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Abstract
Pavement structures endure many load cycles, leading to concrete fatigue in rigid pavements,
making design challenging. This thesis focuses on quantifying tensile stresses in concrete slabs
caused by FWD testing on curled slabs and by traffic running over them, respectively. “Curling”
refers to slab curvature due to non-uniform temperature distribution. Two challenges are
addressed using real-scale experiments at field testing sites and engineering mechanics modeling
with analytical solutions, minimizing Finite Element simulations to the possible minimum.

Challenge 1 refers to quantifying tensile stresses experienced by a concrete-over-asphalt pave-
ment on Austria’s highway A10, resulting from 19 central Falling Weight Deflectometry (FWD)
tests. Despite identical test execution, measured surface deflections varied. Temperature data
from four slab depths during FWD testing are used to quantify the concrete slab’s thermal eigen-
curvature. This allows for showing a linear increase in deflections with negative eigencurvature.
Tensile stresses at the slab’s underside center are quantified by dividing the problem into three
load cases: (i) dead load of the curled slab, (ii) thermal eigenstresses of concrete, and (iii) impact
of the falling weight. Load case (i) involves a nonlinear contact problem due to slab lift-off, solved
using Finite Element simulations for a plate resting on a Winkler foundation. The computed
tensile stresses increase nonlinearly with negative eigencurvature, while being practically inde-
pendent of the modulus of subgrade reaction. Load case (ii) is computed analytically. Thermal
eigenstresses show a non-trivial hysteretic correlation with the eigencurvature of the slab. Load
case (iii) refers to the slab’s configuration changes resulting from FWD testing. The related
structural model refers to a single plate with free edges on a Winkler foundation, extended by
uniform subgrade stress. The modulus of subgrade reaction and the additional uniform subgrade
stress are optimized for every FWD test, to replicate the measured deflections. Tensile stresses
are computed analytically. They increase moderately with negative eigencurvature.

Challenge 2 refers to the prediction of the slab’s thermal eigencurvature using the slab’s surface
temperature history as boundary condition for one-dimensional heat ingress into a half-space. The
heat conduction problem is solved analytically, providing the temperature profile and enabling
eigencurvature computation. Application to data from a field testing site on Austria’s highway
A2 shows that seven days of temperature history, with measurements every 15 minutes, are
sufficient for eigencurvature prediction.

Finally, implications for operation of highways and pavement design are discussed. Slab stresses
due to a design wheel load of 50 kN are quantified by linear scaling of the stresses from load
case (iii) and superposing them with the stresses from load cases (i) and (ii). When a design
vehicle travels over a slab with large negative eigencurvature and eigenstresses, the resulting
tensile stresses can be up to six times larger than when the vehicle travels over the slab with
small eigencurvature and eigenstresses. Thus, it is recommendable to operate truck weighing
stations during periods of significant tensile stresses, and to schedule heavy-load transport during
the earlier morning when both the eigencurvature of the slab and the eigenstresses of concrete
are small. The thermo-mechanical model from Challenge 2 allows for real-time monitoring of the
eigencurvature evolution using surface temperature data from ice warning systems. In the future,
it will be interesting to combine eigencurvature evolutions with data from traffic monitoring
systems, such that realistic tensile stress histories can be determined as exposure conditions for
the fatigue assessment of concrete pavement slabs.





Kurzfassung
Straßen sind zahlreichen Belastungszyklen ausgesetzt, wodurch es bei starrer Bauweise zur
Betonermüdung kommt. Die vorliegende Diplomarbeit befasst sich mit der Quantifizierung
von Zugspannungen in Betonfahrbahnplatten im aufgewölbten Zustand, hervorgerufen durch
Fallgewichts-Deflektometer (FWD) Versuche. Der Begriff „Aufwölbung“ bezeichnet dabei die
Verformung der Platte aufgrund einer ungleichmäßigen Temperaturverteilung. Zwei Problemstel-
lungen werden mit Hilfe von Versuchen an Feldmessstellen und ingenieurmechanischen Modellen
gelöst, wobei Finite Elemente Simulationen auf ein Minimum reduziert werden.

Problemstellung 1 bezieht sich auf das Quantifizieren der Zugspannungen in einer Beton-
fahrbahnplatte auf der Autobahn A10, hervorgerufen durch 19 zentrale FWD Versuche. Die
gemessenen Durchbiegungen steigen linear mit wachsender negativer thermischer Eigenverkrüm-
mung der Platte an. Letztere wird aus Temperaturen, die in vier Tiefen während der FWD
Versuche gemessen wurden, berechnet. Zum Quantifizieren der Zugspannungen in der Mitte der
Plattenunterseite wird das Problem in drei Lastfälle unterteilt: (i) Eigengewicht der aufgewölb-
ten Platte, (ii) thermische Eigenspannungen des Betons und (iii) Aufprall des Fallgewichts. In
Lastfall (i) wird ein nichtlineares Kontaktproblem mit Hilfe von Finite-Elemente-Simulationen
gelöst. Die berechneten Zugspannungen nehmen nichtlinear mit negativer Eigenverkrümmung zu,
sind aber nahezu unabhängig vom Bettungsmodul. Der Lastfall (ii) wird analytisch berechnet.
Die thermischen Eigenspannungen zeigen eine nicht-triviale hysteretische Korrelation mit der
Eigenkrümmung der Platte. Der Lastfall (iii) beschreibt die Lageänderung der Platte zufolge
der FWD-Tests. Das zugehörige Strukturmodell bezieht sich auf eine einzelne Platte mit freien
Rändern auf einer Winklerbettung, welche durch eine gleichmäßige Bettungsspannung erweitert
wird. Der Bettungsmodul und die zusätzliche gleichmäßige Bettungsspannung werden für jeden
FWD-Test optimiert, um die gemessenen Durchbiegungen zu reproduzieren. Die Zugspannungen
werden analytisch berechnet und nehmen mit negativer Eigenverkrümmung nur mäßig zu.

Problemstellung 2 bezieht sich auf die Vorhersage der thermischen Eigenverkrümmung der
Platte unter Verwendung ihres Oberflächentemperaturverlaufs als Randbedingung für den ein-
dimensionalen Wärmeeintrag in einen Halbraum. Das Wärmeleitungsproblem wird analytisch
gelöst. Das daraus folgende Temperaturprofil ermöglicht die Berechnung der Eigenverkrümmung
der Platte. Die Anwendung auf Temperaturdaten einer Feldmessstelle auf der Autobahn A2
zeigt, dass Temperaturmessungen über sieben Tage mit einem 15-minütigen Messintervall für die
Vorhersage der Eigenverkrümmung ausreichen.

Abschließend wird die Bedeutung der Arbeit für den Autobahnbetrieb und die Bemessung
diskutiert. Spannungen infolge einer Bemessungsradlast von 50 kN werden durch lineare Skalierung
der Spannungen aus Lastfall (iii) und Überlagerung mit den Spannungen aus den Lastfällen (i)
und (ii) erhalten. Eine Überfahrt über eine stark aufgewölbte Platte mit großen thermischen
Eigenspannungen weckt Zugspannungen, die bis zu sechsmal größer sind als bei der gleichen
Überfahrt im kaum aufgewölbten Zustand ohne nennenswerte thermische Eigenspannungen. Es
ist daher empfehlenswert, LKW-Wiegestationen in Zeiten mit starker Zugspannungsbelastung
zu betreiben und Schwerlasttransporte in den frühen Morgenstunden durchzuführen, weil dann
sowohl die Eigenverkrümmung als auch die Eigenspannungen klein sind. Das thermo-mechanische
Modell (Problemstellung 2) ermöglicht dabei die Echtzeitberechnung der Eigenverkrümmung
durch Oberflächentemperaturmessungen von Frostspionen.
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Chapter 1

Introduction
A primary objective of pavement design is to guarantee a long service life. Pavement structures
are subjected to many thousands of vehicle passages over the course of their service life. Each
passage represents a load cycle. Consequently, the resistance of the pavement structure against
fatigue is of critical importance. Focusing on rigid pavements, several fatigue strength models
have been introduced, see e.g. [17, 20, 22, 23]. When it comes to quantification of the allowable
number of load cycles of a concrete slab, the tensile stress-to-strength ratio of the load cycles
represents a central input to fatigue models. In Austria, the design of rigid pavements is based
on the fatigue model after Smith [13, 14]. In this approach, tensile stresses due to temperature-
induced curling are superimposed with tensile stresses due to traffic load [2]. Thereby, “curling”
refers to the thermal eigencurvature of a concrete slab resulting from a non-uniform temperature
distribution across its thickness.

Curling stresses are quantified based on an estimated worst-case linear temperature gradient [2].
This approach can be traced back to the late 1920s, when Westergaard [29, 30] quantified stresses
caused by linear temperature gradients in concrete slabs with infinite dimensions resting on a
Winkler foundation [31]. Bradbury [4] adapted this approach to finite slabs. Both assumed a
full-face contact between the slab and the next lower layer of the pavement structure. Modern
design approaches account for the partial lift-off of the curled concrete slab [14]. In contrast to the
prescribed linear temperature gradients used in design guides, in situ temperature measurements,
see e.g. [1, 6, 21], have demonstrated spatially nonlinear temperature profiles. They can be
subdivided into three parts: (i) a constant, (ii) a linear, and (iii) a nonlinear part [25]. The linear
part results in temperature-induced curling and consequently curling stresses. The nonlinear
part causes temperature-induced warping which is prevented at the scale of plate generators and
consequently leads to self-equilibrated thermal eigenstresses of concrete [19].

As for the stresses under traffic load, Falling Weight Deflectometer (FWD) testing is a
frequently used non-destructive test method that simulates traffic loading. It consists of dropping
a standardized mass (= falling weight) from a defined height onto a damping element placed
on top of the pavement structure. This impact results in a dynamic excitation of the pavement
structure. In several distances from the center of the falling weight, surface deflection histories are
recorded by means of displacement sensors called geophones. Usually, the geophones are aligned
with the driving direction. Recently, benefits resulting from a star-shaped [7] and T-shaped [8]
arrangement of geophones in central FWD testing on concrete slabs have been demonstrated.

The interpretation of FWD data remains a challenging task, especially when testing is performed
on multilayered pavement structures. Repeated FWD testing at the same position, but at different
dates, results in measured deflections which vary from test to test. Environmental factors such
as moisture content and temperature are responsible for varying FWD test results according to
the state-of-the-art knowledge in the field [26]. This is of particular significance for composite
pavement structures, which consist of asphalt and concrete layers, for three reasons: (i) the
stiffness of the subgrade exhibits a seasonal variation, (ii) the temperature-dependent stiffness
of asphalt, and (iii) temperature-induced curling of the concrete layer. Curling can lead to
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partial loss of full-face contact between the concrete slab and the adjacent layer. Notably, such
loss of contact was confirmed through sledgehammer tests on a field testing site equipped with
embedded accelerometers [11].

The present master thesis presents the results from 19 FWD tests, of which 14 were performed
over the course of 24 hours. All FWD tests were conducted at the center of a concrete pavement
slab of the emergency lane at a well-instrumented field testing site located on the highway A10
in Austria. Although, all FWD tests were performed with the same equipment and applying
the same dynamic load, different surface deflections were measured. Herein, the differences
are attributed to the varying temperature profiles within the pavement structure during FWD
testing. The field testing site is equipped with temperature sensors, providing insights into the
temperature profiles. Surface temperature measurements and temperature readings at the top,
mid-depth, and the bottom of the “bottom concrete”-layer allow for quantifying the thermal
eigencurvature of the concrete slab resulting in curling. A correlation analysis will be performed
to study the relation between the eigencurvature of the slab and the measured deflections at
different distances from the falling weight. Additionally, the largest tensile stresses under central
FWD testing on the curled concrete slab will be computed by means of structural analysis.
The problem at hand will be subdivided into three load cases: (i) dead load and curling of the
slab, (ii) thermal eigenstresses of concrete, and (iii) FWD testing. As for the first load case,
curling stresses will be computed by means of nonlinear Finite Element simulations inspired
by [19]. The concrete slab will be modeled as a single plate with free edges, resting on a Winkler
foundation, summarizing all the properties of the layers underneath into a single value: the
modulus of subgrade reaction. As for the second load case, thermal eigenstresses of concrete will
be computed analytically [19]. As for the third load case, the pointwisely measured FWD data
will be replicated by a structural model based on Kirchhoff’s linear theory of thin plates [18]. It
is focused on the concrete slab resting again on a Winkler foundation, but this time extended
by a uniform subgrade stress [7]. The replicated deflection field will then be inserted into the
constitutive relations of the plate theory to compute stresses resulting from central FWD testing.
Superimposing the three stress contributions will yield the total tensile stresses at the slab’s
underside center as a function of the thermal eigencurvature of the slab.

A thermo-mechanical model will be introduced to quantify the evolution of the thermal
eigencurvature of concrete pavement slabs based on temperature histories measured at the slab’s
surface. The multilayered pavement structure will be modeled as an isotropic and homogeneous
half-space. The measured surface temperature histories will be prescribed as boundary condition
for one-dimensional heat ingress into the half-space. The problem will be solved by means of a
series-solution, providing access to the temporal evolution of the temperature field within the
concrete slab. A series-solution for the thermal eigencurvature will then be derived utilizing
Kirchhoff’s hypothesis. Finally, the thermo-mechanical model will be applied to a concrete
pavement slab with in situ temperature monitoring located on the highway A2 in Austria.
The simulated evolution of the thermal eigencurvature will be compared with values of the
eigencurvature computed directly from temperatures measured inside the bulk of the concrete
slab. In order to ensure a well-converged solution, sensitivity analyses regarding the minimum
duration of the surface temperature history and the maximum time step size will be performed.

The present master thesis is structured as follows. Chapter 2 refers to the quantification of
tensile stresses resulting from central FWD testing on a curled concrete slab at the aforementioned
field testing site. Chapter 3 is devoted to the quantification of the thermal eigencurvature of
concrete pavement slabs as a function of a measured surface temperature history. In Chapter 4
the implications for pavement design and operation of highways will be discussed. Chapter 5
contains the conclusions drawn from the present thesis.



Chapter 2

Tensile stresses resulting from central FWD
testing on a curled concrete slab

2.1 Field tests: FWD and temperature measurements
FWD and temperature data were collected at a field testing site located on the highway “A10 –
Tauern Autobahn” in Austria [11]. The concrete-over-asphalt composite pavement structure is
composed of six layers. From the topmost to the bottommost layer they read as: top concrete
(with thickness htc = 5.0 cm), bottom concrete (hbc = 22.0 cm), asphalt (has = 8.2 cm), cement-
stabilized granular layer (hcs = 17.6 cm), unbound granular layer (hub = 31.4 cm), and local
subgrade, see Fig. 2.1(a) and [9, 11]. The top concrete was installed wet-on-wet on the bottom
concrete. Thus, the concrete slab is a monolithic, two-layered composite structure. Its length,
width, and thickness amount to 5.00 m, 3.50 m, and 0.27 m, respectively, see Fig. 2.1(b) and
Tab. 2.1 for the geometric dimensions of the slab and the material properties of the concretes.

Fig. 2.1: FWD field testing site “A10”: (a) cross section showing one half of the concrete-
over-asphalt composite pavement structure and the vertical positions of temperature
sensors, i.e. the six embedded sensors T2 to T7 and that at the surface labeled as Tsurf ,
see blue triangles, and (b) top view of the concrete slab, illustrating the horizontal
positions of the temperature sensors and geophones, see the blue triangle and the red
circles, respectively.
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Tab. 2.1: Geometric dimensions of the concrete slab “A10” consisting of two layers, and material
properties of the concrete layers

Property Value Source
Length of the slab ℓx = 5.0 m
Width of the slab ℓy = 3.5 m
Thickness of the top concrete layer htc = 0.05 m
Thickness of the bottom concrete layer hbc = 0.22 m
Modulus of elasticity of top concrete Etc = 34.1 GPa [9]
Modulus of elasticity of bottom concrete Ebc = 46.3 GPa [9]
Mass density of top concrete ρtc = 2305 kg/m3 [11]
Mass density of bottom concrete ρbc = 2390 kg/m3 [11]

The field testing site is equipped with six embedded Pt100 sensors for in situ temperature
monitoring, see blue triangles labeled as T2 to T7 in Fig. 2.1(a). They were embedded during the
rehabilitation of the highway [11]. Positioned along a vertical axis, five sensors were installed at
the interfaces between neighboring layers [9], and the sixth sensor, T6, is situated at mid-depth
of the bottom concrete layer, see Fig. 2.1(a). The sensors are positioned eccentric to the center
of the slab, in order to decrease their influence on the behavior of the pavement during central
FWD tests. The horizontal distance from the slab center amounts to 1.4 m in driving direction
and to 1.0 m in lateral direction, see Fig. 2.1(b). The surface temperature was measured by
means of a digital infrared thermometer, see the blue triangle labeled by Tsurf in Fig. 2.1(a).
The described sensor arrangement enabled a good spatial resolution of the temperature profile in
the pavement structure during FWD testing.

Central FWD tests were performed at 19 distinct instants of time. 14 tests were performed
during 24 hours, between 13h13 on Sep 13, 2022 and 13h39 on Sep 14, 2022. Five additional
FWD tests were conducted during the period spanning from Jul, 2021 to Mar, 2022 [9]. All
FWD tests were performed with a Dynatest 8082 trailer-mounted Heavy Weight Deflectometer,
which applied a maximum force of 200 kN [9]. Nine geophones recorded the maximum deflections
during the 14 tests in Sep, 2022. Eight geophones were used during the five tests conducted
from Jul, 2021 to Mar, 2022. The displacement sensors were located at radial distances ri from
the center of the slab, ranging from 0.0 m to 2.1 m, see Fig. 2.1(b). Typically, multiple tests
were performed right after another, see Tab. 2.2 for average values of the maximum deflections
measured. The temperatures measured during FWD testing are listed in Tab. 2.3. The surface
temperature ranged from −0.5 ◦C in Jan, 2022 to 28.2 ◦C at 15h09 on Sep 13, 2022.

Different deflections were measured, despite the fact that all FWD tests were performed at the
same field testing site using the same measurement equipment and applying the same dynamic
load. Thus, the measured differences are attributed to different temperature profiles within the
pavement structure.
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Tab. 2.2: Data from central FWD testing on the field testing site of highway A10: average values
of maximum surface deflections measured in nF WD tests at specific radial distances
from the center of the slab.

Deflections [mm] measured at a radial distance of:
r1 =0.0 m r2 =0.3 m r3 =0.45 m r4 =0.6 m r5 =0.9 m r6 =1.2 m r7 =1.5 m r8 =1.8 m r9 =2.1 m

Time/Date nF WD w1 w2 w3 w4 w5 w6 w7 w8 w9

13h13 5 0.197 0.176 0.163 0.150 0.127 0.104 0.085 0.067 0.056
14h03 5 0.203 0.181 0.167 0.154 0.131 0.105 0.089 0.068 0.059
15h09 5 0.209 0.182 0.169 0.156 0.133 0.104 0.085 0.069 0.061
16h11 5 0.201 0.177 0.164 0.152 0.126 0.103 0.085 0.068 0.058
17h28 5 0.198 0.172 0.158 0.146 0.122 0.099 0.082 0.065 0.054
18h08 5 0.190 0.167 0.155 0.144 0.120 0.098 0.082 0.068 0.056
19h20 5 0.182 0.158 0.147 0.136 0.116 0.095 0.078 0.063 0.058
20h33 5 0.174 0.153 0.141 0.132 0.112 0.092 0.079 0.065 0.054
21h22 5 0.170 0.148 0.138 0.127 0.108 0.093 0.075 0.066 0.055
07h35 5 0.160 0.138 0.128 0.120 0.103 0.087 0.075 0.064 0.055
09h05 3 0.159 0.139 0.130 0.122 0.104 0.088 0.076 0.064 0.055
10h03 3 0.163 0.143 0.134 0.124 0.105 0.089 0.077 0.065 0.055
12h44 5 0.184 0.163 0.151 0.141 0.119 0.099 0.082 0.068 0.057
13h39 5 0.195 0.172 0.159 0.147 0.124 0.102 0.084 0.070 0.058

Jul 2021 15 0.186 0.167 – 0.144 0.122 0.103 0.086 0.072 0.061
Sep 2021 15 0.176 0.157 – 0.135 0.115 0.099 0.081 0.068 0.055
Oct 2021 17 0.169 0.150 – 0.131 0.110 0.092 0.075 0.062 0.052
Jan 2022 12 0.166 0.147 – 0.129 0.109 0.091 0.076 0.061 0.052
Mar 2022 12 0.171 0.152 – 0.130 0.109 0.095 0.076 0.066 0.052

Tab. 2.3: Data from central FWD testing on the field testing site of highway A10: temperatures
measured at specific depths of the pavement structure.

Temperatures [◦C] measured in depths of:
z̄surf = 0.00 m z̄7 = 0.05 m z̄6 = 0.16 m z̄5 = 0.27 m z̄4 = 0.35 m z̄4 = 0.53 m z̄2 = 0.84 m

Time/Date Tsurf T7 T6 T5 T4 T3 T2

13h13 27.0 23.9 19.1 16.1 16.4 17.2 17.9
14h03 28.0 25.8 20.5 16.7 16.5 17.1 17.9
15h09 28.2 27.1 22.1 17.4 16.9 17.1 17.9
16h11 24.4 26.9 23.1 18.1 17.3 17.1 17.8
17h28 23.7 24.7 23.0 19.0 17.9 17.2 17.8
18h08 23.5 24.5 22.9 19.3 18.2 17.3 17.8
19h20 22.0 22.7 22.3 19.7 18.7 17.5 17.8
20h33 19.9 21.5 21.7 19.8 19.0 17.6 17.8
21h22 18.3 20.6 21.2 19.8 19.1 17.7 17.8
07h35 14.7 16.3 17.1 18.1 18.4 18.4 17.9
09h05 16.7 16.7 17.1 17.8 18.2 18.3 18.0
10h03 18.5 17.4 17.2 17.8 18.1 18.3 18.0
12h44 23.5 21.7 19.2 17.8 18.0 18.2 18.0
13h39 26.5 23.7 20.2 18.0 18.0 18.2 18.0

Jul 2021 25.5 24.7 22.4 22.1 22.4 21.1 19.6
Sep 2021 20.5 19.2 17.3 17.6 18.2 18.9 18.3
Oct 2021 10.5 10.5 8.8 9.0 9.6 11.0 12.7
Jan 2022 −0.5 −0.6 −0.7 −0.3 0.1 0.7 1.5
Mar 2022 8.5 8.7 8.5 9.2 9.7 9.8 8.4



14 2 Tensile stresses resulting from central FWD testing on a curled concrete slab

2.2 Correlation of measured deflections with the eigencurvature of
the concrete slab

Curling of a concrete slab results from temperature gradients along its thickness. This provides
the motivation to quantify the thermal eigencurvature during the FWD tests based on measured
temperature values T5, T6, T7, and Tsurf . To this end, a Cartesian x, y, z-coordinate system is
introduced, with its origin situated at the geometric center of the slab. The midplane of the
concrete slab is described by the x- and y-axes, with the x-axis being oriented in the driving
direction. The z-axis runs downward in thickness direction, perpendicular to the midplane,
see Fig. 2.1. The temperature profile across the concrete slab is approximated by means of a
quadratic polynomial, as proposed in e.g. [6, 19]:

T (z, t) ≈ A0(t) + A1(t)
(︂

z

h

)︂
+ A2(t)

(︂
z

h

)︂2
, (2.1)

where A0(t), A1(t), and A2(t) denote coefficients that are determined such as to ensure an optimal
fitting between Eq. (2.1) and the measured temperatures in Tab. 2.3 for each time instant t, see
Fig. A.1(a) of Appendix A for the fitted temperature profiles.

The thermal eigencurvature κe of a concrete pavement slab is, at any time t, equal to the first
moment of the thermal eigenstrain distribution prevailing at that time [19]:

κe(t) = 12
h3

+ h
2∫︁

− h
2

αT

[︁
T (z, t) − Tref

]︁
z dz , (2.2)

where αT denotes the coefficient of thermal expansion of concrete, see Tab. 2.5, and Tref

denotes the reference temperature at which the slab is free of thermal eigenstrains. The thermal
eigencurvature of the concrete slab at time t, is obtained by inserting the parabolic temperature
field of Eq. (2.1) into Eq. (2.2) as:

κe(t) = αT

h
A1(t) . (2.3)

The thermal eigencurvatures during the 19 FWD tests, computed by means of Eqs. (2.1)–(2.3)
from the measured temperatures in Tab. 2.3, range from −4.90 × 10−4/m at 14h03 on Sep 13
to +1.32 × 10−4/m at 07h35 on Sep 14, see Tab. 2.4. During 14 out of the total 19 FWD
tests, the temperature profile within the concrete pavement slab results in negative thermal
eigencurvatures.

The measured deflections (Tab. 2.2) decrease linearly with increasing thermal eigencurvature
(Tab. 2.4), see Fig. 2.2. The absolute value of the slope decreases with increasing distance from
the center of the falling weight. These results underline a strong correlation of the deflections
measured during FWD testing and the temperature-induced eigencurvature of the concrete slab.
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Tab. 2.4: Eigencurvature of the curled concrete slab “A10” at the time instants of FWD testing:
κe according to Eq. (2.3) after fitting the temperature data T5, T6, T7, and Tsurf from
Tab. 2.3 by means of the quadratic polynomial defined in Eq. (2.1).

Time/Date κe [10−4/m]
13h13 −4.62
14h03 −4.90
15h09 −4.74
16h11 −3.08
17h28 −2.11
18h08 −1.90
19h20 −1.00
20h33 −0.13
21h22 +0.50
07h35 +1.32
09h05 +0.48
10h03 −0.22
12h44 −2.40
13h39 −3.55

Jul 2021 −1.54
Sep 2021 −1.27
Oct 2021 −0.78
Jan 2022 +0.07
Mar 2022 +0.24

Fig. 2.2: Maximum surface deflections wi, measured at radial distances ri during 19 FWD tests
on the concrete slab “A10”, as a function of the eigencurvature κe of the slab: markers
illustrate values from Tabs. 2.2 and 2.4, the solid graphs are best linear trendlines for
surface deflections at specific radial distances.
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2.3 Structural model and load case decomposition
In the remainder of this chapter, maximum tensile stresses experienced by the curled concrete
slab during central FWD testing will be quantified. For the sake of simplicity, the monolithic,
two-layered composite slab is introduced as a homogeneous plate, see Tab. 2.5 for its geometric
dimensions and its material properties.

Tab. 2.5: Geometric dimensions of the structural model of the concrete slab “A10”, dead load of
the slab, flexural rigidity of the slab, and its effective homogeneous material properties.

Property Value Source
Length of the slab ℓx = 5.0 m
Width of the slab ℓy = 3.5 m
Thickness of the slab h = 0.27 m
Mass density of concrete ρ = 2375 kg/m3

Dead load of the slab q = 6.29 kPa
Modulus of elasticity of concrete E = 41.6 GPa
Poisson’s ratio of concrete ν = 0.2 [9]
Flexural rigidity of the slab K = 71.11 MPa m3 [9]
Coefficient of thermal expansion of concrete αT = 1.153 × 10−5/◦C [28]

The structural analysis of the slab is decomposed into three load cases: (i) stresses due to
dead load and curling, (ii) thermal eigenstresses, and (iii) stresses induced by the FWD load, see
the following three sections.

2.4 Load case 1: Stresses at the slab’s underside center due to dead
load and curling

A structural model is used to compute stresses resulting from dead load and curling of the slab.
Since it is unclear how to prescribe an eigencurvature in a multilayered simulation, the model
is focused on the rectangular monolithic concrete slab which consists of the top concrete layer
and the bottom concrete layer. The slab is modeled as a Kirchhoff plate, see Tab. 2.5 for its
geometric dimensions and flexural rigidity.

The slab is modeled to be resting on a Winkler foundation [31], while the four lateral edges are
idealized as free surfaces, see [19] for a similar approach. The dead load of the slab is a uniform
vertical force per area and amounts to q = 6.29 kPa, see Tab. 2.5. The modulus of subgrade
reaction ks is unknown. Therefore, a sensitivity analysis is performed, i.e. ks is set equal to
100 MPa/m, 150 MPa/m, 200 MPa/m, and 250 MPa/m, respectively.

The slab is subjected to a spatially uniform eigencurvature. In agreement with the values of
the eigencurvature found during the FWD tests, see Tab. 2.4, eight values of κe are investigated.
They range from −5 × 10−4/m to +2 × 10−4/m, with a step size of 1 × 10−4/m. Under a negative
eigencurvature, the corners of the slab are pressed downward, while its center may lift off from the
Winkler foundation. Under a positive eigencurvature, the center of the slab is pressed downward,
while its corners may lift off from the Winkler foundation.

The region of the concrete slab, which lifts off from the Winkler foundation, is a priori unknown.
The nonlinear contact problem is solved iteratively and automatically using the FE software
RFEM version 5.31.01 [10]. To this end, the midplane of the slab is discretized by means of 7000
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quadratic Finite Elements of type “Kirchhoff bending theory”, with a side length of 5 cm. The
FE mesh consists of 7171 nodes.

In every single FE simulation, one specific value of the modulus of subgrade reaction is
combined with one specific value of the eigencurvature. This results in a total of 32 numerical
simulations.

The results of the FE simulations underline that the absolute value of the largest principal
normal stress at the slab’s underside center increases with (i) increasing absolute value of the
eigencurvature and (ii) with increasing modulus of subgrade reaction, see Fig. 2.3. It is tensile in
case of a negative eigencurvature, and it is compressive in case of a positive eigencurvature.

Fig. 2.3: Results from structural analysis of concrete slab “A10”: largest principle normal stress
at the slab’s underside center, resulting from dead load and curling, for different values
of the modulus of subgrade reaction ks, as a function of the eigencurvature of the
slab: markers illustrate results from nonlinear FE simulations, solid graphs are splines
interpolating between the markers.

The maximum tensile stress due to dead load and curling, activated at the slab’s underside center
immediately before the 19 FWD tests, is found as follows. The largest negative eigencurvature
according to Tab. 2.4, i.e. κe = −4.90 × 10−4/m, is marked on the abscissa of Fig. 2.3, and the
corresponding tensile stresses are quantified. They range from 1.18 MPa for ks = 100 MPa/m,
to 1.27 MPa for ks = 250 MPa/m, see Tab. 2.6. These results underline that the uncertainty
regarding the modulus of subgrade reaction has a rather moderate influence on the estimation
of the tensile stresses due to dead load and curling, activated at the slab’s underside center
immediately before FWD testing.
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Tab. 2.6: Results from structural analysis of concrete slab “A10” at the time instants of FWD
testing: largest principal normal stress at the slab’s underside center, resulting from
dead load and curling, for different values of the modulus of subgrade reaction ks:
stress values obtained by evaluating the splines of Fig. 2.3 for the eigencurvature
values listed in Tab. 2.4.

stresses [MPa] obtained with moduli of subgrade reaction of:
Time/Date ks = 100 MPa/m ks = 150 MPa/m ks = 200 MPa/m ks = 250 MPa/m

13h13 1.17 1.21 1.24 1.26
14h03 1.18 1.23 1.25 1.27
15h09 1.17 1.22 1.24 1.26
16h11 1.00 1.06 1.11 1.14
17h28 0.82 0.88 0.91 0.94
18h08 0.77 0.83 0.86 0.89
19h20 0.50 0.55 0.58 0.59
20h33 0.07 0.08 0.08 0.08
21h22 −0.26 −0.29 −0.30 −0.32
07h35 −0.60 −0.67 −0.71 −0.75
09h05 −0.24 −0.27 −0.29 −0.30
10h03 0.12 0.13 0.14 0.15
12h44 0.88 0.94 0.98 1.01
13h39 1.06 1.13 1.17 1.19

Jul 2021 0.68 0.74 0.77 0.79
Sep 2021 0.60 0.66 0.68 0.70
Oct 2021 0.41 0.45 0.47 0.49
Jan 2022 −0.04 −0.04 −0.05 −0.05
Mar 2022 −0.12 −0.14 −0.15 −0.15

2.5 Load case 2: Thermal eigenstresses of concrete at the slab’s
underside

The self-equilibrated thermal eigenstresses of concrete are independent of the modulus of subgrade
reaction and reads as [19]

σeigen(z, t) = − E

1 − ν

{︁
αT

[︀
T (z, t) − Tref

]︀ − εe(t) − κe(t) z
}︁

, (2.4)

where E denotes the modulus of elasticity of concrete, ν denotes the Poisson’s ratio of concrete,
εe(t) denotes the eigenstretch of the midplane of the slab, at time t, which is defined as [19]

εe(t) = 1
h

+ h
2∫︁

− h
2

αT

[︁
T (z, t) − Tref

]︁
dz , (2.5)

and κe(t) denotes the eigencurvature of the slab at time t, see Eq. (2.2). Insertion of T (z, t)
according to Eq. (2.1) into Eq. (2.5) yields

εe(t) = αT

12
[︁
12 A0(t) + A2(t) − 12 Tref

]︁
. (2.6)
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Insertion of T (z, t) according to Eq. (2.1), κe(t) according to Eq. (2.3), and εe(t) according to
Eq. (2.6) into Eq. (2.4), and evaluation of the resulting expression for z = h/2 yields the following
result for the thermal eigenstresses of concrete at the slab’s underside:

σeigen(z =h/2, t) = −E αT A2(t)
6 (1 − ν) . (2.7)

The thermal eigenstresses of concrete at the slab’s underside, which prevailed during the 19 FWD
tests, are computed by means of Eq. (2.7) from the measured temperatures listed in Tab. 2.3
and the concrete properties listed in Tab. 2.5. The values of the eigenstress of concrete range
from −0.62 MPa at 13h13 on Sep 13 to +1.27 MPa at 16h11 on Sep 13, see Tab. 2.7.

Tab. 2.7: Results from structural analysis of concrete slab “A10” at the time instants of FWD
testing: thermal eigenstress of concrete at the underside of the slab, σeigen(z =h/2, t),
according to Eq. (2.7) after fitting the temperature data T5, T6, T7, and Tsurf from
Tab. 2.3 by means of the quadratic polynomial defined in Eq. (2.1), see also Tab. 2.5
for values of E, αT , and ν.

Time/Date σeigen(z =h/2, t) [MPa]
13h13 −0.62
14h03 −0.29
15h09 0.21
16h11 1.27
17h28 0.93
18h08 0.85
19h20 0.70
20h33 0.82
21h22 0.93
07h35 0.25
09h05 −0.11
10h03 −0.42
12h44 −0.40
13h39 −0.58

Jul 2021 −0.39
Sep 2021 −0.59
Oct 2021 −0.24
Jan 2022 −0.12
Mar 2022 −0.13

When illustrating the thermal eigenstresses of concrete as a function of the thermal eigen-
curvature of the slab, a non-trivial correlation is obtained, see Fig. 2.4. The 14 data points
corresponding to the tests conducted from 13h13 on Sep 13 to 13h39 on Sep 14 form a type of
hysteretic loop that progresses in clockwise direction. The 5 data points referring to the tests
performed from Jul 2021 to Mar 2022 are close to the bottom-right part of this hysteretic loop, see
blue markers in Fig. 2.4. These results underline the following characteristic daily cycle: In the
morning and early afternoon, during the heating phase of the slab, i.e. when heat is transported
from the surface of the slab into its volume, the thermal eigenstress of concrete at the slab’s
underside is compressive and virtually constant at some −0.5 MPa, while the eigencurvature
of the slab decreases progressively. The turnaround from compressive to tensile eigenstress of
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Fig. 2.4: Results from structural analysis of concrete slab “A10”: thermal eigenstress of concrete
at the slab’s underside as a function of the thermal eigencurvature of the slab: markers
illustrate values from Tabs. 2.4 and 2.7, the solid graphs illustrate approximations
used for further analysis.

concrete takes place in the afternoon, within two to three hours, during which the eigencurvature
of the slab is virtually constant and equal to the day’s extreme value. In the later afternoon and
evening, during the cooling phase of the slab, i.e. when heat is transported from the volume of
the slab to its surface, the thermal eigenstress of concrete at the slab’s underside is tensile and
fluctuates around some 1.0 MPa, while the eigencurvature of the slab increases progressively. The
turnaround from tensile to compressive eigenstress of concrete takes place in the night, during
which the eigencurvature of the slab is slightly positive. It is concluded that the eigenstresses of
concrete at the slab’s underside can be approximated as being equal to (i) −0.5 MPa during the
morning and early afternoon, and (ii) 1.0 MPa in the later afternoon and evening, see Fig. 2.4.

2.6 Load case 3: Stresses at the slab’s underside center due to FWD
testing

Deflections induced during FWD testing are also referred to as the “deflection basin”. The latter
delineates the disparity between the state of the concrete pavement slab prior to and under the
action of the FWD load. In the following, a structural model is used to replicate the pointwisely
measured deflection basin.

The structural model is focused on the monolithic concrete pavement slab, consisting of the top
concrete layer and the bottom concrete layer. It is described by the Cartesian x, y, z-coordinate
system of Fig. 2.1. The slab is modeled as a thin Kirchhoff plate [18], resting on a Winkler
foundation [31]. The latter is extended by a uniform subgrade stress, in order to ensure that the
simulations are capable of reproducing the measured deflections accurately, see [7] for details.
Thus, the field equation of the boundary value problem at hand reads as

K ΔΔw(x, y) + k w(x, y) − paux = p(x, y) , (2.8)
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where K denotes the flexural rigidity of the slab, see Tab. 2.5, ΔΔ = ∂4

∂x4 + 2 ∂4

∂x2∂y2 + ∂4

∂y2 denotes
the bilaplacian operator, w(x, y) denotes the deflection basin, k denotes the modulus of subgrade
reaction, such that k w(x, y) is the Winkler-foundation-related subgrade stress, paux denotes the
additional uniform subgrade stress [7], and p(x, y) denotes the FWD load. It is equal to the
maximum force exerted by the falling weight, 200 kN, introduced as a uniform load within a
circular domain with radius rc = 0.15 m:

p(x, y) =

����
200 kN

r2
c π

. . .
√︁

x2 + y2 ≤ rc ,

0 . . .
√︁

x2 + y2 > rc .

(2.9)

The values of the modulus of subgrade reaction k and of the additional uniform subgrade stress
paux will be optimized in order to best explain the pointwisely measured deflections.

The deflection basin w(x, y) is represented by a two-dimensional Fourier series of deflection
modes which are double symmetric with respect to the x- and y-axes [7, 18]

w(x, y) =
Nm∑︁

m=0

Nn∑︁
n=0

Cmn cos
(︂

mπx

ℓx

)︂
cos

(︃
nπy

ℓy

)︃
for

{︃
m = 0, 1, 3, . . . , Nm,

n = 0, 1, 3, . . . , Nn,
(2.10)

where Cmn denotes the sought Fourier coefficients, ℓx and ℓy denote the length and width of the
slab, see Tab. 2.5, while m and n refer to the number of cosine half-waves of the corresponding
deflection mode in x- and y-direction, respectively. The cosines with even values of m and n
are disregarded, because they are antimetric. The total number of deflections modes taken into
account is equal to (Nm + 3)(Nn + 3)/4, noting that Nm ≥ 1 and Nn ≥ 1.

The objective of the structural model is to best replicate the pointwisely measured deflection
basin of each individual FWD test. To this end, it is useful to simply prescribe homogeneous
stress boundary conditions at all four lateral edges of the concrete slab, although the analyzed
concrete slab is connected with its neighbors in driving direction through dowels, and to its left
neighbor through tie bars, while only the right edge is a free surface [11]. Mathematically, the
“free edge”-boundary conditions can be expressed in terms of the following components of the
Cauchy stress tensor σ:

σxy = σyx = 0 at

����
x = ±ℓx

2 , ∀y ∈
[︂
−ℓy

2 , +ℓy

2

]︂
,

y = ±ℓy

2 , ∀x ∈
[︂
−ℓx

2 , +ℓx

2

]︂
,

(2.11)

σxx = σxz = 0 at x = ±ℓx

2 , ∀y ∈
[︂
−ℓy

2 , +ℓy

2

]︂
, (2.12)

σyy = σyz = 0 at y = ±ℓy

2 , ∀x ∈
[︂
−ℓx

2 , +ℓx

2

]︂
. (2.13)

Therefore, the stress resultants at the edges of the slab vanish. This refers to the bending
moments per length mxx and myy, the twisting moments per length mxy = myx, and the shear
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forces per length qx and qy at x = ±ℓx/2 and y = ±ℓy/2, respectively. Accordingly, the “free
edge”-boundary conditions (2.11)–(2.13) are reformulated as [7, 18, 27]

mxx =
+ h

2∫︁
− h

2

σxx z dz = 0 at x = ±ℓx

2 , ∀y ∈
[︂
−ℓy

2 , +ℓy

2

]︂
, (2.14)

myy =
+ h

2∫︁
− h

2

σyy z dz = 0 at y = ±ℓy

2 , ∀x ∈
[︂
−ℓx

2 , +ℓx

2

]︂
, (2.15)

mxy = myx =
+ h

2∫︁
− h

2

σxy z dz = 0 at

����
x = ±ℓx

2 , ∀y ∈
[︂
−ℓy

2 , +ℓy

2

]︂
,

y = ±ℓy

2 , ∀x ∈
[︂
−ℓx

2 , +ℓx

2

]︂
,

(2.16)

qx =
+ h

2∫︁
− h

2

σxz dz = 0 at x = ±ℓx

2 , ∀y ∈
[︂
−ℓy

2 , +ℓy

2

]︂
, (2.17)

qy =
+ h

2∫︁
− h

2

σyz dz = 0 at y = ±ℓy

2 , ∀x ∈
[︂
−ℓx

2 , +ℓx

2

]︂
. (2.18)

The sought Fourier coefficients Cmn in Eq. (2.10) are computed from a set of algebraic equations.
They are derived from the Principle of Virtual Power [16], utilizing the amendment by Höller
et al. [18] of Vlasov’s theory for thin elastic plates on elastic Winkler foundations [27]. Under
consideration of the field equation (2.8) and the “free edge”-boundary conditions (2.14)–(2.18)
the Principle of Virtual Power reads as

Lext + Lint = +
+ ℓx

2∫︁
− ℓx

2

+ ℓy
2∫︁

− ℓy
2

[︃
K

(︃
∂4w

∂x4 + 2 ∂4w

∂x2∂y2 + ∂4w

∂y4

)︃
+ k w − paux − p

]︃
ˆ̇w dy dx

−
+ ℓy

2∫︁
− ℓy

2

[︃
mxx

∂ ˆ̇w
∂x

+ mxy
∂ ˆ̇w
∂y

− qx ˆ̇w
]︃ ⃒⃒⃒⃒

⃒
x=+ ℓx

2

x=− ℓx
2

dy

−
+ ℓx

2∫︁
− ℓx

2

[︃
mxy

∂ ˆ̇w
∂x

+ myy
∂ ˆ̇w
∂y

− qy ˆ̇w
]︃ ⃒⃒⃒⃒

⃒
y=+ ℓy

2

y=− ℓy
2

dx = 0 , (2.19)

where ˆ̇w denotes a virtual velocity field. It is introduced through an Ansatz function that
is similar to the real deflection basin, see Eq. (2.10). For explicit equations for the Fourier
coefficients Cmn and further details see [18]. In order to ensure a well-converged solution, Nm

and Nn in Eq. (2.10) are both set equal to 59, resulting in 961 deflection modes. The related
convergence analysis is focused on stresses rather than deflections. Therefore, it will be presented
later.

All 19 individual FWD tests, see Tab. 2.2, are analyzed using the above described structural
model. For each test, the optimal values of the modulus of subgrade reaction k and of the
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additional uniform subgrade stress paux are searched within the intervals k ∈ [100, 1100] MPa/m
and paux ∈ [0, 100] kPa. The resolution of the search grid is set equal to 10 MPa/m and 1 kPa
for k and paux, respectively. This results in a total of 101 × 101 = 10,201 simulations for each
individual FWD test. The quality of reproduction of the pointwisely measured deflection basin is
quantified by means of the root mean square difference between the measured deflections wi(xi),
see Tab. 2.2, and simulated deflections w(k, paux; xi, y = 0) computed by means of Eqs. (2.10)
and (2.19) for each individual FWD test:

RMSD(k, paux) =

⎯⎸⎸⎷ 1
Ng

Ng∑︁
i=1

[︁
w(k, paux; xi, y =0) − wi(xi)

]︁2
, (2.20)

where Ng denotes the number of geophones and xi denotes the x-coordinates of each geophone.
Given that the geophones are positioned along the x-axis, xi is equal to ri, where ri denotes the
radial distance from the center of the slab, see Tab. 2.2. The number of geophones amounts to
Ng = 9 for the 14 tests conducted from 13h13 on Sep 13 to 13h39 on Sep 14 and to Ng = 8 for
the remaining five tests.

Insight into the properties of the RMSD-function according to Eq. (2.20) is provided for the
FWD test at 13h13 on Sep 13 in Fig. 2.5, see Fig. A.1(b) of Appendix A for all other tests. The

Fig. 2.5: Root mean square difference RMSD according to Eq. (2.20) as a function of (i) the
modulus of subgrade reaction k, see the abscissa, and (ii) the additional uniform
subgrade stress paux, see the ordinate; for the FWD test at 13h13 on Sep 13, 2022: the
red cross marks the pair of values k = 480 MPa/m and paux = 28 kPa at the minimum
of the RMSD, where RMSD = 3.02 µm.

RMSD-function has a single minimum which is located inside the search intervals, see Fig. 2.5.
This underlines that the identified values of k and paux represent a unique optimal solution of
the underlying inverse problem.
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The identified values of the modulus of subgrade reaction range from 440 MPa/m to 910 MPa/m,
those of the additional uniform subgrade stress range from 26 kPa to 56 kPa, see Tab. 2.8. They
increase with increasing value of thermal eigencurvature of the slab, see Figs. 2.6 and 2.7.

Tab. 2.8: Results from structural analysis of concrete slab “A10”: optimal values of (i) the
modulus of subgrade reaction k, and (ii) the additional uniform subgrade stress
paux, and corresponding minimum of the root mean square difference according to
Eq. (2.20), quantifying the difference between measured deflections listed in Tab. 2.2
and simulated deflections according to Eq. (2.10); for all 19 FWD tests.

Time/Date k [MPa/m] paux [kPa] RMSD [µm]
13h13 480 28 3.02
14h03 450 26 3.01
15h09 440 26 3.35
16h11 460 26 2.54
17h28 480 26 3.26
18h08 540 32 2.89
19h20 610 36 3.44
20h33 680 40 3.74
21h22 750 45 3.76
07h35 910 56 4.08
09h05 900 56 4.22
10h03 840 52 3.74
12h44 600 37 3.38
13h39 510 30 2.84

Jul 2021 600 39 3.24
Sep 2021 650 40 4.45
Oct 2021 670 38 4.12
Jan 2022 710 41 4.62
Mar 2022 680 40 4.22
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Fig. 2.6: Results from structural analysis of concrete slab “A10”: optimal values of the modulus
of subgrade reaction k as a function of the eigencurvature κe of the slab: markers
illustrate values from Tabs. 2.4 and 2.8, the solid graph is a trendline.

Fig. 2.7: Results from structural analysis of concrete slab “A10”: optimal values of the additional
uniform subgrade stress paux as a function of the eigencurvature κe of the slab: markers
illustrate values from Tabs. 2.4 and 2.8, the solid graph is a trendline.
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The corresponding values of the RMSD according to Eq. (2.20) range from 2.54 µm to 4.62 µm,
see Tab. 2.8. The achieved RMSD-values are satisfactory small in comparison with the measured
deflections. The measured deflections are also qualitatively replicated in a satisfactory way, see
Fig. 2.8 for the FWD test at 13h13 on Sep 13 and Fig. A.1(c) of Appendix A for all other tests.

Fig. 2.8: Maximum deflections induced by central FWD testing at 13h13 on Sep 13, 2022 on the
curled concrete slab “A10”: markers illustrate measured deflections listed in Tab. 2.2,
the solid graph illustrates the computed deflection basin, i.e. the solution of Eqs. (2.8)
and (2.9) according to Eq. (2.10), see Tab. 2.8 for the corresponding optimal values of
the modulus of subgrade reaction k and the additional uniform subgrade stress paux

to be used in Eq. (2.8).

Since the structural simulations accurately reproduce the pointwisely measured deflections, the
simulation results are well suited for quantification of the stresses resulting from the FWD load.
The normal stresses σxx and σyy within the slab follow from the bending moments per length as

σxx(x, y, z) = mxx(x, y)
h3/12 z, (2.21)

and
σyy(x, y, z) = myy(x, y)

h3/12 z. (2.22)

The bending moments per length mxx and myy, in turn, follow from inserting the deflection
basin according to Eq. (2.10) into the moment-curvature relations as

mxx(x, y) = −K

[︃
∂2w

∂x2 + ν
∂2w

∂y2

]︃

= K π2

ℓ 2
x ℓ 2

y

Nm∑︁
m=0

Nn∑︁
n=0

Cmn

(︁
ℓ 2

y m2 + ν ℓ 2
x n2

)︁
cos

(︂
mπx

ℓx

)︂
cos

(︃
nπy

ℓy

)︃
, (2.23)
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and

myy(x, y) = −K

[︃
∂2w

∂y2 + ν
∂2w

∂x2

]︃

= K π2

ℓ 2
x ℓ 2

y

Nm∑︁
m=0

Nn∑︁
n=0

Cmn

(︁
ℓ 2

x n2 + ν ℓ 2
y m2

)︁
cos

(︂
mπx

ℓx

)︂
cos

(︃
nπy

ℓy

)︃
. (2.24)

Eqs. (2.23) and (2.24) underline that the functions of the bending moments per length are double
symmetric with respect to the x- and y-axes. The largest bending moments are induced at the
center of the slab, see exemplarily Fig. 2.9 for the FWD test at 13h13 on Sep 13 and Fig. A.1
of Appendix A for all other tests. The largest tensile stresses occur at the center of the slab
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Fig. 2.9: Results from structural analysis of concrete slab “A10”: bending moments per length:
(a) mxx, and (b) myy, for the FWD test at 13h13 on Sep 13, 2022 computed according
to Eqs. (2.23) and (2.24), respectively.

(x = y = 0) at its bottom surface (z = +h/2). Specifying Eqs. (2.23) and (2.24) for x = y = 0
and inserting the resulting expressions together with z = +h/2 into Eqs. (2.21) and (2.22), yields
the tensile stresses induced by the FWD load at the slab’s underside center:

max σxx = 6 K π2

h2 ℓ 2
x ℓ 2

y

Nm∑︁
m=0

Nn∑︁
n=0

Cmn

(︁
ℓ 2

y m2 + ν ℓ 2
x n2

)︁
, (2.25)

and

max σyy = 6 K π2

h2 ℓ 2
x ℓ 2

y

Nm∑︁
m=0

Nn∑︁
n=0

Cmn

(︁
ℓ 2

x n2 + ν ℓ 2
y m2

)︁
. (2.26)

The tensile stresses at the slab’s underside center according to Eqs. (2.25) and (2.26), computed
for all 19 individual FWD tests, range from 2.96 MPa to 3.27 MPa, see Tab. 2.9. When illustrating
them as a function of the thermal eigencurvature of the concrete slab, it is found that the stresses
increase moderately with decreasing eigencurvature, see Fig 2.10.
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Tab. 2.9: Results from structural analysis of concrete slab “A10”: principal normal stresses
max σxx and max σyy at the slab’s underside center, resulting from central FWD
testing on the curled slab, computed according to Eqs. (2.25) and (2.26); for all 19
FWD tests.

Time/Date max σxx [MPa] max σyy [MPa]
13h13 3.22 3.23
14h03 3.25 3.26
15h09 3.26 3.27
16h11 3.24 3.25
17h28 3.22 3.23
18h08 3.17 3.18
19h20 3.12 3.13
20h33 3.08 3.09
21h22 3.04 3.05
07h35 2.96 2.97
09h05 2.97 2.97
10h03 2.99 3.00
12h44 3.13 3.14
13h39 3.19 3.21

Jul 2021 3.13 3.14
Sep 2021 3.10 3.11
Oct 2021 3.08 3.09
Jan 2022 3.06 3.07
Mar 2022 3.08 3.09

Fig. 2.10: Results from structural analysis of concrete slab “A10”: principal normal stresses
max σxx at the slab’s underside center, resulting from central FWD testing on the
curled slab, as a function of the eigencurvature κe of the slab: markers illustrate
values from Tabs. 2.4 and 2.9, the solid graph is a trendline.
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A convergence analysis regarding the number of deflection modes in the representation of
the deflection basin, see Eq. (2.10), is performed in order to demonstrate the reliability of the
quantified stresses. Notably, the stresses converge slower than the deflections, because the
stresses are proportional to second spatial derivatives of the deflections, see Eqs. (2.21) to (2.24).
Therefore, the convergence analysis is focused on the largest tensile stress max σxx at the slab’s
underside center, see Eq. (2.25). The structural analysis is repeated for many different values of
the summation limits in Eq. (2.25), whereby Nn is always set equal to Nm. The results underline
that increasing the number of Fourier coefficients leads to values of max σxx, which increase at
first up to a maximum, then decrease, and finally converge to a quasi-stable value, see Fig. 2.11.
A reasonable trade-off between computational accuracy and effort appears to be the structural
model with 961 Fourier coefficients. Consequently, Nm and Nn were set equal to 59.

Fig. 2.11: Convergence analysis regarding the largest principal normal stress at the slab’s
underside center, resulting from FWD testing on the curled slab at 13h13 on Sep 13,
2022: max σxx according to Eq. (2.10) as a function of the number of prescribed
deflection modes.

2.7 Superposition of load cases 1, 2, and 3: Total stresses at the
slab’s underside center due to dead load, thermal loading, and
FWD testing

The total principal tensile stresses at the slab’s underside center are equal to the sum of the
curling stresses of Fig. 2.3, see also Tab. 2.6, the thermal eigenstresses of concrete of Fig. 2.4, see
also Tab. 2.7, and the stresses resulting from FWD testing of Fig. 2.10, see also Tab. 2.9. The
total stresses in x-direction are larger than those in y-direction because the curling stresses in
x-direction are larger than to those in y-direction, the eigenstresses of concrete in x-direction are
equal to those in y-direction, and the FWD-induced stresses in x-direction are almost equal to
those in y-direction, see Tab. 2.9. Summing up the corresponding stress values from Tabs. 2.6, 2.7,
and 2.9 yields total tensile stresses which range from 2.61 MPa to 5.50 MPa for ks = 100 MPa/m
and from 2.46 MPa to 5.64 MPa for ks = 250 MPa/m, see Tab. 2.10. Thus, the modulus of
subgrade reaction has a rather moderate influence. The overall largest total tensile stress during
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Tab. 2.10: Results from structural analysis of concrete slab “A10”: total tensile stresses at the
slab’s underside center, resulting from dead load, thermal loading, and FWD testing,
for different values of the modulus of subgrade reaction ks: sum of stresses listed in
Tabs. 2.6, 2.7, and 2.9.

Time/Date total tensile stresses [MPa] obtained with moduli of subgrade reaction of:
ks = 100 MPa/m ks = 150 MPa/m ks = 200 MPa/m ks = 250 MPa/m

13h13 3.77 3.81 3.84 3.86
14h03 4.14 4.19 4.21 4.23
15h09 4.64 4.69 4.71 4.73
16h11 5.50 5.57 5.61 5.64
17h28 4.97 5.03 5.06 5.09
18h08 4.80 4.85 4.89 4.91
19h20 4.32 4.37 4.40 4.41
20h33 3.97 3.98 3.98 3.98
21h22 3.71 3.68 3.66 3.65
07h35 2.61 2.54 2.50 2.46
09h05 2.61 2.58 2.56 2.55
10h03 2.70 2.71 2.72 2.72
12h44 3.60 3.66 3.70 3.73
13h39 3.68 3.75 3.79 3.81

Jul 2021 3.42 3.48 3.51 3.53
Sep 2021 3.10 3.16 3.19 3.21
Oct 2021 3.25 3.29 3.31 3.33
Jan 2022 2.90 2.89 2.89 2.89
Mar 2022 2.82 2.81 2.80 2.79

FWD testing occurred at the FWD test at 16h11 on Sep 13 when the corresponding thermal
eigencurvature κe of the slab amounted to −3.08 × 10−4/m. The overall smallest tensile stress
corresponds to an eigencurvature of the slab of +1.32 × 10−4/m at the FWD test at 07h35 on
Sep 14. When summing up the trendlines of Figs. 2.3, 2.4, and 2.10, it is found that total stresses
increase nonlinearly with decreasing eigencurvature of the slab, see Fig. 2.12, whereby one set of
trendlines is relevant for the morning and the early afternoon, while the second set is relevant for
the late afternoon and evening.
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Fig. 2.12: Results from structural analysis of the concrete slab “A10”: total tensile stresses at
the slab’s underside center, resulting from dead load, thermal loading, and FWD
testing, for different values of the modulus of subgrade reaction ks, as a function of
the eigencurvature of the slab: markers illustrate values from Tab. 2.10, the solid
graphs are trendlines representing the sum of the trendlines shown in Figs. 2.3, 2.4,
and 2.10.

The analysis underscores that the largest tensile stresses activated by central FWD testing on
a curled concrete slab are predictable, provided that the surface deflections are measured and
the eigencurvature of the slab is known. Quantification of the eigencurvature of the slab based
on temperature histories measured at the surface of a pavement slab is tackled next.



Chapter 3

Quantification of eigencurvature of concrete
slabs from surface temperature history
Temperature-induced curling significantly contributes to the overall stresses in concrete pavement
slabs, see Chapter 2. Quantification of temperature-induced slab curling requires knowledge of
the temperature profile across its thickness. One method to obtain such profiles is to install
temperature sensors at different depths, as shown at the field testing site described in Chapter 2.
However, equipping concrete pavement slabs with embedded temperature sensors is expensive
and, therefore, rather an exception. In regions requiring ice warning systems, in turn, surface
temperature histories are measured at representative positions along highways. This provides the
motivation to quantify the eigencurvature of concrete slabs from temperature histories measured
at the slab’s surface. To this end, the following two idealizations are made: (i) The slab is assumed
to exhibit a uniform surface temperature across its top surface. (ii) The multilayered pavement
structure and the subgrade underneath are assumed to have virtually the same thermal diffusivity
as the concrete slab. Thus, one-dimensional heat conduction into an isotropic and homogeneous
half-space will be simulated. This will provide access to the evolution of temperature profiles.
The temporal development of the thermal eigencurvature of the slab will be derived from the
simulated temperature profile in the uppermost region of the half-space, where the actual concrete
pavement slab is located.

3.1 One-dimensional heat conduction into a half-space
An isotropic and homogeneous half-space is analyzed. Its surface is located at z̄ = 0. Its volume
extends infinitely in the positive z̄-direction, see Fig. 3.1(a).

Fig. 3.1: (a) Isotropic and homogeneous half-space, described by coordinate z̄ running normal
to the surface of the half-space, with origin at the surface, and (b) concrete pavement
slab of constant thickness h, described by a Cartesian x, y, z-coordinate system with
origin at the center of the slab.
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Heat conduction is an initial boundary value problem. The field equation is the heat equation.
Regarding one-dimensional heat ingress in z̄-direction, it reads as

∂T

∂t
− a

∂2T

∂z̄2 = 0 , (3.1)

where T = T (z̄, t) denotes the temperature field at depth z̄ and time t, while a denotes the
thermal diffusivity. As initial condition at t = t1, the temperature of the half-space is set equal
to a uniform initial temperature value Tini:

T (z̄, t= t1) = Tini . (3.2)

As boundary condition at the surface of the half-space, z̄ = 0, the measured surface temperature
history is prescribed in a stepwise fashion:

T (z̄ =0, t) = Tini +
NT∑︁
i=1

H(t − ti) ΔT top
i , (3.3)

where H(t − ti) denotes the Heaviside function. It is equal to 0 for t < ti and equal to 1 for
t ≥ ti. The NT temperature increments ΔT top

i in Eq. (3.3) follow from the measured surface
temperature values, T top(ti), as

ΔT top
i =

{︃
T top(t2) − Tini for i = 1 ,
T top(ti+1) − T top(ti) for i ≥ 2 ,

(3.4)

see also Fig. 3.2. The second boundary condition refers to the domain infinitely far away from
the surface of the half-space, i.e. to z̄ → ∞. This far-field boundary condition reads as

T (z̄ → ∞, t) = Tini . (3.5)

Fig. 3.2: Thermal boundary condition at the surface of the half-space: step-wise representation
of measured surface temperature values.
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The solution of the problem defined in Eqs. (3.1)–(3.5) reads as [5]

T (z̄, t) = Tini +
NT∑︁
i=1

H(t − ti) ΔT top
i erfc

(︃
z̄

2
√︀

a (t − ti)

)︃
, (3.6)

where erfc(x) = 1 − erf(x). Notably, erf(x) = 2√
π

∫︀ x
0 exp(−t2) dt denotes the error function, while

erfc(x) denotes the complementary error function.

3.2 Quantification of eigencurvature based on the surface
temperature history

As for quantification of the thermal eigencurvature of the concrete pavement slab, the Cartesian
x, y, z-coordinate system of Fig. 3.1(b) is used. The relation between the slab-related z-coordinate
and the half-space-related z̄-coordinate reads as z̄ = z + h/2, where h denotes the thickness of
the slab. Inserting this expression for z̄ into Eq. (3.6) yields the temperature field as a function
of z:

T (z, t) = Tini +
NT∑︁
i=1

H(t − ti) ΔT top
i erfc

(︃
z + h/2

2
√︀

a (t − ti)

)︃
. (3.7)

The thermal eigencurvature of a concrete pavement slab is, at any time t, equal to the first
moment of the thermal eigenstrain distribution prevailing at that time [19], see Eq. (2.2). Thus,
inserting Eq. (3.7) into Eq. (2.2) yields

κe(t) = 12 αT

h3

NT∑︁
i=1

H(t − ti) ΔT top
i a (t − ti)

[︃
erf

(︃
h

2
√︀

a (t − ti)

)︃
− h√

π
√︀

a (t − ti)

]︃
. (3.8)

Neither Tini, see Eq. (3.7), nor Tref , see Eq. (2.2), show up explicitly in Eq. (3.8), because they
are constant. Still, Eq. (3.8) depends implicitly on Tini, since ΔT top

1 is a function of Tini, see
Eq. (3.4).

3.3 Exemplary validation based on data from a
temperature-monitored field testing site

The performance of the presented approach for quantification of the eigencurvature is demon-
strated by applying it to a concrete slab with quasi-continuous in situ temperature monitoring.
It is located at kilometer 21 of the highway “A2 – Südautobahn” in Austria. The thickness of
the slab amounts to h = 0.25 m. As for in situ temperature monitoring, the slab was equipped
with four Pt100 temperature sensors, installed at positions z1 = −0.075 m, z2 = −0.035 m,
z3 = 0.015 m, and z4 = 0.065 m. For more details see [19]. Hourly temperature measurements
were taken from Sep 23, 2015, 00:00 to Oct 15, 2015, 24:00. Therefore, four temperatures were
recorded at 552 instants of time. In order to increase the temporal resolution of the measurements,
splines were used to interpolate every three minutes between measured temperatures, see [19]
and Fig. 3.2. This results in 11,021 sets of four temperature values, see Fig 3.3.
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Fig. 3.3: Data from temperature monitoring at the field testing site of highway A2: temperatures
measured by Pt100 sensors installed at specific depths of the concrete slab.

The temperature data of Fig. 3.3 allows for quantifying the evolution of the thermal eigen-
curvature of the concrete slab, as explained next. The temperature profile is fitted, at any time
instant t of interest, by means of a quadratic polynomial, see Eq. (2.1), where A0(t), A1(t) and
A2(t) are 11,021 sets of optimization coefficients. The thermal eigencurvature of the pavement
slab at time t, is obtained by inserting the parabolic temperature field of Eq. (2.1) into Eq. (2.2),
see Eq. (2.3) and Fig. 3.4. Notably, the parabolas of Eq. (2.1) were evaluated at z = −h/2 in
order to determine the surface temperature evolution [19], see Fig. 3.5.

Fig. 3.4: Evolution of the eigencurvature of the concrete slab “A2”: κe according to Eq. (2.3)
after fitting the temperature data of Fig. 3.3 by means of the quadratic polynomial
defined in Eq. (2.1).
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Fig. 3.5: Surface temperature evolution of the slab “A2”, after [19].

In the remainder of this section, it is checked how well the eigencurvature evolution of Fig. 3.4,
which was derived from temperature measurements inside the bulk of the concrete slab, can
be computed by means of Eq. (3.8) from the surface temperature evolution of Fig. 3.5. The
latter has a temporal resolution of three minutes and is prescribed in a stepwise fashion, see
Eqs. (3.3) and (3.4). This yields 11,020 temperature steps. Thus, the summation index i in
Eq. (3.8) runs from 1 to 11,020. The initial temperature Tini of the half-space is set equal to
17 ◦C. The thermal diffusivity is taken from [19]: a = 1.4 × 10−6 m2/s. The coefficient of thermal
expansion is taken from [28]: αT = 1.153 × 10−5/◦C, see also Tab. 3.1. Inserting the described

Tab. 3.1: Thickness of the concrete slab “A2”, and thermal properties of its concrete

Property Value Source
Thickness of the slab h = 0.25 m
Thermal diffusivity of the concrete a = 1.4 × 10−6 m2/s [19]
Coefficient of thermal expansion of the concrete αT = 1.153 × 10−5/◦C [28]

quantities into Eq. (3.8) yields the evolution of the thermal eigencurvature of the slab as a
function of the surface temperature history, see the black graph in Fig. 3.6. The starting value of
the computed evolution of κe(t) is equal to zero, because the numerical simulation starts with
a uniform temperature field. With the progress of simulation time, κe(t) computed from the
surface temperature history according to Eq. (3.8) approaches κe(t) derived from temperature
evolutions measured at four different depths inside the slab according to Eq. (2.3), see Fig. 3.6.
Both approaches yield virtually the same results from some seven days after the start of the
observation period onward.

The quality of agreement after the described run-in phase is quantified by means of the root
mean square difference (RMSD). It is calculated for the last 15 days of the observation period:

RMSD =

⎯⎸⎸⎷ 1
N

N∑︁
i=1

[︁
κe

hss(ti) − κe
par(ti)

]︁2
, (3.9)
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Fig. 3.6: Eigencurvature history of the slab “A2”: comparison of (i) the evolution computed
by means of Eq (3.8) from the surface temperature history of Fig. 3.5, see the black
graph, and (ii) the evolution according to Fig. 3.4, computed by means of Eq. (2.3)
after fitting the temperature data measured inside the slab, see Fig. 3.3, by means of
the quadratic polynomial defined in Eq. (2.1), see the gray graph.

where κe
hss stands for κe according to the half-space simulation based on the surface temperature

history, see Eq. (3.8), and κe
par stands for κe according to the parabolic fit of four temperatures

measured inside the slab’s volume, see Eq. (2.3). In addition, the functional argument “ti” is
used in Eq. (3.9) to denote N = 7200 specific values of thermal eigencurvatures at time ti. The
RMSD according to Eq. (3.9) amounts to 6.41 × 10−6/m and is two orders of magnitude smaller
than the extreme values of the eigencurvature evolution, amounting to −4.68 × 10−4/m and
+2.60 × 10−4/m, respectively. This underlines that the eigencurvature of a slab can indeed be
quantified reliably from the surface temperature history, provided that this history is known over
a period of some seven days.

In the interest of computational efficiency for practical applications, we are left with quantifying
(i) how much simulation time must have elapsed, until the eigencurvature according to Eq. (3.8)
is reliable, and (ii) how large the time intervals between two subsequent time steps may be,
without compromising the accuracy of Eq. (3.8) at the end of the run-in phase. These are the
topics of the following two sections.

3.4 Minimum duration of the analyzed temperature history
To quantify how much simulation time must have elapsed before the thermal eigencurvature of
the slab according to Eq. (3.8) becomes reliable, the computation of κe(t) according to Eq. (3.8)
is repeated six times, starting from six different time instants, i.e. t1 in Eq. (3.4) is set equal to
00:00 a.m. on Sep 23, Sep 26, Sep 29, Oct 2, Oct 5, and Oct 8, respectively. Disregarding surface
temperature values recorded before these start time instants, the evolution of κe(t) is computed
six times. Reliability indicators are computed by subtracting the reference values κe(t) according
to Eq. (2.3) from the six computed evolutions of κe(t) according to Eq. (3.8). The resulting
differences, Δκe(t) = κe

hss(t) − κe
par(t), are plotted as a function of the time elapsed since the
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start time instant: tsim = t − t1, see Fig. 3.7. The six graphs in Fig. 3.7 underline that once
some seven days have elapsed since the starting time instant, the reliability of κe(t) according
to Eq. (3.8) is sufficiently large for engineering purposes. Consequently, surface temperature
measurements should be recorded over a period of at least seven days.

Fig. 3.7: Evolution of the differences between κe(t) according to Eq. (3.8), computed with six
different start time instants, and the reference values κe(t) according to Eq. (2.3).

3.5 Maximum time step size
To quantify how large the time intervals between two subsequently prescribed surface temperature
increments may be, without compromising the accuracy at the end of the run-in phase, the
computation of κe(t) according to Eq. (3.8) is repeated six times. For each computation, the
time step size Δt according to Fig. 3.2 is set equal to 3 min, 6 min, 15 min, 30 min, 60 min, and
120 min, respectively. Surface temperature values in between are disregarded. As accuracy
indicator, the root mean square difference (RMSD) according to Eq. (3.9) is calculated for
the last 15 days of the observation period and for each time step size, see Fig. 3.8(a). With
increasing time increments, the RMSD increases, see Fig. 3.8(a), while the computation time
decreases, see Fig. 3.8(b). A time step size of 15 minutes appears to be an optimal trade-off
between computation accuracy and time. Therefore, it is recommended that surface temperature
measurements are recorded every 15 minutes.
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(a) (b)

Fig. 3.8: Sensitivity analysis regarding maximum time step size: (a) root mean square difference
(RMSD) between κe(t) according to Eq. (3.8) and the reference values κe(t) according
to Eq. (2.3) for time step sizes of 3 min, 6 min, 15 min, 30 min, 60 min, and 120 min
and (b) corresponding computing time for each time step size; the computing times
have been achieved with Matlab version R2024b [24] running on a AMD Ryzen 3700X
8-Core Processor with 32 GB of RAM.



Chapter 4

Transition from research to practical application

4.1 Engineering approach to tensile stresses from FWD testing
Quantification of tensile stresses resulting from central FWD testing on a curled slab, as described
in Section 2.6, requires the optimization of the modulus of subgrade reaction and of the additional
uniform subgrade stress. Therefore, many structural simulations are to be performed. This
represents a considerable computational effort.

As a remedy, an alternative engineering approach is elaborated herein. It limits the required
input quantities to the thickness of the slab, h, its flexural rigidity, K, Poisson’s ratio of
concrete, ν, and the two innermost maximum surface deflections measured during FWD testing,
i.e. w1 measured at the center of the falling weight (r1 =0.0 m) and w2 measured in the radial
distance r2 from the center of the falling weight. A radial symmetric parabola is used to
approximate the deflection basin between the first and the second geophone:

wpar(r) ≈ w1 +
(︀
w2 − w1

)︀ ×
(︂

r

r2

)︂2
, (4.1)

where w1, w2, and r2 are taken from Tab. 2.2. The parabola agrees reasonably well with the
deflection basin derived from the structural model, see Fig. 4.1. This provides the motivation for

Fig. 4.1: Maximum deflections induced by central FWD testing at 13h13 on Sep 13, 2022 on the
curled concrete slab “A10”: the markers illustrate measured deflections, see Tab. 2.2,
the black solid graph refers to the structural model of Section 2.6, and the blue solid
graph refers to the engineering approach, see Eq. (4.1).
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computing stresses from the approximated deflection basin according to Eq. (4.1). To this end,
the radial coordinate r is replaced in Eq. (4.1) by the Cartesian coordinates x and y: Inserting
r =

√︀
x2 + y2 into Eq. (4.1), substituting the resulting expression for wpar(x, y) into the first

line of Eq. (2.23), inserting the resulting expression for the constant bending moment mxx into
Eq. (2.21), and evaluating the obtained expression for σxx(z) at the the slab’s underside, i.e. at
z = h/2, yields the tensile stress at the slab’s underside center simply as

σpar
xx ≈ 12 K (1 + ν) (w1 − w2)

(h r2)2 . (4.2)

Evaluation of Eq. (4.2) for values of K, ν, and h from Tab. 2.5 and values of w1, w2, and r2
from Tab. 2.2 yields tensile stresses ranging from 2.97 MPa to 4.21 MPa, see Tab. 4.1. These

Tab. 4.1: Stresses at the underside center of slab “A10”, resulting from central FWD testing on
the curled slab: comparison of stresses σpar

xx computed by means of the engineering
approach, see Eqs. (4.1) and (4.2), with stresses max σxx computed by means of the
structural model of Section 2.6, see Eq. (2.25); for all 19 FWD tests.

Time/Date σpar
xx [MPa] max σxx [MPa]

13h13 3.28 3.22
14h03 3.43 3.25
15h09 4.21 3.26
16h11 3.75 3.24
17h28 4.06 3.22
18h08 3.59 3.17
19h20 3.75 3.12
20h33 3.28 3.08
21h22 3.43 3.04
07h35 3.43 2.96
09h05 3.12 2.97
10h03 3.12 2.99
12h44 3.28 3.13
13h39 3.59 3.19

Jul 2021 2.97 3.13
Sep 2021 2.97 3.10
Oct 2021 2.97 3.08
Jan 2022 2.97 3.06
Mar 2022 2.97 3.08

engineering-approach-related stresses agree well with (or slightly overestimate) the stresses
computed by means of the structural model of Section 2.6, see Fig. 4.2. Thus, the engineering
model is very useful. The slight overestimation results in a conservative approach.
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Fig. 4.2: Stresses at the underside center of slab “A10”, resulting from central FWD testing
on the curled slab, as a function of the eigencurvature of the slab: comparison of
stresses σpar

xx computed by means of the engineering approach, see Eqs. (4.1) and (4.2)
as well as Tab. 4.1, with stresses max σxx computed by means of the structural model
of Section 2.6, see Eq. (2.25) and Tabs. 2.4 and 2.9.

4.2 Tensile stresses resulting from traffic loads
The analyzed FWD tests were performed with a maximum load of 200 kN. However, the
Equivalent Standard Axle Load (ESAL) used for pavement design in Austria amounts to
100 kN [15]. Therefore, the design wheel load is equal to 50 kN. This provides the motivation
to discuss stresses resulting from the ESAL based on the here-quantified stresses referring to
central FWD testing on the curled slab “A10”.

A curling-free concrete slab (κe = 0) exhibits full-face contact with the adjacent layer of the
pavement structure. In this case, stresses resulting from FWD testing can be quantified by
means of multilayered simulations [9]. Accounting for non-destructive FWD testing, linear elastic
material behavior is used in these simulations. The resulting linearity of the structural problem
implies that all simulation results scale linearly with the intensity of the surface load. This
includes the stresses. It is concluded that reducing the central surface load from the FWD force
of 200 kN to the design wheel load of 50 kN decreases the tensile stresses at the slab’s underside
center from some 3.05 MPa, see κe = 0 in Fig. 2.10, to some 0.76 MPa, see κe = 0 in Fig. 4.3.
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Fig. 4.3: Stresses at the underside center of slab “A10”, resulting from a design wheel load of
50 kN running over the curled slab, as a function of the eigencurvature of the slab:
markers illustrate values obtained by linearly scaling the results of the structural
analysis with a FWD force of 200 kN, see Tab. 2.9, to the design wheel load of 50 kN,
the solid graph is a trendline.

Stresses in a curled concrete slab are discussed next. FWD testing with a maximum load
of 200 kN on the curled slab “A10” resulted in maximum tensile stresses which are virtually
independent of the value of the eigencurvature of the slab, they increase from some 3.05 MPa
obtained for κe = 0 by less than 7 % to some 3.25 MPa obtained for the in absolute terms largest
thermal eigencurvature, κe = −5 × 10−4/m, see Fig. 2.10. Therefore, it is intuitive to assume,
that stresses due to a central vertical loading scale linearly with the intensity of this loading
for all values of the thermal eigencurvature, such that they can be quantified by dividing the
stresses of Fig. 2.10 by the maximum FWD load of 200 kN and by multiplying the result with
the intensity of the traffic load of interest. As for a traffic load of 50 kN, the estimated stresses
range from some 0.7 MPa to 0.8 MPa, see Fig. 4.3.

The total tensile stresses related to traffic running over a curled slab are obtained again by
superimposing the stresses due to dead load and curling (Fig. 2.3), thermal eigenstresses of
concrete (Fig. 2.4), and stresses due to the traffic load (Fig. 4.3), see Fig. 4.4. The total stresses
increase in the morning up to some 1.5 MPa. During the afternoon, they increase quickly from
some 1.5 MPa to some 3.0 MPa. During the later afternoon and evening, they decrease to some
1.0 MPa. During the night and in the earlier morning, the total stresses may be as small as
0.5 MPa, see the lowest markers in Fig. 4.4.
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Fig. 4.4: Total stresses at the underside center of the concrete slab “A10” resulting from dead
load, thermal loading, and a design wheel load of 50 kN running over the curled
slab, for different values of the modulus of subgrade reaction ks, as a function of the
eigencurvature of the slab: markers illustrate values obtained by superimposing the
marker values of Figs. 2.3, 2.4, and 4.3., the solid graphs are the superposition of the
trendlines shown in these three figures.

4.3 Implications for highway operation and pavement design
The same design vehicle running over the same slab will induce tensile stresses of 0.5 MPa
during the night and in the early morning, but tensile stresses of more than 3.0 MPa during
the afternoon, see Fig. 4.4. This underlines that overloaded vehicles are particularly harmful
to pavement structures when running over slabs during periods of time in the afternoon, when
relatively large values of the thermal eigencurvature of the slab are combined with large values
of the thermal eigenstress of concrete.

In the future, highway operators can perform real-time quantitative monitoring of the eigencur-
vature evolution by using surface temperature measurements from ice warning systems as input
for the model of Chapter 3. Thus, they can anticipate periods during which the traffic stresses
will be particularly small or large. Then, it is recommended (i) to operate traffic control stations
with truck weighing stations preferentially during time intervals with large tensile stresses, and
(ii) to schedule exceptional heavy-vehicle traffic in the early morning, when both the thermal
eigencurvature of the slab and the thermal eigenstress of concrete are particularly small.

Regarding pavement design, concrete fatigue is a decisive design criterion for rigid pavements,
but the long-term exposure conditions are largely unknown. The results of the present thesis
underline that traffic-induced tensile stresses experienced by concrete slabs are strongly influenced
by the thermal eigencurvature of the slab and by the thermal eigenstresses of concrete. Thus,
identification of realistic exposure conditions, i.e. of realistic histories of tensile stress circles,
requires knowledge of (i) the volume, the composition, and the temporal distribution of the
traffic loads, (ii) the eigencurvature history, and (iii) the eigenstresses. As regards point (i), the
volume and temporal distribution of heavy traffic on Austrian highways is recorded at road toll
stations [12]. Combining these data with representative distributions of truck types allows for
the transition to distributions of corresponding axle loads, see e.g. [3]. As regards points (ii) and
(iii), the model of Chapter 3 is very likely to play an important role in the future.
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Conclusions
The following conclusions are drawn from the here-performed analysis of central FWD testing at
a well-instrumented field testing site:

• Surface deflections measured during central FWD tests correlate with the thermal eigen-
curvature of the concrete slab: the maximum measured deflections increase linearly with
increasing absolute value of the negative eigencurvature. Thereby, the absolute value of
the slope increases with increasing proximity to the center of the slab.

• Tensile stresses at the slab’s underside center can be decomposed into three portions:
stresses due to dead load and curling of the slab, self-equilibrated thermal eigenstresses of
concrete, as well as stresses induced by FWD testing.

• To compute stresses resulting from dead load and curling, the slab was modeled as a thin
Kirchhoff plate with traction-free edges, resting on a Winkler foundation. The plate was
subjected to different values of uniform thermal eigencurvature. The principal stresses at
the slab’s underside center vanish in case of vanishing eigencurvature, they are tensile in
case of negative eigencurvature, and they are compressive otherwise. The absolute values
of the stresses increase with increasing absolute values of the eigencurvature. Virtually the
same stresses were obtained for different values of the modulus of subgrade reaction in the
here-investigated realistic interval from 100 MPa/m to 250 MPa/m.

• Thermal eigenstresses of concrete at the slab’s underside were quantified analytically.
During the course of one representative autumn day, the eigenstresses of concrete exhibit a
non-trivial hysteretic correlation with the eigencurvature of the slab. In the morning and
early afternoon, the eigenstresses are compressive and virtually constant, while the negative
eigencurvature increases. Within two to three hours in the afternoon, the eigenstresses
change from compressive to tensile, while the eigencurvature is virtually constant. In the
late afternoon and evening, the eigenstresses are tensile and virtually constant, while the
negative eigencurvature decreases. During the night, the eigenstresses change from tensile
to compressive, while the eigencurvature is small.

• To compute tensile stresses resulting from the FWD testing, the slab was modeled as a
thin Kirchhoff plate with traction-free edges, resting on a Winkler foundation extended by
a uniform subgrade stress. The plate was subjected to the FWD load of 200 kN. To best
replicate the test-specific deflections measured by the geophones, the values of both the
modulus of subgrade reaction and the uniform additional subgrade stress were optimized.
The test-specific optimal values correlate well with the test-specific values of the thermal
eigencurvature of the slab. The FWD-induced tensile stresses at the slab’s underside center
depend only moderately on the value of the eigencurvature of the slab. For engineering
purposes they can be set constant.
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• An alternative engineering approach to tensile stresses resulting from the FWD testing
consists of approximating the deflection basin in the immediate vicinity of the falling
weight by means of a radial symmetric parabola running through the two innermost
geophone-measured deflection values. The stresses are computed by means of constitutive
relations of Kirchhoff’s linear theory of thin plates. The engineering approach is useful and
conservative, as it delivers stresses which are very close to or only slightly larger than the
stresses computed from the structural model.

• The (total) tensile stresses at the underside center of a curled concrete slab which is
subjected to central FWD testing are predictable, provided that the thermal eigencurvature
of the concrete slab is known. They increase with increasing absolute value of the negative
eigencurvature in the morning and the early afternoon, and they decrease with decreasing
negative eigencurvature during the late afternoon and evening.

The following conclusions are drawn from the computation of thermal eigencurvature based on
a known surface temperature history:

• Prescribing surface temperature steps as boundary condition for the simulation of one-
dimensional heat ingress into an initially isothermal, homogeneous, and isotropic half-space
which exhibits the thermal properties of concrete, allows for quantifying the temporal
evolution of the temperature profile and, consequently, of the thermal eigencurvature of
the concrete slab.

• The computed eigencurvature is reliable provided that (i) the analyzed surface temperature
history is equal to or longer than seven days, and (ii) the temperature steps are prescribed
in intervals of 15 minutes or less.

As regards practical pavement engineering, the results of the present study suggest the following
conclusions:

• The same vehicle running over the same slab will induce up to six-times as large tensile
stresses in the afternoon, when the slab exhibits a large negative eigencurvature and large
thermal eigenstresses of concrete at its underside, compared to the stresses induced in
the earlier morning, when the slab exhibits a small eigencurvature and small thermal
eigenstresses of concrete at its underside.

• Real-time quantitative monitoring of the eigencurvature of concrete slabs is possible by
using surface temperature measurements from ice warning systems as input for the thermo-
mechanical model of Chapter 3.

• It is recommendable to operate traffic control stations with truck weighing stations prefer-
entially during times when both the absolute value of the negative eigencurvature of the
slab and the tensile eigenstresses of concrete at the slab’s underside are particularly large.

• It is recommendable to schedule exceptional heavy-vehicle traffic during times when both
the eigencurvature of the slab and the eigenstresses of concrete at the slab’s underside are
particularly small.

• It will be interesting to combine the data from eigencurvature-monitoring with corresponding
data describing axle load distributions, in order to determine realistic histories of tensile
stress cycles for the fatigue assessment of existing concrete slabs and for the fatigue design
of future pavement structures.
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Finally, the limitations of the presented study are listed as follows:

• The first part of the study was limited to 19 FWD tests with maximum force of 200 kN
on one field testing site. Additional FWD experiments with different maximum forces are
desirable, in order to validate the stress scaling approach of Section 4.2.

• The second part of the study was limited to 23 days of temperature monitoring of another
field testing site. The analysis of additional temperature monitoring data is desirable, in
particular of data recorded during extreme weather events such as hail showers [28].

• As for the structural analysis and the computation of tensile stresses, the slab was idealized
as a homogeneous plate. In the future, it will be interesting to account for different
stiffnesses of the top concrete and the bottom concrete layers.

• The linear elastic simulations regarding the load case “dead load and curling” could not be
validated herein, since no surface deflection measurements are available for a curled slab
free of surface loading. Such data would allow for assessing the influence of dowels and tie
bars as well as the influence of concrete creep on the stresses due to dead load and curling.
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Appendix A

Summary of structural analysis for all FWD tests
The following pages contain diagrams illustrating the results of the structural analysis for all 19
FWD tests performed. Each page is dedicated to one FWD test. The diagrams are organized at
follows:

(a) Temperature profiles within the slab “A10” during FWD testing: markers illustrate
measured temperature values T5, T6, T7 and Tsurf from Tab. 2.3, the solid graphs illustrate
the best-fit quadratic polynomials according to Eq. (2.1).

(b) Root mean square differences RMSD according to Eq. (2.20) as a function of (i) the
modulus of subgrade reaction k, see the abscissa, and (ii) the additional uniform subgrade
stress paux, see the ordinate the red crosses mark the pair of values k and paux at the
minimum of the RMSD

(c) Maximum deflections induced by central FWD testing on the curled concrete slab “A10”:
markers illustrate measured deflections listed in Tab. 2.2, the solid grpahs illustrate the
computed deflection basins, i.e. the solution of Eqs. (2.8) and (2.9) according to Eq. (2.10),
see Tab. 2.8 and (b) for the corresponding optimal values of the modulus of subgrade
reaction k and the additional uniform subgrade stress paux to be used in Eq. (2.8).

(d) Results from the structural analysis of the concrete slab “A10”: bending moment per
length: mxx computed according to Eq. (2.23); see Tab. 2.8 and (b) for the corresponding
optimal values of the modulus of subgrade reaction k and the additional uniform subgrade
stress paux

(e) Results from the structural analysis of the concrete slab “A10”: bending moment per
length: myy computed according to Eq. (2.24); see Tab. 2.8 and (b) for the corresponding
optimal values of the modulus of subgrade reaction k and the additional uniform subgrade
stress paux
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Fig. A.1: Temperature fit (a) and results of structural analysis (b)–(e) for the FWD test at
13h13 on Sep 13, 2022; the figure is continued on the following pages.
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Fig. A.1 [cont’d]: Temperature fit (a) and results of structural analysis (b)–(e) for the FWD
test at 14h03 on Sep 13, 2022.
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Fig. A.1 [cont’d]: Temperature fit (a) and results of structural analysis (b)–(e) for the FWD
test at 15h09 on Sep 13, 2022.
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Fig. A.1 [cont’d]: Temperature fit (a) and results of structural analysis (b)–(e) for the FWD
test at 16h11 on Sep 13, 2022.
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Fig. A.1 [cont’d]: Temperature fit (a) and results of structural analysis (b)–(e) for the FWD
test at 17h28 on Sep 13, 2022.
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Fig. A.1 [cont’d]: Temperature fit (a) and results of structural analysis (b)–(e) for the FWD
test at 18h08 on Sep 13, 2022.
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Fig. A.1 [cont’d]: Temperature fit (a) and results of structural analysis (b)–(e) for the FWD
test at 19h20 on Sep 13, 2022.
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Fig. A.1 [cont’d]: Temperature fit (a) and results of structural analysis (b)–(e) for the FWD
test at 20h33 on Sep 13, 2022.
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Fig. A.1 [cont’d]: Temperature fit (a) and results of structural analysis (b)–(e) for the FWD
test at 21h22 on Sep 13, 2022.
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Fig. A.1 [cont’d]: Temperature fit (a) and results of structural analysis (b)–(e) for the FWD
test at 07h35 on Sep 14, 2022.
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Fig. A.1 [cont’d]: Temperature fit (a) and results of structural analysis (b)–(e) for the FWD
test at 09h05 on Sep 14, 2022.



61

-5 0 5 10 15 20 25 30 35 40

Fig. A.1 [cont’d]: Temperature fit (a) and results of structural analysis (b)–(e) for the FWD
test at 10h03 on Sep 14, 2022.
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Fig. A.1 [cont’d]: Temperature fit (a) and results of structural analysis (b)–(e) for the FWD
test at 12h44 on Sep 14, 2022.
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Fig. A.1 [cont’d]: Temperature fit (a) and results of structural analysis (b)–(e) for the FWD
test at 13h39 on Sep 14, 2022.
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Fig. A.1 [cont’d]: Temperature fit (a) and results of structural analysis (b)–(e) for the FWD
test in Jul, 2021.
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Fig. A.1 [cont’d]: Temperature fit (a) and results of structural analysis (b)–(e) for the FWD
test in Sep, 2021.
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Fig. A.1 [cont’d]: Temperature fit (a) and results of structural analysis (b)–(e) for the FWD
test in Oct, 2021.



67

-5 0 5 10 15 20 25 30 35 40

Fig. A.1 [cont’d]: Temperature fit (a) and results of structural analysis (b)–(e) for the FWD
test in Jan, 2022.
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Fig. A.1 [cont’d]: Temperature fit (a) and results of structural analysis (b)–(e) for the FWD
test in Mar, 2022.
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List of Symbols

symbol meaining
A0(t), A1(t), A2(t) optimal coefficients of the parabolic temperature fitting polynomial
a thermal diffusivity
Cmn Fourier coefficients
E effective modulus of elasticity of concrete of the homogeneous slab
Ebc modulus of elasticity of bottom concrete
Etc modulus of elasticity of top concrete
Gi geophone i at radial distance ri

H(t − ti) Heaviside function
h thickness of the homogeneous concrete slab
has thickness of the asphalt layer
hbc thickness of the bottom concrete layer
hcs thickness of the cement-stabilized granular layer
htc thickness of the top concrete layer
hub thickness of the unbound granular layer
i summation index
K flexural rigidity of the concrete slab
k modulus of subgrade reaction used in load case 2
ks modulus of subgrade reaction used in load case 1
Lext, Lint virtual power of external forces and internal forces, respectively
ℓx length of the concrete slab
ℓy width of the concrete slab
m summation index
mxx, myy bending moments per length
mxy, myx twisting moments per length
N number of specific values of κe

hss(ti) and κe
par(ti) considered in RMSD

Ng number of geophones
Nm number of deflection modes considered with respect to the x-direction
Nn number of deflection modes considered with respect to the y-direction
NT number of temperature increments
n summation index
nF WD number of FWD tests performed right after another
p(x, y) external load resulting from FWD testing
paux additional uniform subgrade stress
q dead load of the concrete slab
qx, qy shear forces per length
RMSD root mean square difference between κe

hss(ti) and κe
par(ti)
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symbol meaning
RMSD(k, paux) root mean square difference between wi(xi) and w(k, paux; xi, y =0)
r radial distance, measured from the center of the slab
rc radius of the load plate
ri radial distance of geophone Gi, measured from the center of the slab
T (z, t) temperature field in slab-related coordinates
T (z̄, t) temperature field in half-space-related coordinates
Ti temperature measured in depth z̄i

Tini uniform initial temperature of the half-space
Tref reference temperature
Tsurf measured surface temperature at z̄surf = 0.0 m
T top(t) measured surface temperature history of the concrete slab
t time variable
t1 initial time instant of simulation
ti simulation time at the ith temperature increment
tsim elapsed simulation time since initial time instant
w(x, y) deflection basin resulting from FWD testing
ˆ̇w virtual velocity field
wi average value of the maximum surface deflection measured by geophone

Gi in nF WD subsequent FWD tests
wpar(r) approximated deflection basin between the first and the second geophone
x, y, z concrete-slab-related Cartesian coordinates
xi x-coordinate of geophone Gi

z1–z4 concrete-slab-related z-coordinates of the installed temperature sensors
z̄ half-space related coordinate
z̄i depth at which the temperature Ti is measured
z̄surf depth at which the surface temperature Tsurf is measured
αT coefficient of thermal expansion of concrete
ΔΔ bilaplacian operator
ΔT top

i ith temperature increment at the surface of the concrete slab
Δκe(t) difference between κe

hss(ti) and κe
par(ti)

Δt time step size of the surface temperature history
εe(t) thermal eigenstretch of the midplane of the slab
κe(t) thermal eigencurvature of the concrete slab
κe

hss(ti) thermal eigencurvature according to half-space simulation
κe

par(ti) thermal eigencurvature according to parabolic temperature fit
ν Poisson’s ratio of concrete
ρ effective mass density of concrete of the homogeneous slab
ρbc mass density of bottom concrete
ρtc mass density of top concrete
σ Cauchy stress tensor
σeigen thermal eigenstress of concrete
σxx, σyy normal stresses in the x- and y-direction
σpar

xx FWD-induced tensile stresses estimated by engineering approach
σxy, σyx shear stresses in the x-y plane
σxz, σyz shear stresses in the x-z and y-z plane
max σxx, max σyy largest FWD-induced principal tensile stresses in x- and y-direction
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