bn = {x ∈ Rn : |x| ≤ 1}, i.e.
κn = λn(B

n). If K is a measurable set in Rn, we define BK as the ball centered at the

origin and with the same Lebesgue measure as K. Furthermore, the n− 1-dimensional

sphere is denoted by Sn−1 = {x ∈ Rn : |x| = 1}. If H is a subspace of Rn then

BH is the unit ball in H, PH : Rn → H is the projection onto H, and we often write

A|H = PH(A) for A ⊆ Rn. By span(H), we denote the linear hull of H, i.e. the set of all

linear combinations of elements of H. The dimension dim(A) of a set A ⊆ Rn is defined

as the dimension of the affine hull of A. For u ∈ Sn−1, the set {y ∈ Rn : y · u = hK(u)}
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3 Geometric Preliminaries

is called the supporting hyperplane to K with outer normal u.

We call a set L ⊆ Rn star-shaped at the origin if [0, x] ⊆ L for every x ∈ L. For such

L, we define its radial function ρL(x) = max{λ ≥ 0 : λx ∈ L}. Furthermore, a star

body is a compact, star-shaped set with a positive, continuous radial function. The set

of star bodies will be denoted by Sn. For K,L ∈ Sn, we define the radial sum K+̃L as

the star body with radial function ρK + ρL. The projection body ΠK of K is defined

via hΠK(x) = λn−1(K|x⊥) and the intersection body of K is the convex body IK with

ρIK(x) = λn−1(K ∩ x⊥). Furthermore, the Minkowski functional of K ∈ Kn will be

denoted

||x||K = inf{t > 0 : x ∈ tK}.

For L ∈ Sn, the polar coordinate formula for volume holds

λn(L) =
1

n

�
Sn−1

ρL(u)
n du. (3.1)

We call a function f : Rn → R convex if

f ((1− t)x+ ty) ≤ (1− t)f(x) + tf(y),

for all x, y ∈ Rn and 0 ≤ t ≤ 1, and concave, if −f is convex.

We will need the following important classical theorems. Theorem 3.0.1, Blaschke’s

Selection Theorem, can be found in [Had57], Theorem 3.0.2, the Brunn-Minkowski In-

equality, Theorem 3.0.3 and Theorem 3.0.4, the Dual Brunn-Minkowski Inequality, can

be found in [Sch13] and for Theorem 3.0.5, Brunn’s concavity principle, we refer to

[Gru07].

Theorem 3.0.1. Every uniformly bounded sequence in K(Rn) admits a convergent sub-

sequence.

Theorem 3.0.2. Let K,L ⊆ Rn be convex bodies with non-empty interior, then

λn(K + L)1/n ≥ λn(K)1/n + λn(L)
1/n

with equality if and only if K and L are homothetic (i.e. L = αK + x for some α > 0

and x ∈ Rn).

Theorem 3.0.3. For convex bodies Ki ⊆ Rn, i ∈ {1, ...,m}, the volume of their Minkowski
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3 Geometric Preliminaries

sum is a polynomial with non-negative coefficients in the scaling parameters, i.e.

λn (t1K1 + ...+ tmKm) =
#

1≤i1,...,in≤m

ti1 · ... · tinV (Ki1 , ...,Kin) (3.2)

for ti ≥ 0. The non-negative coefficients V (Ki1 , ...,Kin) in (3.2) are called mixed volumes

of (Ki1 , ...,Kin).

If in particular the first k entries of V (...) are K1 and the following n− k entries are

K2, then we simply write V (K1, k;K2, n− k).

Theorem 3.0.4. Let K,L ⊆ Rn be star bodies. Then,

λn(K+̃L)1/n ≤ λn(K)1/n + λn(L)
1/n,

where equality holds if and only if K arises from L through scaling.

Theorem 3.0.5. If K ⊆ Rn+1 is a convex body and u ∈ Sn, then the function

t �→ λn

�
K ∩ (tu+ u⊥)

�1/n
, t ∈ R

is concave on its support.

Finally, the following formula of Fedotov can be found in [Sch13], Theorem 5.3.1.

Theorem 3.0.6. Let F ∈ G(n, k) for 1 ≤ k ≤ n − 1, and let L1, ..., Ln−k ⊆ F⊥ be

non-empty compact convex sets. Then, for K1, ...,Kk ∈ K(Rn) it holds that�
n

k

�
V (K1, ...,Kk, L1, ..., Ln−k) = VF (PFK1, ..., PFKk)VF⊥(L1, ..., Ln−k),

with VE , E ∈ {F, F⊥}, denoting the mixed volume in the subspace E.

3.1 The Löwner Ellipsoid

We will prove that for a compact set C with positive measure, there exists a unique

centered ellipsoid of minimal volume that contains C. This result will be used to prove

some important characterization theorems for ellipsoids. The results of this section can

be found in [Gar06].

5



3 Geometric Preliminaries

Definition 3.1.1. An affine transformation is a map φ : Rn → Rn with φ(x) = Ax+ t,

where A is n× n-matrix with det(A) = ±1 and t ∈ Rn. An ellipsoid in Rn is the image

of a ball under an affine transformation. We call an ellipsoid E centered if −x ∈ E

whenever x ∈ E.

Remark 3.1.2. Note that in the above definition, det(A) = ±1 ensures that affine

transformations are volume-preserving.

Theorem 3.1.3. (Weighted arithmetic-geometric mean inequality) For numbers x1, ..., xn ≥
0 and weights w1, ..., wn ≥ 0 with w = w1 + ...+ wn > 0 we have

w1x1 + ...+ wnxn
w

≥ w

!
xw1
1 · · ·xwn

n

with equality if and only if all the xk with wk > 0 are equal.

Proof. We can assume that all wk are positive, since the terms with zero weights have no

influence on the inequality. By the fact that the natural logarithm is concave, Jensen’s

inequality yields

ln

�
w1x1 + ...+ wnxn

w

�
≥ w1

w
lnx1 + ...+

wn

w
lnxn

= ln w

!
xw1
1 · · ·xwn

n .

Since the natural logarithm is increasing, we obtain the desired inequality.

Clearly, equality holds if all xk with wk > 0 are equal. If at least two of the xk are not

equal, the above inequality obtained by Jensen is strict, and since the natural logarithm

is strictly increasing we also have strict inequality in w1x1+...+wnxn
w > w

"
xw1
1 · · ·xwn

n .

Theorem 3.1.4. Let C ⊆ Rn be compact with λn(C) > 0. There exists a unique centered

n-dimensional ellipsoid, known as the Löwner ellipsoid, of minimal volume containing

C.

Proof. To prove the existence let E be the class of centered n-dimensional ellipsoids

containing C and a = inf{λn(E) : E ∈ E} > 0. There is a sequence Em in E with

λn(Em) → a for m → ∞. Because each of the Em is an n-dimensional Ellipsoid we

obtain a sequence Am ∈ GLn of regular n×n matrices such that Em = AmBn. Since C

is bounded, the entries of Am are also bounded and therefore there exists a subsequence

m(j) such that Am(j) converges to some n × n matrix A. Furthermore, we get from
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3 Geometric Preliminaries

λn(Em) = | detAm|κn that

| detAm(j)| =
λn(Em(j))

κn
−→ a

κn
, for j → ∞.

Thus | detA| ≠ 0 and E = ABn is the n-dimensional ellipsoid we were looking for.

To prove uniqueness, suppose that E1, E2 are two such centered n-dimensional ellip-

soids containing C with least volume a. We can find φ ∈ SLn such that E′
1 = φE1 is a

ball with radius b and E′
2 = φE2 a centered ellipsoid, i.e.

E′
1 = {x ∈ Rn :

n#
i=1

x2i ≤ b2},

E′
2 = {x ∈ Rn :

n#
i=1

x2i
a2i

≤ 1}

for some a1, ..., an > 0. Since φ is volume preserving, we get

a = λn(E
′
1) = bnκn = λn(E

′
2) = a1a2 · · · anκn.

From φC ⊆ E′
1 and φC ⊆ E′

2 we obtain
$n

i=1 x
2
i ≤ b2 and

$n
i=1

x2
i

a2i
≤ 1 for all x ∈ φC.

Since such x ∈ φC also satisfy

1

2

n#
i=1

x2i (b
−2 + a−2

i ) ≤ 1

we conclude that φC is also contained in the centered ellipsoid E′
3 = {x ∈ Rn :

1
2

$n
i=1 x

2
i (b

−2 + a−2
i ) ≤ 1}. This gives us λn(E

′
3) ≥ a. On the other hand the weighted

arithmetic-geometric mean inequality 3.1.3 yields

λn

�
E′

3

�
= κn

n 
i=1

√
2bai

�
b2 + a2i

�−1/2

≤ κn

n 
i=1

(bai)
1/2 = λn

�
E′

1

�1/2
λn

�
E′

2

�1/2
= a,

Hence λn (E
′
3) = a, and from the equality cases in the arithmetic geometric mean in-

equality, we obtain b = ai for 1 ≤ i ≤ n. This gives E′
1 = E′

2, and therefore E1 = E2.
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3 Geometric Preliminaries

3.2 Steiner Symmetrization

To establish some characterizations of ellipsoids, we introduce the important concept of

Steiner symmetrization and specifically prove that a convex body converges to a ball

under successive Steiner symmetrizations. As a reference, we cite [Gar06], [Gru07], and

[Sch05].

Definition 3.2.1. Let K ⊆ Rn be a convex body, u ∈ Sn−1 and lu ⊆ Rn the line

through the origin spanned by u. The Steiner symmetral SuK of K in the direction

of u is defined as follows: For every x ∈ u⊥ with the property that (lu + x) ∩ K ̸= ∅,
let c(x) be the line segment parallel to u with center x and length λ1((lu + x) ∩K). If

(lu + x) ∩K = ∅, then set c(x) = ∅. The union of all c(x) is SuK.

More formally, since (lu + x) ∩K is a line segment, we may write it in the form

{x+ zu : z ∈ R, z(x) ≤ z ≤ z(x)}

with two functions z : K|u⊥ → R and z : K|u⊥ → R. In particular, the difference

z(x)− z(x) is the length of the line segment (lu + x) ∩K. Therefore

c(x) = {x+ zu : z ∈ R, −1

2
(z(x)− z(x)) ≤ z ≤ 1

2
(z(x)− z(x))},

and we obtain the Steiner symmetral as

Su(K) =
%

x∈K|u⊥
c(x).

Proposition 3.2.2. Suppose K,D ⊆ Rn are convex bodies and u ∈ Sn−1 is a given

direction. The Steiner symmetral has the following properties:

(i) z is convex and lower semi-continuous, z is concave and upper semi-continuous,

(ii) SuK is symmetric with respect to reflection in u⊥,

(iii) SuK ⊆ Rn is a convex body,

(iv) Su(λK) = λSuK (up to translations) for λ ≥ 0,

(v) Su(K) + Su(D) ⊆ Su(K +D) (up to translations),

(vi) if K ⊆ D, then Su(K) ⊆ Su(D),

8



3 Geometric Preliminaries

(vii) Su : Kn → Kn is a continuous map.

(viii) λn(SuK) = λn(K).

Proof. (i): Since K is convex, it is easy to check that also z is convex. To prove the

lower semi-continuity, suppose that x ∈ K|u⊥ such that there is an ϵ > 0 and a sequence

yi, i ∈ N in K|u⊥ with yi → x but z(yi) < z(x)− ϵ. We can assume that z(yi) converges

to some real number a, since if not, we replace yi with a suitable subsequence. Since

yi + z(yi)u ∈ K and yi + z(yi)u → x + au we obtain x + au ∈ K and therefore, the

contradiction z(x) ≤ a ≤ z(x)− ϵ. The statements for z follow analogously.

(ii): Trivial.

(iii): The boundedness of SuK and SuK ̸= ∅ is obvious. To show that SuK is closed

let yi, i ∈ Rn be a sequence in SuK converging to some y ∈ Rn. Then yi = xi + ziu for

some xi ∈ K|u⊥, zi ∈ R and xi → x, zi → z, y = x+ zu. Since K|⊥ is closed, we obtain

x ∈ K|u⊥. The inequality 2|zi| ≤ z(xi)− z(xi) and the semi-continuity yield

2|z| = lim
i→∞

2|zi| ≤ lim sup
i→∞

zi(xi)− lim inf
i→∞

z(xi) ≤ z(x)− z(x),

and thus y ∈ SH(K). The convexity of SuK follows from the fact that the function z−z

is concave.

(iv): Trivial.

(v): Let x + y ∈ Su(K) + Su(D), that means we can write x = h + l and y = k +m

for some h, k ∈ u⊥ and l,m ∈ lu with

|l| ≤ 1

2
λ1(K ∩ (lu + x)) and |m| ≤ 1

2
λ1(D ∩ (lu + y)).

Since lu and u⊥ are subspaces, we have h+ k ∈ H and l +m ∈ L and therefore

x+ y = (h+ k) + (l +m) ∈ u⊥ + lu.

9



3 Geometric Preliminaries

Because of

|l +m| ≤ |l|+ |m|
≤ 1

2
(λ1(K ∩ (lu + x)) + λ1(D ∩ (lu + y)))

=
1

2
λ1(K ∩ (lu + x) +D ∩ (lu + y))

≤ 1

2
λ1((K +D) ∩ (lu + x+ y))

we obtain x+ y ∈ Su(K +D).

(vi): Trivial.

(vii): Let Cn, n ∈ N, be a sequence in Kn converging to some C ∈ Kn with respect to

the Hausdorff metric. We may assume 0 ∈ int(C). For ϵ > 0 and sufficiently large n we

have

(1− ϵ)C ⊆ Cn ⊆ (1 + ϵ)C.

Applying (iv) and (v) yields

(1− ϵ)SuC ⊆ Su(Cn) ⊆ (1 + ϵ)SuC.

Because of 0 ∈ int(Su(C)) we obtain the convergence of Su(Cn) to Su(C) in Kn.

(viii): Applying Fubini’s Theorem, we obtain

λn(SuK) =

�
R
λ1(c(x)) dx =

�
R
λ1((lu + x) ∩K) dx = λn(K),

where we set c(x) = 0 for x /∈ K|u⊥.

3.3 Characterization of Centered Ellipsoids

With the notion of the Löwner ellipsoid and the results regarding Steiner symmetrization

in hand, we can now prove some important characterization theorems for ellipsoids. As

a reference for this section, we cite [Gar06].

Theorem 3.3.1. Let K ⊆ Rn be a convex body and assume the sequence of directions

um ∈ Sn−1,m ∈ N, with the property outlined in Lemma 6.0.4. If for every m ∈ N, the
set of midpoints Mm of all chords of K parallel to um lie in a hyperplane passing through

the origin, then K is a centered ellipsoid.

10



3 Geometric Preliminaries

Proof. We will show, that for every m ∈ N there is a φ ∈ SLn with SumK = φK.

Therefore fix m and let x ∈ Rn. There are y ∈ u⊥ and s ∈ R such that x = y + sum.

Denote by S the hyperplane which contains Mm, and let z ∈ S be the unique point

with z = y + tu for some t ∈ R. We define φx = x− (z − y). Since y is the orthogonal

projection of x onto u⊥ and z depends linearly on y, we get that also φ is linear. By the

Cavalieri principle and the property of φ being a translation in each line parallel to u,

it follows that φ ∈ SLn. It is easy to check that SuK = φK holds.

Like in the previous lemma let Km = SumSum−1 ...Su1K. We just showed that Km is

the image of finitely many volume preserving linear transformations of K and therefore

of just one such transformation which we denote by ψm. Let E be the Löwner ellipsoid of

K. Then ψmE is the Löwner ellipsoid ofKm with λn(ψmE) = λn(E). SinceKm converge

to a ball rBn with with the same volume as K and the ellipsoids ψmE converge to the

Löwner ellipsoid of rBn, which is rBn itself, we obtain λn(E) = λn(rB
n) = λn(K).

Since K ⊆ E we get K = E.

Lemma 3.3.2. If E is an ellipsoid containing the origin, then the polar E◦ is also an

ellipsoid that contains the origin.

Proof. First, if a ∈ intB, then, by the relation between the support and the radial

function, we obtain for u ∈ Sn−1

ρ(Bn+a)◦(u) =
1

h(B+a)(u)
=

1

1 + a · u.

In particular, it holds that

ρ(Bn+a)◦(u) = 1− ρ(Bn+a)◦(u)u · a,

which if x = (x1, ..., xn) = ρ(Bn+a)◦(u)u can be rewritten as

n#
i=1

x2i =

�
1−

n#
i=1

aixi

�2

.

The above equation is quadratic, (B+a)◦ is convex, thus, by 15.4.7 in [BCL09], (B+a)◦

is an ellipsoid. Let φ ∈ GLn be such that E = φ(B + a), a ∈ intB. Because of

hφ(B+a)(u) =
1

ρφ(B+a)(u)
=

1

ρB+a(φ−1u)
= h(B+a)◦(φ

−1u) = hφ−t((B+a)◦)(u),

11



3 Geometric Preliminaries

we obtain

E◦ = (φ(B + a))◦ = φ−t((B + a)◦),

which shows that E◦ is an ellipsoid containing the origin.

Remark 3.3.3. Suppose that (P) is a property of convex bodies and we proved that K

has property (P) whenever all its projections K|S, S ∈ G(n, n − 1) have property (P).

Then if 1 < k ≤ n − 1 and it holds that K has property (P) whenever all K|S, S ∈
G(n, k) have property (P). To see this, we argue by induction as follows: Assume that

H ∈ G(n, 3) and all projections K|S, S ∈ G(n, 2) fulfill property (P). If we identify

H with R3 we can apply our assumption (with n = 3 and k = 2) to get that K|H
has property (P). By induction on the dimension of the subspaces, we conclude that K

possesses property (P).

Lemma 3.3.4. Let 1 < k ≤ n− 1 and K ⊆ Rn be a compact convex set such that K|S
is an ellipsoid for every S ∈ G(n, k). Then K is an ellipsoid.

Proof. By Remark 3.3.3 it suffices to show it for k = n − 1. If dimK < n there is

S ∈ G(n, n − 1) containing a translate of K. Thus K is just a translate of K|S, and
therefore an ellipsoid.

Now let dimK = n, that means K is a convex body. We can find p1, p2 in bdK

such that the line segment [p, p′] is a diameter of K. Without loss of generality let

p = (−1, 0, ..., 0) and p′ = (1, 0, ..., 0). Suppose H is a supporting plane to K which is

parallel to [p, p′] and let S ∈ G(n, n− 1) be such that [p, p′] ⊆ S and S is orthogonal to

H. Thus, K|S is an ellipsoid with [p, p′] as one axis. The body K|S is supported by

H ∩ S at one point, which is contained in {x1 = 0} = {x = (x1, ..., xn) ∈ Rn : x1 = 0},
hence H ∩ K ⊆ {x1 = 0}. Therefore, E = K|{x1 = 0} = K ∩ {x1 = 0}, so E is an

ellipsoid and as readily observed also centered.

Now let φ : Rn → Rn be an affine map, which lets [p, p′] invariant and maps E

onto a ball D in {x1 = 0} with the origin as its center. Since φ maps ellipsoids onto

ellipsoids, showing that φ(K) is an ellipsoid of revolution finishes the proof. So, for

every P ∈ G(n, 2) the projection φ(K)|P is an ellipse. Let q, q′ be so that [q, q′] is a

diameter of the ball D. If we apply the above argument with K replaced by φ(K) and

[p, p′] by [q, q′], we get that the intersection of the hyperplane, which is orthogonal to

[q, q′], and φ(K) is an ellipsoid E′. Furthermore, the line [p, p′] is an axis of E′, and
for every subspace P ∈ G(n, 2) containing [p, p′], the intersection P ∩ φ(K) is an ellipse

12
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with the two axes [p, p′] and a diameter of D. That shows that φ(K) is an ellipsoid of

revolution.

Lemma 3.3.5. Suppose that K ⊆ Rn is compact, convex and containing the origin in

its relative interior and let 1 < k ≤ n − 1. If for all S ∈ G(n, k) the body K ∩ S is an

ellipsoid, then K is an ellipsoid.

Proof. Due to Remark 3.3.3 we can assume k = n − 1. For dimK < n, that means

K ⊆ S for some S ∈ G(n, n − 1), it follows directly that K is an ellipsoid. So let K be

full dimensional, i.e. K ∈ Kn. For every S ∈ G(n, n− 1) and u ∈ S ∩ Sn−1 we have

ρ(K◦|S)◦(u) =
1

hK◦|S(u)
=

1

hK◦(u)
= ρK◦◦(u) = ρK∩S(u),

where we used K◦◦ = K and the relation ρK = 1/hK between radial and support

function. Thus (K∗|S)◦ = K ∩ S is an ellipsoid and therefore, by Lemma 3.3.2,

(K◦|S)◦◦ = K◦|S is also an ellipsoid for every S ∈ G(n, n − 1). Lemma 3.3.4 yields

that K◦ must be an ellipsoid and thus this also holds for K, again by Lemma 3.3.2.

13



4 Two Essential Stochastic Results

In this chapter, we will prove two crucial stochastic results. The first result will be

essential for proving the isoperimetric inequality for dual affine quermassintegrals, The-

orem 6.0.6, while the second will be used for the corresponding inequality for affine

quermassintegrals, Theorem 7.5.1. As a reference for the first stochastic theorem and

the preliminary work we cite [SW92], Section 7.3, and for the second we refer to [SW08],

Theorem 7.2.6.

But first, recall that G(n, k) is the set of k-dimensional linear subspaces of Rn. On

G(n, k) we assume the usual topology. Furthermore, we equip G(n, k) with a suit-

able normalized SOn invariant Borel measure and denote the integral of a function

f : G(n, k) → R with respect to the measure by�
G(n,k)

f(F ) dF.

We begin with a few definitions and statements that are not yet of a stochastic nature.

Definition 4.0.1. Let G be a topological group, that is, a group G with a topology T
such that the group operation and the inversion map are continuous. A homogeneous

G-space is a pair (X,φ), where X is a topological space and φ : G×X → X a transitive

and continuous operation of G on X with φ(., p) being an open map for every p ∈ X.

Remark 4.0.2. We will argue that every homogeneous G-space X can be viewed as

a quotient space G/H with a subgroup H of G. Indeed, let H be a subgroup of G,

equipped with the subspace topology, and G/H = {aH : a ∈ G}, the quotient space

with the quotient topology. We define a natural operation ζ of G on G/H as follows

ζ(g, aH) = gaH for g ∈ G, aH ∈ G/H.

With that, (G/H, ζ) becomes a homogeneous G-space. On the other hand if (X,φ) is a

homogeneous G-space, fix an arbitrary p ∈ X and set Sp = {g ∈ G : φ(g, p) = p}. Then

14
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the map

β : G/Sp → X, gSp �→ φ(g, p)

is a homeomorphism from G/Sp to X with β(gaSp) = φ(g, β(aSp)) for all g ∈ G and

aSp ∈ G/Sp. In this sense the homogeneous G-spaces (X,φ) and (G/Sp, ζ) are isomor-

phic.

Definition 4.0.3. Let G be a locally compact topological group and Cc(G) the set of

continuous functions f : G → R. Then, for a ∈ G we define the function a.f : G → R as

follows

(a.f)(x) = f(a−1x), x ∈ G.

Furthermore we call a functional I on Cc(G) an integral on G if I is linear, positive

and non-zero everywhere. If H is a subgroup of G and χ : G → R a given function, we

call an integral I on G/H relative invariant with multiplier χ if I(a.f) = χ(a)I(f) for

all f ∈ Cc(G/H) and a ∈ G. By the Riesz–Markov–Kakutani representation theorem

every Integral on G/H corresponds to a unique regular Borel measure ρ on G/H which

satisfies I(f) =
�
G/H f(x) dρ(x) for f ∈ Cc(G/H). Analogous, ρ is said to be relative

invariant with multiplier χ : G → R if

ρ(gA) = χ(g)ρ(A), for g ∈ G and a Borel setA on G/H.

Note that the measure ρ is relative invariant if and only if the corresponding integral I

is relative invariant.

Definition 4.0.4. A Borel measure ρ on G is called left invariant if ρ(gA) = ρ(A) for

all g ∈ G and Borel sets A on G.

For the following Theorem, we refere to [Coh80].

Theorem 4.0.5. Let G be a locally compact topological group. Then there is (up to

a positive factor) a unique left invariant regular Borel measure on G, the so-called left

Haar measure.

Our aim is to show that with given multiplier χ there is up to a factor only one

relative invariant measure on G/H. Therefore we establish a connection between Cc(G)

and Cc(G/H) in the following way: For f ∈ Cc(G) we define

f ′(x) =
�
H
f(xy) dη(y), x ∈ G,

15
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where η denotes the Haar measure as in Theorem 4.0.5. The function f ′ is constant on
every left coset. Indeed, for x = zh ∈ zH we have

f ′(x) =
�
H
f(zhy) dη(y) =

�
H
f(zy) dη(y) = f ′(z).

Therefore, we obtain a unique function f+ : G/H → R with f ′(x) = f+(xH) for all

x ∈ G.

The following can be found in [SW92], 7.3.2.

Lemma 4.0.6. The map f �→ f+ is a linear bijective function from Cc(G) onto Cc(G/H).

With this in hand, we can prove the following important theorem.

Theorem 4.0.7. Let G be a locally compact topological group, H a closed subgroup of

G and χ a given multiplier. Up to a constant factor there is only one relative invari-

ant measure on G/H, or equivalent, up to a constant factor there is only one relative

invariant integral on G/H.

Proof. Let ρ be a relative invariant measure on G/H and a ∈ G. By the invariance of ρ

we obtain �
G/H

(a.h)(x) dρ(x) = χ(a)

�
G/H

h(x) dρ(x)

for h ∈ Cc(G/H). Moreover, for f ∈ Cc(G) it is readily seen that (a.f)+ = a.(f+).

Since χ is a homomorphism χ = χ(a)a.χ. Therefore,�
a.f

χ

�+

=
1

χ(a)

�
a.f

a.χ

�+

= χ(a−1)a.

�
f

χ

�+

.

For readability, we will not explicitly note the integration variable in the following. Let

us define a positive linear functional

I(f) =

�
G/H

�
f

χ

�+

dρ for f ∈ Cc(G).

Since

I(a.f) =

�
G/H

�
a.f

χ

�+

dρ = χ(a−1)

�
G/H

a.

�
f

χ

�+

dρ

= χ(a−1)χ(a)

�
G/H

�
f

χ

�+

dρ = I(f),

16
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I is a left invariant integral on Cc(G) and therefore, up to a constant factor, uniquely

determined. Suppose that ρ̂ is another relative invariant measure onG/H with multiplier

χ. Then �
G/H

�
f

χ

�+

dρ = c

�
G/H

�
f

χ

�+

dρ̂

for all f ∈ Cc(G) and some constant c. By Lemma 4.0.6, every function of Cc(G/H)

corresponds to suitable (f/χ)+ and therefore ρ = cρ̂.

With these tools established, we can now prove the important stochastic result men-

tioned earlier. The corollary that follows from this result will be used to prove the

isoperimetric inequality for dual affine quermassintegrals.

Theorem 4.0.8. Let f be a Borel function on the product space (Rn)i, where 1 ≤ i ≤
n− 1. Then there is a constant c ∈ R, depending only on n and i, such that�

Rn

· · ·
�
Rn

f (p1, . . . , pi) dp1 · · · dpi

= c

�
G(n,i)

�
S
· · ·

�
S
f (p1, . . . , pi)λi ([o, p1, . . . , pi])

n−i dp1 · · · dpidS.

Proof. The idea of the proof is to view both sides as functionals of f and then apply

Theorem 4.0.7 to obtain the constant. For that we have to show that

I1(f) =

�
Rn

· · ·
�
Rn

f (p1, . . . , pi) dp1 · · · dpi

and

I2(f) =

�
G(n,i)

�
S
· · ·

�
S
f (p1, . . . , pi)λi ([o, p1, . . . , pi])

n−i dp1 · · · dpidS

are positive, linear and relative invariant integrals on Cc(X) with the same multiplier.

HereX denotes the set of all tuples (p1, ..., pi), where the pj are linear independent, i.e. X

is the set of (n, i) matrices with rank i. Let us define a topological group G = SOn×GLi,

where the topology is the product of the standard topology. We can now equip X with

a transitive operation

φ : ((D,M), (p1, ..., pi)) �→ D(p1, ..., pi)M
t,

for (D,M) ∈ G and (p1, ..., pi) ∈ X. Therefore (X,φ) is a homogeneous G-space. Note

that by Remark 4.0.2, (X,φ) can be seen as a quotient space G/H for a suitable subgroup

17
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H and therefore the assumptions in Theorem 4.0.7 are fulfilled for X.

Positivity and linearity of I1 and I2 are clear. By the rotation invariance of the

Lebesgue measure and the fact that the linear map (p1, ..., pi) �→ (p1, ..., pi)M has deter-

minant (detM)n, we obtain for f ∈ Cc(X) and (D,M) ∈ G,

I1((D,M).f) =

�
Rn

· · ·
�
Rn

f
�
D−1(p1, . . . , pi)M

−t
�
dp1 · · · dpi

= | detM |nI1(f).

Furthermore, if we define ξ(p1, ..., pi) = λi ([o, p1, . . . , pi]) and fix S ∈ G(n, i) we have�
S
· · ·

�
S
f
�
D−1(p1, . . . , pi)M

−t
�
λi ([o, p1, . . . , pi])

n−i dp1 · · · dpi

= | detM |i
�
S
· · ·

�
S
f
�
D−1(p1, . . . , pi)

�
ξ
�
(p1, ..., pi)M

t
�n−i

dp1 · · · dpi

= | detM |n
�
D−1S

· · ·
�
D−1S

f (p1, . . . , pi) ξ (p1, ..., pi)
n−i dp1 · · · dpi

By the rotation invariance of the measure on G(n, i) we obtain

I2((D,M).f) = | detM |nI2(f),

and thus, I1, I2 are relative invariant with the same multiplier. Theorem 4.0.7 yields

I1 = cI2 for some constant.

For the following corollary, which will be crucial for the proof of the isoperimetric

inequality for dual affine quermassintegrals, we will use functions gm,k, which will be

defined later in Definition 6.0.1.

Corollary 4.0.9. If C ⊆ Rn is a compact set and 1 ≤ i ≤ n− 1, it holds that

λn(C)i = c

�
G(n,i)

gn−i,i(C ∩ S)dS

where c ∈ R depends only on n and i.

Proof. Applying Theorem 7.3.1 to the function f (p1, . . . , pi) = 1C (p1) · · ·1C (pi) and

18
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the fact that �
S
· · ·

�
S
1C (p1) · · ·1C (pi)λi ([o, p1, . . . , pi])

n−i dp1 · · · dpi

=

�
S∩C

· · ·
�
S∩C

λi ([o, p1, . . . , pi])
n−i dp1 · · · dpidS

= gn−i,i(C ∩ S)

for S ∈ G(n, i), yields the claimed equality.

We now turn to the second stochastic result.

Definition 4.0.10. For a linear subspace L ⊆ Rn let us denote by G(L, q) the set of

all q-dimensional linear subspaces contained in L if q ≤ dim(L), and if q > dim(L)

containing L. Furthermore, let SOn,L := {U ∈ SOn : UL = L,Ux = x for x ∈ L⊥}.
Then, a SOn,L-invariant measure can be defined on G(L, q), as done in reference [SW08],

Section 13.2, allowing us to integrate functions defined on G(L, q).

Let L1, . . . , Lk be linear subspaces of Rn with either

k#
i=1

dimLi =: m ≤ n (4.1)

or
k#

i=1

dimLi ≥ (k − 1)n. (4.2)

We call L1, . . . , Lk in general position if, in case (4.1)

dim lin (L1 ∪ . . . ∪ Lk) = dimL1 + . . .+ dimLk

holds, or in case (4.2) if

dim (L1 ∩ . . . ∩ Lk) = dimL1 + . . .+ dimLk − (k − 1)n.

Note that, L1, . . . , Lk are in general position if and only if L⊥
1 , . . . , L

⊥
k are in general

position. Now, we define the subspace determinant, denoted by [L1, . . . , Lk], as follows.

In case of (4.1) we choose an orthonormal basis in each Li and define [L1, . . . , Lk] as the

m-dimensional volume of the parallelepiped spanned by the union of these bases. When

(4.2) holds, we define

[L1, . . . , Lk] :=
�
L⊥
1 , . . . , L

⊥
k

�
.
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Furthermore, if q ∈ N, r1, . . . , rq ∈ {1, . . . , n − 1} and (L1, . . . , Lq) ∈ G(n, r1) × ... ×
G(n, rq), we denote by

[L1, . . . , Lq]r := [L1, . . . , Lq] ,

where r := (r1, . . . , rq) serves as a multi-index. Moreover, if we fix a linear subspace L0,

we may also set

[L1, . . . , Lq, L0]r := [L1, . . . , Lq, L0]

Therefore, for r := (r1, . . . , rq), the determinants [·, . . . , ·]r and [·, . . . , ·, L0]r are both

functions defined on G(n, r1)× ...× G(n, rq).

The proof of the following can be found in [SW08], Theorem 7.2.6.

Theorem 4.0.11. For given integers s1, . . . , sq ∈ {1, . . . , n − 1} and s0 ∈ {1, . . . , n}
with

s1 + . . .+ sq − (q − 1)n =: m ≥ n− s0,

a linear subspace L0 ∈ G(n, s0), and a non-negative measurable function f : G(n, s1) ×
...× G(n, sq) → R, we have�

G(n,s1)×...×G(n,sq)
f(F1, ..., Fq) d(F1, ..., Fq)

= c̄

�
G(L0,m+s0−n)

�
G(L,s1)×...×G(L,sq)

f(F1, ..., Fq) · [F1, ..., Fq, L0]
m+s0−n
s d(F1, ..., Fq) dL,

(4.3)

where s := (s1, . . . , sq), bdq :=
κd−q+1···κd

κ1···κq
and

c̄ := bs0(d−m)

q 
j=1

b(2d−m−s0)(d−sj)

bd(d−sj)
.

In [SW08], Theorem 7.2.1, one can also find an alternative proof of Theorem 7.3.1, as

well as a demonstration of how Theorem 4.0.11 follows from Theorem 7.3.1.
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5 Affine and Dual Affine Quermassintegrals -

Definitions and Basic Properties

In this section, we recall the definition of the affine quermassintegral Φk(K) and the

dual affine quermassintegral Φ̃k(K) for a convex body K, and establish some basic

properties. These include the log-concavity of Φk with respect to the Minkowski sum,

and the corresponding properties of Φ̃k with respect to the radial sum. Additionally,

we will prove the affine invariance of both Φk and Φ̃k and conclude by exploring their

connections to other classical isoperimetric inequalities.

The k-th affine quermassintegral Φk was originally defined by Lutwak in [Lut84].

Definition 5.0.1. Let K ⊆ Rn be a convex body, and 1 ≤ k ≤ n. The k-th affine

quermassintegral of K is defined by

Φk(K) =
κn
κk

��
G(n,k)

λk(K|F )−n dF

�− 1
n

.

Lutwak also defined the dual affine quermassintegrals.

Definition 5.0.2. Let C ⊆ Rn be a compact set and 1 ≤ i ≤ n. The quantities

Φ̃n−i(C) =
κn
κi

��
G(n,i)

λi(C ∩ S)n dS

�1/n

are called the dual affine quermassintegrals of C.

5.1 Log-Concavity

In this section, we will prove the log-concavity of Φ̃k and Φk with respect to the

Minkowski sum and the radial sum, respectively.
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5.1.1 Log-Concavity of the Dual Affine Quermassintegral

As a reference, we cite [Gar07].

Definition 5.1.2. Let us denote by Bn the class of bounded Borel sets in Rn and Bn
so

the class of sets of Bn, which are star-shaped with respect to the origin. If a subset

Cn ⊆ Bn is closed under intersections with linear subspaces, radial sums, and dilatations

we call it admissible. A function f defined on such Cn is said to be radially convex if,

for all C,D ∈ Cn and 0 ≤ t ≤ 1,

f((1− t)C+̃tD) ≤ (1− t)f(C) + tf(D).

Furthermore, we call f positively homogeneous of degree 1 if f(rC) = rf(C) for all r ≥ 0.

To prove log-concavity of the dual affine quermassintegrals we need the following

lemma.

Lemma 5.1.3. Fix p ≥ 1 and 1 ≤ i ≤ n − 1. If f is a non-negative function on

an admissible class Cn that is homogeneous and radially convex on any i-dimensional

subspace, and such that f(C ∩ ·)p is integrable on G(n, i), then the function g : Cn → R,

g(C) =

��
G(n,i)

f(C ∩ S)pdS

�1/p

,

is homogeneous and radially convex.

Proof. It is easy to check that g is homogeneous. To show that g is radially convex, let

0 ≤ t ≤ 1 and C,D ∈ Cn. Since the radial sum x+̃y of x, y ∈ Rn can be defined by

x+̃y =

x+ y if x, y, and o are collinear,

o otherwise,

we have, for each S ∈ G(n, i),

((1− t)C+̃tD) ∩ S = (1− t)(C ∩ S)+̃t(D ∩ S).
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Minkowski’s inequality for integrals yields

g((1− t)C+̃tD) =

��
G(n,i)

f(((1− t)C+̃tD) ∩ S)pdS

�1/p

≤
��

G(n,i)
((1− t)f(C ∩ S) + tf(D ∩ S))pdS

�1/p

≤ (1− t)

��
G(n,i)

f(C ∩ S)pdS

�1/p

+ t

��
G(n,i)

f(D ∩ S)pdS

�1/p

= (1− t)g(C) + tg(D),

(5.1)

which proves the statement.

With this in hand, we are able to prove log-concavity of the dual affine quermassinte-

grals.

Theorem 5.1.4. For K,L ∈ Bn
so and 0 ≤ i ≤ n− 1 it holds that

Φ̃i(K+̃L)1/(n−i) ≤ Φ̃i(K)1/(n−i) + Φ̃i(L)
1/(n−i)

where equality holds if and only if K is a dilatate of L, modulo a set of measure zero.

Proof. The case i = 0 corresponds to the usual dual Brunn-Minkowski inequality, The-

orem 3.0.4. So, let 1 ≤ i ≤ n − 1 and 0 ≤ t ≤ 1. Note that the class Bn
so is admissible.

Furthermore, let S ∈ G(n, i) and C,D ∈ Bn
so with C,D ⊆ S. The function λ

1/i
i defined

on S is homogeneous. If we identify S with Ri, the dual Brunn-Minkowski inequality

yields

λi((1− t)C+̃tD)1/i ≤ (1− t)λi(C)1/i + tλi(D)1/i

where equality holds if and only if C is a dilatate of D, modulo a set of measure zero.

The function f = λ
1/i
i is homogeneous and radially convex on S. Therefore, Lemma

5.1.3 with p = ni implies that the function (κi/κn) Φ̃
i
n−i is radially convex. Replacing i

by n− i yields the claimed inequality.

We are left to address the cases of equality. If that is the case, equality also holds in

(5.1) for f = λ
1/i
i and p = ni. This implies that we have equality in the dual Brunn-

Minkowski inequality, Theorem 3.0.4, where n = i and K and L are replaced by K ∩ S

and L∩S, respectively, for almost every S ∈ G(n, i). We conclude that K∩S is a dilatate

of L∩ S, modulo a set of λi-measure zero, for almost every S ∈ G(n, i). But λn−1 is the
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unique Borel-regular, rotation-invariant measure on Sn−1 so that the measure of Sn−1

is nκn. Thus, �
Sn−1

f(u) du =
nκn
iκi

�
G(n,i)

�
Sn−1∩S

f(u) dudS

If we substitute f = ρK on the left-hand side and f = cSρL on the right-hand side, where

cS is a constant possibly depending on S, the above equality remains true. However, the

same equation must also be true if ρK(u) = cSρL(u) for all u ∈ Sn−1 ∩ S. We deduce

that the constant cS is independent of S. But this means that K is a dilatate of L,

modulo a set of measure zero.

5.1.5 Log-Concavity of the Affine Quermassintegral

As a reference, we cite [Had57].

Definition 5.1.6. A functional on a subset M ⊆ K(Rn) ∪ {∅} with ∅ ∈ M is a map

φ : M → R with φ(∅) = 0. We will call φ homogeneous of degree 1 if φ(αA) = αφ(A)

for every α ∈ R and A ∈ M. Furthermore, φ is said to be concave if

φ(αA+ βB) ≥ αφ(A) + βφ(B)

for every A,B ∈ M and α, β ≥ 0 with α + β = 1. Finally, we call φ strictly defined if

φ(A) > 0 for all A ∈ M, A ̸= ∅.

For proving the log-concavity of the affine quermassintegrals, we need two lemmas.

Lemma 5.1.7. Let M ⊆ K(Rn) ∪ {∅} be a set of convex bodies, such that ∅ ∈ M and

A ⊆ C for every A ∈ M and a suitable cube C. If φ is continuous on M, then it is also

uniformly continuous on M, i.e. for every ϵ > 0 there is an α > 0 with |φ(A)−φ(B)| < ϵ

whenever δ(A,B) < α.

Proof. Assume that the statement is false. There would be sequences Ak, Bk, k ∈ N in

M with δ(An, Bn) → 0 but |φ(An) − φ(Bn)| ≥ ϵ for a suitable choice of ϵ. Concerning

the selection theorem of Blaschke, Theorem 3.0.1, we can assume An → A and Bn → B

in M, which yields δ(A,B) = 0, so A = B. Since φ is continuous, we have φ(An) → φ(A)

and φ(Bn) → φ(B), thus |φ(An)− φ(Bn)| → 0, a contradiction.

Lemma 5.1.8. Let φ be a functional homogeneous of degree 1 on K(Rn) ∪ {∅} with

φ(K) > 0 for every K ̸= ∅. Then φ is concave if and only if there exists p > 0, such
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that the function Ψ(K) = φ(A)p,K ∈ K(Rn) fulfills

Ψ(αK + βD) ≥ 1

for every α, β ≥ 0 with α+ β = 1 and Ψ(K) = Ψ(D) = 1.

Proof. First, let φ be concave, and K,D,α, and β as above. Then φ(K) = φ(D) = 1

and therefore

φ(αK + βD) ≥ αφ(K) + βφ(D) = 1,

so Ψ(αK + βD) ≥ 1. Conversely, let K,D ∈ K(Rn) be non-empty, and let φ(K) = 1/k

and φ(D) = 1/d for k, d > 0. Since φ is homogeneous of degree 1, we have φ(kK) =

φ(dD) = 1 and therefore Ψ(kK) = Ψ(dD) = 1. For given α, β ≥ 0 with α + β = 1, we

define

ξ =
αk

βk + αd
and η =

βα

βk + αd
.

Since ξ + η = 1, we can apply our assumption and get Ψ(ξkK + ηdD) ≥ 1, thus

φ(ξkK + ηdD) ≥ 1. Finally,

φ(αK + βD) ≥ βk + αd

kd
= αφ(K) + βφ(D).

Since we aim to deduce the concavity of functionals on all convex bodies from their

concavity on lower-dimensional convex bodies, we introduce the following definition.

Definition 5.1.9. For a k-dimensional subspace H ∈ G(n, k) of Rn, 1 ≤ k ≤ n− 1, we

define Kn
H,o ⊆ K(Rn) as the set of all convex bodies in H, in particular, with non-empty

relative interior. Furthermore, set

Kn
k,o :=

%
H∈G(n,k)

Kn
H,o.

Theorem 5.1.10. Let p ≥ −1, p ̸= 0, 1 ≤ k ≤ n − 1 and let φ be a strictly defined,

continuous functional on Kn
k,o ∪ {∅}, which is homogeneous of degree 1 and concave on

Kn
H,o for every H ∈ G(n, k). Then, the map

ψ(A) =

��
G(n,k)

(φ(A|H))−p dH

�−1/p

, A ∈ Kn,
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is a strictly defined, continuous, homogeneous of degree 1 and concave functional on

Kn ∪ {∅}.

Proof. Since φ and the map H �→ A|H are continuous, the integrand is continuous. It

is also bounded due to the fact that φ is strictly defined, and therefore, φ(A|H) remains

uniformly positive for H ∈ G(n, k). Thus, the integral exists for A ∈ Kn and ψ is

well-defined.

That ψ is homogeneous of degree 1 and strictly defined is readily seen. Since φ is

continuous, we can apply Lemma 5.1.7, yielding the uniform continuity of A �→ φ(A|H)

on every uniformly bounded M ⊆ Kn. Therefore, we conclude the continuity of ψ.

We are left to show that ψ is concave. Let α, β ≥ 0 with α+β = 1. Since φ is concave

and for A,B ∈ Kn and H ∈ G(n, k)

(αA+ βB)|H = α(A|H) + β(B|H),

we obtain

φ((αA+ βB)|H) ≥ αφ(A|H) + βφ(B|H).

In case of −1 ≤ p < 0, the concavity of the power function x �→ x−p yields

φ((αA+ βB)|H)−p ≥ αφ(A|H)−p + βφ(B|H)−p.

If we set Ψ(A) = ψ(A)−p, then

Ψ(αA+ βB) ≥ αΨ(A) + βΨ(B).

In particular, whenever A,B are such that Ψ(A) = Ψ(B) = 1, we get Ψ(αA+ βB) ≥ 1.

Applying Lemma 7.3 yields the concavity of ψ. If p > 0, the power function x �→ x−p is

convex. Thus,

φ((αA+ βB)|H)−p ≤ αφ(A|H)−p + βφ(B|H)−p.

We now set Ψ(A) = ψ(A)p and get

Ψ(αA+ βB)−1 ≥ αΨ(A)−1 + βΨ(B)−1.

Again, Ψ(A) = Ψ(B) = 1 implies Ψ(αA+ βB) ≥ 1 and by Lemma 7.3 the concavity of

ψ follows.
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With this theorem in hand, the log-concavity of the affine quermassintegrals becomes

an easy consequence.

Corollary 5.1.11. Let K,L ∈ Kn and 0 ≤ i ≤ n− 1. Then

Φi(K + L)1/(n−i) ≤ Φi(K)1/(n−i) +Φi(L)
1/(n−i).

Proof. We will prove the equivalent statement that the function K �→ Φi(K)1/(n−i) is

concave. But that is just the case p = n and φ(K) = λi(K|F ), F ∈ G(n, i) of Theorem
5.1.10.

5.2 Proof of the Affine Invariance of Φ̃k and Φk

To do this, we introduce the concept of a multiplier function. The results of this section

can be found in [Gri91].

Definition 5.2.1. Let G denote a topological group and M a topological G-space,

meaning that we have a continuous map G × M → M denoted by (g, x) → gx, which

satisfies ex = x and (g′g′′)x = g′ (g′′x). Furthermore, let Z(G,M) be the group of

functions σ : G×M → R+ satisfying

σ
�
g′g′′, x

�
= σ

�
g′, g′′x

�
σ
�
g′′, x

�
for every g′, g′′ ∈ G, x ∈ M and let B(G,M) ⊆ Z(G,M) be the subgroup of multiplier

functions that are of the form

σ(g, x) = f(gx)/f(x),

where f : M → R+ is a continuous function (not to be confused with the notion of

multipliers as in Definition 4.0.3).

Theorem 5.2.2. If K ⊆ Rn is a convex body and g an affine transformation, then

Φ̃k(K) = Φ̃k(gK) for 1 ≤ k ≤ n− 1.

Proof. As shown in [FT71], the function

σk(g,H) ≡ λk(g(K ∩H))

λk(K ∩H)
,
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where g is an affine transformation and H ∈ G(n, k), is a multiplier function as well as

the Radon-Nikodym derivative

σG(n,k)(g,H) =
dg−1H

dH
.

Furthermore, it is shown in [FT71] that the following equation holds

σG(n,k)(g,H) = σk(g,H)−n.

We conclude the proof by computing

Φ̃n−k(gK) = κn

��
H∈G(n,k)

(λk(gK ∩H)/κk)
n dH

�1/n

= κn

��
gH∈G(n,k)

(λk(gK ∩ gH)/κk)
n d(gH)

�1/n

= κn

��
H∈G(n,k)

σk(g,H)n (λk(K ∩H)/κk)
n d(gH)

�1/n

= κn

��
H∈G(n,k)

(λk(K ∩H)/κk)
n dH

�1/n

= Φ̃n−k(K).

To prove affine invariance for Φk we again use the notion of multipliers. But first, we

need to establish a projection volume identity.

Lemma 5.2.3. Let K ⊆ Rn be a convex body, H ∈ G(n, k), and φ ∈ SLn. Then

λk(φK|H) = λk

�
K|φtH

�
σk

�
φt, H

�
.

Proof. In case that φ is an orthogonal matrix, the above is trivial. If φ is a lower

triangular matrix with respect to the coordinate system
�
H,H⊥�, then φtH = H and

the matrix of φ has the form

φ =

�
A 0

C D

�
.
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We deduce

λk(φK|H) = λk(A(K|H)) = λk(K|H)σk(A,H),

where the last equation follows from the definition of σk. This completes the proof for

the lower triangular case. For the general case φ ∈ SLn we may write φ as the product of

a lower triangular matrix and an orthogonal matrix and apply the above arguments.

Theorem 5.2.4. If K ⊆ Rn is a convex body and g an affine transformation, then

Φk(K) = Φk(gK) for 1 ≤ k ≤ n− 1.

Proof. Applying Lemma 5.2.3 yields

Φn−k(gK) =κn

��
H∈G(n,k)

�
λk(gK|H)

κk

�−n

dH

�−1/n

=κn

��
H∈G(n,k)

�
λk(K|gtH)

κk

�−n �
σk(g

t, H)
�−n

dH

�−1/n

=κn

��
H∈G(n,k)

�
λk(K|H)

κk

�−n �
σk

�
gt, g−tH

��−n
d
�
g−tH

��−1/n

= κn

��
H∈G(n,k)

�
λk(K|H)

κk

�−n �
σk(g

t, g−tH)
�−n �

σk(g
−t, H)

�−n
dH

�−1/n

.

And finally, due to the multiplier property of σk,

Φn−k(gK) = κn

��
H∈G(n,k)

�
λk(K|H)

κk

�−n

dH

�−1/n

= Φn−k(K).
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6 Isoperimetric Inequality for Dual Affine

Quermassintegrals

With the geometric and stochastic preliminaries in place, we are now ready to prove

the isoperimetric inequality for dual affine quermassintegrals. As a reference, we cite

[Gar06].

We begin with the definition of the useful functions gm,k and then proceed by showing

that gm,k decreases under Steiner symmetrization.

Definition 6.0.1. For 1 ≤ k ≤ n the k-dimensional simplex in Rn with vertices

o, p1, . . . , pk is denoted by [o, p1, . . . , pk]. Let C be a compact set with C ⊆ S for some

S ∈ G(n, k). For each m ∈ N we set

gm,k(C) =

�
C
· · ·

�
C
λk ([o, p1, . . . , pk])

m dp1 · · · dpk.

For k = n we simply write

gm(C) = gm,n(C) =

�
C
· · ·

�
C
λn ([o, p1, . . . , pn])

m dp1 · · · dpn.

Lemma 6.0.2. For a convex body K ⊆ Rn and u ∈ Sn−1, we have

gm(K) ≥ gm (SuK) , m ∈ N,

with equality if and only if the midpoints of all chords of K parallel to u lie in a hyperplane

containing the origin.

Proof. Let 1 ≤ j ≤ n and pj ∈ SuK. For every j, we find unique yj ∈ u⊥ and sj ∈ R
with pj = yj + sju, and unique tj ∈ Rn such that qj = yj + tju ∈ K transforms to

pj by the process of Steiner symmetrization in u⊥. With lu being the line spanned

by u, let zj be the center of the line segment K ∩ (lu + yj). Thus qj ∈ K ∩ (lu + yj).

Furthermore, let us denote by q′j = yj + t′ju the reflection of qj in zj on the line lu. We

obtain sj =
�
tj − t′j

�
/2, 1 ≤ j ≤ n.
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Without loss of generality, we can assume that u⊥ is the hyperplane {x ∈ Rn : xn = 0}.
We write pk,j for the k th component of pj and similarly for the other vectors. The fact

that u is paralell to the xn axis yields pk,j = yk,j = qk,j = q′k,j for 1 ≤ k ≤ n − 1 and

pn,j = sj , qn,j = tj , q′n,j = t′j . With that and the formula for the volume of a simplex,

we obtain

λn ([o, p1, . . . , pn]) =
1

n!

&&&&&&&&&&
det

����
p1,1 . . . p1,n
...

. . .
...

pn−1,1 . . . pn−1,n

pn,1 . . . pn,n

����
&&&&&&&&&&

=
1

n!

&&&&&&&&&&
det

����
y1,1 . . . y1,n
...

. . .
...

yn−1,1 . . . yn−1,n

sn,1 . . . sn,n

����
&&&&&&&&&&

Because of sj =
�
tj − t′j

�
/2 and the linearity of the determinant, the last expression is

equal to

1

2n!

&&&&&&&&&&
det

����
q1,1 . . . q1,n
...

. . .
...

qn−1,1 . . . qn−1,n

tn,1 . . . tn,n

����−

����
q′1,1 . . . q′1,n
...

. . .
...

q′n−1,1 . . . q′n−1,n

t′n,1 . . . t′n,n

����
&&&&&&&&&&

≤ 1

2

�
λn ([o, q1, . . . , qn]) + λn

�

o, q′1, . . . , q

′
n

���
.

Applying Jensen’s inequality leads to

λn ([o, p1, . . . , pn])
m ≤ 1

2
λn ([o, q1, . . . , qn])

m +
1

2
λn

�

o, q′1, . . . , q

′
n

��m
.

Finally we get
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gm (SuK) =

�
SuK

· · ·
�
SuK

λn ([o, p1, . . . , pn])
m dp1 · · · dpn

≤ 1

2

�
K
· · ·

�
K
λn ([o, q1, . . . , qn])

m dq1 · · · dqn

+
1

2

�
K
· · ·

�
K
λn

�

o, q′1, . . . , q

′
n

��m
dq′1 · · · dq′n

=

�
K
· · ·

�
K
λn ([o, q1, . . . , qn])

m dq1 · · · dqn

= gm(K).

It remains to prove the equality cases. Let us assume equality. Since the volume of a

simplex is a function of its vertices, the previous inequalities must hold as equalities for

every choice of pj , 1 ≤ j ≤ n, which yields det (qjk) = − det
�
q′jk

�
. Since

λn ([o, z1, . . . , zn]) = |det (zjk)| /n!

where zjk = yjk for 1 ≤ k ≤ n− 1 and zjn =
�
tj + t′j

�
/2 leads to

λn ([o, z1, . . . , zn]) = 0.

In particular the points zj , 1 ≤ j ≤ n, lie in a hyperplane containing the origin.

Lemma 6.0.3. Let Km,m ∈ N be a sequence in Kn and K ∈ Kn its limit. If there is a

convex body K̃ with SuKm → K̃ ∈ Kn for a fixed direction u ∈ Sn−1, then K̃ ⊆ SuK.

Proof. Fix x ∈ K̃. There is a sequence xm in SuKm with xm → x. Indeed, if we define xm

as the unique point in SuKm with least distance to x, we obtain |x−xm| ≤ δ(K,Km) → 0,

where here δ denotes the Hausdorff metric. Let σxm be the reflection of xm with respect

to u⊥, then we can choose ym, zm ∈ (lu + xm) ∩ Km with |ym − zm| ≥ |xm − σxm|. If

we replace ym and zm with suitable subsequences, we find that ym → y and zm → z for

some y, z ∈ Gx ∩K. Thus |y − z| ≥ |x− σx| and therefore x ∈ SuK.

The following theorem demonstrates that any convex body converges to a ball through

successive suitable Steiner symmetrizations.

Lemma 6.0.4. Suppose that K ⊆ Rn is a convex body. Then there exist directions

um ∈ Sn−1,m ∈ N, such that the sequence of successive Steiner symmetrals Km =

SumSum−1 · · ·Su1K converge with respect to the Hausdorff metric to a centered ball with

the same volume as K.
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Proof. For L ∈ Kn let us denote by R(L) the radius of the smallest ball centered at the

origin that contains L. Furthermore let S(K) be the set of convex bodies obtained by

finitely many Steiner symmetrizations of K in various directions and

R0 = inf{R(K ′) : K ′ ∈ S(K)}.

Since S(K) is bounded, we obtain a sequence Km in S(K) with

lim
m→∞R(Km) = R0 and lim

m→∞Km = K0 ∈ Kn.

The continuity of R implies R(K0) = R0, and since Steiner symmetrization preserves

volume we have λn(K) = λn(K0).

We will prove that K0 is the (closed) ball B0 centered at the origin with radius R0.

Suppose, for the sake of contradiction, that there is z ∈ B0 with z /∈ K0. Let C be a

ball centered at z with C ∩K0 = ∅. For an arbitrary direction u ∈ Sn−1 we have

B0 ∩ C ∩ SuK0 = ∅ and B0 ∩ σC ∩ SuK0 = ∅,

where as in the proof before σ denotes the reflection with respect to u⊥. We can cover

B0 by finitely many balls C1, ..., Cj which are congruent to C. Let us write Hi = u⊥i for

the hyperplane, which cuts C and Ci in half. The body S∗(K0) = Suj ...Su1K0 satisfies

S∗(K0) ∩ B0 = ∅. Moreover, since S∗(K0) is compact, we obtain R(S∗(K0)) < R0.

Without loss of generality we can assume S∗(Km) → K̃ ∈ Kn, and by Lemma 6.0.3 we

get K̃ ⊆ S∗(K0). Thus R(K̃) < R0 and R(S∗(Km)) < R0 for m sufficiently large. Since

S∗(Km) ∈ S(K) we get a contradiction.

Corollary 6.0.5. Suppose that K ⊆ Rn is a convex body and r > 0 such that λn(K) =

λn(rB
n). Then for m ∈ N

gm(K) ≥ gm(rBn),

where equality holds if and only if K is a centered ellipsoid.

Proof. Lemma 6.0.4 shows that the sequence Kj of successive Steiner symmetrals of K

converge to a ball rBn with λn(rB
n) = λn(K). By Lemma 6.0.2 we get

gm(K) ≥ gm(K1) ≥ ... ≥ gm(Kj).
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Taking the limit j → ∞ leads to the claimed inequality. The equality cases follow

directly from those of Lemma 6.0.2 and Theorem 3.3.1.

We are now able to prove the isoperimetric inequality for dual affine quermassintegrals.

Theorem 6.0.6. Let K ⊆ Rn be a convex body and 1 ≤ i ≤ n− 1. Then

κ(n−i)/nλn(K)i/n ≥ Φ̃n−i(K).

For i > 1, equality holds if and only if K is a centered ellipsoid, and for i = 1 if and

only if K is centered.

Proof. We will prove the following equivalent version of the inequality

λn(K)i ≥ κin
κni

�
G(n,i)

λi(K ∩ S)n dS.

Therefor we fix S ∈ G(n, i). By Corollary 6.0.5 applied to K ∩S with dimension i and

m = n− i we obtain

gn−i,i(K ∩ S) ≥ gn−i,i(rSB
n ∩ S),

for rS > 0 with λi(K ∩ S) = λi(rSB
n ∩ S). Furthermore, according to Corollary 4.0.9,

we have

λn(K)i ≥ c

�
G(n,i)

gn−i,i (rSB
n ∩ S) dS

and

λn(rB
n)i = c

�
G(n,i)

gn−i,i(rB
n ∩ S) dS = cgn−i,i(rB

n ∩ S),

with c ∈ R only depending on n and i. The last equality holds because the integral is

taken over a constant function. Combining these yields

λn(K)i ≥
�
G(n,i)

λn (rSB
n)i dS

=
κin
κni

�
G(n,i)

λi (rSB
n ∩ S)n dS

=
κin
κni

�
G(n,i)

λi(K ∩ S)n dS.

It remains to prove the equality cases. Since all the integrands from above are continu-

ous in S, equality holds if and only if gn−i,i(K∩S) = gn−i,i (rSB
n ∩ S) for all S ∈ G(n, i).
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This is, according to Corollary 6.0.5, equivalent to K ∩ S being a centered ellipsoid for

all S ∈ G(n, i). By Lemma 3.3.5 if 1 < i ≤ n − 1 this holds precisely when K is a

centered ellipsoid. In case of i = 1, it is easy to check that equality holds if and only if

K is centered.

As a corollary of the preceding theorem, we obtain the Busemann intersection inequal-

ity involving the intersection body IK of K.

Corollary 6.0.7. Suppose that K ⊆ Rn is a convex body with the origin in its interior.

Then

λn(IK) ≤ κnn−1

κn−2
n

λn(K)n−1,

where equality holds if and only if K is a centered ellipsoid.

Proof. By the polar coordinate formula for volume (3.1), we obtain

λn(IK) =
1

n

�
Sn−1

ρIK(u)n du =
1

n

�
Sn−1

λn−1

�
K ∩ u⊥

�n
du

= κn

�
G(n,n−1)

λn−1 (K ∩ S)n dS.

Applying Theorem 6.0.6 with i = n−1 yields the claimed inequality. The equality cases

follow directly from those of Theorem 6.0.6.

6.0.8 Relation to the Isoperimetric Inequality for Dual Quermassintegrals

Dual quermassintegrals were introduced by Lutwak in [Lut75] in a slightly different way,

and the formula in the following definition was later demonstrated by Lutwak in [Lut79].

Definition 6.0.9. Let K ⊆ Rn be a convex body, and 1 ≤ k ≤ n. The k-th dual

quermassintegral of K is defined by

W̃n−k(K) =
κn
κk

�
G(n,k)

λk(K ∩ S) dS.

Remark 6.0.10. Note that the W̃k are invariant under rotations, see [Lut75], whereas

the Φ̃k are invariant under affine transformations, see Theorem 5.2.2.

By Jensen Inequality and the fact W̃k(BK) = Φ̃k(BK) it is easy to see that Theorem

6.0.6 implies the isoperimetric inequality for dual affine quermassintegrals.
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6 Isoperimetric Inequality for Dual Affine Quermassintegrals

Theorem 6.0.11. Let K ⊆ Rn be a convex body and 1 ≤ k ≤ n. Then

W̃k(K) ≤ W̃k(BK)

with equality if and only if K is a ball.
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7 Isoperimetric Inequalities for Affine

Quermassintegrals

In this chapter, we delve into the proof of the isoperimetric inequality for Φk, a result

that was recently established in 2023, see [MY23]. To summarize, we will prove that

the function Φk decreases under Steiner symmetrization and then, using a standard

argument, we will derive the desired inequality. Since the cases of equality involve

significantly more work, we will cover them in Chapter 8.

7.1 Preliminaries

In this section, we will introduce the basic definitions needed for what follows and prove

some lemmas.

Definition 7.1.1. Let u ∈ Sn−1 and T u
t : Rn+1 → Rn denote the projection onto Rn

parallel to en+1 + tu, i.e., T u
t is a projection which is the identity on Rn and sends en+1

to −tu. A shadow system in the direction of u is a family K(t) ∈ K(Rn), t ∈ R such

that there exists K̃ ∈ Kn+1 with K(t) = T u
t (K̃).

Definition 7.1.2. Let K ⊆ Rn be a convex body and u ∈ Sn−1 a direction. For a

set A ⊆ Rn and y ∈ u⊥, we denote by A(y) the one-dimensional section of A in the

direction of u over y. Furthermore, we define the following linear reflection shadow

system associated to K in the direction of u

(Ku(t))
(y) =

1 + t

2
K(y) +

1− t

2
(RuK)(y), for t ∈ R and y ∈ u⊥, (7.1)

where Ru denotes the reflection about u⊥.

We obtain the following lemma in a straightforward manner.

Lemma 7.1.3. Suppose that K ⊆ Rn is a convex body, u ∈ Sn−1 is a direction, and

Ku(t), t ∈ R are defined by (7.1). Then the following holds
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(i) Ru(Ku(t)) = Ku(−t) for all t ∈ R,

(ii) in particular Ku(1) = K and Ku(−1) = RuK,

(iii) Ku(0) = SuK,

(iv) λn(Ku(t)) = λn(K) for t ∈ [−1, 1] and

(v) t �→ Ku(t), t ∈ R is a continuous map.

Lemma 7.1.4. If {K(t)}t∈R is a shadow system in the direction of u, and y ∈ u⊥, then

(K((1− α)t0 + αt1))
(y) ⊆ (1− α)(K(t0))

(y) + α(K(t1))
(y) (7.2)

for all α ∈ R and t0, t1 ∈ R.

Proof. Since for t0 = t1 there is nothing to prove, let t0 ̸= t1 and set Ki = K(ti), i =

0, 1. Shepard showed that this implies Pu⊥K0 = Pu⊥K1, see reference [She64], (4).

Furthermore, also as proved by Shepard, there is a maximal shadow system {Kmax(t)}t∈R
implying K(t) ⊆ Kmax(t), t ∈ R for every shadow system {K(t)}t∈R, and having the form

Kmax(t) = T u
t (K̃max), where

K̃max := (T u
t0)

−1(K0) ∩ (T u
t1)

−1(K1),

or equivalently,

(Kmax((1− α)t0 + αt1))
(y) := (1− α)(K0)

(y) + α(K1)
(y), for α ∈ R, y ∈ u⊥

In particular, K(t) ⊆ Kmax(t) for all t ∈ R, which proves the assertion.

Definition 7.1.5. Let 1 ≤ k ≤ n − 1, E ∈ G(n, k − 1) and x ∈ Rn. For K ∈ Kn we

define

|PE∧xK| := |PE⊥x|λk

�
Pspan(E,x)K

�
,

and in case of E = {0}, we will simply write |PxK| := |x|λ1

�
Pspan(x)K

�
.

Lemma 7.1.6. With the notation of the previous definition, the map defined by

G(n, k − 1)× Rn → R+, (E, x) �→ |PE∧xK|

is continuous.

38



7 Isoperimetric Inequalities for Affine Quermassintegrals

Proof. If we apply Theorem 3.0.6 to F = span(E, x), we obtain for x /∈ E,�
n

k

�
V
�
K, k; |PE⊥x| 1

n−k BE⊥∩x⊥ , n− k
�
= λk

�
Pspan(E,x)K

� |PE⊥x|λk (BF⊥) ,

where V (...) denotes the mixed volume as defined in Theorem 3.0.3. Therefore, if x /∈ E,

then

|PE∧xK| =
�
n
k

�
κn−k

V
�
K, k; |PE⊥x| 1

n−k BE⊥∩x⊥ , n− k
�
.

Since for x ∈ E both sides are zero, the above holds for all x ∈ Rn. Obviously, the

map (E, x) �→ |PE⊥x| 1
n−k BE⊥∩x⊥ is continuous in (E0, x0) whenever x0 /∈ E0. In case

x0 ∈ E0, it is also continuous, since |PE⊥x| 1
n−k converges to zero as (E, x) → (E0, x0).

By the continuity of mixed volume, we also get that (E, x) �→ |PE∧xK| is continuous.

Definition 7.1.7. Let K ⊆ Rn be a convex body and E ∈ G(n, k−1) with 1 ≤ k ≤ n−1.

We call the set

LE(K) =
�
x ∈ E⊥ : |PE∧xK| ≤ 1

	
⊆ E⊥

the E-projected polar body of K.

As can easily be shown, LE(K) is origin-symmetric, closed, and contains the origin

in its interior. Since K has non-empty interior LE(K), is bounded in E⊥ and hence

compact. Thus, the following Lemma shows that LE(K) is convex, i.e. a convex body

in E⊥.

Lemma 7.1.8. Let K ⊆ Rn be a convex body and E ∈ G(n, k − 1) with 1 ≤ k ≤ n− 1.

Then, the map x �→ |PE∧xK| , x ∈ Rn is convex and its level set LE(K) is also convex.

Proof. If E = {0}, clearly |PxK| = hK(x) + hK(−x) is convex. So let E ̸= {0}. For

w ∈ PEK, we define

Kw := (K − w) ∩ E⊥.

We obtain for x ∈ E⊥,

Pspan(E,x)K =
%

w∈PEK

�
w + Pspan(x)K

w
�
.

By Fubini’s Theorem and homogeneity, we get for x ∈ E⊥,

|PE∧xK| =
�
PEK

|PxK
w| dw =

�
PEK

(hKw(x) + hKw(−x)) dw. (7.3)
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Observe that the above gives a useful expression for ||x||LE(K). Since |PE∧xK| is only

depending on PE⊥x, it suffices to show convexity for x ∈ E⊥. But this is, by the above

expression, now clear since the support functions hKw are convex.

Definition 7.1.9. Suppose that E ∈ G(u⊥, k − 1), with 1 ≤ k ≤ n − 1. We define, for

a convex body K ⊆ Rn,

Vk,u =
�
(E, x) : E ∈ G(u⊥, k − 1), x ∈ E⊥

	
,

Lk,u(K) =
�
(E, x) : E ∈ G(u⊥, k − 1), x ∈ LE(K)

	
⊆ Vk,u,

and for s ∈ R
LE,u,s(K) =

�
y ∈ E⊥ ∩ u⊥ :

&&PE∧(y+su)K
&& ≤ 1

	
.

The set Lk,u(K) is called the k-dimensional projection rolodex of K relative to u⊥.

Remark 7.1.10. LE,u,s(K) is the section of LE(K) perpendicular to u at height s ∈ R,
and hence convex. Due to dim(E⊥ ∩ u⊥) = n− k, the dimension of LE,u,s(K) is n− k.

By Brunn’s concavity principle, Theorem 3.0.5, the map s �→ λn−k (LE,u,s(K))
1

n−k is

concave on its support, and so we obtain that s �→ λn−k (LE,u,s(K)) is measurable on R.
Furthermore, the set Vk,u is closed, and for a convex body K ⊆ Rn, Lemma 7.1.6

implies that the map

Vk,u → R+, (E, x) �→ |PE∧xK|

is continuous, and therefore the sub-level set

{(E, x) ∈ Vk,u : |PE∧xK| ≤ 1} =
�
(E, x) : E ∈ G(u⊥, k − 1), x ∈ LE(K)

	
= Lk,u(K)

is closed in Vk,u. In case of intK ̸= ∅, the k-dimensional projection rolodex Lk,u(K) is

bounded and therefore compact.

7.2 Convexity of Projections of Shadow System

In this section we well proof that the function (y, t) �→ &&PE∧(y+su)K(t)
&& is jointly convex.

Definition 7.2.1. For x1, ..., xk ∈ Rn, let Δ (x1, . . . , xk) denote the k-dimensional

Lebesgue measure of the parallelepiped [0, x1] + . . .+ [0, xk]. Furthermore, we write

|Px1∧...∧xk
K| := λk

�
Pspan {x1,...,xk}K

�
Δ(x1, . . . , xk) K ∈ Kn.
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Considering Definition 7.1.5, if E ∈ G(n, k − 1) is spanned by an orthonormal basis

{x1, . . . , xk−1} we have

|PE∧xk
K| = &&Px1∧...∧xk−1∧xk

K
&& .

We need the following linear algebra lemma.

Lemma 7.2.2. Let T : Rn → Rn be a linear map, and E ⊆ Rn a subspace such that

T ∗|E : E → T ∗E is injective. Then, there is a linear map S : T ∗E → E with

PE ◦ T = S ◦ PT ∗E .

Proof. Since the operator defined as M = T ∗ ◦ PE ◦ T is self-adjoint, we obtain that

ImM ⊆ T ∗E is an invariant subspace with respect to M . Because of KerM =

(ImM)⊥ ⊇ (T ∗E)⊥, we find a self-adjoint linear map N : T ∗E → T ∗E such that

T ∗ ◦ PE ◦ T = M = N ◦ PT ∗E ,

The claimed equality now holds for S = (T ∗|E)−1 ◦N .

Lemma 7.2.3. Suppose T : Rn → Rn is a linear map and x1, . . . , xk ∈ Rn. Then, for a

compact set A ⊆ Rn, we have

|Px1∧...∧xk
T (A)| = &&PT ∗(x1)∧...∧T ∗(xk)A

&& .
Proof. If the xi are linearly dependent, both sides are zero, so we may assume linear

independence. Let E = span {x1, . . . , xk}. Since PE ◦ T maps onto E if and only if

(ImT )⊥ ∩ E = {0} and, therefore, precisely if KerT ∗ ∩ E = {0}, we may also assume

T ∗|E to be injective, because otherwise both sides would be zero again. Applying Lemma

7.2.2, yields

λk (PE ◦ T (A)) = λk (S ◦ PT ∗E(A)) = |detT ∗E→E S| · λk (PT ∗E(A)) ,

where |detP→Q L| denotes the Jacobian of a linear map L : P → Q between two isomor-

phic vector spaces P and Q. Note that |detP→Q L| = √
detP→P L∗L =

"
detQ→Q LL∗.

Combining this with again Lemma 7.2.2 and SS∗ = SPT ∗ES
∗, we obtain

|detT ∗E→E S| =
"

detE→E SS∗ =
"

detE→E PETT ∗PE = |detE→T ∗E(T
∗|E) |,
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and therefore
|Px1∧...∧xk

T (A)|
= Δ(x1, . . . , xk) λk (PET (A))

= Δ (x1, . . . , xk) · |detE→T ∗E T ∗|E | · λk (PT ∗E(A))

= Δ (T ∗x1, . . . , T ∗xk) · λk (PT ∗E(A))

=
&&PT ∗(x1)∧...∧T ∗(xk)A

&& .
Definition 7.2.4. Let V,W be two vector spaces over R. A function f : V ×W → R is

said to be jointly convex if

f
�
λv + (1− λ)v′, λw + (1− λ)w′� ≤ λf(v, w) + (1− λ)f(v′, w′)

for every λ ∈ [0, 1] and v, v′ ∈ V,w,w′ ∈ W .

Proposition 7.2.5. Suppose that K(t), t ∈ R is a shadow system in the direction of

u ∈ Sn−1, and let E ∈ G(u⊥, k − 1). For fixed s ∈ R, the function

u⊥ × R → R+, (y, t) �→ &&PE∧(y+su)K(t)
&&

is jointly convex.

Proof. Let K̃ ∈ K(Rn+1) be such that K(t) = T u
t (K̃). Recall that T u

t is a projection

which is the identity on Rn and sends en+1 to −tu, see Definition 7.1.1. It is easy to

see that (T u
t )

∗ is the identity on u⊥ and therefore on E ⊆ u⊥. Furthermore (T u
t )

∗ (u) =
u− ten+1 and by Lemma 7.2.3

&&PE∧(su+y)K(t)
&& = &&&PE∧(su−sten+1+y)K̃

&&& ,
for y ∈ u⊥. (for the case E = {0}, see also reference [CG06], (5)). Since the map

(t, y) �→ su−sten+1+y is affine for every s ∈ R, Lemma 7.1.8 yields that
&&PE∧(y+su)K(t)

&&
is jointly convex.

7.3 A Blaschke-Petkantschin-Type Formula

Now, we will invoke the stochastic result from Chapter 4 to prove the following theorem,

which will be essential for the proof of the isoperimetric inequality.

42



7 Isoperimetric Inequalities for Affine Quermassintegrals

Theorem 7.3.1. Let u ∈ Sn−1. Then there is a constant cn,k > 0, only depending on n

and k, with

cn,k

�
G(n,k)

f(F )dF =

�
G(u⊥,k−1)

�
Sn−1∩E⊥

f(span(E, θ)) · |θ · u|k−1 dθdE

for every measurable function f : G(n, k) → R+.

Proof. The proof is an application of Theorem 4.0.11, with q = 1,m = s1 = k, s0 = n−1

and L0 = u⊥. Indeed, the inner integral of (4.3) has the form�
G(E,k)

f(F )
�
F, u⊥

�k−1
σE,k(dF )

whereas in Definition 7.6.7 G(E, k) denotes the set {F ∈ G(n, k) : F ⊃ E} equipped with

its uniform Haar probability measure, denoted by σE,k, which is invariant under the

action of SOn,E := {U ∈ SOn : UE = E}, and 

F, u⊥

�
is the subspace determinant

also defined in Definition 7.6.7. Every F ∈ G(E, k) can be written as F = span(E, θ)

for some θ ∈ Sn−1 ∩ E⊥. That, and because of the invariance of the Haar measure dθ

on Sn−1 ∩ E⊥ under the action of SOn,E , the uniqueness of the Haar measure up to a

multiplicative constant implies that we can rewrite the above integral as

1

λn−k (Sn−1 ∩ E⊥)

�
Sn−1∩E⊥

f(span(E, θ))
�
span(E, θ), u⊥

�k−1
dθ.

By definition we have


span(E, θ), u⊥

�
=



span(E, θ)⊥, span(u)

�
, where, by Definition

7.6.7, [L1, L2] is (when b = dimL1 + dimL2 ≤ n) the b-dimensional volume of the

parallelepiped spanned by the union of any orthonormal bases of L1 and L2. Finally,

due to E ⊆ u⊥ and θ ∈ E⊥,�
span(E, θ)⊥, span(u)

�
=

�
span(E, θ)⊥ ⊕ E, span(u)

�
=

�
span(θ)⊥, span(u)

�
= |θ · u|.

The specific value of cn,k is not important for us, but can be found in [SW08], Theorem

7.2.6.

7.4 Φk(K) Decreases under Steiner Symmetrization

We start by defining a Borel measure on Vk,u.
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Definition 7.4.1. For u ∈ Sn−1 and 1 ≤ k ≤ n−1, we define the Borel measure µk,u on

Vk,u as follows. Let σu⊥,k−1 denote the usual normalized SOn invariant Borel measure

on G(u⊥, k− 1), and let Hn−k+1 denote the n− k+1-dimensional Hausdorff measure on

Rn. Then µk,u is defined as the restriction of the product measure

σu⊥,k−1(dE)⊗
�
|x · u|k−1Hn−k+1(dx)

�
on G(u⊥, k − 1)× Rn

to the closed subset Vk,u. Note that, since Lk,u(K) is a closed subset of Vk,u, it is Borel

measurable.

Lemma 7.4.2. Suppose that K ⊆ Rn is a convex body, and u ∈ Sn−1. Then

µk,u (Lk,u(K)) =
cn,k
n

�
G(n,k)

1

λk (PFK)n
dF. (7.4)

Proof. If we set p(x) = |x · u|k−1, then integrating in polar coordinates on E⊥ and

Theorem 7.3.1 yield

µk,u (Lk,u(K)) =

�
G(u⊥,k−1)

�
E⊥

1Lk,u(K)(E, x) · p(x) dxdE

=

�
G(u⊥,k−1)

�
Sn−k∩E⊥

� ∞

0
1Lk,u(K)(E, rθ) · p(rθ)rn−k drdθdE

=

�
G(u⊥,k−1)

�
Sn−k∩E⊥

p(θ)

� 1/λk(Pspan(E,θ)(K))

0
rn−1 drdθdE

=
1

n

�
G(u⊥,k−1)

�
Sn−k∩E⊥

1

λk

�
Pspan(E,θ)K

�n · |θ · u|k−1 dθdE

=
cn,k
n

�
G(n,k)

1

λk (PFK)n
dF.

Remark 7.4.3. According to the Fubini-Tonelli theorem, the equation (7.4) applies

to any K ∈ K(Rn). However, if K has empty interior, notice that both sides of (7.4)

could be infinite. But these expressions will definitely be finite when K has non-empty

interior, i.e. when K is a convex body.

With this Lemma in hand we are able to show that Φk decreases under Steiner sym-

metrization, which will be essential in the proof of the isoperimetric inequality.
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Theorem 7.4.4. Suppose K ⊆ Rn is a convex body, and u ∈ Sn−1 a fixed direction.

Then

Φk(K) ≥ Φk(SuK)

for every 1 ≤ k ≤ n− 1.

Proof. By Lemma 7.4.2, it suffices to show that

µk,u (Lk,u(K)) ≤ µk,u (Lk,u (SuK)) . (7.5)

Decomposing E⊥ into span(u)⊕ �
E⊥ ∩ u⊥

�
, and applying Fubini’s theorem yields

µk,u (Lk,u(K)) =

�
G(u⊥,k−1)

�
E⊥

1Lk,u(K)(E, x) · |x · u|k−1 dxdE

=

�
G(u⊥,k−1)

�
R

�
E⊥∩u⊥

1|PE∧(y+su)K|≤1(E, y, s) · |(y + su) · u|k−1 dydsdE

=

�
G(u⊥,k−1)

�
R
|s|k−1

�
E⊥∩u⊥

1|PE∧(y+su)K|≤1(E, y, s) dydsdE

=

�
G(u⊥,k−1)

�
R
|s|k−1 |LE,u,s(K)| dsdE,

(7.6)

where LE,u,s(K) was shown to be convex, see Remark 7.1.10, and hence measurable,

and R ∋ s �→ λn−k(LE,u,s(K)) was shown to be measurable as well.

The Borel measurability of the inner integral in E ∈ Gu⊥,k−1 is a consequence of the

Fubini-Tonelli theorem, applied to the iterated integral of the Borel function 1Lk,u(K)(E, x)

with respect to σu⊥,k−1(dE)⊗ �|x · u|k−1Hn−k+1(dx)
�
.

If we apply Proposition 7.2.5 to the linear reflection shadow system associated to K

in the direction of u, see 7.1.2, we obtain for every fixed s ∈ R that the function�
E⊥ ∩ u⊥

�
× R → R+,

(y, t) �→ f (s)(y, t) :=
&&PE∧(y+su)Ku(t)

&&
is jointly convex. Moreover, since Ku(−t) = Ru (Ku(t)), the function f (s)(y, t) is even.
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We conclude,

f (s)(−y,−t) =
&&PE∧(−y+su)Ku(−t)

&& = &&PRuE∧Ru(−y+su)Ku(t)
&&

=
&&PE∧(−y−su)Ku(t)

&& = &&PE∧(y+su)Ku(t)
&& = f (s)(y, t),

(7.7)

and therefore the level sets

L̃E,u,s :=
�
(y, t) ∈

�
E⊥ ∩ u⊥

�
× R :

&&PE∧(y+su)Ku(t)
&& ≤ 1

	
,

are origin-symmetric convex bodies. Note that the t-section of L̃E,u,s is precisely LE,u,s (Ku(t)).

By Lemma 7.1.3 we have Ku(1) = K and Ku(0) = SuK. Since L̃E,u,s is convex and

origin-symmetric, we obtain

LE,u,s (SuK) ⊇ 1

2
(LE,u,s(K)− LE,u,s(K)) . (7.8)

and therefore, by the Brunn-Minkowski inequality,

λn−k (LE,u,s (SuK)) ≥ λn−k (LE,u,s(K)) . (7.9)

Note that the last equation is also true in case LE,u,s(K) = ∅. If we now plug this back

into (7.6) and roll everything back, we finally obtain (7.5).

Furthermore, we can prove a theorem that we will need in the proof of the equality

cases.

Theorem 7.4.5. Let K ⊆ Kn be a convex body and let u ∈ Sn−1. Then,

t �→ Φk(Ku(t)) = Φk(Ku(−t)), t ∈ R+,

is a monotone non-decreasing function.

Proof. As noted in Remark 7.1.10, the function t �→ λn−k(LE,u,s(Ku(t)))
1

n−k , t ∈ R is

concave on its support. Furthermore, since L̃E,u,s is origin-symmetric, the above function

is even. So,

t �→ λn−k(LE,u,s(Ku(t))) = λn−k(LE,u,s(Ku(−t))), t ∈ R,

is non-increasing. Now, if we integrate this according to (7.6) and apply Lemma 7.4, we

get the desired assertion.
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7.5 The Isoperimetric Inequality

With Theorem 7.4.4 in hand, we are now able to prove the isoperimetric inequality for

affine quermassintegrals.

Theorem 7.5.1. Let K ⊆ Rn be a convex body, and 1 ≤ k ≤ n− 1. Then

Φk(K) ≥ Φk(BK),

where equality holds if and only if K is an ellipsoid.

Proof. By Theorem 6.0.4, we obtain a sequence Ki of Steiner symmetrals of K such

that Ki → BK , where BK has the same volume as K. Applying Theorem 7.4.4, and the

continuity of Φk on Kn, yields

Φk(K) ≥ Φk(K1) ≥ ... ≥ Φk(Ki) ↘ Φk(Bk).

Since the cases of equality require considerably more work, we will address them in the

separate Chapter 8.

Since for origin-symmetric convex bodies K, the (−n)-power of the first affine quer-

massintegral Φ−n
1 is proportional to the volume of the polar bodyK◦, we get that the case

k = 1 in Theorem 7.5.1 corresponds to the Blaschke-Santaló inequality λn(K)λn(K
◦) ≤

κ2n.

Corollary 7.5.2. Let K ⊆ Rn be a convex body. Then

λn(K)λn(K
◦) ≤ κ2n,

where equality holds if and only if K is an ellipsoid.

Note that for general convex bodies K, Theorem 7.5.1 is weaker than the Blaschke-

Santaló inequality, since the latter holds for K, which are first centered at their Santaló

point, see [San49] for a reference.

Conversely, since the (−n)-power of the n−1-th affine quermassintegral Φ−n
n−1 is propor-

tional to the volume of the polar of the projection body (ΠK)◦, the case k = n−1 in The-

orem 7.5.1 amounts to the Petty projection inequality stating λn((ΠK)◦) ≤ λn((ΠBK)◦)
with equality if and only if K is an ellipsoid, see [Gar06] for a proof.
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Corollary 7.5.3. Let K ⊆ Rn be a convex body. Then

λn((ΠK)◦) ≤ λn((ΠBK)◦),

where equality holds if and only if K is an ellipsoid.

7.5.4 Relation to the Isoperimetric Inequality for Quermassintegrals

Theorem 7.5.5. If K ⊆ Rn is a convex body, then the volume of the outer parallel body

K + tBn is a polynomial in t > 0 of degree n,

λn(K + tBn) =

n#
k=0

�
n

k

�
Wk(K)tn−k. (7.10)

Moreover, Kubota’s formula holds, i.e., the coefficients Wk(K), called quermassintegrals,

can be computed as

Wk(K) =
κn
κk

�
G(n,k)

λk(K|F ) dF.

A proof of (7.10) can be found in [Sch13], page 223 and (4.8). For Kubota’s formula,

see [Sch13], page 301, and [SW08], page 222.

Remark 7.5.6. Note that the Wk are invariant under motions (translations and rota-

tions), see [Had57], page 210, whereas the Φk are invariant under affine transformations,

see Theorem 5.2.4.

One can easily derive the isoperimetric inequality for quermassintegrals, Theorem

7.5.7, from the isoperimetric inequality for affine quermassintegrals, Theorem 7.5.1 by

applying Jensen’s inequality and the fact Wk(BK) = Φk(BK). Alternatively, one can

deduce the above inequality by applying the Alexandrov-Fenchel inequality for the mixed

volumes, see Theorem 7.3.1 in [Sch13].

Theorem 7.5.7. Let K ⊆ Rn be a convex body and 1 ≤ k ≤ n− 1. Then

Wk(K) ≥ Wk(BK)

with equality if and only if K is a ball.

Remark 7.5.8. The case k = n− 1 in Theorem 7.5.7 corresponds to the sharp isoperi-

metric inequality for surface area, while the case k = 1 recovers the sharp isoperimetric

inequality for the mean width.
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7.6 Some Additional Convexity Properties

We will now establish further convexity properties to prove Theorem 7.6.10, which will

be a crucial ingredient for analyzing the equality cases of Theorem 7.5.1.

7.6.1 A Generalization of Proposition 7.2.5

Definition 7.6.2. If {K(t)}t∈R is a shadow system in the direction of u ∈ Sn−1, we

may introduce the following notation. For α ∈ (0, 1) and s0, s1 ∈ R+, we define

1

sα
:=

1− α

s0
+

α

s1
, λ = λα (s0, s1) :=

αs0
αs0 + (1− α)s1

,

and for y0, y1 ∈ u⊥ and t0, t1 ∈ R,

yλ := (1− λ)y0 + λy1, tα := (1− α)t0 + αt1.

Furthermore, we will use the conventions sα = 0 if s0s1 = 0, and λ = α if s0 = s1 = 0.

Proposition 7.6.3. With the notation from above, for any E ∈ G(u⊥, k − 1),

&&PE∧(yλ+sαu)K (tα)
&& ≤ (1− λ)

&&PE∧(y0+s0u)K (t0)
&&+ λ

&&PE∧(y1+s1u)K (t1)
&& . (7.11)

and therefore

LE,u,sα (K (tα)) ⊇ (1− λ)LE,u,s0 (K (t0)) + λLE,u,s1 (K (t1)) (7.12)

as well as

λn−k(LE,u,sα (K (tα))) ≥ λn−k(LE,u,s0 (K (t0)))
1−λ · λn−k(LE,u,s1 (K (t1)))

λ. (7.13)

Proof. We first prove (7.11) for y0, y1 ∈ E⊥ ∩ u⊥, which is sufficient, because |PE∧xK|
only depends on PE⊥x. Recall, Kw = (K − w) ∩ E⊥ for w ∈ PEK. In case the

shadow system has the form K(t) = T u
t (K̃) for some K̃ ∈ K �

Rn+1
�
, we may define

K̃w := (K̃ − w) ∩ Ẽ⊥, with Ẽ⊥ denoting the orthogonal complement of E in Rn+1.

Furthermore, if we set Kw(t) := T u
t

�
K̃w

�
for w ∈ PEK, due to u ∈ E⊥, we have

K(t)w = Kw(t). Therefore to prove (7.11), by (7.3), we may show that

|Pyλ+sαuK
w (tα)| ≤ (1− λ) |Py0+s0uK

w (t0)|+ λ |Py1+s1uK
w (t1)|
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for every w ∈ PEK. Since all projections are one-dimensional intervals, we can param-

eterize E⊥ by �
(a, b) := a+ bu : a ∈ E⊥ ∩ u⊥, b ∈ R

	
.

If we write a plus (or minus) next to a real number x, it means max(x, 0) (or max(−x, 0)).

If x is a vector, this is to be understood component-wise. Now, let ∗ ∈ {+,−} and

i ∈ {0, 1}, we compute

|Pyλ+sαuK
w (tα)|

= max
(a∗,b∗)∈Kw(tα)

{yλ · (a+ − a−) + sα (b+ − b−)}

≤ max
(a∗,r∗i )∈Kw(ti)

�
yλ · (a+ − a−) + sα

� �
(1− α)r+0 + αr+1

�
− �

(1− α)r−0 + αr−1
� �


= max
(a∗,r∗i )∈Kw(ti)

�
((1− λ)y0 + λy1) · (a+ − a−) +

�
(1− λ)s0

�
r+0 − r−0

�
+λs1

�
r+1 − r−1

� �

≤ (1− λ) max

(a∗,r∗0)∈Kw(t0)

�
y0 · (a+ − a−) + s0

�
r+0 − r−0

��
+ λ max

(a∗,r∗1)∈Kw(t1)

�
y1 · (a+ − a−) + s1

�
r+1 − r−1

��
= (1− λ) |Py0+s0uK

w (t0)|+ λ |Py1+s1uK
w (t1)| .

The first of the above inequalities is a consequence of Lemma 7.1.4, and the following

equation follows from

(1− α)sα = (1− λ)s0, αsα = λs1.

By Definition 7.1.9, and (7.11), we immediately get (7.12). Furthermore, (7.13) is

obtained as an application of (7.12) and the Brunn-Minkowski inequality, Theorem 3.0.2.

The above Proposition is indeed a generalization of Proposition 7.2.5 since setting

s0 = s1 = s ∈ R+, which implies λ = α, leads to the joint convexity of (y, t) �→&&PE∧(y+su)K(t)
&&.
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7 Isoperimetric Inequalities for Affine Quermassintegrals

7.6.4 The s-Moment Function is Convex

Definition 7.6.5. Let u ∈ Sn−1 and E ∈ G(u⊥, k − 1), then we define

Mk (LE (Ku(t))) =

��
LE(Ku(t))

|x · u|k−1dx

�−1/k

=

��
R
|s|k−1λn−k(LE,u,s (Ku(t))) ds

�−1/k

.

Note that this expression appeared in (7.6).

For the following Theorem by Ball, we refer to [Bal88], page 74.

Theorem 7.6.6. Let f, g, h : R+ → R+ be measurable functions with the property that

h (sα) ≥ f (s0)
1−λα(s0,s1) g (s1)

λα(s0,s1)

for some α ∈ (0, 1), and all s0, s1 ∈ R+, where sα and λα (s0, s1) are as in Definition

7.6.2. Then, if we set Ip(w) =
��∞

0 sp−1w(s)ds
�−1/p

, it holds that for all p > 0

Ip(h) ≤ (1− α)Ip(f) + αIp(g),

A simple consequence is the following corollary.

Corollary 7.6.7. Let {K(t)}t∈R be a shadow system in the direction of u ∈ Sn−1, and

let E ∈ G(u⊥, k − 1), then the function

t �→
��

LE(K(t))
(x · u)k−1

+ dx

�−1/k

=

�� ∞

0
sk−1λn−k(LE,u,s(K(t))) ds

�−1/k

, t ∈ R,

is convex.

Proof. This follows by setting h(s) = wtα(s), f(s) = wt0(s) and g(s) = wt1(s), where

wt(s) = λn−k(LE,u,s(K(t))) and tα = (1− α)t0 + αt1, and applying Theorem 7.6.6 and

(7.13). Observe that, due to Remark 7.1.10, the map s �→ λn−k(LE,u,s(K(t))), s ∈ R is

measurable.

Theorem 7.6.8. The function t �→ Mk (LE (Ku(t))) , t ∈ R, is convex and even.

Proof. Due to Corollary 7.6.7, applied to {Ku(t)}, and due to Lemma 7.1.3, Ku(−t) =

RuKu(t), and the definition of LE,u,s(K), Definition 7.1.9, and (7.7) yields

LE,u,s (Ku(−t)) = LE,u,−s (Ku(t)) = −LE,u,s (Ku(t)) = −LE,u,−s (Ku(−t)) ,
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7 Isoperimetric Inequalities for Affine Quermassintegrals

which concludes the proof.

7.6.9 A Dichotomy for t �→ Φk (Ku(t))

We are now able to prove the following theorem, which we will need for proving the

equality cases.

Theorem 7.6.10. Let K ⊆ Rn be a convex body, u ∈ Sn−1, and t0 ∈ R. Then the

equality Φk(Ku(t1)) = Φk(Ku(t0)) holds for some t1 with |t1| < |t0| if and only if it holds

for every t1 with |t1| < |t0|.

Proof. Suppose that Φk (Ku (t1)) = Φk (Ku (t0)) holds true for some t1 with |t1| < |t0|.
Due to Lemma 7.4.2, this means µk,u (Lk,u (Ku (t1))) = µk,u (Lk,u (Ku (t0))). From (7.6)

and the subsequent discussion, we obtain

µk,u (Lk,u (Ku(t))) =

�
G(u⊥,k−1)

Mk (LE (Ku(t)))
−k dE. (7.14)

Since by Theorem 7.6.8, the map t �→ Mk (LE (Ku(t))) = Mk (LE (Ku(−t))) , t ∈ R+ is

monotone non-decreasing for all E ∈ Gu⊥,k−1, we deduce that

Mk (LE (Ku (±t1))) = Mk (LE (Ku (±t0)))

for almost every E ∈ G(u⊥, k−1). Applying again Theorem 7.6.8 yields that the map t �→
Mk (LE (Ku(t))) , t ∈ [− |t0| , |t0|] has to be constant for almost every E ∈ G(u⊥, k − 1).

Finally, due to the expression (7.14) and Lemma 7.4.2, we get Φk (Ku(t)) = Φk (Ku (t0))

for all t ∈ [− |t0| , |t0|].
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To analyze the cases of equality, we will establish the following Theorem 8.0.1, which is

proven in two cases k < n− 1 and k = n− 1. Once we have this, the actual proof of the

equality cases of Φk(K) ≥ Φk(BK) can be easily conducted as described below.

Theorem 8.0.1. Let K ⊆ Rn be a convex body and 1 ≤ k ≤ n − 1. Then Φk(K) =

Φk (SuK) for all u ∈ Sn−1 if and only if K is an ellipsoid.

Proof. The straightforward part of Theorem 8.0.1 follows from the well-known fact (see

Lemma 2 in [BLM06]), that Steiner symmetrization transforms an ellipsoid into another

ellipsoid of the same volume, along with Theorem 5.2.4, the affine invariance of Φk.

The proof of the nontrivial part involves multiple steps, which are elaborated on in the

following sections.

If Theorem 8.0.1 is proven, we can derive the equality cases of Theorem 7.5.1 as

follows.

Theorem 8.0.2. Let K ⊆ Rn be a convex body and 1 ≤ k ≤ n − 1. Then Φk(K) =

Φk(BK) holds true if and only if K is an ellispoid.

Proof. As stated above, if K is an ellipsoid, then Φk(K) = Φk(BK). So, let us assume

that equality holds for a convex body K ⊆ Rn, and denote by {Ku(t)} the linear

reflection shadow system from (7.1). Since λn(Ku(t)) = λn(K) for every t ∈ [−1, 1],

the continuity of the map t �→ Ku(t) with respect to the Hausdorff metric implies that

for every u ∈ Sn−1 there is ϵ ∈ (0, 1) with Φk (Ku(1− ϵ)) ≥ Φk(K) for all t ∈ [−1, 1].

Conversely, applying Theorem 7.4.5, yields Φk(K) ≥ Φk (Ku(t)) for t ∈ [−1, 1], and

therefore equality holds at t = 1− ϵ. In fact, due to Theorem 7.6.10, we get equality for

every t ∈ [−1, 1], especially for t = 0, that means Φk(K) = Φk (SuK). This holds for

every u ∈ Sn−1 and therefore, by Theorem 8.0.1, K is an ellipsoid.

8.1 The Case k < n− 1

Step 1 - Point of Symmetry
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Lemma 8.1.1. Let K ⊆ Rn be a convex body and 1 ≤ k ≤ n− 1. Then the map

G(n, k − 1) → Kn, E �→ LE(K),

is continuous.

Proof. Since by Remark 7.1.10, gLE(K)(θ) =
&&Pspan(E,θ)K

&& for all θ ∈ Sn−1 ∩ E⊥, we
obtain

1

R
BE⊥ ⊆ LE(K) ⊆ 1

r
BE⊥

for all E ∈ G(n, k− 1), where r = minF∈G(n,k) |PFK| > 0 and R = maxF∈G(n,k) |PFK| >
0. The map E �→ 1

rBE⊥ is continuous for E ∈ G(n, k − 1) and therefore, to conclude

the proof, it suffices to show that F �→ |PFK| is continuous for F ∈ G(n, k). But this is
immediate by the continuity of mixed volumes and, as in the proof of Lemma 7.1.6,

|PFK| =
�
n
k

�
κn−k

V (K, k;BF⊥ , n− k) ∀F ∈ G(n, k).

Note that LE,u,s(K) is the section of LE(K) perpendicular to u at height s ∈ R. In

particular

LE,u,s(K) = (LE(K)− su) ∩ u⊥ ⊆ E⊥ ∩ u⊥, (8.1)

and hence LE,u,s(K) is convex and compact. So, if LE,u,s(K) ̸= ∅, then LE,u,s(K) is a

convex body. The set of these (E, s) will be denoted by

Gk
u(K) =

�
(E, s) ∈ G(u⊥, k − 1)× R : LE,u,s(K) ̸= ∅

	
.

Since all LE(K) are compact, Lemma 8.1.1 yields that Gk
u(K) is a closed (in fact compact)

set (since, if LE,u,s(K) = ∅, then su+ u⊥ has to be at a positive distance from LE(K)).

We get the following

Corollary 8.1.2. If (E, s) ∈ G(u⊥, k − 1)× R is such that intLE(K) ∩ �
su+ u⊥

� ̸= ∅,
we have (E, s) ∈ intGk

u(K).

Lemma 8.1.3. Let K ⊆ Rn be a convex body, u ∈ Sn−1 and 1 ≤ k ≤ n − 1. Then the

map

Gk
u(K) → R+, (E, s) �→ λn−k (LE,u,s(K)) ,
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is continuous.

Proof. By (8.1) and Lemma 8.1.1 the map (E, s) �→ LE,u,s(K) ∈ Kn is continuous on

Gu(K). Also, the map E �→ Bspan(E,u) ∈ Kn is continuous on G(u⊥, k − 1), where BF

denotes the unit ball in the subspace F . Since LE,u,s(K) is a convex body in E⊥ ∩ u⊥

and dim
�
E⊥ ∩ u⊥

�
= n− k, we have, as in the proof of Lemma 7.1.6,

λn−k (LE,u,s(K)) =

�
n
k

�
κk

V
�
Bspan(E,u), k;LE,u,s(K), n− k

�
.

The asserted continuity now follows from the continuity of mixed volume.

Corollary 8.1.4. The map

G(u⊥, k − 1)× R → R+, (E, s) �→ λn−k (LE,u,s(K)) ,

is Borel measurable.

Proof. This follows since the map is continuous on the compact set Gk
u(K) and zero

outside of it.

In (7.8) and (7.9) we showed for all s ∈ R,

LE,u,s (SuK) ⊇ 1

2
(LE,u,s(K)− LE,u,s(K)) (8.2)

and

λn−k (LE,u,s (SuK)) ≥ λn−k (LE,u,s(K)) . (8.3)

So we obtain Gk
u(K) ⊆ Gk

u (SuK).

Proposition 8.1.5. Suppose K ⊆ Rn is a convex body, u ∈ Sn−1, and 1 ≤ k ≤ n − 1

with Φk(K) = Φk (SuK). Then

λn−k (LE,u,s (SuK)) = λn−k (LE,u,s(K)) (8.4)

for all s ∈ R and E ∈ G(u⊥, k − 1). Furthermore, we have for some αE,u,s ∈ E⊥ ∩ u⊥,

LE,u,s(K) = LE,u,s (SuK) + αE,u,s. (8.5)

Proof. Due to Lemma 7.4.2 and Remark 7.4.3 the assumption implies µk,u (Lk,u(K)) =

µk,u (Lk,u (SuK)) < ∞.

55



8 Cases of Equality of Φk(K) ≥ Φk(BK)

Considering (8.3) and (7.6), equation (8.4) must hold for σu⊥,k−1 ⊗ λ1-almost every

(E, s) ∈ G(u⊥, k − 1)× R, where σu⊥,k−1 ⊗ L denotes the product measure of the usual

measure σu⊥,k−1 on G(u⊥, k − 1) and λ1 the one-dimensional Lebesgue measure on R.
Due to Corollary 8.1.2 and Lemma 8.1.1, applied to K and SuK, the inclusion Gk

u(K) ⊆
Gk
u (SuK) yields that (8.4) is true for all (E, s) ∈ G(u⊥, k − 1) × R. Thus, the set int

LE(K) ∩ �
su+ u⊥

�
is non-empty.

Let E ∈ G(u⊥, k − 1) and let ΣE ̸= ∅ be the interior of the compact interval

Pspan (u)LE(K), which we can view as an open interval in R, via su ↔ s. The equation

(8.4) holds for every s ∈ ΣE , and furthermore, both sides are continuous maps in s on

their support, by (8.1). We conclude that (8.4) holds true for all s ∈ cl(ΣE), where

cl(ΣE) denotes the closure of ΣE .

In case of s /∈ cl(ΣE), LE(K) ∩ �
su+ u⊥

�
= ∅ and λn−k(LE,u,s(K)) = 0, for almost

every E ∈ G(u⊥, k − 1) it holds that

λn−k(LE,u,s (SuK)) = 0

for all s /∈ cl(ΣE), that means

LE (SuK) ∩
�
su+ u⊥

�
= ∅.

Thus, for almost every E ∈ G(u⊥, k − 1), we obtain

LE (SuK) ⊆ cl(ΣE)u+ u⊥. (8.6)

But concerning Lemma 8.1.1, the maps

E �→ cl(ΣE) and E �→ LE (SuK) , E ∈ G(u⊥, k − 1),

are continuous with respect to the Hausdorff topology, and therefore (8.6) holds true for

E ∈ G(u⊥, k − 1). To put it in another way,

λn−k(LE,u,s (SuK)) = 0 = λn−k(LE,u,s(K))

for all E ∈ G(u⊥, k − 1) and s /∈ cl(ΣE), that means we proved (8.4) for all E ∈
G(u⊥, k − 1) and s ∈ R.
By the equality case of the Brunn-Minkowski inequality, (8.2) and (8.4) imply that for
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every E ∈ G(u⊥, k−1) and s ∈ ΣE , equality (8.5) must hold with some αE,u,s ∈ E⊥∩u⊥.
Conversely, we already know LE,u,s(K) = LE,u,s (SuK) = ∅ for s /∈ cl(ΣE), therefore

(8.5) also holds true for s /∈ cl(ΣE) as well. By (8.1) and continuity of the section of a

convex body with respect to the Hausdorff topology, (8.5) is true for s0 ∈ bd(ΣE) with

αE,u,s0 = limΣE∋s→s0 αE,u,s.

Definition 8.1.6. We say that a set K ⊆ Rn has a point of symmetry if there is v ∈ Rn

with K − v = −(K − v).

Corollary 8.1.7. For E ∈ G(n, k− 1), u ∈ Sn−1 ∩E⊥ and s ∈ R, the set LE,u,s(K) has

a point of symmetry.

Proof. Suppose that Φk(K) = Φk (SuK) for all u ∈ Sn−1. In the proof of Theorem 7.4.4,

we showed that LE,u,s (SuK) is the level-set of the even function f (s)(·, 0), see (7.7), and
therefore origin-symmetric. Now, (8.5) implies that LE,u,s(K) has a point of symmetry

for all E ∈ G(n, k − 1), u ∈ Sn−1 ∩ E⊥, and s ∈ R.

Step 2 - Brunn’s Characterization Theorem We now make use of the following

characterization theorem of ellipsoids by Brunn. As a reference, we cite [Bru89].

Theorem 8.1.8. If K ⊆ Rn is a convex body, n ≥ 3, and let 2 ≤ k ≤ n − 1, then K

is an ellipsoid if and only if every k-dimensional section of K that passes through its

interior has a point of symmetry.

If E ∈ G(n, k − 1), then (8.1) and the fact that for every u ∈ Sn−1 ∩ E⊥ and s ∈ R
the set LE,u,s(K) has a point of symmetry, implies that in case dimE⊥ = n− k+1 ≥ 3,

i.e. k ≤ n− 2, that LE(K) must be an ellipsoid in E⊥.

Step 3 - Distinguished Orthonormal Basis

Lemma 8.1.9. Let K ⊆ Rn be a convex body and E ∈ G(n, k − 1) with 1 ≤ k ≤ n− 2.

Then there is a positive-definite linear map TE : Rn → Rn, which is the identity on

E, and on E⊥ it maps the ball BE⊥ onto LE(K). For an orthonormal basis ui, i =

1, ..., n− k + 1 of E⊥ consisting of eigenvectors of TE we have

LE (SuiTEK) = LE (TEK) = BE⊥ ,

for all 1 ≤ i ≤ n− k + 1.
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Proof. Lemma 7.2.3 yields

LE(T (A)) =
�
x ∈ E⊥; |PE∧xT (A)| ≤ 1

	
=

�
x ∈ E⊥;

&&PE∧T ∗(x)A
&& ≤ 1

	
= T−∗ (LE(A))

for any non-empty compact and convex A ∈ K (Rn) and an invertible linear map T ,

which is invariant on E. Because of the fact that LE(K) ⊆ E⊥ is an origin-symmetric

ellipsoid, we can find a positive-definite linear map TE on Rn, which is the identity on

E, and on E⊥ it maps the ball BE⊥ onto LE(K). If we set KE := TEK, we obtain

LE (KE) = T−∗
E (LE(K)) = BE⊥ . (8.7)

Let ui, i ∈ {1, . . . , n−k+1} represent an orthonormal basis of E⊥ made up of eigenvectors

of TE . Therefore, since TE acts diagonally in this basis and consequently the actions of

Sui and TE commute, we derive

LE (SuiKE) = LE (SuiTE(K)) = LE (TE (SuiK)) = T−∗
E (LE (SuiK)) . (8.8)

By (8.5) and (8.1) for every s ∈ R there is an αE,ui,s ∈ u⊥i so that

(LE(K)− sui) ∩ u⊥i = (LE (SuiK)− sui) ∩ u⊥i + αE,ui,s. (8.9)

The map T−∗
E acts invariantly on span (ui) and u⊥i , and therefore, along with (8.7) and

(8.8), applying T−∗
E to (8.9) yields

(BE⊥ − sui) ∩ u⊥i = (LE (SuiKE)− sui) ∩ u⊥i + T−∗
E (αE,ui,s)

for all s ∈ R and i ∈ {1, ..., n − k + 1}. The fact that (LE (SuK)− su) ∩ u⊥ is origin-

symmetric in E⊥ ∩ u⊥, and this property does not change if applying a linear transfor-

mation, we deduce that (LE (SuiKE)− sui) ∩ u⊥i is also origin-symmetric in E⊥ ∩ u⊥i
for every s ∈ R. Furthermore, (BE⊥ − sui) ∩ u⊥i is origin-symmetric too, which implies

T−∗
E (αE,ui,s) = 0. Finally,

LE (SuiKE) = LE (KE) = BE⊥

for all i ∈ {1, ..., n− k + 1}.
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Step 4 - Invariance under Reflections of Kw

Recall, Kw := (K − w) ∩ E⊥ for w ∈ PEK.

Lemma 8.1.10. Suppose that K ⊆ Rn is a convex body, and let E ∈ G(n, k − 1) with

1 ≤ k ≤ n − 1. If LE (SuK) = LE(K) for some u ∈ E⊥, then, up to translation in

the direction of u, we have SuK
w = Kw for every w ∈ intPEK. In particular, Kw is

invariant under reflections about u⊥.

Proof. Fix x ∈ E⊥. In (7.3), we showed that

||x||LE(K) = |PE∧xK| =
�
PEK

|PxK
w| dw =

�
PEK

(hKw(x) + hKw(−x)) dw.

The assumption LE (SuK) = LE(K) implies (SuK)w = SuK
w for all w ∈ PEK and

therefore �
PEK

(hKw(x) + hKw(−x)) dw =

�
PEK

(hSuKw(x) + hSuKw(−x)) dw

Since SuK
w ⊆ 1

2 (K
w +RuK

w), we get

hSuKw ≤ 1

2
(hKw + hRuKw) . (8.10)

Furthermore, hRuKw(ξ) = hKw (Ruξ) implies�
PEK

(hKw(ξ) + hKw(−ξ)) dw

≤ 1

2

�
PEK

(hKw(ξ) + hKw (Ruξ) + hKw(−ξ) + hKw (−Ruξ)) dw.

If we apply this to ξ = θ and ξ = Ruθ for θ ∈ E⊥ and sum both equalities, we get�
PEK

(hKw(θ) + hKw(−θ) + hKw (Ruθ) + hKw (−Ruθ)) dw

≤
�
PEK

(hKw(θ) + hKw (Ruθ) + hKw(−θ) + hKw (−Ruθ)) dw.

(8.11)

Both sides are equal, so we must have equality for a.e. w ∈ PEK in the 4 instances of

the inequality (8.10) we used in the directions ξ ∈ {θ,−θ,Ruθ,−Ruθ} to derive (8.11).

Since the corresponding functions are continuous on their support we get equality for
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all w ∈ PEK. Hence

hSuKw(ξ) =
1

2
(hKw(ξ) + hRuKw(ξ))

for all w ∈ PEK and ξ ∈ {θ,−θ,Ruθ,−Ruθ}. Given that θ was arbitrary, we get for all

w ∈ PEK,

SuK
w =

1

2
(Kw +RuK

w)

Applying the Brunn-Minkowski inequality yields

λn−(k−1)(K
w) = λn−(k−1)(SuK

w) ≥ λn−(k−1)(K
w)

1
2λn−(k−1)(RuK

w)
1
2 = λn−(k−1)(K

w),

and from the equality cases we deduce that RuK
w and Kw are translates whenever int

Kw ̸= ∅. And in particular, whenever w ∈ intPEK. As no translation perpendicular to

u is possible, the proof is complete.

Corollary 8.1.11. Let K ⊆ Rn be a convex body and w ∈ intPEK. Then, Kw has a

point of symmetry.

Proof. For w ∈ intPEK, Lemma 8.1.10 and Lemma 8.1.9 yield that RuiK
w
E = Kw

E up

to translations in the direction of ui. But the ui’s are all orthogonal, so there is a single

translation of Kw
E such that RuiK

w
E = Kw

E holds for all i = 1, . . . , n − k + 1. Since the

composition of all Rui ’s is −Id on E⊥, we obtain that Kw
E has a point of symmetry.

Furthermore, since KE = TE(K) and TE is the identity Id on E, we find that Kw must

also have a point of symmetry.

Step 5 - Concluding the Proof when 1 ≤ k < n− 1

We proved that for every E ∈ Gn,k−1 the section K ∩�
w + E⊥� = w+Kw of K through

its interior has a point of symmetry. Thus, by Brunn’s Theorem 8.1.8, in case of n ≥ 3

and dimE⊥ = n− k + 1 ≥ 2, i.e. k ≤ n− 1, K has to be an ellipsoid.

This concludes the proof for the case k ≤ n − 1 and we will now address the case

k = n− 1.

8.2 The Case k = n− 1

Since dimE⊥ = 2 for E ∈ G(n, k−1), we cannot use Theorem 8.1.8 for the case k = n−1.

In the following, we establish a way to circumvent Step 2 from the previous section
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Linear Boundary Segments

Recall that

L(K) = L{0}(K) = (K −K)◦.

Proposition 8.2.1. Suppose that K(t), t ∈ R, is a shadow system in R2 in the direction

of e2 and let S, T ⊆ R be non-empty open intervals. If there are functions a,Ψ : S → R
with (a(s) +Ψ(s)t, s) ∈ bd(L(K(t))) for all s ∈ S and t ∈ T , then there exist c+, c− ∈ R
such that Ψ(s) = c+s+ − c−s− for all s ∈ S.

Proof. By definition, we have K(t) = T e2
t (K̃) K̃ ∈ K �

R3
�
, where T e2

t : R3 → R2 denotes

a projection onto R2 parallel to e3 + te2. As in the proof of Proposition 7.2.5, we obtain

∥(y, s)∥L(K(t)) = hK(t)(y, s) + hK(t)(−y,−s)

= hK̃(y, s,−st) + hK̃(−y,−s, st) = ∥(y, s,−st)∥L(K̃).

Now, due to our assumption, we have a local parametrization of the surface bd(L(K̃))

by

F (s, t) := (a(s) + Ψ(s)t, s,−st) ∈ bd(L(K̃)), s ∈ S t ∈ T.

Since L(K̃) is convex, we may represent its boundary locally by a convex function f ,

which is therefore Lipschitz. Rademacher’s theorem, see e.g. [Mag12] for a reference,

implies that f is differentiable almost-everywhere. Furthermore, due to Alexandrov’s

theorem (for a reference, we cite [Gru07], Chapter 2), f is twice differentiable in Alexan-

drov’s sense almost-everywhere. At points of first differentiability, we have two tangent

vectors to the boundary, which are linearly independent and given by

∂sF (s, t) =
�
a′(s) + Ψ′(s)t, 1,−t

�
, ∂tF (s, t) = (Ψ(s), 0,−s),

therefore, the normal to the boundary in the direction is

N :=
�
s,−sa′(s)− sΨ′(s)t+ tΨ(s),Ψ(s)

�
.

Furthermore, at points of second differentiability, the surface has a second-order Taylor

expansion

II :=
�
∂2
sF,N/|N |� ds2 + 2 ⟨∂s∂tF,N/|N |⟩ dtds+ �

∂2
t F,N/|N |� dt2,

which is governed by the second fundamental form. Concerning ∂2
t F ≡ 0 and ⟨∂s∂tF,N⟩ =
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sΨ′(s)−Ψ(s), we obtain that unless that last term above vanishes, the form II has strictly

negative determinant. This implies that the surface must have a saddle at this point,

which is a contradiction to convexity.

We state that the only locally Lipschitz functions Ψ, solving sΨ′(s) − Ψ(s) = 0 for

almost every s ∈ S are of the form Ψ(s) = c+s+ − c−s−. Therefore, let us write

S+ and S− for the open subsets of S where the continuous Ψ is positive and negative,

respectively. Since on S+ the equation (logΨ)′(s) = (log s)′ holds true, the local absolute
continuity of logΨ implies that Ψ(s) = cis, ci ̸= 0 on each connected component Si

+ of

S+. Furthermore, Ψ vanishes at the end-points of each connected component which lie

in S. We deduce that there can be at most one connected component in each of S ∩R+

and S ∩ R−, and that the end-points of them in S have to be at s = 0. Similarly, one

can conclude for S−, and thus Ψ must be of the stated form.

Step 1 - Segments of Constant Projections of K

Recall that the definition of f (s) for s ∈ R, E ∈ G(n, k − 1) and u ∈ Sn−1 ∩ E⊥ is given

by �
E⊥ ∩ u⊥

�
× R → R+,

(y, t) �→ f (s)(y, t) :=
&&PE∧(y+su)Ku(t)

&& .
Lemma 8.2.2. For every y ∈ E⊥ ∩ u⊥ such that f (s)(y, 0) = R, it holds that f (s) = R

on the two segments

{(±y +RαE,u,s/Rt, t) : t ∈ [−1, 1]}

for some αE,u,s/R ∈ R.

Proof. Let E ∈ G(n, k − 1) and u ∈ Sn−1 ∩ E⊥. The argument from Step 1 in the

previous section reveals more information than was previously mentioned. For s ∈ R
the function f (s) is convex and even in (y, t), and therefore, its level set

L̃E,u,s :=
�
(y, t) ∈

�
E⊥ ∩ u⊥

�
× R : f (s)(y, t) ≤ 1

	
is convex and origin-symmetric. Obviously, L̃E,u,s(t) = LE,u,s (Ku(t)), where L̃E,u,s(t)

the t-section of L̃E,u,s. Analogous to the proof of Theorem 7.6.10, Brunn’s concavity

principle, Theorem 3.0.5, implies that the function t �→ λn−k(L̃E,u,s(t))
1

n−k , t ∈ R, is
even and concave on its support.
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When Φk(K) = Φk (SuK) holds true, we obtain

λn−k(L̃E,u,s(1)) = λn−k(L̃E,u,s(−1)) = λn−k(L̃E,u,s(0)),

and therefore the function t �→ λn−k(L̃E,u,s(t)), t ∈ [−1, 1] has to be constant. Let us

write ΣE for the non-empty interior of the compact interval Pspan(u)LE(K), viewed as

an open interval in R. The equality case of the Brunn-Minkowski inequality, Theorem

3.0.2, implies that for all s ∈ ΣE , the set L̃E,u,s∩{t ∈ [−1, 1]} has to be a tilted cylinder

over the origin-symmetric base L̃E,u,s(0) = LE,u,s (SuK) ⊆ E⊥ ∩ u⊥, i.e.,

LE,u,s (Ku(t)) = LE,u,s (SuK) + αE,u,st,

for all s ∈ ΣE and t ∈ [−1, 1]. Proceeding as in Proposition 8.1.5 yields that the above

extends to all s ∈ R, a generalization of (8.5).

Let us define for R > 0

L̃E,u,s,R :=
�
(y, t) ∈

�
E⊥ ∩ u⊥

�
× R : f (s)(y, t) ≤ R

	
.

Since f (s)(y, t) is homogeneous in (y, s), a rescaling yields

L̃E,u,s,R(t) = RL̃E,u,s/R,1(t),

for all t ∈ [−1, 1] and therefore

L̃E,u,s,R(t) = RLE,u,s/R (SuK) +RαE,u,s/Rt,

again for all t ∈ [−1, 1]. Concerning evenness, we finally conclude

f (s) ≡ R on both segments
��±y +RαE,u,s/Rt, t

�
: t ∈ [−1, 1]

�
for every y ∈ E⊥ ∩ u⊥ with f (s)(y, 0) = R.

Step 2 - Segments of Constant Projections of Kw

For given w ∈ intPEK, the set Kw = (K − w) ∩ E⊥ has a non-empty relative interior

in E⊥ and thus is a convex body. Since all (Kw)u (t), t ∈ R, are convex bodies as

well, {L ((Kw)u (t))}t∈R are origin-symmetric convex bodies in E⊥. Since (Kw)u (t) =

(Ku(t))
w holds true, we may simply write Kw

u (t) for the latter. If for s ∈ R, we define
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the function

f (s)
w (y, t) := |Py+suK

w
u (t)| , (y, t) ∈

�
E⊥ ∩ u⊥

�
× R,

we have

L (Kw
u (t)) =

�
y + su : f (s)

w (y, t) ≤ 1
	
,

and, due to (7.3),

f (s)(y, t) =

�
PEK

f (s)
w (y, t) dw.

Furthermore, Proposition 7.2.5 implies that f
(s)
w is convex and even in (y, t). Let us write

Σw(t) for the non-empty interior of the compact interval Pspan(u)L (Kw
u (t)), viewed as

an open interval in R. We claim that

Σw := Σw(0) = Σw(t)

holds true for all t ∈ [−1, 1]. Since the projection of the polar body equals the polar

body of the section, we obtain

Pspan(u)L (Kw
u (t)) = Pspan(u) (K

w
u (t)−Kw

u (t))
◦ = ((Kw

u (t)−Kw
u (t)) ∩ span(u))◦ .

Because of

Kw
u (t) =

%
y∈P

u⊥Kw

(y + (cw(y)t+ [−ℓw(y), ℓw(y)])u)

for all t ∈ [−1, 1], we deduce that

(Kw
u (t)−Kw

u (t)) ∩ span(u) =
%

y∈P
u⊥Kw

[−2ℓw(y), 2ℓw(y)]u

is independent of t.

Now, let w0 ∈ intPEK and let ±ys + su ∈ bd(L (Kw0
u (0))) for s ∈ Σw0 , amounting to

f
(s)
w0 (±ys, 0) = 1. Furthermore, let us define Rys,s := f (s) (±ys, 0). Because of the fact

that the function w �→ f
(s)
w (x), w ∈ PEK is continuous for every x = (y, t) as well as

f
(s)
w are all convex and f (s) ≡ Rys,s on both segments {(±ys +Rys,sαE,u,s/Rys,st, t) : t ∈
[−1, 1]}, we can deduce from Step 2, that each f

(s)
w must be constant on these segments

as well. Especially

f (s)
w0

≡ 1 on both segments
��±ys +Rys,sαE,u,s/Rys,s

t, t
�
: t ∈ [−1, 1]

�
.
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Since f
(s)
w0 is convex, we can conclude that

±ys +Rys,sαE,u,s/Rys,s
t+ su ∈ bd(L (Kw0

u (t))),

for all s ∈ Σw0 , t ∈ [−1, 1] and ±ys + su ∈ bd(L (Kw0
u (0))).

Step 3 - Using k = n− 1

If k = n−1, it holds that dimE⊥ = 2, and therefore, for all w ∈ intPEK, the set Kw is a

two-dimensional convex body. For a set A ⊆ E⊥, we write A(s) for the one-dimensional

chord (A− su)∩ �
E⊥ ∩ u⊥

�
, which can be identified as a subset of R. Step 2’s analysis

leads to the conclusion that

L (Kw
u (t)) (s) = [−aw(s), aw(s)] + Ψw(s)t, s ∈ Σw, t ∈ [−1, 1] (8.12)

for all w ∈ intPEK.

Proposition 8.2.1 implies that Ψw(s) = cw+s+ − cw−s− for some cw± ∈ R and all

s ∈ cl(Σw) = Pspan(u)L (Kw
u (t)), where the assertion on Σw extends by continuity of

the mid-point to cl(Σw). Since L (Kw) is origin-symmetric as well as setting t = 1 in

(8.12), we obtain that Ψw must be odd, and therefore we may define cw := cw+ = cw−.
Finally, the mid-point of the chord of L (Kw), which is perpendicular to u at height s,

is cws for all those s for which the chord is non-empty. That means, all mid-points lie

on one single line. Notice that this holds true for every u ∈ Sn−1 ∩ E⊥.

The following Theorem by Betrand-Brunn can be found in [MMO19], Theorem 2.12.1.

Theorem 8.2.3. A convex body K ⊆ Rn is an ellipsoid if and only if for any u ∈ Sn−1

the mid-points of all (one-dimensional) chords of K parallel to u lie in a hyperplane.

The above Theorem of Bertrand-Brunn implies that for all w ∈ intPEK, the set

L (Kw) must be an (origin-symmetric) ellipsoid. We are now able to conclude the proof

for the case k = n− 1.

Step 4 - Finalizing the Proof

We are now able to establish the equality cases for k = n−1. Since for every w ∈ intPEK

we have L (Kw) = Tw (BE⊥) for some linear Tw : E⊥ → E⊥ and furthermore

L (Kw) (s) = L (SuK
w) (s) + cws ∀s,
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applying Lemma 8.1.9, yields the existence of two orthogonal directions u1, u2 ∈ Sn−1 ∩
E⊥ with

L (SuiTw (Kw)) = L (Tw (Kw)) = BE⊥ i = 1, 2.

Moreover, due to Lemma 8.1.10, the map Tw (Kw) is invariant (up to translation in the

direction of ui) under reflection about u⊥i . Thus, Tw (Kw) has a point of symmetry for all

w ∈ intPEK, and so this holds for Kw as well. Since this is true for all E ∈ G(n, n− 2),

every two-dimensional section of K through its interior has a point of symmetry. In the

case n ≥ 3, applying Theorem 8.1.8 yields that K must be an ellipsoid. If n = 2, we

have E = {0} and therefore intPEK = {0} and K = Kw for w = 0. Furthermore, since

T0(K) = x0 + C for an origin-symmetric convex body C, and

(2C)◦ = (T0(K)− T0(K))◦ = L (T0(K)) = B2
2 ,

this finally yields C = 1
2B

2
2 , which implies that K is an ellipsoid.
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