Fix Spectre in Hardwarel
Why and How

M. Anton Ertl, TU Wien

Why should I listen to this talk?

Spectre: A security vulnerability of all processors with speculative execution
Affected: all high-performance processors

Known to processor manufacturers since June 2017
Known to the public since January 2018

New attacks found regularly since then
e.g., DbownFall and Inception published in August 2023

Not fixed in hardware yet

What is architecture and microarchitecture?

#r8=0x1000 r9=0xff8
% 10

0x2000 nov (% 9),
0x2003 add 1, r10

0x2007 nov % 10,

(% 8)

0x200a

I-Cache

Branch Predictor

L2 cache

registers
PC=0x200a

r8=0x1000
r9=0xff8
r10=5

memory

Oxff8 —

0x1000 —»

abs

D-Cache

addr

data

0x1000

5

Oxff8

4

What are side channels?

e Side channels are not designed for communicating data

e Reveal data through ancillary properties of processing

D-Cache Set-associative cache (example)
Offg(;o da5ta 64 sets for D-cache
Oxffg | 4 Set n for addresses 4096m + 64n + (0...63)

o

o

® access replaces a cache line

e timing reveals 6 bits of accessed address

Defense against classical timing attacks

Write constant-time code

for cryptographic and password-handling code

Not practical for most other code
but then other code does not access passwords or keys

Requires knowledge about instruction characteristics

What is speculative execution?

r8=0x1000 r9=2 r11=0x1080

m[0x1010]=5

m[0x10a8]=10

cnp 15, % 9

] a out of bounds

nov (% 8,% 9, 8), % 10
nov (% 11, % 10,8), % 12

r8=0x1000 r9=-1 r11=0x1080

m[0xff8]=14

m[0x10f0]=11

cnp 15, % 9

] a out of bounds

nov (% 8,% 9, 8), % 10
nov (% 11, % 10,8), % 12

registers memory
r8=0x1000 Oxff8 » 14
r9o=2

r11=0x1080 0x1010 —»

registers

memory

r8=0x1000 Oxff8 —»

14

ro=-1

r11=0x1080 0x1010 —»

speculative architectural state

registers memory
r8=0x1000 Oxff8 » 14
r9=2

r10=5

r11=0x1080 0x1010—+ 5
r12=10

0x10a8 - 10

speculative architectural state

registers memory
r8=0x1000 Oxff8 = 14
r9=-1

r10=14

r11=0x1080 0x1010—+ 5
ri2=11

0x10f0 - 11

What is Spectre?

speculative architectural state

r8=0x1000 r9=-1 r11=0x1080 registers memory registers memory
#m[Oxff8]=14 S1 -
m[0x10f0]=11 r8=0x1000 Oxff8 » 14 |[|==p r8=0x1000 Oxff8 »{ 14
cnp 15,% 9 r9=-1 r9=-1
ja out of bounds 10=14 S2
nmov 0% 8, % 9, 8), % 10 a
MoV E o 11, % 10? 8), % 12 r11=0x1080 0x1010—+ 5 %322‘1080 0x1010—+ 5
. r12=
Ox10f0 - 11
Attacker’s architectural state S3
D-Cache

= addr data

x3010(25
0x10f0| 11

[-Cache

Branch Predictor

L2 cache

Oxff8 14

How relevant is Spectre?

No known attack in the wild
But then, how would you know?

Working exploit (reading unaccessible files in Linux) is available

What about the large number of software vulnerabilities?
These usually get fixed soon

Spectre has not been fixed in > 6 years
A hardware fix will not affect existing processors
Software mitigations may prevent attacks. Or not

What about software mitigations for Spectre?

Speculative Load Hardening

(simplified) e SLH fixes only Spectre vl
cmp 15,%r9 e Slowdown 2.5x (for Ultimate SLH)
ja end e Slowdown 2x—9.5x of Gforth from retpolines
mov $0x0, Jrax (Spectre v2)
cmova Jrax, %4r9 e Selective application?
mov (%r8,%r9,8),%r10 Lots of effort
mov (%r11,%r10,8),%r12 Error prone

end: Repeat effort on next Spectre variant

How about disabling speculation?

e Eliminates S1

e Very slow
A55 on Rock5b (no speculation) 3.3x slower than A76
. 7.8x slower than Firestorm (Apple M1)

How to fix Spectre in hardware?

speculative architectural state

r8=0x1000 r9=-1 r11=0x1080 registers memory registers memory

#m[0xff8]=14

m[OxlOff%=%/l . r8=0x1000 Oxff8 »| 14 ||==» r8=0x1000 Oxff8 - 14

Cn"p y 6 - Y

ja out of bounds 9=-1 [20_14 4{

nov % 8, % 9, 8), % 10 P

MoV g o 11, % 10? 8), % 12 r11=0x1080 0x1010—» 5 I’lz—i))](-].OSO 0x1010» 5
0x10f0 - 11

D-Cache speculative microarchitectural state
[-Cache addr data : _ 3
Ox3010L/25 inst333: mem[0xff8]=14

Branch Predictor |0x30f0] 33 inst334: mem[0x10f0]=11

L2 cache

How to fix Spectre in hardware? (cont.)

Resource contention as side channel

execution ports, functional units, cache ports, ...

fixed partitioning between SMT threads
time-division multiplexing (fixed slots) for unique resources

Within thread:
older instructions have priority
front-end resources independent of speculation

Power side channel

Meltdown-Power prevented by fix

Other speculative attacks with power side channels?
Imaginable, but what is the bandwidth?

How much does the fix cost?

e Design complexity

e Some chip area, but not huge
E.g., maybe 30 cache lines compared to 224 physical ZMM registers

e Performance for MuonTrap (cache-only part of fix)
1.05x speedup for Parsec
1.04 x slowdown for SPEC CPU 2006
compared to vulnerable hardware with no software mitigations applied

What should I do?

e Computer customer
Ask CPU manufacturers when they will fix Spectre in hardware
When one of them does, buy from them

e Researcher
Design and evaluate efficient ways of fixing Spectre
Work on proving that a fix closes the vulnerability

e CPU manufacturer
Go ahead and fix Spectre in hardware!
Competetive advantage for the first mover
Avoid the constant stream of new Spectre variants

Conclusion

Spectre:

S1: misspeculation

S2:. access secret

S3: send secret through side channel
S4: receive secret from side channel

Software mitigations cause big slowdown
Selective application usually impractical

Solution: Fix it in hardware!
Keep speculative microarchitectural state separate from commited state
Also eliminate resource contention side channel from speculation

Cost: Complexity, some chip area, some performance

Paper: http://www.euroforth.org/ef23/papers/ertl.pdf

http://www.euroforth.org/ef23/papers/ertl.pdf

