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Electrochemical hydrogen permeation testing is a relatively young and upcoming method 
concerning hydrogen permeability evaluation of PVD coatings. 
•	It serves as an alternative to the differential pressure method.
•	It is highly sensitive and has direct measures for hydrogen transportation
•	There is a difference in hydrogen barrier properties between arced and sputtered coa-

tings of comparable thicknesses, that needs to be investigated further
•	LSV experiments suggest, that porosities act as pathways for hydrogen diffusion and higher 

coating density significantly hinders hydrogen permeation

•	Characterization of hydrogen permeability for bulk materials is currently done via the diffe-
rential pressure method or in electrochemical setups. For thin film materials, a standard has 
yet to be established1,2

•	Within this study, the electrochemical Devanathan-Stachursky setup is tested to describe the 
hydrogen permeation within CrN and TiN coatings grown by different deposition techniques

•	TiN (arced and sputtered) shows decreasing hydrogen permeation with increasing thick-
ness, sputtered CrN gives no clear deviation with increasing thickness

•	More data points necessary to provide a more detailed insight

•	Porosity was evaluated via linear sweep voltammetry (LSV) for arced TiN
•	There is a clear correlation between decreasing coating porostiy and increasing PRF
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•	Variation of coating thickness results in slight influence on diffusion coefficients of sputtered 
and arced TiN and CrN coatings

•	Different morphologies affect hydrogen diffusivity
•	Results for 1.0330 steel substrates in good comparison to literature

Limitations
•	Inert surface (e.g. Pd) on 

exit side necessary to 
hinder recombination

Gained parameters
•	Diffusion coefficient, D
•	Permeability, φ
•	Permeation Reduction Factor, PRF

11V. Nemanic, Hydrogen permeation barriers: Basic requirements, materials selection, deposition methods, and quality evaluation, Nuclear Materials and Energy, 2019V. Nemanic, Hydrogen permeation barriers: Basic requirements, materials selection, deposition methods, and quality evaluation, Nuclear Materials and Energy, 2019
22 J. Matějíček et al.: Characterization of less common nitrides as potential permeation barriers, Fusion Engineering and Design, 2019 J. Matějíček et al.: Characterization of less common nitrides as potential permeation barriers, Fusion Engineering and Design, 2019
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Describing hydrogen diffusion in ceramic 
thin films materials 
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Comparative study on TiN & CrN
•	CAE, Oerlikon Balzers Innova
	 - TiN: 1.5 to 5.5 µm
	 - CrN: 4.0 µm
•	Magnetron Sputtering, Lab scaled 

deposition systems
 	 - TiN: 1.2 to 4.5 µm
	 - CrN: 2.8 to 3.6 µm
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Methodology
•	The Devanathan-Stachursky3 

cell consists of two separate 
compartments, separated by 
the coated sample

•	On the entry side hydrogen is 
produced galvanostatically by 
the decomposition of water 

•	Hydrogen gets adsorbed and 
atomically permeates through 
the sample towards the exit side 
to oxidize

•	Generated electrons create a 
current that can be measured

•	Current-over-time data is used 
for quantification

3 3 ISO 17081, ISO 17081, Method of measurement of hydrogen permeation and determination of hydrogen uptake and transport in metals by an electrochemical technique, 2014
44 S. Frappart et al.: Study of the hydrogen diffusion and segregation into Fe–C–Mo martensitic HSLA steel using electrochemical permeation test, Journal of Physics and Chemistry of So- S. Frappart et al.: Study of the hydrogen diffusion and segregation into Fe–C–Mo martensitic HSLA steel using electrochemical permeation test, Journal of Physics and Chemistry of So-
lids, 2010lids, 2010

•	Time-lag method for calculation of 
diffusion coefficients4

•	Max. current for permeability and PRF


