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Abstract

This diploma thesis investigates thermoelectric properties of novel Cu3Au-structure-
type intermetallic compounds and alloys, to demonstrate the enhanced thermoelec-
tric performance of metallic systems due to s-d scattering of conduction electrons
on narrow features in the electronic density of states near to the Fermi energy.
Such narrow features originate from unfilled d-shells (e.g. Ni-3d states) of transi-
tion metal elements. High Seebeck coefficients can be achieved by combining mobile
s-electrons and immobile d-electrons. Thus, a dramatically enhanced thermoelec-
tric performance results. Besides, intermetallics generally exhibit much better me-
chanical properties and stability, when compared to classical thermoelectrics like
Bi2Te3. In this diploma thesis, the following intermetallics have been characterized:

• Ni3.05SbxSi0.95–x

• Ni3.05–xCuxSi0.95

• Ni3–xCuxGe

• Ni3–xCuxAl

• Pd3Sn0.95In0.05

• Pt3Sn0.95Sb0.05

• Ni2.95Ag0.05Ge

Ingots of about 2.5 g were prepared by induction melting and annealed for seven
days at 973 K to achieve homogeneous samples.

The crystal structure and lattice parameters were examined and confirmed using
X-ray diffraction, which was also applied to check the amount of impurity phases.
The temperature-dependent resistivity, ρ(T ), and Seebeck coefficient, S(T ), were
measured across a wide temperature range from 4 K to 873 K, enabling the calcu-
lation of the temperature-dependent power factor, PF (T ) = S2(T )

ρ(T )
.

The alloy Ni2.9Cu0.1Ge emerged as the most promising material, exhibiting com-
plete solubility from x = 0.0 to x = 0.1, the Cu3Au crystal structure, and an
exceptionally high power factor of PF = 8.5 mW/(m · K2) at room temperature.
This result was closely followed by Ni2.95Cu0.05Ge, with PF = 8.3 mW/(m · K2).

When compared to the widely studied thermoelectric material Bi2Te3, which has
a room-temperature power factor of PF ≈ 4 mW/(m · K2), Ni2.9Cu0.1Ge exhibits
an almost ≈ 50% higher power factor.





Zusammenfassung

In dieser Diplomarbeit werden die thermoelektrischen Eigenschaften neuartiger
intermetallischer Systeme mit Cu3Au-Struktur untersucht, um die verbesserte
thermoelektrische Leistungsfähige von metallischen Systemen aufgrund der s-d-
Streuung von Leitungselektronen an schmalen Strukturen in der elektronischen Zu-
standsdichte nahe der Fermi-Energie zu demonstrieren. Solche schmalen Strukturen
entstehen durch ungefüllte d-Schalen (z. B. Ni-3d-Zustände) von Übergangsmetal-
lelementen. Durch die Kombination von beweglichen s-Elektronen und unbeweg-
lichen d-Elektronen können hohe Seebeck-Koeffizienten erreicht werden. Dadurch
ergibt sich eine drastisch verbesserte thermoelektrische Leistungsfähigkeit. Darüber
hinaus weisen intermetallische Verbindungen im Vergleich zu klassischen Thermo-
elektrika wie Bi2Te3 im Allgemeinen viel bessere mechanische Eigenschaften sowie
Stabilität auf. In dieser Diplomarbeit wurden die folgenden intermetallischen Ver-
bindungen charakterisiert:

• Ni3.05SbxSi0.95–x

• Ni3.05–xCuxSi0.95

• Ni3–xCuxGe

• Ni3–xCuxAl

• Pd3Sn0.95In0.05

• Pt3Sn0.95Sb0.05

• Ni2.95Ag0.05Ge

Die Proben, mit jeweils 2, 5 g, wurden durch Induktionsschmelzen hergestellt und
anschließend sieben Tage bei 973 K getempert, um eine homogene Materialzusam-
mensetzung sicherzustellen.

Die Kristallstruktur und Gitterparameter wurden mittels Röntgendiffraktion ana-
lysiert und bestimmt, einschließlich der Menge von möglichen Verunreinigungspha-
sen. Zusätzlich wurden der temperaturabhängige elektrische Widerstand ρ(T ) sowie
der Seebeck-Koeffizient S(T ) im Temperaturbereich von 4 K bis 873 K gemessen,
um den temperaturabhängigen Powerfaktor PF (T ) = S2(T )

ρ(T )
zu bestimmen.

Unter den untersuchten Legierungen zeigte sich Ni2.9Cu0.1Ge als die viel-
versprechendste, da sie eine vollständige Löslichkeit, eine homogene Cu3Au-
Kristallstruktur und einen außergewöhnlich hohen Powerfaktor von PF = 8.5
mW/(m · K2) bei Raumtemperatur aufwies. Direkt dahinter folgt Ni2.95Cu0.05Ge
mit einem Powerfaktor von PF = 8.3 mW/(m · K2).



vi

Das etablierte thermoelektrische Material Bi2Te3 erreicht bei Raumtemperatur le-
diglich einen Powerfaktor von PF = 4 mW/(m ·K2). Damit übertrifft Ni2.9Cu0.1Ge
diesen Wert um ≈ 50% und positioniert es als äußerst vielversprechenden Kandida-
ten für thermoelektrische Anwendungen und unterstreicht das erhebliche Potenzial
für die kommerzielle Nutzung.
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1 Introduction

This diploma thesis explores the thermoelectric properties of metallic alloys. Ther-
moelectric materials can generate an electric potential difference U (measured in
volt, 1V), from a temperature difference ΔT (measured in kelvins, 1K), or vice
versa. These properties cause numerous industrial applications, including microchip
cooling, heat pump operation, thermoelectric generators that convert waste heat
into electrical energy, and other uses relevant to the global challenge of climate
change, rare resources, and energy crisis.[1]

This year (2024) the European Union’s Copernicus Climate Change Service de-
clared Sunday July 22nd as the hottest day on record.[2] Consequently the UN
Secretary-General released a statement highlighting the severe and rising impacts
of global heatwaves, with record-breaking temperatures that endanger billions and
deepen inequalities. There is an urgent need for action to protect vulnerable pop-
ulations, particularly urban poor, children, and workers, by expanding low-carbon
cooling solutions, and heat health warnings. The crisis underscores the need for
innovations in sustainable materials and technologies to improve resilience against
extreme heat. Major emitters and G20 nations are called to accelerate the tran-
sition from fossil fuels, shift subsidies toward renewable energy, and commit to
actions aligned with limiting global warming to 1.5 K.[2]

The message is clear: unified, immediate action and advancements in climate-
resilient materials are crucial in combating the climate crisis.

Thermoelectric materials are potentially helpful in this respect; they are studied
across condensed matter physics, materials science, engineering, and solid-state
chemistry.

The fundamental phenomenon, underlying thermoelectric energy conversion in
matter, is the Seebeck effect, discovered by the German physicist Thomas Johann
Seebeck in 1821.[3] He found that when holding a compass needle close to an electric
circuit, made of two different metals, the needle was deflected if one of the junctions
had a higher temperature. In Seebeck measurements, the Seebeck coefficient S (in
1V/K) is obtained. A temperature gradient ∇T is applied across a sample, and
the induced voltage U is recorded under open-circuit conditions.[4]

S =
ΔU

ΔT
(1.1)
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The performance of thermoelectric materials is quantified by the power factor PF
(in 1W/(m ·K2)), it is proportional to the Seebeck coefficient and the electrical
conductivity of a certain material, induced by a temperature gradient:[4]

PF = S2 · σ, (1.2)

with the electrical conductivity σ (in units of (Ω ·m)−1). In thermoelectric trans-
port theory, the thermoelectric efficiency is proportional to the figure of merit ZT ,
introduced by Edmund Altenkirch in the 20th century, which determines the max-
imum conversion ability of a thermoelectric material:[4]

ZT =
S2σ

κElectron + κPhonon

T. (1.3)

Here, κElectron and κPhonon represent the electronic and phononic contributions to
thermal conductivity, respectively. Assuming that mostly electrons contribute to
thermal conductivity in metals, ZT can be simplified to: ZT ≈ S2σ

κElectron
T .

The ratio of thermal conductivity κ to electrical conductivity σ is known as Lorenz
number L in units of 1WΩ/K2:

L ∼ κ

Tσ
. (1.4)

In kinetic gas theory, L has the value L ≈ 1.11 × 10−8 WΩ/K2. The Wiedemann-
Franz law predicts that most metals have approximately the same value for this
ratio, L ∼ 2.44× 10−8 WΩ/K2. The discrepancy arises because the specific heat in
metals is not cv = 3

2
kB per electron, with the Boltzmann constant kB ∼ 1.38 · 10−23

J/K. This discrepancy is corrected by introducing Fermi statistics and the Pauli
exclusion principle. Consequently, for metals, we find:

ZT =
S2

L
, (1.5)

which indicates that ZT depends only on the Seebeck coefficient S. In Figure
1.1 the temperature dependent figure of merit ZT for common material classes
can be found. At room temperature Bi0.5Sb1.5Te3 alongside with Bi2Te3 exhibit
the highest ZT values, while at high temperatures SnSe dominates. It should be
noted, however, that for practical thermoelectric applications, large average ZT
values (between hot and cold sides) are much better suited, than large singular ZT
values in a narrow temperature range.[3]

The reversed process of the Seebeck effect is called the Peltier effect, where run-
ning an electrical current through a material also transports heat. This effect is
widely used in thermoelectric refrigeration devices to transfer heat from one object
to another.[5]

Seebeck coefficients are temperature-dependent and, in the case of semiconduc-
tors, strongly dependent on doping with foreign atoms. Typical values for metals
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Figure 1.1: Temperature dependent figure of merit ZT for various materials.[3]

range from 10−5 V/K to 10−6 V/K, whereas semiconductors can reach up to 10−3

V/K. This has driven historically increased research into semiconductor materials.
The maximum efficiency ηmax of a thermoelectric device, involving the hot side TH

and the cold side TC of the temperature gradient, is given by the power conversion
efficiency of a thermoelectric device and determined by the material property Z,

ηmax =
TH − TC

√
ZT + 1− 1

TH(
√
ZT + 1 + 1)

, (1.6)

as well as by the Carnot pre-factor.[6]

1.1 Thermoelectric materials and applications

As described in [7], thermoelectric devices utilize the Seebeck effect and the mo-
bility of charge carriers in metals and semiconductors, which can transport charge
and heat. These mobile charge carriers tend to move from the hot end to the
cold end, resulting in a net accumulation of charge at the cold end and generating
an electrostatic potential. Equilibrium is reached, when the driving diffusion bal-
ances the electrostatic repulsion, caused by the charge build-up. In thermoelectric
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devices (see Figure 1.2), multiple thermoelectric couples are connected. These cou-
ples consist of n-type (containing free electrons) and p-type (containing free holes)
thermoelectric elements, wired electrically in series and thermally in parallel.

A thermoelectric generator harnesses heat flow across a temperature gradient to
convert it into electrical power, which can drive an external load. The temperature
difference generates a voltage via the Seebeck effect, while the heat flow drives the
electric current in the context of voltage generated by the Seebeck effect, deter-
mining the power output. The maximum efficiency of a thermoelectric material,
whether for power generation or cooling, is characterized by its figure of merit ZT ,
as defined in Equation 1.5. To maximize the ZT value of a material, the absolute
value of the Seebeck coefficient S must be large, which is realized if there is only
one type of charge carrier present, or else they cancel out the induced Seebeck volt-
ages. Another possibility to increase the ZT value is through large electrical and
low thermal conductivities.[7]

Figure 1.2: Thermoelectric module showing the direction of charge flow on both cooling
and power generation.[7]

The effective mass m∗ of a charge carrier is related to the inertial mass mi and
leads for m∗ > mi to lower velocities for heavy carriers, resulting in smaller mobil-
ities and, thus lower electrical conductivity. The correlation between the effective
mass and the mobility depends on electronic structure, scattering mechanisms, and
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anisotropy. This results in a compromise of high mobility and low effective mass
for the dominant charge carriers. Elements with small electronegative differences
with narrow bands like ionic compounds frequently meet this condition.[7]

General requirements for thermoelectric materials, as defined in [8], is a high
crystal symmetry, with gaps of the electronic bands near the Fermi level, or narrow
d-like features.[9]

Good thermoelectric materials can also be found in materials with lower mobil-
ity and high effective mass polaron conductors, such as oxides and chalcogenides
or high mobility and low effective mass semiconductors like SiGe an GaAs. The
lowest thermal conductivities are found in glasses, where heat flows in terms of a
random walk through a lattice. Amorphous materials have broad bands and in-
creased electron scattering, leading to lower mobility and therefore are generally
less suitable for thermoelectric materials because of their lack of the well-needed
electron-crystal properties.[7]

Crystalline semiconductors have shown the best thermoelectric performance, con-
cluding that optimal materials have phonon-glass, electron-crystal-like structures,
as introduced by [8]. There are recent studies [7] on materials with ZT > 1 that
resemble a phonon glass with an electron crystal structure and re-optimized carrier
concentration. Another possibility is to use complex crystal structures.[7]

Enhancement of the thermoelectric efficiency and getting a large Seebeck coeffi-
cient S can be band tightening with increasing quantum confinement of the charge
carriers or decreasing dimensionality from 3D towards 1D. It is also possible to in-
crease the ZT value by creating heterostructures that nearly decouple the Seebeck
coefficient and electrical conductivity by electron filtering.[7]

Other strategies rely on reducing the lattice thermal conductivity, involving the
scattering of phonons within the unit cell by creating rattling structures or point
defects, like interstitials, vacancies, or alloying.

Scattering phonons at interfaces is realized in composites for various length scales;
thin films are also realizable. The exploitation of involving atomic disorder, to
reduce the lattice thermal conductivity, has a long history and is being continued
with alloying binary tellurides such as Bi2Te3, Sb2Te, PbTe and GeTe.[7]

One of the most researched thermoelectric material, mentioned in [10], is
Bismuth-Telluride, Bi2Te3, with a comparable high power factor PF of 4 − 5
mW/

(︀
m · K2

)︀
and ZT ∼ 1.0 near room temperature, making it ideal for cool-

ing devices and low-temperature power generation. Bismuth-Telluride has a rhom-
bohedral crystal structure, characterized by layered planes of bismuth and tel-
lurium atoms, contributing to its low thermal conductivity by effectively scattering
phonons.[10]

Lead-Telluride PbTe, with its cubic rock-salt crystal structure, where lead and
tellurium atoms alternate in a tightly packed arrangement, exhibits also a high
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power factor with PF ∼ 4− 6 mW/
(︀
m · K2

)︀
at high temperatures, T ∼ 700 K.[10]

That makes it well-suited for applications in automotive exhaust heat recovery and
aerospace industries.

Clathrates are known for their low thermal conductivity, primarily due to strong
phonon scattering. In these materials, phonon scattering occurs because of weakly
bound electropositive elements within cage-like structures.[7] Skutterudites, which
naturally occur as CoAs3 in the Skutterud region of Norway, possess a body-
centered cubic crystal structure.[11] Similar to clathrates, skutterudites exhibit
low thermal conductivity by creating void spaces through corner-sharing octahe-
dra. These voids can be filled with "rattling" atoms that disrupt phonon trans-
port. The highest ZT value was reported as ZT ∼ 2.2 at 883 K [11], for com-
mercial (Sm,Mm)0.15Co4Sb12 powder, achieved after densification via high-pressure
torsion.[11] [7] [12]

A material class that is one of the topics in the research on thermoelectric ma-
terials is constituted by full and half-Heusler compounds, discovered in 1901 by
Fritz Heusler and others.[13] Heusler systems are ternary intermetallics and semi-
conductors, with more than 1000 members and compositions, involving research
topics like novel magnetic properties, thermoelectrics, skyrmions, spintronics appli-
cations, unconventional superconductivity, topological properties, and martensitic
phase transitions.

The most common crystal structure in the Heusler family is cubic, where full
Heusler compounds X2YZ crystallize in the cubic L21 structure, inhabiting four
interpenetrating face-centered-cubic (fcc) sublattices. Full Heuslers have power
factors up to 10 mW/

(︀
m · K2

)︀
.[9] Half-Heusler compounds are XYZ compounds,

that are attractive for thermoelectric applications due to their large power factors,
thermal and mechanical stability, and the use of inexpensive and earth-abundant
elements. Alternative structural variations are characterized by structural distor-
tions, variations in atomic site ordering, or variations in atomic layer stacking.[13]
Half-Heusler of n- and p-type, reach maximum values of up to ZT = 1.5 around
800 K for the n-type compound Zr0.5Hf0.5)0.5Ti0.5NiSn0.994Sb0.06 and the p-type com-
pound Ta0.74V0.1Ta0.16FeSb. The best p-type half-Heusler materials are based on
FeNbSb, exhibiting a very high power factor of up to PF = 10.6 mW/

(︀
m · K2

)︀
.[14]

Thallium-based thermoelectric materials like Ag9TlTe5 and Tl9BiTe6 have ther-
mal conductivity as low as 0.23 W(m·K)−1 at room temperature [7], that is a result
of the extremely soft thallium bonding and its low elastic modulus. Zn4Sb3 has
a high ZT value resulting from a low glass-like thermal conductivity, where 20%
of the Zn atoms are on three crystallographically distinct interstitial sites. The
Zn diffusion rates are similar to superionic conductors and are accompanied by
local lattice distortions. An analysis of X-ray and neutron diffraction data shows
disorder at multiple length scales.[7]
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Nanostructured materials like Graphene and Carbon Nanotubes [15] are also be-
ing explored at new frontiers in thermoelectric research. These materials present
cutting-edge research opportunities to improve thermoelectric efficiency across var-
ious applications, with the ongoing challenge of enhancing their ZT values while
maintaining high power factors.

This thesis focuses on a different Ansatz, i.e., considering metallic-like systems,
exhibiting narrow d-band-like structures in the electronic density of states D(E)
near the Fermi energy. The stoichiometric compound Ni3Ge, taken as the source
material, has demonstrated in previous studies a high thermoelectric power factor
of PF = 7.2 mW/

(︀
m · K2

)︀
.[9] This is believed to result from the energy-dependent

scattering of charge carriers at states formed by 3d electrons near the Fermi energy.
The crystal structure of Ni3Ge is shown in Figure 1.3; the red spheres represent Ge

and the blue spheres represent Ni. It exhibits a face-centered cubic crystal structure
with Wyckoff positions of Ge: 1a(0,0,0) and Ni: 3c(1/2,0,1/2), spacegroup 221. The
black lines indicate the unit cell and the gray lines mimic the bonds.

To further investigate this material and increase the power factor, a series of quasi-
binary alloys have been synthesized by altering the electron count in the compound.
Their structural and thermoelectric properties are experimentally evaluated and
analyzed using phenomenological solid-state physics models.

Figure 1.3:
The crystal structure of Ni3Ge is a face-centered cubic.

The red spheres represent Ge and the blue spheres represent Ni.
Wyckoff positions of Ge: 1a(0,0,0) and Ni: 3c(1/2,0,1/2), spacegroup: 221

The black lines represent the unit cell, while the gray lines depict the bonds.
Image is created by PowderCell 2.4





2 Theoretical Aspects

Historians suggest that humans began using metals like copper Cu around 8000 BC
[5], and since then, these materials have found countless applications. In 1896, J. J.
Thomson discovered the electron e−, referred to as "corpuscles of charge" that can
be extracted from metals. In 1900, Paul Drude used Boltzmann’s kinetic theory of
gases to describe the motion of electrons in metals, providing an understanding of
metallic conduction. For electrons in an electric field E, represented by a vector
field, the electric current vector je is defined via [5][16]

je = σE. (2.1)

The electric conductivity σ,

σ =
e2τ · n
m

, (2.2)

in (Ω ·m)−1, can be derived from the equation of motion mv = −eτE in steady
state with constant momentum.[5] The conductivity σ ("Drude formula") in Equa-
tion 2.2 depends on the number of charge carriers n, the magnitude of their charge
e, the mass of the carriers m and the relaxation time τ . Metals have an almost
fixed carrier concentration, and, in general, a temperature and energy-dependent
relaxation time τ . In semiconductors, the carrier concentration is very sensitive to
temperature. In general, n increases due to thermal excitations of charge carriers
from the valence band across the energy gap into the conduction band. Doping
semiconductors with foreign atoms can have an impact on n as well.[16]

Drude subsequently calculated the thermal conductivity κ (in Watts per
meter·Kelvin, W/m·K, detailed expression in standard textbooks) due to mobile
electrons, which is defined by the heat current jq as well as by a temperature gra-
dient ∇T :[5]

jq = κ · ∇T. (2.3)

Electrons that do not interact with each other, with the background crystal lattice,
impurities, or anything else, are called "free". The probability that an eigenstate
of energy E being occupied is given by the Fermi factor nF (β(E − µ)):[5]

nF (β(E − µ)) =
1

exp(β(E − µ)) + 1
(2.4)

with the chemical potential µ and β = kBT . This distribution has a step at the
chemical potential at T = 0 K and for finite T smears over a range of energies of
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width kBT . The Fermi energy EF is the chemical potential at T = 0. The Fermi
temperature TF = EF/kB and the Fermi wavevector kF is defined via

EF =
�2k2

F

2m
. (2.5)

In a continuum system, the Fermi energy is the energy of the uppermost occupied
electron state.[16][5]

According to [16], electrons in an isolated atom move only under the influence
of the atomic nucleus’s force field. Electrons in solids, however, are affected by
the nuclei of neighboring atoms and all other nuclei within the solid. Quantum
mechanics suggests that each electron can directly or via tunneling, interact with all
other atoms in the solid. At high atomic energy levels, the electron can tunnel freely
in the solid and further, in the uppermost levels, where energies exceed potential
barriers, move without tunneling.

A crystal, with certain edge lengths, possesses N electron states, consisting of the
original electron states of the free atom. Pauli’s principle allows for two electrons
per state (spin ↑ and spin ↓). In solids, each energy level of the free atom broadens
into bands. Except for ionisation, the electrons are confined within the solid.[16]

2.1 Scattering Processes: Interactions, Mechanisms
and Implications

Essential insights into the structure of atomic nuclei, and atomic shells, along with
interactions originate from studies of scattering processes. When two particles col-
lide with each other, they change their momentum p and kinetic energy Ekin in the
interaction region. Based on the laws of energy and momentum conservation, pre-
dictions about the post-scattering direction of the momentum p′ and pre-scattering
momentum p, can be made. The total energy of the scattering partners is conserved
and is converted into other forms of energy, such as heat or potential energy Epot.
In non-relativistic mechanics this can be expressed by the energy law:[17]

p′21
2m′

1

+
p′22
2m′

2

=
p21
2m1

+
p22
2m2

+ U. (2.6)

• U = 0: Kinetic energy is conserved in elastic scattering, shared between the
interacting particles.

• U < 0: Kinetic energy decreases in inelastic scattering, with some energy
converted to thermal energy.

• U > 0: Kinetic energy increases in superelastic scattering, because at least
one interaction partner had thermal energy before.
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As discussed in [18], the scattering cross sections correspond in quantum mechanics
to transitions between states. Non-relativistic transition rates Γfi are described by
Fermi’s golden rule

Γfi = 2π | Tfi |2 D(Ei), (2.7)

which is not a trivial derivation. The transition rate Γfi from an initial state |i⟩ to a
final state |f⟩, includes the density of states D(Ei) (will be detailed in the following
pages) and the transition matrix element Tfi, which results from the Hamiltonian
that causes the transition H ′, in the limit where the perturbation is weak.[18]

Tfi = ⟨f |H ′|i⟩+
∑︁
j ̸=i

⟨f |H ′|j⟩⟨j|H ′|i⟩
Ei − Ej

+ ... (2.8)

The outcome of a single scattering process, as described in [16], depends on the
probability of an electron transitioning from a given state to an empty final state.
The Boltzmann equation can determine the effects of the individual scattering
events of transport properties. There, the state of the electron population is repre-
sented by the Fermi-Dirac distribution function. An electron that is scattered by a
scattering center, like an impurity or a lattice defect, where on average its energy
and momentum are randomized during the process, exhibits a relaxation time to
equilibrium that is equivalent to the time between those scattering processes.[16]

Boltzmann’s equation can be applied to describe transport properties. Here, a
brief outline of the Boltzmann transport equation is provided; for a detailed treat-
ment, see additional literature (e.g., [19][20]). It accounts for the interplay of ex-
ternal driving forces, diffusion, and dissipative effects from scattering processes:[19]

∂f(r,k, t)
∂t

= −v · ∇rf − e

�
(E + v × B) · ∇kf +

(︂
∂f(r,k, t)

∂t

)︂
scatter

. (2.9)

∂f
∂t

corresponds to a local, direct dependence of the non-equilibrium distribution
concerning time. The function f describes the deviation from the Fermi-Dirac
distribution function f0, relaxing over a characteristic time τe, i.e. f = f0+ f1 with
f1 being rather small. (︂

df(E)

dt

)︂
scatter

= −f(E)− f0(E)

τe
. (2.10)

v · ∇rf is a spatially dependent distribution function resembling a diffusion term,
describing transport characteristics based on local temperatures and charge carrier
concentration. The forces acting on the particle are described by
e
� (E + v × B) · ∇kf . In a stationary state, the concentration of charge carriers in
a specific volume does not change, therefore it can be simplified to:[19]

∂f

∂t
=

(︂
∂f

∂t

)︂
diffusion

+

(︂
∂f

∂t

)︂
force

+

(︂
∂f

∂t

)︂
scatter

= 0. (2.11)
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For a reciprocal vector scattered near the Brillouin zone boundary, as described in
[5], a gap opens, and states with energies higher than the zone boundary intersection
point, are pushed up in energy. Conversely, electrons with slightly lower energies
than the zone boundary intersection point are pushed down in energy. In the nearly
free electron model, the gaps are proportional to the periodic potential |VG|, with
the reciprocal lattice vector

G = k − k′. (2.12)

The crystal momentum can be described via a periodic potential; therefore, the
nearly free electrons can be represented by plane waves. This fact was confirmed
by Felix Bloch in 1928 and described first by the mathematician Gaston Floquet
in 1883.[5] An electron in a periodic potential has eigenstates of the form Ψα

k(r) =
eik·ruα

k(r) [16][19], with uα
k(r) being periodic in the unit cell and k being the crystal

momentum, both can be chosen within the first Brillouin zone. By solving, for
example, the tight-binding Schrödinger equation for electron waves, the energy
bands are obtained, containing eigenstates and gaps between bands.[5]

Figure 2.1 schematically visualizes the position of the Fermi energy EF and the
occupation of different bands for insulators and metallic conductors. Orange repre-
sents filled states, while yellow indicates empty states. Additionally, in semi-metals,
the bands overlap, and EF lies within a partially filled band. The highest occupied
band is referred to as the valence band, while the lowest unoccupied band is known
as the conduction band.[19]

Figure 2.1: Position of the Fermi level in the band scheme for insulators, metals, and
semi-metals.
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In a periodic potential, scattering centers cause a coherent diffraction pattern
and are summed up in dispersion curves or band structure of the crystal. A perfect
periodic potential, realized theoretically by an ideal crystal at absolute zero, does
not exhibit electrical resistivity. This, along with the Bloch theorem, gives the
reason for the low resistivity of very pure metals at low temperatures.[16]

As elaborated in reference [16], energy gaps or discontinuities, where the electron
can not propagate in the lattice, occur at values of a k-vector, satisfying the Bragg
reflection condition:[21]

2D · sin
(︂
θ

2

)︂
= n · λ. (2.13)

D is the grating constant, θ the angle between incident and diffracted waves,

Figure 2.2: Schematic representation of Bragg diffraction.

and n the diffraction order. A schematic image is shown in Figure 2.2. Bragg
diffraction in reciprocal space is realized by the diffraction vector (Equation 2.12)
with the wave number vector k of the incident wave and k′ of the diffracted wave.
The wavelength λ of the radiation and the wave number vector k are related by
|k| = 2π/λ. Diffraction at periodic structures resembles elastic scattering at many
individual atoms at location r. The relationship between the scattering amplitude
Es and the incident amplitude E0 leads to the differential scattering cross section dσ

dΩ
.

For example, for unpolarized X-rays, the E0 vector is on average evenly distributed
in the x− y-plane of e.g. a powder sample and the averaging over all polarizations
of the electric field, resulting in the differential scattering cross-section

dσ

dΩ
= r2

(︂
Es

E0

)︂2

=
e4

c4 ·m2
e

(︂
1 + cos2(Θ)

2

)︂
. (2.14)

Semi-classically, the scattering atom consists of a positive nucleus, which hardly
contributes to the scattered radiation due to its large mass and an electronic charge
cloud. If the charge cloud of electrons is forced to vibrate without being hindered
by atomic binding forces, the scattered waves from different parts of the electron
shell overlap. When the electron shell absorbs an X-ray beam, inelastic scattering
and energy loss occur.[21]
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As outlined in [8], the electron-scattering process depends on the concentration
of charge carriers and the mean free path between collisions, limited by scattering
due to local distortions of the electronic potential.

In a perfect crystal, charge carriers are scattered only by thermal vibrations of
the lattice. Acoustic modes and optical modes of the lattice vibrations distort the
periodic potential. Electrons and holes located in different points in the Brillouin
zone, experience changes in the wave function due to their interaction with these
vibrations. Imperfect or impure crystals, experience other scattering processes,
where impurity atoms act as scattering centers. For solid solutions, experimentally
produced and measured in this work, alloy scattering needs to be added. Those
materials, in addition, contain a substantial portion of d-elements, also called tran-
sition metal elements (e.g. Ni, Fe, Co, ...).[8]

As discussed in Reference [16], transition metals are generally divided into three
groups, that have an incomplete 3d, 4d, or 5d-shell. In a solid, the d-shells expand
to d-bands, forming a narrow energy band, compared to an s-band, due to a strong
localisation of d-electrons and thus a reduced overlap of the d-electron-states of
neighboring atoms. The properties of d-band electrons are inbetween the s-electron-
states and very narrow levels of f -electrons e.g. in rare earth elements.[16]

(a) schematic s- and d-band D(E) (b) calculated D(E)

Figure 2.3: Visualization of the schematic s- and d-band density of states D(E) (a) and
calculated D(E) from [22] (b).

Figure 2.3 (a) schematically illustrates the s- and d-band structures of ferromagnetic
Nickel (Ni), a 3d transition metal with 8 electrons in the d-shell (see Figure 3.1(a)
for reference) of an isolated Ni atom. The density of states (DOS) for the s-band
(blue line) follows the Sommerfeld model, given by D(E) ∝ √

E.[23]
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In contrast, the DOS for the d-band (red line) is modeled frequently by a
Lorentzian:[24][4]

D(E) ∼ A

1 + E−E0

γ

2 (2.15)

A represents the peak amplitude, E0 the resonance energy (center of the peak),
and γ the peak width, commonly referred to as the half-width at half-maximum.
The vertical black dashed line represents the Fermi energy of Ni, EF at 13 eV. The
calculated band structure of Ni (from [22]) is presented in Figure 2.3 (b).

In the 3d series from Sc to Ni, the d-band is progressively filled with electrons,
causing the Fermi energy to shift from the bottom to the top of the d-band, while in
Cu the d-level is full and lie below the Fermi energy. The different arrangements of
the d-shell influence the crystalline potential and affect the electronic and magnetic
properties of a material dependent on the density of states at the Fermi energy. A
special feature of transition metals is that s-electrons can be scattered by supporting
phonons into unoccupied states in the d-band, where the scattering probability is
proportional to the total density of final states. This high density of final states
leads to distinct resistivity features, as conduction electrons have a higher likelihood
of scattering.[16]

Transition elements exhibit electronic bands that correspond to the ns and
(n − 1)d states of the free atom, where n is the principal quantum number of
the outermost s electron [25](n = 4 for nickel and n = 5 for palladium). The en-
ergy required to scatter an electron from the s state to the d state is small, and the
energy of an electron in the (n− 1)d state is nearly the same as in the ns state. In
our discussion of transition metals, the essential assumption is that the interaction
energy between the d shells of neighboring atoms is small due to the limited overlap
of their wave functions.

The s electrons are responsible for nearly all cohesion and binding in the solid.
They change with temperature, by a small quantity, of the order of
kBT/(binding energy per atom). Positive holes in the d band can contribute to
conductivity and move freely through the lattice. However, due to reduced mobility,
they take significantly longer to transition from one atom to the next, compared to
s-electrons, making their contribution to conductivity relatively small. The density
of states D(E) is large in the d band, allowing electrons to jump more frequently
from the s to the d band than from one s state to another. Therefore the time of
relaxation and thus of the mean free path is shorter and the conductivity smaller.[25]



16 2.2 Electrical Resistivity Models

2.2 Electrical Resistivity Models

Transport phenomena involve the movement of particles or heat driven by external
forces or fields. When electric or magnetic fields interact with a temperature gradi-
ent in a material, a variety of transport coefficients arise. These coefficients can be
analyzed using the temperature-dependent linearised Boltzmann equation, a semi-
classical approach that relates a field-driven term to a scattering term. This model
captures the dynamic equilibrium between the driving forces and the scattering
interactions of charge or conduction carriers.[20]

The simplest expression for electrical resistivity ρ is given by the Drude formula

ρ =
m

ne2τ
, (2.16)

that is reciprocal to electrical conductivity σ (compare with Equation 2.2).[20]
The relaxation time τ for simple metals corresponds to the time it takes to traverse

an electron over a certain mean free path l between successive scattering events,
determined mainly by:

• scattering processes of conduction electrons on static lattice imperfections like
impurity atoms, grain boundaries,...

• scattering of the conduction electrons on thermally excited lattice vibrations
(phonons)

If both processes are considered to be independent from each other, Matthiesens’s
rule can be applied; τ follows then from

1

τ
=

∑︁ 1

τi
=

1

τ0
+

1

τph
. (2.17)

τ is responsible for both the magnitude and the temperature dependence of the
electrical resistivity ρ(T ), in simple metals given by

ρ(T ) = ρ0 + ρph(T ). (2.18)

The linearised Boltzmann equation, in terms of variational type calculations, due
to the electron-phonon interaction leads to the Bloch-Grüneisen equation

ρph = c2ΘD

(︂
T

ΘD

)︂5 ∫︁ ΘD
T

0

z5dz

(exp(z)− 1)(1− exp(−z))
. (2.19)

c2 is the temperature independent interaction strength of the conduction electrons
with thermally excited phonons. The following approximations are involved:

• variation type calculation to lowest order
• lattice vibrations with a sound velocity vs are described by the Debye model
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• no Umklapp processes are considered
• coupling of electrons with longitudinal phonons only
• spherical Fermi-surface
• the first Brillouin zone is approximated by a Debye-sphere with radius qD

If temperatures are much smaller or larger, then the Debye-temperature ΘD, the
Debye-integrals can be expanded, resulting in:[20]

• z ≪ 1...T ≫ ΘD, high temperatures: ρph(T ) ≈ c2
4
T

• z ≫ 1...T ≪ ΘD, low temperatures: ρph(T ) ≈ 124.4·c2
ΘD

(︁
T
ΘD

)︁5

2.2.1 Deviation from linear temperature dependence

At high temperatures, from room temperature and beyond, the resistivities of d-
elements Pd and Pt deviate from the linear temperature dependence as expected
from Equation 2.19.[16] As stated in [26], for certain metals, when the temper-
ature is above the Debye characteristic temperature Θ, the ideal resistivity due
to electron-phonon interaction follows from the Bloch-Grüneisen equation, i.e.,
ρph = KT/Θ2 for high temperatures, where K is a constant. For transition metals
in groups IV and VI, ρ increases more rapidly than linearly with temperature, while
for those in groups III and V, ρ increases more slowly than linearly. Due to the
linear lattice thermal expansion coefficient α in metals, the Debye temperature Θ of
a metal should decrease with increasing temperature, with the Debye temperature
Θ0 at T = 0 K and the Grüneisen constant γ, following

1

Θ2
=

1

Θ2
0

1 + 6αγT. (2.20)

Another mechanism for deviations of the linear temperature dependence can be
explained by s(p)-d scattering to unoccupied d states under the influence of lattice
vibrations. This is proportional to the density of states D(E) and its derivatives,
concerning the electron energy E in the d band at Fermi energy EF .[26]

Since the Fermi temperature of d-holes in Ni, Pd and Pt is low (TF ∼ 4500 K),
the contribution of T must be taken into account by higher order terms of

(︁
T
TF

)︁
.

Since the quantity df0
dE

(compare Equation 2.10) can not be treated as a δ-function
anymore, it leads to the additional term (1− AT 2).[16]

Based on equation 2.20, the ideal resistivity ρi for T > Θ follows then from:[26]

ρi =
K

Θ2
0

T (1 + 6αγT )(1− AT 2). (2.21)
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the parameter A is calculated as [16][26]

A =
1

6
(πkB)

2

[︃
3

(︂
1

D(E)

dD(E)

dE

)︂2

− 1

D(E)

d2D(E)

dE2

]︃
EF

. (2.22)

The magnitude and sign of A depends on the individual shape of the density of
states in a specific metal and has for example in parabolic bands, the form
A = 1

6
π2

T 2
F
.[16]

These relations determine that transition metals with Fermi energy EF close to a
maximum position of the density of states D(E) exhibit a positive value of A and
thereby a negative deviation. If the Fermi energy EF is close to a minimum of the
density of states D(E), the resistivity ρ(T ) deviates positively.[26] The trajectory
of D(E) influences the resistivity and has to be considered in a range of kBT around
the Fermi level. Analyzing the temperature dependent electrical resistivity of d-
element based materials the Bloch-Grüneisen equation can be used, together with
the T 3 term of Equation 2.21, i.e.,

ρ(T ) = ρ0 + ρBG + A · T 3. (2.23)

The term A · T 3 in Equation 2.23 is known in literature as Mott-Jones term.[20]

2.2.2 Hopping Conductivity

Several families of metallic solids exhibit upon decreasing temperature an increasing
resistivity ρ(T ). Many of them can be accounted for in terms of hopping conduc-
tivity, σhc (T ), derived by Sir Nevill Francis Mott [27]

σhc (T ) = σ0 · exp
(︂−A

T

)︂ 1
4

. (2.24)

σ0 is a material constant and A resembles a characteristic temperature of the sys-
tem. This phenomenon describes the electrical transport at low temperatures,
where the material is characterized by substantial disorder. The width of the hop-
ping conductivity regime is in general related to the amount of atomic disorder in
the unit cell. In such a scenario, the wave function of charge carrying electrons
is spatially confined in a very small region of the whole crystal. This results in
the inability of the electrons to diffuse at T = 0 and thereby being in an almost
insulating state, while electrons for T > 0 diffuse only by thermal activation due
to phonons. The temperature-independent background contribution is minded by
using ρ(T ) = ρ0+ρ(T )hc, with ρ0 being the residual resistivity and ρ(T )hc = 1/σhc.
Hopping conductivity can be visualized by plotting σ on a logarithmic scale ver-
sus T

−1
4 , revealing a linear trajectory, if Equation 2.3 is fulfilled for the material

considered.[27]
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2.2.3 Kondo Effect

In the early 1930-ties, Netherland physicists observed upon cooling of some simple
metals an unexpected increase of the respective electrical resistivity ρ(T ) as the
temperature moved towards zero. Overall, a local minimum in ρ(T ) at finite tem-
peratures is formed; below this minimum, ρ(T ) starts to increase logarithmically,
i.e, ρ ∝ − ln(T/T0), with T0 being a characteristic temperature.[28] For T → 0,
however, ρ(T ) tends towards a constant value (i.e., the unitarity limit).

Within a couple of years, these scientists figured out that those simple metals (e.g.,
Cu) were polluted by statistically distributed diluted magnetic impurities like Mn,
Fe or Co. Only those samples exhibited the logarithmic resistivity features, while
pure simple metals arrived at the expected residual resistivity. Several properties
could be identified subsequently:[28]

• The low temperature resistivity anomalies result from magnetic impurities.
• The depth of the resistivity minimum (Δρ = ρ(T = 0)− ρmin) turned out to

be proportional to the impurity concentration.
• The absolute minimum resistivity value ρmin is also proportional to the im-

purity concentration; thus Δρ/ρmin is concentration independent.
• The temperature of the resistivity minimum is almost independent on the

impurity concentration.
These observations indicate that this phenomenon is not due to interactions between
magnetic moments of the 3d elements. Rather, these moments appear to be locally
isolated from each other.

It took more than 30 years before J. Kondo in 1964 was able to describe these
observations for the first time, based on a perturbation-type calculation of the
so-called Heisenberg Hamiltonian, i.e,[28]

H = −2Js⃗S⃗. (2.25)

J is the exchange integral and can be treated simply as a constant. Kondo found
that by considering not only first-order, but also second-order scattering processes,
the scattering of the conduction electron with spin s⃗ by magnetic impurities with
spin S⃗ becomes temperature dependent. In particular if J is negative, the resistance
due to this scattering falls logarithmically as the temperature rises.

In a microscopic picture, this scattering involves an intermediate state with a
spin-flip process and thus a spin singlet state is formed, i.e, both s⃗ and S⃗ are ar-
ranged anti-parallel. As a consequence, the magnetic moment of this quasi-particle
becomes zero, i.e., the system becomes non-magnetic below a characteristic temper-
ature TKondo. Due to this modification from magnetic to non-magnetic, the system
gains energy of the order of kBTKondo.[28] This non-magnetic singlet state is sep-
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arated by an energy kBTKondo from the magnetic triplet state, i.e., both spins are
parallel. The interaction process is known as the Kondo effect.

The origin of the Kondo effect is therefore an energy gain of the order of kBTKondo

owing to the formation of a non-magnetic ground state. The Kondo effect not only
influences the temperature dependent electrical resistivity, but also many other
physical quantities and causes e.g., a crossover of the magnetic susceptibility from
Curie - Weiss behavior at high temperatures to Pauli susceptibility at low tempera-
tures. Note, the crossover temperature corresponds to TKondo. The Kondo temper-
ature itself does not mark any physical phase transition of first or second order; it
characterizes just a change of the regime (e.g., from magnetic to non-magnetic).[28]

2.3 Landauer’s theory

Landauer’s theory provides a unified framework for describing electronic and ther-
mal transport in ordered and disordered metals. It accounts for various scatter-
ing processes, including electron interactions with grain boundaries, point defects,
phonons, and other mechanisms in both crystalline and amorphous materials.

Temperature gradients induce gradients in the particle distribution function, driv-
ing the transportation of particles. The electronic transport induced by electric
fields under isothermal conditions results in a gradient in the electron chemical
potential ∇µ = q∇U and induces a gradient in the electron occupation statistics.
Consequently, high energy states near one contact result in a higher occupation
than those near low energy states. This difference in electron occupation is the
driving force to transfer electrons from one contact to another.[4]

Using Landauer’s approach for an infinitesimal slice of bulk material, the current
density J can be calculated, incorporating electrical conductivity σ, the Seebeck
coefficient S, and contributions to thermal conductivity from both electrons and
vibrational quanta.

Here, Landauer’s theory for bulk materials can be applied, as it relates the current
density J to the gradient in occupation ∇f induced by a gradient in chemical
potential or temperature.[4]

J = −q

∫︁ ∞

−∞
G(E)∇fdE (2.26)

G(E) represents an energy-dependent transport function, which is a combination
of transport channels T (E) and their associated transition probabilities M(E).
For crystalline materials, G(E) (see Figure 2.4) can be obtained from the band
structure and scattering theory. The collective motion of all the particles at a
given energy has to be taken into consideration. This is provided by the band
structure, where all electrons or phonons are organized by energy in the reciprocal
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Figure 2.4: Sommerfeld model of the average squared velocity ⟨v(E)2⟩ ∼ E, average
of each particle scattering after a characteristic relaxation time τ(E) ∼ E−1/2 and the
density of states D(E) ∼ √

E (compare equation 2.33)

space. Slopes of the band structure correspond to the group velocity vg = ∂E/∂k,
with which each particle travels along the transport direction. With the average
squared velocity ⟨v(E)2⟩ of the particles at a given energy, their collective transport
with the density of states D(E) and the average of each particle scattering after a
characteristic relaxation time τ(E), the energy-dependent transport function forms
as [4]

G(E) = ⟨v(E)2⟩τ(E)D(E). (2.27)

The density of states D(E), as discussed in [23], represents the number of states
within a given energy interval. It can be derived from the Sommerfeld model, which
combines the Pauli exclusion principle with Fermi-Dirac statistics to describe the
velocity distribution of free electrons. The macroscopic spatial volume V = L3 of
the crystal sample is assumed to contain a periodic lattice and is approximated by
a three-dimensional potential well with an infinitely high energy threshold at all
borders, in which the electron gas is confined. To determine possible energy levels,
the Hamiltonian operator

H = − �2

2m
∇2 + V (r) (2.28)

is constructed for an electron in the box potential V (r) where V0 is constant for 0 ≤
x, y, z ≤ L and V = ∞ otherwise. This energy operator H forms the Schrödinger
equation in the eigenvalue equation HΨ(r) = EΨ(r). Electrons in a vacuum,
without boundary conditions, are represented by plane waves Ψ(r) = a · exp(ikr),
yielding the energy eigenvalues and the dispersion relation

E = �ω =
�2k2

2m
. (2.29)
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Positive and negative k values result in linearly independent solutions, and the
wave is normalizable for k = 0. Therefore, the possible states occupy the entire
k space, represented as a grid of points with a spacing of 2π/L, resulting in the
reciprocal volume per state

Vk =

(︂
2π

L

)︂3

. (2.30)

The total number of states N = Vshell/Vk within the interval k and k + dk, in a
spherical shell with radius k and wall thickness dk, has the volume Vshell = 4πk2dk
in reciprocal space. Considering the two spin states ↑ and ↓, the electron density
of states gives the relation

dN = D(k)dk = 2 · dN = 2 · V k2dk

2π2
. (2.31)

For a material with N electrons, each occupying only one state, these electrons can
fill the states at T = 0 K up to a maximum wave vector kF , yielding:

N =

∫︁ kF

0

D(k)dk =
V k3

F

3π2
(2.32)

Finally, the density of states D(E) as a function of energy, with the total electron
density n = N/V , provides:[23]

D(E) =
dn

dE
=

(2m)
3
2

2π2�3
√
E (2.33)

To relate the spatial gradient of the occupation statistics ∇f = ∂f/∂x to the
spatial gradient of the electron chemical potential ∇µ = ∂µ/∂x, the current density
induced by an applied voltage can be determined via [4]

∇f =
∂f

∂µ

∂µ

∂x
(2.34)

This, along with the Fermi factor nF (β(E − µ) (see Equation 2.4), leads to the
relation

∇f = − ∂f

∂E
· ∇µ, (2.35)

resulting in a general current density equation that describes, how a material re-
sponds to an applied voltage:

J∇U = −q2∇U

∫︁ ∞

−∞
G(E)

−∂f

∂E
dE. (2.36)

From Ohm’s law (2.1) je = σE = −σ∇U , one of the main properties that is of
interest, the electric conductivity σ can be derived.

σ = q2
∫︁ ∞

−∞
G(E)

−∂f

∂E
dE (2.37)
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This quantity is always positive, and the electron distribution function (−∂f/∂E)
determines the type of carriers involved in the transport process. When a tempera-
ture gradient is applied to a sample, it induces a gradient in the carrier occupation
statistics. As the temperature increases, the carrier distribution function broadens
around the electron chemical potential. Regions with higher temperatures have
more electrons in high-energy states and fewer in low-energy states.[4]

According to the second law of thermodynamics, heat flows spontaneously from
hotter to colder regions, driving high-energy electrons from hot to cold areas and
low-energy electrons from cold to hot areas. The relation between the spatial
gradient of the occupation statistics ∇f and the spatial gradient of the temperature
∇T is given by

∇f =
∂f

∂T
· ∇T =

E − µ

T

(︂
− ∂f

∂E

)︂
· ∇T. (2.38)

With these results, the Landauer solution for the current density induced from a
temperature gradient is:

J∇T = −q∇T

∫︁ ∞

−∞
G(E)

(︂
E − µ

T

)︂ −∂f

∂E
dE. (2.39)

The relation of the heat current jq (Equation 2.3) can be used to determine κ within
the Landauer theory as:[4]

κ = q

∫︁ ∞

−∞
G(E)

(︂
E − µ

T

)︂ −∂f

∂E
dE. (2.40)

This is analogous to an Onsager coefficient that determines the current response
from a temperature gradient. The current densities induced by temperature and
voltage gradients are additive in the linear regime and are called the diffusion and
drift currents,

J = J∇U + J∇T = −σ · ∇U − κ · ∇T. (2.41)

The Seebeck effect in Landauer’s theory, describes the generation of a voltage gra-
dient ∇U by a temperature gradient ∇T in a material, with a net current density
J = 0. The Seebeck coefficient S (Equation 1.1) is defined by a temperature
gradient ∇T across a sample and the measurement of the induced voltage in an
open-circuit condition. This is formally realized by the ratio of the voltage differ-
ence ΔU and the temperature difference ΔT :[4]

S = −d ·ΔU

d ·ΔT
=

κ

σ
=

∫︀∞
−∞ G(E) (E − µ) −∂f

∂E
dE

q · T ∫︀∞
−∞ G(E)−∂f

∂E
dE

. (2.42)

Since σ and κ determine the material’s response to a voltage gradient ∇U and a
temperature gradient ∇T , the Seebeck coefficient S would have its largest value
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if σ = 0. However, it is not feasible for a material to respond to a temperature
gradient ∇T but not to a voltage gradient ∇U .

To classify the thermoelectric performance, a power factor PF (Equation 1.2)
is introduced, which is proportional to the electrical conductivity and the Seebeck
coefficient S2. With Equation 2.42, the power factor can be expressed as:[4]

PF = S2σ =

[︁∫︀∞
−∞ G(E) (E − µ) −∂f

∂E
dE

]︁2
q · T 2

∫︀∞
−∞ G(E)−∂f

∂E
dE

. (2.43)
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Cu and Au form, among others, the intermetallic compound Cu3Au, which mostly
occurs naturally with 40 % Au. It exhibits a face-centered-cubic crystal structure
with Au atoms at the edges of the cube and Cu in the faces (compare also with
Figure 1.3). In addition, it is harder than pure gold with a distinct red coloration.
Known occurrences originate from hydrothermal veins and are poor in sulfur.[29]

The face-centered-cubic structure of Cu3Au can be visualized as four interpen-
etrating simple cubic sublattices. Close to the structural ordering temperature
T ∼ 663 K, the gold atoms segregate onto one of the sublattices, showing short-
range order.[30]

The stoichiometric compound Ni3Ge is an intermetallic compound, that is formed
from the elements Ni and Ge. Ni3Ge is a reference material in academic and indus-
trial research due to its exceptional electronic, thermal, and mechanical properties.
It has the fcc crystal structure (see Figure 1.3), which leads to its thermal and
mechanical stability and is useful for applications under extreme conditions. The
thermoelectric PF in the temperature range T = 500 K and T = 650 K is well
above 7 mW/

(︀
m · K2

)︀
[9] and therefore serving as a reliable benchmark for re-

searching thermoelectric properties. Additionally, it is used to form low-resistivity
contacts between metal and semiconductor components in integrated circuits.[9]

Both elements Ni and Ge are chemical elements in the fourth row of the periodic
table of chemical elements. Doping or introducing foreign elements into Ni3Ge
through isoelectronic or non-isoelectronic substitution, maintains either a constant
electron count or allow tuning of electronic properties, e.g., by shifting the Fermi
energy (EF ). This can potentially enhance the power factor PF (see Equation 1.2).

Figure 3.1 shows the relevant section of the periodic table, highlighting the el-
ements involved in this study. In Figure 3.1 (a) the focus is on the electron con-
figuration of chemical elements, where the rows represent the electron shells; the
number represents the number of electrons in it. Figure 3.1 (b) displays the density
of states (states/eV/atom) versus E − EF in units of eV, with the dashed line as
Fermi energy (Equation 2.5).[22]

Research on cubic fcc NixAu1–x alloys in [22], with power factors PF > 30
mW/

(︀
m · K2

)︀
, exceeding dramatically those of any other known bulk material

from room temperature and above, has inspired the choice of compounds and al-
loys in this Diploma thesis. Outstanding properties are expected from a strongly
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energy-dependent scattering rate τ , that is originating from a steep gradient of the
electronic density of states from Ni d states around EF . Similar DOS features can
be found in several other 3d, 4d and 5d elements. The mobility remains high for
conduction electrons above EF , but s-type charge carriers are scattered into more
localized unoccupied Ni d states near EF .

(a) electron configuration (b) density of states

Figure 3.1: Detailed periodic tables with electron configuration (a) density of states [22]
(b).

• Nickel (Ni), is a hard, ductile transition metal with 28 electrons and has a 3d
orbital along with a face-centered cubic (FCC) crystal structure. Its electron
configuration is [Ar] 3d84s2, and it belongs to the d-block of the periodic
table.

• Germanium (Ge) is a hard and brittle metalloid with 32 electrons featuring a
diamond crystal structure. It has an electron configuration of [Ar] 3d104s24p2,
including a 4p orbital.

• Silicon (Si) is a hard, brittle metalloid with 14 electrons and protons, crystal-
lizing in a diamond cubic structure. Its electron configuration is [Ne] 3s23p2,
featuring a complete neon core.
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• Antimony (Sb) is a brittle metalloid with 51 electrons and protons, crys-
tallizing in a rhombohedral structure, with an electron configuration of [Kr]
4d105s25p3 and a full krypton core.

• Copper (Cu) is a soft, malleable, and ductile transition metal with 29 electrons
and protons. It has an FCC structure and an electron configuration of [Ar]
3d104s1.

• Silver (Ag) is a soft transition metal with 47 electrons and protons, also crys-
tallizing in an FCC structure, with an electron configuration of [Kr] 4d105s1.

• Tin (Sn), is an element in the 4th main group has 50 electrons and protons.
It crystallizes in a body-centered tetragonal (BCT) structure and has the
electron configuration [Kr] 4d105s25p2.

• Palladium (Pd) is in the main group a 5d transition metal with 46 electrons
and protons, crystallizing in an FCC structure, with an electron configuration
of [Kr] 4d10.

• Platinum (Pt), a soft transition metal is in the main group a 6d and has 78
electrons and protons, crystallizing in a BCT structure. Its electron configu-
ration is [Xe] 4f 145d96s1.

• Indium (In), one of the softest metals, has 49 electrons and protons, with a
BCT structure and an electron configuration of [Kr] 4d105s25p1.

• Aluminium (Al) is a soft, ductile metal with 13 electrons and protons, crystal-
lizing in an FCC structure. Its electron configuration is [Ne] 3s23p1, featuring
a complete neon core.





4 Experimental Results and
Discussion

This experimental section summarizes all experimental studies and analyses ob-
tained for several Cu3Au-crystal structure-based binary materials, beginning with
a detailed description of the experimental setup.

Concerning the thermoelectric properties of Cu3Au-crystal structure-like systems
discussed in Chapter 3, efforts were made to surpass the previously achieved power
factors of PF > 5 mW/

(︀
m · K2

)︀
, at the same time, to find thermoelectric materials

that are affordable.
Therefore, element combinations were selected from transition metals with in-

complete d-shells, forming binary compounds with metals or semi-metals. In these
compounds, the transition metal elements and metals or semi-metals were alter-
nately substituted with transition metals possessing complete d-shells.

Additionally, materials involving a ternary composition were conducted, guided
by the mentioned considerations.

The samples include:

• Ni3.05Si0.95

• Ni3.05Si0.9Sb0.05

• Ni3.05Si0.85Sb0.1

• Ni3.0Cu0.05Si0.95

• Ni2.95Cu0.1Si0.95

• Ni2.9Cu0.15Si0.95

• Ni2.95Cu0.05Ge

• Ni2.9Cu0.1Ge

• Ni2.95Ag0.05Ge

• Pd3Sn0.95In0.05

• Pt3Sn0.95Sb0.05

• Ni2CuAl

• Ni2.2Cu0.8Al

• Ni2.4Cu0.6Al

• Ni2.6Cu0.4Al

• Ni2.8Cu0.2Al
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4.1 Experimental Setup

4.1.1 Synthesis and Characterization Measurements

The samples listed in the introduction of Chapter 4 were carefully prepared, with
each 2.5 g, from the respective pure elements (Cu: 99.98%; Ni, Al, Sb, Ag, Pt, Pd:
99.99%; Sn: 99.998%). During this process, larger pieces were extracted from the
raw element blocks, and dust or small fragments were avoided to minimize mass
loss in the final product.

Mass measurements were conducted using a Sartorius scale (Serial No: ME235S-
OCE 22707453), calibrated in July 2024. The masses of each element for the
stoichiometric compounds are listed in Table 6.1 (measured in grams).

Figure 4.1: Schematic of a frequency induction furnace consisting of a water-cooled
copper crucible enclosed by a quartz glass cylinder surrounded by a copper coil.

The experimental setup of the high-frequency induction furnace (see Figure 4.1)
includes a water-cooled copper crucible enclosed by a quartz glass cylinder and
surrounded by a copper coil, powered by a high-frequency generator. The melting
process of the pure elements into alloys was performed several times under an argon
5.0 atmosphere inside the quartz glass cylinder, utilizing Faraday induction voltage

Uinduction = − d

dt

∫︁
B · dA (4.1)

derived from the Maxwell equation ∇ × E = −dB
dt

, where B is the magnetic flux
density (measured in tesla, T) and A is the copper coil area. The induced voltage
generates a current in the metallic samples, producing irreversible Joule heat P =
I2 · R (measured in watt, W). Joule heating arises from an exchange of energy
between electrons and the lattice, indicating the inelastic nature of the scattering
process.[6][16]

All alloy samples were subjected to heat treatment, performed with a Naber
industrial furnace (Model N7) in quartz glass cylinders, separated by glass wool.
This procedure ensures a homogeneous distribution of elements within the ingots.
The post-tempering masses are also listed in Table 6.1.
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Basic structural characterization of the crystal is performed at room temperature
by using X-ray diffraction (XRD) with a Panalytical AERIS DY992 diffractometer
(Type: 9430 070 99991, Serial No.: 810−00519253). It has a peak position accuracy
of 2Θ, well below ±0.02 2Θ. For this analysis, parts of the samples were ground
into a fine powder. With this method the diffraction condition k − k′ = Ghkl with
| k |= 2π

λ
can be fulfilled by varying the direction between the incident (k) and

diffracted (k′) beam (compare with Chapter 2.1). The Θ − 2Θ scan ensures that
the detector is always at the same angle to the sample as the incident beam. This
makes the diffractometer arrangement particularly suitable for diffraction intensity
measurements with electronic counters, because there is an increase in intensity in
weakly diverging X-rays with a certain spectral width. Small twists in the sample
can cause different wavelength components of the beam to be diffracted to the same
point in the focusing circle. The present measurement is based on a Cu-based X-ray
tube, with a wavelength λ ∼ 0.124 nm of the radiation, utilizing Bragg diffraction
(compare Equation 2.13).

The XRD results of the crystalline powder samples are analyzed using the pro-
gram PowderCell 2.4. Initially, the free parameters are minimized, typically reduced
to only the lattice parameter. The fitting process employs Rietveld refinements,
where the Bragg peaks are modeled using pseudo-Voigt functions, I(ΔΘ). These
functions approximate the Voigt profile by replacing the convolution with a linear
combination of Gaussian and Lorentzian curves. This approach enables the fitting
of X-ray diffraction profiles through a least-squares method, refining a theoretical
line profile to match the measured data.

I(ΔΘ) =

{︃
Ihkl · e−b·ΔΘ2

, for ΔΘ2 ≤ ln 2
b

0.5·Ihkl
1+b·ΔΘ2 , for ΔΘ2 ≥ ln 2

b

(4.2)

The line intensities, Ihkl, are connected to the full width at half maximum (FWHM)
through the relation b = 2.772

FWHM2 , where FWHM = U · tan2 Θ+ V · tanΘ+W ; with
U , V , and W as fitting parameters. The fitting process also includes the following
parameters:

• Debye-Waller factor: Describes an overall temperature-dependent factor ac-
counting for atomic vibrations within the unit cell.

• Scale Factor: Determines the relative proportion of the phase within a mix-
ture, affecting the overall intensity.

• Zero-Shift: Accounts for potential detector calibration errors, which are in-
dependent of the Bragg angle.

• Displacement: Corrects for misalignment of the sample, ensuring it is accu-
rately centered in the diffractometer circle.

This process ensures precise modeling of diffraction patterns, enabling accurate
structural characterization.(more details in PowderCell 2.4 instruction manual)
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4.1.2 Transport Properties Measurements

For the measurement of the Seebeck coefficient S and the electric resistivity ρ of each
sample, a power conversion efficiency measuring instrument (LOT.No.: 071082010,
MFG.No.: ZA07-9609, Model: ZEM-3 (M10L)) from the company ULVAC-RIKO,
INC is being utilized.

The procedure involved shaping the samples into rectangular rods using a dia-
mond cup wheel (M1D08) on an Accutom-100 device from Struers GmbH. (Type:
06176127 and Serial No: 61710013).

The sample is clamped between the electrodes and in contact with probes A and
B. Measurement of voltage ΔU and the temperature difference ΔT between probe
A and probe B (see Figure 4.2) provides the relation of the Seebeck coefficient S

S =
ΔU

TB − TA

. (4.3)

Temperature and electromotive force are measured using probe A and probe B,

Figure 4.2: Conceptual diagram illustrating the measurement of the Seebeck coefficient
S, where the sample is clamped between a hot and cold end and probes A and B
measure the voltage ΔU .

where the measured temperature Tmeasured is

Tmeasured =
TA + TB

2
. (4.4)

The sample resistivity ρ = 1/σ is determined by measuring the current I, set with
the constant current power supply and the voltage ΔU between wires A and B,
where R = ΔU/I. The uniform known cross-sectional area Across of each sample
shape (see Table 6.2) and the distance dAB between probe A and B, is needed to
obtain the resistivity value [16]

R = RSample · Across

dAB

. (4.5)
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Figure 4.3: Conceptual diagram for the measurement of the resistivity ρ where the
sample is clamped between contacts that supply current and wires A and B measure
the voltage ΔU from room temperature to 873 K.

The temperature-dependent resistivity ρ(T ) from 4 K to room temperature was
measured using the 4-point method. Gold Au wires were attached to a rod-shaped
sample using spot welding. A Schmidt Instruments power supply (UIP 1000 digital,
Serial No.: 3/08) and a Zeiss microscope (Stemi 2000-C, Serial No.: 038-18835)
ensured precise spot welding. The sample is glued to a circuit board, and the gold
wires are soldered. The circuit boards are installed on the sample holder and a
shield is placed above to block radiation heat. The sample holder is then placed
in a bath cryostat filled with liquid 4He, cooling it to 4 K. The bath cryostat
then warms up by heat exchange with ambient temperature and the measurement
data are collected while slowly drifting to room temperature. The four-point probe
method (see Figure 4.3) utilizes a fixed current I that passes through the outer
wires and measures the voltage ΔU between the inner ones.

The elements and inventory used were provided by the working group at the
Institute of Solid State Physics, TU Wien.
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4.2 Optimization of off-stoichiometric Ni3.05Si0.95

This chapter presents the measurement and analyses data for off-stoichiometric
compounds Ni3.05SbxSi0.95–x and Ni3.05–xCuxSi0.95. Since Ni3Ge exhibits excellent
thermoelectric properties, there is a search for materials that are equally good in
performance and more cost-efficient. For these reasons, Ge was exchanged for Si,
also known for its conductive nature and affordability.

The compound Ni3Si is indicated by the orange vertical line in the phase diagram
shown in Figure 4.4, appears to be rather unstable and hard to obtain in single phase
condition; thus giving the reason for the choice of off-stoichiometric compound
Ni3.05Si0.95. The solidus and liquidus lines of Ni-Si exhibit several minima, indicating
eutectic phases. In addition, there are 3 congruently melting phases. The solid-
state equilibrium of Ni3.05Si0.95, is found next to the β1 phase (green area), with a
peritectoid formation at 1035 ◦C, as confirmed by optical, X-ray and differential
thermal analyze (DTA) techniques.[31]

In this diploma work, Ni3.05Si0.95 was substituted on the Si side with Sb and on
the Ni side with Cu, to modify the electronic band structure. Antimony being a

Figure 4.4: NiSi phase diagram with the orange vertical line marking Ni3Si next to the
solid-state of Ni3.05Si0.95 in the green area.[31]

metalloid, has a higher electron count and is used here to add electrons to increase
the Fermi energy and probably raise the electrical conductivity and the Seebeck
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coefficient. Copper is also chosen for its metallic nature and high carrier mobility,
intended to enhance the thermoelectric power factor.

4.2.1 Synthesis and Characterization

Two samples from the series Ni3.05SbxSi0.95–x (x = 0.05 and x = 0.1), each weigh-
ing 2.5 g, were prepared by high-frequency induction melting (see Figure 4.1 in
Chapter 4.1), with all elements fused simultaneously and inverted five times during
each melting process. Similarly, three samples of Ni3.05–xCuxSi0.95 (x = 0.05, 0.1,
and 0.15), each weighing 2.5 g, were synthesised using the high-frequency furnace
method. All ingots were subjected to heat treatment, which was accomplished by
tempering at 973 K for seven consecutive days.

In Figure 4.5, the X-ray diffraction patterns of each sample set, is presented
normalized to the maximum intensity and shifted with increasing x by an offset of
10 % to obtain a better perspective. The red vertical lines mark the Miller indices,
corresponding to the diffraction peaks of the crystal planes in the cubic Cu3Au
structure. Obviously, all samples substituted with Sb or Cu exhibit intensities
corresponding to the Cu3Au-type structure.

(a) Ni3.05SbxSi0.95–x (b) Ni3.05–xCuxSi0.95

Figure 4.5: Normalized X-ray diffraction pattern for each sample of Ni3.05SbxSi0.95–x (a)
and Ni3.05–xCuxSi0.95 (b) shifted with increasing x by an offset of 10 %.

The X-ray diffraction patterns of Ni3.05SbxSi0.95–x (see Figure 4.5 (a)) confirm good
solubility for x = 0.05, but already for x = 0.1 impurities appear between 2Θ = 26◦

and 2Θ = 28◦ and around the main peak at 2Θ = 45◦, indicating additional
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Figure 4.6: Lattice parameter of Ni3.05–xCuxSi0.95 and Ni3.05SbxSi0.95–x starting with
Ni3.05Si0.95.

secondary phases in the sample. In contrast, Ni3.05–xCuxSi0.95 (see Figure 4.5 (b))
remains impurity-free up to x = 0.1, foreign phases emerge for x = 0.15 at 2Θ =
43.9◦, 2Θ = 45.9◦ and 2Θ = 47.2◦, along with an intensity shift in the range from
2Θ = 20◦ to 2Θ = 39◦.

The lattice parameters of the respective alloys, listed in Table 6.3, are determined
via Rietveld refinement of the XRD patterns. The behavior of the lattice parameter
of Ni3.05Si0.95 is visualized in Figure 4.6, beginning with Ni3.05Si0.95, with the atomic
radius of Ni being 1.24 · 10−10 m and Si 1.11 · 10−10 m. The contribution in steps
of Δx = 0.05 from Sb, with an atomic radius of 1.40 · 10−10 m, leads to a higher
value of the lattice parameters of the samples, than those of Cu with an atomic
radius of 1.28 ·10−10 m. The gradient from light to dark color symbolizes increasing
substitution. The Rietveld refinement results for the individual samples are pre-
sented in Figure 4.7. The initial fit parameters were derived from a face-centered
cubic crystal structure, with Si positioned at 1a(0,0,0) and Ni at 3c(0,1/2,1/2),
within the space group 221. Subsequently, Cu was incorporated proportionally at
the 3c(0,1/2,1/2) position, while Sb was added at 1a(0,0,0).

The detailed examination reveals that for all samples the intensity count of the
chosen fit function is higher in height and smaller in width of the main intensity
peak, representing the crystal plane (111), than the measured pattern, alongside
the (200) plane. The height of the peaks for planes (100), (110), and (220) is lower.

This observation can likely be attributed to the preferred orientation of grains
within the material, which may have resulted from the mechanical stresses intro-
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duced during the grinding process of the ductile samples. The grinding process can
cause plastic deformation, aligning the grains in specific orientations, which can
affect the material’s microstructure and influence its properties, such as anisotropy
in thermal or electrical conductivity.
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(a) Ni3.05Si0.95 (b) Ni3Cu0.05Si0.95

(c) Ni3.05Sb0.05Si0.9 (d) Ni2.95Cu0.1Si0.95

(e) Ni3.05Sb0.1Si0.85 (f) Ni2.9Cu0.15Si0.95

Figure 4.7: Normalized X-ray diffraction pattern for Ni3.05Si0.95 (a), Ni3.05SbxSi0.95–x

(c,e) and Ni3.05–xCuxSi0.95 (b,d,f) including the difference (red) between sample (blue)
and fit function (black).
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4.2.2 Transport Properties

A comparison of the source material Ni3Ge with Ni3.05Si0.95 is given in Figure 4.8,
focusing on the temperature-dependent resistivity ρ(T ) (a) and the Seebeck coeffi-
cient S(T ) (b).

(a) ρ(T ) (b) S(T )

Figure 4.8: Temperature-dependent resistivity ρ(T ) (a) and Seebeck coefficient S(T )
(b) of Ni3.05Si0.95 compared to Ni3Ge. The solid and the dashed lines in (a) represent
least squares fits according to Equations 2.21 and 2.23.

To qualitatively and quantitatively account for the temperature-dependent electri-
cal resistivity, the Bloch-Grüneisen model (Equation 2.19), is considered. This
model takes into account the interaction of electrons with thermally excited
phonons, yielding a T 5 behavior at low temperatures and a T -linear behavior at
high temperatures. A Mott-Jones term A ·T 3, as discussed in Chapter 2.2, is added
to include the phonon-assisted scattering process of s-electrons into d-states of Ni/
Cu near to the Fermi energy. The solid and dashed lines in Figure 4.8 (a) represent
least squares fits of the combined Ansatz as discussed above. Relevant equations are
Eqn. 2.21 (solid line) and Eqn. 2.23 (dashed line). Fit parameters are summarized
in Tables 6.7 and 6.8).

Excellent agreement is derived between the experimental data and the model
utilized. In both cases, deviations from linearity of ρ(T ) are found. The analyses
revealed, through the parameter A (discussed in Chapter 2.2.1), that for Ni3Ge the
Fermi energy EF is near a minimum position of the density of states D(E); while
in Ni3.05Si0.95, EF is close to a maximum position of D(E) (compare with Table
6.7). Both models align well with each other and the measured data.
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Additionally, Ni3.05Si0.95 exhibits a significantly higher ρ(T ) and a lower S(T )
(Figure 4.8 (b)) compared to Ni3Ge.

Figure 4.9 visualizes the measured temperature-dependent resistivity ρ(T ),
the Seebeck coefficient S(T ) and power factor PF (T ) for Ni3.05SbxSi0.95–x and
Ni3.05–xCuxSi0.95 alloys.

The temperature-dependent resistivity ρ(T ) ( see Figure 4.9 (a)), from room
temperature to 873 K, of the Ni3.05SbxSi0.95–x alloys increases with higher Sb content,
x = 0.05 and x = 0.1, while the Seebeck coefficient S(T ) ( see Figure 4.9 (b))
decreases with increasing substitution. This trend results in a decreasing power
factor PF (T ) (see Figure 4.9 (e)) of Ni3.05SbxSi0.95–x, with an increasing amount
of Sb. The highest PF (T ) is reached for Ni3.05Si0.95 with 3.83 mW/

(︀
m · K2

)︀
at

T ∼ 600 K, which is close to the values of PbTe, with 4 − 6 mW/
(︀
m · K2

)︀
at

T ∼ 700 K [10].
In Figure 4.9 (c) the temperature-dependent electrical resistivity ρ(T ) is shown

for the sample series Ni3.05–xCuxSi0.95 for x = 0, 0.05, 0.1, 0.15. Initially an increase
of the resistivity ρ(T ) is observed, but it returns to near-original ρ(T ) levels of
Ni3.05Si0.95 for x = 0.1 and x = 0.15. The Seebeck coefficient S(T ), see Figure 4.9
(d) is similar for x = 0.05 and x = 0, but increases for x = 0.1. The sample with
x = 0.15 is similar at room temperature to the one with x = 0.1, but changes its
behavior with increasing temperature to x = 0 and x = 0.05. Overall, the Seebeck
effect is negative, referring to electrons as principal charge carriers. The sample
with x = 0.1 has a power factor at high-temperatures, similar to PbTe, exhibiting
PF = 4.78 mW/

(︀
m · K2

)︀
at T ∼ 520 K (Figure 4.9 (f)).

As already demonstrated for experimental data of Figure 4.8 (a), Equations 2.21
and 2.23 were used to account for the temperature-dependent resistivities of Figure
4.9. Results of least squares fits are shown again by solid and dotted lines. The
fit parameters are provided in Table 6.7. All samples, except for Ni2.95Cu0.1Si0.95,
exhibit a positive parameter A and therefore a negative deviation from linearity,
suggesting that the Fermi energy, EF , is near a maximum in the density of states,
D(E). The positive deviation, observed in Ni2.95Cu0.1Si0.95 indicates that EF is near
a minimum in D(E).

In both sample series, Ni3.05SbxSi0.95–x and Ni3.05–xCuxSi0.95, the increasing resis-
tivity ρ(T ) for increasing x values, is likely resulting from disorder due to alloying
and impurity phases, constituting defects in the periodic crystal lattice (compare
Figure 4.7), thus reducing the electrical and thermal conductivity.

Since doping of Ni3.05Si0.95 has not led to considerably better thermoelectric prop-
erties, this series can be closed for now.
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(a) ρ(T ) for Ni3.05SbxSi0.95–x (b) S(T ) for Ni3.05SbxSi0.95–x

(c) ρ(T ) for Ni3.05–xCuxSi0.95 (d) S(T ) for Ni3.05–xCuxSi0.95

(e) PF (T ) for Ni3.05SbxSi0.95–x (f) PF (T ) for Ni3.05–xCuxSi0.95

Figure 4.9: Temperature-dependent resistivity ρ(T ) (a,c). Solid and dashed lines are
showcasing fits according to Equations 2.21 and 2.23. Temperature-dependent Seebeck
coefficient S(T ) (b,d) and power factor PF (T ) (e,f) for each sample of Ni3.05SbxSi0.95–x

and Ni3.05–xCuxSi0.95 from room temperature to 873 K.
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4.3 Physical Properties of substituted Ni3Ge

This chapter discusses the measurement (0 ≤ x ≤ 0.1) and data evaluation of
pseudo-binary intermetallics Ni3–xCuxGe and Ni2.95Ag0.05Ge. Using copper as a
dopant for its metallic properties and high carrier mobility, along with the intro-
duction of silver in a new experiment, is expected to enhance electrical conductivity
by utilizing silver’s exceptional carrier mobility. According to the phase diagram
shown in Figure 4.10, the βNi3Ge phase (green area) melts almost congruently at
1132 ◦C and exhibits phase width of about3%.[32]

Figure 4.10: NiGe phase diagram showcasing the solid state phase of Ni3Ge in the green
area.[32]
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4.3.1 Synthesis and Characterization

When preparing Ni2.95Ag0.05Ge, Ag is pre-reacted with Ge by high-frequency melt-
ing, before the final product is synthesized. Similarly, for the two Ni3–xCuxGe
samples (x = 0.05 and x = 0.1), Cu was pre-reacted with Ge in the same manner
to achieve homogeneous ingots.

In Figure 4.11 (a), the X-ray diffraction data of Ni3–xCuxGe can be found, nor-
malized to the maximum intensity and shifted against each other with increasing x
by an offset of 10 %. Likewise, Figure 4.11 (b) shows the X-ray diffraction data of
Ni2.95Ag0.05Ge for the core and the surface of the sample, in comparison to Ni3Ge.
Figure 4.11 (b) clearly reveals that the sample’s surface area contains secondary
phases, while the core exhibits a more homogeneous structure.
X-ray diffraction plots include Miller indices indicated by red vertical lines, at

the reflection peaks of the preferred crystal planes of the Cu3Au structure. For
Ni3–xCuxGe all intensities fit the theoretically expected Bragg peaks, except for
the (210) and (211) peaks that are completely missing in the experiment. The
XRD results of Ni2.95Ag0.05Ge for the core align with the Bragg peaks of the Cu3Au
structure, except for the absence of the (211) peak; several impurity peaks, however,
are present.

The results from the Rietveld refinement for each sample are shown in Figure
4.11 (c,d,e). The obtained fit functions based on a face-centered-cubic-crystal struc-
ture, were calculated using Wyckoff positions; Ge at 1a(0,0,0) and Ni sharing the
3c(0,1/2,1/2) position proportional with one of {Cu,Ag}, within space group 221.

This reveals that for Ni3–xCuxGe the chosen fit function has a larger height that
is smaller in width for the (111) peak. The (100) and (110) planes exhibit higher
intensities, while the (220), (311), and (222) planes show lower peak intensities, as
determined by the XRD results (Figure 4.11 (c) and (d)).

The Rietveld refinement for the Ni2.95Ag0.05Ge core in Figure 4.11 (e) shows the
compliance with the cubic Cu3Au crystal structure, but also foreign phases are
found around the main peak. The fit function has a larger intensity at the (200)
plane and is smaller for the intensity peaks of planes (220), (311), and (222). Like
in chapter 4.2, this observation is likely due to the preferred orientation of grains
and might originate from the grinding process of the ductile samples.
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(a) Ni3–xCuxGe (b) Ni2.95Ag0.05Ge surface vs core

(c) Ni2.95Cu0.05Ge (d) Ni2.9Cu0.1Ge

(e) Ni2.95Ag0.05Ge core

Figure 4.11: Normalized X-ray diffraction pattern for each sample of Ni3–xCuxGe (a),
Ni2.95Ag0.05Ge surface vs core of the sample (b) with offset= 10, Ni2.95Cu0.05Ge (c),
Ni2.9Cu0.1Ge (d) and Ni2.95Ag0.05Ge core (e) including the difference (red) between
sample (blue) and fit function (black).
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The lattice parameters, determined through Rietveld refinement, are listed in
Table 6.3. Its behavior relative to the stoichiometric components is illustrated
in Figure 4.12. Both the substitution of Ni by Cu and Ag in Ni3–xCuxGe and
Ni2.95Ag0.05Ge causes an increase of the lattice parameters.

Empirically this can be attributed to the larger atom radii of Ag (aAg = 1.44 ·
10−10 m) and Cu (aCu = 1.28 · 10−10 m) compared to Ni, with aNi = 1.24 · 10−10

m. In addition aAg > aCu explains the larger lattice parameter of the Ag based
alloy compared to the Cu based materials. The gradient from light to dark color
symbolizes increasing dopant concentrations.

Figure 4.12: Lattice parameter of Ni3–xCuxGe and Ni2.95Ag0.05Ge
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4.3.2 Transport Properties

Figure 4.13 presents the measured temperature-dependent resistivity ρ(T ), the
Seebeck coefficient S(T ) and the power factor PF (T ) for Ni3–xCuxGe and
Ni2.95Ag0.05Ge. The pure stoichiometric compound Ni3Ge is added in all plots by
blue circles.

The substitution of Ni by Cu (see Figure 4.13 (a)) results in a higher resistiv-
ity ρ(T ) that is also increasing with increasing temperature from 4 K to 873 K,
indicating a metallic behavior.

Figure 4.13 (c) compares the measured resistivity ρ(T ) of Ni3Ge with both Cu
and Ag (5%). Overall the lowest ρ(T ) values are found for the Ag-based alloy. The
empty symbols in Figure 4.13 indicate the measurement data upon cooling to room
temperature.

The resistivity data of Figures 4.13 (c) and 4.14 (a) were again accounted for
by a combination of the Bloch-Grüneisen formula with a Mott-Jones term A ·
T 3, according to Equations 2.21 and 2.23 and plotted by solid and dashed lines.
The fit parameters are presented in Tables 6.7 and 6.8. Using the more simple
Ansatz of Equation 2.21 demonstrates substantial s-d scattering accounted for by
the Mott-Jones term and revealing fine agreement. This scattering causes a negative
deviation from a linear ρ(T ) dependence in substitued Ni3–xCuxGe (x = 0.05, 0.1)
Ni2.95Ag0.05Ge, suggesting that EF is near a maximum in D(E) (solid lines in Figure
4.13 (c)).

The Seebeck coefficient S(T ) for each alloy of Ni3–xCuxGe is shown in Figure
4.13 (b), revealing increasing | S(T ) | values for increasing substitution with Cu at
room temperature, compared to Ni3Ge, as well as a smooth temperature variation.
Figure 4.13 (d) presents Seebeck coefficients S(T ) of Ni2.95{Cu,Ag}0.05Ge, with an
obvious decrease of S(T ) upon Ag substitution. Both alloy series Ni3–xCuxGe and
Ni2.95Ag0.05Ge, exhibit negative S(T ) values. Considering Mott’s formula, it implies
that electrons are the dominant charge carriers (compare [22]).

The temperature-dependent power factor PF (T ) is calculated according to Equa-
tion 1.2, combining the measured temperature-dependent resistivity ρ(T ) and See-
beck coefficient S(T ) as shown in Figure 4.13 (e,f), for each sample of Ni3–xCuxGe
and Ni2.95Ag0.05Ge respectively. It is clearly visible that Ni2.9Cu0.1Ge has the high-
est power factor with PF = 8.5 mW/

(︀
m · K2

)︀
at room temperature, which is 18

% larger than PF of undoped Ni3Ge (PF = 7.2 mW/
(︀
m · K2

)︀
). The second best

result is revealed for Ni2.95Cu0.05Ge with a power factor PF = 8.3 mW/
(︀
m · K2

)︀
at room temperature.

The uncommon increase of the resistivity ρ(T ) of Ni2.9Cu0.1Ge with decreasing
temperature prompted further exploration (see Figure 4.14 (b)). Instead of the
expected monotonous decrease of ρ(T ) towards a residual resistance, or onset of su-
perconductivity below a critical temperature Tcritical, there are distinct differences
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(a) ρ(T ) for Ni3–xCuxGe (b) S(T ) for Ni3–xCuxGe

(c) ρ(T ) for Ni3–x{Ag,Cu}xGe (d) S(T ) for Ni3–x{Ag,Cu}xGe

(e) PF (T ) for Ni3–xCuxGe (f) PF (T ) for Ni3–x{Ag,Cu}xGe

Figure 4.13: Temperature-dependent resistivity ρ(T ) (a) for each sample of Ni3–xCuxGe
from 4 K to 873 K. Seebeck coefficient S(T ) for each sample of Ni3–xCuxGe (b) and
Ni2.95{Cu,Ag}0.05Ge(d) from room temperature to 873 K. Temperature-dependent re-
sistivity ρ(T ) for Ni2.95{Cu,Ag}0.05Ge (c), with solid and dashed lines are fits according
to Equations 2.21 and 2.23. Alongside with the power factor PF (T ) for Ni3–xCuxGe
(e) and Ni2.95{Cu,Ag}0.05Ge in comparison to Ni3Ge (f).
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to all other samples within this thesis. The measured resistivity ρ(T ) was examined
in the range 7−30 K in terms of the Kondo effect, revealing ρ(T ) = ρ0−a ln(T/T0),
ρ0 = 32.53 µΩcm and a = 0.68 µΩcm. The fit function is shown as a black line in
Figure 4.14 (d) (see Chapter 2.2.3).[33] Besides the Kondo effect, increasing electri-
cal resistivity with decreasing temperatures can result from localizing charge carri-
ers. In such a scenario ρ(T ) can be examined in terms of hopping conductivity. In
Figure 4.14 (c) and (d) data are plotted on a T 1/4 and T 1/2 scale. The former corre-
sponds to the classical model of Mott for hopping conductivity (Equation 2.24[27]).
The fit function (red line) for T 1/4 coincides with 99.4 % to the experimental data
in (c) and T 1/2 with 98.63 % (d) in a narrow temperature range; thus, supporting
hopping conductivity, too (discussed in Chapter 2.2.2). Even though σhc is related
to the amount of disorder in the unit cell, the present samples, are not influenced
by the magnetic state, as the magnetoresistance is below 1 % for T > 0.5 K and
magnetic fields up to 12 T.[27] The comparison of all resistivity models reveals that
the low-temperature behavior is best described by hopping conductivity σhc with
the famous T 1/4 dependence, as it aligns most closely with Equation 2.24 over a
broader temperature range compared to other models.

The temperature-dependent resistivity of Ni2.95Cu0.05Ge and Ni2.9Cu0.1Ge from 4
K to 70 K is shown in Figure 4.14 (e). Both alloys exhibit distinct low-temperature
features. While the latter is characterized by an increase of ρ(T ) upon lowering
the temperature, the former shows an unusual T 3 behavior, which is demonstrated
by plotting data versus T 3 as x-axis (compare Chapter 2.2). To emphasize this
temperature dependence once more, data are plotted on a standard T 5 scale as well
(Figure 4.14 (f)). Fit functions, represented by solid lines, correspond to a + bT 3

and a + bT 5 for Ni3–xCuxGe, respectively, confirming that the ρ(T ) behavior of
the samples aligns with the Bloch-Wilson limit, being characteristic for transition
metals.[34] The numerical values of the fit parameters a and b are listed in Table
6.5 (compare with Chapter 2.1).

The impressive PF results of the Cu substituted sample series imply further
interesting compositional possibilities to be researched.
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(a) ρ(T ) for Ni3–xCuxGe (b) Kondo effect

(c) σhc (T ) for T 1/4 (d) σhc (T ) for T 1/2

(e) ρ(T 3) for Ni3–xCuxGe (f) ρ(T 5) for Ni3–xCuxGe

Figure 4.14:
Temperature-dependent resistivity ρ(T ) for each sample of Ni3–xCuxGe (a). Solid
and dashed lines are fits according to Equations 2.21 and 2.23. The Kondo effect
with fit function plotted by a solid black line (b). Comparison of the measured

resistivity ρ(T ) applied on the ln( 1
ρ(T )

), with the fit function (solid line) for
temperature-dependent hopping conductivity for T 1/4 (c) and for T 1/2 (d) in

Ni2.9Cu0.1Ge. Temperature-dependent resistivity ρ(T 3) (e) and ρ(T 5) (f) including
corresponding fit function presented by solid lines, for each sample of Ni3–xCuxGe.
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4.4 Physical Properties of doped Pd3Sn and Pt3Sn

This chapter focuses on the Pd3Sn0.95In0.05 and Pt3Sn0.95Sb0.05 alloys. The transition
metals Pd and Pt, with their incomplete 4d and 5d shells, respectively, were chosen
to examine the significant influence of their intrinsic differences on the density of
states at the Fermi energy, and consequently, the thermoelectric performance of
these materials. X-ray diffraction, electrical resistivity, and Seebeck measurements
on these materials are presented, using analyses discussed in Chapter 2.

As presented in Figure 4.15 [35] and 4.16 [36] the phase diagrams of Pd-Sn and
Pt-Sn, reveal in both cases several binary compounds as well as eutectic phases.
It is interesting to note that in the case of Pd-Sn, the binaries exhibit a certain
solubility range, while in the case of Pt-Sn all binaries appear to be line compounds.
In both cases, TM3Sn are formed (TM=Pd, Pt). Figure 3.1 shows that the

Figure 4.15: PdSn phase diagram with the orange vertical line displaying Pd3Sn within
the solid-state phase of Pd3Sn (green area).[35]

number of electron shells increases by one from Ni (3d) to Pd (4d) and again
from Pd to Pt (5d), meanwhile the number of electron shells also increases by one
from Ge to Sn. To tune the electronic structure, Pd3Sn0.95 was doped with In
and Pt3Sn0.95 with Sb, which has 2 more electrons in its outermost shell than In.
Binary intermetallics with Pd and Pt can enhance the thermoelectric properties
by introducing heavier atoms, which might reduce lattice thermal conductivity
and, additionally, shift the Fermi energy favorably. Moreover, spin fluctuations in
many Pd-based components and alloys can also positively influence thermoelectric
properties. Sn and In are softer main group metals with low electronegativity. They



4 Experimental Results and Discussion 51

Figure 4.16: PtSn phase diagram with the orange vertical line showing the solid state
of Pt3Sn.[36]

could decrease the thermal conductivity by altering the band structure, improving
the Seebeck coefficient, and increasing the electrical conductivity. In most cases,
however, the respective electronic structure of the various systems can be quite
different from a simple superposition of its constituting elements.

4.4.1 Synthesis and Characterization

Samples Pd3Sn0.95In0.05 and Pt3Sn0.95Sb0.05 were melted in separate quartz glass
cylinders, where the weighed elements were pre-melted together at 1000 K for 24
hours due to the low melting point of In (429 K). Following this step, the fusion
process was completed in a high-frequency furnace as usual.

The X-ray diffraction patterns of Pd3Sn0.95In0.05 and Pt3Sn0.95Sb0.05 can be found
in Figure 4.17 (a), normalized to the maximum intensity, with an offset of 10 %. Red
vertical lines indicate the Miller indices of the Cu3Au structure at the peaks of the
respective Bragg reflections, emphasizing the similarities with the measured data.
Furthermore the intensities of Pt3Sn0.95Sb0.05 coincide perfectly with prototypic
Cu3Au. Nevertheless, several additional peaks are present off Bragg positions,
indicating foreign phases. Pd3Sn0.95In0.05 exhibits intensities at the same reflection
peaks (111), (200), (220), (311) and (222) as Cu3Au, while the intensities (100),
(110), (210) and (211) are not complying. Additionally, the sample Pd3Sn0.95In0.05
shows a macroscopic visible distinction of coloration about 1 mm from the surface
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(a) XRD comparison (b) Pd3Sn0.95In0.05 core vs surface

Figure 4.17: Normalized X-ray diffraction pattern for Pd3Sn0.95In0.05 and Pt3Sn0.95Sb0.05

(a) and Pd3Sn0.95In0.05 core vs surface (b) with offset= 10 %.

and the core, Figure 4.17 (b). This leads to the conclusion that the elements have
not bonded homogeneously throughout the entire sample and thus impurity phases
have been formed locally.

Using the face-centered-cubic crystal structure, the fit functions were derived
based on Wyckoff positions: Pd/Pt fixed at 1a(0,0,0) and Sn occupying the
3c(0,1/2,1/2) site, proportionally aligned with its substitutive elements {In, Sb}
and space group 221.

Individual Rietveld refinements for measured patterns are shown in Figure 4.18,
revealing in Figure 4.18 (a) that the fit function of Pd3Sn0.95In0.05 is larger in height
and smaller in width for the crystal plane (111), while the height of the reflection
peaks for the planes (100), (110), (200), (220) and (311) are larger. For the sam-
ple Pt3Sn0.95Sb0.05 the Rietveld refinement is shown in Figure 4.18 (b) where the
highest peak, (111), is described more accurately by the fit compared to the one of
Pd3Sn0.95In0.05. But the intensities of the planes (100) and (110) are again larger for
the fit function and smaller for (220), (311) and (222). Given the appropriateness
of the respective fit-function, this would again refer to a preferred orientation of
grains. Figure 4.19 summarizes the lattice parameters derived from the respective
Rietveld refinements (compare also Table 6.3). Starting with Ni3Ge, which has a
lattice parameter of 3.574 Å , the lattice parameter for the Pd and Pt based alloys
are significantly larger compared to Ni3Ge due to increased atomic radii of Pd,
Pt, Sn,In and Sb. The gradient from light to dark colors represents an increasing
number of substituents, with dotted lines that serve as guides for the eyes.
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(a) Pd3Sn0.95In0.05 (b) Pt3Sn0.95Sb0.05

Figure 4.18: Normalized X-ray diffraction pattern for Pd3Sn0.95In0.05 (a) and
Pt3Sn0.95Sb0.05 (b) with difference (red) between sample (blue) and fit function (black).

Figure 4.19: Lattice parameter of Ni3Ge, Ni3Sn, Pd3Sn0.95In0.05, Pt3Sn0.95Sb0.05, Pd3Sn
and Pt3Sn.
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4.4.2 Transport Properties

The temperature-dependent resistivities ρ(T ) of Pd3Sn0.95In0.05, Pt3Sn0.95Sb0.05 and
Ni3Ge are shown in Figure 4.20 (a) from 4 K to 873 K. In all cases, ρ(T ) of the
samples, behaves almost linearly from room temperature to 873 K, corresponding
to metals, while exhibiting a much stronger curvature from T = 45 K to T = 300 K.
ρ(T ) from room temperature to 873 K, is described using Equations 2.21 (solid lines)
and 2.23 (dashed lines) (see Tables 6.7 and 6.8 for the corresponding fit parameters).
The fitted relationships are illustrated in Figure 4.20(b). This analysis reveals
contributions from the T 3 term, indicative of s-d scattering, being characteristic
for transition metals.

Furthermore, the parameter A is positive for Pd3Sn0.95In0.05, implying a negative
deviation from linearity of ρ(T ) and that the Fermi energy EF is near a maximum
in the density of states D(E). On the other hand, Pt3Sn0.95Sb0.05 exhibits a positive
deviation from linearity, suggesting that the actual EF is near a minimum in D(E).
Due to substitution-induced disorder, the residual resistivity increases for the Pd
and Pt-based samples, in comparison to Ni3Ge.

In Fig 4.20 (c,d), low temperature resistivity data of Pd3Sn0.95In0.05 and
Pt3Sn0.95Sb0.05, in order to reveal the impact of s-d scattering on the temperature-
dependent resistivity of these samples. In the range of 4 K to 45 K, the fit functions
a + b · T 3 (Figure 4.20 (c)) and a + b · T 5 (Figure 4.20 (d)) are visualized by solid
lines. The corresponding values of a and b are provided in Tables 6.5 and 6.6. The
distinguished agreement with the T 3 dependence refers to the presence of substan-
tial s-d scattering. Thus, simple electron-phonon scattering as expressed by the
standard Bloch-Grüneisen formula is less important.

The temperature-dependent Seebeck coefficient S(T ) and power factor PF (T ) for
Pd3Sn0.95In0.05, Pt3Sn0.95Sb0.05 in comparison to Ni3Ge can be found in Figure 4.20,
with S(T ) in (e) and PF (T ) in (f). Due to the relatively low values of the Seebeck
coefficient S(T ), the power factor PF (T ) is also low, compared to Ni3Ge; but PF
of Pt3Sn0.95Sb0.05 is still larger than that of Pd3Sn0.95In0.05. While both Ni3Ge and
Pt3Sn0.95Sb0.05 exhibit negative S(T ) values, Pd3Sn0.95In0.05 shows positive Seebeck
data. Following Mott’s model [22] for the description of the thermopower, i.e.,
S(T ) ∝ − 1

D(E)
· ∂D(E)

∂E
|E=EF

, the latter is expected to exhibit a negative slope of
D(E) at E = EF , and the former a positive one. Considering semiconductors, this
would correspond to holes as dominating charge carriers for Pt3Sn0.95Sb0.05, but
electrons for the remaining samples.



4 Experimental Results and Discussion 55

(a) ρ(T ) (b) ρ(T ) high temperature range

(c) ρ(T 3) low temperature range (d) ρ(T 5) low temperature range

(e) S(T ) (f) PF (T )

Figure 4.20:
Temperature-dependent resistivity ρ(T ) from 4 K to 873 K (a). Solid and dashed
lines are fits according to Equations 2.21 and 2.23 from room temperature to 873
K (b). ρ(T 3) (c) and ρ(T 5) (d) with fit functions presented by solid lines from 4 K

to 45 K. Temperature-dependent Seebeck coefficient S(T ) (e) and power factor
PF (T ) (f) for the compounds Pd3Sn0.95In0.05, Pt3Sn0.95Sb0.05 and Ni3Ge from

room temperature to 873 K.
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4.5 Physical Properties of Ni3–xCuxAl

This chapter investigates quasi-binary Ni3–xCuxAl alloys, by varying the ratio of Ni
and Cu in small steps of Δx = 0.2. This approach allows for precise tracking of how
changes in electron count affect electronic properties, and thereby thermoelectric
behavior. Nickel, a 3d transition metal with high electron mobility, can modify
the magnetic state due to an unfilled d-shell, while copper, known for its excellent
electrical conductivity, can increase overall conductivity. Aluminum, with its low
density, contributes to structural integrity. By systematically varying the Ni/Cu
ratio, the alloy can be optimized to shift the Fermi energy, improving the power
factor and making Ni3–xCuxAl an interesting alloy for thermoelectric applications
near room temperature. Figure 4.21, shows the NiAl phase diagram [37], with

Figure 4.21: NiAl phase diagram with the orange vertical line indicating the solid state
of Ni3Al.[37]

the orange vertical line marking the Ni3Al phase, indicating some solubility of
Ni3Al. The solidus and liquidus lines in the phase diagram show two distinct
minima, indicating the presence of eutectic points. At this eutectic composition and
temperature, two phases coexist in equilibrium, allowing the material to transition
directly from solid to liquid. This behavior is characteristic of eutectic systems,
where the solidus and liquidus converge, defining the locally lowest temperature at
which the mixture melts completely. The ternary phase diagram of NiCuAl [38] for
the isothermal section at 1073 K, is presented in Figure 4.22. The five quasi-binary
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alloys prepared in this diploma work, from left to right Ni2CuAl, Ni2.2Cu0.8Al,
Ni2.4Cu0.6Al, Ni2.6Cu0.4Al and Ni2.8Cu0.2Al are marked with red points, within the
possible Ni3Al phase (green area). It also includes five intermediate phases NiAl3
(Fe3C-type, orthorhombic), Ni2Al3 (D513-type, hexagonal), NiAl (CsCl-type, cubic),
Ni5Al3 (Ga3Pt5-type, orthorhombic), and Ni3Al (AuCu3-type, cubic) [38].

Figure 4.22: NiCuAl isothermal section at 1073 K.[38]
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4.5.1 Synthesis and Characterization

For the stoichiometric alloys Ni3–xCuxAl, five 2.5 g samples were prepared by synthe-
sizing weighed amounts of Cu and Al via high-frequency induction melting, followed
by complementing the resulting ingots with Ni. Each sample underwent identical
heat treatment, tempered at 973 K for one week, consistent with the procedures
applied throughout this study.

Due to the high density of Ni and the increasing amount in the samples, it
was not possible to produce crystalline powder from the samples. Instead, bulk
materials were examined by using XRD. In Figure 4.24 (a), the diffraction data of
each sample is normalized to the maximum intensity and shifted against each other
with increasing x by an offset of 10 %, to obtain better visibility. The red vertical
lines indicate the Miller indices at the peaks of the respective crystal planes of the
Cu3Au structure. All samples studied in this chapter show X-ray intensities at all
those crystal planes.

The X-ray diffraction patterns for each sample of Ni3–xCuxAl (see Figure 4.24
(a)) reveal phase purity for x = 1 and x = 0.2, but show second phases in all
other samples. The individual Rietveld refinement results are shown in Figure 4.24
(b), (c), (d), (e), (f). The fit functions reveal for a face-centered cubic crystal, a
good agreement with Al at 1a(0,0,0); Ni gradually vacates the 3c(0,1/2,1/2) site,
allowing the stepwise incorporation of Cu. Lattice parameters determined through

Figure 4.23: Lattice parameter of Ni3–xCuxAl with decreasing Δx = 0.2.

these fits are listed in Table 6.3. The relationship between lattice constants and
the stoichiometric composition is depicted in Figure 4.23. Starting from Ni2CuAl
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and increasing Δx = 0.2 up to the final composition Ni3Al, a decreasing lattice
parameter is observed at 300 K, corresponding to the reduction in Cu content.
Considering the atomic radii of Ni (1.24 · 10−10 m), Al (1.43 · 10−10 m), and Cu
(1.28 · 10−10 m), the smooth trend for Cu substitutions by Ni can be attributed
to the smaller atomic radius of Ni. The dotted lines in the figure serve as visual
guides.

The fitting process reveals that employing the chosen set of parameters, the fit
function for the pattern Ni2CuAl is larger than the measured height and smaller in
width for the (111) plane. The X-ray data of crystal planes (200), (220) alongside
the (311) plane are overestimated by the fit function, while the peaks for planes
(100) and (110) are underestimated (see Figure 4.24 (b)).

For x = 0.8 (see Figure 4.24 (c)) the predicted peak for the (100) plane by the
fit function at 2Θ = 24.8◦ is larger, but the measurement data show instead an
impurity at 2Θ = 26.6◦, additionally to a foreign phase peak at 2Θ = 20.8◦. The
main intensity peak for the (111) plane, is smaller in height and larger in width,
while the peaks for the (110) and (311) planes are larger and the intensity of the
(200) plane is smaller.

Figure 4.24 (d) presents the Rietveld refinement for x = 0.6, where the fit function
underestimates the measured data and the difference between both is visualized and
shifted with an offset −25 %. Slightly above the (111) peak an impurity phase is
present. A slight overestimation of the intensities for the planes (210), (211) and a
comparably big overestimation of the intensity from the (222) of the fit function is
also clear in Figure 4.24 (d).

The results for the alloy Ni2.6Cu0.4Al are shown in 4.24 (e). Again, the (311) Bragg
peak is underestimated. As an exception to all other Ni3–xCuxAl compounds, the
(200) plane shows in the XRD data a much higher intensity than the (111) plane.
Additionally, the x = 0.4 substitution leads to a slight overestimation by the fit
function of the intensity of the (200) plane and a big overestimation by the fit
function of the intensity of the (222) plane, which is probably a result of the more
preferred (311) plane.

A good correspondence between data and the Rietveld refinement is found for
x = 0.2 (Figure 4.24 (f)) confirming the Cu3Au structure. Slight overestimations
of the intensities for the planes (100), (110), (111), (210), (211), and (220) of the
fit curves can be observed, which are even more subtle for (311) and (222). The
intensity of the (200) plane is in all substitutions x ̸= 0 underestimated. Thus, this
plane is a more dominant crystal plane than statistically expected.
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(a) Ni3–xCuxAl (b) Ni2CuAl

(c) Ni2.2Cu0.8Al (d) Ni2.4Cu0.6Al

(e) Ni2.6Cu0.4Al (f) Ni2.8Cu0.2Al

Figure 4.24: Normalized X-ray diffraction pattern for Ni3–xCuxAl with offset 10 % with
increasing x (a) x=1 (b) x=0.8 (c) x=0.6 (d) x=0.4 (e) x=0.2 (f) including the differ-
ence (red) between sample (blue) and fit function (black).
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4.5.2 Transport Properties

The temperature-dependent resistivity, ρ(T ), of Ni3–xCuxAl (Figure 4.25(a)) dis-
plays a nearly linear trend from room temperature to 873 K, characteristic of
metallic behavior. The highest overall resistivity values are observed for a dop-
ing level of x = 0.6. In contrast, the resistivities for x = 0.8 and x = 0.4 are
nearly identical. While Ni3Al exhibits the lowest ρ(T ) values at room temperature,
substitution with x = 0.2 Cu results in lower resistivity above ∼ 500 K.

Solid and dashed lines in Figure 4.25(a) are results of least squares fits according
to Equations 2.21 and 2.23. Both model equations reveal for temperatures T > ΘD

a linear resistivity due to electron phonon interaction and additionally, an A · T 3

term (Mott-Jones term, Chapter 2.2.1) owing to phonon assisted s-d scattering.
The latter is responsible for the well known resistivity deviation from linearity,
generally found in transition metal element based materials. As already discussed
in previous chapters, the sign of A determines, whether there is a super or supra-
linear ρ(T ) dependence.

All samples, except Ni2.8Cu0.2Al, exhibit a negative fit parameter A, suggesting
the Fermi energy EF is near a maximum in the density of states D(E). In contrast,
Ni2.8Cu0.2Al exhibits a negative deviation, indicating EF is near a minimum in
D(E). The corresponding fit parameters are listed in Table 6.7.

The Seebeck coefficient S(T ) (see Figure 4.25 (b)), exhibits both positive and
negative values. The positive values are found for the Ni-rich samples, indicat-
ing classically hole-like carriers. In a more sophisticated picture, the logarithmic
derivation of the energy-dependent density of states at E = EF becomes negative.
Increasing Cu drives the Seebeck effect negative, resulting in electrons being the
dominant carriers or more accurate, 1

D(E)
∂D(E)
∂E

|E=EF
< 0. For x = 0.8, S(T ) reaches

the highest value and decreases with decreasing x. Overall, the | S(T ) | values are
relatively small.

Figure 4.25 (c) shows the temperature-dependent power factor PF (T ) of
Ni3–xCuxAl. Overall, PF is very low from room temperature to 873 K. Ni3Al ex-
hibits the highest PF (T ) at room temperature. With decreasing x = 0.6 to x = 0.2
the value of PF (T ) is decreasing and does not support further investigation of these
compositions.
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(a) ρ(T ) for Ni3–xCuxAl

(b) S(T ) for Ni3–xCuxAl

(c) PF (T ) for Ni3–xCuxAl

Figure 4.25: Temperature-dependent resistivity ρ(T ) of Ni3–xCuxAl(a) illustrated by var-
ious symbols. The solid and dashed lines are fits according to Equations 2.21 and 2.23.
The Seebeck coefficient S(T ) (b) and power factor PF (T ) (c) for each sample marked
by various symbols from room temperature to 873 K.



5 Conclusion and Outlook

This diploma thesis, as discussed in the preceding chapters, focused on the ther-
moelectric properties and performance of intermetallic compounds based on metals
with incomplete d shells. As was pointed out recently in a seminal paper[9], met-
als, due to narrow features near the Fermi energy, can exhibit very large values
of the Seebeck coefficient, which are even comparable to the much better-known
and studied thermoelectric materials based on semiconductors. The flat bands in
the electronic structure of d-elements, which give rise to the narrow density of
states features, are key elements concerning the enhancement of the Seebeck effect
and thus of the thermoelectric power factor. Microscopically, this enhancement is
based on a strong energy dependence of the relaxation time due to phonon-assisted
scattering of conduction electrons, involving these narrow 3d states.

In terms of an extension of this novel direction in the field of thermoelectricity,
several alloys based on transition metals, such as Ni, Cu, Pd or Pt and main group
elements such as Ge or Si were prepared by high frequency melting of appropriate
amounts of pure elements under a protective argon atmosphere. The latter were
examined using X-ray diffraction, where foreign phases and respective lattice pa-
rameters were evaluated. To obtain information regarding thermoelectricity, the
temperature dependent electrical resistivity as well as the Seebeck coefficient were
obtained experimentally in a wide range of temperatures.

Selected experimental data were analyzed in terms of solid state physics models
to get information on relevant microscopic parameters (e.g., localisation, electron-
phonon or Kondo interaction, etc.), determining ground state properties as well as
the thermoelectric performance of such d-electron based materials. As an example,
the lattice parameter dependent resistivity of all samples prepared in this diploma
thesis is sketched in Figure 5.1 (see also Table 6.3).

The increased power factor for increasing x in Ni3–xCuxGe is a reliable cornerstone
for further exploration of metals being well suited for thermoelectric applications.
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Figure 5.1: Resistivity ρ at room temperature versus increasing lattice constant.



6 Data Tables

sample mass [g] mass [g] mass [g] tempered [g] deviation [%]
Ni3.05Si0.95 Ni: 2.17571 Si: 0.32430 - 2.50017 100.01
Ni3.0Cu0.05Si0.95 Ni: 2.13750 Si: 0.32395 Cu: 0.03858 2.49949 99.98
Ni2.95Cu0.1Si0.95 Ni: 2.09945 Si: 0.32358 Cu: 0.07700 2.49974 99.99
Ni2.9Cu0.15Si0.95 Ni: 2.06144 Si: 0.32319 Cu: 0.11547 2.49995 99.99
Ni3.05Si0.9Sb0.05 Ni: 2.12722 Si: 0.30037 Sb: 0.07230 2.49206 99.69
Ni3.05Si0.85Sb0.1 Ni: 2.08091 Si: 0.27757 Sb: 0.14149 2.49864 99.95
Ni2.95Cu0.05Ge Ni: 1.73870 Ge: 0.72938 Cu: 0.03188 2.49811 99.93
Ni2.9Cu0.1Ge Ni: 1.70756 Ge: 0.72866 Cu: 0.06388 2.49871 99.94
Ni2.95Ag0.05Ge Ni: 1.72350 Ag: 0.05360 Ge: 0.72296 2.48380 99.35
Pd3Sn0.95In0.05 Pd: 1.82310 Sn: 0.64403 In: 0.03280 2.53189 101.28
Pt3Sn0.95Sb0.05 Pt: 2.05920 Sn: 0.41819 Sb: 0.02267 2.47709 99.08
Ni2CuAl Ni: 1.41147 Al: 0.32439 Cu: 0.76409 2.49985 99.99
Ni2.2Cu0.8Al Ni: 1.55987 Al: 0.32605 Cu: 0.61415 2.47382 98.95
Ni2.4Cu0.6Al Ni: 1.70970 Al: 0.32751 Cu: 0.46281 2.49374 99.75
Ni2.6Cu0.4Al Ni: 1.86109 Al: 0.32904 Cu: 0.31008 2.49663 99.86
Ni2.8Cu0.2Al Ni: 2.01372 Al: 0.33067 Cu: 0.15575 2.49707 99.88

Table 6.1: Weighted masses before the melting process and after tempering for each
sample including the deviation.
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sample width [mm] depth [mm]
Ni3.05Si0.95 1.61 2.2
Ni3.0Cu0.05Si0.95 1.62 1.42
Ni2.95Cu0.1Si0.95 2.1 1.78
Ni2.9Cu0.15Si0.95 1.59 1.48
Ni3.05Si0.9Sb0.05 2.38 2.08
Ni3.05Si0.85Sb0.1 1.27 1.7
Ni2.95Cu0.05Ge 2.25 2.06
Ni2.9Cu0.1Ge 1.61 1.2
Ni2.95Ag0.05Ge 1.51 1.76
Pd3Sn0.95In0.05 1.34 0.71
Pt3Sn0.95Sb0.05 1.97 1.55
Ni2CuAl 2.09 2.25
Ni2.2Cu0.8Al 1.62 1.52
Ni2.4Cu0.6Al 1.73 1.89
Ni2.6Cu0.4Al 1.92 1.54
Ni2.8Cu0.2Al 1.42 1.45

Table 6.2: Sample dimensions.

sample maximum intensity [Counts] lattice parameter [Å]
Ni3.05Si0.95 35412 3.511
Ni3.0Cu0.05Si0.95 114751 3.512
Ni2.95Cu0.1Si0.95 112055 3.514
Ni2.9Cu0.15Si0.95 55411 3.516
Ni3.05Sb0.05Si0.9 145065 3.515
Ni3.05Sb0.1Si0.85 99404 3.517
Ni3Ge 105763 3.574
Ni2.95Cu0.05Ge 333774 3.577
Ni2.9Cu0.1Ge 295252 3.578
Ni2.95Ag0.05Ge 135939 3.579
Pd3Sn0.95In0.05 34662 3.971
Pt3Sn0.95Sb0.05 41946 3.978
Ni2CuAl 82490 3.590
Ni2.2Cu0.8Al 106965 3.588
Ni2.4Cu0.6Al 32439 3.585
Ni2.6Cu0.4Al 31494 3.582
Ni2.8Cu0.2Al 54780 3.579

Table 6.3: Measured intensity and lattice parameters for spacegroup: 221.
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sample a b accuracy [%]

Ni2.9Cu0.1Ge for T− 1
2 -3.3823064 -0.15745885 98.6

Ni2.9Cu0.1Ge for T− 1
4 -3.3323387 -0.17953206 99.4

Table 6.4: fit parameters ρ(T ) = a + b ∗ T− 1
2 and ρ(T ) = a + b ∗ T− 1

4 for hopping
conductivity.

sample a b range [K] accuracy [%]
Ni3Ge 1.89 2.705·10−5 0-40 99.6
Ni2.95Cu0.05Ge 21.888992 2.5227965·10−5 0-50 99.7
Ni2.9Cu0.1Ge 30.158329 1.174301·10−5 30-70 99.8
Pd3Sn0.95In0.05 5.5348441 5.0564499·10−5 0-30 97.2
Pt3Sn0.95Sb0.05 4.4643949 3.4996547·10−4 0-20 99.7

Table 6.5: Fit parameters for ρ(T ) = a+ b ∗ T 3.

sample a b range [K] accuracy [%]
Ni3Ge 30.789972 2.3025822·10−9 30-70 96.2
Ni2.95Cu0.05Ge 22.40114 8.8721633·10−9 0-50 94.9
Ni2.9Cu0.1Ge 30.427054 3.9458269·10−9 30-55 98.0
Pd3Sn0.95In0.05 5.6064927 7.9026421·10−8 0-25 92.6
Pt3Sn0.95Sb0.05 4.622 1.2645824·10−6 0-18 94.6

Table 6.6: Fit parameters for ρ(T ) = a+ b ∗ T 5.
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sample a B A C accuracy [%]
Ni3.05Si0.95 0.18410361 -4.5927527·10−4 3.995272 ·10−8 15.218725 99.8
Ni3.0Cu0.05Si0.95 0.16222593 -4.7010784·10−4 5.0845438·10−8 35.963743 99.6
Ni2.95Cu0.1Si0.95 0.091224186 -3.2677264·10−4 -2.2068045·10−7 43.018246 99.5
Ni2.9Cu0.15Si0.95 0.12011669 -3.3876358·10−4 1.0773221·10−8 36.651463 99.6
Ni3.05Si0.9Sb0.05 0.15133995 -4.651541·10−4 3.19121·10−8 37.005666 99.5
Ni3.05Si0.85Sb0.1 0.25045414 -5.0791745·10−4 1.3055212·10−7 31.382044 99.4
Ni3Ge 0.12230165 -3.3417085·10−4 -1.53916·10−7 15.232428 99.9
Ni2.95Cu0.05Ge 0.093888639 -8.8754102·10−5 -2.120908·10−7 32.163929 99.9
Ni2.9Cu0.1Ge 0.094647128 -1.3112619·10−4 -2.3433118·10−7 30.644853 99.9
Ni2.95Ag0.05Ge 0.092379754 -2.7021951·10−4 -2.495685·10−7 18.087951 99.2
Pd3Sn0.95In0.05 0.045376193 -1.7628985·10−4 1.9781653·10−8 9.7751076 99.9
Pt3Sn0.95Sb0.05 0.17000771 -3.6664129·10−4 -1.2260729·10−7 53.686417 99.9
Ni2CuAl 0.039337102 -2.238345·10−4 -2.6806999·10−7 29.335928 99.7
Ni2.2Cu0.8Al 0.035132958 -2.3370635·10−4 -3.1677167·10−7 40.603456 99.2
Ni2.4Cu0.6Al 0.051892347 -3.3255094·10−4 -1.275436·10−7 38.002391 99.6
Ni2.6Cu0.4Al 0.042835869 -2.7593393·10−4 -9.9905987·10−8 38.974587 99.9
Ni2.8Cu0.2Al 0.044142942 -3.1211956·10−4 6.3348136·10−8 27.326755 99.8
Ni3Al 0.067876981 -2.58644·10−4 -1.3460031·10−7 13.995356 99.9

Table 6.7: high temperature fit ρ(T ) = aT (1 + BT )(1− AT 2) + C.
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sample A B C D accuracy [%]
Ni3.05Si0.95 37.727427 83.806291 708.85548 4.3401536·10−8 99.7
Ni3.0Cu0.05Si0.95 55.459164 70.650918 684.74099 3.9737933·10−8 99.5
Ni2.95Cu0.1Si0.95 52.375418 44.639225 655.86347 5.8145383·10−10 99.5
Ni2.9Cu0.15Si0.95 49.212431 55.353397 640.12175 1.9031768·10−8 99.6
Ni3.05Si0.9Sb0.05 54.85447 65.499798 673.50238 3.5393255·10−8 99.4
Ni3.05Si0.85Sb0.1 63.766594 108.40346 722.60501 7.4130969·10−8 99.2
Ni3Ge high 28.047502 59.77667 662.07323 6.5796371·10−9 99.9
Ni3Ge 3.8228682 29.88819 203.20282 5.4691946·10−8 99.4
Ni3Ge low 2.1287065 58.216618 305.01315 2.9202744·10−7 99.9
Ni2.95Cu0.05Ge high 40.564843 50.786792 633.61744 -1.7402535·10−8 99.9
Ni2.95Cu0.05Ge 24.311005 17.441888 151.01676 1.0753655·10−8 99.7
Ni2.95Cu0.05Ge low 21.910797 37.090752 227.49454 3.9125351·10−7 99.9
Ni2.9Cu0.1Ge high 36.089356 37.56961 453.52585 -1.4445818·10−8 99.9
Ni2.9Cu0.1Ge 31.207249 18.152143 197.74403 -8.1322332·10−9 99.9
Ni2.9Cu0.1Ge low 30.506294 29.712499 265.25845 1.1673021·10−7 99.9
Ni2.95Ag0.05Ge 28.995121 43.972693 638.99714 -6.3150186·10−9 99.7
Pd3Sn0.95In0.05 high 12.520238 16.790352 438.53896 4.0590173·10−9 99.9
Pd3Sn0.95In0.05 14.460218 24.16822 673.04919 2.8853414·10−9 99.9
Pd3Sn0.95In0.05 low 5.6566507 5.1311429 76.434791 1.3322873·10−7 99.9
Pt3Sn0.95Sb0.05 high 71.486451 79.210579 647.93438 1.6469615·10−8 99.9
Pt3Sn0.95Sb0.05 low 4.94382663 46.593356 121.26698 7.9187777·10−7 99.9
Ni2CuAl 33.514489 21.551124 698.17511 -4.7220776·10−9 99.7
Ni2.2Cu0.8Al 44.084363 18.541965 665.17451 -4.9537884·10−9 99.2
Ni2.4Cu0.6Al 43.292643 24.613102 643.04735 3.6610047·10−9 99.6
Ni2.6Cu0.4Al 44.209111 24.61005 775.96144 1.7839987·10−9 99.9
Ni2.8Cu0.2Al 32.110384 21.36923 668.00627 7.774559·10−9 99.8
Ni3Al 21.196683 35.597946 685.74958 5.9928876·10−10 99.9

Table 6.8: temperature fit ρ(T ) = ρ0 + ρph + ρMJ = A + 4B
∫︀ C/T

0.01
z5/(exp(−z) −

exp(z)− 2)−DT 3.
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