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Kurzfassung

Wie Neuronen miteinander interagieren um Verhalten zu erzeugen, stellt eine zentrale
Frage in der Neurowissenschaft dar. Die Dynamiken dieser interagierenden Neuronen
definieren die neuronalen Berechnungen, die der Verarbeitung sensorischer Informationen,
der Entscheidungsfindung und der Erzeugung von Motorik zugrunde liegen. Jüngste Fort-
schritte in der Modellierung dynamischer Systeme haben beobachtete neuronale Aktivität
als zeitliche Entwicklung von Zuständen innerhalb eines neuronalen Raumes, der durch
dynamische Gesetze geregelt wird, formalisiert. Bedeutende Fortschritte wurden erzielt,
indem angenommen wurde, dass diese Gesetze autonomer Natur sind, was bedeutet,
dass sich neuronale Zustände deterministisch entwickeln. Solche Modelle bieten jedoch
möglicherweise nicht genügend biologische Interpretierbarkeit, da sie unvorhersehbare
externe Einflüsse nicht erfassen. Wir schlagen ein kontrolliertes, zerlegtes lineares dyna-
misches System (cdLDS) vor, eine Erweiterung des autonomen linearen dynamischen
Systems dLDS, indem Eingaben integriert werden, die das System steuern. Wir wenden
cdLDS auf eine neuronale Mannigfaltigkeit, eine niederdimensionale dynamische Struktur,
von 23 C. elegans-Individuen an und zeigen, dass es erfolgreich intrinsische neuronale
Dynamiken von Steuerungssignalen entflechtet und Einblicke in Störungen der neuro-
nalen Dynamik bietet. Dieses Framework bildet eine Grundlage zur Identifizierung der
neuronalen Korrelate von Steuerungssignalen und zum Verständnis der Auswirkungen
von Steuerungsmechanismen auf die neuronale Dynamiken.
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Abstract

Understanding how neurons interact with each other to produce behavior is a key challenge
in neuroscience. The dynamics of these interacting neurons define the computations
that underlie the processing of sensory information, decision making, and the generation
of motor output. Recent advances in dynamical system modeling have formalized
observed neural activity as the temporal evolution of states within a neural state space
governed by dynamical laws. Significant progress has been achieved by assuming these
laws to be of autonomous nature, meaning that neural states evolve deterministically.
However, such models may not provide sufficient biological interpretability as they fail to
capture unpredictable external forces. Here, we propose a controlled decomposed linear
dynamical system (cdLDS), an extension of the autonomous dynamical system model
dLDS, by incorporating inputs that control the system. We apply cdLDS to a neural
manifold, a low-dimensional dynamical structure, from 23 C. elegans individuals and show
that it successfully disentangles intrinsic neural dynamics from control signals, offering
insight into perturbations of neural dynamics. This framework provides a foundation for
identifying the neural correlates of control signals and for understanding the impact of
control mechanisms on neural dynamics.
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CHAPTER 1
Introduction

1.1 Inside the Brain: Understanding Neural Dynamics

Our brain comprises a hundred billion neurons that constantly communicate with one
another, can modulate and connect, and can form complex circuits that essentially
underlie every behavior. A primary objective of neuroscience is to understand the
dynamics of the entire brain, specifically the way neurons in a brain process, receive, and
pass signals over time. It is understood that neurons always behave collectively and that
the actual unit of processing is not a single neuron, but rather a collection of neurons,
known as a neural population [SC19][EH21]. A population perspective gives rise to the
idea that any observed neural state, which can be seen as a snapshot of all neural activity,
does not necessarily have to be described at the level of individual neurons. Rather, we
can infer a neural state from the activity of a neural population.
This belief aligns with the promising hypothesis that neural activity lies on trajectories
in a low-dimensional space. In neuroscience, such low-dimensional structures are loosely
termed neural manifolds [Mit+23]. In other words, it is sufficient to describe any neural
state with dimensions far fewer than the total number of neurons. In that subspace, known
as the state space, each point is a state that represents the pattern of the population
activity. However, not all potential states in that space are explored by the brain, and
those that are form the neural manifold [EH21].
Similarly to how snapshots of neural activities are connected through time, states that
lie on the manifold are also temporally connected. And the rules that move the brain
from one neural state to another over time also apply to the neural manifold. Identifying
these dynamical rules is ubiquitous for understanding any neural dynamics, as they are
one and the same, and characterizing the neural manifold facilitates this discovery.
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1. Introduction

1.2 In search of a canonical neural manifold
The presence of a neural manifold offers many advantages, a major one being their capacity
of simplifying complex patterns into a more interpretable representation. Furthermore,
the shape of a manifold structure can inform us of what and how many high-level features
are encoded in the representation. For example, in their 2019 study, Chaudhuri et al.
found that neural measurements of the entire head direction circuit in mice lie on a ring
manifold, reducing the dimensionality of the data from 8-30 neurons per dataset to a
single dimension per dataset, which could be interpreted as the angle of the mouse head
[Cha+19].
Previous work has discerned neural manifolds in various organisms, although primarily
within single individuals [Cha+19][Gal+20]. To find a manifold in multiple individuals,
one would need to align their neural activity recordings, which are likely to vary over
time and space. However, a neural manifold that is truly consistent across multiple
individuals in an organism could reveal features that are robust and universal. With
such a canonical neural manifold, one could find all possible neural states that the brain
of an organism explores.
Due to the variability between neural activity recordings, be it due to instabilities of the
recording device, or different timing or different subsets of neurons, it is challenging to
compare the neural activity patterns of different recordings directly. Many researchers
circumvent this problem of variability across recordings by building invariance across
recordings by computing, for example, correlations of neuron firing and then extracting
certain metrics like connectivity or entropy. But most statistical approaches such as
these are invariant to the specific subset of neurons, omitting valuable information
about neurons [DKD23]. A practical solution is recording the same subset of neurons
between individuals. However, capturing whole-brain neural activities is currently
infeasible in complex organisms such as mammals, due to technological limitations in
achieving sufficient spatial and temporal resolution. In contrast, whole-brain imaging
has been successfully demonstrated in a model organism widely studied in neurobiology:
Caenorhabditis elegans (C. elegans).
C. elegans is a nematode with a fixed number of 302 neurons that have been fully
mapped, along with their connections, and recorded simultaneously in many studies
[Kat+15][Ngu+16]. This makes C. elegans an ideal organism for us to study neural
dynamics at a global level.
In particular, we want to discover a canonical neural manifold in C. elegans, by aligning
whole-brain recordings from multiple different individuals while preserving most of the
information. This canonical neural manifold then constrains the state space of all neural
states.

1.3 Modeling the neural manifold as a proxy for the brain
To study the temporal evolution of states on the manifold, as a proxy for the high-
dimensional neural states explored by the brain, we need to identify the governing
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1.3. Modeling the neural manifold as a proxy for the brain

dynamical rules [DS21]. With these dynamical rules, any state on the manifold can
be computed. In other words, for any population activity, there exists an algorithm or
computation that dictates what the next population activity looks like. One might find
that a system that is defined by dynamical rules and states is a dynamical system. In
fact, significant advances were made in the field of dynamical systems modeling to study
neural dynamics [DS21][Bru+16][FZK20][Lin+16].
The theory of dynamical systems gives access to a myriad of analytical tools; in particular,
they facilitate the location of fixed point attractors. It is assumed that neural states
towards which the brain converges are fixed point attractors, and uncovering those could
further characterize the computation that drives a brain. In this thesis, we refer to these
attractive neural states as latent states. A latent state can correspond to an observable
behavior. For example, if a worm is feeding or foraging for food, its neural circuits
will converge to and stay in a latent state associated with these behaviors. The neural
dynamics of the worm is constituted by precisely these states and their transitions over
time, defined by a dynamical system.
The study of attractive states and the transitions between states gives rise to two schools
of thought, where the dynamics of any system is often modeled either as an autonomous
or as a non-autonomous system. The autonomous case highlights the system’s inherent
ability to transition from one state to another, whereas the non-autonomous case relies
on external forces that move the system from state to state.

Figure 1.1: The pendulum is one of the best-studied systems in dynamical
systems. The swing of the pendulum follows rules from an autonomous dynamical
system. However, if the swing is perturbed by, say, a push, the swing dynamics become
subject to a non-autonomous dynamical system.

A simple example that displays the difference between an autonomous dynamical system
and a non-autonomous one is a pendulum that swings from left to right: the state of that
pendulum at a given time point depends only on its current angle to the vertical and the
angular velocity. These variables change according to the rules that govern the pendulum
swing, making it an autonomous dynamical system. Now, if we gave the pendulum an
occasional push, the state of the system would additionally depend on an external force,
and the governing rules alone do not suffice to describe the current state of the pendulum

3



1. Introduction

(see Figure 1.1).
In general, with enough complexity, both autonomous and non-autonomous dynamical
systems models can approximate a wide range of neural states. However, we hypothesize
that a system that has deterministic intrinsic dynamics that drive it from one state to
another, and on top of that also receive stochastic inputs, may result in a biologically
more realistic model.

Finally, we come to the aim of this thesis. We implement a non-autonomous dynamical
system that describes dynamics on a canonical neural manifold, as a proof of principle,
showing that the observed difference between intrinsic dynamics and actuated dynamics
can be modeled in a systematic way. Furthermore, we will link observed and modeled
latent states to observed behavior states in C. elegans.
Similarly to this introduction, the remainder of this thesis can be divided into two
connected parts: the canonical neural manifold and the dynamical systems model. To
construct a canonical neural manifold, we must overcome the caveats that an alignment
of neural recordings entails. For this, we define a pipeline of preprocessing techniques
that make high-dimensional recordings from 23 different C. elegans individuals directly
comparable. We then validate the universality of the neural manifold by utilizing classic
machine learning methods such as classification.
For the second part, we formalize an existing dynamical system model, decomposed linear
dynamical system (dLDS), as a neural network and extend it to include external forces, or
as we refer to them in this thesis, control signals. For testing and validation, we generate
synthetic data based on assumed dynamical principles before applying and interpreting
the extended model on our canonical neural manifold.

4



CHAPTER 2
Preliminaries

2.1 C. elegans
C. elegans is a nematode that is found living in soil and has a transparent body of less
than 1 mm. The roundworm serves as a model organism in many fields of biology as it can
be easily cultivated in the laboratory and it passes through different stages of life rapidly.
The nematode has 302 neurons that have been fully mapped, that is, they are identifiable
and consistent across worms [Var+11]. This characteristic, along with the transparency
and size of the worm, facilitates optical recording of all its cells simultaneously.

2.1.1 Locomotion
C. elegans exhibits various behaviors, such as roaming, dwelling, escaping, egg-laying,
mating, mate finding, etc. Part of most of these behaviors is locomotion, i. e. the ability
to move. The main motions are forward-directed crawling (forward), backward-directed
crawling (reversal) and turns. All motions occur in an undulatory way: The worm lies
either on its left or right side and performs front (ventral) and back (dorsal) bends in
order to propel either forward or backward. A turn is a localized ventral or dorsal bend,
which is often observed in roaming and reorientation behavior. In general, depending on
various factors such as speed, strength, or extent of movement, these three categories of
motion can be split into observed fine-grained behaviors such as shallow turns, sharp
turns (omega), and slowing. More categories or behavior states have been derived by
analyzing neural correlates of the main observed motions.
The driver neuron for initiating reversals is AVA.1[Alt+]. Furthermore, consistent with
the approach of Kato et al., we use the following motor command neurons as a readout
for forward and turning motion: RIB for forward, SMDV for ventral turns, and SMDD

1It has been shown in ablation studies that C. elegans can perform reversals even without AVA but
at a much lower frequency [Pig+11]
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2. Preliminaries

for dorsal turns [Kat+15].
AVA, RIB, SMDV and SMDD belong to a set of neuron classes that consist of a single
bilaterally symmetric pair of neurons, i. e. the neuron class AVA has two symmetric
neurons, AVAR (right lateral) and AVAL (left lateral), which share the same wiring and
anatomical and molecular characteristics [HGW16]. Correlating with the activity of these
motor-command neurons are large neuronal populations, which are shown to coordinate
their activity to generate locomotion. In order to understand how behavior-related
decisions are formed in the brain, a vast field is devoted to analyzing and modeling the
dynamics of these populations.

2.1.2 Whole Brain Ca2+-imaging Data
To record the neural activity of C. elegans, a calcium imaging technique is used. This is
done by growing worms that pan-neuronally express a biosensor protein, called GCaMP,
that fluoresces when bound to Calcium ions (Ca2+). When a signal propagates to a
neuron, Ca2+ and other ions enter the cell and excite the neuron. As GCaMP is expressed,
the neuron fluoresces, which can be imaged as a proxy for neural activity. Most signals
in C. elegans are propagated in the form of graded potentials, rather than the all-or-none
action potentials that dominate the mammalian brain. In this thesis, graded potentials
are denoted as F, where F is the fluorescence intensity and can reach a value of 70 000.
The F value of each neuron is normalized by the average fluorescence intensity of a
recording, F0, and corrected for bleaching, which is a decay of fluorescence over time due
to light exposure.
With this setting, 23 unstimulated individual worms were imaged for 18 minutes, 17
individuals by Kresnik and 6 individuals by Uzel, which constitute the data that will
be used in this thesis [Kre21][UKZ22]. More details about the imaging conditions and
tracking can be found in their work. To identify cells more easily, the worms were
immobilized and using a tracking tool developed by Kato et al., Kresnik and Uzel have
tracked more than 200 neurons per recording and identified approximately 41 to 72
neurons [Kre21].

2.1.3 Behaviour State Annotations
When we discover latent states from both the canonical neural manifold structures and
the model, we want to compare and link them to behaviors of C. elegans. We can
determine the behavior state at each time point or for each observation by comparing
signals from the readout neurons AVA, RIB, SMDD and SMDV (see Section 2.1.1). In
each recording, Kresnik and Uzel annotated AVA activity at each time point as one of
the following four categories: 0-rise, 1-high, 2-fall, and 3-low. 0 indicates a rise in AVA
activity and the start of a reversal, thus we define it as reversal and 1 or high AVA
activity as sustained reversal. 3 or low AVA activity gives us the forward state. We define
the remaining label, 2 or the fall of AVA activity, as follows: Similarly to Kato et al., we
define a fall as either a ventral or a dorsal turn [Kat+15]. This is done by comparing
their readouts, SMDV for ventral turn and SMDD for dorsal turn, and the neuron that
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2.2. Dynamical Systems

has higher activity during a fall period determines the turn. Note that here we take the
average neural activity of the entire pair, i. e. the average of both the left neuron (e.g.
SMDVL) and the right neuron (e.g. SMDVR) of the same class.

2.1.4 Pirouettes
We define a pirouette as the following motion sequence: The nematode reverses and turns
sharply either dorsally or ventrally to resume forward crawling. Pirouettes are typically
studied in C. elegans chemotaxis, that is, when the worm moves in response to stimuli,
as the motion sequence serves as a strategy to change the direction of travel [Soh+18].
However, in recent years, the activity pattern that underlies a pirouette has also been
observed in immobilized and unstimulated wild-type worms [MFK21].

0 200 400 600 800 1000

0

1

2

3
state

sustained reversal
ventral
forward
reversal
dorsal

time (s)

AV
A
R

Figure 2.1: Activity of reversal driver AVA and correlated neurons show
‘pirouettes’. What is from a behaviour perspective a period of frequent turns might be
the system failing to stabilize.

From the perspective of dynamical systems, this behavior could be translated into the
following: the system is in a reversal state and receives an external kick to transition to
another state, but the reversal state is not destabilized, and hence it does not transition.
This instance shows the presence of the two aforementioned models where a system is
able to autonomously transition and receive external kicks.

2.2 Dynamical Systems
A dynamical system is any system that changes over time. Any state of a dynamical
system depends on the previous state such that for the change in state we get

xt+1 = Axt (2.1)

where A describes a discrete mapping that governs the evolution of state xt to xt+1.
This is an autonomous dynamical system, since it assumes that the parameters or the
environment of the system do not change. For the non-autonomous case, the system
depends both on the previous state and on input, denoted as b:

7



2. Preliminaries

xt+1 = Axt + b (2.2)

The rate of change of x can inform us whether a system is stable or unstable. If the rate
of change is zero, so xt+1 = xt, the state at t is a fixed point or an equilibrium point.
Small perturbations from a fixed point can generally lead to one of two behaviors: Either
the system diverges away from that point in which case the fixed point is unstable, or it
converges towards it, making it stable. An unstable fixed point is a repellor, whereas a
stable fixed point is an attractor.
If a system has multiple fixed points, large perturbations could move the system from
one fixed point to another. This transition can happen at various timescales; for example,
if the system responds slowly to a particular disturbance, the transition is more gradual
rather than abrupt [ZDS]. If the system is continuously perturbed, e.g. by external
stimuli, it might stay continuously in a transitional phase.
An attractor or repellor of a dynamical system does not necessarily have to be a point
but can be a set of points, a curve, a torus shape, etc. In this thesis, we consider the
nervous system or brain of worms to be a nonlinear dynamical system in which attractors
and repellors are the driving force. If, for example, the system is perturbed by external
stimuli, it will eventually move back to some resting state (attractor) that correlates with
typical behavior.

2.2.1 Autonomous and non-autonomous dynamical systems
An autonomous dynamical system that is often subject in studies for modeling neural
dynamics is the Switching Linear Dynamical System (SLDS): a system is composed of
discrete dynamical subsystems and a function that determines a switching between these
subsystems. In the field of SLDS this function is commonly defined by a deterministic
process, giving the system autonomy [Sun06]. Thus, in the context of neural dynamics,
neural activity pattern at any time point is the result of the dynamics of a subsystem
that is active at that time, according to the switching rule. Biologically speaking, a
subsystem or latent state may correspond to a neural population that drives a specific
behavior. A non-autonomous dynamical system is often referred to as a control system.
Here, a continuous brain state, such as a neural activity pattern, is given by a global
dynamical system and external inputs, or control signals. A control signal might be a
neuromodulator, biological compounds that regulate the activity of neural populations.
It could also be sensory feedback, e.g. a sensory neuron senses an elevated oxygen level
and pushes the worm to exhibit avoidant behavior.

Switching Linear Dynamical Systems

In the field of dynamical systems modeling there is a widespread assumption that any
nonlinear complex dynamics can be broken down into simpler linear dynamics. Switching
Linear Dynamical Systems (SLDS) models presume that the system that is composed of
these simple latent subsystems, autonomously switches from one subsystem to another.

8



2.3. Manifold Hypothesis

A switching linear dynamical system can be formalized as:

xt+1 = Azt−1xt, (2.3)

where z denotes a discrete latent state that corresponds to a subsystem.

Control Systems

Control Theory is a field that studies how a system can be controlled to achieve a desired
state. Originally from engineering sciences, control theory was linked to many other
fields based on the notion that control mechanisms can be found in many natural systems
[Son13]. There are two main purposes of control mechanisms:

• correct for errors in a model via feedback

• optimize a good model

An example of a closed-loop control system is active sensing, where an organism performs
a motor action to acquire more sensory information and that information in turn influences
the next motor action [MC20]. The sensory information here is the feedback, which we
call the control signal. A control system can be linear or nonlinear.

xt+1 = Axt + But (2.4)

In this thesis, we use the theory of controllability only at a conceptual level. In particular,
capturing non-linear dynamics, or aspects thereof, has been previously addressed through
the formulation of a control problem [FZK20].

2.3 Manifold Hypothesis
A manifold is a topological space that can be locally mapped to the euclidean space Rn

without losing its topological properties. Thus, if a complex, curved space is a manifold,
we can assume that the same fundamental notions and tools that apply to euclidean space
hold here. A manifold can lie in a high-dimensional space RD but be homeomorphic to a
low-dimensional space Rd with d < D [Cay08].
In other words, the intrinsic dimension of the manifold d is much lower than the space D
in which the manifold is embedded. The manifold hypothesis proposes that real data
lie on low-dimensional latent manifolds. If we consider, for example, a neural state
space that encompasses all possible states of a brain and each state is described by N
dimensions where N = number of neurons, we can assume that in that state space lies a
manifold structure with fewer dimensions n < N.
The process of finding manifold structures is called Manifold Learning and comprises a
set of non-linear techniques. In general, the task of discovering a low-dimensional latent
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2. Preliminaries

space or mapping from high-dimensional data is known as dimensionality reduction.
Despite this subtle difference between Manifold Learning and Dimensionality Reduction,
low-dimensional spaces discovered by linear methods are also often referred to manifolds
or manifold-like, as we will see in Section 3.1. One of the well-researched and established
dimensionality reduction techniques is principal component analysis (PCA), which is a
linear method.

2.3.1 Principal Component Analysis

PCA performs a linear transformation of the data in a way that reduces its dimensionality
while maximizing the explained variance of the data. This results in a few linear
combinations of the original variables. These linear combinations, or principal components
(PCs), are found on the basis of the following idea: There is a vector α′

1x of size p that
maximizes the variance of the data points, where p is the number of variables and ’
denotes a transpose. Then another vector α′

2x, which is not correlated with the previous
vector but maximizes the variance the most after the previous one, is discovered, etc.
The vectors α′

1x, α′
2x, ..α′

px are PCs, where each αk, for k=1,..,p is the eigenvector of the
covariance matrix Cov(x) = Σ corresponding to the k-th largest eigenvalue [Jol02].
The first few PCs will explain most variance in the data if many of the original variables
are heavily correlated. However, the data are explained in all its entirety by the sum of
all PCs.

2.3.2 Intrinsic Dimensionality

Intrinsic Dimension (ID) is the minimum number of dimensions needed to sufficiently
capture all information or variance in the data. Many manifold learning techniques that
map high-dimensional data onto a lower-dimensional space require a priori knowledge of
the ID.
To estimate the ID of data in advance, various algorithms have been proposed. A simple
estimator, for example, is a projection method, like PCA, applied to many subspaces
to find the best subspace based on some projection score, such as explained variance.
Projection methods are typically global methods because they assume that all of the
data is sampled from a single subspace. As data might also be sampled from multiple
manifolds with different dimensions, local ID estimators were introduced [CS16]. Despite
the growth of the field, the task of ID estimation becomes more complex with the variety
of data and consensus on a single well-established ID estimator is still lacking. Thus,
in this thesis, we choose the number of dimensions of manifolds based on the following
criteria: Visualizability and Interpretability.
We will primarily visit manifolds or low-dimensional representations of 3 dimensions, as
manifolds of more dimensions are difficult to visualize and link to behavioral correlates.

10



2.4. Artificial Neural Networks

2.4 Artificial Neural Networks

An artificial neural network, or just neural network (NN), is a computational model that
originated with the idea to resemble biological neural networks. It has nodes or neurons
that are connected, and they receive input signals that are passed through computations
and then to other nodes. These nodes are organized into layers; an input layer, one or
many "hidden" layers, and an output layer.
A simple layer is the linear layer that applies a linear transformation to the input, formally
as

yi =
n�

j=1
Wijxj + bi, (2.5)

where W is the weight matrix and b is the bias. Note that this equation is similar to
Eq. 2.4. A linear layer is fully connected, that is, each input is connected to every node.
Figure 2.2 shows a schematic of the structure of a linear layer.

x1

x2

x3

x4

...

xT

b

Figure 2.2: A linear layer is a basic building block of a feed-forward neural
network. What is also known as a single-layer perceptron, is a linear combination of
weights and an input vector.

Both W and b are model parameters that are learned during an optimization task. A
defined loss function is minimized by propagating gradients that reflect error terms back
to the model, allowing for the update of these parameters.

A neural network can be made up of many (linear) layers that are connected by an
activation function, enabling the network to capture nonlinear relationships. If information
passes from one layer to another unidirectionally, we refer to this network as a feed-
forward network. In this thesis, we will implement a feed-forward neural network with
fully connected linear layers.
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2.5 Methods for Clustering and Classification

2.5.1 K-means

Here, we use the standard k-means algorithm, the Lloyd algorithm, which starts with k
cluster centroids, where k is defined by the user. Each observation in the data is then
assigned to the cluster centroids that it is closest to, given by the Euclidean distance d
=

��n
i=1(yi − xi)2. Then, the centroids are re-calculated as the mean of the assigned

observations. This clustering method is implemented in and used from sklearn [Bui+13].
The default initialization of the centroids in this implementation is k-means++, which
selects centroids from the observations given the empirical probability that they contribute
to the overall variance.
After clustering the neural manifold data points with k-means, we compare the cluster
membership with the dataset membership of the data points. To this end we use the
AMI score, which is calculated as

AMI(U, V ) = MI(U, V ) − E(MI(U, V ))
avg(H(U), H(V )) − E(MI(U, V )) (2.6)

where MI denotes mutual information, E of MI denotes Expected Mutual Information
and H is the entropy. AMI computes the mutual information between two clusterings
and adjusted this score based on mutual information due to chance [Bui+13].

2.5.2 Support Vector Machine

For classification, we utilize a Support Vector Machine Classifier (SVC). The idea behind
Support Vector Machines is that any nonlinear data can be separated into two classes
by a linear subspace. It achieves this by applying a kernel trick, projecting data onto a
higher-dimensional space where the points can be linearly separated. Figure 2.3 gives an
intuition of linear separability.

Figure 2.3: Support Vector Machines can linearly separate data points by
projecting them onto a higher-dimensional space.

12



2.5. Methods for Clustering and Classification

SVC can be extended further to the multiclass case with a One-vs-One strategy, where,
instead of a single multiclass classifier, multiple binary classifiers are learned. When
applied to predict the class label of an observation, the class that is selected by most
classifiers is assigned [Bui+13]. Here, a class label is the recording or identity.
To evaluate the performance of a classification model we compute the following scores:
accuracy, precision, recall, and f1. Accuracy is calculated as

Accuracy = TruePositives + TrueNegatives

TruePositives + TrueNegatives + FalsePositives + FalseNegatives
(2.7)

and determines how close the class predictions are to the true class, thus identity.
Please refer to Appendix 8 for the remaining equations and note that precision, recall and
the f1-score typically provide added value to the evaluation when there is class imbalance,
which is not the case here.2 Still, we added them for completion as these metrics are
commonly considered together.

2The accuracy score could be high because the model performs well in the majority class. Precision,
recall and f1 account for that by looking at relative proportions of correctly identified class labels, rather
than absolute numbers.
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CHAPTER 3
Related Work

In this chapter we will first dive into how different techniques for learning manifold
structures have been applied to various organisms to gain insight on neural mechanisms.
In the following section we contrast multiple prevalent dynamical systems models based
on model complexity and interpretability, and go into more detail on the Decomposed
Linear Dynamical Systems (dLDS) model as it will serve as a primary focus in this thesis.
Finally, we will discuss some methods for modeling neural dynamics or neural manifolds
proposed in recent times that are worth exploring in the future.

3.1 Neural Manifolds
The notion that a low-dimensional manifold confines coordinated neural activity is
becoming increasingly prevalent in the field of computational neuroscience. As imaging
techniques improve and the number of neurons that can be captured simultaneously
increases, population studies overtake single-neuron studies, and the question arises of
how to make sense of these large amounts of data.
A foundational review by Yu and Cunningham discusses the use of dimensionality
reduction in the literature in the context of testing population structure hypotheses
[CY14]. They highlight the importance of population analyses in settings where single-
neuron responses cannot be mapped to observable sensory inputs or motor outputs, but
rather appear to be part of a higher-level neural mechanism. In such settings, numerous
studies have been conducted that use dimensionality reduction methods to abstract single
neuron activities into shared latent variables that can be linked to observables. These
shared latent variables are the dimensions or neural modes that span a manifold and can
be found with common linear techniques such as PCA or factor analysis (FA), which
differs from PCA in the sense that the neural modes are not necessarily composites of
existing variables.
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A

B

C

D

Figure 3.1: Neural Manifolds for Motor Control. A. Neural modes reveal a
clustering of neural activities that are linked to specific movements [San+09][Gal+17]. B.
A low-dimensional representation displays four types of neural dynamics during motor
control in zebrafish [Ahr+12]. C. Neural trajectories of individual trials in a reaching-task
collapse into a 2-dimensional manifold that shows distinct features for movement and for
the preparation of movement [Chu+10]. D. Two-dimensional manifolds shows a difference
in muscle activations timing for different locomotor waves in fruit flies [Lem+15].

FA methods were used by Santhanam et al. to correct for the variability of the neural
response in the control of neural prosthetics used by patients with motor dysfunction.
They identified neural modes that facilitate the discovery of target-specific latent activity,
which can then be mapped to discrete neural responses that control neural prosthetics,
improving the overall performance of such aids [San+09][Gal+17]. Another study for the
control of movement obtained neural modes based on PCA and observed that there is
a separation between preparatory muscle activity and generative muscle activity, with
numerous other studies building on this work to formulate and test motor-cortex related
hypotheses [Gal+17][Kau+14][Chu+10].
PCA has also been used in motor circuit studies in invertebrates such as zebrafish,
fruit flies, and nematodes. Using PCA, a phase space representation of zebrafish neural
recordings revealed four types of neural dynamics during motor adaptation that correlate
with distinct brain areas [Ahr+12]. PCA was also used in drosophila to systematically
discover muscle activation timings for backward and forward crawling [Lem+15][Zar+19].
In their 2015 work, Kato et al. found that the motor command sequence in C. elegans
is embedded in a low-dimensional cyclical manifold spanned by three neural modes
computed with PCA [Kat+15]. Quantifications of the neural manifold revealed previously
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ventral forward

dorsal reversal

Figure 3.2: The major motor command sequence is embedded in a low-
dimensional cyclical neural state manifold. Adapted from Kato et al. [Kat+15]

.

unidentified discrete fine-grained behavior states (see Figures 3.1 and 3.2).
The strength of linear methods lies especially in their mathematical tractability and
interpretability, and in this thesis, we will visit PCA to construct neural manifolds on C.
elegans neural activity data. In general, linear methods suffice if the neural dynamics
explored account for a subregion of the manifold, where local linear approximations are
possible [Gal+17]. However, if we assume that our data is nonlinear, then we can expect
the underlying manifold to be nonlinear as well and non-linear dimensionality techniques,
such as Locally Linear Embedding (LLE), t-distributed stochastic neighbor embedding
(t-SNE), Uniform Manifold Approximation and Projection (UMAP) or Kernel-PCA
(k-PCA), which is an extension of PCA that allows nonlinearity by mapping data onto a
higher-dimensional space before PCA is performed, might be more suitable. However,
the cost of these state-of-the-art nonlinear dimensionality reduction techniques is the
lack of interpretability and identifiability, that is, the reproducibility of a representation
that is learned, as discussed in a recent study by Schneider et al. [SLM23].
In this thesis, we want to show that PCA can recover an interpretable and identifiable
low-dimensional representation of neural activity that is consistent across 23 whole-brain
imaging recordings.

3.2 Modeling Whole Brain Dynamics as Dynamical
Systems

Previous work has attempted to understand the evolution of neural states over time
with computational models [DS21]. The aim of a computational model of the brain is
often two-fold: accurately describe neural activity through model complexity and offer
explanations to real neural mechanisms through model interpretability. However, as we
will discuss in the next two sections, many state-of-the-art methods achieve either one
of those goals, with a tendency towards model complexity, leaving a gap in the field
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of interpretable models. The design of a computational model depends on the aspect
of the brain that one wants to understand. In this thesis, we want to understand the
latent brain states embedded in the neural manifold, specifically their stability, and the
transitions between them.

3.2.1 Learning Latent States

A method from probability theory that serves both as a dimensionality reduction technique
to discern states and as a model of state-transition dynamics is the Hidden Markov
Model (HMM). HMM is an extension of Markov models, where observations are the
outcome of subsequent events, also known as Markov process. In HMM, Markov processes
are hidden, and they are learned and identified as discrete clusters or modules. These
modules can then be interpreted as distinct discrete states. Another piece of an HMM
that can be interpreted is the transition probability matrix: the probability of moving
from one state to another. HMM has been used in fMRI neural activity data to discover
distinct latent states that can be mapped to task-related motor cortex activities, and
it has been used in behavior studies in nematodes to identify both different behaviors
and state sequences [Vid+18][Gal+13]. A behavior study in fruit flies also discusses the
use of HMMs to identify internal states underlying song patterning during courtship and
moment-to-moment variation in decisions. However, they argue that standard HMMs
produce transition probabilities that are constant, i. e., they do not change upon external
inputs, and introduce a generalization of HMM, which allows for more characterization
of the transition dynamics [CPM19]. Other variations of HMMs have been used with
the aim of allowing for a better description of state dynamics over short timescales, like
AR-HMM, which models for each distinct state how it changes over time [Wil+15][GF23].

3.2.2 Learning Transition Dynamics

A similar avenue to AR-HMM that promises even greater descriptive power is SLDS, which
assumes underlying hidden dynamics within each state (see Section 2.2.1). Recurrent
SLDS (rSLDS) proposed by Linderman et al. extends SLDS such that a transition
probability between latent states depends not only on the current latent state, but also on
the current observed location in phase space [Lin+16]. In a subsequent study, they applied
rSLDS to multiple C. elegans neural activity recordings by incorporating the model into
a hierarchical framework and obtained both model parameters that are consistent across
individuals and model parameters that are unique to each worm [Lin+19].
SLDS and its variations belong to the field of dynamical systems, of which many methods
have been explored in recent years. A caveat of SLDS is the assumption that the latent
subsystems between which the high-level system switches never overlap in time. This
is addressed in recent work by Mudrik et al., proposing Decomposed Linear Dynamical
Systems (dLDS), a new dynamical systems model [Mud+23].
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Figure 3.3: dLDS infers behavior states from C. elegans whole-brain recordings.
dLDS models neural activity as dynamical flows on a low-dimensional manifold (Top
Left). The model relates to a given data point at time t through the dynamics Ft and
the dynamics coefficient ct (Bottom Left). When applied to C. elegans data, the learned
dynamics coefficients are correlated with true behavior states of individuals (Right)
[YMC24].

Decomposed dynamical system model captures smooth transition dynamics

dLDS assumes that neural activity is produced by an autonomous dynamical system,
where each state of the system is not described by a single subsystem, but by a linear
combination of a few subsystems. The activity of the subsystems is controlled by a
variable, the coefficients. The strength of dLDS lies in the interpretability and expressivity
of these coefficients through their magnitude and continuity. In a subsequent study,
Yezerets et al. applied dLDS on C. elegans and successfully decoded various discrete
and continuous characteristics, such as behavior states, oxygen levels and speed from
the coefficients alone (see Figure 3.3) [YMC24]. They were also able to correlate gradual
changes in coefficient magnitude with the activity of certain neurons, providing further
explanation for the participation of neurons in certain higher-order states. However,
dLDS assumes that neural activity is predictable, not accounting for unknown forces or
inputs that may perturb the system. In this thesis, we want to fill this gap by extending
dLDS to the non-autonomous case using Control Theory.
Moreover, the EM procedure that underlies the dLDS algorithm poses a few drawbacks,
as we will explore later: computational complexity due to its iterative nature and slow
convergence, rigidity as its structure is fixed, and sensitivity to initialization, which is
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an inherent difficulty in dynamical systems modeling. To account for these caveats, we
will formalize dLDS as a neural network and apply the resulting model to the neural
manifolds constructed with the aforementioned dimensionality reduction techniques.

3.2.3 Learning Control Signals
A framework that weaves control theory in traditional LDS was introduced by Fieseler et
al., providing a different, yet biologically interpretable, explanation to how a system is
actuated. They learn a global linear dynamical system with temporally sparse control
signals, using Dynamic Mode Decomposition with Control (DMDc) [FZK20]. DMDc
separates the underlying dynamics of a system from its control signals, which could
be external inputs that perturb the system or internal inputs that aim to stabilize the
system, by finding the best-fit linear system X ′ = AX + BU (see Eq. 2.3), where A is
the state dynamics and U are the controls [PBK16]. Since DMDc requires knowledge of
U, Fieseler et al. extend the method to learn sparse control signals in an unsupervised
fashion, utilizing sparse optimization. They applied the model on C. elegans imaging
data and discovered previously unidentified neurons that contribute to learned control
signals and therefore possibly to brain state transitions. Morrison et al. replaced the
global linear dynamical system with a nonlinear dynamical system that has multiple
fixed points [MFK21]. Furthermore, they show how model parameters can be linked
to changes in stability within the system, potentially revealing the neural mechanism
behind pirouettes.
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3.3 Recent Advances in Neural Dynamics Modeling and
Manifold Learning

3.3.1 Recurrent Neural Networks for Modeling Dynamics
A shortcoming of many computational models discussed here is their ability, or lack
thereof, to capture long-term dependencies. A Recurrent Neural Network (RNN) is a
Machine Learning model that is widely used for sequential data, e.g. continuous states
that depend not on one previous state but on many previous states. It operates on a
sequence of inputs by passing information about the current output to itself as a new
input and repeating the process; therefore, the network being recurrent.
A promising approach to understand neural circuits is to model long-term neural dynamics
with an RNN, which is essentially a nonlinear dynamical system, and disassemble the
model into interpretable components. In other words, instead of modeling the parts that
constitute whole-brain dynamics, we can model the dynamics and break the model into
simple pieces. This framework is discussed in a key review by Vyas et al. They argue that
to study the RNN, and hence the state space it constructs, one can use multiple LDS,
each of which approximates a subregion of the entire state space. A nonlinear state space
can be linearized around fixed points, and literature also shows how such linearization
can help interpret local dynamics of RNNs [Vya+20].
Another autonomous dynamical systems model is LFADS (Latent factor analysis via
dynamical systems), introduced in 2016 by Sussilo et al. LFADS learns a mapping
between spiking data and a compressed representation with an encoder RNN and uses a
generator RNN to approximate the dynamics. Furthermore, LFADS was extended to
model non-autonomous dynamics, a system that depends not only on the current state
but also on some eventual inputs, or as we refer to in this thesis, control signals, that
perturb the system and that can be inferred [Sus+16][Pan+18].
Although LFADS comes close to what we want to achieve in this thesis regarding model
complexity, it does not find latent neural states or state dynamics that are stable because
it generates one global dynamical system. Later work by Sussilo et al. co-trains an SLDS
variant to linearly approximate LFADS around fixed points [SLS21].

3.3.2 Dynamic Inverse Reinforcement Learning
Ashwood et al. proposed an entirely different approach to studying behavior and its
neural underpinnings: they learn the dynamic intrinsic reward function of mice during
navigation in a maze with a dynamic inverse reinforcement learning (DIRL) strategy
[AJP22]. This reward function emits a linear combination of spatial maps at each time
point, where a spatial map describes the amount of reward in each region of the environ-
ment. The reward function then defines the extent to which each spatial map is active at
a given time. Using this model, they recovered some spatial maps between which the
animals transitioned, characterizing explorative behavior in mice. Furthermore, they
proposed that neural correlates of inferred reward variability could be used to study brain
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dynamics during exploration. A possible future avenue for understanding whole-brain
dynamics with DIRL is to recover spatial maps where each region or node of the map
is a brain state, thus discovering brain states where the reward is highest, potentially
indicating stability.

3.3.3 Neural Networks for Manifold Learning
Returning to neural manifolds, recent work by Kumar et al. involves a neural network
that learns to preserve neural dynamics related to a given behavioral context in a low-
dimensional Markovian embedding [Kum+23]. They trained the network on multiple
C. elegans individuals and obtained a consistent geometry that revealed predominant
behavior motifs that were more fine-grained than the information to which the network
had access.
Schneider et al. proposed another nonlinear framework that promises interpretability
and identifiability [SLM23]. CEBRA is a recent self-supervised encoding method that
produces a latent space consistent over multiple data. It is a convolutional neural network
that is trained on sample pairs in the latent space found with a contrastive learning
algorithm: for each data point, a positive and a negative example based on some similarity
measure is defined, and then the model is optimized to learn an embedding space such
that the data points mapped to that space are closer to positive embeddings and farther
away from negative embeddings.

3.3.4 A Framework for Manifold Universality
Combining probabilistic and deterministic approaches, Brennan C. and Proekt A. con-
structed a consistent manifold across C. elegans individuals by averaging neural trajecto-
ries with respect to the phase of the flux, which defines observed transition probabilities
and was computed with asymmetric diffusion maps. They showed that the phase of the
flux is an important macroscopic variable that constitutes a manifold that is conserved
not only in a single individual but in many individuals [BP17].
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CHAPTER 4
Manifold Alignment

In this chapter, we discuss methods for preprocessing the 23 whole brain Ca2+ imaging
recordings, for dimensionality reduction to construct the canonical neural manifold, and
methods for evaluating the universality of the manifold. As we explore the preprocessing
methods, we continuously assess the visual structure of the resulting manifold produced
by each preprocessing method. This prompts a crucial question: What do we expect a
(canonical) neural manifold to look like?
In general, we want the manifold to exhibit a geometry that can be interpreted. Prior work
has defined the interpretability of a manifold through a lack of trajectory tangling, that
is, little crossing of trajectories while traveling to different directions [Per+23]. Perkins
et al. emphasize how low-tangled trajectories are typically sparsely distributed such
that certain regions of the state space remain unoccupied. Furthermore, low trajectory
tangling indicates stereotyped sequences of neural states, where similar neural states
consistently lead to similar future neural states.

Figure 4.1: Low tangling implies separation between trajectories that might
otherwise be close [Per+23].
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Kumar et al. have referred to these stereotyped, low-tangled trajectories as bundles
[Kum+23]. They propose that the interpretability of manifolds depends on how compact
and well-separated these bundles are. In this thesis, our aim is to discover a manifold
that is characterized by trajectories that have low variance within a behavior state and a
structure that displays large voids in the state space.

4.1 Methods for Data Preprocessing

To directly compare recordings, we establish a pipeline of preprocessing techniques that
are catered to the specific Ca2+-Imaging data. Most of these methods are part of a
standard data preprocessing pipeline [Li19]. We will go into detail about the methods
that are required or used for the final version of the neural manifold. Note that we
explored more methods that did not make it into this thesis. For example, we applied
robust regression diagnostics, like Mahalanobis distances on data to spot outliers in
observations. However, we found that the discovered outliers did not have a substantial
impact on the resulting manifolds. We also computed first-order derivatives of the data
after preprocessing them and looked at their projection onto a low-dimensional space, but
the resulting manifold structures were visually difficult to interpret due to high tangling.

4.1.1 Data Cleaning

Across all recordings, 95 unique neurons were identified (IDed), of which only 10 neurons
are IDed in each of the 23 recordings. Quantifications of neuron IDs are found in the
Appendix A1, A2. Most remaining neurons occur in most of the datasets, but to ensure
data integrity, we decided to omit all neurons that are IDed less than 10 times and we
end up with 74 unique neurons.

4.1.2 Up- and Downsampling

As the acquisition rate of the 23 recordings varies from 2.9 to 5 fps as seen in A3, we
resample all data so that all recordings have the same number of frames or time points.
Nine datasets were recorded at a frame rate of 3.26 fps and ten datasets were upsampled
to that rate, while four were downsampled. This was done with linear interpolation, which
is implemented in the Python package numpy [Har+20]. With 3.26 fps, each recording
now has 3529 time points. However, the first and last 100 time points were removed as
we observed some edge effects, such as a substantial brightness at the beginning and
dimness at the end.
To resample behavior state annotations accordingly, we added a NaN value for each
interpolated data point and then replaced that behavior state value via backward filling,
i. e. we took the previous state.
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4.1.3 Quartile Normalization
Due to inconsistencies within experimental settings, e.g. different settings of laser power
or varying expression levels of GCamP across worms, the same neuron might have different
scales in two or more recordings, making them incomparable. Furthermore, the effects
of bleaching, which is a decay of fluorescence over time, and bleach correction (2.1.2)
persist in some recordings, leading to a downward or upward shift of the baseline. Hence,
we normalize each neuron per recording by a quantile range. We found that a larger
quantile range of the 1st and 99th percentiles is capable of capturing larger amplitudes
while minimizing the influence of outliers. For normalization, we use the RobustScaler
algorithm from sklearn [Bui+13]. We assume that a true baseline F value exists and that
a lower percentile gives a robust estimate of this. To do this, we subtract the lower 20th
percentile of all data points.

Figure 4.2: Quartile Normalization minimizes variability in amplitude scale.
Data points from different recordings, indicated by coloring, show varying amplitude
scale (Top). Applying a quartile normalization and a subtraction of a lower percentile
reduces this variability (Middle and Bottom).

4.1.4 Time Delay Embedding
As we do not have access to the activity of all 302 neurons, one might wonder how
representative our data is of the true state space. A theorem from dynamical systems
theory, Taken’s theorem, assumes that the true underlying dynamics of a system can
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be reconstructed from a few observed variables. Taken’s embedding gives then an
augmentation of a sequence of data points (time series), by sampling multiple time
intervals at different delays [Tak06]. Here, we choose a delay of 1 and an embedding
dimension of 10, meaning we have 10 samples per variable, or neuron. To this end,
we utilize the Takens Embedding implementation from the Giotto-tda Python package
[Tau+21].
Time delay embedding is a common step in the literature before constructing a neural
manifold. Brennan and Proekt found that without time delay embedding, their state
transition probability matrix fails to produce any meaningful predictions [BP17]. It
appears as if delay embedding restores the ability to predict across worms and that
instantaneous neuronal activity is not sufficient to specify the state of the brain.
We can project our resampled and normalized recording data to a higher-dimensional
space and then construct the lower-dimensional neural manifold from that. An idea that
might seem counterintuitive, yet is the basis of some machine learning techniques, such
as the kernel trick.

4.1.5 Data Imputation
To substitute missing neuronal traces in the recordings, a probabilistic principal compo-
nent analysis (PPCA) method was used. PPCA is a prevalent data imputation technique
that estimates missing values via Expectation-Maximization (EM). Like PCA, PPCA
assumes a linear relationship between variables. A different way to put this is that if a
neuron is missing in most recordings and is unique, in the sense that its traces do not
correlate with traces of any other neuron, then it cannot be imputed.
To determine whether PPCA is a suitable technique for our data, the linearity between
each neuron y and all other neurons X is measured by employing a Partial Least Squares
Regression (PLSR) model, implemented in the Python package sklearn [Bui+13]. PLSR
finds linear combinations of neurons that maximize the covariance between X and y.
Then each linear model is evaluated by measuring the proportion of variance explained,
which is known as the coefficient of determination, R2. As more than 69% of all neuronal
models have an average R2 value of at least 0.7 with a standard deviation of 0.12, we
assume that most neurons have a linear relationship and resume impute missing data
with PPCA (see Figure A4). A5 shows an example of a dataset with imputed neuronal
traces.

4.2 PCA for Dimensionality Reduction
To obtain a manifold-like structure, we fit a PCA model on all recordings, that is, we
find a subspace spanned by three principal components that align with the directions
of the greatest variance in the collection of the recordings.1 We then project either
single recordings or all recordings onto that space. Figure 4.3 shows the neural manifold
we obtain after data imputation but before resampling, normalization, and time delay

1For the choice of the dimensionality please see Section 2.3.2.
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embedding. This structure shows high tangling as trajectories belonging to the dorsal
state are not visible, and trajectories belonging to the same behavior state are not start
and end at similar states in the state space.

sustained reversal
ventral
forward
reversal
dorsal

Figure 4.3: PCA applied to unprocessed neural activity data. Certain behavioral
states remain submerged in the high-dimensional noise. This underscores the importance
of effective preprocessing prior to PCA for revealing meaningful manifold structures.

After performing the preprocessing techniques, we will assess the neural manifold on
these exact metrics. We will also look at characteristics typical for manifolds such as
bifurcations, i. e. regions where trajectories branch into two different behavior states,
indicating stochasticity within the system, or drifts, a reflection of gradual changes in
neural activity over time, due to e. g. bleaching. Furthermore, we assess the consistency
of the structure in individual datasets.

4.3 Evaluation of Canonical Manifold

To show that the neural manifold is canonical, i. e. representative of all individuals, we
need to quantify the extent to which the variability in trajectories can be explained by
the individuality of worms. In case the reduced space embeds local or individual features,
we can assume that points in that space can be associated with the individuals to which
they belong. Conversely, if points in the reduced space can be linked to the individuals
to whom they belong, we can assume that the space embeds local features. This could
indicate either that the recordings are not aligned or that the neural manifold inherently
encodes local features. Here, we want to show that the neural manifold does not encode
individuality. Furthermore, we want to know how well trajectories belonging to different
behavior states are separated. To gain an understanding of the variability explained by
both individuals and behavior states, we frame the question of canonicality as follows:
does an observation in the low-dimensional state space have features that can be linked
to a single individual? To answer this question, we define clustering and classification
tasks.
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4.3.1 Clustering

Clustering encompasses all computational and statistical methods for finding groupings
of data points based on some characteristic. An unsupervised way of learning these
groupings is provided by clustering methods. And as we obtain clusters of neural activity
patterns that are similar to each other on some metric, we might find that these clusters
correspond to the groupings determined from a behavioral feature.
Similarly, we want to determine whether an unsupervised clustering of data points lying
on the canonical neural manifold correlates to a grouping of data points based on worm
identity. If there is a high correspondence, we should believe that the variability within
the canonical neural manifold is given by the individuality of C. elegans rather than
by the behavior states. To test this, we will apply the clustering algorithm k-means to
cluster data points from the neural manifold and compute the similarity between these
predicted clusters and the true individual clusters via the adjusted mutual information
(AMI) score, a common clustering evaluation metric.
To validate the AMI score, we apply Stratified K-Fold Cross-Validation (CV). CV tests a
model on portions of the data, called folds, that are chosen with a given sampling strategy.
The resulting metric score for all models is then averaged. Stratified K-Fold is a variation
of CV in which samples are chosen such that the proportion of different labels, here
recordings, is the same. In this way, we will not get a label imbalance in a fold, which in
our case means that instead of training the clustering algorithm on observations that all
belong to a single individual, we train it on observations from all individuals. The AMI
score of the k-means clustering shows the dataset membership correspondence of both
the low-dimensional data and the unpreprocessed high-dimensional data. In general, the
AMI score practically ranges from 0 to 1, where 0 indicates random agreement between
the predicted clustering and the membership of the dataset, and 1 indicates strong
agreement.

4.3.2 Classification

A different way to test whether the neural manifold is invariant to identity is by measuring
the performance of a recording classifier. In particular, we want to see, when we train a
model that predicts the recording membership of an observation, if the model yields high
accuracy after being trained on the high-dimensional data vs. the neural manifold. Again,
we aim for low accuracy because we do not want observations from different recordings
that share a similar pattern to be distinguishable.
We train an SVC with a nonlinear kernel and a One-vs-One strategy on both the
unpreprocessed and preprocessed high-dimensional data and finally on the unpreprocessed
and preprocessed low-dimensional data. We then evaluate the model with Stratified
K-Fold CV based on our chosen metrics.
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Behavior State Separation

As we define a new classification task based on the behavior state annotations, we can
measure how well the neural manifold encodes behavior states.
The only other modification to the classification setup is that, instead of using the
Stratified K-Fold CV, we evaluate the models using an expanding window CV. In general,
we have time series data, it is important that we do not draw out samples at random
time points but always a batch of samples that are connected through time. This would
introduce a heavy class imbalance in a dataset classification task but not if we want to
classify behavior states. We can leverage an expanding window split that splits the data
first arbitrarily small and with every iteration the train and test set sizes get larger. In
other words, this variation ensures that observations in a fold are subsequent in time
on which the model is trained. To this end, we use the TimeSeriesSplit from sklearn
[Bui+13].
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CHAPTER 5
Controlled Decomposed Linear

Dynamical Systems

The canonical neural manifold defines a low-dimensional state space that can be used
as a proxy to model the brain of the worm. We observe distinguishable regions on the
manifold by color-coding the data points by the annotated behavior states. These regions
are believed to correspond to discrete latent states that together shape the dynamics
that underlie locomotion.

sustained reversal
ventral
forward
reversal
dorsal

Figure 5.1: Regions on the neural manifold that correspond to different behavior
states can be modeled as subsystems of the brain.

However, as Kato and others have observed a more fine-grained organization of the motor
command sequence, the question remains how many latent states are actually present.
To systematically discover latent states, a large effort has been made in the field to model
latent states in an unsupervised way and correlate them to observable behavior.
The decomposed Linear Dynamical Systems (dLDS) model introduced by Mudrik et al.
assumes that latent states can be modeled as linear dynamical systems (LDS) (see 3.2.2)
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5. Controlled Decomposed Linear Dynamical Systems

[Mud+23]. And each observation in the low-dimensional state space is described by a
linear combination of one or more LDS. The transition between LDS is governed by a
variable, the dynamics coefficients, that controls the activity of each LDS.
Neural activity then is seen as a dynamical flow on the neural manifold and the flow is
locally described by a few dynamical systems. These dynamical systems do not change
once they are found. Thus, dLDS assumes that the processes that produce neural activity
are deterministic and are only of a slow scale. In other words, the brain is a stable
system that moves from one brain state to another in a predictable manner. However,
we observe fast-scale perturbations to the brain in the form of fast state switches (see
Section 2.1.4. These perturbations are not predictable and they can not be expressed
by fixed dynamical systems. Thus, we assume that the neural activity is produced by
two processes: predictable slow-scale state dynamics and non-predictable fast-scale state
dynamics. A model that can disentangle these processes is not only more realistic, but
also provides a systematic way of discovering properties that are recurring versus ones
that are sporadic.
In this chapter, we discuss dLDS and how we extend it to include control signals. We
first go over the original iterative algorithm and the drawbacks that it poses. We will
then pivot to a neural network architecture implemented after dLDS and in the final
section we propose the same architecture extended by control signals.

5.1 dLDS
Each LDS, known as the subsystem f, has a corresponding coefficient c that describes to
what extent a subsystem is active at a time, providing an additional interpretable com-
ponent of the model. Furthermore, dLDS learns a mapping, here named the observation
model and denoted as D, between the observed states y and the continuous latent states
x, or manifold, which is then decomposed into subsystems. If the observed states y are
observations of points in a low-dimensional manifold, D can also be set to be an identity
matrix such that yt = xt. dLDS is regularized to produce sparse and smooth coefficients,
i.e. only a few subsystems are active at a given time and their activity does not change
rapidly, encouraging the system to exhibit smooth transitions between states.

5.1.1 Original Algorithm
dLDS uses an Expectation-Maximization (EM) procedure for finding model coefficients
x, c and model parameters D, f. In the Expectation step, the latent states and the
coefficients are inferred at each time step with the following LASSO problem:

x̂t, ĉt = arg min
xt,ct

�
∥yt − Dxt∥2

2 + λ0∥xt − F̃tct∥2
2 + λ1∥xt∥1 + λ2∥ct∥1 + λ3∥ct − ĉt∥2

2
�

(5.1)

where F̃tct is the dynamics prediction �M
m=1 cmtfmx̂t−1 and computes the current con-

tinuous latent state xt given the f dynamics of all subsystems, the previous continuous
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5.1. dLDS

latent state xt−1 and the current coefficients ct of all subsystems. λ2∥ct∥1 sparsifies the
coefficients so that the subsystems are not equally active. In this thesis, we will refer
to this term as the sparsity term. λ3∥ct − ĉt∥2

2 is the smoothness term as it encourages
smoothness of the coefficients with the L2-norm of the differences between each pair of
consecutive time points in the coefficients. Finally, in the Maximization step, the model
parameters D and f are updated by computing a gradient over them.

Figure 5.2: dLDS infers dynamics coefficients of the two major behaviors in C.
elegans. When applied to two major motor command neurons, AVAR and RIBL, in a
single recording, dLDS is able to reconstruct the traces and infer dynamics coefficients.

We applied dLDS on the recordings, the neural manifold, and synthetic data generated
from an SLDS (see Section 6.1.1 for data generation). Figure 5.2 shows an example of
a dLDS reconstruction of neural activity from two neurons: AVAR, a reversal driver
neuron, and RIBL, a forward driver neuron. We can observe a noticeable deviation from
the original activity traces, especially in the reconstruction of RIBL. Furthermore, the
resulting learned coefficients illustrate the case for fast-scale states and the need to extract
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5. Controlled Decomposed Linear Dynamical Systems

them into a separate component. At time points 500 to 600 the learned coefficients
seem to express fluctuations in magnitude at a similar frequency or regularity as the
fluctuations in activity. In other words, at certain time periods, the coefficients seem
to encourage state transitions at a faster rate than in other periods. A similar trend is
observed in other experiments.
An extensive hyperparameter sweep to find optimal values for the smoothness and
regularization terms could potentially increase the performance of dLDS. However, as
dLDS has a long runtime and does not allow for parallelization due to its iterative nature,
such an exploration seems not feasible.
Furthermore, the EM algorithm is rigid in terms of integrating additional components
such as the control signals, as the update rules are fixed. These caveats incentivize a
formalization of the decomposed Linear Dynamical System (dLDS) as a feed-forward
neural network. A neural network essentially parameterizes steps in the iterative algorithm
and learns the parameters from data, discarding the need for a manual definition of
operations.

5.1.2 Neural Network Architecture

The proposed network consists of N linear layers, f1, f2, .., fN, where N is a manually
defined number of subsystems, a single learnable parameter, the coefficients c and another
linear layer bias that learns a bias from the coefficients. We decoupled the bias term
from the subsystem linear layers, as the bias is related to the coefficients. The input of
the network is a m × d matrix x, where m is the number of variables, such as the latent
variables spanning the neural manifold, and d is the number of time frames. The output
xt+1 of the network is also a m × d matrix, computed as

xt+1 =
N�

n=1
(cntfn(xt) + bias(ct)), (5.2)

where c is of dimensions N × d and fn(x) is the n-th linear layer. Figure 5.3 shows a
schematic of the architecture. This layer transforms a given input by a weight matrix,
which is similar to an LDS 2.3. The weight matrix thus defines a mapping between x
and xt+1. This mapping is learned in an optimization task that defines a certain loss
function that needs to be minimized.
We implement the neural network by leveraging the Python package Pytorch [Pas+19].

Loss Functions

We define three loss functions: a reconstruction loss and a smoothness and regularization
term as in the dLDS equation 5.1. The reconstruction loss is calculated as the Mean
Squared Error,
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5.1. dLDS

MSE = 1
d

d�
i=1

(xi+1 − x̂i+1)2, (5.3)

which is the squared difference between each element of the computed output x̂i+1 and
the true output xi+1.
The equations from dLDS for the sparsity loss and smoothness loss stay:

sparsity = λ1∥c∥1 = λ1

d�
i=1

|ci| (5.4)

smoothness = λ2∥(ct+1 − ct)∥2 = λ2


��� d�
i=1

(ci+1 − ci)2 (5.5)

The ideal values for the parameters λ1 and λ2 are discovered via a hyperparameter sweep
as we will discuss in Section 6.3.
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Figure 5.3: dLDS formalised as a feed-forward neural network.

Training

For the training of the network, all input data is loaded with PyTorch DataLoader, which
incorporates a batching and shuffling process. During training, the model iterates over
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5. Controlled Decomposed Linear Dynamical Systems

each batch for multiple training cycles, also called epochs. Both the batch size and the
number of epochs are manually defined variables that we will optimize in Section 6.3.
In each training cycle, for a given batch, the output and the loss are calculated. Finally,
to learn the weights of the parameters, the gradients of the losses are computed and
backpropagated with Adam, an adaptive optimization algorithm based on stochastic
gradient descent. The learning rate defines the magnitude of these gradients and is
another tuning parameter (see 6.3).

5.2 cdLDS
We define the controlled decomposed Linear Dynamical Systems (cdLDS) model as

xt+1 =
N�

n=1
(cntfn(xt) + B(ut) + bias(ct)), (5.6)

where B is a linear layer without bias and u is a learnable parameter of dimensions 1 × d.
u holds the control signals, i. e., a vector with sparse elements that influence the output.

c

+
X’

+

+

+

U

f
1

W b
1 1

f
2

W b
2 2

f
n

W b
n n

X

Figure 5.4: The dLDS network extended by control signals.

To ensure non-negative values for the control signals, u is passed through a RectifiedLinear
(ReLu) layer

ReLU(ũ) = max(0, u) (5.7)
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before adding it to the output. Figure 5.4 shows a schematic of cdLDS.

Furthermore, we define another loss function, a control sparsity loss, as:

control_sparsity = λ3∥u∥1 = λ3

d�
i=1

|ui| (5.8)

This loss sparsifies the effective control signals.
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CHAPTER 6
Experiments

To evaluate both the dLDS network and the cdLDS, we apply them to both toy data
and the canonical neural manifold. For each dataset and each model, we define multiple
experiments with different initializations. This chapter is outlined as follows: We first
describe the advantages of toy data for testing models and how we generated them. We
then go over the experimental conditions for the toy data. In the next section, we discuss
the experimental conditions for the canonical neural manifold of C. elegans and finally,
we briefly address hyperparameter tuning.

6.1 Toy Dynamics

Toy data are a simple small dataset, artificially generated to simulate a (realistic)
system. They are designed for experimentation, to test the functionalities of an algorithm
or model, or to illustrate their performance. Furthermore, their simplicity and size
facilitate debugging and interpretation. A well-studied toy dataset for benchmarking
dynamical system models is the Lorenz system, a chaotic system described by three simple
differential equations. This system was also used by Mudrik et al. for demonstrating
dLDS’ performance [Mud+23]. However, as we want to model a more complex and
biologically realistic system, we will construct the toy data manually.

6.1.1 Generation of Toy Data

We want our toy data to reflect the nature of the data that we are modeling. So in this
case, we believe that the neural activity that we are observing is coming from a nonlinear
system that can be split into simpler linear systems. A continuous state x at time t+1 is
described as
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6. Experiments

xt+1 =
N�

n=1
(cntAnxt + B1ct), (6.1)

where N is the total number of subsystems, A holds the dynamics of a subsystem, c
denotes the dynamics coefficients, and t is a given time point.
The generation of the toy data can be separated into two tasks: Generating dynamics and
generating data. We first construct the parameter that describes the dynamics of each
subsystem, A. An arbitrary choice of the A matrices could result in unstable systems,
where over time the continuous states of the system grow exponentially. This behavior is
dictated by the eigenvalues of the corresponding A matrix.
If we come back to the first-order linear differential equation of a linear system as defined
in Eq. 2.3, the solution of that system is defined as

x(t) = eAtx(0), (6.2)

where x(0) is the initial state of the system and A is a k×k matrix. The eigendecomposition
of A is given by

A = QλQ−1, (6.3)

where Q denotes the eigenvectors and λ is the eigenvalues of A. Then

eAt = QeλtQ−1. (6.4)

eλt gives us a diagonal matrix with entries eλ1t,eλ2t,..,eλkt. Let λ2 be a positive real value
of 4, that means that the 2nd dimension of A is growing at a factor of 4 per time unit.
As all components are linearly combined, the exponential growth of the 2nd dimension
overpowers all other dimensions (even if other eigenvalues are negative).
Thus, the eigenvalues determine the stability of the entire system. Furthermore, if
the eigenvalues are complex, the system will result in oscillatory behavior. Complex
eigenvalues are of the form a + bi, where a denotes the real part and bi the imaginary
part.
Therefore, we constrain random eigenvalues to be on the unit circle with a radius of 1.

We sample complex values with an imaginary part equal to 0.06j which means that the
system oscillates at a frequency of b=0.06 (see Figure 6.1). We then obtain a real matrix
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6.1. Toy Dynamics

Figure 6.1: The magnitude and complexity of the eigenvalues of a system
determine its stability. Any eigenvalues λ that are above 1 lead to an exponential
growth of the state variables, marking an unstable system (Top). λ < 1 leads to a decay
of the state variables and a stable system (Middle). λ = 1 makes a system that is neither
exploding nor decaying (Bottom).

with complex eigenvalues by defining the Jordan normal form, which is a block diagonal
matrix consisting of Jordan blocks. Here, a Jordan block C consists of k conjugate pairs
of eigenvalues, i. e. a + bi, a − bi, such that

C =



a b
−b a

�
. (6.5)

And the resulting Jordan normal form becomes

J =

C1 0 0
0 C2 0
0 0 C3

 . (6.6)

And J can be plugged into the eigendecomposition of A:
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A = V JV −1. (6.7)

For V we construct a random matrix with the dimensions 2k × 2k that is invertible.
To ensure invertibility, we generate a random real 2k × 2k matrix and perform a QR
decomposition to obtain an orthogonal matrix, and orthogonal matrices are necessarily
invertible.
Note that, due to the conjugate pairs, A becomes a squared matrix by default. Finally,
A is multiplied by a parameter that defines the radius of the eigenvalues, to adjust the
eigenvalue to our needs. Figure 6.1 illustrates the resulting dynamics with different
eigenvalue radii. Ideally, we want eigenvalues that are not on the unit circle but very
close to it and below. This results in a slow decay that resembles the activity of neurons
that reach an equilibrium state. Figure 6.2 shows the dynamics of a single system with 4
dimensions.
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Figure 6.2: A single system of four dimensions displays gradual decay with
λ = 0.94.

We use the same approach for constructing the matrix A for each subsystem, such that
we have N number of As. Data points are then simulated from these dynamical systems
with the Eq. 6.1. The coefficients c are generated as a one-hot encoded matrix of a
random sequence of discrete states of size d. For 2 subsystems and 6 time points we may
obtain a random c matrix such as:

c =



1 0
1 0
1 0
1 0
0 1
0 1


, (6.8)

which indicates that the first subsystem is active and the input has to pass through the
first dynamical system for the first four time points and for the final two time points
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6.1. Toy Dynamics

through the second dynamical system.
Furthermore, c is added to each state as an offset to enforce a fixed point change. To
this end we construct a random k × N matrix B1 that is multiplied by the coefficients.
Figure 7.9 illustrates the dynamics of two subsystems with 4 dimensions.
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Figure 6.3: A switching system composed of two subsystems. The yellow highlights
indicate the activity of the second subsystem.

Control Toy Data

To test the cdLDS model on the toy data we extend Eq. 6.1 to

xt+1 =
N�

n=1
(cntAnxt + B1cnt + B2ut). (6.9)

For the control signals u, we create a d-dimensional sparse vector with nonzero entries
equal to 1, and we multiply it by a random k × 1 matrix B2. Figure 6.4 shows simulated
data from a two state switching system and the generated control signals.

6.1.2 Sensitivity to Initial Conditions
For both dLDS and cdLDS, we define experimental conditions based on different ini-
tializations of the model parameters. In dynamical systems, the optimization of system
parameters highly depends on the initialization of them, and different initializations could
lead to dramatically different behaviors of the system. In neural networks, it has also
been long known that initialization of the network weights affects the training process
and the convergence to an ideal solution [LeC+02]. To test whether our neural network
converges we formulate the following experimental conditions for dLDS:

1. True - Model parameters are initialized with the true components

2. PartialRandom I - The F dynamics are initialized randomly, while the coefficients
remain true

3. PartialRandom II - The coefficients are initialized randomly, while the F dynamics
remain true
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Figure 6.4: A switching system composed of two subsystems and control signals.

4. Random - Model parameters are initialized randomly

The first experimental condition is the simplest case, with all model parameters initialized
with the true components generated in 6.1. Here, we expect the model parameters to
not change during the training process. In contrast, the final experimental condition is
the most challenging, but, ideally, the resulting model parameters should be close to the
original ones.

For cdLDS we define the following experiments:

1. TrueInit - Model parameters are initialized with the true components

2. PartialRandom - F dynamics and the coefficients are initialized randomly, while
the control signals remain true

3. RandomInit - Model parameters are initialized randomly

Note that for all experiments, we define the number of subsystems to be two, as this
facilitates a more straightforward interpretation of the underlying dynamics. The primary
objective of this analysis is to systematically compare all experimental settings and
demonstrate the proof of principle of the model’s capability to accurately produce
coefficients, control signals, and data reconstructions.
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6.2. C. elegans manifold

6.2 C. elegans manifold
We apply dLDS and cdLDS on single recordings projected onto the canonical neural
manifold with random initializations of the model parameters.
For cdLDS we will additionally explore an initialization for the control signals based on
short state intervals (see Section 7.3).

6.3 Hyperparameter Sweep
To achieve optimal model performance, we have to find optimal values for the regular-
ization terms as described in Section 5.1.2 and network parameters such as the number
of epochs or the learning rate. These hyperparameters are separate from the learnable
model parameters discussed previously. Weights & Biases (wandb), an AI developer
platform supports Machine Learning Operations (MLOps) by providing tools for experi-
ment tracking, visualization, and optimizing models [Bie20]. It provides a feature for
finding optimal hyperparameters through "hyperparameter sweeps". Here, each sweep
explores the defined value ranges for hyperparameters and optimizes them via Bayesian
optimizations. For each experiment, we optimize for the following parameters:

• batch size

• epochs

• learning rate

• sparsity λ1

• smoothness λ2

• control sparsity λ3 (for cdLDS)

Per experiment, a sweep contains up to a few hundred runs that are executed in parallel
on multiple servers, which enables us to explore the hyperparameter space at a larger
scale while reducing computational time. Examples of a hyperparameter sweep and the
resulting losses are shown in A10.

6.4 Model Evaluation
We evaluate and compare different model configurations and experiments based on the
reconstruction loss. To this end, we evaluate the MSE loss, described in 5.3, and visualize
the data reconstruction on top of the ground truth for qualitative evaluation. Additionally,
for the toy data, we compare experiments with different parameter initializations by
calculating the coefficient correlation, as the Pearson correlation coefficient, to assess
how close the learned coefficients are to the true ones. In the context of cdLDS, we also
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compute a control correlation to evaluate the learned control signals. For the experiments
on the neural manifold we plot the behavior states on top of the inferred coefficients to
compare them.

46



CHAPTER 7
Results

7.1 Canonical Neural Manifold
A PCA-based low-dimensional representation of 23 whole-brain recordings
shows a manifold-like structure

Figure 7.1: PC Manifold of 23 whole-brain recordings. The left figure shows the
projection of the recordings onto a 3-dimensional state space. Observations in the state
space are colored by the corresponding behavior state. On the right, we can see the
phase plot, or the skeleton of the manifold, which is constructed by averaging trajectories
within a behavior state.
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The low-dimensional state space of the 23 recordings exhibits a distinct manifold-like
structure, as shown in Figure 7.1. Examining individual recordings (as shown in A6)
projected in that space highlights the consistency of this observed structure and offers
insight into the specific contributions of each recording to the manifold. For example, the
distinct shape observed in the dorsal and ventral turn of the neural manifold is present,
to some extent, in all recordings, but especially in two recordings (8 and 13).
The neural manifold is characterized by a bifurcation in the sustained reversal state,
which implies a decision point or an observed stochastic region of the manifold. Thus, it
is not predictable whether a worm is going to enter a ventral turn state or a dorsal turn
state. This has also been shown by Kato et al. [Kat+15]
In contrast, a deterministic transition is carved between a turn and the forward state
as the ventral and dorsal trajectories collapse into a straightforward path merging into
the forward trajectory. This reflects a destabilization of the turn states and a successful
stabilization of the forward state. However, transitions from the forward or reversal state
display stochasticity, which is characterized by substantial variability in the trajectories.
Furthermore, we observe small-scale loops in the forward and reversal states that might
indicate unstable or recurrent dynamics. This is reminiscent of pirouettes, events of
failed state destabilization, as some trajectories in the state space seem to move from one
behavior state region to another, only to subsequently loop back to their original region.
We also observe a clear separation of the behavior states, contrasting the strong overlap
seen in Figure 4.3. This could indicate scale differences between neurons corresponding
to different behavior states, but we believe that this is not the case as the Appendix A7
shows a decrease in explained variance of the first principal component after applying
preprocessing.
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Clustering reveals differences due to individuality at the behavior state level

To show that the neural manifold is canonical, we quantify the explained variability due
to individuality by formalizing a clustering task as described in Section 4.3. In particular,
for data points that lie on the neural manifold, we expect two data points from the
same cluster to not belong to the same individual. In contrast, for the high-dimensional
observations, we expect a strong agreement between a clustering and the recordings, as a
result of the record-to-record differences in scale.
However, the cluster analysis shows consistently low adjusted mutual information (AMI)
scores in all three representations of the recordings: unpreprocessed high-dimensional
(High-Dim (Raw)), unpreprocessed low-dimensional (Low-Dim (Raw)) and preprocessed
low-dimensional (Neural Manifold) (see Table 7.1). The computed AMI scores, generally

AMI High-Dim (Raw) Low-Dim (Raw) Neural Manifold
All states 0.332 0.277 0.219

Table 7.1: Adjusted Mutual Information (AMI) scores for different representa-
tions of the recordings.

ranging from 0 to 1, indicate little agreement between a clustering of 23 groups and 23
individual recordings across all variations of data. However, a progressive reduction in
alignment is apparent after dimensionality reduction and preprocessing.
As we believe that a great amount of variability is due to the different behavior states that
trajectories are linked to, we want to look at individuality at the state-level. Furthermore,
we expect that specific states that represent the activity of influential neurons, such as
the reversal driver-neuron AVA, characterize individual differences better.

AMI High-Dim (Raw) Neural Manifold
sustained reversal 0.423 0.26

reversal 0.482 0.306
ventral 0.513 0.306
dorsal 0.649 0.41

forward 0.424 0.385

Table 7.2: Adjusted Mutual Information (AMI) scores for High-Dim (Raw)
and Neural Manifold within each behavior state.

In fact, Table 7.2 shows that within certain states, such as the turn states, the difference
between the AMI scores of the low-dimensional and high-dimensional cases seems to be
greater.
However, the agreement here seems to be higher overall, especially in the turn states.
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This might be related to outlier trajectories that correspond to ventral and dorsal turns,
as we observed in Section 4.2. These outliers also belong to only a few recordings, which
would explain the increase in individuality in these states. That said, there is a clear
imbalance in the number of data points between states, as seen in Figure 7.2.
Fewer observations are more susceptible to noise, outliers, and variability, in general. In
the case of ventral and dorsal turns, the outliers might have a strong influence on the
variability. Although the AMI scores indicate some agreement, when we match predicted
and true clustering, we will find little to no correspondence, as we can see in Figure 7.2.

Figure 7.2: Confusion matrices depicting the within-state performance of
dataset membership clustering. Confusion matrices of predicted cluster labels
and true cluster labels within each state, where a label is the index of the recording
or individual. Labels are matched using the Hungarian algorithm, a combinatorial
optimization for assignment tasks. A strong agreement would be represented by a
diagonal, which is not apparent in any of the behavior states.

Dimensionality reduction and preprocessing result in decreased variability
caused by individuality.

To further validate the universality of our canonical manifold, we also define a classifi-
cation task as outlined in Section 4.3. If trajectories on the canonical neural manifold
cannot be uniquely assigned to an individual, we can infer that our neural manifold
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encodes only global features.
After performing a classification task with four SVC models, each based on a different
representation of the recordings, we find that the SVC trained and tested in the neural
manifold produces by a large margin the lowest metric scores, as seen in Table 7.3. Even
for high-dimensional data, preprocessing leads to a decrease in classification performance
of more than 40%.

Metric High-Dim (Raw) High-Dim Low-Dim (Raw) Neural Manifold
accuracy 0.872 0.481 0.192 0.058
precision 0.905 0.522 0.181 0.061

recall 0.872 0.480 0.192 0.058
f1 0.869 0.475 0.166 0.058

Table 7.3: Classification evaluation metrics reveal progressive reduction of
performance for datasets after dimensionality reduction and preprocessing.

The probability of guessing a random class is 1
23 = 0.043, as there is no class imbalance.

The classification based on the neural manifold is close to chance, whereas the classification
based on the raw low-dimensional representation is better than random guessing. Figure
7.3 shows the accuracy of the predictions as confusion matrices and, among them, a clear
diagonal only in high-dimensional cases.

Figure 7.3: Confusion matrices depicting the performance of dataset member-
ship classification. A cross-validated classification task performed on the (preprocessed)
high-dimensional data yields the highest accuracy for classifying observations into their
respective recordings. In contrast, the success of classifying observation on the neural
manifold is close to chance.

Furthermore, the classification performance of the neural manifold-based model is equally
low for each state but particularly for sustained reversal (see Table 7.4). As with
clustering, for dorsal and ventral trajectories, we see increased precision in distinguishing
recordings.
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Metric Forward Reversal Sustained Reversal Dorsal Ventral
accuracy 0.098 0.096 0.074 0.142 0.117
precision 0.102 0.095 0.086 0.182 0.105

recall 0.098 0.096 0.074 0.142 0.117
f1 0.096 0.089 0.075 0.125 0.102

Table 7.4: Dataset classification within states reveals low identifiability in
sustained reversal trajectories. Confusion matrices showing the within-state classifi-
cation performance are found in A8.

Canonical Neural Manifold retains a separation of the phase space into
behavior states

We find that, after preprocessing, the behavior state classification performs better on
all metrics for the high-dimensional data but only on one out of four metrics for the
low-dimensional state space.

Metric High-Dim (Raw) High-Dim Low-Dim (Raw) Neural Manifold
Accuracy 0.732 0.901 0.809 0.760
Precision 0.777 0.901 0.78 0.799
Recall 0.732 0.901 0.809 0.760
F1 0.723 0.899 0.780 0.759

Table 7.5: Comparison of Metrics Across Different Dimensions. Confusion
matrices of the state classification performance in each data are found in A9.

As seen in Table 7.5, preprocessing techniques facilitate great separability of behavior
states in the high-dimensional state space and that the recording-to-recording variability
lies primarily in behavioral differences rather than in individual differences. As behavior
state separability is much lower for the preprocessed neural manifold compared to
preprocessed high-dimensional data, it may be that the manifold is spanned by latent
variables that encode other information in addition to that linked to the known behavior
states. However, the separability is comparable to the raw high-dimensional state space
and the raw low-dimensional state space, hence a behavior state separation is retained in
the canonical neural manifold.
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7.2 Decomposed Linear Dynamical Systems

dLDS performance is sensitive to the selection of hyperparameters

As described in Section 6.1.2, we first validate dLDS on the synthetic data under four
experimental conditions to evaluate the robustness of the network. In the first condition,
all model parameters are initialized with their true values. For the second and third
conditions, we randomize either the dynamics F or the dynamics coefficients c. Finally,
we initialize all model parameters randomly.
Upon applying the dLDS network to the toy data, we find that, within the four experi-
mental conditions, the performance varies greatly with the choice of hyperparameters.
This variability is reflected in the distribution of model losses seen in Figure 7.4. The
distribution of each loss tends to increase with each experimental condition in both the
overall loss and the reconstruction loss. However, for the coefficient correlation loss the
model with the true components exhibits the largest distribution, which is an artifact of
the log transformation, as the loss values for the coefficient correlation are very small in
absolute numbers.

Figure 7.4: dLDS loss distribution for each experimental condition. The log-
transformed loss distribution of 100 experiments illustrates a difference in variability
across conditions, indicating different levels of sensitivity to hyperparameters.

The sensitivity to initial conditions is more prominent when the model parameters are
initialized randomly, but it is already apparent in the case where the model parameters
are initialized with the true components. For instance, Figure 7.5 shows an experiment
run with arbitrarily chosen hyperparameters. Here we observe a poor reconstruction
quality and noisy coefficients.
Figure 7.6 shows the importance of each hyperparameter for the different loss metrics and

their correlation with the decrease or increase in losses. The sparsity regularization term
has a large impact on the overall loss, and higher values for the parameter greatly impedes
the performance of the model. Furthermore, while the smoothing term strongly affects the
coefficient correlation loss, it appears to have a minimal impact on the overall loss. These
results highlight the need for a rigorous search and optimization of hyperparameters as
outlined in Section 6.3.
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Figure 7.5: dLDS applied to toy data with arbitrary hyperparameters. The true
active subsystem is highlighted in yellow.

Figure 7.6: Hyperparameter Importance for Random Initialization. For each of
the three losses, the reconstruction loss, the coefficient correlation loss and the overall
loss, we computed the importance of each hyperparameter by training a random forest
with the hyperparameters as the predictors and the loss as target. Then, the magnitude
of a parameter indicates the extent of its importance. Furthermore, the color encodes the
correlation of each parameter with the respective loss. Therefore, a negative correlation
is interchangeable with a loss decrease and is colored as blue, while positive correlation is
encoded as red.

A low dLDS loss does not imply interpretable coefficients

When implementing a model, a key question is what evaluation metrics or losses are
required to obtain interpretable model parameters. To address this, we must examine
what individual losses defined for dLDS mean in terms of model interpretability. In
particular, when the true parameters of real data are unknown, can we expect the
overall loss and the reconstruction loss of the model to be indicative of accurate out-
put? Here we show that even when applied to synthetic data, dLDS can yield a low
overall loss and reconstruct the data accurately while producing coefficients that are not
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coeff_correlation_loss

loss

Figure 7.7: dLDS model with a low loss yields uninterpretable coefficients. An
experiment that is in the bottom percentile of all experiments in terms of overall loss
displays an accurate reconstruction but uninterpretable coefficients (Top). The coefficient
correlation for the same experiment is in the upper percentile and shows weak agreement
between the learned and the true coefficients (Bottom).

necessarily interpretable. Figure 7.7 illustrates an experiment with low loss and high
reconstruction accuracy, yet the resulting coefficients are noisy and oscillatory, in contrast
to the smooth coefficients we expected. This finding shows the necessity of evaluating
dLDS based not only on reconstruction accuracy but also other metrics, such as coef-
ficient correlation, to ensure a balance between model accuracy and model interpretability.

dLDS accurately infers model coefficients
Figure 7.8 shows the reconstruction and inferred coefficients of dLDS initialized with the
true model components. We expected a marginal divergence from the true coefficients,
which is apparent here at time points proximal to the state transition points. Furthermore,
a random initialization of the dynamics, the coefficients, or the dynamics and the
coefficients also leads to inferred coefficients comparable to the true ones, as seen in
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Figure 7.8: dLDS with true components applied to toy data retains the true
coefficients. The reconstruction of the synthetic data (dashed) aligns with the true
synthetic data (solid) (Top). dLDS retrieves the coefficients of two subsystems that align
with the true coefficients (highlighted in yellow) (Bottom).

Figure 7.9. This result confirms that dLDS is capable of learning dynamics and the
underlying latent states.

random F random c random F, c

Figure 7.9: dLDS applied to toy data yields coefficients close to the true
coefficients. Under the remaining three experimental conditions, dLDS successfully
reconstructs the toy data (Top). With each condition, the coefficients of the subsystems
become progressively more noisy (Bottom).
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Neural Manifold latent states correspond to behavior states

When dLDS is applied to the canonical neural manifold, we cannot examine the inferred
coefficients quantitatively as the true coefficients are unknown. However, we can qualita-
tively assess the inferred coefficients via characteristics that facilitate interpretability, for
example those that are enforced by the smoothness and sparsity term. Furthermore, we
investigate inferred coefficients in light of behavior state annotations.
Applying the dLDS model to a single recording projected on the canonical neural manifold
reveals that the inferred coefficients of the two subsystems correspond to the two major
behavior states: forward and reversal locomotion, as seen in Figure 7.10. This is

Figure 7.10: dLDS applied to a single recording projected to the Canonical
Neural Manifold. The yellow highlights indicate where the worm is in a reversal state,
as opposed to the forward state, which remains unhighlighted.

also observed in Figure 7.11, which shows the reconstruction and coefficients of all 23
recordings projected to the canonical neural manifold.
However, over time, the inferred coefficients do not consistently align with the two
behavior states, which might indicate that either dLDS’ performance is not robust for
larger datasets or that the two subsystems do not in fact correspond to reversal and
forward locomotion but to two unknown latent states. Further exploration could reveal
neural correlates of the two subsystems and if they relate to known behaviors.

dLDS fails to consistently capture fast-scale transitions

dLDS applied to other recordings projected to the canonical neural manifold learns
coefficients that do not capture all state transitions, as seen in Figure 7.12. However,
most of these transitions appear to be of fast-scale, that is, the worm is briefly in a
reversal state and then switches back to forward, or vice versa. This is characteristic of
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Figure 7.11: dLDS applied to 23 whole-brain recordings projected to the
Canonical Neural Manifold. dLDS reconstructs data points on the manifold accurately
(Top). The inferred coefficients of the two subsystems align with the two major behavior
states (yellow highlights) for most but not all state intervals (Bottom).

pirouettes and may suggest that these transient states are actuated by control signals
aimed at regulating the entire network.

Figure 7.12: dLDS applied to single recording projected to neural manifold
misses fast-scale transitions.
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7.3 Controlled Decomposed Linear Dynamical Systems

cdLDS displays higher sensitivity to hyperparameter selection than
dLDS

Applying the cdLDS network to the same toy data as before, we discover that the cdLDS
appears to be more sensitive to hyperparameters than the dLDS, especially in terms
of coefficient correlation loss. Furthermore, the loss of control correlation shows that
the accuracy of the learned control signals varies considerably under conditions where
the model is initialized with the true components and where the dynamics F and the
dynamics coefficients c are randomly initialized (see Figure 7.13).

Figure 7.13: cdLDS loss distribution for each experimental condition. The log-
transformed loss distribution of over 400 experiments illustrate a difference in variability
across conditions, indicating different levels of sensitivity to hyperparameters.

However, in the case where the control signals are also arbitrarily initialized, the loss is
almost consistently high, with a few exceptions. Figure 7.14 illustrates the importance of
each hyperparameter. In contrast to dLDS, the coefficient sparsity term exhibits minimal
impact on any of the losses. Similarly, the control sparsity term does not seem to have a
large influence. However, these results show the importance of hyperparameter selection
and, consequently, that the robustness of cdLDS may require further refinement.
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Figure 7.14: Hyperparameter Importance for Random Initialization computed
with Random Forest. Parameter importance was calculated for the remaining experi-
mental conditions in Appendix A11 and A12.

cdLDS disambiguates control signals from the coefficients
Under an optimized set of hyperparameters, cdLDS reveals that control signals can be
disambiguated from dynamics and that they are separate from the coefficients. Specifically,
Figures 7.15 and 7.16 show that perturbations in dynamics, such as those seen at time
points around 80, caused by control signals, are not captured by the coefficients. However,
they are retained in the learned control signals. In particular, in the experimental
condition for initializing the dynamics and the dynamics coefficients and in the condition
in which the control signals are also initialized randomly, most control signals are learned
correctly. This result shows that cdLDS can successfully separate dynamics into slow-scale
and fast-scale state transitions.

As observed in Figure 7.16, compared to true control signals, most learned control signals
shrink or expand. Specifically, true control signals of smaller magnitude are represented
by even smaller learned control signals, with few exceptions, whereas true control signals
of larger magnitude lead to the opposite effect. This trend suggests that the network
learns to amplify the impact of control signals in both directions. In the condition where
all model components are initialized randomly, we observe that control signals are also
learned where the system autonomously switches state, which might suggest the need for
a non-random initialization strategy for the control signals when applied to real data.
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Figure 7.15: cdLDS with true components applied to toy data retains true
coefficients and control signals.

random F, c random F, c, controls

Figure 7.16: cdLDS applied to toy data yields coefficients and control signals
close to their true counterparts. Random initializations of the dynamics and the
dynamics coefficients lead to high reconstruction accuracy of cdLDS, high sparsity of
the coefficients and the true control signals are retained (Left). In the case of randomly
initializing all model components, the reconstruction is again accurate and the coefficients
exhibit a similar pattern to the previous result, yet in addition to the true control signals,
new ones emerge (Right).
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cdLDS applied to the canonical neural manifold consistently separates
coefficients and control signals

When applied to a single recording projected to the canonical neural manifold, cdLDS is
able to learn sparse coefficients and control signals. To retrieve this result, the optimal
set of hyperparameters is found in the course of more than 300 experiments, evaluated
primarily based on the reconstruction loss and the sparsity loss of the coefficients and the
control signals. Figure A13 shows the effect of hyperparameters on the reconstruction
loss. Furthermore, as with dLDS, we evaluate the performance of cdLDS by assessing
the interpretability of the coefficients and the control signals. In general, we observe
a trade-off between interpretable coefficients and interpretable control signals. Figure
7.17 shows an experiment that scores well on reconstruction loss, sparsity of coefficients
and controls, and the inferred control signals appear to be interpretable. Nevertheless,
the coefficients are not consistently interpretable, as we see from time points 600 to 800;
the coefficients are neither smooth nor do they exhibit clear state switches. In most
experiments, the coefficients appear to be oscillatory or display transient states, where
we expected cdLDS to generate control signals. Figure 7.17 shows this around the time
points 400 to 600 where we observe multiple short state intervals. The same experiment
infers coefficients that exhibit transient states within the first 100 time points, where
control signals are learned and expected, considering the pirouette-like pattern observed
in the neural manifold traces.

single-step reconstruction + ground truth

coefficients

controls

Figure 7.17: cdLDS applied to a single recording projected to the canonical
neural manifold disambiguates control signals and coefficients

To ensure robustness of the learned control signals, we adopt an initialization strategy
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based on the assumption that any fast-scale state switches are actuated by control signals.
To this end, we quantify the duration of each forward or reversal state in a recording and
define a control signal as any state interval that has a duration shorter than 20% of the
overall distribution of state durations. Figure A15 shows an example of an initialization
of the control signals.
Under this initialization strategy, cdLDS produces coefficients and control signals closer
to the expected patterns. Figure 7.18 shows that the short-scale dynamics we attribute
to control signals are displayed in the learned control signals themselves, not in the
coefficients. We can also observe that some of the control signals die out, indicating that
not all transient states are found to be due to control signals.
These results show that cdLDS effectively separates intrinsic dynamics, reflected by
the dynamics coefficients, and actuated dynamics, represented by the control signals.
Furthermore, as some initialized control signals diminish over time, it becomes clear that
not all fast-scale transitions are, in fact, actuated.

single-step reconstruction + ground truth

coefficients

controls

Figure 7.18: cdLDS with a control initialization strategy applied to a single
recording projected to the canonical neural manifold.
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CHAPTER 8
Conclusion

In this thesis, we have addressed a gap in understanding the neural dynamics that
govern decision-making processes during locomotion in C. elegans. We have presented a
canonical neural manifold that, for the first time, represents the neural activity patterns
of 23 individuals during locomotion as a low-dimensional state-space. We then studied
the underlying neural dynamics as a temporal evolution of states on the manifold, where
the evolution is governed by dynamical rules. Prior work has described this temporal
evolution as an autonomous process driven by a dynamical system [DS21]. However, prior
work has also observed the presence of non-autonomous events within neural activity
patterns during C. elegans locomotion [MFK21]. To account for these unpredictable
events, we proposed an extension to an autonomous dynamical systems model.
To construct a canonical neural manifold, we aligned 23 whole-brain Ca2+-imaging
recordings by applying a myriad of preprocessing techniques, ranging from data imputation
to quartile normalization. A PCA on the preprocessed space yielded a manifold that
is spanned by three latent variables, each reflecting population activity. We show
that this manifold exhibits high separability of the behavior states compared to the
manifold of the raw recordings. To establish the global universality of the manifold, we
examined to what extent observations on the manifold could be linked to their respective
recordings. To this end, we formalized a clustering task to evaluate the agreement
between clusters, found within the manifold in an unsupervised way, and the original
recordings, as well as a classification task to assign manifold points to their corresponding
recordings. We show that a dimensionality reduction of the original data decreases the
identifiability of observations on the manifold. However, our results also demonstrate
that the preprocessing pipeline we implemented further improves the universality of the
manifold by minimizing variability due to individuality.
We discovered that the canonical neural manifold reveals a distinct structure comparable
to that of the single C. elegans neural manifolds found in previous work by Kato et
al. [Kat+15] It is characterized by a bifurcation during sustained reversal, indicating a
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decision point or an unpredictable transition to the ventral or dorsal turn states. The
manifold also displays fast-scale loops in the sustained reversal and the forward state,
hinting towards recurring or unstable dynamics, reminiscent of pirouettes.
To interpret the structure from the perspective of dynamical systems, we extended
the decomposed Linear Dynamical System (dLDS) introduced by Mudrik et al. in
2023 [Mud+23]. dLDS assumes that the dynamical system that describes the temporal
evolution of brain states can be decomposed into several simpler dynamical systems
that contribute to neural dynamics at a given time point to different degrees. These
degrees, defined as the dynamics coefficients, are learned in an Expectation-Maximization
algorithm, offering an interpretable component of a model that can be linked to observable
features. To reduce computational cost and increase the modularity of the algorithm, we
formalized dLDS as a feed-forward neural network. We demonstrated dLDS’ sensitivity to
hyperparameters and initialization of model parameters by comparing loss metrics across
different experimental conditions. Furthermore, we show the necessity of various metrics,
such as coefficient correlation loss, to evaluate the inference of dynamics coefficients.
dLDS applied to the canonical neural manifold reveals two latent states that correspond
to the two major behaviors: forward and reversal. This result aligns with insights from
literature: neural dynamics vary across behavior states. In other words, the way neurons
connect and activate changes over time, and this change can be discretized into separate
dynamical systems.
We also observed instances where dLDS fails to capture fast-scale transitions between
latent states, suggesting the presence of unpredictable perturbations to the system. We
presented an extension of dLDS, controlled dLDS (cdLDS), as a proof of concept that
control signals can be disambiguated from the intrinsic latent states. Given a control
initialization based on short state intervals, cdLDS learns a separation of slow- and
fast-scale state transitions.
The learned control signals can be further analyzed to discover neural correlates that
modulate autonomous dynamical processes. Specifically, cdLDS could be applied to neural
activity data from experimental settings, where the worm is exposed to a stimulus. If we
believe the stimulus to affect intrinsic neural dynamics, we could discover neurons that
modulate the entire neural network in response to the stimulus by analyzing correlations
between neural activity and control signals. A future avenue is also the application of
cdLDS with multiple latent states to investigate whether the latent states discovered in
prior work are learned as intrinsic latent states or as control signals instead.
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Overview of Generative AI Tools
Used

In the preparation of the thesis, I utilized ChatGPT and Writefull to translate the
abstract, and also to improve the grammar and clarity of the text.
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Übersicht verwendeter Hilfsmittel

Bei der Erstellung der Masterarbeit habe ich ChatGPT und Writefull genutzt, um
die Grammatik und Klarheit des Textes zu verbessern und für die Übersetzung der
Kurzfassung.
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Appendix

Preliminaries
Whole Brain Ca2+-imaging Data
To gain an understanding of the nature of the individual datasets, what problems we
might face, and what decisions have to be made during preprocessing, we pose the
following questions.

• Are all neurons in each dataset identified (IDed)?

• How many neurons are IDed in each dataset?

• How many times is each neuron IDed in total? (If too few, remove or impute)

To answer these questions, we quantify the identifications of recorded neurons in Figures
A1 and A2.
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Figure A1: Number of neurons that have been identified in each dataset.
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Figure A2: Number of datasets in which each neuron is identified. Given that
quite a few neurons are IDed less than 10 times, it is necessary to decide whether these
neurons should be kept and their missing activities imputed.

Manifold Alignment
Methods for Data Preprocessing
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Figure A3: The frame rate varies across recordings. As the recording duration is
identical in all datasets, yet the frame rate differs, we need to resample all datasets to
obtain a consistent number of frames.
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Figure A4: PLSR determines a lack of uniqueness in most neurons. PLSR
models fitted to model individual neurons yield high R2 scores, showing that, in most
cases, the neural activities are linearly predictable.

Figure A5: A sample recording showing traces of 69 identified neurons and 5
imputed neurons.
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Evaluation of Canonical Neural Manifold

Precision, Recall and F1

For evaluating the performance of a classification model, we calculate precision, recall,
and the f1-score as:

Precision = TruePositives

TruePositives + FalsePositives
(8.1)

Recall = TruePositives

TruePositives + FalseNegatives
(8.2)

F1 = 2 ∗ Precision ∗ Recall

Precision + Recall
(8.3)

Results

Canonical Neural Manifold

A PCA-based low-dimensional representation of 23 whole-brain recordings
shows a manifold-like structure

1 2 3

4 5 6
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Figure A6: 22 Individual datasets projected onto the shared space exhibit a
similar structure.
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Figure A7: After preprocessing, the explained variance of the first three PCs
goes down.

Dimensionality Reduction results in decreased variability due to
individuality, and preprocessing amplifies this effect

Figure A8: Confusion matrices depicting the within-state performance of
dataset membership classification.
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Canonical Neural Manifold retains a separation of the phase space into
behavior states

Figure A9: Confusion matrices depicting the performance of behavior state
classification within each data.

Decomposed Linear Dynamical Systems

Figure A10: Impact of hyperparameters values on loss and reconstruction loss.

Controlled Decomposed Linear Dynamical Systems

cdLDS displays higher sensitivity to hyperparameter selection than dLDS

Figure A11: Parameter importance of models initialized with true components.
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Figure A12: Parameter importance of models initialized with random dynamics
and random dynamics coefficients.

cdLDS applied to the canonical neural manifold consistently separates
coefficients and control signals

Figure A13: A hyperparameter sweep of cdLDS applied to the canonical neural
manifold shows optimal hyperparameter values for a low reconstruction loss.
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Figure A14: Evolution of each loss over epochs. Most loss functions of cdLDS applied
to the canonical neural manifold converge fast, with the exception of the coefficients
sparsity.

Figure A15: Control signals initialized with short state intervals. State intervals,
either reversal or forward state intervals that belong to the 20-th bottom percentile in
terms of duration are defined as control signals.
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