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Abstract
This paper presents a novel approach for sensor fusion of robotic total station (RTS) and inertial navigation system (INS) to
enable 6-degree-of-freedom (6DoF) pose estimation. Tight coupling of a spherical measurement model for RTS is developed,
providing advantages over the traditional cartesian 3D-position measurement model, including supporting INS solution when
distance measurements are unavailable and performing outlier detection in spherical observation space. Simulation studies
demonstrate that replacing Global Navigation Satellite Systems (GNSS) with RTS for fusion with INS is beneficial in any
environment (given line-of-sight (LOS) availability), even under ideal GNSS conditions. Furthermore, investigations on
measurement models and failure identification over the entire range of RTS measurements reveal that the spherical model
is advantageous over the cartesian model in certain regions. The developed methods are validated in a practical application
for tilt compensation of an RTS pole, indicating a base 2D-RMSE of 3.8 mm for almost static and almost vertical poles,
increasing with tilt and velocity.

Keywords Robotic total stations · Inertial navigation system · 6DoF pose estimation · Pole tilt compensation ·
Outlier detection

Introduction and related work

Six-degree-of-freedom (6DoF) estimation refers to the deter-
mination of 3Dcoordinates and 3Dorientation of a rigid body
in space. 6DoF pose estimation plays an important role in a
variety of applications in engineering andmanufacturing. On
the one hand, position and orientation in space of an object
or construction element is needed to enable or control further
process steps. On the other hand, 6DoF estimation is often
needed to transform measurements to a higher-level coor-
dinate system, e.g., profile laser scanner data to a project
coordinate system.

Examples in the field of industrial metrology (small-scale
metrology, SSM) are probing devices (e.g., T-Probe or T-
Scan) for laser trackers, which have been on the market for
some time. These systems work by means of infrared LEDs
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on the probing device, whose 6DoF are evaluated by pho-
togrammetric methods (Kyle and Loser 2003). At the other
end of the accuracy spectrum are tilt compensators for GNSS
poles (Luo et al. 2018). All types of mobile mapping sys-
tems (MMS) also fall into the same category. Currently, these
mostly consist of GNSS/INS integration and rely on SLAM
approaches in the absence of GNSS. Furthermore, there is a
variety ofGPS-related indoor positioning technologies based
on UWB, Bluetooth or WLAN for 6DoF determination.
However, these do not achieve the accuracy requirements
for engineering and manufacturing. Vision-based systems
are more interesting options between the accuracy classes
of SSM (0.01 to 0.2 mm) and MMS based on GNSS or
SLAM (1 to 10 cm) but have a limited working range and
high installation costs. Very similar to these passive pho-
togrammetric methods, light-based active systems from the
gaming industry have also been investigated geodetically
(Bauer et al. 2020). Approaches such as visual odometry
(He et al. 2020) or laser-based SLAM approaches (Li et al.
2020) rely on environmental characteristics and exhibit dead-
reckoning properties.

We see great potential in robotic total stations (RTSs) for
6DoFdetermination due to their flexible applicability (indoor
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and outdoor), low calibration and infrastructure effort and
high accuracy (1- 3 mm) and reliability. Pole tilt compensa-
tion for RTS (Maar 2022) has been analyzed by Eder (2022)
in termsof efficiency and economy.Theyhave also confirmed
the additional uncertainty inducedby tilt compensation stated
by the manufacturer. The target application of the available
solutions is limited to static point measurements. Addition-
ally, for static point measurements a preliminary study on a
probing device similar to the T-Probe for an RTS has been
published by Schestauer et al. (2017).

While tilt compensation and probing devices improve effi-
ciency and extend the possibilities, MMS based on RTS
opens a new accuracy category. In the field of MMS, there
have already been tests and preliminary investigations using
a single RTS by Hesse and Vennegeerts (2014); Sternberg
et al. (2013); Keller (2016); Linzer et al. (2019). Recently,
Hesse et al. (2021) developed a vessel-based MMS utiliz-
ing both RTS and GNSS for the inspection of water and port
infrastructure. Gao et al. (2017) pursued a different approach
with the development of a pose measurement target sensor
(PMTS) using a charge-coupled device (CCD) sensor.Whilst
the accuracies are reported to be promising, the operating
range is quite limited w.r.t. line-of-sight (LOS).

If the 6DoF pose of an object is of interest (e.g., a com-
ponent such as railroad track, tunnel drilling machine or a
retaining wall component), it can be derived from an MMS
point cloud. Other solutions work bymeasuring at least 3 dis-
crete points in the static case (see e.g., Zhou et al. 2022). Such
measurement systems (e.g., rail measurement systems) use
either 3 reflectors on the object with a static RTS or one RTS
on the measurement trolley with at least 3 reference reflec-
tors (Strübing 2015; Heunecke and Strübing 2018). These
approaches only work in stop-and-go mode.

For kinematic 6DoFmeasurements, multiple target-tracking
RTSs are used by Maxim et al. (2017) and Lerke and
Schwieger (2021). The applications shown are the guidance
of a UAV (Unmanned Aerial Vehicle) and localization of
robots in building construction. The group of Vaidis et al.
(2021, 2022) used a similar approach of an RTS network to
measure highly accurate ground truth trajectories for a UGV
(Unmanned Ground Vehicle). The drawbacks of these pre-
cise approaches are the costs (at least 3 RTS) and the (at least)
3 LOSs that must not be interrupted during the operation.

Our approach is to integrate the measurements of a sin-
gle RTSwith INS (inertial navigation system) measurements
for a combined estimation of position and attitude of the tar-
get reflector. It can be used for any of the above mentioned
applications and provides greater flexibility (compared to
stop-and-go), operation range (compared to PMTS), and the
possibility of a fully kinematic applicationwith lower restric-
tions in terms of LOS interruption (compared to multi-RTS
constellations).

In “Methodology”, we describe the system and observa-
tion model of a tightly coupled integration as well as the test
strategy for an RTS/INS integration. We then evaluate the
model and investigate the achievable accuracy and the poten-
tial for improvement compared to GNSS/INS integration
using thorough simulations (Section “Simulation Studies”).
In “Smart pole experiments”, we describe the developed pro-
totype for tilt compensation of RTS poles as one usecase of
our approach. We evaluate the achievable accuracy in the
static and kinematic use cases using ground-truth reference
points. A pole prototype was chosen for two reasons. On
the one hand, both static and kinematic applications can be
analyzed. On the other hand, a ground truth reference for the
kinematic application can be realized by stabilized evaluation
points, and additional uncertainties (e.g., detection of refer-
ence targets from laser scanning) are avoided. A summary
and outlook can be found in the “Conclusion” section.

Methodology

In GNSS/INS integration, the well-known navigation frame
(n-frame) is commonly used. It is defined as right-handed
north-east-down (NED); the axes are leveled, north-aligned
and attached to a vehicle (or moving object) frame (called
the body frame, b-frame, denoted by superscript b).

In comparison, if the origin of the navigation frame is fixed
to a certain point w.r.t. the earth, we denote this frame with
superscript t (t-frame) and call it a local geodetic frame1.
This frame is covered in the literature, e.g., Groves (2013,
p. E-14ff), where the x-axis is aligned with the north direc-
tion and the z-axis points towards the down direction of the
ellipsoid normal. The origin and orientation of this t-frame
w.r.t. the earth-centered earth-fixed (ECEF) frame (super-
script e, e-frame) are constant in time. INS integration and
fusion algorithm are therefore similar to those for e-frame
(commonly used for tight GNSS/INS integration).

The t-frame corresponds to a stationed/oriented RTS, in
contrast, raw measurements of an RTS are related to a local
tangent-plane frame. This l-frame, denoted by (superscript l),
has a fixed origin w.r.t. the earth at the instruments zero point
(reo). The z-axis coincides with the local gravity vector. The
x-axis points towards the zero-position of the instruments
horizontal angle sensor and does not necessarily correspond
to a topographic direction (orientation unknown α0). The
y-axis completes the right-handed coordinate system. We
introduce this new frame to represent rawRTSmeasurements

1 Our naming convention may not seem intuitive, but the frame aligned
with north is mostly named as tangent-plane frame and is denoted by
(superscript t). To remain somewhat coherent with the literature, we
also denote this frame by (t ), even though we consider local geodetic
frame a more appropriate name for the aligned frame.
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and decided to stick to a right-handed system in contrast to
widespread left-handed systems inGeodesy because of inter-
pretability of attitude representation. Both frames are shown
in Fig. 1.

The relation between the l-frame and the e-frame is also
constant in time and is comprised of two rotations C t

e and C
l
t .

The first is defined by longitude and latitude of reo and can
be found e.g., in Groves (2013)[p. 76]. The latter describes a
rotation by the orientation unknown α0. Position r , velocity
v, forces f and angular rates ω can then be transformed by:

Cl
t =

⎡
⎣

cos (αo) sin (αo) 0
− sin (αo) cos (αo) 0

0 0 1

⎤
⎦

vllb=Cl
t C

t
e veeb , f llb=Cl

t C
t
e f eeb

ωl
lb = Cl

t C
t
e ωe

eb, rllb = Cl
t C

t
e

(
reeb − reo

)
(1)

Strapdown and systemmodel

As mentioned before, the introduced l-frame is earth-fixed,
so derivation of the strapdown algorithm (SDA) and cor-
responding navigation equations is similar to the e-frame,
widely used in GNSS/IMU integration (Titterton andWeston
2004, p. 126ff). Additionally, t-frame navigation equations
have been presented in the literature, e.g., in Groves (2013,
p. E-14ff). For the novel l-frame, we use identical time
discrete navigation equations. The series expansion transi-

Fig. 1 Local tangent-plane frame (l-frame, green) and local geodetic
frame (t-frame, blue) w.r.t. earth

tioning from continuous time to discrete time is limited to
first-order terms:

Cl
b(k + 1) ≈ Cl

b(k)
[
I3 + �b

ib τ
]

f lib = 1

2

[
Cl
b(k) + Cl

b(k + 1)
]

f bib

vllb(k + 1) ≈ vllb(k) + τ
[
f lib + glb

]

rllb(k + 1) = rllb(k) +
[
vllb(k) + vllb(k + 1)

] τ

2

(2)

With the IMU sampling rate τ ; ωb
ib and f bib being the

IMU angular rates and specific force measurements, matrix
�b

ib is computed from angular rate vector ωb
ib, building the

skew-symmetricmatrix�b
ib = [

ωb
ib

]
×. Gravity g

l
b is the sum

of centrifugal and gravitational accelerations and existing
models for the e-frame (e.g., Groves 2013, p. 175) can be
used by applying transformation (1).

In Eq. 2 correction terms such as earth rotation and Corio-
lis force are neglected. Because of the improved accuracy of
RTScompared toGNSS,we analyzed the impact of these cor-
rection terms (approx. 5 mgon s−1 earth rotation and approx.
1.4mms−2 Coriolis force) on the basis of the industrial-grade
MEMS IMU used in the following experiments. It turns out
rules forGNSS/INS integration are also valid for RTS/INS, at
least up to industrial-grade IMUs. Other effects arising from
the definition of the l-frame (height and tilt error because of
earth curvature) are also neglected in the current approach.

Sensor fusion in an INS is commonly performed using a
closed loop Extended Kalman Filter (EKF) using error state
formulation, see e.g., Jwo and Cho (2010). System andMea-
surement models are:

δxk = T k−1,k δxk−1 + wk

δzk = Hk δxk + vk
(3)

where δxk ∈ R
m describes the m-dimensional error

state vector and the system noise is modeled as white
noise sequences and follows a normal distribution wk ∼
N (

0, Qk

)
. The nk reduced measurements at epoch k are

δzk ∈ R
nk = hk(xSDA

k ) − zk and measurement noise is
vk ∼ N (0, Rk). The well-known prediction and update
steps can be found in various publications, e.g., Grewal and
Andrews (2014, p. 138), and an overview of the notation used
in this work is given in Appendix A.

For a local-tangent-plane-frame implementation of an INS
integration, the error state vector is defined as

δxlins = [
δψ l

lb δvllb δrllb ba bg
]T

, (4)

where δψ l
lb, δvllb, and δrllb represent the errors in attitude

(represented as Euler angles roll φl
lb, pitch θ llb, yaw ψ l

lb)),
velocity and position. For some applications, it might be
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worth thinking about a quaternion attitude representation to
avoid Euler angle singularity. Additionally, inertial sensor
biases ba (accelerometers) and bg (gyroscopes) are estimated
because of turn-on biases. This gives an error state vector of
15 elements in total.

The derivation of the system model for a local frame is
similar to that of the e-frame implementation since it is also
earth fixed. The origin is transposed to a point usually on the
surface, which is the RTS position in this paper. The frame
is rotated by ellipsoidal latitude and longitude as described
above. The system matrix may be written as (adopted from
Groves 2013, p. 583):

Fl
ins =

⎡
⎢⎢⎢⎢⎢⎢⎣

03 03 03 03 Ĉ
l
b

Fl
21 03 Fl

23 Ĉ
l
b 03

03 I3 03 03 03
03 03 03 03 03
03 03 03 03 03

⎤
⎥⎥⎥⎥⎥⎥⎦

(5)

The submatrices are given by

Fl
21 =

[
−Ĉ

l
b f bib

]
× , Fl

23 = Cl
e δgeb C

e
l . (6)

Note that Ĉ
l
e is constant because both frames are earth

fixed and Ĉ
l
b is the rotation matrix representation of attitude

derived from Euler angles ψ lb. The gravity error w.r.t. e-
frame δgeb can be found in existing GNSS/IMU literature,
e.g., Groves (2013, p. 583).

The transition matrix T k−1,k follows from the system
matrix solving the differential equation by using the power
series expansion of the matrix exponential function again
limited to first order:

T k−1,k = exp
(
Fins τp

) ≈ I + Fl
ins τp , (7)

which allows the prediction of the system state from epoch
tk−1 to epoch tk with τp = tk − tk−1 being the prediction
interval, usually identical to the IMU sampling rate τ . Since
RTSmeasurements do not showa constantmeasurement rate,
the prediction interval τp must be adjusted in epochs of mea-
surements to fit the timestamp of measurement.

Measurement models

For the local tangent-plane l-frame EKF, the positions
of the IMU (b) are estimated as right-handed coordinate
tuple consisting of pseudo-north, -east and -down rllb =[
xllb yllb zllb

]T
. On the other hand, measurements of a RTS

include the unoriented horizontal direction (angle between
instruments zero-direction and target) Rl

la , vertical angle
(angle between zenith and target) ζ lla and slope distance D

l
la ,

composing the spherical measurement vector of the prism
position (a) w.r.t. to the l-frame.

plla =
⎡
⎣
Rl
la

ζ lla
Dl
la

⎤
⎦ . (8)

Note that orientation unknown α0 does not need to be
considered within the l-frame since it is already modeled
through the relation between the t- and l-frame.

In terms of measurement models for RTSs, two possi-
ble approaches exist. First, spherical raw observations plla
are converted to cartesian prism positions orlla with corre-
sponding propagated variance-covariance-matrix (VCM)�r

outside of the EKF.We call this approachCartesianUpdates.
Second, the spherical observations are directly input to the
filter (Spherical Updates).

Cartesian measurement model

Considering the leverarm lbba describing the displacement of
the measured prism position a and the origin of the body
frame b, the cartesian measurement model reads:

δzrk =o rlla −
(
r̂llb + Ĉ

l
b l

b
ba

)
. (9)

The measurement matrix Hk is given by Groves (2013)
[p. 599]:

Hr
k = [

Hr1 03 −I3 03 03
]

, (10)

where Hr1 ≈
[
Ĉ
l
b l

b
ba

]
×.

Since GNSS receivers usually provide velocity measure-
ments by means of Doppler measurements, which are also
used in the GNSS reference solution in “Comparison of RTS
and GNSS” section, the corresponding velocity parts of the
measurement models are given as follows:

δzvk =o vlla −
(
v̂
l
lb + Ĉ

l
b

(
ω̂
b
ib × lbba

))

Hv
k = [

Hv1 −I3 03 03 Hv5
]

Hv1 ≈
[
Ĉ
l
b

(
ω̂
b
ib × lbba

)]
×

Hv5 ≈ Ĉ
l
b

[
lbba

]
×

(11)

giving the GNSS measurement model:

δzk =
[
δzrk
δzvk

]
Hk =

[
Hr

k
Hv

k

]
(12)
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Spherical measurement model

The relation between the spherical measurements plla and
cartesian positions rlla is given by

rlla =
⎡
⎣
Dl
la sin ζ lla cos Rl

la
Dl
la sin ζ lla sin Rl

la
−Dl

la cos ζ lla

⎤
⎦ − : �−1

(
plla

)
, (13)

assuming that the origin of both (spherical and cartesian)
systems coincide anddescribe the origin of the l-frame,which
is equal to the reference point of the RTS. The inverse task
is computed by

plla =

⎡
⎢⎢⎢⎣

arctan
(
ylla/x

l
la

)

arccos

(
−zlla/

√
xlla

2 + ylla
2 + zlla

2
)

√
xlla

2 + ylla
2 + zlla

2

⎤
⎥⎥⎥⎦=:�

(
rlla

)
.

(14)

Then (9) changes to

δz pk =
⎡
⎣

oR
oζ
oD

⎤
⎦ − �

(
r̂llb + Ĉ

l
b l

b
ba

)
. (15)

The observation matrix H p
k is given by

H p
k = [

H p1 03 H p3 03 03
]

(16)

where the submatrices are derived by symbolic computation
and automatic differentiation:

H p1 = −
∂�

(
r̂llb + Ĉ

l
b l

b
ba

)

∂ψ lb

H p3 = −
∂�

(
r̂llb + Ĉ

l
b l

b
ba

)

∂ rlb
(17)

This spherical measurement model has two important
advantages over the cartesian measurement model:

1. In cases where no distance measurements are carried out
by the instruments, angle information can still be used to
support the INS strapdown solution.

2. Outlier detection can be performed within the EKF at
originating spherical observation space.

On the other hand this model has two drawbacks:

1. Computationally the spherical model is much more
expensive.

2. The cartesian model (10) is supposed to have less non-
linearities than the spherical model (16).

Considering the fact that post-processing is used in our
current implementation, computational complexity should
not be an issue w.r.t. modern day computing resources.
Concerning nonlinearities the necessity of negligible lin-
earization errors in both the system and observation models
for EKFs can be upheld for the spherical model, as show by
investigations conducted during this research.

Testing strategy

The implemented testing strategy consists of the well-known
local overall model test statistic (LOM) based on the KF
innovations, see Teunissen (1998) (for details of the used
notation, see Appendix A):

TLOM,k = dTk D
−1
k dk with TLOM,k > χ2

1−α,nk (18)

If a model error is indicated by the LOM statistic, fur-
ther investigations are performed. This can be done using the
mean shift model, which allows a general approach to test
for q outliers described in Appendix B.

Individual measurement

The test for inconsistency in individual measurement can be
derived by choosing E = ηi (the i-th unit vector) with q = 1.
Alternative hypothesis, test statistic and rejection criterion
for the i-th measurement of epoch k are Wieser et al. (2004):

Ha,i,k : E{δzk} = Hkδxk + ηi�

ti,k = ηT
i D−1

k dk√
ηT
i D−1

k ηi∣∣ti,k
∣∣ > z1−αq=1/2

(19)

For example, with E = η3 = [
0 0 1

]T
, we are able to

test for an error in the distance measurement (� = �D) in
the spherical measurement model (15) or for a z-coordinate
error (� = �z) in the cartesian measurement model (9).

Assuming that an outlier is primarily occurring at distance
measurements, there are two approaches to handle such an
outlier for the cartesian model. If the prism is close to one
of the planes spanned by two coordinate axes, one could test
against a failure in two components at a time, e.g., the x-
and y-components for a vertical angle ζ of approximately
100 gon. The other approach is to model a distance out-
lier for cartesian measurement equations. Both are shown
in Appendix B. The first approach is less efficient in terms
of detectability, and the second approach is identical to the
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spherical measurement model, but both approaches lack the
possibility for proper bias elimination.

Harmonizing error probabilities

In such a testing strategy, it is useful to harmonize the error
probabilities of detection (LOM) and identification (19). This
leads to two relations that define error probability α, power
of the test 1−β, error probability of individual testαq and the
number of measurements nk w.r.t. each other Baarda (1968):

χ2
1−αq ,q = χ2

β,q,λ

χ2
1−α,nk = χ2

β,nkλ

(20)

For both our measurement models, we choose a type 2
error probability of β = βq = 20% and a type 1 error prob-
ability of an individual test αq=1 = 0.2%. The number of
measurements nk = 3 for both models.

This gives a type 1 error probability for the LOM of α =
1.0% and a type 1 error probability of αq=2 = 0.5% for the
group test described in Eq. B12.

Simulation studies

The formulated methodology and its implementation in
Python are evaluated in several simulations. Using these sim-
ulations two research questions are addressed:

• Is it advantageous, and if so, how large is the benefit
of replacing GNSS with RTS for fusion with INS? As
mentioned in the introduction, RTSs have the obvious
advantage of being independent of satellite visibility or
sky obstruction. Additionally, independence from elec-
trical installations (power lines or transformers) and
reflective surfaces (multipath). But how does this com-
parison turn out in a GNSS-ideal environment?

• What is the benefit of using the novel spherical measure-
ment model instead of cartesian updates?

The following simulations are based on an initialization
routine, designed as an eight-shaped movement of the prism,
while holding the pole tip attached to a fixed ground point.
The trajectory is shown in Fig. 2 (right). The positions are
generated by pole tilts of up to 35 gon (roll) and up to 25
gon (pitch). The RTS is located at (0.0, 0.0, 0.0), and the
ground point is at (20.0, 7.5, 1.8). The simulated pole height
is 1.4mand all scenarios assume a correctly knownmounting
vector from the IMU to the prism (and GNSS reference point
respectively) of lbba = [ − 0.002 − 0.012 − 0.238

]
m. Such

a simulation scenario represents the application range of the
proposed prototype for large scale metrology.

The simulated scenario of 30 s duration includes 2 phases
of initialization routines, as shown in Fig. 2 (left):

• from second 4 to 12 with two eight-shapes with the IMU
pointing in direction of LOS

• from second 17 to 25with two eight-shapeswith the IMU
pointing perpendicular to LOS

The design was developed and chosen from both the
authors’ personal simulation runs and the work and find-
ings of Teodori and Neuner (2021). Key aspects to consider
are horizontal acceleration changes that are crucial for the
observability of the yaw error state and the anisotropy of RTS
measurement accuracy (along and perpendicular to LOS).

The stochastic model of the simulated IMU is comprised
of the sensor white noise and bias instability, both of which
are defined by their corresponding power spectral densities
(PSDs), as shown in Table 1. The values are taken from
long-term evaluation experiments of the IMU used in the
experiments.

Fig. 2 (left) Simulated profiles
for IMU position and attitude.
(right) Simulated IMU
trajectory in l-frame w.r.t. the
RTS station
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Table 1 IMU Simulation
parameters

Parameter Notation Value

Accelerometer white noise
√
Sa 160µg/

√
Hz

Gyro white noise
√
Sg 1 × 10−2deg /s/

√
Hz

Accelerometer bias instability
√
Sba 1.5 × 10−4m/s2

Gyro bias instability
√
Sbg 2.5 × 10−3deg /s

Comparison of RTS and GNSS

The GNSS observations are simulated according to the fol-
lowing exemplary stochastic model, derived from Luo et al.
(2018) with a measurement frequency of 20 Hz:

�GNSS,pos =
⎛
⎝

0.62 0.172 0.122

0.172 0.52 − (
0.252

)
0.122 − (

0.252
)

0.82

⎞
⎠ [cm]2 ,

�GNSS,vel =
⎛
⎝
5.72 1.32 1.92

1.32 4.82 − (
2.02

)
1.92 − (

2.02
)

6.82

⎞
⎠ [cm/s]2 .

(21)

This stochastic model is derived from a high-end hand-
held professional GNSS pole and is supposed to represent
the best solutions in terms of accuracy on the market. For
consumer-grade GNSS antennas and receivers on UAV or
UGV mounted MMS, the comparison is accordingly differ-
ent.

The RTS observations are simulated with a measurement
frequency of 7.5 Hz and σD = 3 mm, σR,ζ = 0.3 mgon,
σAT R = 1.8 mm according to Leica Geosystems (2016)
(ATR,Automatic Target Recognition, as the dominant source
of measurement uncertainty at close ranges). The small devi-
ations from the manufacturer’s (static) specifications result
from the findings of Thalmann and Neuner (2021) in a kine-
matic experiment setup. Again it is worth mentioning that
some RTS achieve measurement rates of up to 20 Hz as well.

Figure 3 shows the estimated posterior position standard
deviations of a GNSS/INS (orange) and an RTS/INS (blue)
filter compared to their simulated values from 1000 Monte-
Carlo-Simulation (MCS) runs (σ̃ plotted as gray areas). We
can deduce that the filter implementation is correct in terms of
posterior standard deviation (SD) estimation by comparing
gray areas (MCS) and corresponding estimated values of the
filter. Furthermore, we conclude the unbiasedness of the EKF
estimator implementation by analyzing the residuals w.r.t. to
ground truth.

From Fig. 3, we can also deduce the improvement in posi-
tion estimates by replacingGNSSwith oneRTS. This heavily
depends on the position of the prism w.r.t. the RTS and the
orientation unknown α0 because of horizontal anisotropy of
measurement accuracy both for GNSS and RTS.

To obtain a better understanding of the change in accuracy,
we analyzed the simulations results for R ∈ [0, ..., 100] gon
andα0 ∈ [0, ..., 100] gon. Subsequently, themedian improve-
ment and the improvement range (defined by minimal and
maximal improvement) are computed over all possible setups
(=combinations R and α0). Here, improvement is defined as
(σGNSS − σRT S)/σGNSS . The results for nearly horizontal
LOSs (the case for the following application of pole tilt com-
pensation) are shown in Fig. 4.

Overall, comparing RTS/INS and GNSS/INS fusion,
every state parameter improves when utilizing an RTS. The
z-components are not affected by anisotropy, so the improve-
ment is constant across all setups. For attitude parameters,
the improvement relative to GNSS is 10 to 22%. The largest
benefit can be found at the estimated yaw accuracy because
roll and pitch angles are already well determined by sensing
gravity. In terms of position estimation, shown in Fig. 4(b),
the largest improvement of approximately 55% is found in
the z-component. On the one hand, this component is weakly
determined with GNSS, and on the other hand, the distance
accuracy of the RTS has the smallest influence on z. Depend-
ing on the RTS setup the improvement of the horizontal

Fig. 3 Post-update stochastics for position of GNSS/INS and RTS/INS
integration in comparison. Gray areas visualize empirical SDs from
MCS, whereas the colored lines are the estimated SDs from EKF
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Fig. 4 Accuracy improvement of RTS/INS compared to GNSS/INS
solution immediately after initialization routine finished (at timestamp
00:28)

components strongly varies between 50 and 7%. Since the
north (x) component is worse determined than the east (y)
component usingGNSS (cf. Santerre 1991) the improvement
by using RTS is larger. The range of improvements is related
to the direction of the LOS, e.g., if theRTSdistance D ismea-
sured in directionof eastwehave the smallest improvement in
the east component and the largest improvement in the north
component. Despite the lack of direct observations of veloc-
ities, an increase in accuracy for velocities can be achieved
with RTS, see Fig. 4(c). The estimation of accelerometer
biases of x and y (mostly nearly horizontally aligned) can be
improved by about 30%whereas the z-component is already
well determined using GNSS, see Fig. 4(d) . The gyro biases
Fig. 4(e) improvements are close to zero or negligible.

To conclude, a replacement of GNSS by RTS is bene-
ficial in any case despite the missing velocity observations
(and therefore reduced number of observations) and the lower
measurement rate (approx. 7.5 Hz compared to 20 Hz). The
improved position accuracy of RTS also compensates for
the missing coupling of attitude errors with velocity errors
(cf. Teodori and Neuner 2021).

Measurement models and testing

To investigate the differences between the cartesian and
spherical measurement models two scenarios are considered
during simulation studies:

1. Time periods in which outliers occur in the distance mea-
surement (�D). These are highlighted as gray areas in
Fig. 5. As a quantity for this outlier, we use the parame-
ter of statistical reliability, the minimum detectable bias
(MDB). For the distance measurement within the spheri-
calmeasurementmodel theMDB∇D = 14.3 mm,which
is approximately 4.8 × σD .

2. Time periods in which no distance measurement is avail-
able at all (red area in Fig. 5). Additionally, periods of
up to multiple measurement epochs occur in a recur-
ring manner, while the electronic distance measurement
(EDM) unit is recalibrating during tracking mode. In
addition, itmight be legit to use angle-only trackingmode
in some applications.

The visualized simulation run is simulated similar to Fig. 2
with an additional static time window of 5 s at the end but
with horizontal directions R of about 50 gon because in this
scenario, wewant to have equal contributions of�D to x- and
y-components. If we analyze the individual test quantities in
the first row of Fig. 5, we can see that distance outliers �D

can be localized using test statistic (19)when using the spher-
ical measurement model (left). In contrast, when using the
cartesian measurement model, a smearing effect is visible,
meaning that the outlier is split between the two horizontal
components. For the same reason, one can see in the true
errors (second row) that the cartesian model is subject to a
bias (gray areas and chronologically following). This results
from the fact that distance errors cannot be detected at all or
parts of it cannot be detected.

For the red area, where no distance measurement is avail-
able for 1 s, the cartesian measurement model (right) is
not able to provide any measurement update information.
Therefore, both bias and estimated SD increase as the filter-
ing solution relies solely on inertial navigation. Unsupported
inertial navigation is prone to accumulated white noise of the
IMU sensors. In contrast, the spherical model is supported in
at least two directions (orthogonal to the line of sight), since
it is possible to use angle measurements R and ζ . For this
specific case of horizontal LOS, we can see that the height
component accuracy does not suffer from missing distance
measurements, as shon in the bottom row of Fig. 5.

Both effects, outlier detection and support of inertial navi-
gation strongly depend on the measured horizontal direction
R, as shown in Fig. 6. Again, the following considerations
apply to approximately horizontal arrangement of RTS and
prism. In measurement configurations where R ≈ 100gon
or R ≈ 300gon a distance outlier mainly corrupts the
y-component and for directions R ≈ 200gon or R ≈
0gon/400gon it mainly corrupts the x-component. In these
cases, where the target (prism) point is close to one of the
coordinate axes the failure identification and elimination
capabilities of the spherical measurement model are iden-
tical to those of the cartesian measurement model, compare
the blue areas in Fig. 6. Outliers are detected at the corre-
sponding tests of coordinate components using the cartesian
measurement model.

The further away the target point is from the coordinate
axes (horizontal directions of 50, 150, 250, 350 gon), the
more significant the advantage of the spherical observation
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Fig. 5 Test statistics, true error for estimated position (dPos) and esti-
mated standard deviation (SD) for (a) spherical measurement updates
(left) and (b) cartesian measurement updates (right). Gray areas indi-

cate 0.45 s windows of distance outliers ofMDBmagnitude ( 14.3mm).
The red area indicates a distance outage of 1 s duration

model becomes. In Fig. 6, the red area indicates those con-
stellations in which an outlier in the distance measurement
cannot be detected in either one of the horizontal components
of the cartesian measurement model. Whereas the identifi-
cation capabilities of the spherical measurement model is

Fig. 6 Cartesian test statistics for x and y and spherical test statis-
tic D for a distance bias of MDB magnitude over different horizontal
directions R. The black line indicates the 1 − αq/2 standard normal
distribution percentile identifying the decision threshold (z1−αq/2)

independent of the horizontal direction R, compare the blue
line in Fig. 6.

To conclude the investigations on measurement models
and failure identification over the whole range of R = 0gon
to R = 400gon: For the second quadrant shown in Fig. 6
there are regions (blue) where both models are nearly identi-
cal (100 to 110 gon and 190 to 200 gon), which is 20%. From
130 to 170 gon (which is 40%, red area) the cartesian model
is crucially malfunctioning and in the white areas in between
(40%) the spherical measurement model is beneficial over
the cartesian model. As this situation is similar in all other
quadrants this gives an area of 80 gon for equal performance,
160 gon of worse identifiability and 160 gon of failure for
the cartesian measurement model.

Smart pole experiments

To validate the developed methods and approaches in a prac-
tical application, we chose tilt compensation for an RTS pole.
Such a setup is very similar to a probing device used in indus-
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evaluation point
(pole tip)

IMU

measured prism
position

local vertical (plumb line)

tilt

Fig. 7 Illustration of smart pole for RTS evaluation experiment. The
pole tip is located at the reference evaluation point. As an example of
RTS/INS fusion, the location of the pole tip is located by fusion of the
measured prism position and INS data. The deviation of the pole from
the plumb line is treated as the tilt angle

trial metrology. Compared to a laser scanning system, the
determination accuracy of specific reference points can be
eliminated, which allows better conclusions about the 6DoF
accuracy.

With relatively low velocities (max. 1.6m/s), low external
influences such as vibrations, a small distance between RTS
and prism/system and a small distance between system and
object point of interest (pole tip with a length of 1.6 m),
such a setup can be seen as a preliminary study for 6DoF
trajectory estimation of UAV (Unmanned Areal Vehicle) or

UGV (Unmanned Ground Vehicle) mounted MMSs or any
other robotic applications.

The downside of this test setup is that the distance mea-
surement provides consistently reliable data, or the testing
strategy does not indicate an outlier. On the one hand, this
has to do with the low velocity of the prism and on the other
hand with the relatively high MDB of 14.3 mm mentioned
above.

Prerequisites

The methodology for tip point computation (also ground
point computation or tilt compensation) was presented in
Luo et al. (2018) for GNSS and in Thalmann et al. (2020) for
RTS. It involves 6DoF trajectory estimation by a tight cou-
pling RTS/INS fusion in an EKF framework as described in
“Methodology”. Since RTS measures position of the prism
and the position of the pole tip is of interest, both positions
need to be known w.r.t. to the INS. These vectors are called
leverarm (prism) and tipvector (pole tip) and are determined
using a lasertracker in the laboratory w.r.t. a pole-frame. The
additional mounting rotation between this pole-frame and
the INS needs to be determined. Our approach is described
in Thalmann et al. (2020) and estimates mounting param-
eters with an accuracy of about 15 mgon. Please refer to
Appendix C for more details on terminology and notation.

Time synchronization between RTS and IMU is solved
using a wireless approach elaborating Network Time Proto-
col (NTP) over Wifi (cf. Thalmann and Neuner 2018) and a
temporal calibration of RTS for kinematic applications esti-
mating system latency, see Thalmann and Neuner (2021) for
details on this approach. The achievable overall synchroniza-
tion accuracy is specified by 0.2 ms.

The prototype of a tilt compensating pole consists of a
MEMS IMU (Xsens MTi-600 series) and a Raspberry Pi 3
serving as a data collection and synchronization unit sup-
plying a button to trigger point (static) or path (kinematic)
measurement. The RTS is of type Leica TS16 and is also
controlled by a Raspberry Pi 3, and a standard 360°-prism
is mounted on the pole. The pole length of the prototype is
1.60mwith the IMU sitting 0.30mbelow the prism. The data

Table 2 Smart pole evaluation results

Experiment xRMSE yRMSE zRMSE σH ,2D σH ,3D

Static 1 (n = 63) (tilt = 15.5 gon avg.) 4.7 4.8 3.3 6.8 7.5

Static 2 (n = 49) (tilt = 6.3 gon avg.) 1.8 1.7 1.3 2.5 2.8

Static 3 (n = 58) (tilt = 8.8 gon avg.) 4.7 3.7 3.3 5.7 7.1

Kinematic 1 (v = 0.7m/s avg.; tilt = 10.3 gon avg.) 12.9 14.5 6.4 19.4 20.4

Kinematic 2 (v = 0.6m/s avg.; tilt = 11.9 gon avg.) 14.0 10.2 4.6 17.3 17.9

Kinematic 3 (v = 0.5m/s avg.; tilt = 9.9 gon avg.) 11.9 9.2 3.2 15.0 15.3

All units are [mm]
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Fig. 8 Evaluation experiment
static 1 (n = 63). (left) Prism
positions w.r.t to the
displacement from the
plumbline (of the respective
evaluation points) and the angle
of displacement. (right) Tilt
compensated deviations of the
pole tip (the measured
evaluation point) from ground
truth values

collection is based on the popular Robotic Operating System
(ROS) Framework which allows modularity and interoper-
ability for future prototypes. For more details on ROS, see
Linzer et al. (2022).

Evaluation

Evaluation experiments are carried out in the measurement
laboratory utilizing five evaluation points marked on the
floor. These evaluation points are stabilized reference points
for the pole tip and their coordinates are determined with a
lasertracker for ground truth.

A total of 3 measurement campaigns are carried out. Each
one starts with an initialization routine similar to the one
described in “Simulation studies” at one evaluation point.
After that, each campaign contains two experiments. The first
imitates static single point measurements, where the evalua-
tion points are measured at a random pole tilt (angle between
pole and plumb line), respectively prism position. Each point
measurement is held static for approximately 1 s intervals by

Fig. 9 Static evaluation point (=pole tip) error statistics dependent on
tilt magnitude. The black line shows a linear model for 2D RMSE
(σH ,2D) estimated over all 170 data points

hand. This process is illustrated in Fig. 7. Subsequently, a
kinematic experiment is performed where the tip stays fixed
at an evaluation point and the prism is moved by circular and
linear movements of different velocities.

A summary of the RMSE (root-mean-square error) values
after tilt compensation is shown in Table 2. Exemplary prism
positions (left) and errors for the estimated tip point w.r.t to
ground truth evaluation points (right) of static experiment 1
are shown in Fig. 8.

For both static and kinematic experiments we can see,
that the z-coordinate (height component) shows the lowest
RMSE. Additionally, the x- and y-coordinates are more or
less equal. This is exptectable since the working area is per-
fectly horizontal and the evaluation points are distributed in
such a way that both x- and y-coordinates are similarly influ-
enced by the RTS distance measurement (D). For the static
experiments, a correlation between tilt and 2DHelmert point

accuracy (2D RMSE2, σH ,2D =
√
x2RMSE + y2RMSE ) can be

assumed. We have analyzed this tilt dependency, which is
shown in Fig. 9.

The linear model (Static Tilt) indicates an accuracy of 2.0
mm + 0.2 mm per gon tilt. However the majority of the 170
measured single points were tilted below 15 gon, because for
higher tilts, it is difficult for the operator to keep the pole tip
centered at the evaluation point. The validity of this model
for higher tilts must be further investigated. For comparison,
the conventional method of single point measurement with a
pole leveled by a standard 8′ circular level gives a standard
deviation of approximately 2.6 mm. This value is composed
of 1.3mm accuracy of the circular level at a pole length of 1.6

2 For unbiased data of sufficient length RMSE and SD are inter-
changable because the different normalization (SD: 1 − n, RMSE: n)
has no significant effect.
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Fig. 10 Evaluation experiment
kinematic 2 (v = 0.6m/s). (left)
Prism positions w.r.t to the
displacement from the
plumbline (of the respective
evaluation point) and the angle
of displacement. (right) Tilt
compensated deviations of the
pole tip (the measured
evaluation point) from ground
truth values

m, 1.0 mmATR/Angle accuracy, and 2.0 mmEDM accuracy
(
√
1.02 + 1.32 + 2.02). We can conclude that our approach

for static tilt compensation shows comparable accuracy at
low tilts compared to conventional methods using a circular
level.

As mentioned before these experiments are meant to be
a preliminary study for kinematic 6DoF systems.Therefore,
we do not limit our investigations to static applications.
An example dataset of a kinematic experiment is shown in
Fig. 10. From Table 2 we can deduce an influence of the
moving speed of the prism on the expected accuracy of the
pole tip. In addition, a tilt dependence is also expected in
the kinematic case. Both dependencies (Kinematic Tilt and
Kinematic Velocity) are shown in Fig. 11.

The data points over all three kinematic experiments are
within 1.6 gon and 24 gon tilt (see Fig. 11(a)) and below 1.6
m/s (see Fig. 11(b)). The increase in standard deviation over
the data range is more evident for tilt than for velocity. The
reason for the tilt dependency of 0.8 mm per gon tilt might be
the accuracy of the yaw angle estimation, which is usually 9
times worse than roll and pitch angles. The last two are stabi-
lized by sensing gravity, whereas yaw depends on horizontal

acceleration changes. The reason for the increasing standard
deviation with higher velocity might be twofold. First, the
pole tip slightly slides back and forth on the stabilization of
the evaluation point at higher velocities in combination with
tilts. Second, the noise of the clock readings (if the timestamp
is interpreted as a time observing sensor) contributes a part
of the overall noise and this proportion increases with higher
velocity.

A combined kinematic stochastic model for pole tilt com-
pensation (for a pole length of 1.60 m) indicates a base 2D
RMSE of 3.8 mm for almost static and almost vertical poles,
increasing by 6 mm for 10 gon tilt and 4.8 mm for velocities
of 1 m/s. The evaluation results are summarized in Table 3.

Conclusion

Based on the research conducted on the sensor fusion of
Robotic Total Station and Inertial Navigation System for
6DoFpose estimation, it can be concluded that the integration
of these two sensors has the potential to improve accuracy
and precision and unlock a broad range of applications.

Fig. 11 Ground point 2D
RMSE for kinematic
experiments depends on (left, a)
tilt and (right, b) velocity. The
black lines show linear models
of σ̂H ,2D estimated over all data
points
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Table 3 Pole tip accuracy
models (in terms of 2D-RMSE,
σH ,2D) for a pole length of 1.6
m

Model 2D RMSE

Conventional approx. 2.6 mm not applicable

Static Tilt 2.0 mm + 0.2 mm per gon Tilt

Kinematic Tilt 5.0 mm + 0.8 mm per gon Tilt

Kinematic Velocity 7.7 mm + 9.4 mm per m/s Velocity

Kinematic 3.8 mm + 0.6 mm per gon Tilt + 4.8 mm per m/s Velocity

The development of a novel measurement model for
Robotic Total Station spherical measurements introduces
tight coupling for RTS/INS sensor fusion. This approach
provides significant advantages in supporting INS in cases
where no distance measurements are available and perform-
ing outlier detection in epochs where distance measurement
accuracy cannot be guaranteed. However, it is important to
note that this model has two drawbacks, namely, compu-
tational complexity and potentially increased nonlinearity
compared to the cartesian 3D position model.

Simulation studies are conducted to evaluate the derived
approach. These studies have shown that a replacement
of GNSS with RTS is advantageous even with high-end
receivers in GNSS-ideal environments. The improvement
ranges from 7% to 55% in position and attitude estima-
tion. With the help of this simulation environment, we also
show that a cartesian 3D position model can cause severe
KF problems in 40% of the application range if the original
raw spherical measurements are prone to distance outliers.
With our tightly coupled RTS/INS approach we are able to
identify and eliminate such failures.

In conclusion, the practical application of the developed
methods and approaches for tilt compensation of the RTS
pole provided valuable insights into the accuracy and preci-
sion of a prototype system. For kinematic applications of up
to 1.5 m/s the stochastic model for the tilt compensated tip
point indicated a base 2D-RMSE of 3.8 mm for almost static
and almost vertical poles, increasing by 6 mm for 10 gon tilt
and 4.8 mm for velocities of 1 m/s.

These results demonstrate the effectiveness of the devel-
oped methods and approaches for tilt compensation of the
RTS pole, which can lead to improved accuracy and relia-
bility in 6DoF pose estimation. Further research in this area
can lead to the development of more advanced and precise
kinematic measurement systems for surveying, construction,
and robotics applications.

Appendix A Kalman filter notations

Our approach is based on a linearized discrete-time Kalman
filter. The Error State formulation for RTS/INS fusion system
and measurement models are:

δxk = T k−1,k δxk−1 + wk

δzk = Hk δxk + vk (A1)

with

wk ∼ N (
0, Qk

)

vk ∼ N (0, Rk)

wk ...System noise at epoch k

Qk ...Variance Covariance Matrix (VCM)

of system noise at epoch k

vk ...Measurement noise at epoch k

Rk ...VCM of measurement noise at epoch k (A2)

Prediction and Update Steps are:

δ x̄k = T k−1,k δ x̂k−1

P̄k = T k−1,k P̂k−1 T T
k−1,k + Qk−1

dk = δzk − Hk δ x̄k

Dk = Rk + Hk P̄k HT
k

K k = P̄k HT
k D−1

k

δ x̂k = δ x̄k + K k dk

P̂k = (I − K k Hk) P̄k

(A3)
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where

δ x̄k ...Predicted error state at epoch k

P̄k ...VCM of predicted (error) state vector at epoch k

dk ...Vector of innovations at epoch k

Dk ...VCM of innovations

K k ...Kalman gain matrix

δ x̂k ...Estimated error state at epoch k

P̂k ...VCM of estimated (error) state vector at epoch k
(A4)

Appendix BMean shift model and test
quantity derivation

Our testing strategy is based on the mean shift model applied
to the Gauss-Markov representation of the filter update:

[
δzk
δ x̄k

]
=

[
Hk E
I 0

] [
δxk
�

]
+

[
dk
wk

]
(B5)

where � describes the modeled bias vector of dimension q.
Matrix E describes the influence of the bias on the measure-
ments. With � and E, we are able to model and test against
different error scenarios, e.g., in this publication a group of
outliers (B13) or a bias from a different observation space
(B14). Matrix E can be found by modeling

z�k = E � (B6)

implying the dimensions of E of the number of observations
(nk) times the number of modeled outliers (q).

Test quantity T� for the hypotheses H0 and Ha is well
known, cf. Teunissen (2006, p. 72ff):

H0 : E{�} = 0

Ha : E{�} �= 0

T� = �̂
T

�−1
�̂

�̂

(B7)

and follows a χ2
1−αq ,q distribution. The estimated bias vector

and the corresponding VCM are computed by (cf. Jäger et al.
2005, p. 184ff):

�̂ = �
�̂
ET D−1

k dk

�
�̂

=
(
ET D−1

k E
)−1 (B8)

Inserting (B8) into (B7) gives

T� = dTk D
−1
k E

(
ET D−1

k E
)−1

=I︷ ︸︸ ︷(
ET D−1

k E
) (

ET D−1
k E

)−1
ET D−1

k dk

= dTk D
−1
k E

(
ET D−1

k E
)−1

ET D−1
k dk .

(B9)

For an individual outlier q = 1 with E = ηi (being the
i-th canonical unit vector) expression (B9) can be further
simplified because

ET D−1
k E = ηT

i D−1
k ηi = σ 2

di (B10)

is the variance of the i-th innovation. This gives

Ti,k = dTk D
−1
k ηi

1

σ 2
di

ηT
i D−1

k dk =

= 1

σ 2
di

(
ηT
i D−1

k dk
)T (

ηT
i D−1

k dk
)

=

=
(
ηT
i D−1

k dk
)2

σ 2
di

(B11)

Taking the square root ti,k = √
Ti,k and resubstituting

(B10) gives (19). The test quantity
∣∣ti,k

∣∣ follows a standard
normal distribution z1−αq/2 because

√
Ti,k ∼ χ1−αq ,1 and

from X ∼ χ1 follows |X | ∼ z (standard normal distribution).

B.1 Group of measurements

Two strategies to overcome identifyability issues with the
cartesian measurement model are possible. The first is to test
two components at a time, e.g., the x- and y-components for
a vertical angle ζ of approximately 100 gon.

With q = 2, we model a two-dimensional bias vector,
e.g., �xy = [

�x �y
]T
. The test then yields:

Ha,I ,k : E{δzk} = Hkδxk + E�

TI ,k = dTk D
−1
k E

(
ET D−1

k E
)−1

ET D−1
k dk

TI ,k > χ2
1−αq ,q

(B12)
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with

E =
⎡
⎣
1 0
0 1
0 0

⎤
⎦ (B13)

B.2 Cartesian distance bias

The other approach is to model a distance measurement out-
lier� = �D for the cartesianmeasurement model. this leads
to the same test statistic (B12) with

E =
⎡
⎣
sin ζ lla cos Rl

la
sin ζ lla sin Rl

la
− cos ζ lla

⎤
⎦ (B14)

and q = 1.

B.3 Comparison

The two alternate testing strategies for the cartesian model
are shown in Fig. 12 together with the test quantity of the
distance measurement for the spherical model. It represents
the same simulated data as Fig. 5. The test quantity TD,k is
slightly different from Fig. 5 because measurement elimi-
nation is disabled for better comparison with the cartesian
testing strategies.

We can see that the xy-group test (Txy,k , dashed line,
Eq. B13) is slightly disadvantageous compared to the test
statistic for the spherical distancemeasurement (TD,k = t2D,k ,
dotted line, Eq. 19). On the other hand, the test statistic for
cartesian formulated distance bias (TDc,k , solid line, Eq. B14)
is identical to the corresponding spherical statistic in terms of
identifiability. However, the problem with this cartesian test
strategy is that the possibility of elimination is missing after

Fig. 12 Test statistics for individual distancemeasurement in the spher-
ical model compared to the xy-group test Txy,k (B13) and the distance
bias for cartesian measurement model TDc,k (B14). The solid black line
is the threshold for an individual test, the dashed line is the correspond-
ing threshold for the group test

failure identification. At the latest when the null hypothesis
has to be rejected, the spherical observation model is neces-
sary to be able to eliminate the faulty observation.

Appendix C Pole tilt compensation
methodology

Pole tilt compensation describes the process of computation-
ally leveling a tilted pole or probing device to measure the
coordinates of the tip. This boils down to a series of coordi-
nate transformations.

First, we have the pole system p-frame, which is defined
in terms of a right-handed coordinate system with the origin
at the prism center and the z-axis through the pole tip. In this
system, wemeasure the tip (subscript v), prism center (a) and
IMU position (b) with a higher-order accuracy system, e.g., a
lasertracker. From this we are able to compute the prism-tip-
vector l pav , the imu-tip-vector l pbv and the imu-prism-vector
l pba using the above specified subscripts. These have to fulfill
the following condition by definition (with l p describing the
pole length between prism center and pole tip):

l pav = l pbv − l pba =
⎡
⎣
0
0
l p

⎤
⎦ (C15)

The involved frames and vectors are shown in Fig 13. The
imu-prism-vector l pba w.r.t. the body frame (b-frame, respec-

Fig. 13 The IMU body frame
and the pole frame related by the
mounting parameters Cb

p . The
relation between
prism-tip-vector, imu-tip-vector
(tipvector lbbv = Cb

p l pbv) and
imu-prism-vector (leverarm
lbba = Cb

p l pba) is shown in blue
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tively the IMU) lbba = Cb
p l

p
ba is called leverarm (ormounting

vector in some references) and is needed in tight coupling
of RTS/INS. We call the rotation between pole- and body
frame Cb

p mounting, which describes the relation between
the p-frame and b-frame and is caused by the mounting of
the IMU on the pole. Thismounting is calibrated beforehand,
for details see Thalmann et al. (2020).

From the tight coupling approach of RTS and INS we
derive the position rllb and orientation ψ l

lb of the b-frame,
w.r.t. the local tangent-plane frame, the l-frame. The com-
pensation is achieved by computing the tip w.r.t to the RTS
l-frame rllv:

rllv = rllb + Cl
b l

b
bv

rllv = rllb + Cl
b C

b
p l

p
bv

(C16)

where Cl
b is the rotation matrix defined by Euler angles

ψ l
lb estimated within the EKF. The tipvector lbbv is computed

by rotating the imu-tip-vector (p-frame, l pbv) by themounting
Cb

p.
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