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Kurzfassung

Totholz spielt eine entscheidende Rolle in Waldökosystemen, da es die Biodiversität för-

dert, den Nährstoffkreislauf unterstützt und Kohlenstoff speichert. Trotz seiner Bedeutung

bleibt die automatisierte Erkennung und Messung von Totholz eine Herausforderung, insbe-

sondere in naturbelassenen Wäldern mit dichter Vegetation und überlappenden Stämmen.

In dieser Arbeit werden vier Methoden zur Erfassung von Totholz im Naturwaldreservat

Rohrach verglichen: manuelle Feldmessungen, "Line Interset" Methode, eine bereits entwi-

ckelte UAV-basierte Laserscanning-Methode (ULS) und ein neu entwickelter Algorithmus für

terrestrisches Laserscanning (TLS). Der TLS-Ansatz nutzt hochauflösende Punktwolken, um

liegendes Totholz zu detektieren. Dabei werden potenzielle Stämme anhand geometrischer

Merkmale wie Linearität, Oberflächenorientierung und räumlicher Kontinuität identifiziert.

Anschließend werden Polynomfunktionen genutzt, um Durchmesser, Länge und Volumen

der Segmente zu berechnen. Drei Probeflächen mit einem Radius von 12 Metern wurden

untersucht, um die Methoden unter unterschiedlichen Waldbedingungen zu evaluieren. Die

ULS-Methode erwies sich als effizient für großflächige Kartierungen, war jedoch weniger ef-

fektiv bei der Erkennung kleinerer oder verdeckter Stämme. Der TLS-Ansatz lieferte detail-

liertere Messungen, hatte jedoch Schwierigkeiten in Gebieten mit sehr dichtem Unterwuchs

und überlappenden Strukturen. Manuelle Messungen, obwohl präzise, waren zeitaufwän-

dig und für größere Flächen weniger praktikabel. Die Ergebnisse zeigen, dass jede Methode

ihre eigenen Stärken und Schwächen hat. Eine Kombination von ULS- und TLS-Daten könn-

te eine umfassendere Lösung bieten, indem ULS für großflächige Erfassungen und TLS für

detaillierte Analysen genutzt wird. Diese Arbeit leistet einen Beitrag zur Weiterentwicklung

von Methoden zur Totholzerkennung und liefert wertvolle Einblicke für das Monitoring von

Biodiversität und das Waldmanagement.



Abstract

Deadwood plays an essential role in forest ecosystems by supporting biodiversity, helping to

cycle nutrients and storing carbon. Despite its importance, accurately detecting and mea-

suring deadwood remains a challenge, especially in unmanaged forests with dense vegeta-

tion and overlapping logs. This study compares four methods for assessing deadwood in

the Rohrach biosphere reserve: manual field measurements, the line intersect method, an

already developed UAV-based laser scanning (ULS) method, and a newly developed Terres-

trial Laser Scanning (TLS) algorithm. The TLS approach uses high-density point clouds to

detect lying deadwood. It identifies potential logs by analyzing geometric features such as

linearity, surface orientation, and spatial continuity. Polynomial fitting is then applied to

estimate the diameter, length, and volume of each segment. The algorithm was designed to

handle complex forest structures. Three 12-meter-radius plots were analyzed to evaluate the

methods under varying forest conditions. The ULS method was efficient in covering large

areas, but was less effective in identifying smaller or obstructed logs. In contrast, the TLS

approach provided more detailed measurements, but struggled with heavily vegetated areas

and overlapping logs. Manual field measurements, while accurate, were time consuming

and less practical for larger areas. The results show that each method has its strengths and

limitations. Combining ULS and TLS data may offer a more comprehensive solution, lever-

aging ULS for wide coverage and TLS for detailed analysis. This study contributes to the

development of improved methods for deadwood detection, providing valuable information

for biodiversity monitoring and forest management.
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1 INTRODUCTION

1. Introduction

1.1. Problem Statement and Relevance

Deadwood, often referred to as coarse woody debris (CWD), is crucial for preserving the

health and diversity of forest ecosystems. It supports numerous species and is integral to

nutrient cycling, which improves soil fertility and fosters the growth of new vegetation, thus

maintaining the forest’s overall productivity. Moreover, deadwood acts as a measure of forest

management practices and the ecosystem’s condition (Merganičová et al., 2012; Stokland

et al., 2012). Intensive forest management practices in Europe have historically led to a

substantial decrease in deadwood, which in turn has caused a reduction in biodiversity. Ac-

knowledging its critical role, deadwood has been integrated into several forest biodiversity

indicators and monitoring initiatives across Europe. The Ministerial Conference on the Pro-

tection of Forests in Europe (MCPFE) considers deadwood as one of nine key indicators

for sustainable forest management. Likewise, the European Environment Agency (EEA) in-

cludes deadwood as one of its principal biodiversity indicators (Humphrey et al., 2005).

The Rohrach biosphere reserve is a protected area characterized by its dense and largely

unmanaged forest landscapes. Established to conserve the region’s natural biodiversity and

ecological processes, the reserve encompasses a variety of habitats, including old-growth

forests, wetlands, and riparian zones. These diverse environments support a rich array of

flora and fauna, many of which are dependent on deadwood for their survival (Grabherr

and Broggi, 1999; Kirchmeir et al., 2023). The reserve’s management practices emphasize

minimal human intervention, allowing natural processes to shape the forest structure. This

approach has led to a significant accumulation of deadwood, providing an ideal setting for

studying its role in forest dynamics. Historical data on deadwood from the 1990s, collected

through manual measurements by Grabherr and Broggi (1999), offer a valuable baseline for

understanding changes over time and evaluating the effectiveness of different assessment

methods. Despite the recognized importance of deadwood in maintaining forest biodiver-

sity and ecological processes, there is still a significant gap in our understanding of the most

effective methods for its assessment in unmanaged forests. Traditional manual measurement

techniques, while reliable, are labor-intensive and time-consuming, making it challenging to

apply them across large forest areas (Marchi et al., 2018). Recent advancements in remote

sensing technologies, such as TLS, ULS and ALS offer promising alternatives that can poten-

tially provide more accurate and efficient assessments of deadwood (Pesonen et al., 2008;

Yrttimaa et al., 2020). However, there is a lack of comprehensive studies comparing these

modern techniques with conventional methods, particularly in the context of dense and un-

managed forest landscapes like those in the Rohrach biosphere reserve. While historical data

on deadwood from the 1990s exist for this reserve, these data have primarily been collected

through manual measurements (Grabherr and Broggi, 1999). There have been attempts to

combine old data with new remote sensing data to understand long-term changes and check

1



1 INTRODUCTION

the accuracy of new methods (Kirchmeir et al., 2023). However, more studies are needed

to improve this integration and deepen our understanding of deadwood detection method-

ologies. Addressing this knowledge gap is crucial for developing standardized protocols for

deadwood assessment that are both efficient and accurate. Such protocols are necessary

for effective forest management and conservation strategies aimed at preserving biodiver-

sity and ecological integrity (Humphrey et al., 2005). This study aims to fill this gap by

systematically comparing conventional manual methods with TLS and ULS.

1.2. Objectives of the Study

The main goal of this study is to compare the effectiveness of different methods in measuring

deadwood in dense, unmanaged forests of the Rohrach biosphere reserve. These methods

include traditional manual measurements (Line Intersect Method), TLS, and ULS. A new

method to derive lying deadwood parameters from TLS point cloud data was developed and

tested. This method was specifically designed to improve the detection and measurement of

deadwood in complex forest conditions. The study evaluates the accuracy of each method

by comparing the results of TLS and ULS with a set of precise control measurements. The

aim is to identify the strengths and weaknesses of each method as well as the types of errors

that they may introduce. In addition, the study investigates how forest density and structure

affect the performance of these methods. Understanding these influences helps identify con-

ditions where certain methods may work better or face limitations. Although guidelines and

recommendations for future forest management were planned, the study focuses primar-

ily on evaluating current methods and testing the new TLS-based approach. This provides

foundational information to improve deadwood monitoring in unmanaged forests.

1.3. Structure of the Thesis

Chapter 2 Theoretical background, explores the ecological significance of deadwood and

reviews existing methods for TLS, and ULS while referencing relevant studies. The study

area is detailed in Chapter 3, Study Area, which describes the unique characteristics of the

Rohrach biosphere reserve. This chapter emphasizes its dense forest structure, unmanaged

nature, and challenging terrain, all of which influence the choice and performance of mea-

surement methods. Chapter 4, Methodology, outlines the data collection and processing

techniques used in the study. It describes how manual measurements, TLS, and ULS data

were gathered, processed, and analyzed. A significant portion of this chapter is dedicated

to explaining the newly developed TLS approach, including the algorithms and criteria used

for detecting deadwood in point-cloud data. The outcomes of the study are presented in

Chapter 5, Results, which compares the performance of the different methods in terms of

accuracy, efficiency, and practicality. Special attention is paid to the new TLS method, high-

lighting its strengths and limitations in identifying and measuring deadwood in complex

2



1 INTRODUCTION

forest environments. In Chapter 6, Discussion, the results are analyzed with respect to

the research objectives. This chapter evaluates the reliability and applicability of the meth-

ods, discusses the influence of forest density and structure on their performance, and offers

suggestions for improving the TLS approach. Recommendations for the integration of TLS

and ULS are also included. Finally, Chapter 7, Conclusion and Outlook, summarizes the

key findings of the study and highlights its contributions to deadwood assessment research.

Practical recommendations for forest managers and researchers are provided, along with

proposals for future research, including refining the TLS approach and testing it in diverse

forest ecosystems. These insights aim to support the development of more efficient and

accurate deadwood monitoring methods for forest conservation and management.

3



2 THEORETICAL BACKGROUND

2. Theoretical Background

2.1. Role of Deadwood in Forest Ecosystems

Deadwood is an essential element of forest ecosystems, fulfilling important ecological and

structural functions. It encompasses standing dead trees, fallen logs, stumps, and branches,

all of which enhance the forest’s biodiversity and carbon storage potential. Coarse woody

debris (CWD) provides crucial habitat for a variety of species, including fungi, insects, birds,

and mammals, many of which are wholly reliant on deadwood for shelter, nesting, and forag-

ing. This reliance is especially evident in saproxylic organisms, like certain beetles and fungi,

which depend on decaying wood at specific life stages. Additionally, habitat trees with larger

diameters frequently accommodate cavity-nesting birds and small mammals, highlighting

the significance of deadwood as a measure of biodiversity (Marchetti, 2004; Merganičová et

al., 2012). In addition to its role in biodiversity, deadwood significantly influences nutrient

cycling and carbon storage in forest ecosystems. As it decomposes, it reintroduces essential

nutrients such as nitrogen, phosphorus, calcium, and magnesium back into the soil, benefit-

ing the forest floor and promoting plant growth. Furthermore, deadwood acts as a temporary

carbon repository, where its gradual decay moderates carbon dioxide emissions, aiding in cli-

mate change mitigation. The amount of carbon retained in deadwood varies considerably

among ecosystems, affected by forest management strategies and natural occurrences. (Mer-

ganičová et al., 2012; Paletto et al., 2012). Furthermore, deadwood serves as an indicator

of forest management practices and ecosystem health. Its presence and abundance often

reflect the naturalness of a forest and the extent of human impacts, such as logging or land-

use changes. Consequently, accurate assessment and monitoring of deadwood are critical

for developing effective conservation and management strategies (Merganičová et al., 2012;

Stokland et al., 2012). The dimensions of deadwood, including diameter, length, and height,

play a pivotal role in its ecological functions. Larger pieces, particularly those exceeding 30

cm in diameter, are critical habitats for diverse species, providing shelter, nesting sites, and

foraging opportunities. Moreover, precise measurements of these parameters are essential

for accurately estimating deadwood volume, a key factor in ecological and carbon studies.

The volume, calculated using mid-diameter and length, reflects the biomass and its potential

contributions to the nutrient and carbon cycles (Marchetti, 2004; Merganičová et al., 2012;

Paletto et al., 2012). The continuity of deadwood in both space and time is of equal impor-

tance. How deadwood is spread throughout a forest influences both the habitats available

and the processes within the ecosystem. An even and constant distribution of deadwood

provides ongoing resources for species at various stages of decay. Moreover, the timing of

deadwood addition, including regular recruitment, is essential to uphold ecological functions

over time. This highlights the importance of implementing deadwood management practices

that support the ecosystem’s long-term stability (Marchetti, 2004; Merganičová et al., 2012;

Paletto et al., 2012). Structurally, deadwood contributes to soil stabilization, particularly in

4



2 THEORETICAL BACKGROUND

steep or erosion-prone areas. Fallen logs can slow down water and soil movement, reduc-

ing erosion on slopes and aiding in water retention. In addition, they can protect against

avalanches and rockfalls, especially in mountainous regions. Over time, as the wood de-

composes, this protective role diminishes, highlighting the dynamic nature of deadwood in

forest ecosystems (Paletto et al., 2012). Historically, intensive forest management in Europe

has significantly reduced the amount of deadwood, leading to a decline in biodiversity. Man-

aged forests typically contain much less deadwood compared to natural forests. Recognizing

its ecological importance, deadwood has been incorporated into biodiversity indicators and

monitoring programs across Europe (Marchetti, 2004). However, the quantity and quality

of deadwood are often affected by forest management practices. In intensively managed

forests, deadwood is frequently removed to reduce the risk of pests, diseases, and fires, lead-

ing to significantly lower volumes compared to natural or semi-natural forests. Conversely,

biodiversity-oriented forest management aims to maintain or increase deadwood levels to

bridge the gap between managed and unmanaged forests. The balance between maintaining

ecological benefits and addressing management costs, such as pest control and fire hazards,

remains a central challenge in sustainable forestry (Marchetti, 2004; Merganičová et al.,

2012). Overall, deadwood is not only a vital component for maintaining biodiversity and

supporting ecosystem functions but also a crucial element in sustainable forest management

strategies. Its ecological, structural, and carbon storage roles underscore its importance,

particularly in efforts to conserve forest ecosystems and combat climate change.

2.2. Methods for Determining Deadwood

2.2.1. UAV Laser Scanning (ULS) and Airborne Laser Scanning (ALS)

UAV and Airborne laser scanning have proven to be a highly effective tool for identifying

deadwood due to its ability to collect high-resolution LiDAR data over small and complex

forest areas. Various methods have been developed to analyze CWD and fallen logs from

ULS/ALS point clouds, combining geometric, spatial, and machine-learning techniques to

address challenges such as dense vegetation, fragmented logs, and ground-level interference

(Polewski et al., 2015). A commonly used method is line template matching, which iden-

tifies linear structures in point clouds that correspond to fallen tree stems. This approach

examines the alignment and dimensions of potential objects, making it particularly suitable

for detecting larger logs. In contrast, Lindberg et al. (2013) utilized ALS data, which, despite

being collected over larger areas, provided exceptionally high point density. This enabled

the detection of fallen tree stems with a level of detail comparable to ULS datasets. The high

point density in ALS data significantly enhanced the identification of linear structures and

supported the accurate analysis of fallen logs, even in challenging forest conditions. How-

ever, like ULS-based methods, line template matching applied to ALS data faced challenges in

environments with dense understory vegetation or when deadwood was broken into smaller

5



2 THEORETICAL BACKGROUND

fragments. A more advanced method is the "Normalized Cut" approach, which applies ma-

chine learning to segment point clouds into individual logs or tree stems. By analyzing

the three-dimensional geometric properties of each segment, this method can group related

points together, enabling the identification of fragmented or partially visible deadwood. By

training on both simulated and real datasets, the approach achieves higher robustness and

accuracy, even in forests with dense vegetation. Its adaptability to different forest conditions

makes it one of the more versatile techniques for deadwood detection using ALS (Polewski

et al., 2015). Nyström et al., 2014 subtracted a standard DEM from a detailed DEM and

created an Object Height Model (OHM), highlighting objects close to the ground. Template

matching was then applied to the OHM to detect windthrown trees by correlating rectan-

gular templates of various sizes and orientations with the data. This approach facilitated

the detection of individual windthrown trees, even in areas with canopy cover. Voxel-based

filtering is another promising approach, dividing point clouds into small three-dimensional

cubes (voxels) and analyzing their density and height to isolate ground-level features. This

method focuses on identifying structures close to the ground, such as lying logs, while filter-

ing out canopy layers and other noise. By doing so, voxel-based filtering enhances the ability

to detect fallen logs in forests with complex structures or dense vegetation (Kirchmeir et al.,

2023). Mücke et al., 2012 developed a method for detecting downed deadwood in high-

resolution ALS data, combining point cloud filtering, morphological image processing, and

echo parameter analysis. By applying height and echo width filters alongside additional

statistical criteria, fallen tree stems were reliably identified as elongated structures. The

method generates vector data that serve as a foundation for further analyses. Despite the

significant progress made in developing these methods, challenges remain. Dense vegeta-

tion and fragmented deadwood often reduce detection accuracy, while noise in ULS and ALS

point clouds requires robust filtering and segmentation techniques. The effectiveness of ULS

and ALS methods is also influenced by factors such as flight altitude, sensor configuration,

and environmental conditions, which can affect the resolution and quality of the data col-

lected. Nevertheless, combining multiple approaches, such as line template matching with

machine learning or integrating orthophotos with LiDAR, has been shown to improve the

reliability of the methods across diverse forest environments (Nyström et al., 2014; Pesonen

et al., 2008; Polewski et al., 2015). In conclusion, ULS and ALS are a powerful and flexible

tool for mapping deadwood. Advances in algorithms and the integration of complementary

datasets are continuously improving its efficiency and accuracy, establishing it as a critical

technology for forest management and biodiversity research.

2.2.2. Terrestrial Laser Scanning (TLS)

Terrestrial laser scanning (TLS) has revolutionized forest research by providing detailed

three-dimensional point clouds that capture the structure and composition of forest envi-

ronments with exceptional accuracy. Traditionally, TLS has been used for tasks such as mea-

6



2 THEORETICAL BACKGROUND

suring tree attributes, including diameter at breast height (DBH), tree height, stem volume,

and biomass. Additionally, it has been employed to analyze canopy structures, assess for-

est dynamics, and even evaluate timber quality. These capabilities make TLS an invaluable

tool for forest inventory and monitoring, offering a non-destructive and precise alternative

to conventional field-based methods. With ongoing advancements in scanner technology,

data processing algorithms, and computational capacity, TLS has extended its utility to in-

clude the detection and characterization of deadwood, a crucial yet understudied compo-

nent of forest ecosystems (Liang et al., 2018; Yrttimaa et al., 2019; Yrttimaa et al., 2020).

However, detecting and quantifying CWD remains challenging due to its variability in size,

orientation, and degree of decomposition. Unlike standing deadwood, which is structurally

similar to living trees and can be identified more easily, lying deadwood often lacks con-

sistent geometric features, making its detection more complex. Methods such as Random

Sample Consensus (RANSAC) are commonly used for identifying cylindrical shapes, and

while they have been adapted to detect certain deadwood features, their effectiveness is

often limited by dense canopy cover or overlapping vegetation, which obstructs accurate

data acquisition and processing (Yrttimaa et al., 2019; Yrttimaa et al., 2020). The detec-

tion of downed deadwood is considerably more complex due to its position near or on the

forest floor, where it is often hidden by understory vegetation, leaf litter, or soil. To address

these challenges, researchers have developed multi-step workflows that combine statistical

modeling, raster-based segmentation, and advanced classification techniques. For instance,

Polewski et al., 2017 introduced a voting-based statistical cylinder detection framework that

utilizes continuous parameter spaces and kernel density estimation to improve the detection

of fallen logs in complex forest environments. This method enhances the accuracy of dead-

wood delineation by focusing on geometric features specific to logs, such as their cylindrical

structure and alignment on the ground. Despite these advancements, several challenges re-

main. Dense vegetation and occlusions often result in incomplete point clouds, particularly

for small-diameter logs or logs in advanced decay stages. This can lead to underestimation

of total deadwood volume. Additionally, the reliance on multi-scan setups, which are nec-

essary to minimize occlusions, increases the time and effort required for fieldwork and data

processing. Automating the detection and classification of deadwood also presents signifi-

cant difficulties, especially in complex forest environments with overlapping or fragmented

logs. Furthermore, while TLS provides unparalleled detail for small plots, scaling this ap-

proach to larger areas remains a logistical and computational challenge (Liang et al., 2018;

Yrttimaa et al., 2019; Yrttimaa et al., 2020). To address these limitations, recent research

has explored the integration of TLS with other remote sensing technologies, such as UAV-

based photogrammetry and airborne LiDAR. These combined approaches have the potential

to overcome some of the spatial and logistical constraints of TLS by leveraging the strengths

of multiple data sources. For example, UAVs can cover larger areas efficiently, providing

context for TLS data, while TLS captures finer details that are often missed by airborne sen-
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sors. This synergy could enable more comprehensive deadwood mapping, enhancing our

understanding of its ecological and structural roles in forest ecosystems (Marchi et al., 2018;

Yrttimaa et al., 2019). In summary, TLS has demonstrated significant potential for detecting

and characterizing deadwood in forest environments, offering precise measurements of key

attributes such as volume, dimensions, and spatial distribution. However, its effectiveness

is currently limited by challenges related to occlusion, automation, and scalability. Address-

ing these limitations through algorithmic improvements and multi-sensor integration could

pave the way for operationally viable TLS-based methods, complementing traditional forest

inventory practices and advancing ecological research.
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3. Study Area

3.1. Description of the Rohrach Biosphere Reserve

The Rohrach Forest, a 47.5-hectare natural area located in Vorarlberg, Austria near the

Austrian-German border, serves as the study site for this research (Figure 3.1). This for-

est was designated as a biosphere forest reserve in 1992 under regional conservation laws,

with the primary goal of allowing natural processes to unfold without human interference.

Unlike traditional forest management, this designation ensures that no forestry activities or

geomorphological interventions occur within the reserve. Such measures aim to create an

untouched forest ecosystem that can serve as a baseline for ecological studies. Despite its

protected status, certain interventions are allowed under specific circumstances. For exam-

ple, pest control measures can be implemented to protect surrounding forests, and regulated

hunting is permitted to prevent ungulate overpopulation, which could otherwise hinder the

natural regeneration of tree species. However, hunting for other wildlife is strictly prohibited.

The reserve’s initial protection period of 30 years was extended in 2022 for another 30 years,

reflecting the long-term commitment to preserving this area. Compensation agreements with

landowners were part of the establishment of the reserve. Adjacent forest areas in Germany,

covering 177.5 hectares, were similarly designated as protected zones in 1992. However,

the management approach there differs, allowing limited forestry, agriculture, hunting and

fishing. Additionally, both the Austrian and German portions of the Rohrach Forest were inte-

grated into the Natura 2000 network as Habitat Directive sites, Austria in 1992 and Germany

in 2000. This inclusion emphasizes the importance of the area for biodiversity conservation

on an european scale. While some parts of the German forest remain under active use, oth-

ers are designated as non-utilized zones, creating a complex landscape of protection and

use. This combination of strict protection measures and limited human activities highlights

the diverse strategies employed across national borders to balance conservation with prac-

tical considerations. The Rohrach forest thus provides a unique opportunity to study the

dynamics of natural forests under varying management regimes (Kirchmeir et al., 2023).

The Rohrach biosphere forest reserve is located in the Alpine foothills. It is characterized

by steep gorges carved by streams such as the Loimelesbach, Rickenbach, and Forstbach,

which define its boundaries to the west, east, and north. To the south, the area is bor-

dered by a prominent escarpment. The rugged terrain of the reserve alternates between

steep slopes, narrow plateaus, and small flat areas, making it difficult to access. Additional

streams, including the Kessellochbach and Gruebtobelbach, divide the slopes into three dis-

tinct sections. Elevations range from the valley floor to a peak of 720 meters above sea level,

resulting in a total height difference of approximately 180 meters. Geologically, the reserve

is part of the Molasse Zone, a region formed by sedimentary deposits carried from the Alps

during their formation. This unique composition includes alternating layers of permeable

and impermeable material, which contribute to water seepage and wet zones in certain ar-
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Figure 3.1: Biosphere Reserve Rohrach in the Austrian province Vorarlberg (Kirchmeir et al.,
2023)

eas. Over time, these conditions, combined with rapid rock weathering, have led to frequent

landslides of various sizes. The dynamic interaction of geological processes shapes the land-

scape and influences the ecological characteristics of the area (Grabherr and Broggi, 1999).

The composition of the terrain reveals a diverse structure. The mid slopes dominate the

reserve, covering 36% of the area, while the gentle slopes account for 28%, and the lower

slopes represent 18%. Upper slopes make up only 8%, with ridges, rocky outcrops, and other

minor features occupying smaller portions. The average elevation across the reserve is ap-

proximately 630 meters, with most slopes facing north, 41% oriented toward the north, 21%

northeast, and 18% northwest. The general average slope is calculated at 40%, highlighting

the steepness of the terrain (Grabherr and Broggi, 1999).

3.2. Study Sites

For the TLS campaign, three pre-surveyed plots were selected: Plot 610, Plot 611, and the

permanent observation area D3. These plots were chosen to represent a variety of terrain

types and structural challenges, allowing a comprehensive evaluation of the methods ap-

plied.

Plot 610 is located on relatively flat terrain, characterized by dense undergrowth and a high

density of small trees. Fallen deadwood in this area is often scattered in a criss-cross pat-
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tern, with varying states of decay, making it an ideal site to test segmentation and volume

estimation techniques. In contrast, plot 611 is on a steep slope, where the terrain causes

complications in scanning and data processing. The inclined positioning of some logs also

presents challenges in accurately estimating their length and volume.

Plot D3 was selected for its distinctive arrangement of deadwood. A large fallen tree dom-

inates the site, with another substantial log resting on top of it and a smaller log situated

nearby. This arrangement allows for testing the robustness of segmentation and volume

estimation under complex conditions.

Figure 3.2: Study Area Rohrach. The three chosen plots 610, 611 and D3

Across the three plots, a total of 87 scan positions were used: 35 in Plot 610, 34 in Plot 611,

and 18 in Plot D3. These plots collectively represent a diverse range of forest conditions,

allowing an in-depth analysis of the strengths and limitations of the methods applied in this

study.
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4. Methodology

4.1. Data Collection

4.1.1. TLS Data Collection and Point Cloud Registration

The terrestrial laser scanning (TLS) survey was conducted at three sites: D3, 610, and 611,

using the RIEGL VZ-600i instrument. Data acquisition for plot 611 included 36 scan positions

to ensure complete coverage of the area, while plot 610 required 35 scan positions, and Plot

D3 was covered with 18 scan positions. The scans were registered into a global coordinate

system (ETRS89/Geocentric) and transformed into a locally leveled Cartesian coordinate

system (east, north, up) for analysis.

The scanning process used overlapping scan positions to enhance the precision of point cloud

registration. Each scan captured a full 360° horizontal field of view, with an angular resolu-

tion of 34 millidegrees. The total number of points collected across all plots exceeded several

billion, ensuring high-density coverage of the surveyed areas.

After the scans were registered, a multistation adjustment (MSA) was performed to refine

the alignment of individual scans. This process optimized the relative positioning of the scan

stations by minimizing residual errors in the point clouds. According to the MSA report for

plot 611, the average residual error of the registered points was approximately 2 millimeters,

with local adjustments to the scan positions typically remaining below 1 centimeter. This

level of accuracy ensures that the TLS data provide a reliable foundation for subsequent

analyses.

Despite these efforts, the MSA process highlighted some challenges, including potential out-

liers in GNSS measurements and variations in residuals. These were addressed by refining

parameters, such as the adjustment effort and removing low-trust GNSS observations from

the process.

4.1.2. ULS Data Collection

A 48-hectare study area was surveyed using an unmanned aerial vehicle equipped with a Li-

DAR system and a high resolution camera. The setup featured a RIEGL VUX-120 LiDAR scan-

ner and a PhaseOne iXM100 camera, mounted on a Soleon LasCO 2 multicopter. The flights

were carried out by Alto Drones, a company based in South Tyrol, during April 2022 under

’leaf-off’ conditions. The resulting 3D point clouds were processed in the ETRS89/UTM32

coordinate system, with orthometric heights derived from the geoid model provided by the

Austrian Federal Office for Calibration and Surveying (BEV). These data files were saved in

the *.laz format (Kirchmeir et al., 2023).

The study area was scanned using parallel and overlapped flight paths, complemented by

cross-strips to improve georeferencing accuracy (Figure 4.1). From the processed 3D point

clouds, a Digital Terrain Model (DTM) was computed using the last-return echoes. This step
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Figure 4.1: UAV Flight Trajectories and Point Density over the Nature Reserve Rorach (Kirch-
meir et al., 2023)

was also handled by Alto Drones. The final DTM, delivered in *.tif format, has a spatial

resolution of 0.25 x 0.25 meters (Kirchmeir et al., 2023).

The lying deadwood was identified using a decision tree based on normalized 3D point data.

This method relied on both the shape and the radiometric characteristics of the LiDAR points.

Only logs within 5 meters above ground level were included in the analysis. To estimate the

volume, a voxel-based method was used. The diameters of the logs were first measured from

2D raster maps and then used to calculate the volume, with voxel sizes of 5x5x5 cm³ see

Figure 4.2.

This method generally worked well, but some limitations were identified. It faced chal-

lenges in areas with overlapping logs or gaps in the LiDAR data, which were often caused by

shadowing. Furthermore, the method measured only horizontal distances, which led to an

underestimation of volume in steep terrain (Kirchmeir et al., 2023).

4.1.3. Line Intersect Method

The Line Intersect Method is a widely used and efficient approach to estimate the volume of

lying deadwood. Originally developed in North America to assess the potential for fire hazard

of underbrush (Wagner, 1968), it has since been adapted for various ecological and forestry

studies. This method involves imaginary transect lines, along which all deadwood fragments

intersecting that exceed a predefined diameter are recorded at the crossing point (Figure

4.3). The technique does not require logs to lie flat on the ground; elevated fragments, such

as fallen branches or sections of a tree crown, are also included if they intersect the transect

line. Leaning dead trees, tilted more than 45° from the vertical axis, are similarly considered

as lying deadwood when they cross the transect (Kirchmeir et al., 2023).

For an accurate volume estimation, two transects, each 40 meters in length, are typically

established per plot. These transects intersect at the center of the plot and are oriented to
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Figure 4.2: Lying Deadwood detected through ULS: derived diameters of lying deadwood
stems (Kirchmeir et al., 2023)

suit the terrain. In sloped areas, one transect follows the slope, while the other aligns per-

pendicular to it, ensuring comprehensive sampling. On flat terrain, transects are commonly

oriented along the north-south and east-west directions. If terrain conditions make certain

areas inaccessible, the transect lengths may be reduced accordingly, and these adjustments

are accounted for in the calculations. In sloped terrain, the recorded distances are corrected

to represent horizontal distances, ensuring consistent and comparable results.

At each intersection point, several parameters are measured, including the diameter of the

log, species classification (or a broader category such as coniferous, deciduous, or indetermi-

nate for highly decomposed logs), decay stage (categorized into five classes), and the origin

of the fragment (e.g. broken, sawn, or wind thrown). For wind thrown logs, the presence

of a root plate or exposed roots is used as an identifying feature.

Although the Line Intersect Method provides a time-efficient means of estimating deadwood

volume, it has some limitations. The method only accounts for logs that intersect the transect

lines, which may lead to under-representation in areas with sparse deadwood distribution.

However, it remains a useful approach to derive reference values and compare estimates

obtained by more advanced techniques, such as terrestrial laser scanning (Kirchmeir et al.,

2023).
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Figure 4.3: Visualisation of the Line Intersect Method (Kirchmeir et al., 2023)

The volume of lying deadwood was calculated using the Line Intersect Method as described

by Wagner, 1968. The formula used for this calculation is:

VLG =
π2
�L

l=1 d2
L

8L
(4.1)

where VLG represents the volume of lying deadwood m3/m2, dL denotes the diameter of the

cross-sectional area of each intersecting log, and L is the length of the transect measured in

meters as a horizontal distance (Kirchmeir et al., 2023; Wagner, 1968).

4.1.4. Precise Manual Data Collection

Manual measurements of deadwood logs were carried out on the 7th and 8th October 2024.

The plot center, pre-defined during earlier surveys, served as the reference point for all mea-
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surements. A circular area with a radius of 12 meters was established around this center to

delineate the boundary of the survey. All lying deadwood logs with a diameter greater than

10 cm were included in the survey. Thin branches, small logs, and logs that were heavily

decomposed were excluded from the analysis. For logs that extended beyond the radius of

12 meters, only portions within the circular boundary were measured.

The diameter of each log was recorded using a diameter tape. Multiple measurements were

taken along the length of each log, and the average of these measurements was calculated.

Diameters were recorded to the nearest centimeter to ensure precision. The length of each

log was measured using a 30-meter measuring tape, with lengths recorded to the nearest

decimeter.

During the fieldwork, all measurements were noted in a sketch to provide a visual reference

for the spatial distribution and individual characteristics of the logs. These sketches were

later digitized for further processing and analysis.

The collected field data were processed to calculate the volume of each deadwood log. Using

the average diameter (d[m]) and length (l[m]) measurements, the volume (V [m3]) of each

log was estimated by assuming a cylindrical shape:

V = πr2l (4.2)

where r = d
2 represents the radius [m] of the log, derived from the recorded diameter. The

assumption of a cylindrical shape provides a practical approximation of the wood volume,

despite the irregularities of natural deadwood logs.

During the data processing, special care was taken to ensure that only the portions of logs

within the survey boundary were included in the volume calculations. This was verified

against the sketches and digitized data.

The results obtained through manual measurements serve as a baseline for comparison with

other methods of estimating deadwood volume. In the results chapter, these values are

directly compared with volumes derived from TLS, ULS, and the Line Intersect Method.

4.2. TLS Data Processing

4.2.1. Filtering of potential lying Deadwood stems

The coregistered TLS point cloud was first imported into OPALS (Pfeifer et al., 2014) to lever-

age its specialized modules for point cloud processing. A coordinate system was assigned to

ensure compatibility for visual comparisons in GIS. Using the limit function, the point cloud

was cropped to a smaller area around the center to streamline subsequent processing steps

focused on the area of interest.

The basis of the entire computation relies on a normalized point cloud, achieved by calculat-

ing the Digital Terrain Model (DTM) using a hierarchical approach (Pfeifer and Mandlburger,

2018). For this computation, only the first echoes were used to ensure that the model accu-
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a b

c d

e f

Figure 4.4: Visualisation of TLS Processing Steps. a) TLS PC; b) PC after normalization and
cropping around the area of interest; c) calculated linearity of the PC; d) Sigma0
of Normal calculation; e) Eigenvalue 1; f) Eigenvalue 2

rately represents the ground surface, providing a reliable reference for future analysis steps.

From the normalized point cloud, all points except those between 0.1 and 2.5 meters above
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the ground were filtered out. The upper limit of 2.5 meters was chosen based on field ob-

servations, where no deadwood was found lying higher than this threshold. This filtering

ensures that only relevant points that represent deadwood structures are retained for fur-

ther analysis. The area of interest (AOI) was defined as a 12-meter radius around a specified

center point. To remove points outside this AOI, the distance of each point from the center

was calculated, and all points with a distance greater than 12 meters were filtered out (fig-

ure 4.4 b). The process starts by calculating the normal vectors for each point in the point

cloud, providing essential information on the orientation of the surface. This is important

to distinguish between the features of the terrain and the objects. To enhance precision, the

calculation includes each point’s 50 nearest neighbors. Additionally, both the largest eigen-

value of each local neighborhood’s covariance matrix and the σ0 value, which indicates the

quality of the fit for the computed normals, are stored as metadata. These values are critical

for subsequent characterizations of surface properties such as linearity and planarity. The

search is carried out within a three-dimensional space, limited to a radius of 0.5 meters to

balance computational efficiency with accuracy in detail. (Pfeifer et al., 2014)

Following this, a new attribute called "linearity" is added to the data set (Melzer and Briese,

2004), calculated based on the previously stored eigenvalues λ. This linearity attribute

quantifies how much each point’s local neighborhood aligns along a line, using the formula:

l ineari t y =

��
1−
λ2

λ1
(4.3)

Here, the ratio of the two largest eigenvalues (representing the spread of neighboring points)

indicates whether the points tend to form linear or edge-like structures. High l ineari t y val-

ues thus suggest alignment along a line, which can highlight the presence of linear features

such as deadwood logs within the dataset. During visual inspection, branches exhibited the

highest linearity values among objects in the dataset, while other complex features, such

as foliage, demonstrated higher Normal Eigenvalues due to irregular structures and greater

variance in point distribution. To isolate deadwood logs more effectively, a selective filter-

ing approach was applied. The points were exported from the data set using specific cri-

teria, regarding Normalsi gma0 (Figure 4.4 d), NormalEigenvalues (Figure 4.4 e, f) and

l ineari t y (Figure 4.4 c) (Pfeifer et al., 2014).

Although this approach helped exclude many non-target features, additional points outside

the intended deadwood logs remained in the point cloud. The Normalsi gma0-threshold,

crucial for identifying smoother surfaces by measuring the angular dispersion of normal vec-

tors, aimed to retain only surfaces typical of deadwood logs or flat ground. However, certain

points with similar values to deadwood characteristics were still present, indicating the need

for further refinement. Combining this NormalSigma0 with lower NormalEigenvalue

thresholds improved the quality of the data set by filtering out high-complexity features, but

additional steps are necessary to fully isolate deadwood logs in future processing stages.
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a b c

Figure 4.5: Standing Stem removal. a) TLS PC before removal steps; b) result after combin-
ing highest and lowest point of a 2 cm cell; c) result after removing all points
with a higher distance than threshold

In the segmentation process, overlapping logs often merge into a single segment, which

poses a challenge for accurate identification. To address the challenge of overlapping and

intersecting logs, a quantile-based approach was applied. Specifically, the height quantiles

0.1 and 0.9 were used to create a vertical separation between the overlapping logs. For each

2-centimeter cell, only two points were retained: one in the 0.1 quantile and one at the

0.9 quantile. This method not only facilitated the separation of the overlapping logs, but

also had the additional benefit of significantly reducing the point density on standing stems,

making them easier to filter out during subsequent processing steps (Figure 4.5).

Next, the distance to the nearest neighbor is calculated for each point. This approach results

in greater spacing on standing trees due to their reduced point density, facilitating easier

differentiation. Points with distances exceeding a set threshold are then filtered out, further

isolating deadwood logs and improving segmentation accuracy (Figure 4.5 (Pfeifer et al.,

2014).

a b

Figure 4.6: a) TLS PC after all filtering steps; b) Results after Segmentation

The segmentation module in OPALS is used to segment lying tree trunks. The condclustering
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method (Pfeifer et al., 2014) is applied with a search radius of 0.2 meters and a minimum

segment size of 300 points. To determine if TLS points lie on a common surface, the dot

product between the NormalEigenvector of each point and that of its neighboring points

is calculated. This dot product measures the alignment between the normal vectors of neigh-

boring points across the X, Y, and Z directions. By taking the absolute value of this scalar

product, we obtain a measure of how closely aligned the two normal vectors are, regardless

of direction. For points to be considered as lying on the same surface, this value must exceed

the threshold cos(0.06). This threshold ensures that only points with closely aligned normal

vectors are retained, effectively filtering out misaligned points and isolating those that lie on

a common surface, thus facilitating accurate segmentation of individual lying tree trunks.

Finally, all points that do not belong to any segment are removed (Figure 4.6 b). This step

ensures that only points associated with well-defined segments, specifically the lying tree

trunks, are retained for further analysis. (Pfeifer et al., 2014)

4.2.2. Determination of lying Deadwood Parameters

After segmenting potential deadwood trunks, further analysis is performed to extract rele-

vant parameters, such as diameter, length, and volume. Additionally, if individual trunks

were segmented separately, they are merged to ensure each deadwood trunk is represented

as a single segment. This merging step refines the dataset, providing an accurate basis for

assessing the characteristics and distribution of deadwood in the study area.

• Step 1. Load Input File

The initial step involves processing the input file, which contains the point cloud data

required for the analysis. This file is structured as a text file, with each row representing

a single point in the point cloud. Each point is defined by its spatial coordinates (X, Y,

Z) and the SegmentID, which groups points belonging to the same segment. The data

is read into a structured format for further analysis, ensuring that all points and their

associated attributes are accessible. The points are then grouped by their SegmentID,

allowing the identification of distinct segments, such lying tree stem. This grouping

facilitates the application of subsequent analysis methods, such as segmentation and

parameter extraction.

• Step 2. Apply Initial RANSAC to Each Segment

In this step, a RANSAC (Random Sample Consensus) regression (Fischler and Bolles,

1981) is applied to each segment in the point cloud to establish an initial polynomial

model representing the shape of the tree stem sections. The primary goal of this step

is to create a robust preliminary fit for each segment without filtering based on model

quality at this stage. The points in the point cloud are grouped by their SegmentID,

allowing the analysis of each segment independently. The x and y coordinates of the
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points within each segment are extracted, enabling the representation of the segment

in a two-dimensional space. To account for the characteristic curvature of tree stems,

a polynomial transformation is applied to the data. A quadratic polynomial is typically

used, which enables a parabolic fit. The polynomial model for a segment is expressed

as:

y = a0 + a1 x + a2 x2 (4.4)

where a0, a1, and a2 are the polynomial coefficients. These coefficients are determined

by fitting the transformed data to a linear regression model, ensuring the best-fit curve

for the segment points. To streamline this process, the polynomial transformation and

regression fitting are combined into a single workflow.

RANSAC regression is then employed to refine the polynomial model. This approach

minimizes the influence of outliers, such as stray points or small branches, by itera-

tively sampling subsets of points, fitting models, and selecting the one that best cap-

tures the main structure of the segment. This ensures that the polynomial model pre-

dominantly represents the primary stem geometry, while deviations caused by noise

are ignored (Fischler and Bolles, 1981).

Although a 3D polyline would provide a more precise representation for complete

cylinders, this is not feasible in the current dataset. Prior filtering steps often result in

missing portions of cylindrical surfaces, particularly for logs lying on the ground, where

the lower part of the cylinder is frequently absent. Consequently, the fitted line aligns

with the visible edge rather than the central axis, leading to potential inaccuracies in

diameter estimates. Therefore, a 2D approach is adopted to approximate the geometry,

balancing simplicity and robustness.

Following the RANSAC fitting, essential details for each segment are recorded, includ-

ing the polynomial model and the minimum and maximum x values (xmin and xmax).

Additionally, the predicted y-coordinates at these endpoints, ŷmin and ŷmax, are calcu-

lated using the fitted polynomial model:

ŷmin = a0 + a1 xmin + a2 x2
min (4.5)

ŷmax = a0 + a1 xmax + a2 x2
max (4.6)

These values provide an initial geometric representation of each segment and serve

as the foundation for further processing. By the end of this step, each segment is

characterized by an independent polynomial model, forming the basis for subsequent

segment merging and refinement.

• Step 3. Segment Merging Based on Proximity, Orientation, and Height Difference
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In this step, individual segments are merged to ensure that fragmented parts of the

same tree stem are combined into a single segment. The merging process is guided

by three criteria: spatial proximity, alignment in orientation, and similarity in height.

These checks ensure that only segments likely representing the same tree stem are

merged, avoiding erroneous combinations of overlapping or stacked segments.

Proximity Check

To determine spatial closeness, the distance between the endpoint of one segment and

the start point of another is calculated using the Euclidean distance:

d =
�
(xend1 − xstart2)

2 + (yend1 − ystart2)
2 (4.7)

The coordinates (xend1, yend1) represent the endpoint of the first segment, while (xstart2, ystart2)

refer to the start point of the second segment. These points are used to calculate

the proximity between segments, which is a critical step in determining whether they

should be merged.

Segments are considered close enough for merging if d is less than a predefined thresh-

old (dthreshold).

Orientation Check

Alignment between segments is evaluated by comparing their tangent directions at

the endpoints. The tangent vector for each segment is derived from the polynomial

fit. The angle θ between the tangent vectors of two segments is calculated using the

dot product:

cos(θ ) =
v⃗1 · v⃗2

|v⃗1||v⃗2|
(4.8)

v⃗1 = (1, f ′1(xend1)): Tangent vector of the first segment. v⃗2 = (1, f ′2(xstart2)): Tangent

vector of the second segment.

Segments are aligned closely enough for merging if the angle θ is below a predefined

threshold.

Height Difference Check

The vertical alignment of segments is assessed by calculating the height difference

(Δz) between the endpoint of the first segment and the start point of the second:

Δz = |zend1 − zstart2| (4.9)

The height of the endpoint of the first segment is denoted by zend1, while the height of

the start point of the second segment is represented as zstart2. Segments are considered

for merging if the height difference, Δz, is below a predefined threshold, zthreshold.
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Merging Procedure

If two segments meet all three criteria, their points are combined, and the bounding

coordinates (xmin, xmax, zmin, zmax) are updated to reflect the extent of the merged seg-

ment. This process is iteratively applied to all segment pairs, ensuring that the dataset

accurately represents unified tree stems while maintaining segmentation integrity.

This step effectively reduces fragmentation and enhances the continuity of tree stem

data, providing a solid foundation for further parameter extraction and analysis.

• Step 4. Reapply Ransac to Merged Segments and Quality Assurance

In this step, RANSAC regression is reapplied to each segment resulting from the merg-

ing process to refine the polynomial model. This ensures that the updated model ac-

curately represents the complete structure of each newly combined tree stem section,

which may differ from the initial models due to the integration of multiple segments.

For each merged segment, all associated points are retrieved, including those combined

during the merging process. These points are used to refit a polynomial model, apply-

ing the same procedure as in Step 2. The polynomial transformation is performed, and

a RANSAC regression pipeline is employed to robustly fit the model, minimizing the

influence of outliers and ensuring the best possible representation of the segment’s

overall structure. This reapplication of RANSAC ensures that the polynomial accu-

rately reflects the geometry of the entire segment, even after merging.

Quality Assurance with R2 Evaluation

Following the RANSAC fitting, a quality assurance step is conducted to evaluate the

reliability of the polynomial model for each segment. The coefficient of determination

(R2) (Cheng et al., 2014) is calculated, which measures how well the polynomial model

explains the variance in the segment’s y-coordinates. The formula for R2 is:

R2 = 1−

�n
i=1(yi − ŷi)

2�n
i=1(yi − ȳ)2

(4.10)

In this formula, yi represents the observed y-coordinate of each point, ŷi denotes the

predicted y-coordinate from the polynomial model, and ȳ is the mean of all observed

y-coordinates in the segment. The total number of points in the segment is denoted

as n. An R2 value close to 1 indicates that the model fits well and explains most of

the variance in the data, while lower values suggest a poorer fit. Segments with an R2

value below a predefined threshold are excluded from further analysis, as they may

not adequately represent the expected structure of a tree stem.

By reapplying RANSAC and implementing a quality assurance step, this process en-

sures that only well-represented segments proceed to subsequent analysis stages, im-

proving the accuracy and reliability of the results.
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a b

Figure 4.7: a) Results after the first iteration of poly line fitting with Ransac; b) Results after
the second iteration in front of a raster point density map.

• Step 5. Calculate Segment Parameters (Diameter, Length, and Volume)

In this step, the geometric parameters diameter, length, and volume are calculated

for each segment that passed the quality assurance in Step 4. These parameters provide

a detailed representation of the structure of each CWD, based on the final polynomial

model fitted to the merged segments.

Diameter Calculation

The diameter of each segment is estimated by analysing the residuals of the polynomial

fit. Residuals represent the difference between the observed y-coordinates and the

corresponding y-coordinates predicted by the polynomial model:

Residuali = yi − ŷi (4.11)

where yi is the observed y-coordinate, and ŷi is the predicted value from the polyno-

mial model.

The diameter is calculated based on the spread of these residuals by computing specific

quantiles, such as the 0.15 and 0.85 quantiles. The lower and upper quantiles, denoted

as qlower and qupper, respectively, are used to approximate the diameter d:

d= |qupper − qlower| (4.12)

This approach captures the vertical spread of points around the polynomial curve,

providing a reliable estimate of the segment’s diameter.

Length Calculation

The length of each segment is determined using the arc length of the polynomial curve

fitted to the segment, adjusted for vertical displacement in the z-coordinates. The
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arc length in the x-y plane 2D-length is calculated by integrating the polynomial’s

derivative over the range of x-coordinates:

2D-Length=

� xmax

xmin

���
1+
�

d y

d x

�2
d x (4.13)

The derivative d y

d x is derived from the polynomial model:

d y

d x
= a1 + 2a2 x (4.14)

To account for the vertical offset, the difference in z-coordinates between the end-

points, denoted asΔz = zmax−zmin, is included. The actual segment length, reflecting

the true 3D distance, is then calculated using the Pythagorean theorem:

Actual Length=
�
(2D-Length)2 + (Δz)2 (4.15)

Volume Calculation

Once the diameter and length are determined, the volume of each segment is approx-

imated by assuming a cylindrical shape. The formula for the volume V is given as:

V = π

�
d

2

�2
×Actual Length (4.16)

This calculation assumes a circular cross-section, which is a reasonable approximation

for tree stems. The resulting volume provides an estimate of the total size of the seg-

ment, offering valuable insights for ecological and forest applications. By calculating

the diameter, length, and volume for each segment, this step provides a comprehensive

quantitative description of the tree stems. These parameters are crucial for assessing

the structural characteristics of deadwood, enabling further analysis of ecological pro-

cesses and resource quantification.

• Step 6. Save Results and Export Data

In this final step, the processed data is organized and exported for further analyses

and visualisation. The parameters calculated for each segment are saved in multiple

formats to support various research workflows and spatial applications. A CSV-file is

generated to store key metrics for each segment, including its unique identifier, cal-

culated length, diameter, volume, and mean residual. This tabular format ensures

compatibility with a wide range of statistical and analytical tools, enabling efficient

quantitative evaluation of the data. Furthermore, an extended point cloud file is ex-

ported, preserving the original x , y , and z coordinates of each point alongside the
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corresponding segment parameters. This extended format allows for advanced spatial

analyses and integration into point cloud processing software, providing researchers

with a detailed dataset for further exploration. To enable geospatial visualisation and

integration into Geographic Information System (GIS) software, each segment is also

saved as a Shapefile. The Shapefile format represents each segment as a polyline de-

rived from the fitted polynomial model and includes attributes such as segment ID,

length, diameter, and volume. This georeferenced representation facilitates the visu-

alisation of individual tree stems and their spatial relationships within the study area.

The availability of these outputs in multiple formats (CSV, extended point cloud, and

Shapefile) ensures flexibility in data usage. The exported datasets not only support de-

tailed quantitative analyses but also provide a robust foundation for spatially informed

research and visualisation. These outputs are crucial for integrating the findings into

broader ecological studies and forest management practices, highlighting the adapt-

ability of the developed methodology to diverse research contexts.

• Step 7. Outlier Detection

To ensure the accuracy and reliability of the results, an outlier detection step is applied

based on the diameter of the detected logs. Empirical observations in the study areas

revealed that no tree logs exceed a diameter of 65 cm. Consequently, a maximum

diameter threshold of 68 cm is established. Any segment with a calculated diameter

above this value is discarded as an outlier.

This step is crucial to prevent overestimated log dimensions from distorting the dead-

wood volume estimation. By excluding implausibly large segments, the analysis fo-

cuses on logs that align with realistic conditions observed in the field. While this

criterion reduces the number of segments included in the final analysis, it minimizes

the risk of errors introduced by outliers, ensuring that the results remain both accurate

and reliable.

4.3. Data Validation

To validate the results, the manual in situ measurements serve as the reference dataset.

The newly developed TLS approach calculates the parameters of lying deadwood for each

individual log. Consequently, these results are compared against the corresponding manually

measured data on a log-by-log basis by calculating the mean deviation and RMSE. This allows

for an evaluation of the accuracy of the TLS-derived parameters, including length, diameter,

and volume.

RMSE=

����n
i=1( ŷi − yi)

2

n
(4.17)

Here, ŷi represents the predicted value (e.g., parameters estimated by the TLS method), yi
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represents the true value (e.g., manual measurements), and n denotes the total number of

stems. The difference ( ŷi− yi)measures the deviation between the predicted and true value,

while ( ŷi − yi)
2 computes the squared deviation to treat both positive and negative errors

equally.

In contrast, the described ULS-based method and the Line Intersect Method provide the total

deadwood volume for the entire study area, rather than the parameters for individual logs.

Therefore, the results of these methods are compared at the aggregate volume level. This

comparison highlights the differences in the results between the methods and helps identify

their respective strengths and limitations in various forest conditions.

The validation process further illustrates how specific challenges in the field, such as over-

lapping logs, dense vegetation, or fragmented deadwood, can influence the performance of

each method. This analysis not only provides information on the reliability of the methods,

but also offers guidance on their applicability under different forest environments.
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5. Results

In this chapter, we focus on the results obtained for the three study plots: 610, 611, and D3.

The analysis is divided into two parts. First, we examine the TLS-based method, which de-

termines the parameters of individual logs, such as diameter, length, and volume, providing

detailed insight into its performance and accuracy. Subsequently, we evaluate the methods

used to estimate the total deadwood volume for all plots, allowing a comparative assessment

of their effectiveness and reliability in capturing the overall biomass.

5.1. TLS Per Log Results

This section examines the results of the TLS method compared to manual measurements.

For each log, the detection success of the TLS method is evaluated and derived parameters

such as diameter, length, and volume are compared to the manual measurements. Manual

measurements are treated as reference values that serve as a benchmark to assess the accu-

racy of the TLS-derived parameters. This approach ensures a systematic evaluation of the

TLS method’s ability to replicate manually measured results.

Segments identified by the TLS approach that do not correspond to any logs recorded in the

manual measurements are excluded from this analysis. These segments will be addressed in

subsequent sections.

Examining the results of Plot 611 (Table 5.1), 84% of the deadwood logs manually recorded

in the field were successfully detected using the TLS method. This detection rate demon-

strates a high level of agreement between the TLS-derived results and the manual measure-

ments, highlighting the method’s reliability in identifying deadwood logs within this plot.

In plot 611, length, diameter and volume were determined for each detected log, with results

showing that the majority of the parameters were measured with a high level of precision.

However, two logs, identified by segment IDs 3 and 19, were split into separate parts and

recorded as distinct segments in the data set (Table 5.1).

A log, identified as Segment 18 and highlighted in gray in the results Table 5.1, was classified

as an outlier. Its diameter exceeds the maximum threshold established in the Methodology

chapter, confirming it as inconsistent with the expected parameters. This exclusion ensures

that the analysis remains accurate and unaffected by implausible measurements.

Table 5.4 summarizes the deviations and variability of the parameters. In plot 611 the mean

deviation of the log length is -0.34 m, with a RMSE of 0.96 m. For diameter, the mean

deviation is 3 cm, with a RMSE of 12 cm. For volume, the mean deviation is 0.05 m³, with

a RMSE of 0.376 m³. The mean deviation of the three parameters shows that the length

is underestimated, while the diameter and length are slightly overestimated. Table 5.4 also

shows the number of logs that were detected by the TLS method and participated in the

validation process.
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Table 5.1: Comparison of Results Between Manually Measured and TLS-Derived Logs by Seg-
ment ID, Plot 611

Stem ID TLS Manual

l (m) d (cm) V (m3) l (m) d (cm) V (m3)

1 2,7 0,34 0,245 2,1 0,36 0,214
2 4,1 0,41 0,542 4,5 0,51 0,919
3 9,45 0,35 0,926 16,3 0,4 2,048

3/2 5,39 0,24 0,24
4 0,26 0,28 0,286 10,8 0,12 0,122
5 8,65 0,53 1,88 8,5 0,45 1,352
6 11,5 0,56 2,763 11,3 0,53 2,449
7 3,19 0,32 0,262 2,7 0,34 0,245
8 6,5 0,25 0,319
9 4,7 0,21 0,163

10 1,7 0,59 0,45 1,8 0,20 0,057
11 1,7 0,24 0,077
12 1,97 0,18 0,051 2 0,14 0,031
13 3,1 0,14 0,053 3,1 0,18 0,079
14 5,9 0,65 1,963 5,8 0,51 1,185
15 2,8 0,13 0,036 2,7 0,15 0,048
16 1,7 0,28 0,105 1,9 0,26 0,101
17 3,6 0,16 0,074 3,4 0,18 0,087
18 5,7 1,24 6,080 5,5 0,12 0,062
19 3,1 0,34 0,287 8,1 0,31 0,611

19/2 2,18 0,3 0,150
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a

b

c

Figure 5.1: Results Plot 611; a) Manual Measurements of lying deadwood with SegmentID
(red), mean diameter and length; b) TLS-Method results, showing polyline fit
above a point count raster map; c) ULS Method Results: Voxel-Based Approach
and Diameter Mapping of Deadwood
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Figure 5.1 shows the results of three different methods for detecting deadwood logs. Sub-

figure (a) shows the manually measured logs, while subfigures (b) and (c) display the logs

detected using the TLS method and the ULS method. Figure 5.1c is colored by the deter-

mined log diameter.

In Figure 5.1b, the red lines represent the shapefiles of the fitted polylines for each segment,

providing a geometric outline of the detected logs. Figure 5.1b includes the rasterized

visualization of the point count.

The analysis shows that the TLS method (Figure 5.1b) detects a larger number of deadwood

logs compared to manual measurements. However, it also identifies additional fragments

that were not classified as deadwood logs during field surveys. In some cases, branches

were incorrectly detected as logs. The ULS-based method (Figure 5.1c) detected 26% of the

deadwood stems recorded during manual measurements.

Table 5.2: Comparison of Results Between Manually Measured and TLS-Derived Logs by Seg-
ment ID, Plot 610

Stem ID TLS Manual

l (m) d (cm) V (m3) l (m) d (cm) V (m3)

1 8,2 0,26 0,435
2 5,2 0,24 0,235
3 6,9 0,67 2,489 4,3 0,3 0,304
4 4,8 0,27 0,275
5 2,9 0,42 0,405 5,6 0,31 0,423
6 8,5 0,38 0,964
7 3,2 0,27 0,188 3 0,31 0,226
8 2,9 0,5 0,727 11,5 0,32 0,925
9 7 0,3 0,495

10 8,5 0,38 0,964
11 4 0,95 2,898 5,9 0,3 0,417
12 3,5 0,2 0,110
13 3,3 0,28 0,203
14 2,9 0,28 0,187 3,3 0,24 0,149
15 5 0,22 0,190
16 1,7 0,47 0,394 5,2 0,28 0,320
17 5,9 0,65 1,978 6 0,26 0,319
18 1,9 0,21 0,070 1,5 0,23 0,062
19 3 0,28 0,185
20 1,5 0,11 0,014
21 3,8 0,14 0,058

The results of plot 610 present a different picture compared to the previous analyzes (Figure

5.2). A significantly smaller proportion of deadwood logs was detected, with only 48% of

the logs identified during manual measurements being captured.

A closer examination of the deadwood parameters reveals notable deviations between the
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detected values and the manually measured values. In particular, the differences in diameter

and volume are considerably larger (Table 5.4). The analysis shows an average length differ-

ence of -1.5 meters between the TLS and manual measurements, with a RMSE of 3.5 meters.

For the diameter, an average deviation of 15 cm with a RMSE of 22 cm was observed, result-

ing in a mean volume difference of 0.46 m³. The RMSE for volume amounts to 0.973 m³.

Furthermore, one outlier was identified: the log with ID 11. This log exhibits particularly

large deviations in its measured parameters.
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a

b

c

Figure 5.2: Results Plot 610; a) Manual Measurements of lying deadwood with SegmentID
(red), mean diameter and length; b) TLS-Method results, showing polyline fit
above a point count raster map; c) ULS Method Results: Voxel-Based Approach
and Diameter Mapping of Deadwood
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Figure 5.2 presents the results of the manual method, the TLS method and the ULS method.

The results indicate that the TLS method (Figure 5.2b) performed inconsistently in detecting

deadwood logs in several areas. Similarly, the ULS method (Figure 5.2c) detected a signifi-

cantly smaller number of deadwood logs compared to manual measurements. From a visual

interpretation perspective, the ULS method identified 43% of the deadwood logs recorded

during manual measurements. Moreover, both methods did not detect the entire length of

many logs; instead, they captured only portions of the logs identified. The reason for these

differences in the results compared to plot 611 is given in the next chapters.

Table 5.3: Comparison of Results Between Manually Measured and TLS-Derived Logs by Seg-
ment ID, Plot D3

Stem ID TLS Manual

l (m) d (cm) V (m3) l (m) d (cm) V (m3)

1 1,9 0,45 0,302
2 2 0,22 0,079 8,3 0,15 0,147
3 5,9 0,58 1,582 7,9 0,6 2,234
4 3,1 0,34 0,285 9,3 0,21 0,322
5 4,1 0,39 0,493 10,3 0,45 1,638

5/2 2,5 0,31 0,189
5/3 2,5 0,35 0,243
5/4 3,1 0,31 0,240
5/5 3,1 0,28 0,189
6 6,8 0,12 0,077
7 5,4 1,12 5,310 5,5 0,5 1,080
8 3,4 0,67 1,210 2,2 0,3 0,156
9 3 0,1 0,024

The TLS results of plot D3, the long-term experimental plot, show that 56% of the dead-

wood logs were successfully detected. However, a closer analysis reveals several noteworthy

findings and limitations in the detection process.

First, deviations between the detected and manually measured parameters were observed.

The detected log lengths showed an average deviation of −1.7 m, with a RMSE of 4.7 m.

For log diameters, the mean deviation was 9 cm, accompanied by a RMSE of 19 cm. The log

volumes exhibited an average deviation of 0 m3, with a RMSE of 0.57 m3. It is important

to note that the mean deviation (not the mean absolute deviation) is used to assess whether

each parameter is overestimated or underestimated. In plot D3, the volume parameter shows

deviations in both directions that largely balance each other out, resulting in a relatively

small mean deviation (Table 5.3). These findings emphasize the variability in the accuracy

of the parameters for the detected logs.

Two specific issues in the detection process require attention. The log with ID 7 was identified

as an outlier due to significant deviations in its detected parameters. To ensure the reliability
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of the analysis, this log was excluded from all subsequent calculations. Furthermore, the

log with ID 5 was fragmented into five separate parts during the detection process. This

segmentation likely affected the accuracy of the parameters for this log, demonstrating a

limitation in the detection method’s ability to accurately represent entire logs.
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a

b

c

Figure 5.3: Results Plot D3; a) Manual Measurements of lying deadwood with SegmentID
(red), mean diameter and length; b) TLS-Method results, showing polyline fit
above a point count raster map; c) ULS Method Results: Voxel-Based Approach
and Diameter Mapping of Deadwood
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Next, we take a closer look at the results presented in Figure 5.3. It is evident that the large

log shown in Figure 5.3a, with a diameter of 62 cm and a length of 7.9 m, is barely detected

by both the TLS and ULS methods. However, both TLS and ULS successfully detected the

smaller log with ID 5.

According to this evaluation method, the ULS approach detected 67% of the logs. How-

ever, some discrepancies are noticeable. For example, the log with ID 2 appears significantly

shorter in the detection results compared to manual measurements. These findings high-

light the limitations of automated detection methods, particularly in accurately capturing

the dimensions of certain logs, as seen with ID 2 and the large log in Figure 5.3a.

Table 5.4: Deviations of the TLS-derived parameters from the in situ reference data for the
plots, including the correctly identified logs and the number of correctly identified
logs compared to the true total number of logs.

Plot 611 610 D3 Total

MeanDev Length [m] -0,3 -1,5 -1,7 -0,9
RMSE Length [m] 0,9 3,5 4,7 2,8
MeanDev Diameter [m] 0,03 0,15 0,09 0,08
RMSE Diameter [m] 0,12 0,22 0,19 0,16
MeanDev Volume [m3] 0,051 0,464 0,003 0,16
RMSE Volume [m3] 0,373 0,973 0,570 0,636

Correctly identified logs 15/19 8/19 5/9 28/47

In conclusion, when considering the results of the combined three graphs (Table 5.4), the

analysis revealed that the log length had a mean deviation of −0.9 m with a RMSE of 2.8 m.

Similarly, the log diameter showed a mean deviation of 0.08 m and a RMSE of 0.16 m. For

the log volume, the mean deviation was 0.16 m3, accompanied by a RMSE of 0.635 m3.

This indicates that, while the length tends to be underestimated, the overestimation of the

diameter results in an overall overestimation of the volume.

5.2. Results of Deadwood Volume Estimates Across Methods

Next, we examine the results of the different methods: manual measurements, Line Intersect,

ULS, and TLS (Table 5.5). The results for Line Intersect and ULS were created using the

methods from Kirchmeir et al., 2023.

The analysis reveals significant differences in the performance of the methods tested to esti-

mate the volume of dead wood across the plots.

For the Line Intersect method, the results indicate that it captures approximately 45% of the

volume manually measured in plot 611. In plot 610, the deviation is slightly smaller, with

the method estimating about 74% of the manually determined volume, corresponding to a

shortfall of 1.6 m3. In plot D3, the Line Intersect method achieves a relatively accurate result,

recording approximately 94% of the manual measurement, with only a minimal deviation
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Table 5.5: Total lying deadwood volume in m3 in Plot 611, 610 and D3 across the different
Methods Manual, Line Intersect, ULS and TLS

Plot Manual [m3] Line Intersect [m3] ULS [m3] TLS [m3]

611 10,168 4,655 0,676 12,624
610 7,274 4,808 1,851 6,432
D3 5,979 5,650 2,826 4,317

of 0.3 m3. In total, the Line Intersect method identifies 64% of the lying deadwood volume

in the three plots.

However, the ULS approach significantly underestimates the volume of deadwood in all plots.

In plot 611, it detects only a small fraction of the total biomass, accounting for just 7% of the

manually measured volume. Performance improves slightly in plot 610, where 29% of the

volume is detected. The best result is achieved in the plot D3, with the ULS method capturing

47% of the total volume. However, it is evident that this method consistently underestimates

the lying deadwood volume across all plots. In total, the ULS approach identifies 22% of the

lying deadwood volume in the three plots.

As the Figure 5.1 shows, the TLS method not only detected the logs identified during manual

field measurements, but also classified additional fragments as deadwood. These fragments

are included in the results as part of the estimated deadwood biomass.

As shown in Table 5.5, the TLS method estimated slightly more deadwood biomass in plot

611, with an additional 2.5 m3 (124%) compared to manual measurements. In contrast, for

plot 610, where the detection performed less effectively, the TLS method estimated 0.8 m3

less deadwood biomass than manual measurements (88%). This is still a high value; how-

ever, when examining the visual results in Figure 5.1, we must assume that this is more

likely due to coincidence. In plot D3, the TLS method estimated 77% compared to manu-

ally recorded data. In total, the TLS approach identifies 99% of the lying deadwood volume

in the three plots. Additionally, this result requires further examination in the discussion

section.
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6. Discussion

In the discussion, we examine specific scenarios in natural environments to identify the rea-

sons why the TLS method performed better or worse in certain areas. This analysis allows us

to evaluate the strengths and weaknesses of the developed method. By understanding these

strengths and weaknesses, we can explore ways to refine and optimize the method further in

the future. Alternatively, we can determine under which conditions the TLS method is most

suitable and when its application may be less effective. This will help to decide whether and

when to rely on this method for practical use. Furthermore, we discuss the advantages and

disadvantages of the different methods. ULS-based, TLS-based, manual measurements and

the Line Intersect method. In addition, we evaluate the reliability of each method to provide

a complete understanding of their performance and applicability under various conditions.

6.1. TLS-approach overall and Log-by-Log Discussion

Polewski et al., 2017 and Yrttimaa et al., 2019 report in their studies on the detection of

lying deadwood using TLS that they achieved a detection rate of 70-80% in forests with

moderate to dense vegetation. This is comparable to the 84% achieved in plot 611 in this

study. However, the detection rate in Plot 610 was significantly lower at 48%, probably due

to the denser vegetation and more heavily overgrown deadwood logs in this plot. Plot D3

achieved a detection rate of 67%, which is also below the results reported by Polewski et al.,

2017. Combining the data from all three plots, the TLS method derived 99% of the lying

deadwood volume. However, this result should be interpreted with caution, as it is the result

of an overestimation in plot 611 being perfectly balanced by underestimations in plots 610

and D3.

The RMSE of the measured parameters also shows similarities with those in the literature.

In this study, for example, the length RMSE was 2.82 m for the plot 611, while Yrttimaa

et al., 2019 reports a RMSE of approximately 7.2 m. The diameter measurements also show

consistency: the RMSE in this study was 0.16 m, comparable to Yrttimaa et al., 2019 (0.06 m)

and also aligning with the results of Polewski et al., 2017. The RMSE of volume per stem for

plot 611 (0.363 m3) also aligns with Yrttimaa et al., 2019 (RMSE volume 0.305 m3). These

consistencies highlight the robustness of the TLS approach used in this study, especially in

areas with moderate conditions, such as plot 611. However, for the other plots, the RMSE

are less consistent with the literature. For plot 610, the RMSE for length was 3.55 m, and

for plot D3, it was 4.66 m, both appear smaller compared to findings in previous research,

although it is important to note that the overall stem length is shorter than in these other

studies. Similarly, the RMSE for diameter were 0.21 m (plot 610) and 0.18 m (plot D3),

indicating greater variability in these measurements compared to plot 611. This results in

bigger RMSE for volume (0.973 m3 plot 610 and 0.569 m3 plot D3). To better understand

these discrepancies, we will examine each plot in detail to identify the specific factors that
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contribute to these differences.

We begin with plot 611, where the detection of deadwood using the TLS method performed

the best. As shown in Figure 6.1, the plot is located on a slope, with fallen trees lying along

the slope. In Figure 6.1b, we can observe a large log suspended in the air, lying across

another large log, as well as three additional logs positioned on the ground in the lower

right corner. Comparing these observations with the results in Figure 5.1a, which displays

the outcomes of the manual measurements and the TLS method, we see that the two large

logs with IDs 6 and 3 were successfully detected. However, the logs with IDs 7, 8, and 9,

located on the ground, were only partially detected. Specifically, only log 7 was detected by

the TLS method. This limitation can be explained as follows: In the initial processing step,

logs 8 and 9 were also detected but classified as a single segment because they converge

at a certain point. As a result, this combined segment was assigned a broader width and

did not meet the R2 threshold defined in the methodology. Consequently, this segment was

discarded. Examining Figure 6.1a, we observe that the program correctly detected logs 2

and 3 as separate entities, and log 4 was also accurately identified. However, log 19, which is

not clearly visible in the image, was only partially detected. This may be due to the presence

of branches along the log, which likely interfered with the algorithm’s performance.

Next, we examine plot 610, which, as observed in the results section, produced particularly

poor detection results. In this section, our aim is to understand the reasons behind this

result. By analyzing the Figures 6.2, we observe that the plot 610 is characterized by a

denser forest with significant understory, numerous small trees, and fallen logs that lie closer

to the ground. In addition, many of these logs are heavily overgrown with moss, fungi, and

other vegetation. This overgrowth affects the smoothness of the log surfaces, which poses

challenges to the normal vector calculation and limits the effectiveness of the TLS-based

method. Furthermore, as noted in the results section, a large portion of the ground surface

of the plot was not successfully filtered during the initial steps of DTM generation, point

cloud normalization, and the subsequent filtering process. This failure to remove ground

points further contributed to poor detection performance.

In Figure 6.2a, we see the logs with IDs 10 and 11. These logs could not be detected using the

TLS method. Similarly, the ULS method also failed to identify these logs. In Figure 6.2b, we

observe logs with IDs 17, 15, 20, 21, 18, 19, 16, and 14. Here, the logs were only partially

detected. For example, logs 17 and 15 were identified as a single segment using the TLS

method, and log 16 was successfully detected. However, the smaller logs in the foreground

of Figure 6.2b could not be identified using this TLS approach. Interestingly, the ULS method

performed better in detecting these smaller logs, as seen in Figure 5.2c. This is particularly

evident in the lower left corner of the plot, where the ULS method showed superior detection

capabilities compared to TLS.

Finally, we analyze plot D3, which was selected due to its challenging characteristics. This

plot contains numerous logs lying side by side, overlapping each other and featuring large
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a

b

Figure 6.1: Pictures of Plot 611 with SegmentID (red)

branches and varying dimensions, making detection particularly complex (Figure 6.3).

Log ID 3, the largest log in the plot, lies directly on the ground. Adjacent to log ID 3, log

ID 4 runs almost parallel to it but has a smaller diameter. Above both logs lies log ID 5.

Referring to the results presented in Chapter 5 (Figure 5.3), we observe that log ID 3 was

almost entirely undetected, while logs ID 4 and ID 5 were at least partially detected. This

discrepancy may be explained by the TLS evaluation method, which uses only the highest

and lowest points within a cell at any given time. As a result, many points from log ID 3 are

lost during processing, preventing its full detection. The log with ID 7, which contributes

significantly to the deadwood volume for plot D3, was unfortunately identified as an outlier.

This classification occurred because the diameter determined for this log exceeded the pre-

defined threshold.

Overall, across all plots, it can be observed that logs with very small diameters are also more

difficult to detect. For example, in plot D3, logs with IDs 6 and 2 were poorly detected (Figure

5.3), likely due to their small size and reduced point density in the TLS data. Table 5.5

compares the volume of dead wood (in cubic meters) determined by the TLS method with
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a

b

c

Figure 6.2: Pictures of Plot 610 with SegmentID (red)

the manual measurements across the different plots. At first glance, it appears that the TLS

method closely approximates the manual values, especially for plot 611. However, this is

not consistently the case for all plots.

For plot 611, the volume derived from TLS is reliable and aligns well with manual measure-

ments. In contrast, the values for plot 610 should be interpreted with caution. Although

the deviation between TLS and manual measurements is relatively small, this appears to be

coincidental rather than indicative of accurate detection. Finally, for plot D3, the TLS values

are more trustworthy and provide a reasonable approximation of the manual measurements.

In summary, while the TLS method shows promising results in some plots, such as 611 and

D3, the values for plot 610 cannot be considered reliable and are likely the result of chance.

It is important to note that achieving good coverage with the TLS method requires multiple

scanning positions, which involves a significant investment of time and equipment. In areas
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a

b

Figure 6.3: Pictures of Plot D3 with SegmentID (red)

with only a small amount of deadwood, the time required for data collection using TLS is

almost equivalent to that of manual measurements. However, in regions with a high den-

sity of deadwood, where manual measurements would be highly time consuming, the TLS

method could be a valuable alternative due to its efficiency in capturing large volumes of

data.

6.2. Comparison between Methods

In this section, we compare the results of the different methods for calculating the deadwood

volume for each plot. A significant variation is observed in the volumes calculated using the

different methods (Table 5.5). These 3 plots were specifically selected based on their dead-

wood content to test and validate the TLS method. From a visual analysis perspective, it can

be observed that the ULS method performed well in detecting large logs and provided robust

volume estimations compared to the TLS method (see Figures 5.1, 5.2 and 5.3). However,

the ULS approach significantly underestimated the volume with only 22% of deadwood vol-

ume (Table 5.5). Lindberg et al., 2013 tested their method under comparable conditions and

achieved 32% completeness. Nyström et al., 2014 achieved quite better results with 40% of

trees detected. Comparison between studies is challenging due to the varying methodolo-

gies employed. Furthermore, differences in data collection methods, such as the resolution
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of point clouds or the density of the scanned forest environment, further complicate com-

parability. The results of Mücke et al., 2013 corresponded to 41% of the stems measured in

the field.

Under favorable conditions, the TLS method detected a greater number of smaller stems

and was able to estimate their volume. Additionally, the ULS method is far less invasive

in the field and significantly less time consuming than the TLS method. The Line Intersect

method is also invasive, but requires less expensive equipment and can be carried out by

any trained individual. Although it is slightly more time consuming than the ULS method,

it is comparable in time requirements to the TLS method. Furthermore, data processing for

the Line Intersect method is less complex and time consuming compared to the TLS method,

which requires data referencing and extensive processing.

In this case, the line intersect method underestimated the deadwood volume in the plots.

However, the results are highly dependent on the included tree stems. It is also recom-

mended to apply this method to a larger number of plots and with a significantly larger

radius (Wagner, 1968).

The results for dense forest areas, such as plot 610, highlight challenges for both the ULS and

the TLS methods. In plot D3, both the ULS and the TLS methods slightly underestimated the

manual measurements, probably influenced by the unique characteristics of this plot. Here,

the line intersect method successfully captured all relevant logs, resulting in remarkably

accurate outcomes. On the other hand, for plot 611, the TLS method outperformed the

other methods, providing more accurate results.
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7. Conclusion and Outlook

This study investigated different methods for assessing deadwood in an unmanaged forest

(Rohrach Biosphere Reserve): manual measurements, the line intersect method, terrestrial

laser scanning (TLS) and UAV-based laser scanning (ULS). A new approach was also devel-

oped to detect deadwood using TLS data, and its performance was thoroughly evaluated.

The new TLS-based detection method proved to be effective in many cases. It performed well

in identifying and measuring deadwood, particularly in areas where the logs were clearly

visible and did not overlap. The method accurately calculated parameters such as volume,

length, and diameter. However, it faced challenges in more complex scenarios, such as over-

lapping logs, logs partially covered by vegetation, or fragmented logs. These conditions

caused errors in segmentation or led to the detection of logs that were not present. Com-

pared to TLS, ULS demonstrated the ability to cover larger areas efficiently, making it suit-

able for large-scale assessments. However, ULS struggled in areas with dense vegetation or

steep slopes, which caused underestimations of deadwood volume. Manual measurements

remained the most accurate method for measuring deadwood but were too time- and labor-

intensive for larger plots. The Line Intersect Method, while fast and simple, may be less reli-

able in areas where deadwood was unevenly distributed. This study highlights the potential

of integrating the new TLS method with ULS to combine their respective strengths. Such

an integrated approach could provide high precision on a local scale, while also effectively

covering larger areas. For future research, the TLS detection algorithm should be refined

to better handle complex forest conditions such as overlapping logs and fragmented data.

Further studies should also explore ways to combine TLS and ULS datasets more effectively

to create standardized protocols for deadwood monitoring.

Improving these methods is essential for sustainable forest management and conservation of

biodiversity, especially in unmanaged forests. These advances will help improve the accuracy

and efficiency of deadwood assessments and support long-term ecological studies.
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A. Appendix: Opals Batch Code

1 rem Detection of deadwood

2

3 rem set file name

4 set fn=611 _1cm

5 rem set working directory

6 cd E:\ Opals_Data \611

7 set fn_sc=E:\ Opals_Data\scripts

8

9 rem set working directory

10 cd D:\ Opals_Data \611

11 set fn_sc=D:\ Opals_Data\scripts

12

13 rem import Data

14 opalsimport -inf %fn%_EPSG25832.laz -outf %fn%.odm -tilesize 1

15 :: opalsimport -inf %fn%.las -tilesize 1

16

17 _setCRS -inFile %fn%.odm -epsgCode 25832

18

19 rem 1. DTM generation

20

21 rem limits 611

22 opalsexport -inf %fn%.odm -outf %fn%_limit.odm -limit 560927 5270728 560955 5270761 -tilesize 0.5

23 rem limits 610

24 :: opalsexport -inf %fn%.odm -outf %fn%_limit.odm -limit 561027 5270730 561054 5270761 -filter "

generic[Z < 655]" -tilesize 0.5

25 rem limits D3

26 :: opalsexport -inf %fn%.odm -outf %fn%_limit.odm -limit 560935 5270772 560959 5270795 -tilesize 0.5

27

28 rem thinning - lowest last echo within 0.1 m cells as basis for DTM calculation

29 opalscell -inf %fn%_limit.odm -outf %fn%_min01.odm -cellsize 0.2 -feat min -filter echo[first]

30

31 rem hierarchical iterativ approach

32 opalscell -inf %fn%_min01.odm -outf %fn%_min3.odm -cellsize 1 -feat quantile :0.1

33 opalsgrid -inf %fn%_min01.odm -outf %fn%_min1_tr.tif -interpol delaunayTriangulation -grids 0.5 -

searchRad 5

34 opalsfillgaps -inf %fn%_min1_tr.tif -outFile %fn%_min1_tr_fg.tif -method triangulation

35 opalsaddinfo -inf %fn%_min01.odm -gridf %fn%_min1_tr_fg.tif -attribute "normalizedZ=z-r[0]"

36

37 opalsGrid -inf %fn%_min01.odm -outFile %fn%_DTM2.tif -interpolation movingPlanes -grids 0.5 -searchRad

3 -neighb 50 -filter "generic[normalizedz <1 and normalizedz >-2]"

38 opalsfillgaps -inf %fn%_DTM2.tif -outFile %fn%_DTM2_fg.tif -method triangulation

39 opalsaddinfo -inf %fn%_min01.odm -gridf %fn%_DTM2_fg.tif -attribute "normalizedZ=z-r[0]" -searchr 10

40

41 opalsGrid -inf %fn%_min01.odm -outFile %fn%_DTM3.tif -interpolation movingPlanes -grids 0.25 -

searchRad 2 -neighb 10 -filter "generic[normalizedz <0.35 and normalizedz > -0.35]"

42 opalsfillgaps -inf %fn%_DTM3.tif -outFile %fn%_DTM3_fg.tif -method triangulation

43 opalsaddinfo -inf %fn%_min01.odm -gridf %fn%_DTM3_fg.tif -attribute "normalizedZ=z-r[0]" -searchr 10

44

45 opalsGrid -inf %fn%_min01.odm -outFile %fn%_DTM4.tif -interpolation movingPlanes -grids 0.2 -searchRad

1 -neighb 10 -filter "generic[normalizedz <0.2 and normalizedz > -0.15]"

46 opalsfillgaps -inf %fn%_DTM4.tif -outFile %fn%_DTM4_fg.tif -method triangulation

47 opalsaddinfo -inf %fn%_min01.odm -gridf %fn%_DTM4_fg.tif -attribute "normalizedZ=z-r[0]" -searchr 10

48

49 opalsGrid -inf %fn%_min01.odm -outFile %fn%_DTM4.tif -interpolation movingPlanes -grids 0.15 -

searchRad 0.5 -neighb 10 -filter "generic[normalizedz <0.1 normalizedz >0]"

50 opalsfillgaps -inf %fn%_DTM4.tif -outFile %fn%_DTM.tif -method triangulation

51

52 opalsShade -inf %fn%_DTM.tif

53

54 rem 2. normalizing point cloud with the DTM

55 opalsaddinfo -inf %fn%_limit.odm -gridf %fn%_DTM.tif -attribute "normalizedZ=z-r[0]"

56

57 rem 3. filter pointcloud between 0.1 and 4 meters above ground

58 opalsexport -inf %fn%_limit.odm -outf %fn%_sub_dw.odm -filter "generic[normalizedz > 0.1 and

normalizedz <4] and echo[first]" -tilesize 0.5

59

60 rem 4. Calculate Distance to Plot Center 611

61 opalsaddinfo -inf %fn%_sub_dw.odm -attr "_dist2center=sqrt((X - 560941) *(X -560941) + (Y - 5270744) *(Y

- 5270744))"

62

63 rem 5. filter all points outside 12m radius

64 opalsexport -inf %fn%_sub_dw.odm -outf %fn%_sub_dw2.odm -filter "generic[_dist2center < 12]" -tilesize

0.5
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65

66

67

68 rem Segemnatation for Deadwood

69 rem 6. Calculate Normals

70 opalsNormals -inf %fn%_sub_dw2.odm -storeMetaInfo maximum -neighb 50 -searchMode d3 -searchRadius 0.2

71

72 rem 7. Claculate linearity

73 opalsAddInfo -inf %fn%_sub_dw2.odm -attribute "_linearity(float)=sqrt(1- NormalEigenValue2/

NormalEigenValue1)"

74

75 rem 8. filter NormalSigma0 , NormalEigenvalue1 ,NormalEigenvalue2 and linearity after visual inspection

76 rem 611

77 opalsexport -inf %fn%_sub_dw2.odm -outf %fn%_sub_dw3.odm -filter "generic[NormalSigma0 < 0.012 and

NormalEigenvalue1 < 0.04 and NormalEigenvalue2 < 0.025 and _linearity < 0.5]" -tilesize 0.5

78 rem 610

79 :: opalsexport -inf %fn%_sub_dw2.odm -outf %fn%_sub_dw3.odm -filter "generic[NormalSigma0 < 0.014 and

NormalEigenvalue1 < 0.025 and NormalEigenvalue2 < 0.016 and _linearity < 0.6 and normalizedz <

1.5]" -tilesize 0.5

80 rem D3

81 :: opalsexport -inf %fn%_sub_dw2.odm -outf %fn%_sub_dw3.odm -filter "generic[NormalSigma0 < 0.012 and

NormalEigenvalue1 < 0.04 and _linearity < 0.6]" -tilesize 0.5

82

83

84 rem 9. select 0.1 and 0.9 z-Quantile per cell and combine

85 opalscell -inf %fn%_sub_dw3.odm -outf %fn%_sub_dw3_max.odm -cellsize 0.02 -feat quantile :0.9

86 opalscell -inf %fn%_sub_dw3.odm -outf %fn%_sub_dw3_min.odm -cellsize 0.02 -feat quantile :0.1

87 opalsexport -inf %fn%_sub_dw3_min.odm %fn%_sub_dw3_max.odm -outf %fn%_sub_dw3_comb.odm

88

89

90 rem 10. calculate 3D distance to the nearest neighbours

91 opalsaddinfo -inf %fn%_sub_dw3_comb.odm -searchradius 1 -searchmod d3 -neighb 3 -attr "_p3dist=

SqrDist3D(n[0], n[1])"

92

93 rem 11. normalize the compbined point cloud

94 opalsaddinfo -inf %fn%_sub_dw3_comb.odm -gridf %fn%_DTM.tif -attribute "normalizedZ=z-r[0]"

95

96 rem 12. Calculate Normals and linearity

97 opalsNormals -inf %fn%_sub_dw3_comb.odm -storeMetaInfo maximum -neighb 50 -searchMode d3 -searchRadius

0.1

98 opalsAddInfo -inf %fn%_sub_dw3_comb.odm -attribute "_linearity(float)=sqrt(1- NormalEigenValue2/

NormalEigenValue1)"

99

100 rem 13. filter points of distance to neighbours and linearity

101 opalsexport -inf %fn%_sub_dw3_comb.odm -outf %fn%_sub_dw4.odm -filter "generic[_p3dist < 0.001 and

_linearity < 0.65]"

102

103 rem 14. Segmentation of lying deadwood

104 opalsSegmentation -inf %fn%_sub_dw4.odm -searchRadius 0.18 -searchMode d3 -minSegSize 300 -method

condClustering -criterion "abs(_NormalEigenvector1X*n[0]. _NormalEigenvector1X +

_NormalEigenvector1Y*n[0]. _NormalEigenvector1Y +_NormalEigenvector1Z*n[0]. _NormalEigenvector1Z)>

cos (0.06)"

105

106 rem 15. Filter every point which is not part of the a segment

107 opalsexport -inf %fn%_sub_dw4.odm -outf %fn%_seg.odm -filter "generic[SegmentID >= 0]"

108

109 rem calculates pdens and pcount map for visualizing

110 opalscell -inf %fn%_seg.odm -feature pdens pcount -cellSize 0.05

111

112 rem 16. export file as txt -file

113 opalsexport -inf %fn%_seg.odm -outf %fn%_seg.txt -oformat %fn_sc%\ output_dw.xml

114

115 rem 17. Python -Script for fitting polyline

116 rem imput -file; Results per Segment; Shapefile; Extended Pointcloud; Grad of fittet line , R^2-limit;

lower -quantile; upper -quantile for diameter.

117 python %fn_sc%\ ransac_poly.py %fn%_seg.txt %fn%_seg_attribute.txt %fn%_shapefile1.shp %fn%_shapefile2.

shp %fn%_extended.txt 2 0.5 0.15 0.8

118

119 rem 18. Import extendet pointcloud

120 opalsimport -inf %fn%_extended.txt -iformat %fn_sc %\ import_ransac.xml -outf %fn%_extended.odm
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B. Appendix: Python Code

1 import sys

2 import pandas as pd

3 import numpy as np

4 from sklearn.linear_model import RANSACRegressor

5 from sklearn.preprocessing import PolynomialFeatures

6 from sklearn.pipeline import make_pipeline

7 from sklearn.linear_model import LinearRegression

8 from sklearn.metrics import r2_score

9 from scipy.spatial.distance import euclidean

10 from scipy.integrate import quad

11 import shapefile # PyShp for creating Shapefile output

12 import math

13

14 # Calculate Euclidean distance between two points

15 def calculate_distance(point1 , point2):

16 return euclidean(point1 , point2)

17

18 # Calculate the tangent vector at the endpoint of the polynomial curve

19 def calculate_tangent(model , x_val):

20 pipeline_model = model.estimator_

21 poly_features = pipeline_model.named_steps[’polynomialfeatures ’]

22 lin_reg = pipeline_model.named_steps[’linearregression ’]

23 coefs = lin_reg.coef_

24 degree = poly_features.degree

25 derivative = sum(coefs[i] * i * (x_val ** (i - 1)) for i in range(1, degree + 1))

26 return derivative

27

28 # Calculate the angle between two vectors

29 def calculate_angle_between_vectors(vec1 , vec2):

30 unit_vec1 = vec1 / np.linalg.norm(vec1)

31 unit_vec2 = vec2 / np.linalg.norm(vec2)

32 dot_product = np.dot(unit_vec1 , unit_vec2)

33 angle = np.arccos(dot_product)

34 return np.degrees(angle)

35

36 # Generate points along the polynomial curve predicted by the RANSAC model

37 def get_polynomial_curve(ransac_model , x_min , x_max , num_points =100):

38 x_values = np.linspace(x_min , x_max , num_points)

39 y_values = ransac_model.predict(x_values.reshape(-1, 1))

40 points = [( x_values[i], y_values[i]) for i in range(len(x_values))]

41 return points

42

43 # Calculate the arc length of the polynomial curve between two x-values

44 def calculate_arc_length(ransac_model , x_min , x_max):

45 arc_length_integral = lambda x: np.sqrt(1 + calculate_tangent(ransac_model , x)**2)

46 arc_length , _ = quad(arc_length_integral , x_min , x_max)

47 return arc_length

48

49 # Merge segments if they are close , similarly oriented , and at similar Z height

50 def merge_segments_if_similar(segments , distance_threshold =1.5, angle_threshold =15, z_threshold =0.3):

51 merged_segments = []

52 used_segments = set()

53

54 for i, seg1 in enumerate(segments):

55 if i in used_segments:

56 continue

57

58 current_merged_segment = seg1

59 used_segments.add(i)

60 current_merged_points = seg1[’points ’] # Collect points for post -merge RANSAC

61

62 for j, seg2 in enumerate(segments):

63 if j in used_segments or i == j:

64 continue

65

66 min_x1 , max_x1 = seg1[’x_min’], seg1[’x_max’]

67 min_x2 , max_x2 = seg2[’x_min’], seg2[’x_max’]

68 end_point1 = (max_x1 , seg1[’model ’]. predict ([[ max_x1 ]]) [0])

69 start_point2 = (min_x2 , seg2[’model ’]. predict ([[ min_x2 ]]) [0])

70

71 # Calculate the distance and angle between segments

72 distance = calculate_distance(end_point1 , start_point2)

73
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74 if distance < distance_threshold:

75 tangent1 = calculate_tangent(seg1[’model’], max_x1)

76 tangent2 = calculate_tangent(seg2[’model’], min_x2)

77 angle = calculate_angle_between_vectors(np.array([1, tangent1 ]), np.array ([1, tangent2

]))

78

79 # P r f e n der Z- H h e der Segment -Endpunkte , wenn Werte vorhanden sind

80 z_end1_points = seg1[’points ’][seg1[’points ’][:, 0] == max_x1]

81 z_start2_points = seg2[’points ’][seg2[’points ’][:, 0] == min_x2]

82

83 # Sicherstellen , dass z_end1 und z_start2 Werte enthalten , bevor darauf zugegriffen

wird

84 if z_end1_points.size > 0 and z_start2_points.size > 0:

85 z_end1 = z_end1_points [0, 2]

86 z_start2 = z_start2_points [0, 2]

87 z_difference = abs(z_end1 - z_start2)

88

89 # P r f e n , ob der Z- H henunterschied innerhalb der Toleranz liegt

90 if angle < angle_threshold and z_difference < z_threshold:

91 # Add points of seg2 to the current merged points

92 current_merged_points = np.vstack ([ current_merged_points , seg2[’points ’]])

93 current_merged_segment[’x_min’] = min(current_merged_segment[’x_min’], seg2[’

x_min ’])

94 current_merged_segment[’x_max’] = max(current_merged_segment[’x_max’], seg2[’

x_max ’])

95 used_segments.add(j)

96 else:

97 # Falls keine passenden Z-Werte vorhanden sind , wird das Segment bersprungen

98 continue

99

100

101 # Update merged segment with all merged points

102 current_merged_segment[’points ’] = current_merged_points

103 merged_segments.append(current_merged_segment)

104

105 return merged_segments

106

107 # Main RANSAC function with initial and post -merge Shapefile outputs

108 def ransac(input_file , output_file , initial_shapefile_output , merged_shapefile_output ,

text_output_file , degree , r2_threshold , quantile_lower , quantile_upper):

109 point_cloud = pd.read_csv(input_file , delim_whitespace=True , names=[’X’, ’Y’, ’Z’, ’NormalizedZ ’,

’SegmentID ’], skiprows =1)

110 segments = point_cloud.groupby(’SegmentID ’)

111

112 segment_results = []

113 extended_points = [] # Temporary list for points from all segments

114 filtered_extended_points = [] # Final list to store only points from accepted segments

115 segment_info = [] # Store segment information for merging later

116

117 # Initial Shapefile for segments after Step 2

118 shp_initial = shapefile.Writer(initial_shapefile_output , shapeType=shapefile.POLYLINE)

119 shp_initial.field(’SegmentID ’, ’N’)

120

121 # Apply initial RANSAC to each segment and save to initial Shapefile

122 for segment_id , segment in segments:

123 X = segment [[’X’]]. values

124 y = segment[’Y’]. values

125

126 pipeline_model = make_pipeline(PolynomialFeatures(degree), LinearRegression ())

127 ransac = RANSACRegressor(pipeline_model)

128 ransac.fit(X, y)

129

130 min_x , max_x = segment[’X’].min(), segment[’X’].max()

131

132 # Save the fitted line as a polyline to the initial Shapefile

133 initial_curve_points = get_polynomial_curve(ransac , min_x , max_x)

134 shp_initial.line([ initial_curve_points ])

135 shp_initial.record(SegmentID=segment_id)

136

137 # Speichern von Segmentinformationen zum s p t e r e n Merging

138 segment_info.append ({

139 ’SegmentID ’: segment_id ,

140 ’model’: ransac ,

141 ’points ’: np.column_stack ([X, y, segment[’Z’]. values ]), # Z-Koordinate h i n z u f g e n

142 ’x_min’: min_x ,

143 ’x_max’: max_x
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144 })

145

146

147 # Collect extended point data for each point in this segment

148 for i in range(len(X)):

149 extended_points.append ({

150 ’X’: segment.iloc[i][’X’],

151 ’Y’: segment.iloc[i][’Y’],

152 ’Z’: segment.iloc[i][’Z’],

153 ’SegmentID ’: segment_id ,

154 ’Length ’: None , # Placeholder for now , to be filled in Step 5

155 ’Diameter ’: None , # Placeholder for now , to be filled in Step 5

156 ’Volume ’: None , # Placeholder for now , to be filled in Step 5

157 ’Mean_Residual ’: None # Placeholder for now , to be filled in Step 5

158 })

159

160 # Close the initial Shapefile

161 shp_initial.close ()

162

163 # Merge segments and reapply RANSAC , then save merged Shapefile

164 merged_segments = merge_segments_if_similar(segment_info)

165

166 shp_merged = shapefile.Writer(merged_shapefile_output , shapeType=shapefile.POLYLINE)

167 shp_merged.field(’SegmentID ’, ’N’)

168 shp_merged.field(’Length ’, ’F’, decimal =8)

169 shp_merged.field(’Diameter ’, ’F’, decimal =8)

170 shp_merged.field(’Volume ’, ’F’, decimal =8)

171

172 new_segment_id = 0

173 for merged_segment in merged_segments:

174 new_segment_id += 1

175 merged_points = merged_segment[’points ’]

176 X_merged = merged_points [:, 0]. reshape(-1, 1)

177 y_merged = merged_points [:, 1]

178

179 # Apply RANSAC again to the merged segment

180 pipeline_model = make_pipeline(PolynomialFeatures(degree), LinearRegression ())

181 ransac = RANSACRegressor(pipeline_model)

182 ransac.fit(X_merged , y_merged)

183

184 # Calculate R for quality assurance

185 y_pred = ransac.predict(X_merged)

186 r2 = r2_score(y_merged , y_pred)

187 if r2 < r2_threshold:

188 continue # Skip segments that don’t meet R threshold

189

190 # Calculate final length , diameter , and volume

191 min_x , max_x = X_merged.min(), X_merged.max()

192 residuals = y_merged - y_pred

193 arc_length = calculate_arc_length(ransac , min_x , max_x)

194 min_z = point_cloud [( point_cloud[’X’] == min_x)][’Z’]. values [0]

195 max_z = point_cloud [( point_cloud[’X’] == max_x)][’Z’]. values [0]

196 delta_z = max_z - min_z

197 actual_length = math.sqrt(arc_length **2 + delta_z **2)

198 q_lower = np.quantile(residuals , quantile_lower)

199 q_upper = np.quantile(residuals , quantile_upper)

200 diameter = abs(q_upper - q_lower)

201 volume = math.pi * (diameter / 2) ** 2 * actual_length

202

203 # Append segment results

204 segment_results.append ({

205 ’SegmentID ’: new_segment_id ,

206 ’Length ’: actual_length ,

207 ’Diameter ’: diameter ,

208 ’Volume ’: volume ,

209 ’Mean_Residual ’: residuals.mean()

210 })

211

212 # Add only accepted segment points to filtered list

213 for point in extended_points:

214 if point[’SegmentID ’] == merged_segment[’SegmentID ’]:

215 point[’Length ’] = actual_length

216 point[’Diameter ’] = diameter

217 point[’Volume ’] = volume

218 point[’Mean_Residual ’] = residuals.mean()

219 filtered_extended_points.append(point)
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220

221 # Save merged segment to Shapefile

222 merged_curve_points = get_polynomial_curve(ransac , min_x , max_x)

223 shp_merged.line([ merged_curve_points ])

224 shp_merged.record(SegmentID=new_segment_id , Length=actual_length , Diameter=diameter , Volume=

volume)

225

226 # Close the merged Shapefile

227 shp_merged.close()

228

229 # Save results to CSV and extended point cloud

230 results_df = pd.DataFrame(segment_results)

231 if not results_df.empty:

232 results_df.to_csv(output_file , index=False)

233 else:

234 print("Warning: No data in segment_results to save in output file.")

235

236 # Only save points in accepted segments to the extended output

237 filtered_extended_points_df = pd.DataFrame(filtered_extended_points)

238 if not filtered_extended_points_df.empty:

239 filtered_extended_points_df.to_csv(text_output_file , sep=’ ’, index=False)

240 else:

241 print("Warning: No data in filtered_extended_points to save in text output file.")

242

243 # Print the total number of final segments that passed quality assurance

244 print(f"Total number of final segments: {len(segment_results)}")

245 print(f"Initial Shapefile saved as {initial_shapefile_output}")

246 print(f"Merged Shapefile saved as {merged_shapefile_output}")

247 print(f"Results saved in {output_file}")

248 print(f"Extended point information saved in {text_output_file}")

249

250 if __name__ == "__main__":

251 ransac(sys.argv[1], sys.argv[2], sys.argv[3], sys.argv [4], sys.argv[5], degree=int(sys.argv [6]),

252 r2_threshold=float(sys.argv [7]), quantile_lower=float(sys.argv [8]), quantile_upper=float(

sys.argv [9]))

51



REFERENCES

References

Cheng, C.-L., Shalabh, & Garg, G. (2014). Coefficient of determination for multiple measure-

ment error models. Journal of Multivariate Analysis, 126, 137–152. https://doi.org/h

ttps://doi.org/10.1016/j.jmva.2014.01.006

Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: A paradigm for model

fitting with applications to image analysis and automated cartography [Place: New

York, NY, USA Publisher: Association for Computing Machinery]. Commun. ACM,

24(6), 381–395. https://doi.org/10.1145/358669.358692

Grabherr, G., & Broggi, M. (1999). Ein Wald im Aufbruch: Das Naturwaldreservat Rohrach

(Vorarlberg, österreich). Bristol-Stiftung. https://books.google.at/books?id=vCAqAAAA

CAAJ

Humphrey, J., Sippola, A., Lempérière, G., Dodelin, B., Alexander, K., & Butler, J. (2005).

Deadwood as an indicator of biodiversity in European forests: From theory to opera-

tional guidance. Monitoring and indicators of forest biodiversity in Europe–from ideas

to operationality, 51, 193–206.

Kirchmeir, H., Steinbauer, K., Berger, V., Posch, L., Thaler, S., Rathke, H., Nussbaumer, D.,

Schimpl, L., & Hollaus, M. (2023). Digitale Bestanderfassung und Entwicklungsanal-

yse für das Naturwaldreservat Rohrach: E.C.O. Institut für ökologie, Klagenfurt, 39

S.

Liang, X., Hyyppä, J., Kaartinen, H., Lehtomäki, M., Pyörälä, J., Pfeifer, N., Holopainen, M.,

Brolly, G., Francesco, P., Hackenberg, J., Jinhu Wang, Huang, H., Jo, H.-W., Katoh, M.,

Liu, L., Mokroš, M., Morel, J., Olofsson, K., Jose Alejandro Poveda Lopez, . . . Wang, Y.

(2018). International benchmarking of terrestrial laser scanning approaches for for-

est inventories [MAG ID: 2884197231]. Isprs Journal of Photogrammetry and Remote

Sensing, 144, 137–179. https://doi.org/10.1016/j.isprsjprs.2018.06.021

Lindberg, E., Hollaus, M., Mücke, W., Fransson, J., & Pfeifer, N. (2013). Detection of lying

tree stems from airborne laser scanning data using a line template matching algo-

rithm [MAG ID: 2114891033]. ISPRS Annals of the Photogrammetry, Remote Sensing

and Spatial Information Sciences, 169–174. https://doi.org/10.5194/isprsannals-ii-5-w

2-169-2013

Marchetti, M. (2004). Monitoring and Indicators of Forest Biodiversity in Europe - From

Ideas to Operationality [MAG ID: 2338449464].

Marchi, N., Yang, B., Jinhu Wang, Wang, J., Pirotti, F., & Lingua, E. (2018). Airborne and

Terrestrial Laser Scanning Data for the Assessment of Standing and Lying Deadwood:

Current Situation and New Perspectives [MAG ID: 2889130004]. Remote Sensing,

10(9), 1356. https://doi.org/10.3390/rs10091356

Melzer, T., & Briese, C. (2004). Extraction and Modeling of Power Lines from ALS Point

Clouds.

52



REFERENCES
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