
Author copy of paper published at 2024 IEEE/ACM Symposium on Edge Computing (SEC)
©2024 IEEE

HyperDrive: Scheduling Serverless Functions in the
Edge-Cloud-Space 3D Continuum

Thomas Pusztai*
Distributed Systems Group, TU Wien

t.pusztai@dsg.tuwien.ac.at

Cynthia Marcelino*
Distributed Systems Group, TU Wien

c.marcelino@dsg.tuwien.ac.at

Stefan Nastic
Distributed Systems Group, TU Wien

snastic@dsg.tuwien.ac.at

Abstract—The number of Low Earth Orbit (LEO) satellites has
grown enormously in the past years. Their abundance and low
orbits allow for low latency communication with a satellite almost
anywhere on Earth, and high-speed inter-satellite laser links (ISLs)
enable a quick exchange of large amounts of data among satellites.
As the computational capabilities of LEO satellites grow, they are
becoming eligible as general-purpose compute nodes. In the 3D
continuum, which combines Cloud and Edge nodes on Earth and
satellites in space into a seamless computing fabric, workloads
can be executed on any of the aforementioned compute nodes,
depending on where it is most beneficial. However, scheduling on
LEO satellites moving at approx. 27,000 km/h requires picking
the satellite with the lowest latency to all data sources (ground
and, possibly, earth observation satellites). Dissipating heat from
onboard hardware is challenging when facing the sun and
workloads must not drain the satellite’s batteries. These factors
make meeting SLOs more challenging than in the Edge-Cloud
continuum, i.e., on Earth alone. We present HyperDrive, an SLO-
aware scheduler for serverless functions specifically designed for
the 3D continuum. It places functions on Cloud, Edge, or Space
compute nodes, based on their availability and ability to meet the
SLO requirements of the workflow. We evaluate HyperDrive using
a wildfire disaster response use case with high Earth Observation
data processing requirements and stringent SLOs, showing that
it enables the design and execution of such next-generation 3D
scenarios with 71% lower network latency than the best baseline
scheduler.

Index Terms—serverless computing, scheduling, 3D continuum,
orbital edge computing, LEO satellites, SLOs

I. INTRODUCTION

As of 2024, there are over 8,000 low Earth orbit (LEO)
satellites orbiting the Earth [1]. Satellites have traditionally
communicated with each other via ground stations. Lately,
inter-satellite laser links (ISLs) aim to connect satellites and
create a large orbital network topology [2]. Starlink is currently
the largest LEO mega-constellation with about 7,000 satellites
in orbit [3] and almost 12,000 total satellites approved by
the FCC, which must be launched by 2028 [4]. By 2029 a
second LEO mega-constellation is planned to be available with
3,236 satellites [5] and more competition is solicited by the
FCC [3]. ISL capability allows LEO satellites to act as ground
edge nodes, processing data directly in orbit and near the data
source, such as Earth Observation (EO) satellite data. This
opens up opportunities for new computing paradigms in space,
such as Serverless Computing.

*The authors Cynthia Marcelino and Thomas Pusztai have contributed
equally to this work.

Serverless Computing provides elastic scaling and infrastruc-
ture management. Serverless platforms automatically deploy
functions, scaling up or down based on demand, thus avoiding
idle resources [6]. To address the environmental heterogeneity
of the Edge-Cloud-Space Continuum, Serverless platforms need
scheduling mechanisms that identify environmental properties
and their current conditions to deploy functions and meet their
requirements [7].

Most common scheduling approaches focus on meeting
requirements based on resources, network, application and
energy [8, 9].

a) Resource-Aware: Schedulers [10] ensure that functions
are executed on nodes capable of handling their computational
requirements to prevent overloading any single node, which
could lead to performance degradation or failures. In the
Edge Cloud Space Continuum, resource-aware scheduling
mechanisms [11, 12] dynamically allocate functions considering
the infrastructure-specific resource characteristics such as CPU
capacity and architecture, memory, and GPU. In Orbital Edge
Computing (OEC), scheduling mechanisms [13, 14] address
specific orbit characteristics such as satellite infrastructure
resource and energy costs to transfer the data between satellites
or to the ground stations. However, current approaches do not
consider all aspects of Edge, Cloud, and Space as a unified
continuum. They neglect the impact of resource temperature
and heat generated by the task execution. Due to the substantial
temperature variations on satellites between the daylight
and eclipse periods of an orbit, tasks that require intense
computation can produce too much heat, putting satellite
components at risk of damage from overheating [15, 16].

b) Network-Aware: Nodes at the edge typically have
different network characteristics than cloud nodes. These
network characteristics include variations in end-to-end latency,
bandwidth availability, and link reliability [8]. Network-aware
schedulers [11, 17] consider these characteristics to optimize
function placement, ensuring efficient and reliable commu-
nication. In OEC, schedulers [13] typically also address the
intermittent ISL communication between satellites and high
latency communication with ground stations. However, existing
OEC schedulers are not built for serverless functions, so
they cannot guarantee the complete execution of serverless
workflows across the Edge Cloud Space Continuum. Existing
schedulers do not consider the positions of satellites, which
is essential to ensure the seamless execution of serverless
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workflows from orbit to the Edge and Cloud. Therefore, existing
schedulers fail to ensure that serverless functions can start,
complete, and transfer all required data within the connectivity
range of the satellite network.

c) Application and SLO-Aware: Applications have Ser-
vice Level Objectives (SLOs) that define the expected perfor-
mance and availability during their execution. To meet these
requirements, SLO-aware schedulers [18, 19] need to consider
not only infrastructure properties such as resource availability,
but also workload characteristics. Although OEC schedulers
ensure functions can execute in a specific node, they do not
guarantee workload requirements, i.e., SLOs, such as maximum
latency.

d) Energy-Aware: Schedulers consider the current power
source and estimated task power consumption during the
placement process. Energy-aware scheduling [20, 21] is crucial
to prevent battery-powered devices from running out of power
and to reduce overall power usage. By optimizing energy usage,
schedulers ensure prolonged operational lifespans for edge
devices and enhance sustainability, thus optimizing performance
and longevity in the Edge Cloud Continuum. In OEC, energy-
aware schedulers [13, 22] consider also the energy necessary to
transmit the data either to other satellite nodes or to the ground
station. However, existing schedulers overlook the satellite
position during the energy consumption estimation. Despite
tasks requiring a certain amount of power, the satellite can
auto-recharge its batteries during the daylight periods.

Although current Serverless scheduling approaches address
the heterogeneous devices on the Edge, they are not suitable
for the specific environmental properties of the Edge Cloud
Space 3D Continuum, such as satellite position and heat
generation. Moreover, the current orbital scheduling approaches
lack integration across the Edge Cloud and Space environment,
essential for latency and function execution across the 3D
Continuum.

In this paper, we introduce HyperDrive, a novel Serverless
platform that seamlessly integrates Edge, Cloud, and Space
Computing, creating a 3D Continuum. HyperDrive is part of
Polaris1, a SIG of the Linux Foundation Centaurus project2,
a novel open-source platform for building unified and highly
scalable public or private distributed Cloud and Edge systems,
which is now expanding into the 3D Continuum. HyperDrive
leverages the specific capabilities of each layer of the 3D
Continuum, such as Edge proximity to the data and satellite
proximity to Earth observation data, to enable optimized
serverless function deployment and execution.

The main contributions of this paper include:
1) The architecture of the HyperDrive Serverless Platform,

which introduces novel components and mechanisms
tailored to the unique characteristics of the 3D Continuum.
HyperDrive enables functions to be seamlessly executed
anywhere in the 3D Continuum, optimizing performance
and reliability by ensuring that workflow SLOs are met.

1https://polaris-slo-cloud.github.io
2https://www.centaurusinfra.io

2) The HyperDrive scheduling model is the foundation of our
Serverless platform’s scheduler, which is the main focus
of our paper. The HyperDrive scheduling model considers
constraints such as resource capacity, application SLO
requirements, satellite temperature, and network load to
minimize the end-to-end Serverless workflow latency.

3) Our Heuristic Scheduling Algorithms for the 3D Contin-
uum enable the realization of the HyperDrive scheduling
model using a flexible multi-criteria decision making
(MCDM) approach. It first filters out nodes that are
not capable of hosting a function and, then, scores
the remaining nodes according to multiple criteria to
find the best suited node for a function. Our prototype
implementation is available as open-source3. HyperDrive
achieves 71% lower end-to-end (E2E) network latency
than the next best baseline approach.

This paper has eight sections. Section II presents the
illustrative scenario and research challenges. Section III shows
an overview of the HyperDrive Architecture for a Serverless
Platform in the 3D Continuum. Section IV describes the
Serverless Workflow Model, HyperDrive scheduling optimiza-
tion model, and heuristic scheduling algorithms for the 3D
Continuum. Section V details our implementation approach and
describes the design of our experiments. Section VI discusses
the results of the experiments, Section VII presents related
work. Section VIII concludes the paper and outlines our future
work.

II. MOTIVATION

To further motivate our work we present an illustrative
disaster response scenario and leverage it to derive research
challenges.

A. Illustrative Scenario

Early detection of wildfires in remote areas is critical to
mitigate their effects. Our scenario (Fig. 1) involves using a
combination of drones, LEO satellites, and ground-based Edge
nodes that compose a serverless workflow for real-time wildfire
detection, inspired by [23, 24, 25, 26]. The drones operate in
high-risk wildfire areas, such as California during the summer,
monitoring specific zones and capturing video and sensor data
to watch for signs of wildfires. They send the data to the
nearest Edge node using streaming frameworks or, when out of
range, transmit it to LEO satellites acting as in-orbit Edge nodes.
Once a fire is detected, LEO satellites incorporate satellite Earth
Observation (EO) data for processing. Our serverless workflow
processes the data close to the source to improve latency and
reduce network overhead. In some situations, functions are
executed directly on LEO satellites due to the data’s proximity
to EO data and the high latency associated with downloading
data to the ground.

Fig. 2 shows our Serverless workflow with four Serverless
functions, partially executed on the Edge, partially executed
in-orbit and partially executed in the Cloud. During the Ingest

3https://github.com/polaris-slo-cloud/hyper-drive
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Fig. 1: Illustrative Scenario: Wildfire detection with on-ground and in-orbit
Serverless Edge Computing

stage, real-time videos are transmitted to Edge nodes on the
ground or in-orbit. The Extract Frames function processes small
video chunks received from Ingest stage and extracts image
frames. Object Detection functions identify wildfire patterns
in the extracted images, such as smoke, flames, or hotspots.
The Prepare Dataset function prepares the data for resource-
intensive tasks. The processed data is transmitted to the Cloud
for storage and more resource-intensive tasks, such as machine
learning model inference. In the Cloud, Alarm trigger functions
evaluate the data and decide whether to trigger local emergency
responses or deploy more drones to a specific area to confirm
the wildfire before triggering an alarm.

Serverless computing allows dynamic scaling and processing
close to the data source. By running Serverless functions
directly on LEO satellites, we can combine data from the drones
on the Earth and from EO satellites to process data as soon
as they are produced. Atmospheric interference reduces link
speeds to ground stations, typical speeds are around 300 Mbps
[27]. Thus, downlinking data from EO satellites to Earth would
take too long due to the large volume of data, e.g., each of the
ESA Sentinel 2 satellites supplies high resolution images for a
swath of 290 km in 13 spectral bands, producing about 1.5 TB
of data per day [28, 29]. Since EO satellites only downlink to
dedicated ground stations, the data may even be queued [30].
For Sentinel-2 “real-time” product availability is defined as “no
later than 100 minutes after data sensing” [31], which violates
the satellite data ingestion link SLO of the wildfire application.
ISLs between EO satellites and LEO satellites are much better
suited for large EO data volumes, since their speeds can be
much higher – recently a 100 Gbps ISL from GEO to LEO has
been demonstrated [32]. Hence, it is much faster to uplink a
one GB ML model to the satellite than to downlink the EO data
to a ground station. Drone videos are also moderate in size,
e.g., a three minute 4K video from the FLAME2 dataset [33]
amounts to 2.2 GB, which qualifies for uplinking to a LEO
satellite in real-time.

Ingest

Alarm
Trigger

100ms

EO Sat

175ms

Object
Detection

Prepare
Dataset

Edge/Space

Cloud

100ms

Extract
Frames

max
150ms 100ms
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Fig. 2: Simplified Serverless Workflow for Wildfire Detection

Combining satellite EO data with drone data on LEO satel-
lites allows reducing the time it takes to analyze and respond
to wildfires. Additionally, it provides a reliable alternative
when Edge nodes are out of range or experiencing connectivity
issues. Scheduling the functions to execute in orbit ensures
that wildfire detection and monitoring continue uninterrupted,
even if ground-based infrastructure faces limitations. It allows
immediate data processing and decision-making in orbit,
reducing delays and ensuring continuous, real-time monitoring.
As a result, we can decrease response times to wildfire
threats. However, there are several challenges associated with
scheduling Serverless functions in 3D continuum.

B. Research Challenges for Scheduling in the 3D Continuum

Based on the illustrative scenario, we identify several key
requirements for scheduling serverless functions on LEO
satellites in orbit as follows:

RC-1 Satellite Availability: Unlike Edge nodes, which have
fixed positions, LEO satellites are constantly in motion as
they orbit the Earth, which impacts their availability and
communication windows [34]. A satellite must be within range
of 1⃝ the drone, 2⃝ the EO satellite, and 3⃝ the ground station
to be considered available for scheduling. Specifically, the
satellite needs to be within the drone’s range to receive real-
time video transmissions from Earth. At the same time, it must
also be within the range of the EO satellite to receive and
relay additional monitoring data. In addition, the satellite must
be within range of ground stations, which have Cloud control
planes for tasks such as scheduling. However, the term “in
range” is more complex than direct line of sight. Since satellites
can communicate via ISLs [35, 36], a satellite can be in range,
if the bandwidth and latency via ISLs is acceptable for the
purpose of the communication (e.g., data transfer). According to
a recent study [37] Starlink’s median roundtrip latency (client-
LEO-Cloud) is 40-50 ms; the theoretical roundtrip latency
between New York and London when routing exclusively
through ISLs is 58-66 ms [35]. As satellites move in and
out of range, the Serverless platform must continuously adapt,
reallocating resources and re-establishing communication links.
Therefore, satellite availability is more dynamic and complex
compared to static Edge nodes.

RC-2 Power Supply: The scheduler must consider the
satellite’s power state, including its batteries’ current charge
level and the overall health of its energy storage system. Given
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the increasing computing power in satellites and the strict size
constraints for some of them [15], the scheduler must be aware
of the energy requirements of specific serverless functions to
ensure that the satellite has enough power reserves to execute
these functions without depleting its energy resources. Finally,
a CubeSat’s solar panels produce only up to 7 W of power [38],
while batteries can have a density of up to 190 Wh/kg [39].
This means that a satellite might not be designed to fully
recharge their batteries in a daylight period of an orbit. Thus,
the scheduler must evaluate whether the power expenditure of
its workloads can be compensated with solar power before the
battery depletes.

RC-3 Computing Capacity & Heat Generation: LEO satel-
lites are deployed with fixed and limited resources that
cannot be patched or upgraded throughout their lifetime.
These satellites are built to consume minimal energy and
are equipped with minimal components to reduce weight
and, consequently, launch costs. As computing increases, the
temperature also rises. Since there is no atmosphere in space,
heat dissipation mainly occurs through thermal radiation and
lack of exposure to the sun. LEO satellites typically face
temperatures from −120◦C in the shade to +120◦C when in
the sunlight [40]. This situation can lead to prolonged high
temperatures, affecting the performance of critical components
such as the CPU [15, 24, 41, 42]. Therefore, the scheduler must
consider not only the existing processing capacity but also
the current temperature of the components and how long they
potentially need to dissipate the heat.

RC-4 Scalability: Due to the fixed number of satellites
in orbit and the increased costs associated with launching
new ones, horizontal scaling presents a significant challenge.
Compared to the ground data centers, where additional servers
can be easily deployed to meet increasing demand, the satellite
network is limited by the number of satellites currently in orbit.
This physical resource constraint and fixed number of nodes
make it challenging to auto-scale effectively to meet varying
workload demands [43, 44].

RC-5 SLO Awareness: Serverless workflows must meet
specific Service Level Objectives (SLOs) to ensure performance
and reliability. These SLOs typically include minimal latency
and bandwidth, which are essential for maintaining optimal
service performance. Maintaining SLOs on the ground can
already be challenging [45, 46] and these challenges are
exacerbated by the network specifics, orbital movements,
battery, and heat conditions of satellites [47]. Therefore, to
ensure performance and reliability, the scheduler must consider
the state of multiple nodes when enforcing workload SLOs.

RC-6 Workflow Dependencies: In a mixed environment,
Serverless workflows can be executed on ground-based or
LEO Edge nodes. The scheduler needs to take into account
the workflow composition to identify the dependencies and
interactions between the functions. Additionally, the scheduler
must consider the placement of these functions within the
workflow to ensure that interdependent tasks are located closely
together to minimize latency and maximize efficiency [11]

III. ARCHITECTURE OVERVIEW OF A SERVERLESS
PLATFORM FOR THE 3D CONTINUUM

HyperDrive is a novel serverless platform specifically
designed for the 3D Continuum, as shown in Fig. 3. To
achieve that, our platform proposes six different layers: (a) an
infrastructure layer that unifies the computing resources in
the 3D Continuum, (b) a core platform layer for efficient and
optimized function deployment and execution, (c) a function
runtime layer for lightweight and low-latency execution, (d) a
function model to allow developers change function behavior,
(e) monitoring and tracing for real-time insights and (f) a
stewardship layer layer composed of frameworks that enforce
governance, security and compliance. Each platform layer
introduces components to address the research challenges
presented in Section II-B.

A. Infrastructure Layer

This layer includes common computing resources across
the Edge-Cloud-Space 3D Continuum, such as computing,
storage, and network. Each computing layer, i.e., Edge, Cloud,
and Space within the 3D Continuum, has specific properties
that require tailored resource management. In the Edge layer,
the HyperDrive infrastructure layer manages battery power to
prevent Edge devices from running out of power. For example,
by providing battery level information to the scheduler so
that only drones with enough battery capacity execute the
Ingest function in the wildfire serverless workflow. In the
Cloud, it handles heterogeneous provider-managed services
such as AWS S3 storage and Azure storage for storing high-
resolution satellite images or more intense computing tasks
such as running inference on machine learning models. In the
space layer, the platform manages thermal regulation and power
to prevent satellite depletion. Furthermore, the infrastructure
layer provides satellite positioning information, which is critical
for HyperDrive scheduler to place functions within range to
ensure efficient data exchange between the functions. These
computing resources create a unified infrastructure layer that
adapts to the heterogeneous and dynamic requirements of the
3D Continuum, enabling the HyperDrive Serverless Platform
to adjust to resources based on demand, ensuring seamless
execution across the Edge-Cloud-Space Continuum. This is a
key prerequisite to achieving our vision of self-provisioning
infrastructures [48].

B. Core Platform Layer

This layer incorporates components responsible for managing
and orchestrating tasks across the 3D Continuum. It manages
the configuration, deployment, computation balancing [49], and
auto-scaling of serverless functions, handling their lifecycle and
scaling resources up and down based on the workload demand,
such as the wildfire serverless workflow. Moreover, the storage
enables HyperDrive to store function deployment properties
and specific function configurations, such as parameters,
state management settings, and SLOs. To allocate functions
effectively, HyperDrive scheduler considers the 3D Continuum
requirements described in Section II-B. HyperDrive scheduler
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Fig. 3: Architecture Overview of a Serverless Platform for the Edge-Cloud-Space 3D Continuum

utilizes resource-based scheduling mechanisms, commonly used
by various Edge and Cloud schedulers [11, 18, 19]. HyperDrive
considers different requirements, including resource capacity,
workload SLO, power supply, and satellite position, to make
decisions using an MCDM approach. To ensure scalability in
the large 3D Continuum, HyperDrive is a distributed scheduler
that operates with multiple instances. Distributed scheduling
requires keeping node state information in sync among the
scheduler instances and handling scheduling conflicts. To ad-
dress these two challenges, each HyperDrive scheduler instance
obtains a function’s candidate nodes and their states from the
Monitoring Agent using sampling, similar to other distributed
schedulers [19, 50], and handles conflicts using the MultiBind
mechanism described in Section IV-C. By integrating Edge-
Cloud-Space requirements, HyperDrive ensures the optimal
placement and performance of Serverless functions within
the 3D Continuum, thus meeting application demands and
respecting boundaries between ground and space requirements
such as latency and financial costs.

C. Function Runtime Layer

The Function Runtime layer consists of components such
as Function Runtime, Event Handler, Request Routing, and
State Management. The Function Runtime relies on lightweight
frameworks such as WebAssembly to provide safety, isolation,
and low-latency communication [51, 52]. In our illustrative
scenario, the runtime utilizes function locality to reduce network
overhead, ensuring satellites leverage local mechanisms such as
inter-process communication (IPC) to exchange data between
functions on the same host. Thus, the function runtime reduces

latency and ensures that communication between co-located
functions remains local, avoiding unnecessary ISL communica-
tion. Serverless stateless design pushes functions to leverage ex-
ternal services for state management [7, 53]. HyperDrive State
Management leverages mechanisms such as short-term memory
state [54, 55] to allow serverless workflows, like wildfire
detection, to maintain their state between executions, thereby
avoiding the overhead of external service communication. Due
to the different properties, such as bandwidth, latency, and
jitter, between Edge, Cloud, and Space, HyperDrive Request
Routing optimizes load balancing by forwarding requests to
functions in the vicinity, thus reducing latency by avoiding
communication between functions cross-environment, such as
Edge and space. The Event Handler manages events from
different sources, such as image drones and EO data, to
ensure proper function invocation. The components in this layer
ensure a seamless execution of serverless functions to meet
the workload requirements effectively. The function runtime
layer offers lightweight mechanisms for executing functions
on limited resource devices across the 3D Continuum.

D. Function Model

This layer introduces a function model that allows developers
to define specific behaviors, such as SLOs and trigger types,
in addition to the function code, parameters, and metadata.
Developers can specify the type of event - such as streaming,
asynchronous, or synchronous - that the function should process.
In the 3D continuum, the function model enables users to react
to specific satellite events, such as changes in orbit or satellite
payload data received. Specifically, in the wildfire serverless
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workflow, drones at the Edge trigger ExtractFrames function
using video streams, while ObjectDetection are triggered
by single image frames as data input. Moreover, developers
may specify certain SLOs, such as a maximum latency
of 100 ms between two functions, for instance, between
ExtractFrames and ObjectDetection. Without coding
effort, developers can indicate whether functions are stateless
or stateful. The HyperDrive Function Model layer abstracts
the underlying infrastructure, enabling developers to manage
serverless workflows without the complexity of coding or
infrastructure management. Finally, this layer offers specifically
tailored programming modes, e.g., to facilitate dealing with
large-scale, heterogeneous data sources [56].

E. Monitoring & Tracing

This layer is composed of components that enable real-time
tracking and monitoring such as Space Agent, Node Monitoring,
distributed logging systems, and a simulator that enables
developers to simulate functions execution without deploying
the function on the expensive and limited infrastructure, e.g.,
on the satellites. The Monitoring Agent is designed to track
and analyze key performance metrics across the 3D Continuum,
including Edge, Cloud, and space infrastructure. It watches
computing capacity, memory usage, and resource utilization
across all nodes to prevent overloading and ensure efficient
function execution. Additionally, it monitors network quality
of service (QoS) parameters, including bandwidth and latency,
to maintain compliance with workload SLOs. By monitoring
the common properties of different layers, the Monitoring
Agent enables seamless integration and reliability across the
3D Continuum.

The Space Agent is specifically designed to address the
requirements of in-orbit computing. It is responsible for
tracking the unique properties of the space environment,
including the availability of LEO satellites, taking into account
their rapid movement in orbit and their limited communication
windows. Additionally, the Space Agent manages ISLs and
ground-satellite network graphs to ensure that the satellite
can meet the user-defined latency SLOs. It also monitors the
satellite power supply, identifying the current charge levels
of batteries and their position in relation to solar energy
generation, to ensure that serverless functions are assigned
only to satellites with sufficient battery capacity. Furthermore,
the Space Agent monitors satellite thermal levels to prevent
overheating caused by high computational load or prolonged
usage, which could result in execution failures and potentially
lead to long-term hardware damage. By addressing these space-
specific requirements, the Space Agent plays a crucial role
in optimizing the scheduling, deployment and execution of
serverless functions across the 3D Continuum.

F. Stewardship Layer

This layer ensures serverless functions’ secure, compli-
ant, and efficient operation across the 3D Continuum. Its
components enforce compliance with environmental and data
protection regulations relevant to the workflow, such as wildfire

monitoring. Encryption leverages mechanisms to protect stored
sensitive information, while privacy mechanisms ensure that
personal or location-based data is handled confidentially by
the system. Moreover, Access Control implements role-based
access and fine-grained permissions to restrict unauthorized
access and actions. At the same time, the Governance compo-
nent oversees these processes, enforcing policies and standards
to maintain system integrity, security, and performance across
the platform under expected conditions but also under uncer-
tainty [57].

IV. HYPERDRIVE SLO-AWARE SCHEDULER FOR 3D
CONTINUUM

The HyperDrive scheduler is designed to address the
challenges that arise in the placement of serverless functions
in the 3D Continuum first using an optimization problem and,
then, using an MCDM approach. Without loss of generality,
we assume that every serverless function is part of a serverless
workflow, which we model as follows.

A. Serverless Workflow Model

A serverless workflow can be modeled as a directed acyclic
graph (DAG) with every node representing an executable task,
i.e., a serverless function or an operator, such as a condition,
fork, or loop, and every link representing an invocation of the
next node. The workflow DAG for our wildfire detection use
case is is part of Fig. 2; all executable tasks are by nodes with
a λ sign. For the purpose of scheduling we refer to a serverless
function instance as a task.

The workflow graph can be annotated with metadata relevant
to its tasks. Each task node is annotated with information
such as container image, resource requirements, preferred
location, and SLOs. Since many network connections in the
3D Continuum are not as reliable as within a Cloud data center,
tasks need to be able to specify special needs regarding the
network quality of service (QoS) for incoming and outgoing
links. To this end each workflow link can be annotated with
network SLOs, specifically with maximum allowed latency,
minimum bandwidth, maximum jitter, and maximum packet
drop percentage.

In many cases serverless functions do not only depend on
data from the predecessor function(s), but also on an external
data source. In the 3D Continuum such an external data source
may be, e.g., an S3 storage in a Cloud data center or high
resolution data from an EO satellite. Workflow SLOs may result
in special requirements for the connections to these data sources,
i.e., network QoS SLOs. This entails that a workflow DAG
must capture not only executable nodes, but also data source
nodes and support SLOs on their outgoing links. The “EO Sat”
at the bottom of Fig. 2 represents an EO satellite node as a data
source with its outgoing link providing EO data and imposing
a max latency SLO of 175 ms to the ObjectDetection

function. This metadata gives the HyperDrive scheduler all
the required information to make a suitable placement of the
workflow’s tasks.
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B. HyperDrive Scheduling Model

Let a Serverless workflow be a DAG W = (F , E), where
each node in the DAG represents a function in the Set F
and each edge in Set E represents the invocation of the next
task. Let the network graph be G = (N ,L), where N is
a Set of nodes and L the communication latency between
the nodes. The scheduling goal to minimize the latency in
the Serverless workflow W execution in the 3D Continuum,
effectively mapping the workflow W onto the network graph
G. To achieve this, we consider the following constraints:

Resource Capacity: This constraint ensures that every node
has enough resources to process the scheduled function,
maintaining system stability and performance. Additionally,
this constraint helps balance the system load across the
nodes, optimizing the overall utilization of available resources.
Therefore, the total resource demand Di of function i on each
node n in N must not exceed its availability resources Rn:

∑
i∈F

Di ≤ Rn ∀n ∈ N (1)

Network SLOs: This constraint ensures that data transfer
between functions occurs within acceptable timeframes, en-
suring that functions perform as expected. This means that
communication between functions must meet performance
criteria defined by the user to minimize delays. Thus, the
SLOs latency Sij must be met for each function invocation
pair (i, j) in functions F . The latency Lnm of the path between
nodes n,m in N must not exceed the SLO Sij:

Lnm ≤ Sij ∀(i, j) ∈ F ,∀(n,m) ∈ N (2)

Temperature: Managing thermal conditions not only protects
the physical integrity of the nodes but also maintains optimal
performance and longevity, specially in space where extreme
temperature variations are common. Therefore, the temperature
of each node n in N must not exceed its maximum allowed
temperature Tmax , considering the maximum temperature
caused by the satellite exposure to the sun and the temperature
sum increase due to the execution of the each function Texc:

Tn
orb +

∑
i∈F

T in
exc ≤ Tn

max ∀n ∈ N (3)

The scheduler goal is to minimize the total latency in the
workflow execution by summing the latency Lnm between
nodes n,m in N for each function invocation i, j in E , where
variables xin and xjm is a binary that indicates function
placement to node. The optimization problem can be defined
as follows:

min
x

∑
(i,j)∈E

∑
n,m∈N

Lnmxinxjm

s.t.
∑
i∈F

Di ≤ Rn ∀n ∈ N

Lnm ≤ Sij ∀(i, j) ∈ F ,∀(n,m) ∈ N

Tn
orb(ti) +

∑
i∈F

T in
exc ≤ Tn

max ∀n ∈ N

x ∈ {0, 1} ∀i ∈ F ,∀n ∈ N

(4)

The HyperDrive scheduling optimization model addresses
key constraints of resource capacity, network SLOs, and temper-
ature to guarantee efficient and reliable execution of Serverless
workflows in the 3D Continuum. Minimizing total latency while
adhering to these constraints enables the scheduler to make
placement decisions across diverse environments, ensuring
optimal performance and system stability. The consideration
of satellite costs during scheduling is currently out of scope,
since there are currently no pricing models for satellite nodes
available.

C. Heuristic Scheduling Algorithms for the 3D Continuum

Given the high computational complexity of the afore-
mentioned optimization problem, heuristics are needed to
allow implementing the HyperDrive scheduling model for the
3D Continuum. We now examine the heuristic scheduling
algorithms that approximate the aforementioned optimization
problem. To this end we rely on an MCDM approach consisting
of a sequence of filters that remove nodes that are not capable
of hosting the task and scoring algorithms that determine the
best suitable node among the eligible ones.

1) Vicinity Selection: Since the 3D Continuum may consist
of tens of thousands of nodes, we need to perform a prese-
lection of nodes before we can address the constraints of the
optimization problem. To this end, HyperDrive contacts the
orchestrator to select a set of candidate nodes that are located
in the vicinity of the desired location specified by the task or in
the vicinity of its predecessor task. The definition of the term
“vicinity” can be configured independently for each part of the
3D Continuum. For example, for the Cloud any data center
node within a radius of 500 km of the desired location may
be selected, while the radius could be 200 km for Edge nodes,
and 2,000 km for satellites. Akin to the vicinity, the total size
of the candidates set and its composition can be configured
as well, e.g., 500 total nodes consisting of 40% Cloud nodes,
40% Edge nodes, and 10% Space nodes.

2) Resource Checking: After selecting the set of candidate
nodes, HyperDrive first filters out all nodes that do not meet
the resource requirements of the task. Specifically, it checks
the CPU architecture, CPU cores, memory, GPU (if present),
local storage, and minimum battery charge (if the node has a
battery) requested by the task.

3) Network SLOs Enforcement: HyperDrive uses a combi-
nation of filtering and scoring to ensure that the network QoS
SLOs constraints for the incoming links of the task are fulfilled
and the nodes with the best network properties are preferred.
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For filtering we use Algorithm 1. It iterates through all network
SLOs for incoming links, originating from predecessor tasks
and external data sources (if any) and queries the network
QoS values for the lowest latency path between the candidate
node and the node hosting the predecessor task or the data
source. If the network SLO requirements are not met, the node
is discarded.

For scoring we iterate through the aforementioned network
paths again to determine the highest latency value We assign
the highest score, i.e., 100, to the node with the lowest latency
and zero to the node with the highest latency; all nodes in
between are assigned proportional scores in the target interval.

Algorithm 1 Network SLOs Filter.
Input: t: Task to be scheduled;
cn: Candidate node;
W = (VW ,EW ): Workflow DAG;
N = (VN ,EN ): Network graph;
St = {(v, s)∀v ∈ VW s.t. (v, t) ∈ EW ∧ s ̸= ∅}: Network SLOs for
incoming links of t;
Output: true if cn can host t, otherwise false;

1: for all (v, s) ∈ St do
2: u← GETHOSTNODE(v,W ,N )
3: q ← QUERYNETWORKQOS(u, cn,N )
4: if LATENCY(q) > MAXLATENCY(s) then
5: return false
6: end if
7: if BANDWIDTH(q) < MINBANDWIDTH(s) then
8: return false
9: end if

10: if JITTER(q) > MAXJITTER(s) then
11: return false
12: end if
13: if PACKETDROP(q) > MAXPACKETDROP(s) then
14: return false
15: end if
16: end for
17: return true

4) Temperature Optimization: The algorithm to enforce the
temperature constraint is geared specifically towards the Space
part of the 3D continuum to prevent satellites from overheating
due to excessive workload when in the sunlight. Since a satellite
that is close to overheating will reduce its computational power
to prevent damage. Thus, HyperDrive aims to prefer satellites,
where the new task will not cause a problematic temperature.
This decision involves a complex estimate based on the current
temperature of a satellite’s compute unit, the expected duration
of the task on the satellite’s hardware, the required CPU and,
possibly, GPU resources, the heat generated by these resources
over the duration of the task, and the highest environmental
temperature (based on in-orbit sunlight exposure) expected for
the duration of the task. This is encapsulated in the scoring
logic of Algorithm 2.

The algorithm first tries to get a duration estimate dt
for the task. This can be supplied by the user or through
preceding profiling (on hardware similar to the satellite’s) or
the maximum response time SLO of the task can be used.
If none of these values are available the score is calculated
based on the current temperature of the satellite. If dt value
is available, it is used in conjunction with the requested re-
sources to estimate the computation-based temperature increase

Algorithm 2 Temperature Optimization Scoring.
Input: t: Task to be scheduled;
cput: CPU cores requested by t;
gput: GPU cores requested by t;
n: Node to be scored;
tempnmax: Maximum operating temperature for n;
tempnrec: Recommended high temperature for n;
Output: Score for the node n in the range [0; 100];

1: if NODETYPE(n) ̸= “satellite” then
2: return 100
3: end if
4: dt ← GETEXPECTEDDURATION(t)
5: if dt == nil then

▷ If dt is unknown use the current temperature to compute the score.
6: tempcurr ← GETCURRTEMP(n)
7: return CALCSCORE(tempcurr, tempnrec, tempnmax)
8: end if

9: tempinc ← ESTIMATECOMPTEMPINCREASE(n, dt, cput, gput)
10: temporbmax ← ESTIMATEMAXORBITTEMP(n, dt)
11: temptmax ← temporbmax + tempinc

12: return CALCSCORE(temptmax, tempnrec, tempnmax)

13: function ESTIMATEDURATION(t)
14: dt ← GETEXPECTEDDURATION(t)
15: if dt ̸= nil then
16: return dt
17: end if
18: return MAXRESPONSETIMESLO(t)
19: end function

▷ Estimates the temperature increase due to computation
20: function ESTIMATECOMPTEMPINCREASE(n, dt, cput, gput)
21: tempinc ← CPUTEMPINCREASE(n, cput, dt)
22: tempinc ← tempinc + GPUTEMPINCREASE(n, gput, dt)
23: return tempinc

24: end function

25: function CALCSCORE(tempexp, temprec, tempmax)
26: if tempexp ≤ temprec then
27: return 100
28: end if
29: if tempexp > tempmax then
30: return 0
31: end if
32: range← tempmax − temprec
33: overrec ← tempexp − temprec

34: return ⌊
(
1− overrec

range

)
∗ 100⌋

35: end function

tempinc. Subsequently, we determine the maximum expected
environmental temperature temporbmax during the orbit(s) within
the duration of the task. The sum of these two temperatures
is the maximum expected temperature for the satellite during
the execution of the task and is used for computing the node’s
score. If the expected temperature is below the recommended
temperature or above the maximum temperature, 100 or zero
are returned respectively. Otherwise, a score is computed based
on how much the temperature will go into the range between
recommended and maximum temperature.

5) Multi Commit: Finally, all scores are accumulated for
each node and the nodes are sorted by their scores. The
HyperDrive scheduler, then, contacts the orchestrator to assign
the task to the highest scored available node using a multi-
commit approach [19]. Since multiple schedulers may be
active, the orchestrator checks if the required resources are
still available on the selected node. If that is the case, the task
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is committed to the node, a success message is returned to the
and the scheduler updates the information in the DAG of the
workflow instance. If the orchestrator reports that the required
resources are no longer available, the result is a scheduling
conflict, which most distributed schedulers resolve by rerunning
the scheduling pipeline. To avoid doing this, HyperDrive tries
committing the task to the second best node and, if that fails
too, to the third best node, before triggering a rescheduling
of the task. This multi-commit technique has been shown to
decrease the number of scheduling conflicts by a factor of 10
with respect to immediately rescheduling the task [19].

V. IMPLEMENTATION & EXPERIMENTS DESIGN

To evaluate the HyperDrive scheduler we focus on the quality
of the scheduling decisions and its scalability. Since HyperDrive
is, to the best of our knowledge, the first serverless scheduler
specifically designed for the 3D Continuum, we compare it
against three theoretical scheduling approaches: Greedy First-fit,
Round-robin and Random scheduling.

A. Implementation
The prototype of the HyperDrive scheduler is implemented

in Python as available as open-source4. Since it is not feasible
to run experiments on a low earth orbit (LEO) satellite mega
constellation, we have connected our scheduler to a modified
version of the StarryNet satellite constellation simulator [58].
The connection to the simulator is fully abstracted as an
orchestrator interface, so that the simulator can be easily
swapped. StarryNet normally executes Docker containers for
all nodes. However, since we are interested in benchmarking
the scheduling algorithms, we have replaced the containers
with an in-memory nodes manager that tracks the available
resources.

We have implemented the 3D Continuum-specific scheduling
heuristics described in Section IV-C. StarryNet precomputes
latencies between adjacent nodes for the entire duration of an
experiment. For each new time index, we use these latencies
to update our network graph for network SLOs enforcement.
Due to the absence of real satellite hardware information, we
rely on reasonable estimates for the temperature optimizations.

B. Experiments Design
With our experiments we evaluate two critical aspects

of the HyperDrive scheduler: (i) scheduling quality with
respect to latency and satellite temperature management and
(ii) scalability.

For assessing the scheduling quality we examine two major
quality objectives. The primary objective is the latency achieved
between the individual tasks of a serverless workflow and the
E2E latency. The secondary objective is the intelligent selection
of satellite nodes with respect to their temperature situation,
i.e., satellites should be chosen, which will not overheat and
reduce computational power while processing a task.

To set up the experiment we use TLE data, obtained on
July 2, 2024 from CelesTrack5, describing the orbits of 6,192

4https://github.com/polaris-slo-cloud/hyper-drive
5https://celestrak.org/NORAD/elements/

TABLE I: Infrastructure Sizes used for Evaluation.

Satellites Edge Nodes Cloud Nodes Total Nodes
1,008 100 10 1,118
2,016 200 20 2,236
3,024 300 30 3,354
4,032 400 40 4,472

nodes of the Starlink6 LEO satellite constellation. We deploy
our wildfire detection use case, whose workflow is shown in
Fig. 2. We assign the Ingest function to a drone flying over a
region of California, USA that is prone to wildfires and trigger
the scheduling of the remaining functions as the simulation
progresses. Since the StarryNet only supports satellite and
ground station nodes, we model the drone as a ground station
node. Since we evaluate the scheduling at the time when the
second function needs to be placed, we do not require any
movement from the drone, hence modeling it as a ground
station does not limit our evaluation scenario. All experiments
are run using Python 3.12 on Ubuntu 20.04 LTS on a Windows
Subsystem for Linux 2 VM with 8 vCPUs and 8 GB of RAM.
The VM is hosted on a laptop running Windows 10 22H2 on
a Whiskey Lake-U generation Intel Core i7 processor.

We benchmark HyperDrive against the following theoretical
schedulers, which we use as baselines:

• Greedy First-fit
• Round-robin
• Random selection
For evaluating the scalability we want to examine how

HyperDrive scales with respect to the infrastructure size. To
this end, we benchmark the placement of wildfire detection
workflow on increasing infrastructure sizes. For Cloud and Edge
nodes we simulate nodes in the region the workflow is deployed
in, while for satellites we simulate an entire constellation with
the current 72 orbital planes of Starlink and an equal number
of satellites per plane. Specifically, we use the infrastructure
sizes described in Table I – node that the numbers in this table
refer to our simulation only, which is limited by the resources
of our host machine.

We execute five iterations of every scheduler’s placement
of the wildfire detection workflow on each of the four
infrastructure sizes. We examine the achieved E2E latencies and
temperature characteristics to evaluate the scheduling quality
of all four schedulers and HyperDrive’s processing time per
task to assess its scalability.

VI. EXPERIMENTAL RESULTS

A. Scheduling Quality

To evaluate the scheduling quality we examine the network
latencies achieved by the placements and the temperatures of
the selected satellites (if any).

Fig. 4 shows the mean network E2E latencies achieved by
the four schedulers across all 20 experiment iterations, i.e., five
iterations for each of the four infrastructure sizes. For clarity,
the shown latencies are the sum of the network latencies only,

6https://www.starlink.com

9

https://github.com/polaris-slo-cloud/hyper-drive
https://celestrak.org/NORAD/elements/
https://www.starlink.com


Random FirstFit HyperDrive RRobin
0

200

400
441.22

231.55

58.43

203.31

E
2E

La
te

nc
y

(m
s)

Fig. 4: Wildfire Detection Workflow Mean E2E Latency per Scheduler.

Random FirstFit HyperDrive RRobin

100

200

D
at

a
La

te
nc

y
(m

s)

Fig. 5: Data Latency per Scheduler

without function execution times. The E2E network latency
SLO, without function execution times, across all four functions
of the wildfire workflow is 350 ms. While all schedulers, except
for the Random scheduler, meet the E2E network latency SLO,
HyperDrive clearly has the lowest latency, because it actively
optimizes for it. HyperDrive’s E2E latency is 71% lower than
Round-robin’s, which is the second best. While Greedy First-
fit and Round-robin meet the E2E network SLO, they violate
individual function network SLOs in about 33% of the cases
for Greedy First-fit and in 30% of the cases for Round-robin.
HyperDrive fulfills all function network SLOs.

Apart from inter-function network SLOs, the wildfire detec-
tion workflow also defines a network SLO for an EO satellite
data source. The object-det function requires a maximum
latency of 175 ms to the respective EO satellite. Fig. 5 shows
the EO data latencies achieved by the schedulers. Random and
Greedy First-fit violate the SLO. HyperDrive and Round-robin
fulfill it on average, albeit Round-robin violates the SLO in
35% of the cases. HyperDrive always fulfills it, because its
filtering does not allow scheduling on nodes that would violate
the SLO.

The secondary optimization objective after the network la-
tency, is satellite temperature measurement to avoid overheating.
Fig. 6 shows a heat map for the three scheduled functions that
documents cases when the functions are scheduled on satellites
and their temperature exceeds the recommended operating
temperature. HyperDrive places 34 of the total 60 function
instances (56.7%) across all iterations on satellites and never
exceeds the recommended temperature. The Random scheduler
places 56 of 60 function instances (93.3%) on satellites and
exceeds the recommended temperature in 23 (41%) of these
cases; in three cases it even exceeds the maximum operating
temperature. Round-robin schedules all 60 function instances
on satellites and exceeds the recommended temperature in
one third of the cases; in four cases it exceeds the maximum
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Fig. 6: Scheduling Overheating Map.
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Fig. 7: HyperDrive Scheduling Latency Across Infrastructure Sizes.

operating temperature. It should be noted that as the number
of Edge nodes increased in the two larger infrastructure sizes,
HyperDrive selected more Edge nodes instead of satellites,
due to their favorable network latencies; for the smaller two
infrastructure sizes 86.7% of the nodes were satellites, while
for the larger two only 33.3% were satellites.

B. Scalability

The goal of the scalability evaluation is to see how Hyper-
Drive’s performance evolves as the infrastructure size increases.
Fig. 7 shows the mean scheduling latency for each of the three
serverless functions as well as the overall average. Since the
prototype implementation is not connected to a real orchestrator
and manually performs the vicinity selection with a linear
search, we disregard the nominal scheduling latency values
and focus on how they evolve with increasing infrastructure
sizes.

It is evident that HyperDrive’s performance scales linearly
with the infrastructure size. The object-det function has a
steeper incline than the others or the overall average, because
needs to check twice as many network SLOs as the others,
because it has a data source network SLO. Nevertheless, its
increase remains linear.

C. Discussion

As previously seen, HyperDrive is the only scheduler
specifically designed for the challenges of the 3D Continuum.
HyperDrive excels at choosing between satellite and terrestrial
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nodes, depending on what benefits the network SLOs the most.
As more nodes are available the quality of its scheduling
decisions improves, e.g., the mean network latency between
functions drops by 73% in the larger two infrastructures
compared to the smaller two infrastructures.

Larger infrastructures yield better scheduling results, but
they also increase processing time. Increased processing time,
however, does not offset the benefits of optimized scheduling,
because transfer and processing times of EO data are orders of
magnitude greater than the scheduling duration. Additionally,
scheduling on LEO satellites typically does not require high
scheduling throughput, due to the type of applications that
are expected to be deployed, e.g., federated learning in space
or at the Edge [59, 60], advanced automotive use cases [61],
monitoring applications [62], or disaster relief [26].

Finding multiple shortest paths through a large network
graph is the biggest concern to the performance of HyperDrive.
While HyperDrive scales linearly with the infrastructure size,
the path finding time can be reduced by using a hypergraph to
reduce the number of links and by computing paths between
regions instead of single nodes. Additionally, the paths can be
periodically precomputed and cached by the orchestrator. This
will be addressed by our future work.

Currently we assume the absence of congestion on the
network routes, but as satellite usage increases, this will be
considered in future work. Additionally, a dense constellation
can provide multiple routes [35] between two nodes and prior-
itization can be employed for disaster response applications.

We evaluated HyperDrive in simulations. However, its
scheduling algorithms can be transitioned to a physical system.
To this end they must be connected to a real-world orchestrator,
which supplies metadata about real satellites (as well as Edge
and Cloud nodes) and which can deploy functions on these
nodes.

VII. RELATED WORK

We now discuss other work that is related to ours and
compare HyperDrive to it.

A. Edge Cloud Continuum & Orbital Edge Computing

Several research studies [6, 7, 63, 64, 65] have proposed
a paradigm known as the Edge-Cloud continuum (ECC).
This paradigm involves integrating computing resources in
different layers, composed of Edge devices such as sensors
and wearables that produce data processed by low-resource
Edge nodes close that are close to the Edge devices and
high-resource Cloud servers. ECC aims to enable seamless
integration between all the layers, allowing for efficient task
distribution and improved application performance. By utilizing
the advantages of both Edge and Cloud resources, ECC
enables heterogeneous environments to adjust to computational
needs and connectivity conditions. In this paper, HyperDrive
proposes to expand the ECC to orbit by seamlessly integrating
satellites as Edge nodes, thus creating a 3D Edge-Cloud-Space
Continuum.

Lately, the extensive effort to expand on-orbit capability lead
further research to explore the implementation of core networks
in space, offering several benefits such as enhancing mobile
coverage in remote areas, facilitating direct device-satellite
connections, and satellite computing [30, 66, 67, 68].

LEO satellites, like terrestrial Edge nodes, have limited
computing capacity and like Edge nodes, satellites can be near
data sources, such as Earth observation satellites. Therefore, the
increase in LEO satellites in orbit allows data to be processed
directly in orbit, near the data source, enabling Orbital Edge
Computing (OEC) [69, 70]. Research [71, 72, 73, 74, 75] enables
federated learning by leveraging their distributed localized data
processing capabilities, enhancing real-time data analysis and
decision-making in space applications.

The Tiansuan [41, 76] constellation leverages a cloud-native
design to enhance onboard services, resources, and the devel-
opment and management of satellite equipment. Tiansuan’s
cloud-native approach provides advantages in application
deployment, scalability, and cost-effectiveness compared to
traditional satellite designs, allowing for seamless integration
of computing, and networking. Tisuan’s platform is composed
of six different layers: Physical, Virtual Resource, Operating
System, Container Service, Collaborative Orchestration, and
Function Application. MobileViT [77] propose a three-layer
architecture to enable Satellite Internet of Things for Smart
Agriculture. The infrastructure layer is composed of IoT devices
such as sensors, drones and satellites. The capacity layer
contains computing communication and caching while the
application layer represents the different use cases such as
Smart Agriculture, Smart Grid and Smart Port.

B. Space-as-a-Service

Research identifies emerging services in space [78, 79]
such as Constellation-as-a-Service, Satellite-as-a-Service and
Payload-as-a-Service.

a) Constellation-as-a-Service: Mission MP42 [80] by
NanoAvionics and Satellogic [81] aims to offer a satellite
constellation service to IoT/M2M operators. Constellation-as-a-
service allows businesses to deploy and manage their satellite
network without launching their own spacecraft. This business
model promises customized services such as dedicated satellites,
dedicated rocket launches, in-country operation centers, access
to a global ground station network, and dedicated platforms,
including a private Cloud for image cataloging, processing,
and storage.

b) Satellite-as-a-Service: It proposes a shared multi-
tenant satellite concept [82, 83, 84]. The shared-access model
allows multiple missions to be hosted on a single satellite,
enabling users to share platform and payload capabilities.
The Satellite as a Service model includes ground segment
validation using continuous integration and hardware simulators
to ensure the reliability and safety of user-uploaded software.
This approach uses existing satellite infrastructure and modern
software tools such as CI/CD to create a flexible and cost-
effective platform for space technology development.
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c) Payload-as-a-Service: It emerged after a shift from
analog to digital satellite payload, that enabled satellites to
serve multiple clients. Digital payload made it possible to
customize satellite computing for specific purposes such as
machine learning and earth observation [85]. Consequently,
it enabled an alternative to expensive space infrastructure -
Payload-as-a-Service. In this business model, a commercial
operator owns and manages the satellite system, providing
data (payload) to customers on demand. The service providers
manage the satellite bus, integration, launch, and operations.
On the other hand, clients access the data and may even
operate the payload by starting/stopping data collection and
monitoring. [79, 86, 87].

All of these approaches focus mostly on satellites only,
with very little or no involvement of terrestrial compute nodes.
HyperDrive, proposes an unified computing continuum that
spans seamlessly across Edge, Cloud, and Space nodes. As
such HyperDrive goes further than the aforementioned concepts.
But the HyperDrive scheduler can also complement the
Constellation-as-a-Service and Satellite-as-a-Service, because
both allow customers to run their own workloads on satellites
and, thus, require a scheduling mechanism.

C. Satellite Edge Task Scheduling & Offloading

In [88], an efficient framework is proposed for offloading
inference tasks by partitioning Deep Neural Network (DNN)
models into multiple satellites, including one high Earth orbit
(HEO) satellite and multiple LEO satellites. The approach
divides inference tasks, with the task owner executing the
initial portion of the DNN and offloading the remaining
portion to other satellites. FedLEO [74] proposes a distributed
scheduling mechanism for LEO satellite constellations to
overcome bandwidth limitations and intermittent connectivity.
FedLEO leverages Satellite Edge Computing (SEC) to improve
training efficiency by adding horizontal communication path-
ways among satellites and optimally scheduling interactions
with ground stations. Unlike HyperDrive, FedLEO and task
offloading approach considers data processing only satellites
SEC, thus excluding Edge nodes in the ground for task
placement.

An Orbital Edge (OE) [14] platform leverages ISL for
satellite processing, reducing latency and leveraging distributed
computational capabilities. It offloads computing tasks from
ground nodes to a single satellite and its neighboring satellites.
While the OE platform relies on satellite-ground communication
links, which may cause data transfer delays, HyperDrive
addresses each computing layer’s challenges separately to create
a unified Edge Cloud and Space Continuum platform.

VIII. CONCLUSION

We presented HyperDrive, a novel Serverless platform that
is specifically designed to enable a seamless execution of
Serverless workflows across the 3D Continuum. We discussed
the unique challenges of the 3D Continuum, such as the short
availability windows of the fast moving LEO satellites, solar
power supply, and the possibility of overheating while facing

the sun. The HyperDrive scheduler enables the optimized
placement of Serverless functions in the 3D Continuum
by considering network SLOs, workflow and data source
dependencies, and thermal conditions of satellites. HyperDrive
is, to the best of our knowledge, the first Serverless scheduler
for the 3D Continuum. We evaluate it against three theoretical
baseline schedulers by scheduling a wildfire disaster response
workflow with strict network SLOs and EO satellite data
dependencies. HyperDrive achieves 71% lower E2E network
latency than the best baseline and shows linear performance
scalability with the infrastructure size.

As future work we plan to continue our realization of the
HyperDrive Serverless platform for the 3D Continuum. An
important goal is to further to improve the coordination of
function execution and satellite orbits, by placing functions
on satellites that will be in the ideal position for a low-
latency handoff to the next node when the function completes.
We also intend to reduce scheduling complexity for large
infrastructure sizes by using hypergraphs for inter-node path
computations. Additionally, we envision a lightweight frame-
work for Serverless-native development of the next generation
EO applications for the 3D Continuum.
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[14] P. Cassará, A. Gotta, M. Marchese, and F. Patrone, “Orbital edge
offloading on mega-leo satellite constellations for equal access to
computing,” IEEE Communications Magazine, vol. 60, no. 4, pp. 32–36,
2022.

[15] X. Ma, M. Xu, Q. Li, Y. Li, A. Zhou, and S. Wang, Visions of Edge
Computing in 6G. Springer Nature Singapore, 2024, pp. 179–202.

[16] Y. Cheng and Z. Zhou, “Autonomous resource scheduling for real-
time and stream processing,” in 2018 IEEE SmartWorld, Ubiquitous
Intelligence & Computing, Advanced & Trusted Computing, Scalable
Computing & Communications, Cloud & Big Data Computing, Internet of
People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CB-
DCom/IOP/SCI), 2018, pp. 1181–1184.

[17] O. Skarlat, M. Nardelli, S. Schulte, and S. Dustdar, “Towards qos-aware
fog service placement,” in 2017 IEEE 1st International Conference on
Fog and Edge Computing (ICFEC), 2017, pp. 89–96.

[18] T. Pusztai, S. Nastic, A. Morichetta, V. C. Pujol, P. Raith, S. Dustdar,
D. Vij, Y. Xiong, and Z. Zhang, “Polaris scheduler: Slo- and topology-
aware microservices scheduling at the edge,” in 2022 IEEE/ACM 15th
International Conference on Utility and Cloud Computing (UCC), 2022,
pp. 61–70.

[19] T. Pusztai, S. Nastic, P. Raith, S. Dustdar, D. Vij, and Y. Xiong, “Vela:
A 3-phase distributed scheduler for the edge-cloud continuum,” in 2023
IEEE International Conference on Cloud Engineering (IC2E). Los
Alamitos, CA, USA: IEEE Computer Society, sep 2023, pp. 161–172.

[20] Kernel.org, “Energy-aware scheduling,” 2024, accessed: 2024-06-30.
[Online]. Available: https://docs.kernel.org/scheduler/sched-energy.html

[21] C. Yao, W. Liu, W. Tang, and S. Hu, “Eais: Energy-aware adaptive
scheduling for cnn inference on high-performance gpus,” Future Gener-
ation Computer Systems, vol. 130, pp. 253–268, 2022.

[22] X. Zhang, J. Liu, R. Zhang, Y. Huang, J. Tong, N. Xin, L. Liu, and
Z. Xiong, “Energy-efficient computation peer offloading in satellite edge
computing networks,” IEEE Transactions on Mobile Computing, vol. 23,
no. 4, pp. 3077–3091, 2024.

[23] C. Li, Y. Zhang, R. Xie, X. Hao, and T. Huang, “Integrating edge
computing into low earth orbit satellite networks: Architecture and
prototype,” IEEE Access, vol. 9, pp. 39 126–39 137, 2021.

[24] N.-N. Dao, Q.-V. Pham, D.-T. Do, and S. Dustdar, “The sky is the
edge—toward mobile coverage from the sky,” IEEE Internet Computing,
vol. 25, no. 2, pp. 101–108, 2021.

[25] G. Mateo-Garcia, J. Veitch-Michaelis, C. Purcell, N. Longepe, S. Reid,
A. Anlind, F. Bruhn, J. Parr, and P. Mathieu, “In-orbit demonstration of
a re-trainable machine learning payload for processing optical imagery,”
Scientific Reports, vol. 13, no. 1, p. 10391, Jun 2023.

[26] C. van Arsdale, “A breakthrough in wildfire detection: How a new
constellation of satellites can detect smaller wildfires earlier,” 2024.
[Online]. Available: https://blog.google/outreach-initiatives/sustainability/
google-ai-wildfire-detection/

[27] European Space Agency, “European data relay satellite system (edrs)
overview,” 2024. [Online]. Available: https://connectivity.esa.int/europea
n-data-relay-satellite-system-edrs-overview

[28] ——, “Sentinel-2 operations.” [Online]. Available: https://www.esa.int/
Enabling Support/Operations/Sentinel-2 operations

[29] Airbus, “Airbus built sentinel-2c satellite successfully launched,” 2024.
[Online]. Available: https://www.airbus.com/en/newsroom/press-releases/
2024-09-airbus-built-sentinel-2c-satellite-successfully-launched

[30] D. Vasisht, J. Shenoy, and R. Chandra, “L2d2: low latency distributed
downlink for leo satellites,” in Proceedings of the 2021 ACM SIGCOMM
2021 Conference, ser. SIGCOMM ’21. New York, NY, USA: ACM,
2021, p. 151–164.

[31] European Space Agency, “Sentinel online - glossary,” 2024. [Online].
Available: https://sentinels.copernicus.eu/web/sentinel/technical-guide/s
entinel-2-msi/glossary

[32] ——, “European space agency-funded projects reach new performance
level in groundwork for optical leo to geo data relays,” 2024. [Online].

Available: https://connectivity.esa.int/news/european-space-agencyfunde
d-projects-reach-new-performance-level-groundwork-optical-leo-geo-d
ata-relays

[33] X. Chen, B. Hopkins, H. Wang, L. O’Neill, F. Afghah, A. Razi, P. Fulé,
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