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Abstract

Over the past two decades, the field of nanomechanical resonators has seen remarkable
growth, expanding its range of applications and pushing the boundaries of performance.
To date, an extraordinary variety of sensors exploit these nanometer-size structures to
detect mass, force, and temperature with exceptional sensitivity. Notably, measuring
external stimuli by tracking shifts in a resonator’s resonance frequency has led to ground-
breaking achievements, such as detecting mass at the yoctogram scale — just three orders
of magnitude heavier than a single proton.
This approach has also proven to be extremely powerful for detecting minute temperature
changes, enabling imaging at the single-molecule level. Here, tensile stressed nanome-
chanical resonators exhibit frequency detuning upon photothermal heating, by means of
a stress release via thermal expansion. Photothermal heating can originate from various
processes, including electromagnetic radiation absorption, non-radiative heat transfer
from single molecules, particle, and thin films. This simple yet sensitive method and its
applications constitute the field of nanomechanical photothermal sensing. The present
work aims to deepen the understanding of this detection technique while expanding
its capabilities in microscopy and spectroscopy for single particles and molecules, and
material optical characterization.
Along this thesis, a comprehensive analysis of the main figures of merit of the nanome-
chanical photothermal sensors is carried out, establishing a theoretical framework aimed
at assessing their photothermal sensing performance. The analytical models developed
herein highlight the critical interplay between sensor photothermal responsivity and its
frequency stability. Different resonator designs are systematically compared theoretically
and experimentally with respect to their sensitivity, response time, and practicality.
Label-free microscopy and imaging at room temperature has been one of the first appli-
cations of nanomechanical photothermal sensing. This work develops the state-of-the-art
nanomechanical photothermal platform for spectroscopy and polarization-microscopy of
individual nano-absorbers. This is showcased with the characterization of the absorption
spectrum and the plasmonic properties of individual gold nanorods. This demonstrates
the ability of nanomechanical photothermal sensing to resolve the heterogeneity within a
single sample, with a reduced experimental complexity and higher signal-to-noise ratio
compared to other label-free single-molecule optical techniques.
The field of applications of nanomechanical photothermal sensing is further expanded for
the low optical loss characterization of materials exploited in nanophotonics and nanome-
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chanics. In particular, it analyzes the dependence of the optical absorption of silicon
nitride — a material of significant technological importance — on the film deposition
and fabrication process. A direct correlation is identified between the deposition-related
tensile stress and the extinction coefficient of silicon nitride, with the latter decreasing
for increasing stress. This trend is attributed to a reduction in silicon-to-nitrogen ratio,
which widens the material’s energy bandgap. These findings pave the way for a precise,
scattering-free, and fast optical characterization of materials.
The advancements in understanding and applicability of nanomechanical photothermal
sensing presented in this work aim to establish a solid groundwork for the development
and improvement of next-generation nanomechanical photothermal sensors, with the
hope to offer valuable insights for researchers seeking to harness the full potential of this
detection paradigm across a broad spectrum of applications.



Zusammenfassung

In den letzten zwei Jahrzehnten hat das Gebiet der nanomechanischen Resonatoren ein
bemerkenswertes Wachstum erfahren, das die Anwendungsmöglichkeiten erweitert und
die Grenzen der Leistungsfähigkeit verschoben hat. Bis heute nutzt eine außergewöhnliche
Vielfalt von Sensoren diese nanometergroßen Strukturen, um Masse, Kraft und Tempera-
tur mit außergewöhnlicher Empfindlichkeit zu erfassen. Insbesondere die Messung externer
Stimuli durch Verfolgung von Verschiebungen der Resonanzfrequenz eines Resonators
hat zu bahnbrechenden Errungenschaften geführt, wie z. B. dem Nachweis von Masse auf
der Yoktogramm-Skala - nur drei Größenordnungen schwerer als ein einzelnes Proton.
Dieser Ansatz hat sich auch als äußerst leistungsfähig erwiesen, wenn es darum geht,
winzige Temperaturänderungen zu erkennen, was eine Bildgebung auf Einzelmolekülebene
ermöglicht. Hier zeigen zugfeste nanomechanische Resonatoren bei photothermischer Er-
wärmung eine Frequenzverschiebung durch Spannungsabbau über thermische Expansion.
Die photothermische Erwärmung kann durch verschiedene Prozesse hervorgerufen werden,
darunter die Absorption elektromagnetischer Strahlung und die nicht strahlende Wärme-
übertragung von einzelnen Molekülen, Partikeln und dünnen Filmen. Diese einfache, aber
empfindliche Methode und ihre Anwendungen bilden den Bereich der nanomechanischen
photothermischen Sensorik. Die vorliegende Arbeit zielt darauf ab, das Verständnis dieser
Detektionstechnik zu vertiefen und gleichzeitig ihre Möglichkeiten in der Mikroskopie und
Spektroskopie für einzelne Partikel und Moleküle sowie die optische Charakterisierung
von Materialien zu erweitern.
In dieser Arbeit wird eine umfassende Analyse der wichtigsten Leistungsmerkmale der na-
nomechanischen photothermischen Sensoren durchgeführt und ein theoretischer Rahmen
für die Bewertung ihrer photothermischen Sensorleistung geschaffen. Die hier entwickelten
analytischen Modelle heben das kritische Zusammenspiel zwischen der photothermischen
Empfindlichkeit des Sensors und seiner Frequenzstabilität hervor. Verschiedene Reso-
natordesigns werden systematisch theoretisch und experimentell im Hinblick auf ihre
Empfindlichkeit, Reaktionszeit und Praktikabilität verglichen.
Die markierungsfreie Mikroskopie und Bildgebung bei Raumtemperatur war eine der
ersten Anwendungen der nanomechanischen photothermischen Sensorik. In dieser Arbeit
wird eine hochmoderne nanomechanische photothermische Plattform für die Spektroskopie
und Polarisationsmikroskopie von einzelnen Nanoabsorbern entwickelt. Dies wird anhand
der Charakterisierung des Absorptionsspektrums und der plasmonischen Eigenschaften
einzelner Goldnanostäbchen demonstriert. Dies zeigt die Fähigkeit der nanomechanischen
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photothermischen Sensorik, die Heterogenität innerhalb einer einzelnen Probe aufzu-
lösen, und zwar mit einer geringeren experimentellen Komplexität und einem höheren
Signal-Rausch-Verhältnis im Vergleich zu anderen markierungsfreien optischen Einzelmo-
lekültechniken.
Der Anwendungsbereich der nanomechanischen photothermischen Sensorik wird für die
Charakterisierung von Materialien mit geringem optischem Verlust, die in der Nanopho-
tonik und Nanomechanik verwendet werden, weiter ausgebaut. Insbesondere wird die
Abhängigkeit der optischen Absorption von Siliziumnitrid - einem Material von großer
technologischer Bedeutung - von der Schichtabscheidung und dem Herstellungsprozess
analysiert. Es wird ein direkter Zusammenhang zwischen der abscheidungsbedingten
Zugspannung und dem Extinktionskoeffizienten von Siliziumnitrid festgestellt, wobei
letzterer mit zunehmender Spannung abnimmt. Dieser Trend wird auf eine Verringerung
des Verhältnisses von Silizium zu Stickstoff zurückgeführt, was die Energiebandlücke des
Materials vergrößert. Diese Ergebnisse ebnen den Weg für eine präzise, streuungsfreie
und schnelle optische Charakterisierung von Materialien.
Die in dieser Arbeit vorgestellten Fortschritte in Bezug auf das Verständnis und die
Anwendbarkeit nanomechanischer photothermischer Sensoren zielen darauf ab, eine solide
Grundlage für die Entwicklung und Verbesserung nanomechanischer photothermischer
Sensoren der nächsten Generation zu schaffen, in der Hoffnung, den Forschern, die das vol-
le Potenzial dieses Erkennungsparadigmas in einem breiten Spektrum von Anwendungen
nutzen wollen, wertvolle Erkenntnisse zu bieten.



Contribution to Original
Knowledge

The research carried out during this PhD project represents a small, but important step
forward in the field of nanomechanical resonators for photothermal sensing. Various
original contributions to the knowledge of this field have been made, the most significant
including:

• The advancement of nanomechanical photothermal sensing as a sensitive tool for
microscopy and spectroscopy for single molecule and single particle analysis. This
has been showcased with the measurements of the optical absorption spectrum
of individual gold nanorods. The analysis has shown the advantages offered by
nanomechanical photothermal sensing for the study of single nano-absorbers over
the state-of-the-art single-molecule techniques. In particular, the superior signal-to-
noise ratio and reduction in set-up complexity has been highlighted.

• The analysis of the electromagnetic dissipation and polarization properties of
individual nanorods in the visible and near infrared spectral range, including their
interaction with the underlying mechanical resonator.

• The advancement in the theoretical understanding of nanomechanical photothermal
sensing through a comparative study of three resonator designs — namely strings,
drumheads, and trampolines.

• The importance of photothermal back-action in nanomechanical photothermal
sensing, showcasing this effect experimentally on trampoline resonators.

• The relation between optical extinction and process-related residual tensile stress
in low-pressure deposition deposited silicon nitride thin films.
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CHAPTER 1
Introduction

1.1 Eppur si muove!
Any object with at least one dimension smaller than 1 µm falls under the definition of
nano. At first glance, this definition seems straightforward, yet reducing an object’s
dimensions to the nanoscale brings more than just a spatial change. In fact, an entirely
new class of physical phenomena emerges at this scale, which has been the subject of
extensive study over the past century, leading to breakthroughs in both fundamental and
applied science [1]. Fields like nanoelectronics, nanophotonics [2], and central for this
work, nanomechanics [3], have pushed further the boundaries of our understanding of the
surrounding world, simultaneously expanding the technological capabilities of our society.
In particular, advancements in nanofabrication techniques, as well as the discovery of new
materials, have enabled the development of increasingly more sensitive devices, capable
of probing the quantum nature of matter [4, 5] and its interaction with light [6].
The classical study of an object’s motion, known as mechanics, have revived over
the past three decades with the advent of nanoelectromechanical systems (NEMS) [7].
These systems are characterized by the presence of one or more miniature mechanical
components that are displaced from their equilibrium positions in response to external
stimuli. Their small size makes them exceptionally sensitive to minute disturbances,
enabling the quantum-limited detection of forces [8], single spin magnetic moment [9],
and small masses [10–15] at an unprecedented sensitivity.
One of the earliest and most prominent applications of NEMS-based sensing has been in
mass spectrometry, specifically for detecting single proteins and nanoparticles. These
systems have achieved quantification down to the yoctogram scale [11], measuring the
target substance by monitoring the shift in resonance frequency caused by the added
mass on the nanomechanical element. It is evident from this simple experiment that
the response to mass can be improved by further reducing the size of the resonator.
Consequently, mass sensing has been a primary driving force behind the continuous
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miniaturization of electromechanical systems down to the nanoscale.
While detuning the resonator’s frequency by altering its mass is a common method for
detecting small signals—such as the landing of single proteins on its surface—another
compelling and effective technique involves capturing frequency shifts caused by changes
in stiffness. In tensile-stressed mechanical structures, this detuning can occur when the
resonator absorbs heat, leading to a relaxation of the residual stress. Heat absorption
may arise from electromagnetic radiation, or from energy released by a molecule adhering
to the resonator’s surface. This process, known as photothermal effect, has paved the
way for a novel method of molecular and radiation characterization, which is the core
focus of this work: nanomechanical photothermal sensing.
Like mass sensing, nanomechanical photothermal sensors have greatly benefited from
the continuous device miniaturization, enhancing their responsivity to tiny amount of
energy exchanges with the surrounding environment. Combined with the robustness of
frequency-based measurements, this advancement has opened the door to a completely
new method for detecting the optical absorption of minute samples [16–23], including
single molecules [24], individual nanoparticles [25–31], two-dimensional (2D) material
[32, 33], thin films [34, 35], as well as low-energy electromagnetic radiation [36–42].

1.2 Single-Molecule Spectromicroscopy

1.2.1 Overview

In recent decades, the development of techniques for characterizing individual particles
and molecules has significantly advanced our understanding and control of nanoscale
objects, of their functions and properties [43, 44]. The ability to probe individual nano-
objects offers the possibility to explore their heterogeneity within the same sample, along
with their interaction with the surrounding environment [45].
The use of electron probes has brought about major breakthroughs in nanoscience, with
the key advantage of electron microscopy being its ability to achieve exceptionally high
spatial resolution, constrained only by the wavelength of the electrons. Likewise, scanning
tunneling (STM) and atomic force (AFM) microscopy offer comparable capabilities[46,
47], though limited by their atomic-sized tips. In contrast, optical microscopy, while
constrained by the diffraction limit, presents several benefits. Light is noninvasive in
nature and can offer high throughput, easy integration with other methodologies, and
applicability to a wide range of samples, from nanoparticles to living organisms [48].
Furthermore, the resonance of photons at optical frequencies with the electronic states of
atoms and molecules facilitates spectroscopic observations, providing detailed insights
into the structure and dynamics of matter at the molecular level [45].
Right after the first single-molecule detection via laser frequency modulation by Moerner
and Kador [49], fluorescence microscopy demonstrated its superior signal-to-background
ratio [50], quickly becoming a cornerstone tool in biology and condensed matter research.
Significant efforts have also been made to develop super-resolution microscopy techniques
to overcome optical diffraction limits [51].
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Fluorescence microscopy fundamentally relies on the chemical contrast provided by
fluorophores. However, this requires labelling the target molecule, which increases the
experimental process complexity. Moreover, the stability of the fluorophore — affected
by phenomena like photobleaching, photoblinking, and limited excited-state lifetimes —
directly influences the measurement results. The interaction between the fluorophore
and the molecule of interest can also affect the system under study, depending on the
nature of the labelling. These limitations have driven the development of fully label-free
characterization methods, broadening the range of molecules that can be studied [52].

1.2.2 Label-free Spectroscopy
A wide range of non-fluorescent techniques rely on fully optical detection of single
molecules through molecular extinction measurements, such as scattering and absorption
[53]. Among these, absorption-based methods generally offer greater sensitivity than
scattering-based approaches, due to the different scaling laws of their respective optical
cross-sections. Specifically, while the scattering cross-section scales quadratically with
the volume of the molecule (σsca ∝ V 2), the absorption cross-section scales linearly with
it (σabs ∝ V ) [54].
As an example, surface-enhanced Raman scattering leverages the intense near-field en-
hancement at the nanoscale around plasmonic nanoparticles or nanostructures — referred
to as hotspots — to improve the signal-to-noise ratio (SNR) of Stokes-shifted Raman
scattering [55]. However, the complexity of the measurement process is increased by the
challenges involved in the fabrication of these plasmonic nanostructures and the precisely
positioning of the targeted particles or molecules at the desired sites.
Another example is offered by interferometric scattering microscopy (iSCAT), which mea-
sures the scattering of viruses, proteins and nanoparticles via a well balanced interference
between the reference, transmitted light, and the field scattered by the system under
study [48]. This enables accurate quantification of molecular absorption, but requires
meticulous alignment of the interferometer’s arms to reduce background noise from laser
intensity fluctuations.
Another interesting solution to label-free detection of single molecules is given by ground-
state depletion microscopy. In this method, two tightly focused laser beams at different
wavelengths—both within the absorption band of the target molecule—are used. A strong
saturating beam, the pump, excites the molecule, depleting its ground state and thus
preventing absorption by the second probe beam. Single-molecule detection is achieved
by modulating the transmitted probe beam, with the modulation depth directly linked to
the molecule’s absorption [56]. Synchronizing and aligning the shot-noise-limited beams
is crucial for achieving high sensitivity in these measurements.

1.2.3 Photothermal Spectroscopy
Unlike the previously mentioned methods, which measure the attenuation of light by
a molecule, photothermal spectroscopy directly detects molecular absorption through
the resulting photothermal heating [57]. One of the most prominent examples is thermo-
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optic photothermal sensing [58]. This method also utilizes a dual-beam setup, similar
to ground-state depletion microscopy, but with a key difference: only the pump laser
operates within the molecule’s strong absorption spectrum. This pump laser excites the
target molecule, which then releases a portion of the absorbed electromagnetic energy as
heat. The resulting temperature increase induces a local change in the refractive index
of the surrounding medium, which is detected by a secondary probe laser via scattering
modulation at the focal plane. To achieve a high signal-to-noise ratio (SNR), a medium
with a large thermo-optic coefficient, such as glycerol, thermotropic liquid crystal, or
near-critical Xe or CO2, is essential [57]. As with other dual-beam techniques, precise
alignment and synchronization of the lasers are crucial for sensitivity.
Another approach that exploits the photothermal effect involves the use of whispering-
gallery modes (WGM) [59]. Here, the target molecule is positioned on an optical resonator.
When the molecule absorbs light and heats up, the resulting temperature increase alters
the refractive index, modulating the transmission of the optical cavity that forms the
resonator.

1.2.4 Nanomechanical Photothermal Spectroscopy
A novel approach for single-molecule analysis has recently emerged: nanomechanical
photothermal microscopy [24]. Here, a tensile-stressed nanomechanical resonator, rather
than an optical one, is driven to vibrate at one of its resonance frequencies. A molecule
placed on the resonator is then heated by a laser with a wavelength tuned to the molecule’s
absorption spectrum. The energy absorbed and released by the molecule through non-
radiative processes increases the temperature of the nanomechanical resonator, causing
a stress relaxation [60]. This results in a measurable frequency shift, as illustrated in
Fig. 1.1. This method allows for the analysis of a wide range of samples, both fluorescent
and non-fluorescent, without the need for a temperature-sensitive embedding medium or
the precise laser synchronization required by conventional photothermal microscopy [61].
Previous studies have investigated optical absorption in a variety of small-scale samples

[16–23], including thin films [34, 35], two-dimensional (2D) material [32, 33], single
nanoparticles [25–30], and single molecules [24], in a wide range of the electromagnetic
spectrum, from visible, near-infrared (NIR), to mid-IR [61]. However, amidst this exten-
sive body of work, a comprehensive platform capable of localizing, and characterizing the
spectroscopic and polarization features of a single nano-object has been not shown so far.
This work aims to bridge this gap by advancing nanomechanical photothermal sensing into
a robust technique for spectroscopy and polarization microscopy at the single-molecule
level. By leveraging a silicon nitride (SiN) nano-optomechanical drum resonator as a
precise temperature sensor, the spectral and polarization features of the longitudinal local-
ized surface plasmon resonance of individual gold nanorods have been fully characterized
in the NIR. In conjunction with finite element method (FEM) simulations, it is shown
that the plasmonic damping is mainly limited by electron bulk and surface scattering.
The polarization properties of the transversal surface plasmons are also studied, showing
little dependence on the probing laser polarization. Additionally, the results demonstrate
how the nanoresonator itself influences the absorption cross-section of the nanorods.
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Figure 1.1: Working principle of nanomechanical photothermal sensing. The
resonator is driven at one of its resonance frequencies ω0. A laser is scanned over the
resonator surface. Far from the molecule (left), no photothermal heating is released to the
resonator. When the laser impinges on the molecule (right), this heats up the resonator,
leading to a stress reduction (here generalized in terms of spring constant change Δk).
This ultimately causes a detectable frequency shift Δω.

1.3 Enhancing Nanomechanical Photothermal sensing

In this detection paradigm, the nanomechanical resonator essentially functions as a
thermometer. The detected heat can arise from various processes, including non-radiative
energy transfer from low-abundance analytes or even single molecules, as discussed earlier,
as well as electromagnetic radiation [36–42]. In this context, the field is making significant
strides in bridging the terahertz (THz) gap with resonant micro- and nanomechanical
thermal detectors, providing a novel approach for room-temperature operation [62, 63].
Additionally, light-sound interaction in nanoresonators has been successfully used for
enthalpy measurements [64], detection of near-field heat radiation transfer [65, 66], and
as a probe for phonon heat transfer via vacuum fluctuations [67]. Fig. 1.2 provides an
overview of the various research areas being explored with nanomechanical photothermal
sensing.

To date, a wide variety of mechanical photothermal sensors have been utilized to
achieve these remarkable results, each tailored to specific experimental demands. For
instance, SiN string resonators have been widely used in molecular microscopy and
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Figure 1.2: Overview on nanomechanical photothermal sensing. Various research
fields have been explored so far (top row): microscopy for single particles and molecules
(reproduced and cropped from ref. 24–Copyright author(s) 2018, licensed under CC BY-
NC-ND 4.0), spectroscopy (reproduced and cropped from ref. 33–Copyright 2023 under a
CC BY 4.0 license), IR/THz detection (reproduced and cropped from ref. 39–Copyright
2022 under a CC BY 4.0 license), IR-temperature programmed desorption (IR-TPD,
reproduced and cropped from ref. 23–Copyright 2023 under a CC BY 4.0 license), and
different mechanisms of radiative heat transfer (adapted with permission from ref. 67–
Copyright 2019 by Springer Nature). Different resonator designs are also available
(bottom row): strings (reproduced and cropped from ref. 19–Copyright 2016 under a CC
BY-NC-ND 4.0 license), drumheads (adapted with permission from ref. 68–Copyright
2023 by AIP Publishing), trampolines (reproduced and cropped from ref. 40–Copyright
2023 under a CC BY 4.0 license), phononic crystal (PnC) geometries on trampolines
(reproduced and cropped from ref. 69–Copyright 2020 under a CC BY 4.0 license), and
PnC alone (adapted with permission from ref.70–Copyright 2017 by Springer Nature).
Different applications further require the design of composite sensors. Two examples
are (central row): resonators with thin-film absorbers (reproduced and cropped from
ref. 71–Copyright 2020 under a CC BY 4.0 license), and metamaterials (reproduced and
rearranged from ref. 42–Copyright 2024 under a CC BY 4.0 license).
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spectroscopy [16–19, 21, 22, 25, 26, 28], as their small cross-sectional area, together with
the exceptional material properties of SiN, makes them extremely sensitive to temperature
changes [25]. Drumhead resonators, with their large surface area, have proven effective
for nanomechanical photothermal spectroscopy, enabling studies of single nano-absorbers
[24, 29, 30], 2D materials [32, 33], thin films [34, 35], and for IR/THz radiation [38, 42, 63].
More recently, trampoline resonators have been employed in various photothermal sensing
studies [38–40, 72–74].
Despite this extensive body of research, a comprehensive comparison of these different
resonator designs — evaluating their sensitivity, response time, and practicality — remains
lacking.
A consistent part of this work aims to to develop a comprehensive theoretical framework
for evaluating the photothermal sensing capabilities of nanomechanical resonators, with
a focus on power sensitivity and response time. Analytical models are presented to
provide insights into the relationship between sensor response to input signal power and
frequency stability. Various noise sources affecting frequency stability, like additive phase
noise, temperature fluctuation noise, and photothermal back-action noise are derived.
These models are rigorously validated by comparison with experimental data and finite
element method (FEM) simulations across various silicon nitride nanomechanical resonator
designs, including strings, square drumheads, and trampolines. In all cases, the theoretical
predictions show strong agreement with both experimental results and FEM simulations,
demonstrating how the photothermal response of the resonance frequency is driven by
the corresponding rise in mean temperature. The analysis also emphasizes the significant
effect of photothermal back-action on frequency fluctuations. These findings not only
clarify the comparative performance of different resonator designs but also establish a
strong foundation for advancing the next generation of nanomechanical photothermal
sensors.

1.4 Low-loss Optical Material Characterization

1.4.1 Overview

Optical absorption is a fundamental phenomenon in nature, intimately connected to the
electronic and structural properties of materials. Investigating absorption in solid-state
materials is crucial for advancing both fundamental research and practical applications.
In photonic integrated circuits (PICs), understanding the sources of optical absorp-
tion, and minimizing them to enable high-confinement waveguides [75], is of utmost
importance for applications like quantum information processing [76, 77] and biosensing
[78, 79]. Similarly, in cavity optomechanics [8, 80–83], minimal absorption of both the
optomechanical resonator and the cavity mirrors is vital to prevent mechanical instability
[83, 84] and cavity bistability [85]. In nanomechanical photothermal spectroscopy, low
absorption is ideal to mitigate the photothermal back-action frequency noise introduced
in the resonator, as discussed in this work. Conversely, in nanomechanical photothermal
IR detection, maximum absorption is highly desired to enhance the sensor’s specific
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Figure 1.3: Nanomechanical photothermal sensing for optical loss measurements.
Left: Schematics of the optical loss characterization with nanomechanical photothermal
sensing. Right: Schematics of the SiN absorption as a function of the deposition-related
tensile stress.

detectivity [40, 86].
Among the various materials explored in these fields, silicon nitride (SiN) stands out
due to its excellent optical, thermal, and mechanical properties [87, 88]. In particu-
lar, its widespread application in photonics stems from its broad transparency window
(0.4 − 8 µm) [89], though this property can strongly depend on the film deposition and
fabrication process, for which the underlying mechanisms are not fully understood. This
has been observed by means of various techniques, such as ellipsometry [90–95], direct
single-pass absorption spectroscopy [96], Fourier Transform IR (FTIR) interferometry
[97, 98], cutback [99], outscattered light method [100–104], prism coupling [105], photolu-
minescence [106], photothermal common-path interferometry [107], and cavity-enhanced
absorption spectroscopy [75, 88, 108, 109]. However, these approaches often suffer from
scattering losses and slow measurement times, which obscure the true absorption of SiN
and make analyses prone to parasitic heating of the surroundings.

1.4.2 Optical Extinction Measurements with Nanomechanical
Photothermal Sensing

Whitin this context, nanomechanical photothermal sensing offers a robust solution to
these challenges [16, 18–20, 23, 74], as it directly detects absorption while being insensitive
to scattering, as schematically illustrated in Fig. 1.3 (left). In the final part of this work,
nanomechanical strings resonators made from low-pressure chemical vapour deposition
(LPCVD) deposited SiN are utilized to investigate the relationship between the material
absorption and the residual tensile stress (Fig. 1.3, right). The extinction coefficient of
SiN at 632.8 nm wavelength reduces of two orders of magnitude when transitioning from
low stress (≈ 200 MPa), relevant for nanomechanical photothermal spectroscopy and
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IR sensing, to high stress (> 800 MPa), of relevance for cavity optomechanics and PIC
design. Within the framework of the band-fluctuations model [110], this reduction is
shown to be dictated by a blue-shift of the energy bandgap of the deposited SiN as the
silicon-to-nitrogen ratio (Si/N) reduces. Hence, adjusting the Si/N ratio provides a way
to tune the optical properties of SiN, advancing the understanding and application of
this ubiquitous material.

1.5 Thesis Outline
The primary goal of this thesis is two-fold. First, it seeks to advance the current
understanding of nanomechanical photothermal sensing, leading to the development of a
theoretical framework able to capture the core characteristics and key performance metrics
of the state-of-the-art nanomechanical photothermal sensors. Second, it demonstrates
the versatility and robustness of this sensing approach through two practical applications:
single-particle spectromicroscopy and low-loss optical material characterization.
Given that this detection paradigm employs a mechanical element as the sensing core,
made vibrate at one of its resonances, the fundamentals of nanomechanical resonators are
introduced first (Chapter 2). It follows a detailed description of the theoretical framework
for nanomechanical photothermal sensing (Chapter 3). Then, a detailed introduction to
the methodologies employed for the acquisition of the results presented throughout this
work is presented (Chapter 4). It follows the comparative experimental analysis of three
different resonator designs (Chapter 5). Next, the description of the development of a
platform for single-particle nanomechanical photothermal spectroscopy is given (Chapter
6). Finally, the effectiveness of nanomechanical photothermal sensing for low-loss material
characterization is showcased (Chapter 7).
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CHAPTER 2
Fundamentals of Nanomechanical

Resonators

In this chapter, the basic theory of vibrations in nanomechanical resonators is outlined,
with a particular emphasis on tensile-stressed structures. First, the general equation of
motion for a lumped element model is reviewed, deriving the fundamental properties
of resonant mechanical vibrations. Next, the most important mechanical damping
mechanisms relevant to this work are introduced. Finally, the treatise shifts to continuum
mechanical resonators, with a detailed analysis of three specific designs — namely, strings,
drumheads, and trampolines. The theoretical background presented in the following is
based on Ref. [60].
The results and associated discussions regarding the trampoline resonators presented in
this chapter are based on Ref. [111].

2.1 Lumped Element Models of Mechanical Vibrations
This section provides a reminder of fundamental concepts necessary to understand
the motion in nanomechanical resonators and their interaction with the surrounding
environment.

2.1.1 Damped Linear Vibration
A solid body subjected to the action of external forces, will experience changes in shape
and volume, which are referred to as deformations [112]. Thus, each molecule within the
solid is displaced from its equilibrium position r to the new position r′ by an amount

u = r′ − r, (2.1)
known as displacement vector [112]. The special case of periodic deformations is referred
to here as vibrations. The physics behind vibrations can be described with the simple yet
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powerful approach of lumped element modelling. In a one-dimensional lumped element
model, the whole mass m of the body is considered to be concentrated at a single point
(see figure Fig. 2.1), and be displaced an amount u under the action of an external force F .

Figure 2.1: 1D lumped element
model of vibrations in a driven
damped mechanical resonator.

The kinetic energy introduced into the system by F
is partially stored as potential energy and partially
dissipated to the environment. As the solid deforms,
internal forces arise due to the rearrangement of
its atoms and molecules, which act to restore their
equilibrium positions [3]. For small displacements u,
these internal forces can be described by the Hook’s
law

Fr(t) = −ku(t), (2.2)

where k is the effective spring constant. Thus, the
restoring force can be modeled as a massless spring
with stiffness k.
The dissipative forces acting on the resonator, which
represent energy lost to the environment, are as-
sumed here to be proportional to the velocity of
vibration u̇ = du/dt

Fd(t) = −cu̇(t), (2.3)

with c denoting the damping coefficient. This force is represented by a massless dashpot
in the lumped element model. Balancing the forces acting on the mass, the 1D equation
of motion is derived

mü(t) + cu̇(t) + ku(t) = F (t), (2.4)

with ü = d2u/dt2 denoting the acceleration, and F being the external driving force.

2.1.1.1 Free Undamped Vibration

In the special case where no energy dissipation (c = 0) and driving force (F = 0) are
involved, the equation of motion simplifies to that of a simple harmonic oscillator. Such
an undamped free mechanical system will oscillate endlessly at a frequency

ω0
2π

= 1
2π

√︄
k

m
, (2.5)

known as eigenfrequency. In this condition, the system will never leave its dynamic state,
with its constant mechanical energy swapping back and forth between kinetic and potential
energy [60]. A similar scenario is observed in continuum mechanical structures for different
vibrational modes, called eigenmodes, which, however, do experience dissipation. In the
following sections, the focus will be on the dynamics of one such mode.
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2.1.1.2 Free Damped Vibration

For a system with a damping coefficient c ̸= 0, the mechanical energy is no longer
conversed, and the resonator will gradually lose its vibrational energy over time. The
equation of motion (2.4) for an undriven damped resonator can be rewritten as

ü(t) + 2ζω0u̇(t) + ω2
0u(t) = 0 (2.6)

with ζ denoting the damping ratio, defined as

ζ = c

2
√

km
. (2.7)

In this work, only underdamped resonators are considered, whose vibrations are charac-
terized by ζ < 1 [60]. A trial solution for Eq. (2.6) can be of the form

u(t) = u0eγt, (2.8)

with u0 ≠ 0 denoting the initial amplitude of vibration. Substituting Eq. (2.8) in (2.6),
the expression of γ is found to be

γ = ω0

(︃
ζ ± i

√︂
1 − ζ2

)︃
. (2.9)

Hence, solutions of Eq. (2.6) for a system left to freely oscillate for a time t > 0 are of
the form

u(t) = u0e−ω0ζtcos
(︃

ω0

√︂
1 − ζ2t

)︃
, (2.10)

where the vibration occurs at a frequency

ωnat
2π

= ω0
2π

√︂
1 − ζ2, (2.11)

called natural frequency, while its amplitude decays exponentially in time with a constant

τmech = 1
ω0ζ

. (2.12)

The measurement of this time constant, known as ring-down, provides information about
the coherence of the vibrational mode of interest.

2.1.1.3 Driven Damped Vibration

Throughout this work, the most encountered scenario is that of a damped resonator driven
at one of its eigenmodes (F, c ̸= 0). This section analyzes the steady-state mechanical
response of the resonator when subjected to an harmonic driving force F (t) = F0cos(ωt).
With the use of the complex notation, the vibrational response can be expressed as

û(t) = û0eiωt = u0ei(ωt+θ), (2.13)
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whose amplitude is given by [60]

u0(ω) = F0/m√︂(︁
ω2

0 − ω2)︁2 + 4ζ2ω2
0ω2

, (2.14)

while its phase relative to the driving force, also called phase lag, is

θ(ω) = arctan
(︃ 2ζω0ω

ω2 − ω2
0

)︃
. (2.15)

Hence, the steady-state solution of Eq. (2.4) takes the form

u(t) = R{û(t)} = u0cos(ωt+θ) = F0/m√︂(︁
ω2

0 − ω2)︁2 + 4ζ2ω2
0ω2

cos
(︃

ωt + arctan
(︃ 2ζω0ω

ω2 − ω2
0

)︃)︃
.

(2.16)
Normalizing Eq. (2.14) for the eigenfrequency ω0, gives

u0(ω) = F0/k√︄(︃
1 −

(︂
ω
ω0

)︂2
)︃2

+ 4ζ2
(︂

ω
ω0

)︂2
= usδu0(ω), (2.17)

where us = F0/k is the static deflection, and δu0(ω) is the frequency dependent relative
amplitude

δu0(ω) = 1√︄(︃
1 −

(︂
ω
ω0

)︂2
)︃2

+ 4ζ2
(︂

ω
ω0

)︂2
, (2.18)

also called dynamic gain [60]. The phase lag can similarly be normalized as

θ(ω) = arctan

� 2ζ
(︂

ω
ω0

)︂
(︂

ω
ω0

)︂2 − 1

� . (2.19)

Both expressions (2.18) and (2.19) are displayed in Fig. 2.2. It is worth noting that
the dynamic gain for a slightly damped resonator exhibits a maximum near ω0. By
differentiating Eq. (2.18) with respect to the driving frequency ω and solving ∂δu0/∂ω = 0,
the frequency of maximum displacement is found to be

ωr

2π
= ω0

2π

√︂
1 − 2ζ2, (2.20)

which is referred to as resonance frequency. For slightly damped resonators (ζ ≪ 1), this
simplifies to ωr ≈ ω0. Moreover, at ω = ωr, the phase lag is given by

θr = arctan
(︄√︁

1 − 2ζ2

ζ

)︄
, (2.21)
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2.1. Lumped Element Models of Mechanical Vibrations

Figure 2.2: Driven damped vibrations. a. Dynamic gain (2.18) as a function of the
normalized frequency ω/ω0, for different damping ratios ζ. b. Corresponding phase lag
(2.19).

which approaches θr ≈ π/2 for slight damping.
Hence, for low driving frequencies (ω ≪ ωr), a slightly damped mechanical resonator
vibrates with amplitudes equal to its static deflection us, in phase with the driving
external force. As ω approaches ωr, the resonator start to vibrate out-of-phase with
respect to the force F , ultimately reaching a maximal value of

u0(ω = ωr) = F0
k

1
2ζ

√︁
1 − ζ2 = F0

k
Q = usQ. (2.22)

The amplification factor appearing in Eq. (2.22) is called quality factor (Fig. 2.2a), and
for slight damping can be written as

Q ≈ 1
2ζ

. (2.23)

Hence, the smaller the damping ratio is, the higher is the Q factor of the resonator and
its corresponding resonant vibrational amplitude (2.22). A higher Q also translates in
stepper phase responses, with the slope at resonance given by

∂θ

∂ω
(ω = ωr) = 1

ω0ζ
= 2Q

ω0
. (2.24)

Notably, the phase slope at resonance (2.24) is equal to the mechanical time constant of
the resonator τmech (2.12). Therefore, for very slightly damped systems it results that

Q ≈ 1
2ω0τmech. (2.25)
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2. Fundamentals of Nanomechanical Resonators

By measuring the time it takes for the resonator to dissipate its mechanical energy, its
quality factor can be extracted [60]. This method, known as ring-down, is especially useful
for determining very high Q values and has been employed for all the Q measurements
performed in this work. For other techniques used to measure Q, the reader can refer to
[60].

2.2 Mechanical Dissipation Mechanisms
As highlighted above, the quality factor expresses the amplification of the vibrational
amplitude at resonance, as well as its sharpness. Physically, Q is defined as the ratio
between the stored versus lost energy into the resonator during one vibrational cycle [60].
Various mechanisms can contribute simultaneously to the energy dissipation, leading to
an overall damping [60]

1
Q

= 1
Qgas

+ 1
Qint

+ 1
Qrad

+ 1
Qother

. (2.26)

Qgas describes losses due to the interaction between the resonator and the surrounding
gas, Qint refers to the losses occurring within the resonator (bulk and surface friction,
thermoelastic damping etc.), Qrad denotes the losses due to energy radiation occurring at
the clamping of the resonator, and Qother includes all the other types of losses irrelevant
for this work, such as electrical charge damping and Eddy current losses.

2.2.1 Gas Damping
Gas damping belongs to the broader class of medium interaction losses, which includes
the interaction between the resonator and its surrounding medium, such as gas or liquid.
Here, only the resonator-gas interaction is briefly described. For a more comprehensive
discussion of other scenarios, the reader can refer to [60].
The magnitude of gas damping is directly influenced by the gas pressure, as well as the
geometry and frequency of the resonator itself [113]. In particular, the pressure defines
two main operating regions, the fluidic and ballistic regime. The transition between the
two regimes is expressed through the Knudsen number Kn, defined as ratio between the
mean free path of the surrounding gas λf and the characteristic physical length of the
resonator Lr [113]

Kn = λf

Lr
. (2.27)

It depends on the gas pressure via λf , which, in turn, is given by

λf = kBT√
2πd2

gas

1
p

, (2.28)

with kB , T , dgas, and p denoting the Boltzmann constant, the environmental temperature,
the diameter of the gas molecule, and the gas pressure, respectively. For Kn < 1, the
mean free path of the gas molecules is shorter than the resonator’s characteristic length,
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2.2. Mechanical Dissipation Mechanisms

Figure 2.3: Gas damping. Theoretical Q factors as a function of the gas pressure p,
for three different resonators (maroon, string; dark red, drumhead; orange, trampoline),
made of low-stress (200 MPa) silicon nitride. The coloured dashed vertical lines refer to
the pressure values for which Kn = 1 for the various geometries. The dimensions are
summarized in Table 2.1.

and the gas behaves as a continuum fluid interacting with the resonator, dissipating
energy via its viscous flow (fluidic regime). In contrast, for Kn > 1, where λf > Lr, the
losses occur from the impact of non-interacting molecules onto the resonator (ballistic
regime). Specifically, the net energy loss is caused by the imbalance in molecular collisions
on the front and back surfaces of the resonator. In both regimes, energy losses can occur
via squeezed-film and/or drag-force damping. The former arises from the interaction
between the resonator and the gas trapped between this and the substrate, when present.
The latter is caused by the collision of the gas molecules with the moving resonator.
All the structures analyzed in this work are operated in vacuum, at pressures far below
the fluidic region (p < 10−3 Pa), where Q ≪ Qgas. This is clearly shown in Fig. 2.3 for
three different resonators—namely, a string (Fig. 2.7a), a drumhead (Fig. 2.8a), and a
trampoline (Fig. 2.9a). The specific geometrical properties chosen for the calculations are
summarized in Table 2.1. The dashed vertical lines represent the corresponding transition
pressure

p|Kn=1 = kBT√
2πd2

gas

1
Lr

, (2.29)

for a diameter dgas = 0.362 nm of air molecules, falling three orders of magnitude above
the operating pressure (see Fig. 2.3 and Table 2.1). The linear p-dependence of Q for
p > 10−3 Pa is due to ballistic drag-force damping, as no substrate is present.
In this scenario, the damping reduces with the pressure p following the expression [114]

Qgas = ρhω0
4

√︃
π

2

√︄
RgasT

Mm

1
p

= 1
cgas

1
p

, (2.30)
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2. Fundamentals of Nanomechanical Resonators

Table 2.1: Gas damping in low-stress (200 MPa) LPCVD silicon nitride resonators of
thickness h = 50 nm. The length of the string, the side length of the drumhead, and the
window side length of the trampoline are chosen to be equal to 1 mm. The SiN mechanical
material parameters used are those summarized in Table 3.1. For cgas, T = 300 K and
Mm = 28.97 g/mol are assumed. Moreover, only the fundamental out-of-plane flexural
mode is considered.

Design Characteristic length, Lr p|Kn=1 (Pa) cgas (Pa−1)
String Width, 5 µm 1422 8.94·10−5

Drumhead Side length, 1 mm 7 6.32·10−5

Trampoline Central area side length, 230 µm 31 38.4·10−5

where ρ, h, and ω0 denote the resonator’s mass density, thickness, and oscillation of
vibration, respectively. Rgas, T , and Mm refer instead to the universal molar gas constant,
the temperature, and the molar mass of the gas, respectively. In the assumption that
mechanical radiation losses can be neglected, the overall quality factor (2.26) is given by

Q−1 = Q−1
int + cgasp. (2.31)

(the corresponding values of cgas for the three design are given in Table 2.1). Hence, for
p < 10−3 Pa, Q is independent of the pressure and limited by intrinsic losses Qint (see
below). It is worth noting that resonators vibrating at higher frequencies ω0/2π will
enter before the ballistic regime.

2.2.2 Radiation Damping
Radiation damping refers to the energy losses that occur due to radiation of mechanical
energy from the vibrating resonator through the clamping points into the substrate [60].
While these losses strongly depend on the detailed anchor geometry, a general relationship
can be expressed as

Qrad ∝
(︃

L

h

)︃a

ηb, (2.32)

with η denoting the acoustic mismatch between a semi-infinite substrate and the resonator

η ≈
√︄

Es

ρs

ρ

σ0
, (2.33)

where ρs and Es represent the mass density and the Young’s modulus of the substrate,
respectively. In Eq. (2.32), a ≥ 1 varies with the dimensionality of the structure,
transitioning from 2D to 1D, while b = 0 for cantilevers and b = 3 for drumheads.
Additionally, this type of loss also strongly depends on the chip mounting condition [115].
Slender beams and/or low-stress can mitigate this source of dissipation, as it occurs for
the resonators studied in this work.
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2.2. Mechanical Dissipation Mechanisms

2.2.3 Intrinsic Damping
This type of damping encompasses all dissipation mechanisms occurring within the
resonator itself. It can be categorized in friction losses and fundamental losses. The
former arise from imperfections either within the bulk or on the surface of the resonator;
the latter are inherent, even in an ideal, frictionless resonator. Since fundamental losses
typically occur at very high frequencies, well beyond the range explored in this work,
their effects are negligible and will not be discussed further. For additional information,
the reader can refer to [60].

2.2.3.1 Standard Linear Solid Model

Friction losses originate from irreversible atomic motion that occurs during the vibrations.
They can be described within the standard linear solid (SLS) model, also known as Zener
model, where the resonator is treated as an anelastic system with a single, frequency-
dependent friction loss mechanism [116, 117]. In this framework, the Young’s modulus is
expressed as

E(ω) = Ereal(ω) + iEimag(ω), (2.34)
where Ereal and Eimag denote the storage and the loss Young’s modulus, respectively.
The former expresses the energy W stored in the structure due to the applied strain; the
latter expresses the energy ΔW dissipated during one cycle of vibration. The damping
associated to the friction losses is given by [60]

Qfriction = 2π
W

ΔW
= Ereal

Eimag
= tan−1(δ), (2.35)

where tan(δ) is the loss tangent. For SiN, tan(δ) ≈ 10−5. For more details, the reader
can refer to [117].

2.2.3.2 Surface Friction

As the mechanical structures are reduced in size, the surface-to-volume ratio increases,
causing surface losses to dominate the dissipation within the resonator. This phenomenon
is referred to as surface friction. Although surface loss is recognized as a significant source
of dissipation in nanomechanical resonators, the precise contributions from different
sources of surface friction remain unclear. Nonetheless, a general relationship can be
written as [118, 119]

Qsurf = βh, (2.36)
with h denoting the thickness of the resonator, and β the proportionality constant. In
particular, Villanueva et al. investigated surface friction losses in SiN resonators [119],
finding for the proportionality constant a value of β = (6 ± 4) · 1010 m−1. Fig. 2.4
illustrates the overall Qint as a function of h, as reported in [119]. For thicker resonators
(h ≥ 500 nm), bulk losses dominates (where Qvol ≈ 28000 has been used); for h < 500
nm, surface losses further reduce the ultimate intrinsic damping. The vertical, light
shadowed region indicates the range of thicknesses characterized throughout this work.
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2. Fundamentals of Nanomechanical Resonators

Figure 2.4: Surface friction losses. Intrinsic quality factor Qint = (Q−1
vol + Q−1

surf)−1 as a
function of the resonator’s thickness h. The horizontal, darker shadowed region accounts
for the uncertainties in β [119], while the vertical, lighter region indicates the values of
thickness considered in this work.

2.2.3.3 Dissipation Dilution

The last element to be discussed relevant for this work, is the phenomenon of dissipation
dilution, which has received significant attention in the last decades [120]. Here, only the
essentials are covered. Additional details can be found in [60, 120].
In essence, dissipation dilution leads to an enhancement of the quality factor, exceeding
the limits imposed by material intrinsic losses, Q−1

int . This arises from the presence of a
quasi-lossless extra potential Wlossless contributing to the stored mechanical energy of
vibration W of Eq. (2.35) [60, 120]

Q = 2π
W + Wlossless

ΔW
= 2π

W

ΔW

(︃
1 + Wlossless

W

)︃
= QintαDD. (2.37)

Here, αDD is the dilution factor, and quantifies the aforementioned Q enhancement. For
stressed resonators, as those analyzed in this work, the lossless potential is given by
the elastic energy stored during deformation against the static tensile force, and is of
relevance for flexural modes [121]. A general expression for αDD is given by [120]

αDD =
(︂
an(j)λstrain + bn(j)ωn(j)λ

2
strain

)︂−1
, (2.38)

with an(j) and bn(j) being two mode-dependent factors (with n for 1D and nj for 2D
structures), ωn(j) is the corresponding resonance frequency, and λstrain is the strain
parameter

λstrain = h

L

√︄
E

12σavg
, (2.39)

with E and σavg denoting the Young’s modulus and average tensile stress of the resonator.
Fig. 2.5 shows αDD as a function of the resonator length L for a string and drumhead.
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Figure 2.5: Dissipation dilution. Dissipation dilution factor αDD as a function of the
resonator length L. The calculations (2.38) are done for a string and drumhead with
tensile stress σavg = 200 MPa, made of SiN (see Table 3.1 for the material parameters
used here). The shadowed region indicates the range of lengths considered in this work.

The shadowed region highlights the range of lengths explored in this work. In this regime,
where αDD ∝ λ−1

strain, the dilution factor is constrained by the local bending near the
clamping of the resonator [60].
At this stage, all the key parameters necessary for describing a single resonance mode

in the linear regime using a lumped element model — namely, the resonance frequency
ωr and the quality factor Q — have been covered.

2.3 Dynamic range
Another crucial characteristic of nanomechanical resonators is their dynamic range
(DR) of operation. The DR is defined by the amplitude range where the resonator’s
response u0(ω) to an external force F0 is independent of the amplitude itself [60]. Various
nonlinearities set the upper limit on the achievable DR [60]. In flexural bending modes,
geometrical nonlinearities arise from the effective elongation experienced by the structure
during vibration. These can be modelled as an effective force that acts against the
vibration and scales with ∝ αeffu3, where αeff is the effective Duffing parameter (αeff > 0
for materials like silicon nitride) and depends on the geometry of the resonator. Hence,
the equation of motion for a slightly damped system (2.4) becomes

ü(t) + ω0
Q

u̇(t) + ω2
0u(t) + αeff

m
u3(t) = F (t)

m
, (2.40)

known as Duffing equation, where the resonator exhibits an effective stiffness

keff = mω2
0

[︃
1 + αeff

mω2
0

u2(t)
]︃

. (2.41)
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2. Fundamentals of Nanomechanical Resonators

Figure 2.6: Duffing resonator. Amplitude of motion u0(ω) of a Duffing resonator as a
function of the scaled frequency Q(ω/ω0 − 1) for varying driving force F0. The dynamic
range (DR) is highlighted in red and goes from the amplitude peak driven by incoherent
thermal energy (uthm) and the critical amplitude (uc).

The first term corresponds to the stiffness of an harmonic oscillator as seen in Eq. (2.5);
the second term becomes significant at high displacement, leading to two key effects: i)
it shifts the resonance frequency ω0 to higher values; ii) it reduces the amplitude peak
(2.22).
Fig. 2.6 shows both effects, where the amplitude of motion of a Duffing resonator is
plotted as a function of a scaled driving frequency Q(ω/ω0 − 1), for varying magnitude
of the driving force. For small forces (darker curves), the amplitude u is small enough
that the second term in Eq. (2.41) can be disregarded, and the Lorentzian response
(2.17) remains unaffected. For larger driving force (lighter curves), nonlinearities emerge
beyond a critical amplitude uc [60]

uc =
√︄

8
3
√

3
1√
Q

√︄
mω2

0
αeff

, (2.42)

which depends on Q and the ratio of the resonator’s stiffness to the Duffing parameter.
This value defines the upper bound of the DR, as illustrated in Fig. 2.6. Throughout this
work, most experiments and theoretical analyses have been conducted at an amplitude
u0 = uc, which ensures the highest signal-to-noise ratio to minimize frequency fluctuations
(the details are provided in Chapter 3).
Next, the focus will shift to the discussion of each specific resonator design of interest in
this work.
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Figure 2.7: Vibrations of a string resonator. a. Schematics of a string resonator of
length L, width w, and thickness h. b. FEM simulated mode shapes of the first four
out-of-plane flexural modes of a string resonator.

2.4 Free Bending Vibration of Continuum Resonators
In this section, the bending modes of specific mechanical geometries — namely string,
drumheads and trampolines — under initial tensile stress will be derived and discussed.
In particular, the continuum nature of strings and drumheads will be taken into account
in the mechanical description, while a lumped element model will be employed to
describe the trampoline. Additionally, the expressions for the effective mass and Duffing
parameters are given for completeness, as these parameters enters Eq. (2.42), essential
for the theoretical analysis of the frequency stability in the three different designs as will
be further discussed in Chapters 3 and 5.

2.4.1 String

Strings are among the most explored mechanical resonators. The analytical model for
their continuum mechanical description is based on the Euler-Bernoulli beam theory.
Here, a beam is defined as a slender and long mechanical structure, such that its rotational
inertia and shear deformation can be neglected [60]. The string is a special case of a
beam fixed at both ends under a tensile stress σ0. In the following, only strings with a
rectangular cross-section are considered, with length L, width w, and thickness h (see
Fig. 2.7a). Moreover, only out-of-plane flexural modes are discussed.
Under the assumption of a linear elastic material, no damping, and small deflections

u(x, t) ≪ h, the equation of motion of a string is similar to that of a doubly clamped
beam subjected to an axial tensile force N = σ0wh along its length, and is given by

ρwh
∂2u(x, t)

∂t2 + EIy
∂4u(x, t)

∂x4 − N
∂2u(x, t)

∂x2 = 0. (2.43)
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ρ, E, and Iy denote the mass density, the Young’s modulus, and the geometrical moment
of inertia with respect to the y-axis, respectively. The latter is defined for a rectangular
cross-section as

Iy = wh3

12 . (2.44)

The corresponding general solution to Eq.(2.43) is the superposition of the string’s
eigenmodes

u(x, t) =
∞∑︂

n=1
ψn(x)un(t) =

∞∑︂
n=1

ψn(x)u0,ncos(ωnt), (2.45)

where the separation of variables has been exploited. ψn represents the normalized
modeshape of the nth eigenmode. For a simply supported string, where rotation at the
clamping points is allowed, the boundary conditions are given by

ψn(0) = ψn(L) = 0, (2.46)

∂2ψn

∂x2 (0) = ∂2ψn

∂x2 (L) = 0. (2.47)

Modeshapes of the form
ψn(x) = sin(βnx) (2.48)

satisfy Eq. (2.46) and (2.47), with βn denoting the wavenumber of the corresponding
mode. Fig. 2.7b shows the first four out-of-plane flexural modes (n = 1 − 4). Substituting
Eq. (2.48) and (2.45) into Eq. (2.43) yields the dispersion relationship

ωn

2π
= 1

2π

√︄
EIy

ρwh
β4

n + σ0
ρ

β2
n = 1

2π

√︄
Eh2

12ρ
β4

n + σ0
ρ

β2
n = β2

n

2π

√︄
Eh2

12ρ

√︄
1 + 12σ0

Eh2
1

β2
n

. (2.49)

A wavenumber βn that satifies the boundary conditions (2.46) and (2.47) is given by

βn = nπ

L
. (2.50)

For the stress values used throughout this work, the following condition is always satisfied

12σ0
Eh2

L2

n2π2 ≫ 1, (2.51)

which implies that flexural rigidity of the beam DE = Eh3/12 can be neglected, simplifying
Eq. (2.49) to the form

ωn

2π
= n

2L

√︃
σ0
ρ

. (2.52)

This is the dispersion of a pure string resonator, whose eigenfrequency is independent
of the thickness h. All these results are valid for simply supported beams. For the case
where the flexural rigidity at the clamping points is taken into account, the reader can
refer to [60].
For completeness, the expressions for the effective mass and Duffing parameters are
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provided here, as they define, together with the quality factor Q, the critical amplitude uc
of the resonator. To calculate them, an equivalent harmonic oscillator is used to describe
the dynamics of a single resonance mode of a continuum structure [60]

ωn

2π
= 1

2π

√︄
keff,n
meff,n

, (2.53)

with keff,n and meff,n denoting the effective stiffness and effective mass of the specified
resonance mode, respectively. These effective parameters can be obtained by comparison
between the energies of the lumped element model with those of the continuum counterpart.
The resultant equivalence depends on the chosen amplitude normalization, i.e., the position
along the continuum resonator must be defined. In the following, the choice falls in the
position of the antinode of the fundamental mode. More details can be found in [60].
For a string resonator, the effective mass can be written as [60]

meff = 1
2m0, (2.54)

where m0 is the total mass of the string. It is interesting to notice that the effective
mass is independent of the particular mode. In contrast, the effective Duffing parameter
depends on the mode and is given by [60]

αeff,n = (nπ)4

8
Ewh

L3 , (2.55)

presenting a strong dependence on the string’s length.

2.4.2 Drumhead
The drumhead resonators are the two-dimensional equivalence to strings, i.e. they are
thin plates under tensile stress σ0, which dominates their mechanical properties over the
flexural rigidity. In the following, only squared membranes are discussed (see Fig. 2.8a).
Assuming a linear elastic material, the equation of motion is given by [122]

σ0h∇2u(r, t) − ρh
∂2u

∂t2 = 0. (2.56)

r = (x, y), (r, θ) is the in-plane position vector in Cartesian and polar coordinates,
respectively. The operator ∇2 is given in Cartesian coordinates by

∇2 = ∂2

∂x2 + ∂2

∂y2 , (2.57)

while in polar coordinates by

∇2 = 1
r

d

dr

(︃
r

d

dr

)︃
. (2.58)
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Figure 2.8: Vibrations of a drumhead resonator. a. Schematics of a drumhead
resonator of side length L and thickness h. b. FEM simulated mode shapes of the first
four flexural modes of a drumhead resonator.

In the assumption of simply supported drumheads, and by applying the separation of
variables, the nth eigenmode solution of Eq. (2.56) will be in Cartesian coordinates of
the form

unj(x, y, t) = ψnj(x, y)u0,njcos(ωnjt), (2.59)

with a modeshape given by

ψnj(x, y) = sin
(︃

nπ

L
x

)︃
sin

(︃
jπ

L
y

)︃
. (2.60)

L is the side length of the drumhead, n and j the modal numbers, and ωnj the corre-
sponding eigenfrequency. Fig. 2.8b shows the modeshape of the first four flexural modes.
Substituting Eq. (2.59) into (2.56) yields to the dispersion relationship

ωnj

2π
=

√︁
n2 + j2

2L

√︃
σ0
ρ

, (2.61)

as it has been shown for string resonators.
The effective mass for a drumhead resonator is [60]

meff = 1
4m0, (2.62)

and it is independent of the mode of interest. Its effective Duffing parameter is given by
[60]

αeff,n,j = 3π4(n4 + j4)
64

Eh

L2 . (2.63)

2.4.3 Trampoline
The third geometry analyzed here is the trampoline [29, 81, 82]. It consists of a central
pad of area L2 and thickness h, anchored to the frame via four tethers of length Lt and
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Figure 2.9: Vibrations of a trampoline resonator. a. Schematics of a trampoline
resonator of side length L and thickness h. b. FEM simulated mode shapes of the first
four out-of-plane flexural modes of a trampoline resonator.

rectangular cross-section w · h under tensile stress, as shown schematically in Fig. 2.9a.
The following analysis focuses specifically on the fundamental eigenfrequency of trampo-

lines for a fixed window side length Lw (mode (1,1) in Fig. 2.9b). To do that, the effective
mass meff and effective spring constant keff are introduced (2.53). The theoretical model
is compared to finite element method (FEM) simulations (for more details on the FEM,
see Chapter 4).
The FEM simulations are performed for central pad with a square and Bezier profile
(Fig. 2.10a). The former is an idealization of the latter, which has been characterized
experimentally in this work (see Chapter 5). In both cases, the effective mass meff is
connected to a fixed frame (a square window of side length Lw), via a spring of constant
keff (representing the diagonal four tethers of Fig. 2.9a).
The spring constant is a function of the initial tensile stress, similar to what occurs in
strings, which, however, varies along the diagonal length, as the structure’s width is no
longer constant. This variation stems from the balance of the tensile force N applied on
the unsuspended thin film of thickness h. After the release process of the trampoline, the
resulting strain ϵ in the structure remains constant, since the distance between clamping
points is unchanged, resulting in a force balance [121]

N

hE
= const = ϵ(x)w(x) = σ(x)

E
w(x). (2.64)

Here, w(x) denotes the local width of the geometry as a function of the coordinate x
along the diagonal cut-line (Fig. 2.10a). From Eq. (2.64), it is evident that the tethers
concentrate higher stress σt than the central pad due to a reduction in cross-section.
This is clearly illustrated in Fig. 2.10b, where a cut-line along the x coordinate is shown
for FEM simulated trampolines with a Bezier profile (T45 indicates a central pad side
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length of L = 45 µm). Moreover, as the tethers shorten (for increasing values of L), this
stress further increases. The FEM model includes also the chip to better show the stress
distribution.
For clarity, additional FEM simulations have been performed for a trampoline with a
central square pad of area L2 and effective mass meff,c, connected to the frame via four
tethers along its two diagonals, each of length Lt and effective mass meff,t. For such a
trampoline oscillating at its fundamental resonance frequency ω0/2π, the effective spring
constant keff can be modelled as that of a string of length Lt, under a prestress σ0(1 − ν),
which is given by

keff(σ0, Lt) = π2

2
wh

Lt
σ0(1 − ν) (2.65)

with σ0 denoting the nominal tensile stress of the unstructured thin film, and with
the factor (1 − ν) accounting for the transverse strain relaxation upon release. From
Eq. (2.65), it is possible to extract the stress concentrated at the tethers

σt = 2
π2

1
wh

keff

√
2Lw
2 =

√
2Lw

2Lt
σ0(1 − ν). (2.66)

Hence, σt is directly proportional to the ratio of the trampoline diagonal length (
√

2Lw)
to the total length of the two parallel tethers (2Lt). Fig. 2.10c displays this theoretical
stress component (2.66) as a function of the central pad side length L (black curve),
which closely aligns with the FEM results (red squares). As expected, the stress increases
with L. The FEM results for the trampolines with a Bezier profile are displayed with
black circles. Below a critical side length (L ≤ Lc ≈ 500 µm), the stress at the tethers
grows faster with L than what observed for the square design. For L > Lc, the tethers’
stress drops down, as predicted by Eq. (2.64). Indeed, their width increases for this
range of L values, conversely to the square design case, for which w is constant. This
increase in w compensates for the stress reduction, making the Bezier trampolines stiffer
than the square design for L > Lc (Fig. 2.10d), consistent with the FEM simulated
fundamental resonance frequency (see below, Fig. 2.10g). Fig. 2.10d clearly illustrates
this compensation by plotting the product tethers’ stress-width as a function of L.
Fig. 2.10e shows the corresponding effective spring constant keff (2.65) as a function of
L. Different power laws are displayed to illustrate the change in spring constant with
central area growth. For L2 < 2002 µm2, the stiffness matches the case of a simple string
resonator, as here the trampoline is a cross-string structure. For L2 > 2002 µm2, the
stiffness increases significantly, due to stress concentration at the tethers.
From the modeshape of the trampoline’s fundamental resonance (mode (1,1) in Fig. 2.9b),

its effective mass meff can be expressed as

meff = meff,c + meff,t = ρh

(︃
L2 + 4wLt

2

)︃
. (2.67)

The tether’s effective mass meff,t is the equivalent to that of the string, meff,s = 0.5 m0,
with m0 being the tether’s total mass. For the central pad, meff,c equals its full inertial
mass as the entire pad is being displaced for the fundamental mode. Fig. 2.10f displays
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2.4. Free Bending Vibration of Continuum Resonators

Figure 2.10: Mechanics of the trampoline. a. In-plane view of a trampoline with a
Bezier (left) and square (right) profile of the central pad. The dashed squares highlight
the major difference between the two geometries. b. X-cut stress profile in trampolines
with a central pad with a Bezier curve profile. c. Tethers stress as a function of the
central pad side length L. Red squares: FEM simulations for a trampoline with a square
design of the central pad. Black circles: FEM simulations for a trampoline with a Bezier
profile design for the pad. Black curve: theory (2.66). Vertical dashed dotted line: critical
central pad side length Lc. For L > Lc, the tether width at the clamping points for a
Bezier trampoline increases with L, changing the boundary conditions relative to the
square design. d. Product tether’s stress-width σt · w as a function of L. For L > Lc,
the reduction in stress is compensated by the increase in width at the clamping points.
e. Square trampoline spring constant (2.65) as a function of L. Displayed are also
different power laws Lζ for clarity. f. Trampoline effective mass as a function of L. Pink
curve: tethers’ effective mass. Purple: central pad’s effective mass. g. Fundamental
resonance frequency as a function of L. FEM and model parameters: ρ = 3000 kg/m3,
E = 250 GPa, σ0 = 200 MPa, ν = 0.23, h = 50 nm. For the square design, w = 5 µm
always; for the Bezier design, w = 5 µm for L ≤ Lc.
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meff as a function of the central pad side length L. Two regimes can be seen: for
L2 < 1002 µm2, the mass remains almost constant, as the reduction in tether length is
counterbalanced by the growth of the central pad; for L2 > 1002 µm2, the central pad
fully defines the effective mass, growing here as meff ∝ L2. It is worth noting that, in the
range 100 µm < L < 500 µm, the effective mass grows faster than the spring constant,
reducing the overall resonance frequency in this region (Fig. 2.10g).
Fig. 2.10g compares the FEM results for square and Bezier trampolines with the theoretical
predictions for the fundamental resonance frequency (2.53), showing excellent agreement.
ω0 increases faster with L for the Bezier design, due to an overall increase in tethers’
stiffness, as shown above.
For trampolines, the effective Duffing parameter is determined by the tethers, as they
primarly define the stiffness of these resonators. Hence, the expression of αeff is given by

αeff = (nπ)4

8
Ehw

(2Lt)3 , (2.68)

which is equivalent to the Duffing parameter of a string of length 2Lt.
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CHAPTER 3
Fundamentals of Nanomechanical

Photothermal Sensing

In this chapter, the theory of photothermal sensing is introduced and discussed. The
main figures of merit are presented and analyzed. The equations behind the photothermal
detection are discussed in details for the three mechanical resonator’s designs introduced
in the previous chapter—namely, strings, drumheads, and trampolines. The theoretical
models presented here are compared with the finite element method (FEM), whose details
will be presented in Chapter 4.
The results and associated discussion of this chapter are based on the first part of the
results presented in Ref. [111]. The general discussion also follows closely Ref. [60].

3.1 Nanomechanics for Thermal Sensing
Nanomechanical photothermal sensors measure the power absorbed by the mechanical
element, P . This is the fraction of irradiated or otherwise introduced power P0 that is
converted into heat

P = αabs(λ)P0, (3.1)

with the absorber- and wavelength-dependent heat conversion factor αabs (0 ≤ αabs ≤ 1).
Therefore, the main figure of merit within this context is the minimum detectable power
per unit bandwidth. This is denominated noise-equivalent-power (NEP), with units
[W/

√
Hz], and corresponds to the power level at which the signal from the sensor is equal

to the noise — signal-to-noise ratio SNR= 1. It is defined for mechanical resonators as
[60]

NEP =

√︂
Sy(ω)

RP(ω) , (3.2)
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3. Fundamentals of Nanomechanical Photothermal Sensing

with Sy(ω), RP(ω), and ω denoting the one-side power spectral density (PSD) of the
fractional frequency fluctuations y, with units [1/Hz], the relative power responsivity
with units [1/W], and the angular speed in units [rad Hz].
The relative responsivity is defined as the fractional shift of the resonator eigenfrequency
ω0 per absorbed power P and is given by [60]

RP(ω) = ∂ω0
∂P

1
ω0(0) |Hth(ω)| = RT

G
|Hth(ω)| , (3.3)

where RT denotes the relative responsivity to temperature T , with units [1/K], G is the
thermal conductance of the resonator [W/K], and Hth(ω) = (1 + iωτth)−1 a low-pass
filter transfer function accounting for the resonators’ thermal response time [123]

τth = C

G
, (3.4)

with C denoting the resonators’ heat capacity [J/K].
More in general, the photothermal response depends on different parameters as listed
below:

• it depends on the dimensions of the nanomechanical resonator, defining whether
thermal conduction or radiation is the main thermal dissipation mechanism;

• it depends on the relative size of the heating source with respect to the resonator’s
dimensions. As it will be shown, very often localized heat enhances the response
over uniform heating conditions;

• it depends on the position of the source relative to the center of the resonator’s
center, with the thermal dissipation increasing far from it.

All these features are captured within the mean temperature framework (MTF), as shown
below.

3.1.1 Temperature Responsivity
According to Eq. (3.3), nanomechanical photothermal sensors are, in essence, temperature
sensors. The temperature responsivity is defined as

RT = ∂ω0
∂T

1
ω0(T0) , (3.5)

with T0 denoting the thermal bath temperature. Throughout all the present work,
mechanical resonators with an initial tensile stress σ0 are analyzed, as introduced in
Chapter 2. Their eigenfrequency is therefore a function of the temperature dependent
stress σ(T )

ω0 ∝
√︂

σ(T ), (3.6)

32



3.1. Nanomechanics for Thermal Sensing

while the effect of bending stiffness is neglected — this condition holds true for σ0 ≥ 1
MPa. The rationale behind the choice of this subcategory of resonators will be clarified
in a moment.
In the following, it is assumed that only the mechanical resonator is heated up to a
temperature T , while keeping its frame at a fixed temperature T0 < T . The resulting
temperature increase ΔT = T − T0 is responsible for the frequency shift experienced by
the resonator.

3.1.1.1 Strings

In a string with intrinsic uniaxial tensile stress σ0 and Young’s modulus E, a mean
temperature increase ⟨ΔT ⟩ induces a thermal strain along the resonator’s length L,
resulting in a stress [60]

σ(T ) = σ0 − αthE ⟨ΔT ⟩ , (3.7)
with αth being the material’s linear coefficient of thermal expansion. For small tem-
perature changes, the temperature responsivity (3.5) together with (3.6) and (3.7)
approximately is given

RT = −αth
2

E

σ0
. (3.8)

The factor E/σ0 is the photothermal enhancement factor and is a unique feature of
resonators under tensile stress. For nanomechanical silicon nitride resonators, the
photothermal enhancement factor can reach values between 102 − 108. It is worth noting
here that, for 10 kPa ≤ σ0 ≤ 1 MPa, the thermal stress (second addend in Eq. (3.7))
can be of the same order of magnitude of σ0, making the temperature responsivity (3.8)
nonlinear (such an effect can be observed in Ref. 24). For σ0 ≤ 10 kPa, the resonator will
behave as a beam, with a reduced temperature responsivity RT = (αth +αE)/2 (αE being
the Young’s modulus softening coefficient). The same ranges of stress for the different
regimes hold for drumheads.

3.1.1.2 Drumheads

For very thin (h ≪ L) homogeneous isotropic drumheads, the assumption of thin shell
holds, and the thermal stress is given by [20, 124]

σ(T ) = σ0 − αthE

[︃1 + ν

1 − ν

⟨ΔT ⟩
2 + 1

r2

∫︂ r

0
r′ΔT (r′)dr′

]︃
(3.9)

with ν and r denoting the resonator’s Poisson’s ratio, and the size of the heating source
in radial coordinates, respectively. An important feature of Eq. (3.9) is the explicit
dependence of the thermal stress on the heating source’s dimensions via the temperature
profile ΔT (r). For the two extreme cases of uniform and point-like heating source, a
simplified expression can be found. Specifically, for an uniformly distributed temperature,
the integral becomes independent of r and equal to ⟨ΔT ⟩ /2, with Eq. (3.9) reducing to
[122, 124]

σ(T ) = σ0 − αth E

1 − ν
⟨ΔT ⟩ . (3.10)
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This is particularly the case of large drumheads used for IR detection [86], where the
main thermal dissipation is of radiative nature (see the discussion in the next section).
Hence, the relative temperature responsivity is by

RT = − αth
2 (1 − ν)

E

σ0
, (3.11)

with the factor (1 − ν) accounting for the thermal expansion along the two in-plane
directions. For a point-like heating source, the overall temperature responsivity is given
by [20]

RT = − αth
2(1 − ν)

E

σ0
[2 − ν − 0.642(1 − ν)], (3.12)

with the argument within the brackets representing an enhancement of ≈ 27 % compared
to uniform heating conditions.

3.1.1.3 Trampolines

The trampolines, as the one depicted in Fig. 3.7a, exhibit a thermal response similar
to strings. For a central pad of area L2 and thickness h, anchored to the frame via
four tethers of length Lt, width w, and thickness h, its effective spring constant for the
fundamental resonance mode can be expressed as that of string of length Lt (see Chapter
1) [111]

keff(T ) = π2

2
wh

Lt
(1 − ν)σ0

[︃
1 − αthE

σ0
⟨ΔT ⟩

]︃
, (3.13)

with the factor (1 − ν) accounting here for the strain release along the directions perpen-
dicular to the tether length. From the resonance frequency ω0(T ) ∝ √

keff , it is easy to
observe that the temperature responsivity is equal to

RT = −αth
2

E

σ0
, (3.14)

underlining that the thermal expansion at the tethers is the main responsible for the
temperature response.

3.1.2 Thermal conductance
Besides the temperature responsivity, the power responsivity (3.3) also depends on the
thermal conductance. The following thermal analysis is carried out based on the mean
temperature framework (MTF) in the steady state that we introduce here. The model
is derived first assuming a point-like heat source. The case of an evenly spread heat
source is discussed at the end of each subsection. Theoretical models are compared with
FEM simulations for SiN nanomechanical resonators (for the details about the FEM, see
Chapter 4). For all the theoretical and FEM results presented here and in Chapter 5, a
subset of SiN material parameters has been defined as given in Table 3.1.
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3.1. Nanomechanics for Thermal Sensing

Table 3.1: Low-stress LPCVD silicon nitride material parameters.

Parameter Value Reference
Mass density, ρ [kg/m3] 3000 24
Young’s modulus, E [GPa] 250 87, 125
Poisson’s ratio, ν 0.23 25
Thermal conductivity, κ [W/(m K)] 3 87
Specific heat capacity, cp [J/(K kg)] 700 87, 126

Figure 3.1: Mean Temperature Framework. Solid curve: theoretical thermal time
constant as a function of the resonator length L (3.4). Blue circles: response time of
the FEM peak temperature ΔTF EM for uniform heating (UH). Black circles: response
time of ΔTF EM for local heating (LH). Orange diamondes: response time of the surface
mean temperature ⟨ΔTF EM ⟩ for LH. Black crosses: response time of the resonance
frequency ω0F EM /2π for LH. FEM parameters: Table 3.1, resonator’s thickness h = 50
nm, absorptance αabs = 0.5 %, emissivity ϵrad = 0.05.

3.1.2.1 Mean Temperature Framework

A resonator of thermal mass C absorbs a power P and dissipates it to the environment
through its conductance G, resulting in a mean temperature rise ⟨ΔT ⟩

⟨ΔT ⟩ = P

G
. (3.15)

In the MTF, all the resonator thermal properties are defined with respect to ⟨ΔT ⟩, as this
temperature dictates the photothermal response of a nanomechanical resonator under
tensile stress, rather than the local temperature variations ΔT . This can be thought as a
consequence of the fact that the resonance frequency is a global property of the resonator,
depending on its material and geometry. This point is clarified in Fig. 3.1. It shows
the FEM comparison of the thermal time constant of a drumhead resonator between
two opposite heating conditions — namely, local (LH) and uniform heating (UH). The
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3. Fundamentals of Nanomechanical Photothermal Sensing

theoretical predictions (3.4) are also displayed (black curve), closely aligning with the
uniform illumination (blue circles), with τth derived from the temporal evolution of the
resonator’s maximum temperature increase ΔTmax (≈ ⟨ΔT ⟩ for UH conditions). Notably,
the thermal equilibrium is reached faster in the case of local heating (black circles)
(ΔTmax > ⟨ΔT ⟩ in LH conditions). For the same scenario, τth has been additionally
estimated through a transient study of the resonance frequency ω0/2π (black crosses),
revealing a stronger agreement with the theory. Monitoring the mean temperature
increase ⟨ΔT ⟩ (orange diamonds) further supports this result and the rationale behind
the use of the MTF: the two sets of FEM perfectly overlap, indicating that the resonance
frequency is governed by the resultant mean temperature increase even in the presence
of a local heating source.
In the MTF, C is given for an isotropic resonator by

C = cp ρ V, (3.16)

where cp, ρ, and V are the specific heat capacity at constant pressure, mass density, and
volume of the resonator, respectively.
As the resonator operates in a vacuum environment, only thermal conduction Gcond and
radiation Grad contribute to the heat transfer [127]. In the MTF, the thermal conductance
G is given by

G = Grad + Gcond = 4AradϵradσSBT 3
0 + sf(r, L, w0)

β(r, L, w0) κ, (3.17)

where Arad, ϵrad, κ, and σSB are the resonator’s radiating surface, its emissivity, thermal
conductivity, and the Stefan-Boltzmann constant, respectively. For the thermal con-
duction term Gcond, a shape factor sf is introduced to account for the design geometry
via the resonator characteristic length L, the heat source position vector r, and the
heating radius w0 [127]. In this way, the dependence of G on the size of the probing
heat source, as well as on its position with respect to the resonator, e.g. concentric
or eccentric to it, captures within this formalism the aforementioned features of the
resonators’ photothermal response.
The product sf(r, L, w0) · κ in Eq. (3.17) is the thermal conduction with respect to the
localized temperature field ΔT . The factor β(r, L, w0) denotes the ratio between mean
and peak temperature β = ⟨ΔT ⟩ /ΔTmax, ensuring the correct description of Gcond in the
MTF. In contrast, Grad proves to be independent of the localization conditions of the laser
and its position, and the resonator’s full area must be considered. This is shown in Fig. 3.2
for a drumhead resonator heated up with a highly focused (LH — black circles) and
uniformly distributed (UH — red crosses) laser. Fig. 3.2a shows the mean temperature as
a function of the resonator side length L. For larger drumheads, no difference is observed
between LH and UH conditions, where G ≈ Grad. The corresponding Gcond and Grad are
displayed in Fig. 3.2b&c, respectively. It is shown that Gcond does depend on the size
of the resonator and the heating condition; conversely, Grad depends on the resonator
dimension, but it is independent of the heating conditions within the MTF.
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Figure 3.2: MTF: Gcond vs Grad. FEM simulations of a drumhead resonator under
localized (LH — black circles) and uniform (UH — red circles) heating. a Mean
temperature as a function of the resoantor side length L. b Corresponding conductive
thermal conductance Gcond. c Corresponding radiative thermal conductance Grad. FEM
parameters: Table 3.1, resonator’s thickness h = 50 nm, absorptance αabs = 0.5 %,
emissivity ϵrad = 0.05.

3.1.2.2 Strings

This design (Fig. 3.3a) represents the simplest geometry from a thermal transport
standpoint. A string of length L, width w, and thickness h occupies a volume V = hwL,
and, assuming h ≪ w, radiates with an area Arad ≈ 2wL. The factor of 2 accounts for
the front and back surface radiation. This allows the direct evaluation of the thermal
capacitance C and the radiative conductance Grad. For Gcond instead, the shape sf and
β factors have to be calculated. In this regard, it should be noted that the heating source
can be in any position x along the string length, with the generated heat flowing along
two paths of length x and L − x [61, 123]. Considering a localized heat source of power
P0, and given an absorptance αabs (3.1), the Fourier law at steady-state gives [60]

P = 4wh

L
κΔTmax = sf (x, L, w0)κΔT (x), (3.18)

with ΔTmax = Tmax − T0 denoting the peak temperature rise with respect to the frame
temperature T0, occurring at the heat source position. For a string resonator, such as
those analyzed in [111] (Chapter 5), a linear temperature profile is the solution of the
heat diffusion equation in steady-state for short and intermediate length (L ≤ 2 mm)

ΔT (x) = ΔTmax

(︃
1 − 2

L
|x|

)︃
, for − L

2 ≤ x ≤ L

2 , (3.19)

as shown in Fig. 3.3b&c. The 1D temperature profiles for L = 0.1 mm (left) and 1 mm
(right) have been obtained using FEM for different heating laser positions. For both
strings, all profiles are linear. In the 1 mm long string, the thermal radiation plays a
more significant role than in the 0.1 mm long one, causing the profile to deviate slightly
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Figure 3.3: String’s photothermal response a. Schematics of a string resonator
illuminated by a light source (red) at the center. At steady-state, a temperature difference
ΔT from the frame temperature T0, will arise upon photothermal heating. b. FEM
simulated 1D temperature profiles of a 0.1 mm long string resonator, for different positions
of the heat source. c. FEM simulated 1D temperature profiles for a 1 mm long string.
Laser parameters: Gaussina beam with input optical power P0 = 200 µW. d. String’s
thermal conductance G as a function of the point-like heat source relative position x/L,
for three different lengths (0.1, 1, and 10 mm). Circles: FEM results of G in the mean
temperature framework (MTF). Solid curve: MTF theoretical calculation (3.17). e.
Comparsion between FEM results (circles) and model (solid curve) for the relative power
responsivity (3.3) as a function of the string length. f. Comparison between FEM results
(circles) and model (solid curve) for the thermal time constant (3.4) as a function of the
string length. Model and FEM parameters: Table 3.1, σ0 = 200 MPa, αth = 1.23 ppm/K,
w = 5 µm, h = 50 nm, ϵrad = 0.05, αabs = 0.5 % [69, 128].

from a purely linear trend. Nonetheless, as long as ΔT can be treated as a linear function
of the position r, even in the presence of thermal radiation losses, the shape factor can
be phenomenologically found to be

sf(x) = 4 w h

L

1

1 −
(︂

2 x
L

)︂2 . (3.20)

38



3.1. Nanomechanics for Thermal Sensing

Its spatial dependence is shown in Fig. 3.3b by the dashed blue curve, properly following
the behavior of the temperature peak.
The mean temperature within the string is

⟨ΔT ⟩ = 1
L

∫︂ L/2

−L/2
ΔT (x)dx = 1

L

LΔTmax
2 = ΔTmax

2 , (3.21)

which yields to β = 1/2 for a string resonator.
Fig. 3.3d shows the overall thermal conductance G (3.17) as a function of the relative
localized heating position for three different strings. The MTF model (solid curves)
closely aligns with the FEM simulations (circles), where the conductance has been extract
as GFEM = P/ ⟨ΔTFEM⟩. For strings measuring 0.1 mm (black curve) and 1 mm (blue
curve) in length, G strongly depends on the heat source position, increasing as the
latter approaches the frame, due to the enhanced thermal conduction. This effect is less
pronounced for the 10 mm long string, where radiative heat transfer dominates. It is
worth noting that the 1 mm long string shows the best thermal insulation, followed by the
10 mm long and 0.1 mm resonators, consistent with the theoretical and experimentally
determined power responsivity RP (see Fig. 3.3e&5.1d).
For the case of an heating point source located at the string center (x = 0), Gcond can be
expressed as

Gcond = sf(x = 0)
β(x = 0) κ = 8 h w

L
κ. (3.22)

The MTF predicts a factor of 2 higher than what is reported in ref. 60, as ⟨ΔT ⟩ is
considered instead of the peak temperature, and is consistent with ref. 129.
Fig. 3.3e displays the comparison between FEM (circles) and theoretical response time
(3.4). Short strings are dominated by conductive heat transfer, with τth being a linear
function of L. Conversely, long strings are dominated by radiative heat transfer and
show a time constant independent of L, as both the thermal capacitance C and the
conductance G ≈ Grad grow linearly with L. As can be observed, the model accurately
predicts the string’s time constant.
Fig. 3.3f compares the theoretical power responsivity (3.3) to the FEM simulations,
showing excellent agreement. For short lengths (L < 1 mm), RP increases linearly with
L, until it reaches a maximum (L ≈ 1 mm). In this region, the string is mainly coupled
to the thermal bath via thermal conduction (G ≈ Gcond). As the distance between the
impinging and anchoring points increases, so does the power responsivity. For L > 1 mm,
the string enters the radiation limited regime (G ≈ Grad), resulting in a linear reduction
of RP, due to the increasingly larger emitting surface area Arad ∝ L. These comparisons
prove the validity of the time constant and responsivity model.
Nanomechanical photothermal sensing can be performed with tightly focused as well
as uniformly distributed heat sources / beam diameters. Greater (lesser) localization
of the heating yields higher (lower) temperature rises ⟨ΔT ⟩. Hence, two types of FEM
simulations have been carried out to better understand the effect of the localization: i)
local heating (LH) with a point heat source at the string’s center; ii) uniform heating
(UH) with the upper surface defined as the heating source. No Gaussian beam lasers are
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Figure 3.4: Heat localization in strings. Ratio between power responsivity for localized
(LH) and uniform (UH) heating conditions. FEM parameters: Table 3.1, σ0 = 200 MPa,
αth = 2.2 ppm/K, w = 5 µm, h = 50 nm, ϵrad = 0.05, αabs = 0.5 %, P0 = 10 µW.

used in UH conditions, since part of the total input power would be lost perpendicularly
to the string length. The ratio RLH

P /RUH
P between the LH and UH power responsivity

is plotted as a function of the string length in Fig. 3.4. For L ≤ 1 mm, this ratio is
constant at 1.5, indicating that localized heating provides a 1.5× improvement in power
responsivity compared to uniform heating. For longer strings (L > 1 mm), the highly
localized optical power at the center increases the radiation losses ∝ (T 4 − T 4

0 ), worsening
the responsivity improvement.
For uniform illumination, all the points along the string length will contribute to the
heat dissipation. Integrating Gcond in (3.17) for a string, for a concentric source gives

Gcond =
(︄

1
κ

1
L

∫︂ L

0

β

sf(x)dx

)︄−1

= 12wh

L
κ. (3.23)

The overall conductance for a uniformly heated string is given by

G = 12wh

L
κ + 8wLϵradσSBT 3

0 . (3.24)

Thus, localizing the heat source at the string center will lead to a 1.5× higher power
response.
To conclude, it is worth noting the existing trade-off between power responsivity and
thermal time constant: for L ≤ 1 mm higher responsivity corresponds to a slower thermal
time response.
It is further worth highlighting that, for probing wavelengths λ ≥ w, scattering phenomena
have to be accounted for to extract the correct absorbed power P .
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3.1.2.3 Drumheads

A square drumhead resonator of side length L and thickness h (Fig. 3.5a) has a volume
V = hL2 and a radiating surface Arad = 2L2. Given h ≪ L, no thermal gradient is
present along the thickness, and the eccentric shell model applies for the appropriate
description of Gcond [127], with the heat being dissipated isotropically to the frame. For
simplicity, the model focuses on a circular drumhead of effective diameter D = 2L/

√
π

[20, 124], heated by a laser source of beam waist w0, centered at position (r, θ) relative to
the drumhead’s center (Fig. 3.5a). The expression of the shape factor is obtained starting
from the eccentric shell scenario [127]. In these conditions, the temperature is assumed
constant withing the source region (red dashed lines in Fig. 3.5b), with an overall spatial
profile

ΔT (r) =


P

4πκh ln
(︂

D2

4w2
0

)︂
for 0 ≤ r < w0

P
4πκh ln

(︂
D2

4r2

)︂
for w0 ≤ r ≤ D

2 .
(3.25)

An analytical solution is available for the shape factor, namely [127]

sf (r, θ, D, w0) = 2πh

cosh−1
(︂

D2+4w2
0−4r2

4Dw0

)︂ . (3.26)

At steady-state, the resulting dissipated heat is given by P = sf κΔT (w0). For a laser
beam impinging on the drumhead, the resulting temperature profile is given by (dashed
orange curve in Fig 3.5b)

ΔT (r) =


P

4πκh

[︂(︂
1 − r2

w2
0

)︂
+ ln

(︂
D2

4w2
0

)︂]︂
for 0 ≤ r < w0

P
4πκh ln

(︂
D2

4r2

)︂
for w0 ≤ r ≤ D

2 .
(3.27)

Eq. (3.27) differs from (3.25) within the heated region, due to the different boundary
conditions. In this case, the corresponding shape factor sf is obtained by rewriting
ΔT (w0) as a function of the maximum temperature rise ΔTmax. For the simple case of
concentric, conduction limited heat transport problem, this relation is given by [20]

ΔT (w0) = P

4πκh
ln

(︄
D2

4w2
0

)︄
= ΔTmax − P

4πκh
. (3.28)

Substituting Eq. (3.28) into Fourier’s law gives

P = sf (r, θ, D, w0)κΔT (w0) = 2πh

cosh−1
(︂

D2+4w2
0−4r2

4Dw0

)︂κ

(︃
ΔTmax − P

4πκh

)︃
. (3.29)

Rearranging Eq. (3.29) as a function of the peak temperature rise ΔTmax gives

P = 4πh

2cosh−1
(︂

D2+4w2
0−4r2

4Dw0

)︂
+ 1

κ ΔTmax = sf (r, θ, D, w0)κΔTmax. (3.30)
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Figure 3.5: Drumhead’s photothermal response a. Schematics of a drumhead
resonator. For the comparison with the FEM, an equivalent circular geometry is used
to reduce the problem complexity. b. 1D Temperature profile of circular membrane of
diameter D, heated in the center by a top-hat disk beam of diameter 2w0 (light blue solid
curve). For comparison, the temperature distribution in the case of a eccentric cylinder,
uniformly heated is shown (red dashed curve). c. Comparison between FEM (solid
curves) and analytical (dashed curves) temperature profiles, obtained for a localized heat
source of input power P0 = 10 µW and beam waist w0 = 1 µm, moving along a radial
cut-line. d. Circular drumhead’s MTF thermal conductance for 0.1, 1, and 10 mm side
length, compared to the theory (black curve). e. Relative power responsivity comparison
for drumheads. f. Thermal time constant comparison for drumheads. Model and FEM
parameters: Table 3.1, σ0 = 200 MPa, αth = 1.23 ppm/K, w = 5 µm, h = 50 nm,
ϵrad = 0.05, αabs = 0.5 % [69, 128]. For all the FEM simulations, a Gaussian beam of
waist w0 = 1 µm has been used.

Eq. (3.30) describes the heat conduction losses with respect to the maximum temperature
rise. The analytical solution (3.30) has been tested for different heat source positions
against FEM simulations, showing excellent agreement. Fig. 3.5c shows the resulting FEM
(solid curves) and analytical (dashed curves) temperature profiles. For the implementation
of the MTF, the ratio between mean and peak temperature β must be found. Combining
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the two expressions of Eq. (3.27), it is possible to extract the peak temperature

ΔTmax = ΔT (0) = P

4πκh

[︄
1 + ln

(︄
D2

4w2
0

)︄]︄
(3.31)

Integrating Eq. (3.27) over the whole resonator area gives the mean temperature

⟨ΔT ⟩ = 1
A

∫︂∫︂
A

ΔT (r, θ)dA = 4
πD2

[︄∫︂ 2π

0

∫︂ w0

0
ΔT (r)rdrdθ +

∫︂ 2π

0

∫︂ D
2

w0
ΔT (r)rdrdθ

]︄

= 4
πD2

P

4πκh

[︄∫︂ 2π

0

∫︂ w0

0

[︄
− r2

w2
0

+ 1 + ln
(︄

D2

4w2
0

)︄]︄
rdrdθ −

∫︂ 2π

0

∫︂ D
2

w0
ln

(︄
4r2

D2

)︄
rdrdθ

]︄

= 4
πD2

P

4πκh
π

[︄
w2

0
2 + w2

0 ln
(︄

D2

4w2
0

)︄
+ D2

4 − w2
0 − w2

0 ln
(︄

D2

4w2
0

)︄]︄

= P

4πκh

(︄
1 − 1

2
4w2

0
D2

)︄
.

(3.32)

Hence, the β factor for the drumhead design can be written as

β(r, θ, D, w0) =
1 − 1

2
4w2

0
D2

1 + ln
(︂

D2

4w2
0

)︂ (︄
1 − 4r2

D2

)︄
, (3.33)

with the first term denoting the ratio between mean and maximum temperature rise,
while the second term expressing the spatial dependence of the β factor. The latter
follows by an heuristic approach, by fitting the FEM results.
Fig. 3.5d shows the overall conductance G as a function of a localized heat source position,
for three different circular membranes (L = 0.1, 1, and 10 mm). The MTF model (solid
curves) closely aligns with the FEM simulations for circular drumheads (circles). The
two smaller drumheads (L < 1 mm, black and blue curves), primarily coupled to the
environment via conduction, exhibit similar values. Conversely, the larger drumhead in
the radiative heat transfer regime has a constant and worse thermal conductance.
For a focused heat source at the drumhead center (r = 0, w0 → 0), the conductance
becomes

Gcond = sf(r = 0)
β(r = 0) κ = 4πhκ, (3.34)

recovering the same result as ref. 20. Even in the case of a localized heat source, thermal
conduction in drumheads is independent of the side length L, contrary to what happens
in strings (3.22).
Fig. 3.5f compares the theoretical and FEM modeling of the thermal time constant for
localized heating, showing excellent agreement and a similar trend as the one observed in
the strings.
Fig. 3.5e shows the comparison between the theoretical (black solid curve) and FEM power
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Figure 3.6: Heat localization in drumheads. Ratio between power responsivity
for localized (LH) and uniform (UH) heating conditions. FEM parameters: Table 3.1,
σ0 = 200 MPa, αth = 2.2 ppm/K, h = 50 nm, ϵrad = 0.05, αabs = 0.5 %, P0 = 10 µW.

responsivity (black circle), showing excellent agreement. Small drumheads (L < 1 mm)
shows a responsivity independent of L, being G ≈ Gcond exclusively a function of
the material thermal conductivity κ and the resonator’s thickness h (3.34). Large
drumheads (L > 1 mm) enter the radiative regime, and the responsivity drops down due
to the increased surface area. This comparison confirms the validity of the theoretical
responsivity model for drumhead resonators.
FEM simulations have also been conducted for the drumhead resonator to show the
dependence of the power responsivity on the localization of the heating source. Drumheads
show a different dependence on heat localization compared to strings. FEM simulations for
a concentric Gaussian beam of varying waist w0 have shown that the power responsivity
RP (w0 = L/2) ≈ RP (w0 ≪ 1)/2, i.e. for a uniform heating condition (see Fig. 3.6).
Substituting Eq. (3.30) and (3.33) into equation (3.17) for a uniform (w0 = D/2) heating
concentric (r = 0) to the drumhead gives

Gcond = 4πhκ

1 + 2cosh−1(1)
1 + ln(1)

1 − 1
2

= 8πhκ, (3.35)

meaning that the conductive contribution is doubled.
Hence, as a simple rule here, a point-like heat source offers a 2× improved photothermal
responsivity compared to uniformly distributed heating.
To conclude, the most responsive drumheads show the fastest time response, opposite to
what has been seen for strings.

3.1.2.4 Trampolines

A trampoline (Fig. 3.7a) occupies a volume V = h
(︁
L2 + 4wLt

)︁
and radiates through its

central pad and tethers with an area Arad = 2
(︁
L2 + 4wLt

)︁
. The 2D heat conduction
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problem simplifies here to a 1D scenario, as in strings. Indeed, heat generated in any
position on the central pad conductively dissipates through the tethers. Since the heat
flow is constricted by the tethers, the resonator can be modeled as a cross-string. The
temperature profiles of five different trampolines are shown in Fig. 3.7b (the dimensions
are of those characterized experimentally in Chapter 5), for a localized heating source.
Each of them is composed of drumhead-like spatial distribution within the central pad
(shadowed regions), and a linear, string-like distribution along the tethers. Since the
temperature rise in the central pad is almost flat, and smaller than that at the tethers, it
is possible to write the shape and β factors as

sf(x) = 2 4 w h

2 Lt

1

1 −
(︂

x
Lt

)︂2 , and (3.36)

β(r, L, w0) = 1. (3.37)

The factor of 2 in Eq. (3.36) accounts for the two crossing strings, while Eq. (3.37) is
defined only with respect to the central pad, being the core sensing area.
Fig. 3.7c shows the FEM computed values for G for five trampolines of different central
areas L2 (circles), together with the MTF predictions (solid curves). As the heat source
moves from the center to the frame along a tether, the thermal conduction Gcond increases.
Moreover, both Gcond and Grad rise for increasing area—the former due to shorter tethers,
the latter due to a larger surface. For a tightly focused beam at the center, the thermal
conductance is

Gcond = 4 h w κ

Lt
, (3.38)

recovering the results of a cross-string resonator of different tether lengths.
Fig. 3.7d shows the thermal time constant comparison between the model (solid curve)

and the FEM simulations (circles), showing excellent agreement. For L < 50 µm, the
trampoline behaves as a string. For 50 µm < L < 230 µm, the resonator thermal
capacitance grows faster than the conductance, increasing the overall response time. For
L > 230 µm, τth reaches a plateau, to drop down for increasingly larger central pads.
This is explained by the increase in conduction and radiation: the former, due to the
shorter tether length; the latter, due to a bigger central area L2. The interplay between
thermal mass and conductance is the same one observed between the effective mass and
the stiffness for the resonance frequency, as shown in Fig. 2.10f& 5.4a.
Fig. 3.7e displays the theoretical and FEM simulated power responsivity as a function of
the central side length L. The model aligns closely with FEM simulations: resonators
with small areas (L2 < 1002 µm2) show an almost constant RP; for larger trampolines
(L2 > 1002 µm2), it decreases linearly as the pad area grows. The trend is similar to
the drumhead case (Fig. 3.5f). The difference in orders of magnitude compared to the
drumheads relates to the improved thermal insulation (see Fig. 3.5f& 3.7e). As the
window size is kept fixed, the growth of the central area corresponds to a reduction in
tethers’ length. For L < 100 µm, long tethers provide high thermal insulation, with RP
converging to the cross-string case. As L2 approaches L2

w, thermal radiation, as well as
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Figure 3.7: Trampoline’s photothermal response a. Schematics of a trampoline
resonator. b. FEM simulated temperature distribution along a X-cut line, for the five
different trampoline dimensions analyzed experimentally in Chapter 5. The shaded
regions denote the central sensing areas. c. Trampolines’ MTF thermal conductance for
a frame window side length of 1.1 mm and five different central pad side lengths. The
model (solid curve) accounts here for a heat source impinging only in the central pad.
d. Relative power responsivity comparison for trampolines. f. Thermal time constant
comparison for trampolines. Model and FEM parameters: Table 3.1, σ0 = 200 MPa,
αth = 1.23 ppm/K, w = 5 µm, h = 50 nm, ϵrad = 0.05, αabs = 0.5 % [69, 128]. For all
the FEM simulations, a Gaussian beam of waist w0 = 1 µm has been used.
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Figure 3.8: Heat localization in trampolines. Ratio between power responsivity for
localized (LH) and uniform (UH) heating conditions as a function of the central area
side length L. FEM parameters: Table 3.1, σ0 = 200 MPa, αth = 2.2 ppm/K, w = 5 µm,
h = 50 nm, ϵrad = 0.05, αabs = 0.5 %, P0 = 10 µW.

Table 3.2: Expressions for the relative temperature responsivity RT and thermal con-
ductance G for the three designs. The two quantities are used to calculate the relative
power responsivity (3.3), for localized (LH) and uniform (UH) heating.

RT [1/K] LH: G [W/K] UH: G [W/K]
String −αth

2
E
σ0

8wh
L κ + 8wLϵradσSBT 3

0 12wh
L κ + 8wLϵradσSBT 3

0
Drumhead − αth

2(1−ν)
E
σ0

4πhκ + 4L2ϵradσSBT 3
0 8πhκ + 8L2ϵradσSBT 3

0
Trampoline −αth

2
E
σ0

8wh
Lt

κ + 4(8wLt + 2L2)ϵradσSBT 3
0 8wh

Lt
κ + 4(8wLt + 2L2)ϵradσSBT 3

0

conduction increases due to the tethers shortening, with RP approaching the drumhead
performances. This comparison shows the validity of the thermal model employed so far.
As only the central pad is here the sensing area, uniform heating would result in an
almost identical mean temperature rise ⟨ΔT ⟩ for this geometry, leading to no reduction
of the power responsivity RP (w0 → 0) ≈ RP (w0 = L/2) (Fig. 3.8).

To conclude, the most responsive trampolines exhibit the fastest time response, as
observed for the drumheads.
A summary of the expressions of RT and G for the calculation of the power responsivity

(3.3) is displayed in Table 3.2, for point-like source and even illumination.

3.1.3 Frequency stability
High photothermal sensitivity (3.2) requires also low fractional frequency noise y, as it
defines the smallest resonance frequency shift that can be resolved. In nanomechanical
photothermal sensing, the most relevant noise sources are: i) additive phase noise θ, the
sum of thermomechanical θthm and detection noise θdet, with a frequency fluctuations
PSD Syθ

(ω) = Syθthm
(ω) + Syθdet

(ω) [130, 131]; ii) temperature fluctuation frequency
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noise yth, with PSD Syth(ω) [68]; and iii) photothermal back-action frequency noise yδP,
with PSD SyδP(ω)

Sy(ω) = Syθ
(ω) + Syth(ω) + SyδP(ω). (3.39)

The experimental frequency fluctuations for all the designs are characterized by the Allan
deviation σy(τ) (AD) [132]

σy(τ) =

⌜⃓⃓⎷ 1
2(N − 1)

N∑︂
i=1

(yi+1,τ − yi,τ )2, (3.40)

with yi being the ith sample of the fraction frequency y(t) averaged over a time τ

yi,τ = 1
τ

∫︂ iτ

(i−1)τ
y(t)dt. (3.41)

The theoretical calculations of the AD are based on the analytical expression [130, 131, 133]

σy(τ) =

√︄
1

2π

8
τ2

∫︂ ∞

0

sin4 (︁
ωτ
2

)︁
ω2 Sy(ω)dω. (3.42)

For the specific case of white frequency noise, i.e., Sy(ω) = constant, Eq. (3.42) reduces
to

σy(τ) =

√︄
Sy(0)

2τ
. (3.43)

3.1.3.1 Additive phase noise

Additive phase noise originates from the conversion into phase noise of thermomechanical
uthm and detection udet amplitude noise, with respective PSDs Suthm(ω) and Sudet(ω)
[131]. In the assumption of detection white noise, this contribution can be expressed
with respect to the thermomechanical noise peak as [60]

Sudet(ω) = K2
dSuthm(ω0) = K2

d

[︃4kBTQ

meffω3
0

]︃
(3.44)

with Kd < 1 for transduction systems able to resolve the thermomechanical noise.
Q = ω0τmech/2 denotes the quality factor of the resonator, with τmech being the resonator’s
mechanical time constant. Assuming that the resonator is made to oscillate at an
amplitude zr by means of a closed-loop frequency tracking scheme, the resulting fractional
frequency noise power spectral density (PSD) is [60]

Syθ
(ω) = 1

2Q2
Suthm

u2
r

[︂
|Hθthm(iω)|2 + K2

d|Hθdet(iω)|2
]︂

. (3.45)

Hθthm(iω) and Hθdet(iω) are the loop-specific transfer functions for the thermomechanical
and detection phase noise. The transfer functions for an open loop, phase-locked loop,
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and self-sustaining oscillator are the same to a good approximation [131]. As an example,
for a self-sustaining oscillator (SSO) scheme, as used in this work, the transfer functions
are [131]

HSSO
θthm(iω) = HL(iω),

HSSO
θdet (iω) = HL(iω)

Hmech(iω) .
(3.46)

Hmech(iω) and HL(iω) are the low-pass filter transfer functions of the resonator and
system filter, respectively

Hmech(iω) = 1
1 + iωτmech

,

HL(iω) = 1
1 + iωτL

.
(3.47)

with τmech = 2Q/ω0 and the filter time constant τL ≡ 1/(2πfL), being fL the filter
bandwidth.
Additive phase noise (3.45) can be mitigated by actuating the resonator at the onset of
nonlinearity zrc ,

uc =
√︄

8
3

√
3

1√
Q

√︄
meff ω2

0
αeff

, (3.48)

with αeff denoting the effective Duffing term [60]. For ur > uc, additional phase noise of
nonlinear origin could enter the system, worsening the resonator frequency stability at
the integration times of interest in this study [134].

3.1.3.2 Temperature fluctuation frequency noise

Thermal fluctuation fractional frequency noise can also be assumed to be white [123].
For a lumped-element model, Syth(ω) is given by [123, 135]

Syth(ω) = 4 kB T 2

Geff
R2

T

⃓⃓⃓⃓
⃓ 1
1 + iωτtheff

⃓⃓⃓⃓
⃓
2

. (3.49)

Here, Geff and τtheff represent an effective thermal conductance and time constant,
accounting for the temperature fluctuations originating from the fluctuating radiant
power exchange between resonator and surroundings [136]. Since this can occur at any
position onto the detector, the radiant power sources are modelled as point-like heaters.
Hence, Geff is derived from the integration of the conductance G over all possible positions
of a point-like heat noise source. Since radiation is heat source position-independent
in MTF, only the integration of Gcond is required. From Geff , τtheff = C/Geff can be
evaluated.
In a resonator, thermal noise can enter the system at any point along its length L. For a
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string, integrating Eq. (3.20) along L gives the effective conductance

Geff =
(︄

1
κ

1
L

∫︂ L

0

1
sf(x)dx

)︄−1

+ 8wLϵradσSBT 3
0

= 6κwh

L
+ 8wLϵradσSBT 3

0 .

(3.50)

Eq. (3.50) results in a higher conductance than (3.22), as the averaging includes noise
sources closer to the clamping points, where Gcond increases exponentially (see Fig. 3.3d).
For a circular drumhead, the integration is performed over its whole area, leading to

Geff =
(︄

1
π (D

2 )2 κ

∫︂ 2π

0

∫︂ (D−d)/2

0

1
sf(r, θ, D, d)rdrdθ

)︄−1

+ 8L2ϵradσSBT 3
0

≃ 4πhκ + 8L2ϵradσSBT 3
0 .

(3.51)

Here, the greatest noise contribution is in the central region, resulting in Geff ≃ G(r = 0),
since Gcond is less influenced by the position of the noisy heating source than in strings.
For a trampoline, the integration is performed over its central pad and along its four
tethers, resulting in

Geff =
(︄

1
κ

1√
2 Lw

∫︂ √
2Lw

0

1
sf(x)dx

)︄−1

+ 4(8wLt + 2L2)ϵradσSBT 3
0

= 6
√

2 κ w h

Lw
+ 4(8wLt + 2L2)ϵradσSBT 3

0 .

(3.52)

with Lw denoting the window side length. While trampolines dissipate
√

2× more than
strings via conduction, the central pad will make this geometry extremely sensitive to
temperature fluctuations (w < L ≤ √

4Ltw, see also the theoretical curves in Fig. 5.4e).
The temperature fluctuation noise (3.49) is shaped by the frequency tracking scheme
employed in the measurements. To properly account for the noise propagation in the
loop, Eq. (3.49) has to be filtered by the transfer function of the tracking system

Sloop
yth (ω) = Syth(ω)

⃓⃓⃓⃓ 1
τmech

Hθthm(iω)
⃓⃓⃓⃓2

. (3.53)

The transfer function present in Eq. (3.53), Hθth(iω), is expressed in terms of phase noise
and must be divided by τmech to converted it in the frequency domain.
It is further interesting to notice that, for τth < τPLL or τL (in the SSO — see Chapter 4),
part of the temperature fluctuation noise is filtered by the frequency tracking loop itself.
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3.1.3.3 Photothermal back-action frequency noise

Photothermal back-action frequency noise SyδP(ω, λ) originates from the intensity fluctu-
ations of the light source employed for photothermal sensing, as well as any other light
source used for transduction, such as interferometric lasers. For a continuous wave (CW)
source with an power fluctuation PSD SP (ω, λ) [W2/Hz] (see Fig. 5.2c), the resonator
fractional frequency fluctuations are given by

SyδP(ω, λ) = α2(λ) R2
P(ω) SP (ω, λ), (3.54)

where SP (ω, λ) typically has the form

SP (ω, λ) = h0 + h−1f−1 + h−2f−2 (3.55)

for a generic laser source [137]. Here, h0 denotes the laser shot-noise limit SP,sn(λ) =
2hc ⟨P0⟩ /λ, where ⟨P0⟩ is the average input power; the terms h−1 and h−2 express the
flicker and random walk noise levels, respectively. It is worth noting that λ refers to the
wavelength of the transduction laser, as well as all the wavelengths of the light source
used as a probe for spectroscopy or radiation sensing applications.
Therefore, high optical absorption and responsivity (3.3) make the resonator more
sensitive to laser intensity noise, highlighting a trade-off between responsivity and
frequency fluctuations. This noise can be mitigated by selecting materials with low
absorption in the targeted spectral range, or by operating the laser at its shot-noise limit
SP,sn(λ).

3.2 Summary
This chapter introduced a theoretical model based on the mean temperature framework,
which has been validated through comparison with FEM simulations. The model demon-
strates excellent agreement with FEM results across all resonator designs.
To better clarify the theoretical calculation workflow for the power responsivity RP,
thermal time constant τth, frequency noise Sy(ω), and the power sensitivity NEP, the
process is displayed in chart 3.9. The first step involves defining the geometric and
material parameters. From these, the effective mass meff , resonance frequency ω0, Q
factor, and the Duffing parameter αeff are determined as key mechanical parameters.
These quantities serve as input parameters for the lumped element model of a single
mechanical mode (Eq. (2.40)). Concurrently, the thermal conductance (Eq. (3.17)) and
capacitance (Eq. (3.16)) are calculated to specify the thermodynamic properties. These
thermal properties are then used to calculate the relative temperature responsivity RT
(Eq. (3.8), (3.11), and (3.14)) and the thermal time constant τth (Eq. (3.4)), ultimately
leading to the evaluation of the relative power responsivity RP (Eq. (3.3)).
For the frequency noise, the thermomechanical noise Syθ

(Eq. (3.45)) is derived from the
mechanical properties, while the thermal fluctuations noise Syth (Eq. (3.49)) is calculated
using the thermal characteristics. The photothermal back-action noise (Eq. (3.54)) is
obtained using the power responsivity and the material’s optical absorption.
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Figure 3.9: Theory workflow. Schematics of the workflow for the theoretical calculations
of the power responsivity RP, thermal time constant τth, frequency noise Sy(ω), and
power sensitivity NEP.

Finally, the power sensivitiy NEP (Eq. (3.2)) is evaluated, completing the workflow for
the theoretical analysis.
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CHAPTER 4
Experimental and Computational

Methods

This chapter introduces the experimental methodologies employed to actuate and measure
the vibrations of nanomechanical resonators, as well as the techniques used to characterize
their photothermal properties throughout this work. The discussion begins with the role
played by silicon nitride for nanomechanical photothermal applications. It follows an
introduction to Fabry-Perot interferometry and laser-Doppler vibrometry, along with
a discussion about the measurement of other relevant physical observables central to
this study. Next, two frequency tracking schemes—phase-locked loop and self-sustaining
oscillator—are introduced. The chapter concludes with a detailed description of the
finite element method (FEM) simulations performed for each investigation, including
experimental approaches for determining the resonator’s relative power responsivity and
thermal time constant.

4.1 Silicon Nitride Sensing Platform
The rationale behind the use of SiN for photothermal sensing applications is the panoply
of its mechanical, thermal, and optical properties. Table 4.1 compares these properties
with other materials commonly employed in nanomechanics and photonics — silicon (Si),
silicon carbide (SiC), lithium niobate (LN), and aluminum nitride (AlN).
For flexural out-of-plane modes operation, SiN resonators achieve among the best power
sensitivity NEP, as highlighted in Fig. 4.1a for the case of string resonators. Among the
materials considered here, LN achieves comparable performances. However, this high
power sensitivity in SiN (like in LN) comes with the trade-off of slower response times,
as shown in Fig. 4.1b.
SiN offers additional advantages over the other materials, including ease in fabrication,
straightforward integration with other technologies [138], and a precise tunability of its
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Table 4.1: Mechanical, thermal, electrical, and optical parameters comparison among
various materials exploited in nanomechanics and photonics. All the paramters refer to a
temperature T = 300 K. For anisotropic materials, one single direction is considered.

Parameter/Material SiN Si SiC LN AlN
Mass density, ρ [kg/m3] 2700-3100 [87] 2330 [141] 3160 [142] 4650 [143] 3260 [144]
Young’s modulus, E [GPa] 200-300 [87] 130-170 [145] 400 [146] 170 [147] 300 [148]
Poisson’s ratio, ν 0.23-0.28 [25, 87] 0.16-0.36 [145] 0.2 [149] 0.25 0.245 [148]
Stress tunability Yes Yes Yes Yes Yes
Thermal conductivity, κ [W/(m K)] 3 [150] 130 [151] 280 [152] 4.6 [143] 170
Specific heat capacity, cp [J/(K kg)] 700 [87] 700 [145] 647 [152] 630 [143] 730 [153]
Thermal expansion coefficient, αth [ppm/K] 1-2.2 [139, 154] 2.6 [155] 4 [156] 14 [157] 4.2 [158]
Thermal softening coefficient, αE [ppm/K] -87 [159] -44 [160] -25 [161] -203 [162] -
Piezoelectric coefficient, cpz [pm/V] - - - 6 [163] 5 [164]
Transmission window, λ [µm] 0.4-8 [138] 1.2-8 [138] 0.37-12 [165] 0.32-5.2 0.2-6 [138]

Figure 4.1: Comparison of materials for nanomechanics and photonics. a. NEP
for the fundamental flexural out-of-plane modes of string resonators made of the materials
listed in Table 4.1, as a function of the resonator’s length. b. Corresponding thermal
time constant. Parameters used: w = 5 µm; h = 50 nm.

mechanical and optical properties [24, 139]. On the downside, SiN is isotropic and lacks
piezoelectricity, making it challenging to excite high-frequency (< 100 MHz) mechanical
modes. High-frequency modes represent a solution for reducing frequency fluctuations
of thermomechanical origin. In this regard, piezoelectric materials such as AlN and LN
provide promising alternatives, enabling the exploitation of GHz modes, such as Lamb
waves [140].

4.1.1 Fabrication
All the tensile stressed SiN resonators analyzed and used in this work are fabricated
with a low-pressure chemical vapour deposition (LPCVD) process on a double-sided
h(= 50 − 340 nm) thick SiN on ⟨100⟩ Si wafer. Photolithography is used to pattern
the front and back sides of each chip according to the specific design. The structures
are then released through a KOH etching process, which removes the underlying Si
substrate [24, 69]. For a detailed overview of the cleanroom fabrication process of the
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nanomechanical resonators employed here, the reader can refer to [166, 167].
For each design, the in-plane dimensions are characterized by optical microscopy, while
ellipsometry is used to measure the thickness.

4.2 Transduction
In its most general definition, transduction refers to the conversion of energy from one
physical domain to another. Two types of transduction are particularly relevant for this
work: the actuation of the resonator, where energy is converted from the electrical to the
mechanical domain (a voltage is converted in mechanical vibrations), and the detection
of its motion, where the mechanical energy is converted into an electrical signal.
This section first discusses the actuation of flexural out-of-plane motion in the resonators,
followed by a description of the optical detection schemes employed in this study.

4.2.1 Base Actuation
In this work, all mechanical resonators have been actuated piezoelectrically. In details, a
piezoelectric element is placed beneath the resonator and supplied with a periodic external
voltage to made it vibrate. The base vibrations at frequency ω/2π are transferred to the
mechanical structure above. Unlike direct force application, the base actuation imparts
an acceleration to the resonator, resulting in a relative amplitude and phase response of
the form [168]

δu0(ω) =

(︂
ω
ω0

)︂2√︄(︃
1 −

(︂
ω
ω0

)︂2
)︃2

+
(︂

ω
ω0Q

)︂2
(4.1)

and

θ(ω) = arctan
1
Q

ω
ω0

1 −
(︂

ω
ω0

)︂2 . (4.2)

Eq. (4.1) differs from (2.18) away from resonance due to the nature of acceleration-based
actuation; however, both equations converge near resonance. Alternative non-integrated
actuation schemes, such as photothermal drive and radiation pressure, are also viable
and have been explored in related works [167].

4.2.2 Optical Detection
In this work, the displacement of nanomechanical resonators has been measured using fully
optical detection techniques: Fabry-Perot inferferometry and laser-Doppler vibrometry.
Both transductions are external to the resonator chip, ensuring flexibility while minimizing
the interference with the resonator’s thermal and mechanical properties [166]. In both
cases, a laser serves as the core transducing element. Generally speaking, its key features,
i.e., high spatial and temporal coherence, make interferometry one of the most precise
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ways of measuring the motion of an object, whether it be a nanomechanical resonator
[169] or a meter-scale test-mass [170]. In essence, an interferometer always consists of at
least two beams — a reference beam and a measurement beam — of equal or different
frequency. The relative phase relationship between these beams encodes the mechanical
motion of the target object.

4.2.2.1 Fabry-Perot Interferometry (Setup I)

Fabry-Perot interferometry has been employed here for the spectroscopy and polarization
microscopy of individual gold nanorods [31]. Specifically, a commercial fiber-based
interferometer (IDS3010, Attocube systems AG) was used (Fig. 4.2).
Generally speaking, a Fabry-Perot interferometer is the simplest and most compact
configuration for interferometric measurements, consisting of two parallel, partially
transmitting mirrors (forming a cavity), spaced by a distance x [171], as illustrated in
Fig. 4.2a. Light (with electric field E0) is sent to the input mirror (left) and is partially
transmitted inside the cavity. Inside, the light undergoes multiple reflections between the
mirrors, forming an infinite series of partial forward and backward waves. The portion of
light reflected by the input mirror before entering the cavity constitutes the reference
beam (Er0), while the portion partially reflected by the target mirror (the movable
reflector) and partially transmitted at the input mirror forms the measurement beam
(ErN, with N ̸= 0).
In the present setup (Fig. 4.2a), the cavity is formed between the cleaved end face of
an optical fiber (left) and the nanomechanical resonator (right) [172–174]. The intensity
reflected by the Fabry-Perot cavity can be expressed as [174]

IF P = I0
r2

1 + (fr2)2 − 2r1fr2cos(Φ)
1 + (r1r2)2 − 2r1r2cos(Φ) , (4.3)

where
f = r2

1 + √
ηt2

1. (4.4)

I0, r1, t1, r2, Φ = −kΔx, and η denote the input laser intensity, the reflection and
transmission coefficients of the first mirror, the reflection coefficient of the second mirror,
the relative phase of the interference intensity IF P (where Δx = u is the motion of the
mechanical resonator, while k the wavevector of the probing laser), and the fiber coupling
coefficient of the system, respectively.
A schematics of the experimental configuration is given in Fig. 4.2b. The light beam
is delivered to the cavity using a single-mode fiber (SMF) and fiber coupler (FC), and
shaped with a high numerical aperture (NA) objective (Attocube Sensor Head D12/F2.8),
with a resultant beam diameter of ≈ 14 µm at the focal plane onto the resonator. The
interference signal intensity IF P is then sent to a photodetector via the FC. A key
advantage of this type of interferometer, compared to traditional setups like Michelson
interferometers, is its single-arm design. As a result, noise affecting the optical fiber
impacts both the reference and measuring beams equally, reducing the need for stringent
mechanical stability along the optical path.
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Figure 4.2: Optical fiber-based Fabry-Perot interferometry. a. Working principle
of a Fabry-Perot interferometer. b. Schematics of the interferometer used in this work.
SMF: single-mode fiber. FC: fiber coupler. D: photodetector. Adapted from Ref. [174]

For the spectroscopy measurements [31], the experiments are conducted in vacuum,
at a pressure p < 10−5 mbar, to minimize gas damping [113] and thermal convection
[127]. The optical fiber carrying the interferometric signal enters a custom-made vacuum
chamber through an optical feedthrough. The input laser (λ = 1530 nm) is focused on the
backside of the resonator. The electrical signal generated upon photodetection is fed into
a lock-in amplifier (HF2LI, Zurich Instruments) for frequency tracking measurements.

4.2.2.2 Laser-Doppler Vibrometry (Setup II)

In a laser-Doppler vibrometer, like the one used in two of the works described here
(MSA-500, Polytec GmbH) [111, 139], the input laser (He-Ne, λ = 632.8 nm) is split
into two optical paths, as schematically shown in Fig. 4.3. One beam (left) is frequency-
modulated via an acousto-optic modulator (represented by a Bragg cell in the schematics)
to measure the Doppler shift

fD = 2
λ

∂u

∂t
, (4.5)
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Figure 4.3: Lase-Doppler vibrometry. BC: Bragg cell. BS: beam-splitter. M:
mirror. PD: photodetector. PZA: piezoelectric actuator. This setup alone enables the
measurements of the power responsivity (top left plot). In conjunction with a frequency
tracking device, the frequency noise and the thermal time constant can be measured
(bottom left plot).

which corresponds to the frequency shift experienced by the input laser after reflecting
off the mechanical resonator. Compared to the Fabry-Perot interferometer, this setup
has two main differences: i) the laser-Doppler vibrometer directly measures the velocity
of the nanomechanical resonator, relaxing the requirements of phase stabilization; ii) the
signal is recorded with heterodyne detection, since signal and reference are now at two
different frequencies.
In the experimental setup employed here, the laser is focused on the front surface of the
resonator and enters the vacuum chamber in free space (Fig. 4.3). Similar to the Fabry-
Perot setup, the optical interference is recorded by a photodetector. The photogenerated
current is converted in a voltage signal, which is again fed into a lock-in amplifier for
processing.
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Figure 4.4: Influence of metals on the photothermal response. a. Relative power
responsivity of a SiN string resonator without metal on its surface (black curve), with a
95 nm thick (blue) and 190 nm thick (red) Au layer. b. Corresponding thermal time
constant. Parameters used: w = 5 µm; hSiN = 50 nm; hCr = 10 nm. This combinantion
of metals is inspired by [166].

4.2.2.3 Considerations on Optical Readout Schemes

Two important aspects underpin the choice of fully optical, off-chip displacement readout
methods over integrated electrical approaches, such as electromotive readout [60, 166].
The first aspect concerns the power responsivity. The presence of metal traces, such as
gold electrodes, significantly increases the thermal conductance, leading to a substantial
reduction in the power responsivity of the sensor. For examples, as shown in Fig. 4.4a
for the case of SiN string resonators, the addition of gold traces causes a reduction in RP
by two order of magnitudes compared to bare SiN structures, for the lengths used in this
work (L < 2 mm). This effect has also been observed in trampoline resonators [166].

The second aspect concerns the Johnson-Nyquist thermal noise introduced by free
carriers in the electrodes, when an integrated electrical readout is employed. This type of
thermal noise can dominate the output voltage noise, especially in nanoscale resonators,
and often becomes the limiting factor in the system’s performance, surpassing fundamental
noise sources like thermomechanical or temperature fluctuation noise [40, 166].
However, the inclusion of electrodes does offer certain advantages, such as a practical
reduction in the resonator’s thermal response time, as shown in Fig. 4.4b. This effect
arises from the increase in overall thermal conductance outweighing the increase in
thermal capacitance introduced by the electrodes.
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Figure 4.5: Closed-loop frequency tracking schemes. a Schematics of a PLL
tracking scheme. b Schematics of an SSO tracking scheme. Figures are inspired by Figure
2 and 3 in [131].

4.3 Frequency Tracking Schemes

Precise and continuous monitoring of the mechanical resonance frequency is crucial
in nanomechanical photothermal sensing, as it is the key observable used to detect
small energy exchanges between the resonator and its environment. In this thesis, two
different frequency tracking schemes have been employed: phase-locked loop (PLL) and
self-sustained oscillator (SSO). Both are close-loop schemes, providing a larger dynamic
range compared to open-loop approaches, as they can track frequency shifts larger than
the resonator linewidth, Δω0 > ω0/Q [60]. Below, the basic operation of both schemes is
briefly described, followed by an introduction to their respective noise transfer functions.
For a more comprehensive discussion, the reader can refer to [130, 131, 175]. In particular,
Bešić et al. have shown that PLL and SSO offer the same performance in terms of noise
[131].

4.3.1 Phase-Locked Loop (PLL)

The PLL scheme has been employed for the acquisition of the results presented in Ref. [31],
and for part of the data shown in Ref. [111]. A PLL is essentially a control system that
adjusts the frequency of a voltage-controlled oscillator (VCO) to match the resonance
frequency of the nanomechanical resonator. Using negative feedback, the VCO — also
referred to as the local oscillator (LO) — is regulated by a proportional-integral (PI)
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controller to minimize the phase error Δθe = θ0 − θ(t) between a set-point phase, θ0
(chosen to be the resonator phase at resonance, θ0 = θ(ω0)) and the resonator’s measured
phase θ(t) (see Fig. 4.5a).
The resonator’s phase is continuously monitored by a phase detector (PD), which
compares the resonator’s electrical output with the LO signal. The PD uses in-phase
and quadrature (I/Q) demodulation to extract the phase information. It has a cutoff
frequency fL, corresponding to a time constant τL = 1/2πfL, that suppresses the high-
frequency components of both the signal and related additive phase noise, limiting the
PD speed. The PI controller regulates the VCO at a frequency fPLL = 1/(2πτPLL), with
fPLL ≤ fdemod/5. The PI coefficients can be chosen as follow to simplify the overall
system transfer function [175, 176]

kP = 2πfPLL = 1
τPLL

, (4.6)

kI = kP
τmech

, (4.7)

where kP and kI are the proportional and integral coefficients, respectively.
The noise processes that depend on the frequency tracking scheme are the thermome-
chanical and detection-amplitude noise, as already introduced in Chapter 3. The transfer
functions of the PLL from the corresponding phase noise source to the frequency of the
output signal are given by [175]

HPLL
θthm(iω) = 1

τmech

(iωkP + kI)HL(iω)
−ω2 + i ω

τmech
+ (iωkP + kI)HL(iω) (4.8)

HPLL
θdet (iω) = 1

τmech

1
Hmech(iω)

(iωkP + kI)HL(iω)
−ω2 + i ω

τmech
+ (iωkP + kI)HL(iω) . (4.9)

Hmech(iω) and HL(iω) represent the low-pass filter transfer functions of the resonator
and system filter, respectively

Hmech(iω) = 1
1 + iωτmech

, (4.10)

HL(iω) = 1
1 + iωτL

. (4.11)

These expressions provide a detailed description of how noise propagates through the
PLL system and influences the tracking performance.

4.3.2 Self-Sustaining Oscillator (SSO)
The SSO scheme has been employed for the acquisition of part of the results shown in
Ref. [111]. In this setup, the amplitude signal transduced from the vibrational motion
of the resonator is fed back to the resonator after being amplified and appropriately
phase-shifted (see Fig. 4.5b) [131, 177, 178]. The Barkhausen conditions must be satisfied
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for sustained oscillation: i) the loop gain must be equal to one, ensuring stable oscillation
amplitude. This is achieved using a saturating amplifier, which stabilizes the resonator’s
motion by limiting the amplification when the amplitude exceeds a certain threshold. ii)
The total phase around the feedback loop must be 2πn, where n is an integer. This is
managed by introducing a phase shifting element in the loop [131]. The noise transfer
functions for thermomechanical and detection noise in an SSO are given by [131]

HSSO
θthm(iω) = 1

τmech
HL(iω), (4.12)

HSSO
θdet (iω) = 1

τmech

HL(iω)
Hmech(iω) . (4.13)

In this configuration, the frequency is measured using a frequency counter embedded
within the SSO (PHILL, Invisible-Light Labs GmbH), as illustrated in Fig. 4.5b [131].

The transfer functions introduced so far for the PLL and SSO account for the loop
dynamics of the thermomechanical and detection, as well as temperature fluctuation
induced fractional frequency noise (see Chapter 3 for the detailed expressions). Thermo-
mechanical and temperature fluctuation noise are white frequency noise sources, while
the detection noise can gives rise to flicker phase and / or white phase noise. In the
power-law model used to describe the fractional frequency PSD [179]

Sy(f) =
2∑︂

i=−2
hif

i, (4.14)

the thermomechanical noise, as well as thermal fluctuations, are characterized by a
power-law h0f0 = h0 (with hi being the power-law coefficients). The detection noise
follows instead h1f + h2f2. Both components are shown in Fig. 4.6a, which presents
an example of experimental fractional frequency PSD. Additionally, the figure shows
other two noise sources commonly encountered in oscillators, i.e., flicker frequency (with
power-law h−1f−1) and random walk frequency (with power-law h−2f−2).
In the time domain, the oscillator’s frequency noise is characterized with the Allan
deviation (see Eq. (3.40) and (3.42)). Fig. 4.6b shows the AD corresponding to the PSD
of Fig. 4.6a, illustrating the different noise contributions as a function of the integration
time τ . The figure also includes the contribution from the frequency drift (orange line),
which does not appear in the PSD. When limited by white frequency noise, the AD σy

exhibits a characteristic slope ∝ τ−1/2 for increasing values of the integration time.

4.4 Finite Element Method
This section provides an overview of the FEM simulations used to support the results
presented in Ref. [31, 111]. This simulations were performed using COMSOL Multiphysics,
a commercially available simulation software. The FEM simulations serve two primary
purposes in this work, and they are divided into two main categories: i) photothermal
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Figure 4.6: Fractional frequency PSD and AD. a Fractional frequency PSD. Noise
components: white frequency (this includes thermomechanical, detection, and tempera-
ture fluctuation noise — blue); flicker frequency (dark purple); random walk frequency
(purple); flicker phase (detection noise — red); white phase (detection noise — orange).
b Corresponding AD. The orange curve represents the frequency drift component; the
red curves is the sum of the flicker phase and white phase frequency noise components.

response of the various designs discussed throughout this thesis; ii) plasmonic response
of the individual particles characterized in [31].
Each of these models will be discussed separately in the following sections to highlight
their features.

4.4.1 Photothermal Response

These simulations pertain to the results presented in Ref. [111] and focus on two key
properties: the relative power responsivity RP and the thermal time constant τth, for
each resonator’s design. As both quantities depend on the interplay between mechanical
and thermal properties of the resonator, two modules available in COMSOL are utilized

— namely the Structural Mechanics Module and the Heat Transfer Module.
The Structural Mechanics Module is designed to solve problems of statics, eigenfrequency,
and transients. The Heat Transfer Module is designed to solve problems of heat transfer,
including conduction, convection, and radiation, in either transient or steady-state regimes.
The two modules are coupled via thermal expansion occurring inside the resonator upon
interaction with an heat source. All material input parameters are assumed constant
over the range of simulated temperatures.
The common procedure for all simulations begins with defining the resonator’s geometry
and material properties (Fig. 4.7a). The designs all feature high aspect ratios (L/h > 103,
with h = 50 nm), which allows for the use of a shell interface. This reduces the
computational problem from 3D to 2D, with the thickness h included as an input
parameter in both the motion and heat transfer equations.
For the mechanical analysis, the material is assumed to be linear and elastic, with Young’s
modulus E, Poisson’s ratio ν, and mass density ρ; a 2D uniform tensile stress is applied
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Figure 4.7: Photothermal response FEM workflow. a. Definition of geometry,
material properties, and boundary conditions. b. Mesh configuration. c. Stationary
study I: Steady-state temperature field T computed for a given input heat power P0.
d. Stationary study II: Resultant (steady-state) static stress field σ, derived from the
temperature field in c, which couples to σ via the thermal expansion (with the coupling
strength determined by the thermal expansion coefficient αth). e. Eigenfrequency study:
Modeshape of the fundamental out-of-plane flexural mode. f. Parametric study: The
eigenfrequency is solved for varying input power P0.

on the thin film, σxx = σyy = σ0. Fixed constraints are applied at the clamping regions
of the resonator, ensuring zero displacement at the edges. The thermal parameters are
defined next, including the linear coefficient of thermal expansion αth, the specific heat
capacity cp, the thermal conductivity κ, and the emissivity ϵrad. The heat source can
either be a Gaussian laser beam with waist w0 and input power P0, or a boundary heat
source, like a point or surface with the same impinging power P0. No convection is
considered, as experiments are performed in vacuum. For the heat transfer problem, the
temperature at the clamping regions is fixed to T0 = 300 K, modelling the connection of
the resonator to its thermal bath.
It follows the meshing (Fig. 4.7b). Depending on the resonator design, a quadrilateral or
triangular mesh is used. Mesh refinement is applied to the computational load, ensuring
minimal memory usage while capturing the essential physics of the system.
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4.4.1.1 Power Responsivity RP

The first step in this study involves calculating the temperature profile T (x, y) within
the resonator (Fig. 4.7c). This profile results from the thermal steady-state condition,
where the input heat generated by the laser balances with the dissipative mechanisms of
conduction and radiation.
The second step involves solving for the static stress field σ(x, y), given T (x, y) as an
input parameter (Fig. 4.7d). The coupling between the two physics is given by the
thermal expansion (with the coupling strength given by the thermal expansion coefficient
αth), which induces a stress relaxation.
The third and final step is to compute the eigenfrequency of interest (here the fundamental
one, whose modeshape is shown in Fig. 4.7e) with the stress field serving as the input
parameter. It is important to note that the measured quality factor Q = O(104) [111]
ensures that ω0 ≈ ωr, justifying the use of the eigenfrequency study for this analysis.
These three steps are repeated for varying input laser powers P0. From the eigenfrequency
response to the power (Fig. 4.7f), the responsivity RP is extracted by fitting the FEM
results with

ω0(P0)
2π

= ω0(0)
2π

+ αabs(λ)RP
ω0(0)

2π
P0. (4.15)

Here, ω0(0)/2π denotes the resonator eigenfrequency for zero impinging optical power
(P0 = 0 µW), while αabs(λ) is the optical absorptance of the material.
Various studies have been conducted to examine how RP changes in response to different
parameters. Specifically, the effects of the laser’s position relative to the resonator’s
center and its beam waist have been analyzed, and the results are detailed in Ref. [111]
(Chapter 3).

4.4.1.2 Thermal Time Constant τth

Two types of simulations have been implemented to evaluate τth. Both simulations involve
a transient thermal study where the laser is turned on time t = 0 and the simulation
solves for the temporal evolution of the temperature profile (Fig. 4.8). It is worth noting
that the results are unchanged when the laser is initially on for t < 0 and then switched
off at t = 0.
The first study focuses on the evolution of the maximum and surface-averaged temperature
of the resonator. This allows the analysis of how quickly the resonator’s temperature
reaches the steady-state. The second study extends this approach by using the evolving
temperature profile as an input for mechanical simulation, as done for RP . For each time
step t > 0 the temperature field T (x, y) is updated, the corresponding tensile stress field
is recalculated, and the temporal evolution of the eigenfrequency evaluated.
The results from both simulations are fitted with an exponential function of the form
a(1 − e

− t−t0
τth ) + c, as depicted in Fig. 4.8.

The results indicate that the eigenfrequency stabilizes with the same time constant of the
surface average temperature [111]. In contrast, the peak temperature reaches steady-state
more rapidly.

65



4. Experimental and Computational Methods

Figure 4.8: FEM thermal time constant. The FEM results (black dots) are fitted
with an exponential function of the form a(1 − e

− t−t0
τth ) + c.

4.4.2 Plasmonic Response

The simulations described here pertain to the results in Ref. [31], focusing on the
absorption cross-section σabs(λ) of single metal nanorods across the visible (VIS) to
near-infrared (NIR) spectral range. In this range, absorption is dominated by localized
surface plasmons (LSPR) within the metal core. Various techniques, such as Mie theory,
Transition Matrix, discrete-dipole approximation, finite-difference time-domain method,
and FEM, can be used to study this type of problem. Among these, FEM has the
key advantage of supporting non-regular tetrahedral adaptive meshing, allowing for
more accurate approximation of curved surfaces compared to other techniques [180, 181].
Furthermore, FEM is ideal for analyzing the electromagnetic interaction between the
scatterer (nanoparticle) and the input field in the presence of an underlying substrate
[181–183].
For this study, the Electromagnetic Waves, Frequency Domain interface was employed
to investigate the optical properties of the nanorod both with and without the SiN
substrate. The implementation of the simulations consists of two parts. The first one
calculates the electromagnetic field within the simulation domain resulting from the
interaction of a specific input field with the substrate, in the absence of the scatterer (the
nanoparticle). The second step uses the resulting field from the first step as a background
field and calculates the interaction between this field and the scatterer [184]. From this,
the absorption cross-section can be determined as [185]

σabs(ω) = 1
I0

∫︂∫︂∫︂
VNR

Qh dr = 1
I0

∫︂∫︂∫︂
VNR

1
2ωϵ0Im(ϵNR(ω, r))|E(r)|2 dr, (4.16)
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Figure 4.9: FEM of the nanorod’s plasmonic response. FEM simulation domain,
including the nanorod, the SiN substrate, the air/vacuum regions, and the PML regions.
The meshing is adapted to the different region to preserve the physical problem, and
save memory for the calculations. In particular, high-density meshes are used in the tiny
regions characterized by strong electric field and high field gradients, while low-density
meshes are used farer from the absorber. The input electromagnetic field enters the
domain from top face of the whole domain, with a polarization parallel to the nanorod
long-axis in the plot.

where the integral is evaluated over the nanorod’s volume VNR. Qh is the total power
dissipation density (as given in COMSOL), I0 is the impinging field intensity, ϵ0 the
vacuum dielectric permettivity, Im(·) the imaginary operator applied on the dielectric
function of the nanorod ϵNR, and E(r) the resulting electric field.
For each simulation, the geometry of the nanorod is defined first (inset of Fig. 4.9), with
a particular focus on the aspect ratio, which is a key parameter due to its direct influence
on both the peak absorption wavelength of the LSPR and the resonance amplitude [186–
188]. The aspect ratio is adjusted to align the FEM simulations with the experimental
absorption spectra presented in Ref. [31], using size ranges provided by the vendor and
confirmed through scanning electron microscopy (SEM). The nanoparticle’s end caps are
modeled as spherical, based on SEM imaging (see Chapter 6). This choice is crucial, as
the absorption properties of elongated particles are highly sensitive to the shape of their
tips, which strongly affects the local electric field in these regions [183, 189].
Next, the optical properties of the nanorod, i.e. its complex dielectric function ϵNR(ω),

are set as input parameters for the FEM model (Fig. 4.10). ϵNR(ω) describes both the
dispersive (real part, Fig. 4.10 top) and dissipative (imaginary part, Fig. 4.10 bottom)
response of the nanoparticle to the external electromagnetic field. The base material
is bulk gold, whose values ϵbulk are taken from Ref. [190] and which accounts for the
electron bulk scattering γ0. However, due to the nanoscale dimensions of the analyzed
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Figure 4.10: Dielectric function of the gold nanorod. Real (top) and imaginary
(bottom) parts of the complex dielectric function of the gold nanorod as a function of the
laser excitation wavelength. Two models are considered: the blue curve only considers
electron bulk scattering (with the data taken from Ref. [190]); The orange curves further
accounts for radiative damping and electron surface scattering (Eq. 4.17). The parameters
used for the calculations are: A = 0.66, Leff = 66 nm, and VNR = 5.24 · 105 nm3. The
grey region indicates the explored range of wavelength.

nanorods, surface effects become more significant than in bulk samples, requiring an
improvement in the description of in the dielectric response [182, 186, 188, 191]. Hence,
both electron surface scattering and radiative damping are incorporated, described by
the following expression

ϵNR(ω, Leff) = ϵbulk +
ω2

p

ω2 + iωγ0
− ω2

p

ω2 + iω(γ0 + AvF
Leff

+ ηVNR
π )

. (4.17)

Here, ωp denotes the plasma frequency of gold; vF indicates the electron Fermi velocity; A
is a dimensionless parameter describing the details of the electron surface scattering; Leff ,
is the electron mean free path confined at the surface, which depends on the nanorod’s
size [182, 191, 192]; η is an effective radiative damping rate [182]. The difference between
the bulk dielectric function and Eq. (4.17) is shown in Fig. 4.10. While the dispersive
response (top) remains largely unaffected by electron surface scattering, the dissipative
component (bottom) shows an increase corresponding to greater electron surface channel
losses.
The nanorod is coated with a silica (SiO2) layer with a thickness of 20 nm. Since the
silica is transparent in the VIS and NIR, only the dispersive component is included in
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Figure 4.11: FEM plasmonic hotspots. FEM simulated field enhancement |E|2 / |Einc|2
for a light field polarized parallel to the long axis of the nanorod. The enhancement takes
place in the region surrounding the hemispherical caps of the nanorod, of the order of
the partical radial diameter [191, 193].

the modelling (ϵSiO2 = 2.13). The same is done for the SiN substrate, as its absorption
in this spectral range is minimal compared to the nanorod (ϵSiN = 4). It follows the
definition of the computational domain (Fig. 4.9).
Its sizes are chosen such that no interference phenomena occur within the vacuum regions,
avoiding spurious results. To achieve this, the domain height is set equal to the maximum
excitation wavelength used in the simulations (λmax = 1 µm). Perfectly matched layers
(PML) are also defined at this stage, and used only in the second part of the simulation
when the absorber is considered (see below, second step).
Next, the meshing process is conducted. Given the targeted physics, it is anticipated
that strong electric fields will form around the tips of the nanorods due to the excitation
of LSPR, leading to the emergence of hotspots [185, 191, 193]. These are shown in
Fig. 4.11, around the hemispherical caps of the nanorod. Specifically, the resulting
electric field enhancement |E|2 / |Einc|2 arises for a light beam resonant with the central
LSPR wavelength, and parallel to the long optical axis of the nanorod. Therefore,
employing an adaptive mesh is crucial, enabling high-density element regions where
high electric field gradients exist while maintaining lower density areas to minimize
computational efforts [185], as illustrated in Fig. 4.9. For each subdomain, the maximum
element size has been set to be λexc/(6nsubdomain), fulfilling the aforementioned physical
requirements.
For the computation of the absorption cross-section (4.16), the Frequency Domain study
is employed, where an electromagnetic field of given frequency, polarization and intensity
I0 serves as the input for the system under investigation. As previously mentioned, the
simulation consists of two distinct steps.
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In the first step, the absorber is disregarded and only the interaction between the input
field Einc(r) and the substrate is computed. This step utilizes the full field formulation,
yielding the resulting field as E(r) = Einc(r) + Esca(r). This represents the superposition
of the input and scattered (transmitted and back-reflected) fields. This formulation offers
the advantage to avoid the analytical derivation of the background electric field — at the
basis of the background field formulation — and which is only used in the second step.
To obtain the full field solution E(r), the simulation is configured with Port conditions.
Given that all the nanorods are significantly smaller than the incident wavelengths, a
plane wave is introduced as the input field on one of the ports (the upper face of the
computational domain, not shown in Fig. 4.9), also allowing for specular reflection. The
opposite (bottom face) absorbs the transmitted plane wave. Floquet conditions are
applied to the side boundaries, imposing that the solution on one side of the geometry
equals the solution on the opposite side, multiplied by a complex-valued phase factor.
This effectively turns the model into a section of a geometry that extends infinitely in
the xy-plane [184].
In the second step, the absorber is incorporated into the simulation, and PML boundaries
are applied around the entire computational domain [194]. These are designed to avoid
artificial reflections at the domain boundaries and function as an anisotropic absorbing
layer. In this instance, the field solution of the previous step serves as the background
field for the final computation.
The simulations implemented in this study have previously been validated for gold
spherical nanoparticles, demonstrating excellent agreement with Mie theory.
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CHAPTER 5
Comparative Analysis of

Nanomechanical Photothermal
Sensors

In this chapter, an experimental comparative analysis among the three resonator designs
studied so far is carried out. For each design, the most important photothermal metrics
are discussed in details for different resonator’s in-plane dimensions. The experimental
results focus on the fundamental out-of-plane flexural mode of low-stress SiN resonators,
and are compared with the theoretical framework developed in Chapter 3. Firstly, the
photothermal response to the probing laser is analyzed, which includes the discussion
about the thermal time constant and relative power responsivity results. Secondly, the
frequency stability is studied, followed by the evaluation of the photothermal sensitivity
NEP. The measurement procedures for each metrics were described in Chapter 4.

All the results and related discussions are based on the second part of the study presented
in Ref. [111].

5.1 Strings
The string resonators analyzed in the present work [111] are characterized for different
lengths L, while keeping their width (w = 5 µm) and thickness (h = 50 nm) fixed
(the fabrication has been already introduced in Chapter 4). Fig. 5.1a shows the optical
micrograph of a string resonator measured in this work. A tensile stress of σ0 = 363 MPa
is extracted from the measurement of the fundamental resonance frequency for varying
length L, as shown in Fig. 5.1b. The respective Q factors have also been measured for
the theoretical calculations of the frequency stability, due to the Q dependence of the
additive phase noise Eq.(3.45). The results are displayed in Fig. 5.1c, where the intrinsic
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Figure 5.1: String design. a Optical micrograph of a string resonator. b Resonance
frequency of 56 nm thick, 5 µm wide string resonators of different lengths. From the
measurements, a stress of 363 MPa is extracted. c Corresponding measured intrinsic
Q factors. The dashed line represents the theoretical contribution from volume Qvol
and surface losses Qsurf [119]. d Comparison between theoretical (black solid curve) and
measured (dark red circles) thermal time constant τth for the same set of strings. e
Comparison between theoretical (solid curves) and measured (dark red circles) relative
power responsivity. The error bar indicates the uncertainties in κ (2.7 − 4 W/(m K)),
E (200 − 300 GPa) [24]. For these structures, αth = 1 ppm/K has been measured
following ref. [195]. f Allan deviation measured for a 2 mm long string (green solid curve),
driven at the onset of nonlinearity zrc , with low-pass filter bandwidth fdemod = 2.5 kHz,
PLL bandwidth fpll = 500 Hz and optical input power P0 = 6 µW. The comparison
with the theoretical model is also shown (black solid curve), together with the single
contributions (see main text). The grey region includes all the processes faster than
the PID controller (τ < τth), which has a low-pass behavior, filtering all of them out. g
Comparison between the theoretical (black solid curve) and experimentally extracted
(black circles) NEP for strings. The theoretical curve is composed of two different noise
contributions: temperature (red dashed curve) and thermomechanical (blue dashed curve)
fluctuations-induced fractional frequency noise. For each string’s length, three different
resonators were characterized in terms of NEP. Average and standard mean error for the
data points are also shown for each length.

Qint is plotted for all strings analyzed. As expected for this thickness, the mechanical
dissipation is dominated by surface losses Q−1

surf (dashed black line — see Chapter 2)
[119]. In the current setup, chip mounting constitutes another source of dissipation, as
observed in the data scattering [115].
Next, the photothermal response has been characterized. The experimental thermal time

constant shown in Fig. 5.1d (dark red circles) has been measured with an exponential
fitting of the time signal, as discussed in Chapter 4. The results are also compared with
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the theoretical predictions (3.4) (solid curve), showing excellent agreement.
Fig. 5.1e displays the experimental relative power responsivity (dark red circles), and the
corresponding comparison with the theoretical model (3.3) (black solid lines). The latter
is calculated accounting for the uncertainty in material parameters κ and E. For these
specific structures, the linear coefficient of thermal expansion αth has been experimentally
characterized following Ref. [195], and a value of αth = 1 ppm/K has been found. All
data points fall within the uncertainty band except for L = 2 mm. This discrepancy is
consistent with the increased radiative losses caused by the high probing optical power
(P0 = 24 − 40 µW). Indeed, higher incident powers lead to elevated temperatures at the
string’s center, increasing the radiative heat flux ∝ (T 4 − T 4

0 ) [167]. This results in a
nonlinear reduction of RP, as well as a reduction in photothermal response time τth, as
the one observed in Fig. 5.1d.
It is worth noting at this point of the discussion that the power responsivity can be
enhanced by reducing the resonator’s thickness h (see Fig. 5.7) and width w. Indeed,
thinner strings will improve the thermal insulation, due to a reduction in cross-sectional
area, as well as in emissivity [196]. In contrast, narrower strings are not straightforwardly
beneficial, since a smaller w will reduce the hosting area for particle and molecule
spectroscopy, reducing the capture efficiency [197]. Hence, the width choice is critical for
photothermal sensing.
The characterization continues with the resonators’ frequency stability. Fig. 5.1f displays
the Allan deviation (AD) for a string (green solid curve) [132]. All the acquired ADs
have been compared with the theoretical model, accounting for the transfer functions
(3.45) of the PLL and SSO tracking schemes [68, 131]. A good match is observed between
measurements and theory (black solid curve) for integration times τ < 0.1 s, where the
main noise source is additive in-phase (blue solid curve). For τ > 0.1 s, the data depart
from the thermomechanical asymptote, with the presence of flicker frequency noise for
0.1 s < τ < 1 s, and frequency random walk for τ > 1 s, attributed to photothermal
back-action (see below).
Fig. 5.1g presents the resulting NEP values, evaluated at τ = τth. For each length, three
different chips (black circles) have been analyzed. The results demonstrate strings’ high
photothermal sensitivity (0.28−2.5 pW/

√
Hz). The plot also displays the theoretical NEP

(black solid curve), closely aligning with the measurements. For clarity, the measurements’
mean value and the standard error are plotted for each length, falling within the predicted
values. The sensitivity is mainly limited by thermomechanical noise for almost all the
lengths. The observed deviations are consistent with the photothermal back-action.
The positive correlation between noise level measured for long integration times (τ > τth)
and power responsivity is evidence for photothermal backaction (3.54). To investigate
this further, the laser relative intensity noise SP (ω, λ) has been characterized for all
the optical powers employed in this study and SyδP(ω, λ) evaluated. The intensity has
been acquired for 1 minute with a silicon photodiode (Thorlabs GmbH S120C, 1 µm
response time) together with a digital power meter console (Thorlabs GmbH PM100D).
The electrical signal is fed to the lock-in amplifier, with a filter bandwidth of fL = 3 kHz.
The recorded intensity signal is then converted into frequency fluctuations, accounting
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Figure 5.2: Laser power fluctuations. a Characterization of the intensity fluctua-
tions for an average power ⟨P0⟩ = 6 µW (smoothed with a Gaussian filter). The f−2

and f−1 noise contributions are shown (dashed orange and dashed-dotted orange lines,
respectively). b Power spectral density of the thermomechanical noise for a drumhead
resonator for different interferometer laser powers. c Corresponding measured displace-
ment sensitivity

√︂
Smin

z , in units [m/
√

Hz]. It improves linearly with the laser power,
with the effect of simultaneously introducing higher thermomechanical and laser power
instability-induced frequency noise.

for the resonator’s thermal response Hth(ω), and the corresponding AD calculated (see
Appendix A) [133]. The results are displayed in Fig. 5.1e with the purple solid curve,
showing excellent agreement with the data for τ > 0.1 s. The observed flicker and random
walk frequency noises are consistent with the intensity spectral distribution SP (ω, λ), as
clearly shown in Fig.5.2a, far above the ultimate laser shot noise limit SP,sn(λ).
Hence, photothermal back-action frequency noise imposes an upper limit on the probing

power used for displacement transduction. On the one hand, high laser power improves
the displacement sensitivity

√︂
Smin

z [m/
√

Hz], as shown in Fig. 5.2b&c [198], reducing
the detection coefficient Kd. On the other hand, such a signal enhancement saturates at
higher optical power due to the induced frequency noise [133], with any low-frequency
intensity noise, such as mode hopping [199], directly impacting the resonator stability
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[137].
Fig. 5.2c further shows that the displacement sensitivity is here inversely proportional
to the optical power P0, indicating that the laser noise has a classical (detector and
technical noise) and not quantum shot noise origin [200]. Among the different approaches
to mitigate laser classical noise, active intensity stabilization could offer a simple way to
push the laser to its shot-noise limit [201]. A simpler approach to reduce the transducing
laser-induced photothermal back-action is the use of another wavelength, for which SiN
absorption is reduced (e.g. 1550 nm as shown in Ref. 68), along with employing a more
stable lasing source.

5.2 Drumheads
Fig. 5.3a shows the optical micrograph of a drumhead resonator measured in this study.
Fig. 5.3b&c show the resonance frequency corresponding to the drumheads characterized
experimentally, and the respective intrinsic quality factors Qint. As for the strings, the
main dissipation mechanisms are the surface and chip mounting losses. Regarding the
thermal time constant of drumhead resonator, no experimental results are presented here,
as the photothermal response time of SiN drumheads has been already experimentally
studied elsewhere [86, 128].
Fig. 5.3d compares the theoretical predictions (3.3) (solid curves) with the experimental

data (dark red circles) for the relative power responsivity. The uncertainty band, defined
by the uncertainties in κ, E, and αth, encompasses all the experimental points, indicating
a strong agreement between theory and experiments.
Fig. 5.3e illustrates the AD for a drumhead. In detail, two regimes can be recognized for
different integration times: i) τ < 0.01 s, the AD is limited by additive phase noise Syθ

(ω)
(blue solid curve); ii) τ > 0.01 s, the noise is dominated by photothermal backaction
SyδP(ω). Notably, in the absence of photothermal back-action, temperature fluctuation
frequency noise would dominate. This condition, where a mechanical resonator interacts
with the environment at the single shot noise level, is of significant interest for microme-
chanical thermal detectors [40, 42, 68, 123, 202].
Fig. 5.3f presents the experimental NEP evaluated at τ = τth, alongside the theoretical
sensitivity (black solid curve), closely aligning to each other. The experimental results of
1 − 20 pW/

√
Hz are one order of magnitude lower than previously characterized, electro-

dynamically transduced drumhead resonators [40], showing the outstanding performances
of pristine SiN structures over integrated nanoelectromechanical systems (NEMS), where
electrodes are an important part of the design [29, 40, 72]. The use of pure SiN for
photothermal sensing applications is enabled by noninvasive transduction approaches,
such as interferometry. In particular, pure optical transduction offers two key advantages:
i) the absence of metal traces increases the thermal insulation, improving the responsivity
(3.3); ii), the sensor is not limited by Johnson noise, which usually degrades the frequency
stability (3.39) of a vast group of NEMS resonators [40]. Conversely, bare SiN drumheads
are mainly affected by temperature fluctuations noise (dark red dashed curve), as shown
for L > 50 µm. Moreover, as the resonator enters the radiation-limited regime, thermal
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Figure 5.3: Drumhead design. a Optical micrograph of a drumhead resonator. b
Resonance frequency for 50 nm thick square drumhead resonator of different side length.
From the measurements, a stress of 150 MPa is extracted. c Corresponding measured
intrinsic quality factors, Qint. d Comparison between theoretical (solid curves) and
measured (dark red unfilled dots) relative power responsivity. The error bar indicates
the uncertainties in κ (2.7 − 4 W/(m K)), E (200 − 300 GPa), and αth(1 − 2.2 ppm/K)
[24]. e Allan deviation measured for a 1 mm2 square membrane (green solid curve),
driven at the onset of nonlinearity zrc , with low-pass filter bandwidth fdemod = 2.5 kHz,
PLL bandwidth fpll = 10 Hz and optical input power P0 = 6 µW. The comparison
with the theoretical model is also shown (black solid curve), together with the single
contributions (see main text). f Comparison between the theoretical (black solid curve)
and experimentally extracted (black unfilled dots) NEP for membranes. Temperature (red
dashed curve) and thermomechanical (blue dashed curve) fluctuations-induced fractional
frequency noise are also shown, together with the single photon noise limited NEP. For
each membrane’s length, three different resonators were characterized in terms of NEP.

photon shot noise becomes dominant (dark violet solid curve) [86, 123].

5.3 Trampolines
The experimental analysis has been carried out for trampoline resonators with central
pads designed using a Bezier profile (see Fig. 5.4a) [39, 40, 72–74], a thickness h of 50
nm, a tethers’ width w of 5 µm, and tether’s length Lt ranging from 460 to 756 µm.
Fig. 5.4b presents the resonance frequency as a function of the central area L2. For
small areas (L2 < 502 µm2), ω0 can be approximated with that of a string [60]. In the
intermediate range (502 µm2 < L2 < 5002 µm2) the effective mass meff grows faster
(∝ L2) than the tethers’ effective stiffness keff (∝ Lζ , with ζ < 2), leading to a reduction
in resonance frequency ω0. For larger areas (L2 > 500 µm2) keff increases more rapidly
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Figure 5.4: Trampoline design. a Optical micrograph of a trampoline resonator. b
Resonance frequency for 50 nm thick trampoline resonators of different central area side
lengths. The window side length is fixed to Lw ≈ 1 mm, while the tether width is to
w = 5 µm. From the measurements, a stress of 120 MPa is extracted. c Corresponding
intrinsic Qint. d Comparison between theoretical (black solid curve) and experimental
thermal time constant τth. e Comparison between theoretical (solid curves) and measured
(dark red circles) relative power responsivity. The error bar indicates the uncertainties in
κ (2.7−4 W/(m K)), E (200−300 GPa), and αth (1−2.2 ppm/K) [24]. f Allan deviation
measured for a 2302 µm2 central area trampoline (green solid curve), driven at the onset
of nonlinearities zrc , with low-pass filter bandwidth fdemod = 2.5 kHz, PLL bandwidth
fpll = 500 Hz and optical input power P0 = 11 µW. The comparison with the theoretical
model is also shown (black solid curve), together with the single contributions (see main
text). g Comparison between the theoretical (black solid curve) and experimentally
extracted (dark red circles) NEP. For each trampoline’s central length, three different
resonators were characterized in terms of NEP.

than meff (ζ > 2), causing ω0 to rise beyond the string value (see Chapter 2). Again, the
main sources of mechanical dissipation are here the surface losses (see Fig. 5.4c).
Fig. 5.4d compares the theoretical thermal response time (black solid curve) with the

experimental measurements (dark red circles). Discrepancies between the model and
experimental data may stem from variations in material parameters, as supported by
findings in the literature [87]. For instance, differing values of specific heat capacity
and mass density from those used in the model would affect the heat capacitance C,
while variations in emissivity and thermal conductivity would influence the thermal
conductance G. Nevertheless, a positive correlation between τth and L is evident. This
slow thermal response significantly impacts the frequency noise in the experimental setup
employed here.
Fig. 5.4e shows the comparison between the theoretical and measured power responsivity,
exhibiting excellent agreement. As for the other designs, the shaded band represents
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uncertainties in κ, E, and αth.
Fig. 5.4f shows the AD for a trampoline. Also here, two regimes can be recognized:
an additive phase noise-limited region for integration times τ < 0.02 s, and a fully
photothermal back-action frequency noise-dominated region for τ > 0.02 s. The sum of
all the contributions (black solid curve) is a good match with the experimental data (green
solid). It is worth noting that τth lies far in the photothermal back-action dominated
region (red dashed vertical line), meaning that, during the time the resonator takes to
reach a new thermal equilibrium, e.g. upon energy relaxation by a molecule, intensity
fluctuations of the probing laser increase the frequency noise. Conversely, with a shot-
noise limited laser, the temperature fluctuation frequency noise would dominate for
τ > τth.
Fig. 5.4g displays the experimental sensitivities evaluated at τ = τth (dark red circles)
compared with the theoretical calculations (blue and red dashed curves). The plot reveals
that the photothermal back-action (dark violet dashed curve) has degraded the sensitivity
by one order of magnitude compared to the theoretical expectations. Moreover, this
effect is much more pronounced for this design than for the others. Indeed, the slow
thermal response time of trampolines makes them more sensitive to the laser relative
intensity noise (3.55), where flicker and random walk noise are present, worsening the
corresponding sensitivity

NEPpba = αabs
√︂

h0 + 2πτthh−1 + (2πτth)2h−2. (5.1)

However, the data follow the theoretical trend, with the sensitivity worsening for in-
creasingly larger central areas L2. As for the τth (Fig. 5.4d), the observed discrepancies
between model and data may arise from variations in material parameters. Similar
to drumheads, temperature fluctuations represent the ultimate theoretical limit of the
photothermal sensitivity in the absence of photothermal back-action.

5.4 Comparison
In summary, a theoretical comparison among the three resonator designs of comparable
dimensions is illustrated in the radar chart shown in Fig. 5.5. The metrics used for this
comparison are the NEP, the thermal time constant τth, and the sensing area Asens, each
normalized to the best-performing value.
The string demonstrates the highest photothermal sensitivity due to its superior thermal

insulation, albeit with the smallest sensing area. It presents an intermediate thermal
response time compared to the other geometries. The fundamental frequency noise limit
for this design is likely dominated by thermomechanical phase noise. These features
make strings an excellent workhorse for nanomechanical photothermal spectroscopy [61].
Conversely, the drumhead exhibits the lowest sensitivity but offers the largest sensing
area and the fastest thermal response. In particular, the combination of high speed and
optimal sensitivity for this design makes drumheads ideal for applications requiring quick
measurements. Furthermore, temperature fluctuations are expected to be the ultimate
frequency noise limit.
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Figure 5.5: Performance summary. Radar chart of the nanomechanical photothermal
performances. The chart accounts for the normalized NEP, thermal response time τth,
and sensing area Asens. The highest value for each metric has been used for normalization,
with the subscripts referring to the corresponding design (s, string; d, drumhead; t,
trampoline). The string length, the membrane side length, and the trampoline window
side length are all 1 mm long. The trampoline has a central area L2 = 2302 µm2. All
the structures are assumed to be 50 nm thick.

Drumheads are good candidates for scanning spectromicroscopy, as well as a promising
platform for room-temperature IR/THz detection. In particular, in the case of single-
photon noise-limited detection, the large sensing area Asens could enable drumheads
to achieve the room-temperature specific detectivity limit D∗ ≡ √

Asens/NEP ≈ 1.8 ·
1010 cm

√
Hz/W [40, 86, 202]. It is important to note that in the regime limited by

temperature fluctuations, where Sy(ω) ≈ Syth(ω) ∝ A
−1/2
sens , the NEP increases with the

sensing area, following the relationship NEP∝ √
Asens

NEP ≈ NEPth =

√︂
4AsensϵradσSBkBT 5

0

αabs(λ) , (5.2)

reducing the sensitivity of the resonator. Consequently, in this regime the specific
detectivity D∗ for a single side coupled to the environment reaches its maximum and
becomes independent of the area Asens

D∗ =
√

Asens
NEPth

=
√︄

α2
abs(λ)

16ϵradσSBkBT 5
0

. (5.3)

For a black-body, αabs(λ) = ϵrad = 1, it results indeed D∗ ≈ 1.8 · 1010 cm
√

Hz/W. In the
case where both sides are radiating to the environment, but only one is absorbing light,
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Figure 5.6: Specific detectivity. a Absorption spectrum αabs(λ) for 50 nm thick
SiN thin film, taken from [128]. b Specific detectivity D∗ as a function of the optical
wavelength and the resonator’s sensing area.

D∗ ≈ 1.28 · 1010 cm
√

Hz/W (red line in Fig. 5.6b).
Hence, strings and drumheads operating in the temperature fluctuations limited regime
will present similar performances in terms of specific detectivity. This is shown in Fig 5.6b,
where theoretical calculations of D∗ as a function of the optical wavelength and the
resonator’s sensing area are presented for 50 nm thick SiN resonators (with its absorption
spectrum given in Fig. 5.6a). For all design, a region of maximum specific detectivity is
found, which is independent of the sensing area (yellowish regions). However, drumheads
and trampolines offer the advantage of less stringent optical requirements, needing less
precise focusing of the incoming IR light. The drumheads have the further advantage of
a reduced influence from photothermal back-action.
Trampolines present a compromise between the highly sensitive strings and the drum-

heads with a larger sensing area. As such, trampolines show intermediate values in
terms of power sensitivity and sensing area. Their only drawback is the slow thermal
response, which makes them more susceptible to photothermal back-action frequency
noise than the other designs, as confirmed by experimental observations. Despite this,
their high sensitivity makes this design a good candidate for photothermal spectroscopy.
Moreover, temperature fluctuations are expected to be the ultimate limiting frequency
noise, therefore making them a promising alternative for IR/THz thermal detection and
a potential competitor for drumheads.
The present study has examined the three main resonator designs exploited so far in

nanomechanical photothermal sensing. Various optimization methods are available to
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Figure 5.7: Thickness optimization. a Relative power responsivity of a drumhead
resonator as a function of the side length L, for different thicknesses h. b Corresponding
maximum fractional frequency noise Sy(0) = Syθ

(0) + Syth(0). c Corresponding power
sensitivity NEP.

improve the current state-of-the-art photothermal sensitivity. A straightforward approach
is the reduction of the resonator’s thickness h, as the NEP = S

1/2
y (ω)/RP ∝ √

h. On the
one hand, the power responsivity scales with the thickness as RP ∝ G−1 ∝ h−1, as shown
in Fig. 5.7a, since both Gcond and Grad are ∝ h (for h = O(10nm), the emissivity can be
approximated as ϵrad ∝ h [196] — this can be observed in Fig. 7.3a). On the other hand,
the fractional frequency noise scales as Sy(ω) ∝ h−1, as shown in Fig. 5.7b, since both the
additive phase noise Syθ

(ω) ∝ αeffm−2
eff ∝ h−1 and the temperature fluctuations frequency

noise Syth(ω) ∝ G−1 ∝ h−1 scale in the same manner. Fig. 5.7c shows the resulting
improvement in NEP for thinner resonators. Beyond thickness optimization, new designs
routinely employed in other fields of nanomechanics, e.g., in optomechanics, could be
explored for photothermal sensing. For instance, phononic crystal (PnC) engineering
could be easily integrated within the sensor, enhancing the resonator thermal response,
as well as its thermal properties. In particular, the use of PnC defect flexural modes for
sensing applications would boost the power responsivity due to the increased overlap
between the photothermally induced temperature field and the mechanical mode volume,
as already shown [69]. Exploring resonance modes beyond flexural modes (0.1 − 100
MHz), which usually lie at higher frequencies (> 100 MHz), offers an intriguing direction
for further research. High-frequency oscillations could improve the frequency stability of
the resonator, especially against thermomechanical noise. This approach would likely
involve materials other than SiN, such as lithium niobate, which additionally supports
design integration capabilities [140] (see Chapter 4).

5.5 Conclusions
In summary, the comparative analysis conducted on three distinct resonator designs
utilized in photothermal sensing — namely strings, drumheads, and trampolines — has
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elucidated the relationship between the resonator’s photothermal sensitivity and its
mechanical and thermal properties. Across all scenarios, the theoretical framework
has shown remarkable consistency with both experimental data and FEM simulations,
demonstrating how the resonance frequency photothermal response is governed by the
resultant mean temperature rise. Overall, strings emerge as the most sensitive design,
followed by trampolines and drumheads. Conversely, drumheads exhibit the fastest
thermal response, followed by strings and trampolines. The analysis has also highlighted
the critical role of photothermal back-action, particularly its impact on the trampolines’
frequency fluctuations, due to their slowest thermal response. Therefore, high photother-
mal sensitivity can be achieved with low-tensile-stressed, thin resonators, especially when
combined with low-noise detection methods like interferometry. For optical readouts
particularly, utilizing low-intensity lasers and low-absorption materials will be crucial in
minimizing photothermal back-action.
The findings reported here not only clarify the relative performance of the resonator
designs investigated but also establish a solid groundwork for the development of next-
generation nanomechanical photothermal sensors. This study contributes to the advance-
ment of nanomechanical sensing technology, offering valuable insights for researchers
seeking to harness the full potential of photothermal sensing in diverse applications.
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CHAPTER 6
Nanomechanical Photothermal

NIR Spectromicroscopy

This chapter introduces the development of a room-temperature near-infrared (NIR)
spectroscopy and polarization microscopy approach. The capabilities of nanomechanical
photothermal sensing are leveraged here to study the plasmonic properties of individ-
ual nanorods. Specifically, square SiN nano-optomechanical drumhead resonators are
employed to localize these nano-scale absorbers, enabling the spectral and polarization-
resolved characterization of their longitudinal localized surface plasmon resonances (LPSR)
in the NIR range. Additionally, the transverse localized surface plasmon resonances
(TSPR) in the visible (VIS) spectrum are investigated, focusing on their polarization
characteristics.
With the interplay of experiments, theory and FEM simulations, the study provides an
in-depth analysis of the different dissipation mechanisms that contribute to plasmon-
driven absorption. The primary sources of electromagnetic dissipation are identified as
bulk and surface electron scattering. The interaction between the nanoabsorber and the
underlying mechanical resonator is further examined using FEM modeling to offer a more
comprehensive understanding of this coupling.
Finally, the chapter compares nanomechanical photothermal spectroscopy with other
state-of-the-art techniques for single-molecule and single-particle detection, highlighting
the superior signal-to-noise ratio performance of nanomechanical sensors.
The whole results and discussions presented in this chapter are based on Ref. [31].
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6.1 Experimental Methods
6.1.1 Working Principle
The working principle of nanomechanical photothermal imaging and spectroscopy relies on
the frequency shift of a mechanical resonator (the sensing core) caused by the photothermal
heating of a molecule or particle absorbing at a specific excitation wavelength, λexc.
Imaging is achieved by scanning a probe laser across the resonator’s surface. When
the laser reaches the nano-absorber under study, the absorber takes in part of the
electromagnetic energy, by an amount quantified by its extinction cross-section σext(λexc).
A portion of this energy is re-emitted via radiative processes, like scattering, by an
amount given by the scattering cross-section σsca(λexc). The remaining part is converted
into heat and quantified by the absorption cross-section σabs(λexc). This last contribution
is responsible for the temperature rise in the nanomechanical resonator, leading to a
measurable frequency shift.
For a Gaussian laser with input power P0 and beam waist w0, impinging on an absorber,
the power dissipated due to absorption is given by

Pabs = σabs(λexc)I0, (6.1)

where I0 denotes the input irradiance of the probing laser

I0 = 2P0
πw2

0
, (6.2)

which is a function of the input power and beam waist.
Nanomechanical photothermal spectromicroscopy enables the direct measurement of the
absorbed power Pabs via the resonator’s frequency detuning

Pabs = 1
RP

Δf

f0
, (6.3)

with f0, Δf , and RP denoting the original mechanical resonance frequency, the experi-
enced frequency shift, and the relative power responsivity of the nanomechanical resonator.
Eq. (6.3) assumes full thermalization, which refers here to steady-state conditions: at
each new position of the scanning laser, the resonance frequency is recorded for an interval
of time longer than the slowest transient present in the measurement apparatus (here,
the thermal response time of the nanomechanical resonator, see Eq. (6.4)).
In essence, by combining Eq. (6.1) and (6.3), the absorption cross-section σabs of the sys-
tem under study can be determined for a given wavelength, thereby enabling spectroscopy
characterization of individual absorbers.

6.1.2 Platform for Spectroscopy and Microscopy
The complete experimental apparatus is illustrated in Fig. 6.1. The core sensor in this
system is a 50 nm thick, square SiN nano-optomechanical drumhead resonator of 1 mm
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Figure 6.1: Schematics of the operating set-up. The drum resonator is actuated in
vacuum (p < 10−5 mbar) by a piezoshaker (PZA). The displacement is read out by a
Fabry-Perot interferometer (blue laser). The interference signal is processed and sent to
the lock-in amplifier which records the frequency. The scanning lasers (red and green)
are used to generate the photothermal signal by plasmonic excitation of the nanorod.
BE: beam expander. BS: beam splitter. CCD: charge-coupled device camera. CH: Chip
holder. DM: dichroic mirror. EFDT: Electrical feedthrough. I: iris. L: lens. LP: linear
polarizer. HL: halogen lamp. HWP: half-waveplate. M: mirror. OF: Optical fiber.
OFDT: Optical feedthrough. PM: Power Meter. PZS: Piezo-stage.

side length, operated at room temperature under high vacuum conditions (p < 10−5

mbar) to reduce both air damping and heat convection [113, 203]. The resonator is
fabricated on a 5×5 mm2 chip, mounted on a metallic holder that connects to the vacuum
chamber and acts as a thermal sink. A piezoelectric actuator (PA2JEW, Thorlabs, Inc.)
is placed between the chip holder and the resonator to excite the mechanical motion. The
displacement is detected with a Fabry-Perot interferometer (ISD3010, Attocube Systems
AG) operating 1530 nm wavelength (see Chapter 4) [172, 173]. The optical signal is
converted in an electrical one, which is subsequently demodulated and phase-locked using
a lock-in amplifier (HF2LI, Zurich Instruments) for frequency tracking .
To photothermally probe the LSPR in the NIR and the TSPR in the VIS range of the
individual nanorods, the setup is equipped with two continuous-wave (CW) laser sources:
a 513 nm green laser (Toptica TopMode), and a Ti:Sapphire laser (M Square SolsTis)
with tunable (single-mode) output wavelength in the 700 − 1000 nm range. The latter
is pumped by a CW diode laser at 532 nm, delivering up to 8 W of power (Sprout,
Lighthouse Photonics). The active lasing medium is a sapphire crystal rod doped with
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titanium ions, inside a bow-tie ring cavity. The broad wavelength tuning is enabled by a
combination of an optical cavity, a birefrigent filter, an etalon and a piezo-translating
cavity mirror. The laser operates with an ultra-narrow linewidth of < 100 kHz, and
the wavelength was precisely monitored by coupling a portion of the output light to a
spectrometer (Torus Miniature Fiber Optic Spectrometer, Ocean Optics).
For these scanning laser probes, long working distance 50x objectives were used (N.A. =
0.42, M Plan Apo NIR, Mitutoyo in the NIR range; N.A. = 0.55, M Plan Apo, Mitutoyo
in the VIS range). The laser’s polarization angle is controlled by means of a linear
polarizer in the optical beam path. A closed-loop piezoelectric nanopositioning stage
(PiMars, Physikinstrumente) enables raster scanning of the sample. The power of the
probe laser, P0, is continuously monitored using a powermeter (S120C, Thorlabs, Inc.).
Prior to each scan, the laser beam waist w0 is characterized at each wavelength with the
knife-edge method [204, 205].

6.1.3 Sensor characterization

6.1.3.1 Relative Power Responsivity

The drumhead sensor used in this work exhibits a relative power responsivity of RP ≈
104 W−1 for the fundemantel flexural out-of-plane mode, consistent with the expected
value based on the tensile stress of 30 MPa. RP has been determined by measuring the
frequency detuning of the thermomechanical noise spectral peak of the resonator with
the laser Doppler vibrometer (MSA-500, Polytec GmbH) of Setup II (see Chapter 4),
operating at a wavelength of 633 nm, for varying input optical powers P0 (see Fig. 6.2).
The extracted responsivity value is based on Fig. 6.2b via Eq. (4.15). For these drum-
heads, an absorption of α(λ = 632.8 nm) = 0.5% has been measured, in agreement with
previously reported results [91].
Interestingly, the sensor’s power response to the red laser exhibits nonlinear behavior

when the input power exceeds P0 ≥ 30 µW. This nonlinear effect can be attributed
to increased thermal radiation emission from the SiN drum resonator, as the tempera-
ture T rises above the thermal bath temperature T0, leading to higher heat dissipation
ϵradσSB(T 4 − T 4

0 ). In the range of wavelengths explored with the Ti:Sapphire and inter-
ferometry laser in the experimental spectroscopy apparatus, 50 nm thick SiN absorbs less
than at 632.8 nm. As a result, the threshold for the nonlinear response increases beyond
the 30 µW value, allowing for full exploitation of the sensor’s power responsivity. Addi-
tionally, operating at 1530 nm for displacement measurements helps reduce photothermal
back-action effects [111].

6.1.3.2 Thermal Time Constant

The sensor’s thermal time constant has been measured to be τth = 30 ms with the 90/10
method [37]. This value is orders of magnitude larger than the thermal time constant of
the nanorod itself, being therefore the limit factor of the scanning speed (see inset of
Fig. 6.3). In contrast, the thermal time constant for a nanorod under continuous-wave
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Figure 6.2: Sensor’s power responsivity. a. Thermomechanical noise spectra for a
drumhead resonator measured with a laser Doppler vibrometer, for four different probing
laser power: 7.1, 12.4, 28.2, and 44.2 µW. b. Mechanical resonance frequencies as a
function of the input laser power P0.

(CW) illumination can be estimated as [206]

τth,nr ∼ r2
eff,nr

ρnrcp,nr
3κSiO2

, (6.4)

where reff,nr denotes the effective radius of a spherical nanoparticle of volume equal to
the corresponding nanorods’ volume, ρnr is the mass density of gold (19300 kg/m3), cp,nr
is gold specific heat capacity at constant pressure (129 J/(K Kg)), and κSiO2 thermal
conductivity of the silica coating (1.3 W/(K m)).
For individual nanorods, thermal time constants on the order of τth,nr ≃ 40 − 60 ps can

be estimated from the volume extracted later in this work, making the nanorods nine
orders of magnitude faster than the mechanical resonator to reach the steady-state (see
Fig. 6.3).

6.1.3.3 Frequency Stability

The frequency stability of the resonator has been characterized in both frequency (Fig. 6.4,
left) and time (Fig. 6.4, right). The fractional frequency noise PSD is white in frequency in
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Figure 6.3: Thermal time constant of an individual nanorod. Estimated thermal
time constant of the measured individual nanorods (red empty circles) as a function
of the effective radius of a sphere of identical volume compared to the corresponding
nanorod. (Inset) Comparison between the estimated nanorod thermal time constant and
the measured mechanical resonator time constant.

Figure 6.4: Resonator frequency stability. Fractional frequency fluctuations in the
Fourier domain (left), where their PSD Sy(2πf) is displayed, and in the time domain
(right), where the corresponding Allan deviation is shown. τPLL: PLL time constant. τth:
thermal time constant. τmech: mechanical time constant. τset: scan settling time. h0:
white frequency PSD.
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Figure 6.5: Nanorods sampling and size distribution. a. Schematics of the sampling
method. Copyright 2023, adapted under a CC-BY 4.0 license, by R. West et al. [61]. b.
Nanorod length Lnr (left) and radial diameter wnr (right) distributions obtained from
SEM images.

the range 1−10 Hz (light red horizontal line in Fig. 6.4), with a value h0 ≈ 6.76·10−16 Hz−1,
which corresponds to the region of minimum frequency fluctuations. This contribution
is shown in the Allan deviation, appearing with the characteristic functional form of
τ−1/2 [179]. Based on this analysis, the settling time for the probing laser scans has
been chosen to be τset = 0.1 s, ensuring both minimal frequency fluctuations and full
thermalization of the drumhead (τset > τth).
As a result, the photothermal sensitivity of this specific mechanical resonator is NEP ≈
2.45 pW/

√
Hz, well below the expected power Pabs dissipated by an individual nanorod,

as it is shown in the following sections.

6.1.4 Sampling of the nanorods
Reactant-free silica coated gold nanorods with averaged length of 48 nm and width of
12 nm (silica thickness of 20 nm) dispersed in water (Sigma-Aldrich [207]) were first
diluted in Micropur deionized water (18 MΩcm, Milli-Q) with a ratio of 1:200 at room
temperature. The solution was then spin-coated onto the resonators after being filtered
through a 200 nm pore size PTFE membrane syringe filter (Acrodisc, Sigma-Aldrich) to
prevent particle aggregation [166] (Fig. 6.5a).
Fig. 6.5b shows the size distributions of the nanorods’ length Lnr (left) and radial width
rnr (right), acquired with SEM imaging (Hitachi SU8030). The experimental distributions
align with the datasheet’s stated mean values but exhibit a slightly larger dispersion
[207].

6.2 Photothermal Spectroscopy
6.2.1 Spectral Absorption Cross-section
The nanorods analyzed in this work had lengths Lnr ranging from approximately 38 to
52 nm, radial diameters wnr between 9.5 and 13.5 nm, and silica coatings with thickness
of 18 to 22 nm (Figure 6.5b and inset in Fig. 6.6). Their optical properties in the visible
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Figure 6.6: Nanomechanical photothermal absorption spectra of gold nanorods.
Measured absorption cross-sections spectra of single nanorods (Au-SNR, red curves)
and small nanorods aggregations (Au-ANR, blue curves), showing the heterogeneity
characterizing these samples, mainly caused by the particle size dispersion. Inset: SEM
micrograph of a single silica-coated gold nanorod landing on the drum resonator.

and near-infrared range are characterized by surface plasmon resonances (SPR) — the
electromagnetic coupling between an impinging light and the collective motion of the
conduction band electrons [54, 208]. Gold nanorods are particularly valuable for their
large SPR amplitudes and broad spectral tunability [28, 59, 186–188, 191, 209–216].
When a coating, such as silica, is present, its thickness influences how much the SPR
features are affected by the environment. In fact, the plasmonic response is sensitive to
its surroundings on the spatial range of the order of the nanorod diameter, the region
where the field enhancement takes place [191, 193, 217, 218] (see Fig. 4.11). In this study,
the silica coating of roughly 20 nm is thin enough for the SPR to remain sensitive to
both the coating and the surrounding medium, albeit at a reduced magnitude [218].
It is also worth noting that the overall extinction cross-section of the nanorods examined
here is dominated by absorption, σext = σabs + σsca ≈ σabs.

The experimental absorption spectra measured with nanomechanical photothermal
sensing are shown in Fig. 6.6. Each spectrum was measured with the polarization of
the probe beam (here Ti:Sapphire laser) adjusted to maximize the absorption within
the wavelength range of 700 − 900 nm. Specifically, these nanorods present maximum
absorption in the range of ca. 790 − 830 nm, as measured by the ensemble averaged
reference measurement [207] (see also the black curve in Fig. 6.13), due to LSPR excitation
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occurring for a laser polarization parallel to the nanorods’ long axis.
Absorption signals were recorded for both individual silica-coated gold nanorods (Au-SNR,
shown by red curves in Fig. 6.6) and aggregates of a few nanorods (Au-ANR, shown
by blue curves). These two cases can be distinguished by their absorption strength at
plasmonic resonance σabs(λLSPR) and their resonance peak position λLSPR. The Au-SNR
and Au-ANR subsets show variations in both absorption strength and peak positions,
with heterogeneity within the Au-SNR subset largely attributable to size dispersion in
the sample, as shown by the SEM data in Fig. 6.5b.
As highlighted in Fig. 6.6, a threshold of σabs = 3·103 nm2 is used to differentiate individual
nanorods from aggregates. The rationale behind this threshold will be explained later,
but for now, the focus will remain on the individual nano-absorbers.

6.2.1.1 Individual Nanorods

The absorption spectra of individual nanorods measured in this work exhibit a Lorentzian-
like spectral distribution. To gain insight into their plasmonic-driven optical properties
and the relation with the sample size dispersion, their LSPR spectra have been fitted
with a quasi-Lorentzian function

σabs(ω) = Θ
Γ

2 π

(ω − ωLSPR)2 + (Γ
2 )2 , (6.5)

which depends on three parameters: the longitudinal surface plasmon resonance energy
ωLSPR = ℏc/λLSPR (eV); the overall plasmonic resonance linewidth Γ (eV); the integrated
oscillator strength Θ (nm2) [188, 215]. These are extracted for each nanorod by fitting
the measurements with Eq. (6.5), as exemplified with Fig. 6.7.
To properly correlate the extracted parameters to the nanorods’ dimensions, their aspect

ratio AR = Lnr/wnr and volume Vnr must be determined for each nano-absorber. This
can be done exploiting the strong dependence of ωLSPR on the aspect ratio, and of Θ on
the volume, respectively. On the basis of these correlations, it is possible to ultimately
quantify the different plasmonic damping mechanisms contributing to the linewidth Γ for
each nanoparticle.
Given the complexity of the relationship between ωLSPR and Θ and the nanorods’
dimensions, a two-steps procedure has been employed to extract the corresponding sizes
[188, 215]. In the first step, a series of absorption spectra for different nanorod radial
diameters wnr (8 − 16 nm) and aspect ratios AR (2.5 − 5) are calculated using FEM
simulations and the T-matrix method (to cross-check the computations) [219]. The latter
has been refined by incorporating the effective medium approximation to account for the
refractive index of the environment surrounding the nanorod, including the silica coating
and surrounding medium [218]. Fig. 6.8 shows how the effective dielectric function ϵEMA
varies as a function of the silica thickness tSiO2 . This trend has been measured for different
nanorods in Ref. [218], showing a dependence of the type

ϵEMA = ϵc + (ϵm − ϵc)e−btSiO2 , (6.6)

91



6. Nanomechanical Photothermal NIR Spectromicroscopy

Figure 6.7: Quasi-Lorentzian spectrum of an individual nanorod. Example of
fitting of the measured absorption cross-section with a quasi-Lorentzian function (6.5).

with ϵc = ϵSiO2 , and ϵm = ϵair denoting the coating and surrounding medium di-
electric function, respectively. b is a fitting parameter, which has been found to be
b = 0.126 ± 0.004 nm−1 [218]. It is worth noting that the presence of a 20 nm thick
coating reduces the sensitivity of the plasmon resonance to both the coating itself and
the surrounding medium, effectively screening the plasmons from the environment.
The theoretical spectra computed in the way are then fitted with Eq. (6.5) to extract
ωLSPR and Θ.
In the second step, a calibration surface plot of the nanorod volume is constructed from
the simulation results, with the resonance energy ωLSPR and integrated oscillator strength
Θ treated as independent variables. The calibration surface is shown in Fig. 6.9. As
expected, the resonance energy shifts to lower frequencies with increasing aspect ratio
AR, and also slightly red-shifts with increasing radial diameter wnr. In contrast, the
oscillator strength is highly sensitive to volume and shows a minor dependence on AR.
It is important to stress out here that Θ is unaffected by the spectral broadening [220],
meaning it is independent of the plasmonic damping mechanisms. This independence is
crucial for the reliability of the approach used here.
The red crosses in Fig. 6.9 represent the measured individual nanorods, with their coor-

dinates determined by the fitting procedure outlined in Fig. 6.7. For each nano-absorber,
both the AR and volume are extracted, allowing for an analysis of the electromagnetic
dissipative mechanisms.
Various optical scattering phenomena of conduction band electrons can contribute to the
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Figure 6.8: Effective medium approximation for the silica coating the gold
nanorod. The effective dielectric function varies with the silica thickness in an exponen-
tial way. For a silica thickness of tSiO2 = 20 nm, the corresponding effective dielectric
constant is ϵEMA = 2.041.

Figure 6.9: Calibration surface plot of the nanorod volume, constructed according to the
procedure developed in References [188, 215].
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Figure 6.10: Nanorods modelled LSPR linewidths. Simulated LSPR linewidths Γ
for different aspect ratios AR as a function of the nanorods volume Vnr. For these results,
only the bulk dielectric function for gold [190] was used. The black curve indicates a
linear fitting, whose gradient value is η/π = 6.6 · 10−7 eV · nm−3.

broadening Γ of LSPR resonances in metallic nanorods [188, 215]. The first contribution
is electron bulk scattering (Γbulk), which arises from electron-electron, electron-phonon,
and electron-defect interaction. This contribution is always present and constant across
the spectral range considered here, with Γbulk = 73 meV for gold.
Part of the absorbed electromagnetic energy can be also re-emitted to the surrounding
environment via radiative dissipation (Γrad). This mechanism is directly proportional
to the absorber’s volume Γrad = η/πVnrm, where η/π = 6.6 · 10−7 eV · nm−3. This
proportionality constant was derived from fitting FEM-simulated absorption spectra for
different AR and volume values, as shown in Fig. 6.10, and is consistent with previously
reported values [186, 221].
The experimental LSPR linewidths measured via nanomechanical photothermal sensing

are shown in Fig. 6.11a (red crosses), varying in the range 130−150 meV. For comparison,
the contribution Γbulk + Γrad is also displayed (black curve). A significant discrepancy
between the experimental linewidths and these two contributions is evident. Notably,
radiative damping is negligible in this case, given the small volume of the nanorods
studied, in contrast to what has been observed in spherical gold nanoparticles [221].
To explain these experimental results, quantum confinement effects must be taken into
account, i.e., electron surface scattering (Γsurf) [186, 188, 215, 222]. Its contribution is
evaluated by subtracting the previous electromagnetic losses from the experimental values,
yielding Γsurf = Γ − (Γbulk + Γrad). The results are presented in Fig. 6.11b. As expected,
since quantum confinement effects increase with the surface-to-volume ratio, the surface
scattering contribution becomes more pronounced as the nanorod size decreases.
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Figure 6.11: Plasmonic damping in individual nanorods. a. Measured LSPR
linewidth Γ (red crosses) as a function of the nanorod volume Vnr. For comparison,
the contribution Γbulk + Γrad is plotted (black curve). b. Extracted electron surface
scattering Γsurf = Γ − (Γbulk + Γsurf ) for the measured individual nanorods (red crosses)
as s function of the inverse effective length 1/Leff , compared with the theoretical model
Γsurf = vF A/Leff . A value of A = 0.73 ± 0.06 is found for these nanorods.

In a first approximation, surface scattering can be expressed as Γsurf = vFA/Leff , where
vF = 1.4 · 106 m/s is the Fermi velocity; A is an experimentally determined propor-
tionality constant, and Leff = 4Vnr/Snr denotes an effective electron path length, which
expresses the inverse of the surface-to-volume ratio (introduced in Chapter 4). From the
measurements, A was found to be 0.73 ± 0.06, consistent with previously reported values
[188, 215]. This corroborates the evidence that electron surface scattering is a major
source of damping in this context, which, indeed, grows with the surface-to-volume ratio
L−1

eff .
After identification and characterization of the damping mechanisms responsible for

the broadening of the LSPR resonances, the approach to distinguish between individual
nanorods and aggregates is presented.
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Figure 6.12: Electron surface scattering in individual nanorods. LSPR resonaont
absorption spectra calculated with the T-matrix method together with effective medium
approximation (EMA), for different value of the parameter A, for two different aspect
ratios AR = 3.5 (dashed lines), and 4 (solid lines).

6.2.1.2 Aggregates of Nanorods

To differentiate between individual and aggregated nanorods based on their plasmonic
response, the dependence of the peak absorption amplitude σabs on the plasmon resonance
energy ωLSPR and the electron surface scattering Γsurf has been explored.
Using the T-matrix method with an effective medium approximation for the silica coating
(as shown in Fig. 6.8), absorption spectra for nanorods with different aspect ratios
(AR = 3.5 and 4) and varying electron surface scattering coefficient A were calculated, as
shown in Fig. 6.12. As already observed in Fig. 6.9, the resonance energy decreases with
the aspect ratio AR, shifting the plasmonic resonance peak towards longer wavelengths
λLSPR. In turn, the absorption cross-section peak σabs(λLSPR) increases as the overlap
between the plasmon-assisted resonance and interband electronic transitions diminishes
for fixed values of electron surface scattering [214].
For AR = 4 — the highest measured value measured displayed in Fig. 6.9) — the
absorption peak reduces considerably as the parameter A is increased. In particular, for
A = 0.73, the absorption peak σabs(λLSPR ≈ 850 nm) ≈ 3 · 103 nm2 is calculated. Thus,
this value sets the threshold for distinguishing individual nanorods from aggregated ones.
The strength of single-molecule and particle methods is their ability to unravel the hetero-
geneity in size, shape, and composition of the system under study. The nanomechanical
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Figure 6.13: Nanorods ensemble spectrum. Red curve and dot: renormalized sum of
the measured absorption cross-section spectra of single nanorods (fig. 6.6); blue curve:
renormalized sum of the absorption cross-sections of the nanorods aggregation; black
curve: ensemble average absorption spectrum given by the datasheet.

photothermal measurements presented in Fig. 6.6 are a demonstration.
The experiments are compared with the ensemble averaged reference spectrum of the
nanorods (black curve) in Fig. 6.13. For each subset (single and aggregated nanorods),
the individual absorption spectra are summed and normalized. For single nanorods, the
renormalized response (red curve) closely aligns with the reference spectrum, recovering
a typical ensemble measurement [187, 210]. The central wavelength has been extracted
to be λLSPR = 809 nm, in agreement with the nominal value of 808 nm [207].
Conversely, the ensemble Au-ANR (blue curve) shows a central wavelength of 786 nm,
corresponding to a blue-shift of 2.8% from the Au-SNR one. A similar blue-shift has
been reported by Jain et al. [223]. The study has shown that this shift occurs in
nanorod aggregations of two or more units assembled in a side-by-side orientation, for
a polarization parallel to their long axis. The corresponding shift strength depends
on various parameters, such as the interdistance between the nanorods involved, their
aspect ratios, the relative orientational angle, and the number of units considered. For
the spectral distribution shown in Fig. 6.13, these signal are expected to originate from
side-by-side assembled nanorod aggregations.
Up to this stage, both the experimental and simulated results have been obtained with a
50 nm thick substrate. In the next section, the effect of the resonator on the absorption
spectra is investigated.
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Figure 6.14: FEM - nanomechanical photothermal absorption spectrum com-
parison. Measured absorption cross-section of a individual nanorod (red dots), compared
to FEM simulated absorption spectrum in the presence of the 50 nm thick, silicon nitride
substrate (black dot), and in free space (blue dots), obtained for nanorod dimensions of
Lnr = 48 nm, rnr = 6 nm, with the silica coating thickness of 20 nm.

6.2.2 Nanorod-Mechanical Resonator Interaction

The interaction between an individual nanorod and the underlying nanomechanical
resonator was further investigated with the aid of FEM simulations.
The results, shown in Fig. 6.14, reveal that The FEM spectrum in the presence of
the substrate (black dots) closely matches the experimental absorption spectrum (red
dots). In contrast, the FEM analysis conducted in free space, in the absence of the SiN
slab, does not (blue dots). More precisely, the absorption cross-section at the plasmon
resonance (λLSPR = 840 nm) is reduced from σabs ≈ 4.2 · 10−15 m2 in free space to
σabs ≈ 2 · 10−15 m2 in the presence of the slab. However, the resonance position λLSPR
and linewidth Γ are only weakly affected by the substrate, with ≤ 1% variation in both
parameters. These slight variations are due to the reduced electromagnetic screening
imposed by the substrate.

In general, a dielectric substrate underneath a metal nanoparticle screens the elec-
tromagnetic restoring force acting on the plasmon oscillations. This screening can be
qualitatively modelled as a nanoparticle image with a reduced number of charges, whose
electromagnetic strength is determined by the nanoparticle-substrate interdistance and
the slab dielectric permittivity [194]. The weak effect observed in Fig. 6.14 finds its
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Figure 6.15: SiN slab-nanorod interaction. FEM absorption cross-section at 800
nm wavelength for the same nanorod (black empty dot and solid line), and 1D averaged
FEM electromagnetic intensity in the vicinity of the gold core in the presence of the
substrate only (red crosses and solid line), for different silicon nitride slab thicknesses.

reason in the relatively large interdistance of 20 nm (due to the thickness of the silica
coating) [194, 218] and the relatively low refractive index of low-stress silicon nitride
(whose spectral distribution has been taken from Ref. [96]).
To better understand the role played by the SiN slab, additional FEM simulations were
conducted at a single wavelength (800 nm) for varying slab thicknesses, hsubs. The results,
displayed in Fig. 6.15, reveal a periodic modulation in the absorption cross-section as the
slab thickness increases. This modulation perfectly follows the variation in intensity at
the air-SiN interface, in the vicinity of the nanorod, as the electromagnetic losses Qh due
to absorption are directly proportional to the intensity of the electric field, Qh ∝ |E(r)|2
(see Eq. (4.16)). The intensity modulation is due to the interference occurring between
the input electric field and the light reflected from the slab, whose magnitude depends
on the thickness and refractive index. Here, the calculated intensity value is averaged
over the spatial distribution in the proximity of the nanorod, however in the absence of
it and with only the presence of the substrate.
In Fig. 6.16, the 1D intensity distribution along the optical axis at λ = 800 nm shows

how the electric field intensity changes with slab thickness —particularly in the gold core
(yellow) region. These intensities are the results of the FEM first step, where the full field
formulation has been used in the absence of the nanorod (as explained in Chapter 4).
It is interesting to note in both Fig. 6.15 and 6.16 that for a slab thickness of hsubs = 200
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Figure 6.16: FEM intensity distribution at SiN-air interface. FEM simulated
intensity distribution along a 1D cut line passing in the center of the physical domain
at a wavelength of 800 nm, for different silicon nitride slab thicknesses. The intensities
are the results to the FEM first step, where only the slab is simulated, without any gold
nanorod on top of it. The vertical lines and the relative colors show the positions of
each element along the cut line: white, air; grey, silica; yellow, gold; green of different
intensities, the different silicon nitride slabs.

nm (orange curve in Fig. 6.16), the intensity outside the slab is identical to the case
without any substrate. This occurs due to the optical dispersion of SiN at this excitation
wavelength. For a vacuum wavelength of λ0 = 800 nm, the dispersive refractive index of
SiN is approximately nSiN ≈ 2, resulting in an effective wavelength within the slab of
λSiN = λ0/nSiN ≈ 400 nm = 2 · hsubs.
For the 50 nm thickness used in this work, along with the covered spectral range of

730 − 900 nm and the refractive index of SiN [96], no interference occurs inside the
slab. Therefore, the absorption strength modulation in this case is attributed to the
interference occurring at the interface between free space and the substrate, differing from
what has been reported by Kosaka et al. [224]. There, a 1 µm thick silicon cantilever
served as an optical cavity for specific wavelengths in the VIS range, modulating the
scattering of deposited 100 nm gold nanoparticles. Overall, Both scenarios show that it
is possible to tailor the absorption spectrum of individual nano-absorbers by controlling
the substrate’s refractive index and thickness.
So far, both the experimental and simulated results have focused on the nanorod-ligh
interaction for a polarization aligned with the absorber’s long axis. Next, it is examined
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Figure 6.17: Polar plot of the absorption cross-section of an individual nanorod measured
at λexc = 808 nm as a function of the polarization angle θmathrmpol (red dots). The ratio
between the absorption cross-section for a polarization parallel to the nanorod long-axis
(θpol ≈ 157.5°) and perpendicular to it (θpol ≈ 90°) is roughly σabs,∥(808 nm)/σabs,⊥(808
nm) ≈ 100. FEM simulations show good agreement with the measurement (black dots).
Both the red and black solid curves represent the cos2(θ) pattern. Blue dots represent
nanomechanical photothermal measurements at λexc = 513 nm.

how polarization influences this interaction.

6.2.3 Polarization Microscopy

As mentioned earlier, the optical response of these non-spherical nanoparticles is highly
dependent on the polarization of the electromagnetic field. This is clearly shown in
Fig. 6.17 and 6.18.

Fig. 6.17 shows how the absorption cross-section varies with the laser polarization
angle for an individual nanorod, with the red dots representing the nanomechanical
photothermal measurements at the plasmon resonance (λLSPR = 808 nm). Each data
point is obtained by rotating the probe laser polarization in 22.5° increments by means
of a half-waveplate (HWP) and a linear polarizer, while keeping the laser input power
constant. The absorption cross-section ratio between the polarization aligned with the
nanorod’s long axis (θpol ≈ 175.5°) and perpendicular to it (θpol ≈ 90°) is approximately

σabs,∥(808 nm)
σabs,⊥(808 nm) ≈ 100. (6.7)
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Figure 6.18: 2D polarization microscopy. 2D maps of the same region at λexc = 808
nm for three different polarization angles θpol: 90°, 135°, 180°. The two responses are
from two individual nanorods. For the perpendicular polarizations, 90° and 180°, the
absorbers behave in an opposite way, meaning that they are almost perpendicular one
to each other, while absorbing almost the same amount of light for the central map
(θpol = 135°).

Theis high polarization contrast highlights the strong absorption efficiency control achiev-
able through the incident laser’s polarization. The absorption efficiency for the parallel
case is Qabs,∥ ≈ 3.64, while for the perpendicular case it is Qabs,⊥ ≈ 0.03, where
Qabs = σabs/Snr, and Snr ≈ 3.29 · 10−16 m2 is the surface of the selected nanorod, as
extracted with the aid of FEM simulations.
The measurements align well with FEM simulations (black dots), both following the
expected σabs(λ, θpol) = σabs,∥(λ)cos2(θpol) pattern characteristic of ideal dipoles [59,
187, 225]. For comparison, the polarization response at λexc = 513 nm (blue dots) is
also shown. At this wavelength, which excites transversal localized surface plasmons,
the polarization contrast is minimal due to the overlap with polarization-independent
electronic transitions in gold [190]. For this reason, the plasmonic damping increases,
reducing the transverse plasmonic strength compared to the longitudinal one.
Nanomechanical photothermal microscopy also enables the precise determination of the
orientation of individual nano-absorbers on the substrate, as demonstrated in Fig. 6.18.
2D maps of the same region on the drumhead are shown for three different polarization
angles (θpol = 90°, 135°, 180°) at λexc = 808 nm. The two signals correspond to two
distinct nanorods, whose absorption amplitudes vary as a function of the laser polariza-
tion. In particular, the behavior of the two nanorods is opposite for the perpendicular
polarizations (90° and 180°), suggesting that they are nearly perpendicular to each other,
while absorbing nearly the same amount of light for the central polarization (θpol = 135°).
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6.3 Overview on the State-of-the-Art
This work aimed to show the capabilities of nanomechanical photothermal sensing
for single-molecule and particle spectroscopy, as well as polarization microscopy. The
analysis presented here has been carried out with an experimental apparatus and through
a measurement procedure substantially simpler than other state-of-the-art label-free single
molecule techniques [61]. Another key advantage of this platform is its high sensitivity,
enabling one of the highest signal-to-noise ratio (SNR) levels in the field. To show that,
a comparison between the SNR among various label-free single-molecule techniques is
carried out through the following metric [226]

SNRnorm = SNRexp
SNR0

Pheat,0
Pheat,exp

√︄
τm,0

τm,exp
. (6.8)

SNRnorm is defined as the ratio between the experimental SNR of the considered technique
(SNRexp) and the reference SNR0 (from this work), accounting for the power absorbed
by the sample under study Pheat and for the measurement time of the experiment τexp,
renormalized.
The compilation of data is presented in Table 6.1 and displayed in Fig. 6.19. The values
used as reference correspond to the measurements shown for the individual nanorod in
Fig. 6.14 and 6.17 (last dataset of Table 6.1). For the compiled works which do not
explicitly give the values, an average is used.
From Fig. 6.19, it is evident that nanomechanical photothermal microscopy described
in Ref. [24] (dark red cross) achieves the highest SNR, followed by thermorefractive
photothermal with near-critical Xe [231, 232] and the results of the work presented here
[31]. The difference in SNR between this study and Ref. [24] is due to the different
residual prestress in the dumhead resonator used for the absorption analysis. In Ref. [24],
oxygen plasma treatment has been employed to reduce the tensile stress to 0.8 MPa,
with the aim to enhance the relative power responsivity RP to detect single Atto 633
molecules. At such low tensile stress, RP is not anymore constant upon photothermal
heating, since the stress relaxation is of the same order of magnitude of its initial value,
boosting in a positive feedback the thermal response of the sensor.
In the present study, no additional stress engineering was required due to the already
high sensitivity of the resonator, which was sufficient for the nanorod detection.

6.4 Conclusions and Outlook
In conclusion, this work has explored the capabilities of a nanomechanical photothermal
spectroscopy and microscopy platform for single-molecule and particle analysis. The plat-
form demonstrated its ability to image and resolve localized surface plasmon resonances
of individual and aggregated gold nanorods in the NIR range. It has been shown that
electron bulk and surface scattering are the major sources of plasmonic damping, due to
the nanometric sizes of the absorbers. Additionally, the polarization properties of the
nanorods were analyzed, showcasing the platform’s capability to resolve the sample’s
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Table 6.1: Parameters of the different techniques for the SNR comparison. SMS: spatial
modulation spectroscopy; GSD: ground-state depletion microscopy; PCM: photothermal
constrast microscopy; OMM: optical microresonator microscopy; NPM: nanomechanical
photothermal microscopy; NPSM: nanomechanical photothermal spectromicroscopy. NG:
not given. *: at the time of publication. **: assumed values.

Technique Capability* Pump
Intensity
(kW/cm2)

Sample σabs (m2) Pheat
(pW)

τm (ms)
(avgs)

SNRexp

UV-Vis Ex-
tinc. [225]

Spectro-
microscopy

NG Nanorod NG 1274** 208** 6.38**

SMS [227] Spectro-
microscopy

22 Metal clus-
ter

4.3 ·10−16 93620 10000* 2000

Extinc. +
Bal.Det.
[228]

Microscopy 280 TDI dye 1.8 ·10−19 508 2 (10x) 5.7

GSD [56] Microscopy 590 Atto dye 5 ·10−20 294 30
(20x)

3.7

IR-PHI
[229]

Spectroscopy

PCM
(Glycerol)
[58]

Microscopy 9300 BHQ 4 ·10−20 1000 300 10

PCM (5CB)
[230]

Microscopy 28 Nanosphere 4.8 ·10−16 132000 20 78

PCM (Xe)
[231]

Microscopy 28 Nanosphere 4.8 ·10−16 64 50 9.4

PCM (Xe)
[232]

Microscopy 0.45 CP 4 ·10−18 64 30 10

OMM [59] Spectro-
microscopy

2 ·10−4 Nanorod 1 ·10−14 20 1000
(30x)

2

OMM [233] Spectro-
microscopy

522 CP 8 ·10−19 4100 100 4

NPM [24] Microscopy 35.4 Atto dye 4.8 ·10−20 6.3 40 70
NPSM Spectro-

microscopy
4.98 Nanorod 2.5 ·10−15 120947 200 30759
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Figure 6.19: SNR comparison between different single-molecule absorption sensing tech-
niques. Red: spatial modulation spectroscopy (SMS) [227]; purple: UV-VIS extinction
[225]; blue: ground-state depletion (GSD) [56]; grey: interferometric scattering (iSCAT)
[228]; light blue: infrared photothermal heterodyne imaging (IR-PHI) [229]; thermore-
fractive photothermal (TRPT) microscopy with thermotropic liquid crystals [230] (dark
green), with a glycerol medium (green) [58], with a xenon medium at its supercritical
point (light green) [231, 232]; orange: whispering gallery mode (WGM) spectroscopy
[59, 233]; dark red: nanomechanical photothermal (NamPT) microscopy [24] and spec-
troscopy [31].
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intrinsic heterogeneity, surpassing the limitations of ensemble-averaged spectroscopy
techniques.
The interaction between the nano-absorber and the underlying mechanical resonator was
also investigated, revealing how the resonator modulates the absorber’s strength across
a broad spectral range, with minimal influence on the plasmon resonance energy and
broadening for silica-coated nanorods.
A comparative analysis of state-of-the-art label-free single-molecule techniques demon-
strated that nanomechanical photothermal sensing provides a superior signal-to-noise
ratio (SNR) while utilizing a less complex experimental setup and procedure. The results
obtained are on par with leading thermorefractive photothermal spectroscopy, even
without specific mechanical resonator engineering.
Future improvements in sensor responsivity could be achieved through stress engineering
via oxygen plasma treatment, as previously shown in the literature [24]. Alternatively,
advancements could be made by patterning the drumhead resonator with a trampoline
design [23, 29, 72], which would reduce thermal dissipation, or by using a phononic crystal
design where the defect mode enhances the overlap between the mechanical and thermal
volumes [133]. However, careful attention must be given to mitigating frequency fluctua-
tions induced by laser intensity variations to further enhance the platform’s sensitivity
for nanomechanical photothermal single-molecule spectroscopy [111].
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CHAPTER 7
Nanomechanical Photothermal

Sensing for Low-loss Material
Characterization

In this chapter, nanomechanical photothermal sensing is employed to characterize the
optical properties of silicon nitride (SiN), focusing on its extinction coefficient, which is
studied as a function of the residual tensile stress at 632.8 nm wavelength. The aim of
this work is to investigate the relationship between SiN absorption and its deposition
process, as different deposition techniques and recipes are utilized depending on the
application [87]. It is demonstrated that the optical extinction of low-pressure chemical
vapor deposition (LPCVD) SiN decreases with increasing tensile stress. The experimental
results are interpreted within the band-fluctuations framework, linking this trend to a
reduction in the energy bandgap, which subsequently lowers the absorption of this widely
used material.
The approach introduced here offers a new alternative method for optical characteri-
zation of thin films, which can be applied to any material used in nanomechanics and
nanophotonics. This method is particularly valuable as it is insensitive to scattering
effects that often complicate conventional techniques.
All results and discussions in this chapter are based on Ref. [139].

7.1 Characterization Procedure
7.1.1 Working Principle
The working principle is based on the methods introduced earlier in this work (see
Chapter 3). The goal is to determine the absorption coefficient, αabs, of the thin films by
modeling and experimentally characterizing the power response of the patterned thin
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mechanical structure. Specifically, the direct comparison between the theoretical RP
and the experimental RP0 relative power responsivity of the mechanical resonators used
in this work enables the extraction of the absorptance α̃abs(λ). This is related to the
absorption coefficient αabs(λ), and the path h travelled by the electromagnetic wave, by

α̃abs(λ) = αabs(λ) · h · η, (7.1)

with αabs(λ) with units [dB/m] [234], and α̃abs(λ) being dimensionless [235]. The factor
η is a dimensionless correction for possible interference inside the thin film [74, 235].
For a thin film of thickness h and complex refractive index ñ = n + iκext, probed at a
wavelength λ, the absorptance correction factor is given by [74, 235]

η =
4n(n2 + 1) + (n2 − 1) λ

πhsin(4πnh
λ )

1 + 6n2 + n4 − (n2 − 1)2cos(4πnh
λ )

. (7.2)

As discussed earlier, RP represents the relative frequency change per absorbed power
P (λ) = α̃abs(λ)P0, with P0 being the probe laser input power, and is expressed as [60]

RP(ω) = 1
f0

∂f0
∂P

= RT
G

|Hth(ω)| , (7.3)

with RT, G, and Hth(ω) = (1 + iωτth)−1 denoting the temperature responsivity, the
thermal conductance, and the resonator’s thermal response, with a thermal time constant
τth, respectively. All measurements have been conducted far from any thermal transient
(ω ≪ τ−1

th ), i.e., in the steady state. Therefore, the ω-dependence is hereafter dropped.
The experimental responsivity RP0 is obtained by measuring the relative frequency shift
per applied impinging power P0, as schematically shown in Fig. 7.1c. The relation
between this quantity and RP can be easily expressed as

RP0(λ) = 1
f0

∂f0
∂P0

= 1
f0

∂f0
∂P

∂P

∂P0
= α̃abs(λ) RP. (7.4)

This allows for the direct extraction of the optical absorptance as α̃abs = RP0/RP.
The optical extinction coefficient κext, which is an intrinsic property of the material, is
here the target key parameter. It is related to the absorptance by [234, 235]

κext(λ) = λ α̃abs(λ)
4π h η

= λ αabs(λ)
4π

. (7.5)

The second equality represents the theoretical expression of κext(λ), where αabs(λ) is
evaluated within the framework of the band-fluctuations model [110]. The following
sections will define the relevant quantities for the SiN thin films analyzed in this study.

7.1.2 Experimental Setup
The thin films are patterned in a string geometry (see Fig. 7.1a), and their fundamental
out-of-plane flexural mode is utilized for the optical characterization of SiN. To guarantee
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Figure 7.1: Nanomechanical photothermal characterization of optical losses
with strings. a. Optical micrograph of the SiN strings used in the present study.
Orange/light blue regions are made of SiN; the grey regions are the Si substrate. b.
Photo of the cm-scale copper thermal equilibrium chamber used for the characterization
of the linear coefficient of thermal expansion (see main text). A thermoelectric module is
glued beneath to heat up the whole oven (thick red electrical connections) to guarantee a
uniform temperature rise of the chips. The temperature is monitored and kept constant
with a PID controller. c. Mechanical frequency detuning measured by monitoring the
shift of the thermomechanical noise peak of the string’s fundamental mode as a function
of P0. The peak Szz,thm is given in terms of displacement power spectral density (PSD)
[m2/Hz], and is well resolved by the vibrometer (Szz,thm ≫ Sdet, with Sdet denoting the
detection noise PSD). In the x-axis, fi = fres(Pi), with i = 1, 2, ..., is the resonance
frequency of the fundamental mode at each input laser power Pi > Pi−1.

high photothermal and mechanical performances, the resonators are operated inside a
custom-made vacuum chamber at high-vacuum conditions (p < 10−5 mbar) to reduce
gas damping and thermal convection losses. In addition, a custom-designed, cm-scale
copper oven encloses the resonators and ensures uniform thermal equilibrium between
the devices and their environment (details on the oven design and functionality will be
discussed later), as illustrated in Fig. 7.1b. The oven is designed to further allow external
optical access, as shonw in the inset of Fig. 7.1b.
The displacement is transduced optically with a laser-Doppler vibrometer, as outlined in
Chapter 4, Setup II. The experimental setup is equipped with a 623.8 nm wavelength
laser, with a beam waist of 1.5 µm, to both read out the resonator’s displacement
and probe the optical extinction of the SiN thin films, simplifying the measurement
procedure. The frequency shift of the thermomechanical noise peak corresponding to
the fundamental resonance mode of each structure is recorded at various optical power
levels, ranging from 6 to 120 µW, as schematically shown in Fig. 7.1b. During the
experiment, the power spectral density (PSD) of the displacement, in units of [m2/Hz], is
measured for the undriven fundamental resonance mode. As the optical power increases,
the thermomechanical noise peak (Szz,thm) shifts to lower frequencies (fi > fi+1 for
Pi < Pi+1).
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7.2 LPCVD SiN Thin Films
The SiN thin films were deposited with LPCVD and exhibit varying levels of residual
tensile stresses (200 − 850 MPa, see Table 7.1). The rationale behind the choice of a
string geometry is the enhanced photothermal responsivity and fast temporal response of
this nanomechanical resonator design, as previously shown [111] (see Chapter 3 and 5).
The following sections provide a detailed description of the photothermal and mechanical
characterization of the string resonators, which is essential for reducing the uncertainties
in the experimental determination of the optical extinction of SiN.

7.2.1 Theoretical Power Responsivity
For a string resonator, the theoretical relative power responsivity (7.3) is given by [60, 111]

RP = −αthE

2σ0

[︃
8hw

L
κ + 8LwϵradσSBT 3

0

]︃−1
, (7.6)

with αth, E, σ0, h, w, L, κ, ϵrad, σSB and T0 denoting the resonator’s linear coefficient of
thermal expansion, Young’s modulus, tensile stress, thickness, width, length, thermal
conductivity, emissivity, Stefan-Boltzmann constant, and bath temperature, respectively.
In Eq. (7.6), the factor outside the brackets is the string’s temperature responsivity
RT = −αthE/(2σ0); the terms inside the bracktes account for total thermal conductance
G, which includes the thermal dissipation through the surrounding frame Gcond (first
addend), and thermal radiation to the environment Grad (second addend) [60, 111].
Since Eq. (7.6) depends on different material parameters, it is crucial to characterize
these parameters with precision to accurately assess the optical absorption of the SiN
thin films. In particular, the Young’s modulus E and the linear coefficient of thermal
expansion αth have been measured to reduce the uncertainty on the estimation of the
optical extinction.

7.2.1.1 Film Young’s Modulus

E has been estimated following the procedure described in Ref. [125]. In this method,
the out-of-plane flexural eigenmode spectrum of the string resonator is recorded, and the
Young’s modulus calculated for each couple of eigenmodes (n,m) (with n ̸= m) as [125]

E = 48L2ρ

π2h2(n2 − m2)

(︄
f2

n

n2 − f2
m

m2

)︄
, (7.7)

where L, ρ, fn, and fm denote the string’s length, mass density, and the nth and mth
mode resonance frequencies, respectively. An example of such a measurement is shown in
Fig. 7.2a, where E is plotted as a function of Δ = |m − n|. The experimental results are
plotted in Fig. 7.2b and displayed in Table 7.1, with values in the range 170 − 250 GPa,
consistent with previously reported data for LPCVD SiN [87, 125]. No stress dependence
has been observed for this material parameter.
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Figure 7.2: Nanomechanical photothermal responsivities. a. Example of Young’s
modulus estimation, following the procedure of Ref. [125]. b. Experimentall Young’s
modulus E as a function of the tensile stress σ0. c. Experimental results for the linear
coefficient of thermal expansion αth, as a function of the residual tensile stress σ0. d.
Relative power responsivity for different SiN string structures. Circles: experimental
responsivity (7.4), divided by the corresponding mean absorption coefficient αabs. Solid
curve: theoretical model (7.6). Material parameters used: ρ = 3000 kg/m3, κ = 3 W/(m
K). Emissivity values are calculated from the data reported in Ref. [97]: 0.05 (h = 56
nm), 0.13 (h = 157 nm), 0.133 (h = 177 nm), 0.171 (h = 312 nm), 0.176 (h = 340 nm).
These results are plotted in Fig. 7.3a.

Table 7.1: String resonators’ geometrical (h), mechanical (σ0, E, αth), compositional
(Si/N), and optical (η, κext, Eg, β−1) properties.

σ0 (MPa) h (nm) E (GPa) αth (ppm/K) η κext (ppm) Si/N Eg (eV) β−1 (meV)
174 177 200 1.45 1.215 606 0.96 3.23 201
275 340 243 1.28 1.105 588 0.98 3.09 183
370 56 214 1.06 1.022 176 0.89 3.62 212
775 56 214 1.51 1.022 38 0.86 3.90 208
815 157 173 1.29 1.273 20 0.83 4.21 227
834 312 227 1.55 1.268 21 0.84 4.10 217

111



7. Nanomechanical Photothermal Sensing for Low-loss Material
Characterization

7.2.1.2 Film Linear Coefficient of Thermal Expansion

αth has been measured by recording the frequency shift of the thermomechanical noise
peak as a function of controlled temperature rises (ΔT = 0 − 10 K), following the
approach in Ref. [195]. From these measurements, it is possible to extract the relative
temperature responsivity RT of each string, which allows to evaluate the linear coefficient
of thermal expansion using the following relationship

αth,SiN = αth,Si − 2σ0
E

RT, (7.8)

where αth,Si = 2.6 ppm/K is the linear coefficient of thermal expansion of the underlying
silicon substrate at 300 K [155]. For these measurements, the experimental apparatus
consists of a thermoelectric module (GM200-127-10-15, Adaptive Power Management)
used to heat the resonators, while monitoring and keeping the temperature at the
desired value via a PID controller (TEC-1092, Meerstetter Engineering). The chips have
been enclosed inside the cm-scale copper thermal bath of Fig. 7.1b to ensure thermal
equilibrium through radiative heat transfer between the strings and their environment.
The results are presented in Fig. 7.2c and Table 7.1, showing that αth (7.8) lies in the
range 1−1.6 ppm/K, which is consistent with previously reported values [87, 195]. Similar
to the Young’s modulus, no stress dependence has been observed for αth, as shown in
Fig. 7.2c.

7.2.2 Experimental Power Responsivity
The experimental power responsivity (7.4) across the different residual tensile stress
values is displayed in Fig. 7.2d as a function of the resonators’ length L (circles), together
with the theoretical model (7.6) (solid curves). The scale is given in terms of absorbed
power P . A minimum of five resonators was evaluated for each stress and string length.
It is worth noting that RP increases for longer strings in the conduction-limited regime
(L < 1 mm), since the thermal conductance G ≈ Gcond is inversely proportional to the
length L (see Eq. (7.6)), leading to better thermal insulation from the environment [111].
Conversely, increasingly longer resonators (L > 1 mm) enter the radiation-limited regime
(G ≈ Grad), leading to a drop of RP due to larger radiating areas.
The analyzed resonators have thicknesses of h = 56−340 nm and widths of w = 5−50 µm,
ensuring minimal thermal dissipation. As indicated in Eq. (7.6), Gcond ∝ hw and
Grad ∝ w, making these strings highly responsive to photothermal heating. Furthermore,
the length L varies in the range 0.1−2 mm, making the resonators’ power response mainly
thermal conduction limited [111]. The current experimental approach is, therefore, less
influenced by the SiN emissivity, which, according to Kirchhoff’s law, equals the optical
absorption [127] — the parameter under scrutiny in the present study. Nonetheless, for
completeness, the emissivity has been included in the model shown in Fig. 7.2d. The
calculations are based on the matrix formalism for a single thin film surrounded by
vacuum [234], equivalent to what done in Ref. [124]. The results are shown in Fig. 7.3a.
It can be observed that the emissivity increases for thicker materials, as expected for
dielectrics [196].
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Figure 7.3: SiN emissivity and interference factor. a. Emissivity ϵrad of low-stress
SiN as a function of the film thickness h. b. Factor η as a function of the film thickness
h at 632.8 nm wavelength. The sold curve is calculated using Eq. (7.2). The dashed
vertical lines indicate the thicknesses of the films analyzed in this study.

7.2.3 Interference Correction Factor
For the evaluation of the extinction coefficient (7.5) of SiN for the different tensile stress
values, possible interference effects are taken into account by the absorptance correction
factor η (7.2). This depends on the dispersive part of the refractive index n, which has
been obtained here from the Sellmeier equation for SiN [236]

n(λ)2 = 1 + 3.0249λ2

λ2 − 135.34062 + 40314λ2

λ2 − 12398422 , (7.9)

with λ given in units [nm]. In the present study, n = 2.04 for λ = 632.8 nm.
Fig. 7.3b shows how η varies with the film thickness h at this specific wavelength. The
values corresponding to the thicknesses used in this work fall in the range η = 1 − 1.27
and are summarized in Table 7.1.
With the various material and geometrical parameters defined, it is possible to extract
the extinction coefficient κext for the different thin films.

7.3 Extinction Results
In this section, the results concerning the optical extinction are discussed, and compared
with the state-of-the-art characterization methods. It follows the analysis within the
band-fluctuations model, which provides insights into the relationship between optical
properties of SiN and the deposition processes involved in its growth.
The extinction coefficient values for each thin film have been extracted from the power
responsivity measurements shown in Fig. 7.2 and with the use of Eq. (7.5) (first equality).
Fig. 7.4 (black circles) presents the experimental nanomechanical photothermal results of
κext as a function of the resonators’ tensile stress σ0.

κext decreases from ≈ 103 ppm for the lowest residual tensile stress, down to ≈ 101

for the highest. These findings are compared with previously reported values of optical
extinction for LPCVD (colored circles), as well as plasma-enhanced chemical vapour
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Figure 7.4: κext for different SiN string’s tensile stresses at an excitation wavelength of λ =
(632.8 ± 30) nm. Characterization techniques included in the figure are: nanomechanical
photothermal absorption spectroscopy (NPAS) [74], direct absorption spectroscopy (DAS)
in waveguides [237–240], cavity absorption spectroscopy in microrings resonators (CAS-
µring) [75, 241], cutback [99], ellipsometry [91], and prism coupling [105]. Markers refer
to LPCVD (circles), plasma-enhanced CVD (PECVD, diamonds), and electron-cyclotron
resonance CVD (ECR-CVD, squares) deposited SiN films. For the reported values, the
vertical lines indicate a relationship with stress σ0 (intersection with the bottom x-axis)
or Si/N (intersection with the top x-axis), explicitly given in (solid lines) or derived from
(dashed lines) the original article (for more details see Appendix A). When none of these
values could be extracted, a stress error bar has been used (σ0 = 865 − 1365 MPa).
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deposition (PECVD, colored diamonds), and electron cyclotron resonance chemical
vapour deposition (ECR-CVD, colored squares) deposited SiN films (for details on
their deposition dependencies, see Appendix B). The variance in magnitude among the
compiled data for σ0 ≥ 850 MPa can be partially attributed also to the inhability of
some of the considered techniques to differentiate between true absorption and scattering
losses (in particular cutback and outscattered light methods [75]).
Overall, a general trend emerges in Fig. 7.4, with κext decreasing for increasingly higher
SiN deposition-related tensile stress. These results suggests a correlation of the variations
in optical extinction to differences in compositional content among the various thin films
under study.

7.3.1 Band-fluctuations Model
To provide insights on the relationship between the optical extinction and the deposition
process, the absorption results (7.1) extracted from the experimental responsivity are an-
alyzed within the framework of the band-fluctuations model [110]. This model accurately
describes both the fundamental band-to-band absorption and the Urbach absorption tail,
encountered in crystalline, as well as amorphous semiconductors, in a unified way.
Band-to-band absorption occurs between the extended electronic states forming the
valence and conduction bands. For the case of amorphous materials like SiN, it follows
αabs(ℏω) ∝ (ℏω − Eg)2, where Eg denotes the energy bandgap of the material under
study in units [eV].
The Urbach tail refers to the absorption occurring between extended states and disorder-
induced localized electronic states. This contribution is more pronounced in amorphous
materials compared to crystalline ones, due to the increase in disorder-induced density of
states (DOS), and follows the relation αabs(ℏω) ∝ eβℏω, where β−1 denotes the Urbach
energy, with units [eV].
Within this framework, the absorption coefficient (in [dB/m]) for amorphous materials
can be written as a function of the excitation energy ℏω as

αabs(ℏω) = α0
ℏω

1
β2 Jcv(β(ℏω − Eg)), (7.10)

with α0, and Jcv denoting a coefficient collecting physical constants in units [m−1eV−1],
and a dimensionless joint DOS, respectively. Fig. 7.5 shows the corresponding functional
form: Eq. (7.10) converges to the band-to-band absorption, also called Tauc regime
[95], for energy ℏω > Eg (dashed blue curve); for ℏω < Eg, the band-fluctuations model
converges to the Urbach regime [110] (dashed red curve).

The model input parameters Eg and β−1 are responsible for the dependence of the
absorption on the deposition process, notably through the residual tensile stress present
in the thin films analyzed here. In turn, this dependence is underpinned by the underlying
correlation between stress and the corresponding Si/N content ratio, with the former
increasing as the latter is reduced (see Table 7.1), as observed in LPCVD, as well as
PECVD and ECR-CVD deposited SiN films [93, 95, 242]. Therefore, the reduction of
the optical extinction observed in Fig. 7.4 for increasing tensile stress has to be related
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Figure 7.5: Absorption coefficient in the band-fluctuations model. The dashed blue
and red curves represent the absorption due to electronic transition between extended
states (Tauc regime), and absorption due to disorder-induced localized to extended state
transitions (Urbach regime), respectively.

to the difference in chemical composition of the thin films. For this reason, a chemical
analysis has been carried out with X-ray photoelectron spectroscopy (XPS).
The Si/N content ratio of each chip has been experimentally characterized with a PHI
Versa Probe III-spectrometer, equipped with a monochromator Al-Kα X-ray source and
a hemispherical analyser. Data analysis was performed using CASA XPS and Multipak
software packages. The results are displayed in Table 7.1, and are consistent with those
reported in previous works for a similar tensile stress range [95, 98, 242]. For completeness,
these values are also shown in the top x-axis of Fig. 7.4 to highlight how SiN extinction
coefficient increases with the Si/N ratio. The relationship between energy bandgap Eg
and Si/N ratio is considered first.
For each thin film, Eg has been extracted by means of the fitting curve constructed from
the compilation of previous works on LPCVD SiN only [75, 93, 95, 243]. The compiled
data are shown in Fig. 7.6a, together with the fitting curve (solid black) f(x) = ae−bx + c,
with a = 95.94 eV, b = 4.356, and c = 1.633 eV. The XPS data (dashed vertical lines) are
shown for clarity, and fall in the region of strongest dependence on the Si/N ratio. The
corresponding energy bandgap has been found to increase from ≈ 3 eV, for the highest
relative Si concentration, to ≈ 4.2 eV, for the lowest. All these values exceed the probing
energy used in this work (ℏω = 1.96 eV), indicating that the absorption results from
localized-to-extended electronic transitions of disorder-induced tail states.

Once the energy bandgap has been defined for each thin film, the corresponding
Urbach energy β−1 has been determined by matching the experimental absorption to
the band-fluctuations model. The results are shown in Fig. 7.6b and Table 7.1, and are
consistent with the previously reported studies of LPCVD SiN (β−1 ≈ 200 meV), as it
can be observed in Fig. 7.7 [75, 243]. β−1 slightly decreases with increasing Si/N ratios,
as it has been observed also for PECVD deposited SiN, but at lower values. Overall,
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7.3. Extinction Results

Figure 7.6: Left: Energy bandgap Eg as a function of the Si/N ratio. The solid curve
is a fitting function of the displayed reported values of the form f(x) = aebx + c, with
a = 95.94 eV, b = 4.356, and c = 1.633 eV. Only LPCDV SiN films have been considered.
Compilation: darkcyan, Ref. 243; blue, Ref. 75; purple, Ref. 95; orange, Ref. 93. Dashed
vertical lines indicate the Si/N ratios measured in this study with XPS. Intersections
with the fitting curve are given in Table 7.1. Right: Corresponding Urbach energy β−1 of
the thin films analyzed in this study (black circles). For comparison, data from Ref. 243
(darkcyan) and Ref. 75 (blues) are displayed.

LPCVD films show a lower Urbach energy than PECVD, meaning that absorption due
to electronic transition between disorder-induced localized to extended states is increases
in the former.
Hence, lowering the Si/N ratio has the main effect of shifting the bandgap Eg to higher

Figure 7.7: Urbach energy β−1 as a function of the Si/N ratio, for LPCVD (circles) and
PECVD (diamond) SiN films. The compilation of data includes: blue, Ref.75; darkcyan,
Ref. 243; dark green, Ref. 244; light green, Ref. 245. The solid curve is a fitting curve of
the form f(x) = aeb for the LPCVD data only, with a = 0.1843 meV and b = −0.9427.
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energies, broadening the SiN transparency window. Conversely, the Urbach energy β−1

does not vary significantly among these thin films, indicating that the reduction in
extinction coefficient κext is driven by an exponential reduction in the disorder-induced
electronic tail DOS at the probing energy of 1.96 eV.

7.4 Conclusions and Outlook
This work has demonstrated that nanomechanical photothermal spectroscopy serves as a
highly sensitive, simple, and scattering-free method for the optical characterization of
low-loss materials. By employing string resonators made from LPCVD-deposited SiN,
this study explored the potential of this platform. Through precise characterization of
both mechanical and thermomechanical properties, it was observed that the intrinsic
optical extinction coefficient of SiN decreases with increasing tensile stress in the thin
films. This reduction in optical extinction is attributed to a blue shift in the energy
bandgap, which correlates with the material’s composition, specifically the Si/N ratio.
The findings highlight that controlling the Si/N ratio offers a tunable approach to
adjusting the optical properties of SiN, providing a valuable tool for furthering the
understanding of this widely used material. These insights not only enhance knowledge
of SiN but also open pathways for optimizing its properties for future applications, where
minimizing optical losses is crucial.
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APPENDIX A
Photothermal back-action

A.1 Experimental evaluation
To quantify the magnitude of the photothermal back-action on the final fractional
frequency fluctuations of the resonator, the optical power PSD SP (ω, λ) is measured
recording the optical power in time P0(t) for 1 minute with a silicon photodiode (Thorlabs
GmbH S120C, 1µm response time) together with a digital power meter console (Thorlabs
GmbH PM100D), as shown in Fig. A.1a. The power is then converted in frequency
through the use of Eq. (4.15), as shown in Fig. A.1b. The resulting frequency signal
is then filtered with a low-pass filter with transfer function Hth(ω) = (1 + iωτth)−1, to
account for the finite time response of the resonator. Fig. A.1c shows the fractional
frequency PSD of the signal before (dark red) and after (orange) the filtering. The Allan
deviation of the filtered signal is then computed using Eq. (3.40), with an example shown
in Fig. A.1d.
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A. Photothermal back-action

Figure A.1: a Power signal recorded for 1 minute with . b Corresponding frequency
signal using Eq. (4.15). c Fractional frequency PSD before (dark red) and after (orange)
low-pass filtering with a transfer function Hth(ω) (black curve). d Resulting AD (orange),
compared to the experimental one (black curve).
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APPENDIX B
Optical characterization of

LPCVD SiN - Appendix

B.1 Compilation of state-of-the-art techniques for low-loss
absorption characterization

The compiled data shown in Fig. 7.4 relate to various state-of-the-art optical character-
ization methods for low-loss materials and covered the wavelength range of 600 − 660
nm. The list of the different techniques considered for the comparison is presented in
Table B.1. For some of the works included in this analysis, no explicit reference to the
tensile stress or Si/N ratio were provided. To account for this, values have been derived
exploiting the existing relationship between the dispersive part of the refractive index
n and the Si/N ratio, as shown in prior studies [90, 246]. This relationship allows for
the estimation of the material composition and/or stress levels from the refractive index
data.
The derivation process for each reference is detailed below where necessary, and is divided
into LPCVD and PECVD deposited SiN related categories.

B.1.1 Derived Parameters for LPCVD
For LPCVD SiN thin films, the measurements carried out in Ref. [90] were used to
derived the Si/N ratio from nLPCVD at 632.8 nm wavelength. Fig. B.1 shows the
reported values (circles), together with the corresponding fit. The latter has the form
f(x) = p1x2 + p2x + p3, with p1 = −0.9333, p2 = 2.839, and p3 = 0.3608.
The works and the corresponding derived values are listed below:

• In Ref. [241], it is reported a value nLPCVD = 2.0115 for TE mode at 632.8 nm
wavelength, resulting in Si/N ratio of 0.783.
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Table B.1: List of the extinction values and corresponding parameters used in the main
text (λ = 600 − 660 nm).

Reference Deposition Method λ (nm) κext (ppm) σ0 (MPa) Si/N
74 LPCVD NPAS 632.8 0.73 850 -

1.17
4.64
7.07
4.84

237 LPCVD DAS-waveguide 630 0.17 - 0.73
ECR-CVD 0.39

238 PECVD DAS-waveguide 632.8 0.23 - -
75 LPCVD CAS-µring 644 0.07 - 0.82
241 LPCVD CAS-µring 632.8 1 - 0.783a

99 LPCVD Cutback 643 0.3 - 0.794a

PECVD 3 0.751b

101 LPCVD Outscattered light 633 18.134 - -
102 LPCVD Outscattered light 660 8.98 - -
100 LPCVD Outscattered light 630 4.91 - -
103 LPCVD Outscattered light 640 2.037 - -
104 PECVD Outscattered light 633 0.5 - 0.817b

240 LPCVD DAS-waveguide 648 6.54 - 0.761a

91 LPCVD Ellipsometry 633 2000 137.5 -
PECVD 8000

105 ECR-CVD Prism coupling 632.8 10.15 - 0.813
a Value derived from the dispersive refractive index nLPCVD for LPCVD.
b Value derived from the dispersive refractive index nPECVD for PECVD.

Figure B.1: Refractive index as a function of the Si/N ratio in LPCVD SiN, measured at
632.8 nm wavelength (circles). The solid curve is the fit used to derive the Si/N ratio.
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B.2. XPS measurements

• In Ref. [99], n is obtained upon fitting of the ellipsometric data with the Sellmeier
equation

nLPCVD =
√︄

1 + 2.926λ2

λ2 − 23.47 · 10−15 , (B.1)

which results in nLPCVD(643 nm) = 2.02536, resulting in a Si/N ratio of 0.794.

• In Ref. [240], it is reported a value of nLPCVD(648 nm) = 1.98, resulting in a Si/N
ratio of 0.761.

B.1.2 Derived Parameters for PECVD
For PECVD SiN thin films, the relationship between refractive index and Si/N ratio is
derived using the formula from Ref. [246]

Si
N = 3

4
nPECVD + na−Si:H − 2na−Si3N4

na−Si:H − nPECVD
, (B.2)

with nPECVD, na−Si:H(632.8 nm) = 3.3, and na−Si3N4(632.8 nm) = 1.9 denoting the
measured refractive index, the index for a-Si:H, and for the stoichiometric SiN, respectively
[246].
In the following, the list of the PECVD related works and corresponding derived values
is presented:

• In Ref. [99], the Sellmeier equation obtained by fitting the ellipsometry results has
been given as

nPECVD =
√︄

1 + 2.503λ2

λ2 − 17.29 · 10−15 (B.3)

Hence, nPECVD(643 nm) = 1.9006, resulting in a Si/N ratio of 0.751.

• In Ref. [104], it is reported a value nPECVD(633 nm) = 1.96, resulting in a Si/N
ratio of 0.817.

B.2 XPS measurements
All measurements were carried out on a PHI Versa Probe III-spectrometer equipped with
a monochromatic Al-Kα X-ray source and a hemispherical analyser (acceptance angle:
±20ř). Pass energies of 140 eV and as well as step widths of 0.5 eV were used for survey
and detail spectra, respectively. (Excitation energy: 1486.6 eV Beam energy and spot
size: 50 W onto 200 µm; Mean electron take-off angle: 45° to sample surface normal;
Base pressure: < 8 · 10−10 mbar, Pressure during measurements: < 1 · 10−8 mbar).
Samples were mounted on double -sided polymer tape. Electronic and ionic charge
compensation was used for all measurements (automatized as provided by PHI). The
binding energy (BE) scale and intensity were calibrated by using methods described in
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Figure B.2: Chips’ regions for the XPS characterization of the Si/N content ratio.

ISO15472, ISO21270 and ISO24237.
Surface cleaning was carried out using an Ar ion gun (2 kV, 2x2 mm, 1.3 µA, 5 min).
Data analysis was performed using CASA XPS and Multipak software packages, employ-
ing transmission corrections, Shirley/Tougaard backgrounds [247, 248] and customised
Wagner sensitivity factors [249].
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