
Fix Spectre in Hardware!

Why and How

M. Anton Ertl, TU Wien

Why should I listen to this talk?

• Spectre: A security vulnerability of all processors with speculative execution

Affected: all high-performance processors

• Known to processor manufacturers since June 2017

Known to the public since January 2018

• New attacks found regularly since then

e.g., DownFall and Inception published in August 2023

• Not fixed in hardware yet

What is architecture and microarchitecture?

#r8=0x1000 r9=0xff8
mov (%r9), %r10
add 1, r10
mov %r10, (%r8)

PC=0x200a
...
r8=0x1000
r9=0xff8
r10=5
...

0xff8
0x1000

4
5

registers memory
0x2000
0x2003
0x2007
0x200a

0x1000
0xff8

5
4

D-Cache
addr dataI-Cache

Branch Predictor

L2 cache

...

What are side channels?

• Side channels are not designed for communicating data

• Reveal data through ancillary properties of processing

0x1000
0xff8

5
4

D-Cache
addr data

Set-associative cache (example)

• 64 sets for D-cache

• Set n for addresses 4096m+64n+ (0...63)

• access replaces a cache line

• timing reveals 6 bits of accessed address

Defense against classical timing attacks

• Write constant-time code

• for cryptographic and password-handling code

• Not practical for most other code

but then other code does not access passwords or keys

• Requires knowledge about instruction characteristics

What is speculative execution?

r8=0x1000 r9=2 r11=0x1080
m[0x1010]=5
m[0x10a8]=10
cmp 15,%r9
ja outofbounds
mov (%r8,%r9,8),%r10
mov (%r11,%r10,8),%r12

...
r8=0x1000
r9=2
...
r11=0x1080
...

0xff8

0x1010

14

5

registers memory
...
r8=0x1000
r9=2
r10=5
r11=0x1080
r12=10
...

0xff8

0x1010
...

0x10a8

14

5
...
10

registers memory

speculative architectural state

r8=0x1000 r9=-1 r11=0x1080
m[0xff8]=14
m[0x10f0]=11
cmp 15,%r9
ja outofbounds
mov (%r8,%r9,8),%r10
mov (%r11,%r10,8),%r12

...
r8=0x1000
r9=-1
...
r11=0x1080
...

0xff8

0x1010

14

5

registers memory
...
r8=0x1000
r9=-1
r10=14
r11=0x1080
r12=11
...

0xff8

0x1010
...

0x10f0

14

5
...
11

registers memory

speculative architectural state

What is Spectre?

0x3010
0x10f0

0xff8

25
11

14

D-Cache
addr dataI-Cache

Branch Predictor

L2 cache

...

r8=0x1000 r9=-1 r11=0x1080
#m[0xff8]=14
m[0x10f0]=11
cmp 15,%r9
ja outofbounds
mov (%r8,%r9,8),%r10
mov (%r11,%r10,8),%r12

...
r8=0x1000
r9=-1
...
r11=0x1080
...

0xff8

0x1010

14

5

registers memory
...
r8=0x1000
r9=-1
r10=14
r11=0x1080
r12=11
...

0xff8

0x1010
...

0x10f0

14

5
...
11

registers memory

speculative architectural state

S1

S2

S3

S4

Attacker’s architectural state

How relevant is Spectre?

• No known attack in the wild

But then, how would you know?

• Working exploit (reading unaccessible files in Linux) is available

• What about the large number of software vulnerabilities?

These usually get fixed soon

• Spectre has not been fixed in > 6 years

A hardware fix will not affect existing processors

Software mitigations may prevent attacks. Or not

What about software mitigations for Spectre?

Speculative Load Hardening

(simplified)

cmp 15,%r9

ja end

mov $0x0,%rax

cmova %rax, %r9

mov (%r8,%r9,8),%r10

mov (%r11,%r10,8),%r12

end:

• SLH fixes only Spectre v1

• Slowdown 2.5× (for Ultimate SLH)

• Slowdown 2×–9.5× of Gforth from retpolines

(Spectre v2)

• Selective application?

Lots of effort

Error prone

Repeat effort on next Spectre variant

How about disabling speculation?

• Eliminates S1

• Very slow

A55 on Rock5b (no speculation) 3.3× slower than A76

... 7.8× slower than Firestorm (Apple M1)

How to fix Spectre in hardware?

0x3010
0x30f0

25
33

D-Cache
addr dataI-Cache

Branch Predictor

L2 cache

...

r8=0x1000 r9=-1 r11=0x1080
#m[0xff8]=14
m[0x10f0]=11
cmp 15,%r9
ja outofbounds
mov (%r8,%r9,8),%r10
mov (%r11,%r10,8),%r12

...
r8=0x1000
r9=-1
...
r11=0x1080
...

0xff8

0x1010

14

5

registers memory
...
r8=0x1000
r9=-1
r10=14
r11=0x1080
r12=11
...

0xff8

0x1010
...

0x10f0

14

5
...
11

registers memory

speculative architectural state

S1

S2

S3

speculative microarchitectural state

inst333: mem[0xff8]=14
inst334: mem[0x10f0]=11

How to fix Spectre in hardware? (cont.)

Resource contention as side channel

• execution ports, functional units, cache ports, ...

• fixed partitioning between SMT threads

time-division multiplexing (fixed slots) for unique resources

• Within thread:

older instructions have priority

front-end resources independent of speculation

Power side channel

• Meltdown-Power prevented by fix

• Other speculative attacks with power side channels?

Imaginable, but what is the bandwidth?

How much does the fix cost?

• Design complexity

• Some chip area, but not huge

E.g., maybe 30 cache lines compared to 224 physical ZMM registers

• Performance for MuonTrap (cache-only part of fix)

1.05× speedup for Parsec

1.04× slowdown for SPEC CPU 2006

compared to vulnerable hardware with no software mitigations applied

What should I do?

• Computer customer

Ask CPU manufacturers when they will fix Spectre in hardware

When one of them does, buy from them

• Researcher

Design and evaluate efficient ways of fixing Spectre

Work on proving that a fix closes the vulnerability

• CPU manufacturer

Go ahead and fix Spectre in hardware!

Competetive advantage for the first mover

Avoid the constant stream of new Spectre variants

Conclusion

• Spectre:

S1: misspeculation

S2: access secret

S3: send secret through side channel

S4: receive secret from side channel

• Software mitigations cause big slowdown

Selective application usually impractical

• Solution: Fix it in hardware!

Keep speculative microarchitectural state separate from commited state

Also eliminate resource contention side channel from speculation

• Cost: Complexity, some chip area, some performance

Paper: http://www.euroforth.org/ef23/papers/ertl.pdf

http://www.euroforth.org/ef23/papers/ertl.pdf

