
Declarative Knowledge Distillation from
Large Language Models for Visual Question Answering Datasets

Thomas Eiter1 , Jan Hadl1 , Nelson Higuera1 , Johannes Oetsch2

1Institute for Logic and Computation, TU Wien, Favoritenstraße 9–11, 1040 Vienna, Austria
2Department of Computing, Jönköping University, Gjuterigatan 5, 551 11 Jönköping, Sweden

{thomas.eiter, jan.hadl, nelson.ruiz}@tuwien.ac.at, johannes.oetsch@ju.se

Abstract

Visual Question Answering (VQA) is the task of answering a
question about an image and requires processing multimodal
input and reasoning to obtain the answer. Modular solutions
that use declarative representations within the reasoning com-
ponent have a clear advantage over end-to-end trained systems
regarding interpretability. The downside is that crafting the
rules for such a component can be an additional burden on
the developer. We address this challenge by presenting an
approach for declarative knowledge distillation from Large
Language Models (LLMs). Our method is to prompt an LLM
to extend an initial theory on VQA reasoning, given as an
answer-set program, to meet the requirements of the VQA
task. Examples from the VQA dataset are used to guide the
LLM, validate the results, and mend rules if they are not cor-
rect by using feedback from the ASP solver. We demonstrate
that our approach works on the prominent CLEVR and GQA
datasets. Our results confirm that distilling knowledge from
LLMs is in fact a promising direction besides data-driven rule
learning approaches.

1 Introduction
Visual question answering (VQA) (Antol et al. 2015; Goyal
et al. 2017) is a challenging problem with valuable applica-
tions (Barra et al. 2021; Lin et al. 2023); it is the task of
providing an accurate answer for a question about a visual
scene. This requires not just a joint understanding of vision
and text, but also the ability to follow complex chains of
reasoning operations.

Neurosymbolic approaches to VQA (Mao et al. 2019;
Yi et al. 2018; Amizadeh et al. 2020; Eiter et al. 2022;
Surı́s, Menon, and Vondrick 2023; Johnston, Nogueira, and
Swingler 2023, etc.) use deep learning for perception, pro-
duce a symbolic representation of the input image and ques-
tion, and then perform reasoning on this representation in
a purely symbolic way. These approaches are interpretable,
transparent, and can be extended easily due to their com-
positional structure. A promising direction in this regard
is to use logic-based formalisms for the reasoning compo-
nent. We are in particular interested in using Answer-Set
Programming (ASP) (Brewka, Eiter, and Truszczynski 2011;
Lifschitz 2019), a prominent knowledge representation frame-
work, for the reasoning module of such systems. Besides
concise representations, advantages are that non-determinism

Knowledge Distillation

Syntax and
Semantic

Check

ASP Theory

state(TO,ID) :-
scene(TO),
object(ID).
ans(V) :- end(TO),
attr(TO,V).
:- not ans(_).
…

GQA Example

%Encoded Question
scene(0).
select(1, 0, cup).
…
%Encoded Scene
object(1279215).
has_attr(1279215,
class, cup).
has_rel(1279215,
to_the_right_of,
3843699).
…

Large
Language

Model

System
Preprompt

User
Prompt

New Rules

state(TO,ID) :-
select(TO, TI,
CLASS), state(TI,
ID), has_attr(ID,
class, CLASS).
bool(TO,yes) :-
or(TO, TI0, TI1),
bool(TI0,yes).

Figure 1: An overview of our knowledge distillation method.

allows for multiple answers if desired, ambiguity in the per-
ception often can be resolved in the reasoning module (Eiter
et al. 2022), and one can more easily add explanation ca-
pabilities (Eiter et al. 2023). Using ASP to augment VQA
with reasoning capabilities is a topic that is indeed currently
gaining traction and is used not only for VQA (Abraham,
Alirezaie, and Raedt 2024; Eiter et al. 2023; Eiter et al. 2022;
Basu, Shakerin, and Gupta 2020), but also for tasks such as
segmentation of medical images (Bruno et al. 2021). The
downside is that crafting the rules for such a component is not
always easy and can be an additional burden on the developer.

We address this challenge by presenting an approach for
declarative knowledge distillation from Large Language
Models (LLMs) (Vaswani et al. 2017; Zhao et al. 2023) (see
Fig. 1). The premise of this work is that we want to develop
a modular solution for a VQA task for which we have, as
is commonly the case, a dataset of questions, scenes, and
answers at our disposal. Further, the reasoning component
involves already an initial ASP theory that covers some but
not all aspects of the VQA task. Our method is to prompt
an LLM to extend this initial theory to meet the remaining
requirements. Examples from a VQA dataset are used to
guide the LLM, validate the results, and mend the generated
rules if they are not correct using feedback from the ASP
solver. More specifically, if we encounter an example from

ar
X

iv
:2

41
0.

09
42

8v
1

 [
cs

.A
I]

 1
2

O
ct

 2
02

4

the dataset for which the system does not yet give the correct
answer, we prompt the LLM with a description of the scene,
question, and expected answer to suggest rules to extend the
current program. We then run an ASP solver to test the new
program. If the output of the ASP solver does not match the
expected answer, we hand this ouput and the expected answer
to the LLM and prompt it to correct the ASP program ac-
cordingly. If the ASP solver gives a syntax error, we ask the
LLM to fix it. If the test passes, we proceed with regression
testing on previous examples to ensure that the system will
still answer any question it could answer before the extension.
We also experiment with presenting examples in batches to
reduce the number of calls to the LLM.

Our approach bears similarities with methods from
statistical-relational learning (SRL) (Raedt and Kersting
2017), as there the goal is also to find rules that generalise
examples from a dataset. While SRL is data-driven, our
method uses examples only to guide a knowledge distillation
process via conditioning an LLM; we go into more detail in
the related work section.

We use two VQA datasets to evaluate our knowledge distil-
lation method: CLEVR (Johnson et al. 2017) and GQA (Hud-
son and Manning 2019). CLEVR uses synthetic scenes and
is designed to challenge VQA systems with compositional
questions that require breaking down the overall task into a
tree of primitive operations that is evaluated recursively. On
the other hand, GQA uses real images that depict complex
visual scenes and diverse questions with a large number of
possible answers that involve reasoning on the image scene
graph, i.e., the objects in the scene, their attributes, and rela-
tions. To solve CLEVR, we use a recent VQA system (Eiter
et al. 2023). For GQA, we use a similar system (Hadl 2023),
which is able to perform VQA in a zero-shot manner, i.e.,
without training or fine-tuning of components to the current
dataset. This is a significant advantage over related systems
that require a costly training process. Both VQA systems use
ASP for reasoning.

Our experiments show that LLMs can understand and pro-
duce ASP rules to implement new reasoning operators, and
thus can effectively assist in the process of generating the
reasoning component. This methodology offers a promis-
ing avenue for extracting domain-specific knowledge from
LLMs in the realm of VQA and offers a viable alternative to
data-driven rule learning approaches.

The remainder of the paper is organised as follows. We
discuss related work in Section 2 and present the VQA ap-
proaches used in Section 3. Then, we introduce the knowl-
edge distillation method in Section 4 and evaluate it in Sec-
tion 5. Finally, Section 6 presents concluding remarks and
pointers to future work.

2 Related Work
Answer-Set Programming and LLMs. Recently, LLMs
have been explored in the context of ASP. Ishay, Yang, and
Lee (2023) observed that LLM reasoning capabilities are
shallow, but they can serve as a highly effective semantic
parser to transform input into ASP representations. These
are then used to solve logical puzzles. We also recently
proposed to use LLMs to parse the question into ASP facts

in the context of VQA for images of graphs (Bauer et al.
2023). Rajasekharan et al. (2023) showed that the combina-
tion of LLMs with ASP in their STAR framework produces
good results for natural language tasks that require qualitative
reasoning, mathematical reasoning, and goal-directed conver-
sation. Our work is different as we do not focus on semantic
parsing but on the more challenging task of knowledge dis-
tillation, where we aim for a system that can produce sound
logical rules capturing knowledge about a particular domain.
Recent work by Zhu et al. (2023) explores the use of LLMs to
learn rules from arithmetic and kinship relationships, yet the
rules they learn do not contain variables and their semantics
is informal.

Statistical-relational learning. Similar to our approach,
methods from statistical-relational learning (SRL) (Raedt and
Kersting 2017), in particular from inductive logic program-
ming (ILP) (Muggleton 1991; Muggleton and Raedt 1994;
Cropper et al. 2022), aim at producing rules from exam-
ple data and a background theory. SRL has seen great ad-
vances in terms of scalability by, e.g., applying gradient-
based boosting (Gutmann and Kersting 2006), and systems
like ILASP (Law, Russo, and Broda 2020) and FastLAS (Law
et al. 2020) provide means for inductively learning expressive
ASP programs.

However, SRL takes a statistical and probabilistic learning
perspective that is in essence data driven. Our method is
orthogonal to that, as it does not aim at learning. On the
surface, we also use a data set, but the role is very different as
it guides a knowledge distillation process via conditioning an
LLM. ILP uses a search-based approach where the solutions
produced are correct and minimal under some criteria. A key
aspect of many ILP systems are mode declarations that define
the syntactic form of allowed rules to restrict the search space
of possible programs. Mode declarations are in a formal
language, and they tacitly assume an intuition about the form
of the solution. For the distillation approach , we do not need
that; we only elicit knowledge that is already present in the
LLM, and the information in the prompt that instructs what
rules we want is informal and in natural language. When
prompting LLMs, rules are general by command—while
optimality is not enforced, it may happen implicitly.

Modular neurosymbolic VQA. There are several VQA sys-
tems that feature a modular architecture which combines
subsymbolic with symbolic components (Yi et al. 2018;
Mao et al. 2019; Amizadeh et al. 2020; Eiter et al. 2022;
Surı́s, Menon, and Vondrick 2023; Johnston, Nogueira, and
Swingler 2023). Specifically, Yi et al. (2018) used a pipeline
to extract a scene graph (a list of all objects detected in the
image with their attributes and positions) from the image.
They then translated the provided question into a structured
representation of the reasoning steps, called functional pro-
gram, and executed this program on the structural scene
representation to obtain an answer. The authors showed
excellent results on the popular CLEVR dataset (Johnson
et al. 2017). This approach has been advanced with logic-
based reasoning processes, e.g., by Differentiable First-Order
Logic (∇-FOL) (Amizadeh et al. 2020), or by ASP (Eiter et
al. 2022). These reasoning processes can consider not just the

2

most probable scene-graph prediction, but rather the entire
vector of probabilities as output by the object detection and at-
tribute/relation classifier networks that form the visual percep-
tion component of the VQA pipeline. Foundational models
such as Vision-Language Models (VLMs) such as BLIP-2 (Li
et al. 2023) and SimVLM (Wang et al. 2022) have become
sufficiently strong through their pre-training regimes to gen-
eralise well to multiple different datasets. Approaches that
use these VLMs as components are, e.g., ViperGPT (Surı́s,
Menon, and Vondrick 2023), CodeVQA (Subramanian et al.
2023), and PnP-VQA (Tiong et al. 2022).

3 Background & VQA Methodology
In this section, we review the basics of the logic-based VQA
approaches for the two datasets, GQA and CLEVR, that we
are going to use for our evaluation. Both systems use ASP to
derive answers from a symbolic scene representation. So we
start by reviewing the basics of ASP next.

3.1 Answer-Set Programming
Answer-Set Programming (ASP) (Brewka, Eiter, and
Truszczynski 2011; Lifschitz 2019) is a well-known approach
to declarative problem solving, in which solutions to a prob-
lem are described by sets of logical rules. Efficient ASP
solvers for evaluating the rules are readily available.1

For our concerns, an ASP program is a finite set P of rules
r of the following form:

a :− b1, . . . , bn, not c1, . . . , not cn m,n ≥ 0

where a, all bi, and all cj are atoms in a first-order predicate
language, and not stands for negation as failure (aka. weak
negation). We allow that a may be missing (viewed as falsity);
then r acts as a constraint. Intuitively, the rule means that
whenever all bi are true and none of the cj can be shown to
be true, then a must be true. Some rules appear in Fig 2b.

The semantics of a ground (variable-free) ASP program is
given in terms of answer sets, which are Herbrand models that
satisfy a stability condition (Gelfond and Lifschitz 1988). A
Herbrand interpretation of P is a set I of ground atoms in the
language induced by P (intuitively, the atoms that are true).
Such an I is a model of P if for each rule r in P either (i)
a ∈ I or (ii) {b1, . . . , bn} ̸⊆ I or (iii) I∩{c1, . . . , cn} ≠ ∅;
that is, I satisfies r viewed as implication in classical logic.

An interpretation I is then an answer set of P , if I is a
⊆-minimal model of the program P I = {r ∈ P | I satisfies
neither (ii) nor (iii)}. Intuitively, I must result by applying
the rules r whose bodies “fire” w.r.t. I starting from facts.

The semantics of programs with variables is defined in
terms of their groundings (uniform replacement of variables
in rules with all possible ground terms).

ASP features further constructs such as choice rules (which
allows to select among alternatives under cardinality bounds)
and weak constraints (i.e., soft constraints expressing costs
for an objective function that is minimised); notably, the latter
allow for modeling numeric uncertainty and to single out the
most likely from answer sets of a program or a range of most
likely answer sets. For more details on ASP, we refer to
(Brewka, Eiter, and Truszczynski 2011; Calimeri et al. 2020).

1We use clingo (v. 5.6.2) from https://potassco.org/.

3.2 Zero-Shot VQA for the GQA Dataset
Next, we explain our system for zero-shot VQA for the GQA
dataset (Hudson and Manning 2019). It does not require any
training, but relies on foundation models for processing the
visual scene and ASP for deducing answers.

The GQA dataset. We use the state-of-the-art GQA
dataset, which has been widely adopted in the recent literature
(Amizadeh et al. 2020; Surı́s, Menon, and Vondrick 2023;
Liang et al. 2020; Li et al. 2023). It contains over 22M open
and binary questions that are complex in structure, involve
a wide variety of reasoning skills, and have a large number
(1 878) of possible answers. The questions cover more than
100 000 images from the Visual Genome dataset (Krishna et
al. 2017) that present real-world scenes with a wide variety
of object classes, attributes, and relations. GQA comes with
two types of supplementary data that greatly aid in the devel-
opment of our pipeline: First, each natural-language question
from the test split comes with a functional representation
of its required reasoning steps. Second, a Visual Genome
scene graph is provided for every image in the test split of
the dataset, which allows us to verify soundness of our ASP
encoding under perfect visual information.

Solving GQA. Our system for solving GQA, shown in
Fig 2a, resembles other modular neurosymbolic models con-
sisting of modules for language, vision, and reasoning. We
next describe these modules, a performance evaluation is rel-
egated to the appendix. As mentioned, one of the advantages
of using GQA is that we already have a functional represen-
tation that we can use for every question. Neurosymbolic
systems have already shown that even classic neural networks
such as the LSTM (Hochreiter and Schmidhuber 1997) are
able to properly translate natural language into these repre-
sentations. Moreover, LLMs can now be used for the task
of semantic parsing, which may generalise much better than
trained neural networks for specific datasets. We assume that
the representation is given, and thus we only implement a
script that translates it to our ASP representation. An example
of this is shown in Fig. 2b under “Question Encoding”. The
predicates are linked by the numbers in the first argument,
which represent steps to compose questions.

We next discuss the reasoning module, which uses as a
fixed logical program. In a later section, we show how to use
LLMs to extend such a logical theory to add functionality.
The ASP theory. The GS-VQA pipeline constructs sym-
bolic encodings of both the input question and the input
image, which we call question encoding and scene encod-
ing, respectively. Similarly to a related approach (Eiter et
al. 2022), we use ASP as the symbolic formalism for these
encodings. This provides us not only with a mature ecosys-
tem of tooling and solvers, but more importantly, allows us
to capture the uncertainty in the class, attribute, and relation
predictions of the scene-processing component.

The ASP theory consists of a set of rules that—in con-
trast to the question and scene encoding—do not change
from question to question and encode the semantics of the
reasoning operations that can appear as part of the question
encoding.

3

https://potassco.org/.

 GS-VQA Pipeline

Image

Concept Extraction
Classes Attributes Relations

Scene Processing

Object Detection

Concept Classification

ASP Encoding

Question Encoding

Scene Encoding

ASP Theory

A
SP Solver

Answer

to the left

Question

Is the umpire to the right or to the left of the
 standing person that is wearing a helmet?

(a) An overview over the full GS-VQA pipeline.
(b) Excerpts from the question encoding,
scene encoding, and the ASP theory.

Figure 2: GS-VQA takes the image and question as input and uses a question-driven approach to generate a partial scene graph. We generate
an ASP representation of both partial scene graph and question. These are then solved along an ASP theory to derive the correct answer.

Revisiting the rules in Figure 2b, there Ti and To are vari-
ables representing input/output step references, ID represents
an object id, C a class, A an attribute category, V an attribute
value, and R a relation. The entire theory, described as part
of the online repository, is solved alongside both scene and
question encodings to produce an answer.

Question-driven scene-graph generation. The zero-shot
nature of the pipeline presents a challenge for constructing a
complete scene graph of visually complex scenes: due to the
general-purpose nature, inference with the VLMs that GS-
VQA uses for scene graph generation is far more resource
intensive than adhoc trained models. As such, constructing a
full scene graph in which likelihoods for all possible classes,
attributes, and relations in the dataset are present for every
object detected in the scene is untenable within a time bound
that a human user might find acceptable.

To resolve this issue, the pipeline resorts to “question-
driven” partial scene-graph extraction, where only infor-
mation is extracted from the scene that is relevant for an-
swering the question at hand. To this end, the concept-
extraction component determines which object classes, at-
tributes, and relations are relevant from the semantic rep-
resentation of the input question. Conceptually, it takes a
question in natural language and produces a tuple (C,A,R),
where C is a set of classes, A is a set of attribute cat-
egories, and R is a set of relations. We use the func-
tional representation that comes with every question in
GQA to accomplish this. For the example question in
Fig. 2a, the tuple is ({helmet, umpire, person}, {pose},
{wearing, to the left of, to the right of}).

Using the (C,A,R) output tuple of the concept-extraction
component, the scene-processing component has the task
of extracting a question-driven partial scene graph. We
represent the graph as a list O = [o1, . . . , on] of objects
oi = (id, s, B, c, Ao, Ro), each having a unique identifier id,
a score s between 0 and 1 denoting the confidence in the
object detection from scene-processing, a bounding box B,

a class c, and sets Ao and Bo of attribute and relation likeli-
hoods, respectively. The class c is either in C or a sub-class
of maximal specificity of a class c′ in C. The latter ensures
that an object cannot, e.g.,, be detected as just a “person”, but
must be detected as a maximally specific class like “baseball
player”. It also means that the scene graph contains only
objects of classes that are deemed relevant to answering the
question (hence the description as a “partial” scene graph).
The set Ao contains, for each possible value v of each at-
tribute category a in A, a likelihood between 0 and 1 that
v applies to a for the object. Finally, Ro contains, for each
relation r ∈ R and each other detected object oj ̸= oi, a
likelihood between 0 and 1 that r(oi, oj) applies. The scene
graph O = [o1, o2, . . . , on] generated by when processing
the scene is easily translated using a script into our ASP rep-
resentation. Fig. 2b shows an excerpt of such representation
under “Scene Encoding.”

3.3 VQA for the CLEVR Dataset
The second dataset we consider is CLEVR (Johnson et al.
2017), which uses synthetic scenes but challenges VQA sys-
tems with more complex compositional questions. We use
a VQA system for CLEVR (Eiter et al. 2022), that we have
extended by an explanation component in recent work (Eiter
et al. 2023). We revisit its basic functionality in the remainder
of this section.

The CLEVR dataset. CLEVR was designed to test VQA
system with compositional questions that involve making
several reasoning steps to derive the correct answer. The
dataset contains synthetically generated images with different
objects in it. These objects vary in their shape (cube, cylinder,
sphere), colour (brown, blue, cyan, gray, green, purple, red,
yellow), size (big, small), and material (metal, rubber).

CLEVR questions require, e.g., identifying objects, count-
ing, filtering for attributes, comparing attributes, and spatial
reasoning. They are formulated in natural language, but, as
for GQA, a functional representation is also provided that

4

can be directly parsed into ASP facts. For illustration, the
question “How many large things are either cyan metallic
cylinders or yellow blocks?” then becomes

end(8). count(8, 7). filter large(7, 6). union(6, 3, 5).
filter cylinder(3, 2). filter cyan(2, 1).
filter metal(1, 0).
filter cube(5, 4). filter yellow(4, 0). scene(0).

which encodes an execution tree of operations to derive the
answer, where indices refer to output (first argument) and
input (remaining arguments) of the respective operations.

Solving CLEVR. The architecture of the system for
CLEVR is similar to the one for solving GQA. In fact, the
latter system was inspired by the design of the former. The
scenes in CLEVR are however less complex, and we use the
popular object-detection framework YOLOv52 to identify all
objects in the image, their attributes, and further bounding-
box information.

As for GQA, ASP is used for the reasoning module. More
specifically, we use a uniform ASP encoding that describes
how to derive the answer for a question and a scene, both
given as translations into ASP facts, by step-wise evaluating
the execution tree of operations from the question encoding.
More information, code, and the full ASP encoding can be
found online.3

4 Knowledge Distillation Method
Our VQA approaches use a hand-coded ASP theory that
correctly computes the answer to any question in the dataset,
given a correct representation of both the question and the
image. The ASP encoding is constructed around a fixed
dataset. If the dataset is extended, rules need to be modified
or added to handle new examples. In general, these new rules
must be crafted by a human; here, an LLM based system can
come to aid and provide automated support. To this end, we
aim for a reasoning module that manages the theory by being
able to recognise which examples it can handle and which it
cannot, and in the latter case, by adding rules in a way such
that the example can be solved. We propose a method of
declarative knowledge distillation, where the model we distil
from is an LLM, and the knowledge that is distilled from it
is represented in ASP rules.

4.1 Preprompt
We first present a preprompt that instructs the LLM to only
return ASP rules that extend an initial theory Init. Theory
Init is a partial encoding for the task at hand that we want to
extend. Our preprompt consists of several components:
1. Introduction: We present the setting of VQA and clarify

that we have already parsed both scene and question into
correct representations.

2. Language Syntax: We describe the syntax of the lan-
guage we use to represent questions and scenes, in our
case ASP.
2https://ultralytics.com/yolov5.
3https://github.com/pudumagico/nsvqasp.

3. Scene and Question Explanation: We explain the rep-
resentation that is used for the scene graph and questions
and give examples.

4. Answer Format: We describe the format of the answers
to the questions.

5. Initial Theory: We present the initial theory Init that
must be updated as necessary.

6. Task Explanation: Finally, we explain the input the LLM
will receive from now on and the expected response (see
Listing 1).

The input after the preprompt are question/scene/answer tu-
ples (Q,S,A) in the language of ASP. The task is the follow-
ing: when our system recognises that the current theory can-
not handle the instance presented, then the LLM is prompted
to add rules such that the correct answer can be derived. The
expected LLM output is a list of ASP rules.

Your task is to keep the ASP theory
updated with rules that allows us
to answer questions.
We provide an initial theory that
can handle some instances.
The prompt input will consist of one or
more questions in the ASP representation.

Strictly follow these guidelines:
1. Only output the new ASP Rules.
2. Do not add facts as rules.
3. New rules should be as general
as possible, i.e., have a low number of
constants and high number of variables.
4. Do not output any natural language.

Listing 1: Excerpt from the Task Explanation part of our preprompt.

4.2 Rule Distillation Algorithm
With the task explained to the LLM by the preprompt, we
can start to present examples from the dataset. For each ques-
tion/scene/answer tuple p = (Q,S,A), we do the following
steps (and repeat them for the same example at most r times
if not successful):

1. Prompting: We prompt the LLM with p as additional
input, and we get as a response R.

2. Solving: We concatenate R with the initial theory to get
theory Res. Then, we run an ASP solver on theory Res
alongside the instance pair (Q,S).
(a) Syntax Check: If we get a syntax error, we pass the

error message to the LLM and prompt it to revise R
accordingly. We try this at most m times.

(b) Semantic Check: We check whether the answer we
get from the solver is correct, i.e., coincides with A. If
not, we pass the actual answer and the expected answer
to the LLM and task it to update R; we try this at most
m times.

3. Regression Testing: To avoid that adding rules to the
theory renders past examples incorrect, we test Res on all
previously seen examples. Only if all tests pass we keep
Res, otherwise we disregard the extension R.

5

https://ultralytics.com/yolov5
https://github.com/pudumagico/nsvqasp

The algorithm has two parameters, r is the number of re-
tries per example, and m is the number of retries for mending
incorrect rules (defaults are r = m = 1). Mending rules is
potentially expensive as it requires more calls to the LLM; it
can be turned off if preferred.

Example Sampling Strategies. VQA datasets contain mil-
lions of instances, and going blindly through them can make
the distillation process ineffective. Choosing a small but rep-
resentative sample can yield better results faster. We propose
two strategies to group instances:
• Predicate Count: We group all the instances by the number

of predicate occurrences that appear in the ASP question
representation. For this, we create a dictionary whose
keys are the numbers of predicates and the contents are
questions with such length.

• Predicate Relevance: Here, we group examples based on
the predicates that appear in the question representation.
We first create a dictionary whose keys are all the pred-
icates that appear in any question representation. Then
we populate the dictionary with questions where the key
predicate appears in the question representation.

We then sample examples from the group created for the
chosen strategy with a parameter k. For the former, the total
number of examples is k multiplied by the number of keys
in the dictionary, while for the latter, the total number of
examples is exactly k.

Batch Optimization. We present prompt instances one by
one, which results in one LLM call for each example. This
is not very efficient and can misguide the LLM into imple-
menting rules that only solve that particular example, yet our
aim is to have general rules that can handle a considerable
portion of the dataset. Considering that LLMs have increas-
ingly larger context sizes, we also investigate the option of
presenting prompt instances in batches, where each batch
contains up to b singular instances. We observe that the scene
representation is usually much larger than the question rep-
resentation and only contains a small number of predicates,
and the variance comes more from the constants in them.
Considering this, whenever we use our batch strategy, we
present the prompt instance p = {Q1, . . . , Qb}, where we
include only the question representation in the Qi and drop
the scene representations. Now the LLM must create rules
general enough to pass the semantic check for all the exam-
ples in the batch. However, there is an expected trade-off
between batch size and accuracy: With large b, the semantic
check and regression testing might be too strict for the LLM
to produce rules that correctly cover all examples in one shot.

5 Knowledge Distillation Experiments
We conduct a series of experiments to evaluate our knowl-
edge distillation method on GQA and CLEVR to answer the
following research questions:4

(R1) Given an ASP-based VQA system and a VQA task, can
our approach extend the ASP reasoning component to deal

4The code for reproducing our experiments is available as an
online repository: https://github.com/pudumagico/KR2024.

with questions that require reasoning operations/steps that
are not yet implemented?
(R2) What LLMs are suitable for our method?
(R3) Can our method cope with the challenge of removing,
either randomly or in a more controlled way, increasingly
large parts from an initial complete theory?
(R4) What are the effects of the more resource-friendly batch
processing variant and mending switched off for our method?

The evaluation platform is a workstation with an Intel Core
i7-12700K CPU, 32GB of RAM, and an NVIDIA GeForce
RTX 3080 Ti GPU with 12GB of video memory. All ex-
periments were run 5 times. We include average accuracy,
standard deviation, as well as the minimum and maximum
value obtained. For reproducibility, we logged all our param-
eters, random seeds, and input prompts.

LLM selection. Before going into the details of our knowl-
edge distillation experiments, we describe how we selected
LLMs for further consideration.

We ran the ASP programs of our VQA systems on exam-
ples from GQA and CLEVR. Then we selected ca. 45k exam-
ples where the answer was correctly calculated for GQA, and
then divided this set into a training and a test suite of ca. 35k
and 10k instances, respectively. For CLEVR, we selected
50k examples and split them into 35k for training and 15k
for testing.5

For the selected examples, we ran preliminary experi-
ments on a large array of LLMs, both local and online API-
based ones. Local models, such as GPT4ALL (Anand et
al. 2023) “wizardlm-13b”, showed very poor performance
when prompted to produce ASP rules. Some API models,
like “mistral-medium”, where too slow in coming up with a
response for our purposes and were thus excluded.

We selected the three top performers, which were GPT-
4 (OpenAI 2023), GPT-3.5, and Mistral (Jiang et al. 2023);
more specifically, the models used are “gpt-4-1106-preview”,
“gpt-3.5-turbo-1106” and “mistral-small”, respectively.

Experiment 1. Our first experiment is designed to address
(R1) and (R2). We start with the complete ASP encoding
for each VQA approach presented in Section 3 and remove
all rules that mention a particular predicate P that occurs in
some question representation. We then prompt the LLM with
examples that contain P in their question representation to
repair the theory. This simulates a scenario where the initial
ASP theory is not yet capable to address all requirements of
the VQA task and needs to be extended.

We use the predicate ordering strategy with a sample size
of k = 10. As we only sample questions where P is present,
the number of examples used for each run is k.

The results for GQA and CLEVR are shown in Table 1.
Column Init\P shows the accuracy of the initial ASP encod-
ing with a predicate P removed. The drop in accuracy varies
depending on the number of questions affected and the role
of the predicate that was removed (e.g., “select” results in a
deeper drop). The other columns show the performance of

5The expression “training set” refers here to the examples used
when running the knowledge distillation method.

6

https://github.com/pudumagico/KR2024

P Init \ P GPT-4 GPT-3.5 Mistral

query 48.84 97.67± 18.05 (89.16, 98.92) 70.02± 19.36 (48.84, 85.53) —
exist 86.36 99.75± 00.50 (98.86, 99.98) 87.65± 02.41 (86.36, 91.95) 89.68± 04.20 (86.36, 95.66)
or 92.18 100.0± 00.00 (100.0, 100.0) 93.03± 01.90 (92.18, 96.44) 93.20± 01.66 (92.18, 96.02)
filter 81.60 98.21± 00.40 (97.49, 98.40) 83.15± 03.47 (81.60, 89.37) 81.70± 00.24 (81.60, 82.14)
choose attr 92.12 95.98± 05.37 (88.73, 99.83) 93.73± 01.36 (92.31, 95.83) 92.12± 00.01 (92.12, 92.15)
verify rel 93.72 98.60± 01.11 (96.73, 99.43) — —
select 9.53 99.94± 00.07 (99.87, 100.0) 27.42± 40.01 (9.53, 99.01) —
negate 98.59 98.54± 00.20 (98.59, 98.74) — —
relate 56.89 69.38± 12.50 (56.89, 85.25) — —
two different 98.94 100.0± 00.00 (100.0, 100.0) 99.39± 00.55 (98.94, 100.0) —
two same 98.83 99.99± 00.00 (99.99, 100.0) 99.05± 00.53 (98.83, 100.0) —

(a) Results for GQA.

P Init \ P GPT-4 GPT-3.5 Mistral

exist 79.63 99.48± 00.70 (98.72, 100.0) 87.82± 11.11 (98.72, 100.0) 80.21± 06.36 (72.16, 90.02)
unique 29.19 97.67± 18.05 (89.16, 98.92) — —
count 98.01 99.60± 00.88 (98.01, 100.0) 98.01± 01.12 (98.01, 98.40) —
equal integer 96.61 99.92± 00.17 (99.61, 100.0) 97.80± 01.26 (96.61, 99.60) —
and 93.67 100.0± 00.00 (100.0, 100.0) 97.46± 03.46 (93.67, 100.0) —
relate left 84.73 100.0± 00.00 (100.0, 100.0) 96.18± 07.63 (84.73, 100.0) 94.14± 08.02 (84.73, 100.0)
filter large 68.54 100.0± 00.00 (100.0, 100.0) 87.41± 17.23 (68.54, 100.0) 81.12± 17.23 (68.54, 100.0)
query shape 72.23 100.0± 00.00 (100.0, 100.0) 100.0± 00.00 (100.0, 100.0) 94.44± 12.43 (72.23, 100.0)
same color 94.79 99.36± 00.87 (98.41, 100.0) 100.0± 00.00 (100.0, 100.0) 97.07± 02.70 (94.79, 100.0)

(b) Results for CLEVR.

Table 1: Results for the knowledge distillation method when attempting to restore Init after all rules that mention a predicate P are removed.

s(%) Init GPT-4 GPT-3.5

10 26.57 94.67± 02.21
(89.71, 95.67)

—

20 63.54 75.56± 11.86
(63.55, 90.22)

66.14± 07.78
(63.55, 89.48)

50 7.17 47.48± 15.26
(30.25, 71.64)

24.43± 12.28
(07.18, 46.88)

(a) Results for GQA.

s(%) Init GPT-4 GPT-3.5

10 46.61 70.76± 04.17
(66.59, 75.62)

50.30± 03.68
(46.62, 53.98)

20 9.66 44.66± 30.58
(14.16, 97.30)

32.03± 11.86
(13.44, 45.70)

50 0.0 23.90± 03.30
(18.06, 27.84)

10.19± 19.59
(00.00, 49.36)

(b) Results for CLEVR.

Table 2: Knowledge distillation results when attempting to restore a complete ASP theory after a percentage s of rules is randomly removed.

b Light Medium Heavy

Init 0.0 0.0 6.24

1 56, 26± 10.23
(34.54, 61.28)

81.45± 05.07
(76.86, 87.91)

83.85± 02.49
(81.38, 87.77)

2 32.71± 04.31
(25.72, 43.15)

79.83± 03.42
(75.11, 83.03)

74.32± 02.91
(75.86, 80.54)

5 16.62± 05.28
(10.51, 17.59)

69.68± 31.12
(24.18, 82.19)

84.25± 04.59
(78.93, 89.48)

10 — 15.38± 12.30
(11.62, 31.75)

84.75± 04.20
(80.64, 90.85)

(a) Results for GQA.

b Light Medium Heavy

Init 0.0 5.56 20.80

1 84.68± 26.42
(38.23, 100.0)

86.97± 04.35
(83.89, 90.05)

95.40± 03.83
(91.25, 98.81)

2 75.4± 33.78
(27.84, 99.88)

18.68± 04.50
(15.67, 26.09)

88.51± 04.46
(83.37, 91.25)

5 17.06± 29.55
(00.00, 51.19)

17.79± 03.00
(15.67, 19.92)

94.39± 03.71
(91.33, 98.52)

10 — — 89.88± 09.04
(77.68, 98.81)

(b) Results for CLEVR.

Table 3: Results for the knowledge distillation method when using batch sizes b and the different initial theories Light, Medium and Heavy.

the considered LLMs; here and in other tables, “—” means
no improvement. By a large margin, GPT-4 is the most suit-

able LLM for this task for both datasets. With GPT-4, we
could obtain rules that improve over Init for every predicate

7

P Init \ P GPT-4 GPT-3.5 Mistral

query 48.84 99.02± 00.04 (99.02, 99.03) 55.90± 15.80 (48.84, 84.17) —
exist 86.36 99.09± 01.76 (95.94, 99.97) 87.83± 03.29 (86.36, 93.73) 86.60± 0.05 (86.36, 87.57)
or 92.18 100.0± 00.00 (100.0, 100.0) 93.03± 01.90 (92.18, 96.44) 94.41± 3.35 (92.18, 99.73)
filter 81.60 98.56± 00.58 (98.47, 98.63) 82.38± 0.078 (81.92, 82.50) 84.99± 7.59 (81.60, 98.59)
choose attr 92.12 98.65± 02.65 (93.91, 99.88) 95.16± 04.26 (92.03, 99.84) 92.08± 0.06 (91.98, 92.12)
verify rel 93.72 95.74± 03.49 (93.72, 99.08) 94.30± 01.17 (93.72, 96.06) —
select 9.53 81.69± 36.81 (9.53, 100.0) 28.94± 39.82 (9.53, 100.0) —
negate 98.59 98.72± 00.02 (98.59, 99.12) — —
relate 56.89 58.02± 02.19 (57.54, 61.91) 57.29± 00.09 (56.89, 58.91) —
two different 98.94 100.0± 00.00 (100.0, 100.0) — —
two same 98.83 99.60± 00.02 (99.50, 100.0) 99.09± 00.05 (98.83, 100.0) —

Table 4: Ablation study for GQA: Results when attempting to restore Init after removing rules for P without mending step.

s(%) Init GPT-4 GPT-3.5

10 26.57 83.06± 23.26
(36.61, 95.80)

—

20 63.54 55.46± 14.84
(26.99, 69.84)

38.67± 21.00
(08.48, 64.96)

50 7.17 36.38± 10.62
(18.15, 48.55)

04.21± 03.42
(00.00, 7.94)

Table 5: Ablation study for GQA: Attempting to restore theory T
after s percent of rules were randomly removed without mending.

b Light Medium Heavy

Init 0.0 0.0 6.24

1 51, 43± 08.56
(42.72, 59.85)

80.41± 05.34
(74.54, 85.01)

76.70± 00.76
(75.82, 77.19)

2 27.06± 09.60
(21.09, 38.14)

77.70± 05.42
(75.25, 83.92)

77.60± 03.85
(73.41, 81.00)

5 15.23± 02.28
(12.60, 16.49)

60.16± 34.17
(21.08, 84.45)

86.28± 10.84
(27.93, 94.71)

10 — 19.55± 07.41
(13.03, 27.62)

73.93± 06.50
(66.42, 77.69)

Table 6: Ablation study for GQA: Results when using batch sizes b
and different initial theories without mending step.

P . For the other models, there the quality of suggested re-
pairs differs largely. GPT-3.5 is also capable of repairing Init
but to a lesser extent than GPT-4, as it does not produce any
new rules for some predicates. When it does, the accuracy is
lower than the one of GPT-4. The Mistral model performs
similarly to GPT-3.5 when it finds the correct rules. This,
however, happened less often and the gain in accuracy then
is minimal.

Experiment 2. This experiment is designed to address (R3).
It is a challenge experiment where we took the complete ASP
encodings and then removed a random sample of s percent
of the rules from it. For GQA, the ASP theory consists of
60 rules; for CLEVR, the program comprises 72 rules. After
rendering this theory incomplete, we prompted the LLM to

restore it. We tested this setting for s = {10, 20, 50} on the
two best models from the first experiment, i.e., GPT-4 and
GPT-3.5. We used the length ordering strategy with k = 2,
which yields 20 examples per run, and r = 1 retries.

The results are given in Table 2. For GQA, GPT-4 is quite
capable of producing ASP rules that improve the accuracy
of the initial theory. However, GPT-3.5 starts to falter for
GQA, as the gain in accuracy is dramatically reduced for
s = 20, 50, and no gain is reported when s = 10. In the case
of GQA, the initial accuracy of the theory with s = 10 is
higher than for s = 20. Even though we remove more rules
in the latter, some rules affect larger portions of the questions.

Experiment 3. This experiment tests our batch optimization
approach and aims at answering (R4). We consider batch
sizes b = 2, 5, 10 and the length ordering strategy with k =
11, which yields 100 examples per run. We use r = 3 retries
for examples and m = 2 retries for mending.

Like the previous experiment, this one is also based on the
complete ASP theory, but we now selected parts of it by hand
to generate three different initial theories. By their size, we
call them Light, Medium and Heavy. Theory Light consists
of only five rules that tell our system how to start and end the
processing of a question, but nothing else. We added more
rules to Light to generate Medium and even more rules to
Heavy. For this experiment, we focused only on the most
capable model, namely GPT-4.

Table 3 shows that GPT-4 still retains its ability to produce
meaningful ASP rules even in this very challenging scenario.
We can observe that small theories do not work well with
bigger batches, as they do not provide enough background
for the LLM to produce suitable rules. When the size of the
initial theory increases, the LLM can handle bigger batches
and produces rules of higher quality.

Ablation Experiment. We finally study the effect of the
mending step in our method when the LLM suggests rules
that are either syntactically or semantically not correct. As
mentioned in the previous section, these checks can be turned
off, which results in fewer LLM calls.

We only present the results for the previous three experi-
ments on GQA in Tables 4–6; for CLEVR, they look similar.
As one would expect, the results are worse most of the time,
although not always, when mending is disabled. The rate of

8

improvement with mending ranges from a couple of percent-
age points to up to ca. 20% (row for “select”).

Discussion. We turn back to our research questions from the
beginning of this section.
(R1) Experiment 1 shows that LLMs are capable of complet-
ing an ASP program that has all rules for a single operation
removed. This is the case when a dataset is extended with
new examples that require reasoning operations that are not
yet encoded.
(R2) Regarding the suitability of different LLMs for declara-
tive knowledge distillation, we conclude that only grand-scale
LLMs, with GPT-4 currently the market leader, are able to
tackle this problem effectively. Arguably, the LLMs that
we used have more knowledge about mainstream program-
ming languages such as Python than logical programming
languages. It will be interesting so see whether small, self-
hosted language models will eventually catch up in the future.
(R3) When challenged with restoring increasingly large parts
of an ASP theory, the current approach reaches its limits.
Only the most powerful model we used is still able to produce
sound ASP rules.
(R4) Our experiments on batch processing and the ablation
study helped to illuminate the trade off between performance
and reducing the number LLM calls. In conclusion, better
performance can be bought by using more prompts, which
can be expensive if a subscription-based LLM is used.

6 Conclusion
We have presented an approach for declarative knowledge
distillation using LLMs to find rules that extend the reason-
ing component of a VQA system to extend its capabilities.
This process uses examples from a dataset as guidance and
relies entirely on prompting without the need to train or fine-
tune the used language models. We have demonstrated this
approach on the prominent CLEVR (Johnson et al. 2017)
and GQA (Hudson and Manning 2019) datasets. The bene-
fit of using logic-based methods in combination with foun-
dation models is that we obtain systems that behave in an
interpretable and verifiable way to ensure correct reasoning.
Logical rules are intuitive, and they can helpful in VQA
architectures to create advanced reasoning capabilities, in-
cluding explainability. Our knowledge distillation method
shows promise for automating the process of ASP modelling
for VQA, a complex scenario that requires understanding of
intricate representations.

For future work, we want to study further VQA datasets,
but we also want to explore other tasks than VQA that po-
tentially benefit from distilling rules from LLMs. As using
API-based LLMs can be expensive, we want to look into
balancing performance of the distillation approach and the
number of LLM calls. Enhancing the LLM approach with
concepts from ILP and a possible combination would also be
interesting to explore.

Appendix
We provide an evaluation of our logic-based VQA approach,
which we call GS-VQA. We evaluated the GS-VQA pipeline

Model Category Accuracy

BLIP-2 end-to-end 44.7%
CodeVQA question-symbolic 49.0%
FewVLM end-to-end 29.3%
GS-VQA (ours) neurosymbolic 39.5%
PnP-VQA semi-symbolic 42.3%
ViperGPT question-symbolic 48.1%

Table 7: Comparison of GS-VQA’s accuracy on the test-dev set of
GQA with other state-of-the-art zero-shot approaches for VQA.

on the balanced test-dev set of GQA, which contains 12 578
questions. The evaluation uses the larger ViT-L/14 variant of
OWL-ViT (Minderer et al. 2022) for object detection and the
smaller ViT-B/32 variant of CLIP (Radford et al. 2021) for
concept classification.

In Table 7, we present a comparison between our system
and other models on GQA. We consider only zero-shot mod-
els and classify them into four sub-categories:
• End-to-End: End-to-end systems are those that rely solely

on neural networks for computing the answer.
• Neurosymbolic: Neurosymbolic systems like ours are

those that combine both neural networks for parsing data
and symbolic execution to calculate the answers.

• Question-Symbolic: Such methods extract a symbolic
representation from only the input question, usually in the
form of some programmatic specification of the reasoning
steps needed to arrive at the answer of the question.

• Semi-Symbolic: PnP-VQA (Tiong et al. 2022) extracts a
symbolic representation of the image but does not perform
its reasoning purely symbolically, hence we classify this
method as semi-symbolic.
GS-VQA answers 39.5% of all questions of GQA’s test-

dev set correctly, with the current best zero-shot VQA model,
CodeVQA (Subramanian et al. 2023), obtaining an accuracy
of 49.0%, followed closely by ViperGPT (Surı́s, Menon,
and Vondrick 2023). However, CodeVQA and ViperGPT
translate input questions into Python code that may contain
queries to another VQA model; thus the performance of the
latter, which is PnP-VQA (Tiong et al. 2022) resp. BLIP-2
(Li et al. 2023), should be considered as their baseline.

While our model is slightly behind the baseline in terms
of accuracy by a couple of percentage points, it uses ASP
for deducing answers which comes with a range of advan-
tages, where explainability and non-determinism to deal with
ambiguous inputs are the most important ones (Eiter et al.
2022). More specifically, ASP allows for transparent execu-
tion, verifiability, and transferability, as well as the possibility
of reasoning under different modalities, e.g., abduction on
instances for computing contrastive explanations (Eiter et
al. 2023). Furthermore, the components used for our sys-
tem were run locally, in contrast to others such as ViperGPT
which hinge on extensive external resources. Finally, since
our architecture is modular, components can be easily re-
placed by better ones, and it can be expected that its perfor-
mance improves when the underlying foundation models get
better.

9

Acknowledgment. This work was supported by the Bosch
Center for AI.

References
Abraham, S. S.; Alirezaie, M.; and Raedt, L. D. 2024.
CLEVR-POC: reasoning-intensive visual question answer-
ing in partially observable environments. In Proceedings of
the 2024 Joint International Conference on Computational
Linguistics, Language Resources and Evaluation (LREC/-
COLING 2024), 3297–3313. ELRA and ICCL.
Amizadeh, S.; Palangi, H.; Polozov, A.; Huang, Y.; and
Koishida, K. 2020. Neuro-Symbolic Visual Reasoning:
Disentangling “Visual” from “Reasoning”. In Proceedings
of the 37th International Conference on Machine Learning
(ICML), volume 119 of Proceedings of Machine Learning
Research, 279–290. PMLR.
Anand, Y.; Nussbaum, Z.; Treat, A.; Miller, A.; Guo, R.;
Schmidt, B.; Community, G.; Duderstadt, B.; and Mulyar,
A. 2023. Gpt4all: An ecosystem of open source compressed
language models. CoRR abs/2311.04931.
Antol, S.; Agrawal, A.; Lu, J.; Mitchell, M.; Batra, D.; Zit-
nick, C. L.; and Parikh, D. 2015. VQA: Visual Question
Answering. In 2015 IEEE International Conference on Com-
puter Vision(ICCV), 2425–2433. IEEE Computer Society.
Barra, S.; Bisogni, C.; Marsico, M. D.; and Ricciardi, S. 2021.
Visual question answering: Which investigated applications?
Pattern Recognit. Lett. 151:325–331.
Basu, K.; Shakerin, F.; and Gupta, G. 2020. AQuA: ASP-
Based Visual Question Answering. In 22nd International
Symposium on Practical Aspects of Declarative Languages
(PADL 2020), volume 12007 of LNCS, 57–72. Springer.
Bauer, J. J.; Eiter, T.; Ruiz, N. H.; and Oetsch, J. 2023. Neuro-
Symbolic Visual Graph Question Answering with LLMs for
Language Parsing. In Workshop on Trends and Applications
of Answer Set Programming (TAASP 2023).
Brewka, G.; Eiter, T.; and Truszczynski, M. 2011. Answer
set programming at a glance. Commun. ACM 54(12):92–103.
Bruno, P.; Calimeri, F.; Marte, C.; and Manna, M. 2021.
Combining deep learning and asp-based models for the se-
mantic segmentation of medical images. In Proceedings of
the 5th International Joint Conference on Rules and Reason-
ing, RuleML+RR 2021, volume 12851 of Lecture Notes in
Computer Science, 95–110. Springer.
Calimeri, F.; Faber, W.; Gebser, M.; Ianni, G.; Kaminski, R.;
Krennwallner, T.; Leone, N.; Maratea, M.; Ricca, F.; and
Schaub, T. 2020. ASP-core-2 input language format. Theory
and Practice of Logic Programming 20(2):294–309.
Cropper, A.; Dumancic, S.; Evans, R.; and Muggleton, S. H.
2022. Inductive logic programming at 30. Mach. Learn.
111(1):147–172.
Eiter, T.; Higuera, N.; Oetsch, J.; and Pritz, M. 2022. A
neuro-symbolic ASP pipeline for visual question answering.
Theory and Practice of Logic Programming 22(5):739–754.
Eiter, T.; Geibinger, T.; Higuera, N.; and Oetsch, J. 2023. A
logic-based approach to contrastive explainability for neu-
rosymbolic visual question answering. In Proceedings of the

32nd International Joint Conference on Artificial Intelligence
(IJCAI 2023), 3668–3676. ijcai.org.
Gelfond, M., and Lifschitz, V. 1988. The stable model se-
mantics for logic programming. In Proceedings of the 5th
International Conference and Symposium on Logic Program-
ming, 1070–1080. MIT Press.
Goyal, Y.; Khot, T.; Summers-Stay, D.; Batra, D.; and Parikh,
D. 2017. Making the V in VQA Matter: Elevating the
Role of Image Understanding in Visual Question Answering.
In 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 6325–6334. IEEE Computer Society.
Gutmann, B., and Kersting, K. 2006. TildeCRF: Conditional
random fields for logical sequences. In Proceedings of the
17th European Conference on Machine Learning (ECML
2006), volume 4212 of Lecture Notes in Computer Science,
174–185. Springer.
Hadl, J. 2023. GS-VQA: Zero-shot neural-symbolic visual
question answering with vision-language models. Master’s
thesis, Technische Universität Wien, Wien.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural Comput. 9(8):1735–1780.
Hudson, D. A., and Manning, C. D. 2019. GQA: A New
Dataset for Real-World Visual Reasoning and Compositional
Question Answering. In 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 6700–
6709. Computer Vision Foundation / IEEE.
Ishay, A.; Yang, Z.; and Lee, J. 2023. Leveraging large lan-
guage models to generate answer set programs. In Proceed-
ings of the 20th International Conference on Principles of
Knowledge Representation and Reasoning, KR 2023, Rhodes,
Greece, September 2-8, 2023, 374–383.
Jiang, A. Q.; Sablayrolles, A.; Mensch, A.; Bamford, C.;
Chaplot, D. S.; de las Casas, D.; Bressand, F.; Lengyel, G.;
Lample, G.; Saulnier, L.; Lavaud, L. R.; Lachaux, M.-A.;
Stock, P.; Scao, T. L.; Lavril, T.; Wang, T.; Lacroix, T.; and
Sayed, W. E. 2023. Mistral 7b.
Johnson, J.; Hariharan, B.; van der Maaten, L.; Fei-Fei, L.;
Zitnick, C. L.; and Girshick, R. B. 2017. CLEVR: A diagnos-
tic dataset for compositional language and elementary visual
reasoning. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2017, 1988–1997. IEEE
Computer Society.
Johnston, P.; Nogueira, K.; and Swingler, K. 2023. NS-
IL: neuro-symbolic visual question answering using incre-
mentally learnt, independent probabilistic models for small
sample sizes. IEEE Access 11:141406–141420.
Krishna, R.; Zhu, Y.; Groth, O.; Johnson, J.; Hata, K.;
Kravitz, J.; Chen, S.; Kalantidis, Y.; Li, L.; Shamma, D. A.;
Bernstein, M. S.; and Fei-Fei, L. 2017. Visual Genome: Con-
necting Language and Vision Using Crowdsourced Dense
Image Annotations. International Journal of Computer Vi-
sion 123(1):32–73.
Law, M.; Russo, A.; Bertino, E.; Broda, K.; and Lobo, J.
2020. Fastlas: Scalable inductive logic programming in-
corporating domain-specific optimisation criteria. In The
Thirty-Fourth AAAI Conference on Artificial Intelligence,

10

AAAI 2020, The Thirty-Second Innovative Applications of Ar-
tificial Intelligence Conference, IAAI 2020, The Tenth AAAI
Symposium on Educational Advances in Artificial Intelli-
gence, EAAI 2020, New York, NY, USA, February 7-12, 2020,
2877–2885. AAAI Press.
Law, M.; Russo, A.; and Broda, K. 2020. The ILASP
system for inductive learning of answer set programs. CoRR
abs/2005.00904.
Li, J.; Li, D.; Savarese, S.; and Hoi, S. 2023. BLIP-2: Boot-
strapping Language-Image Pre-training with Frozen Image
Encoders and Large Language Models.
Liang, W.; Niu, F.; Reganti, A.; Thattai, G.; and Tur, G.
2020. LRTA: A Transparent Neural-Symbolic Reasoning
Framework with Modular Supervision for Visual Question
Answering.
Lifschitz, V. 2019. Answer Set Programming. Springer.
Lin, Z.; Zhang, D.; Tao, Q.; Shi, D.; Haffari, G.; Wu, Q.; He,
M.; and Ge, Z. 2023. Medical visual question answering: A
survey. Artif. Intell. Medicine 143:102611.
Mao, J.; Gan, C.; Kohli, P.; Tenenbaum, J. B.; and Wu,
J. 2019. The neuro-symbolic concept learner: Interpreting
scenes, words, and sentences from natural supervision. In
Proceedings of the 7th International Conference on Learning
Representations (ICLR 2019). OpenReview.net.
Minderer, M.; Gritsenko, A. A.; Stone, A.; Neumann, M.;
Weissenborn, D.; Dosovitskiy, A.; Mahendran, A.; Arnab,
A.; Dehghani, M.; Shen, Z.; Wang, X.; Zhai, X.; Kipf, T.;
and Houlsby, N. 2022. Simple Open-Vocabulary Object
Detection. In Computer Vision - ECCV 2022 - 17th European
Conference, volume 13670 of Lecture Notes in Computer
Science, 728–755. Springer.
Muggleton, S. H., and Raedt, L. D. 1994. Inductive logic pro-
gramming: Theory and methods. J. Log. Program. 19/20:629–
679.
Muggleton, S. H. 1991. Inductive logic programming. New
Gener. Comput. 8(4):295–318.
OpenAI. 2023. GPT-4 technical report.
Radford, A.; Kim, J. W.; Hallacy, C.; Ramesh, A.; Goh, G.;
Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.;
Krueger, G.; and Sutskever, I. 2021. Learning Transferable
Visual Models From Natural Language Supervision. In Pro-
ceedings of the 38th International Conference on Machine
Learning (ICML), volume 139 of Proceedings of Machine
Learning Research, 8748–8763. PMLR.
Raedt, L. D., and Kersting, K. 2017. Statistical relational
learning. In Encyclopedia of Machine Learning and Data
Mining. Springer. 1177–1187.
Rajasekharan, A.; Zeng, Y.; Padalkar, P.; and Gupta, G. 2023.
Reliable natural language understanding with large language
models and answer set programming. In Proceedings 39th
International Conference on Logic Programming, ICLP 2023,
Imperial College London, UK, 9th July 2023 - 15th July 2023,
volume 385 of EPTCS, 274–287.
Subramanian, S.; Narasimhan, M.; Khangaonkar, K.; Yang,
K.; Nagrani, A.; Schmid, C.; Zeng, A.; Darrell, T.; and
Klein, D. 2023. Modular Visual Question Answering via

Code Generation. In Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Volume
2: Short Papers), 747–761. Association for Computational
Linguistics.
Surı́s, D.; Menon, S.; and Vondrick, C. 2023. ViperGPT:
Visual Inference via Python Execution for Reasoning. CoRR
abs/2303.08128.
Tiong, A. M. H.; Li, J.; Li, B.; Savarese, S.; and Hoi, S. C. H.
2022. Plug-and-Play VQA: Zero-shot VQA by Conjoining
Large Pretrained Models with Zero Training. In Findings
of the Association for Computational Linguistics: EMNLP
2022, 951–967. Association for Computational Linguistics.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L. u.; and Polosukhin, I. 2017.
Attention is all you need. In Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.
Wang, Z.; Yu, J.; Yu, A. W.; Dai, Z.; Tsvetkov, Y.; and Cao, Y.
2022. SimVLM: Simple Visual Language Model Pretraining
with Weak Supervision.
Yi, K.; Wu, J.; Gan, C.; Torralba, A.; Kohli, P.; and Tenen-
baum, J. 2018. Neural-Symbolic VQA: Disentangling Rea-
soning from Vision and Language Understanding. In Ad-
vances in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems 2018,
1039–1050.
Zhao, W. X.; Zhou, K.; Li, J.; Tang, T.; Wang, X.; Hou, Y.;
Min, Y.; Zhang, B.; Zhang, J.; Dong, Z.; Du, Y.; Yang, C.;
Chen, Y.; Chen, Z.; Jiang, J.; Ren, R.; Li, Y.; Tang, X.; Liu,
Z.; Liu, P.; Nie, J.; and Wen, J. 2023. A survey of large
language models. CoRR abs/2303.18223.
Zhu, Z.; Xue, Y.; Chen, X.; Zhou, D.; Tang, J.; Schuurmans,
D.; and Dai, H. 2023. Large language models can learn rules.
CoRR abs/2310.07064.

11

	Introduction
	Related Work
	Background & VQA Methodology
	Answer-Set Programming
	Zero-Shot VQA for the GQA Dataset
	VQA for the CLEVR Dataset

	Knowledge Distillation Method
	Preprompt
	Rule Distillation Algorithm

	Knowledge Distillation Experiments
	Conclusion

