Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

TECHNISCHE

UNIVERSITAT
WIEN
DIPLOMARBEIT

Reassessing Quantum Processes:
A Comprehensive Analysis

ausgefiihrt am 15.01.2025

Institut fiir Theoretische Physik
TU Wien

unter der Anleitung von

Prof. Dr. Karl Svozil

durch

Bruno Mittnik
Matrikelnummer: 00271434

Wien, am 15. Janner 2025



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

Eidesstattliche Erkldrung

Ich erklédre an Eides statt, dass ich die vorliegende Diplomarbeit selbststandig und
ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel
nicht benutzt bzw. die wortlich oder sinngemifs entnommenen Stellen als solche
kenntlich gemacht habe.

Wien, am 15. Janner 2025

Name des Autors



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

Abstract

This thesis explores the fundamental aspects of categorical quantum mechanics and
its graphical calculus. We introduce the theory of classical-quantum processes to
illustrate how information flows between the classical and quantum realms. With
these tools in hand, we address several theorems in quantum foundations. Our goal
is to express Peres-Mermin’s proof of the Kochen-Specker theorem within a quan-
tum process framework, but we encounter challenges that prevent us from fully
completing the proof. This negative result suggests a potential incompatibility be-
tween categorical quantum mechanics and quantum logic.
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Chapter 1

Introduction

In 1932, John von Neumann’s publication "Mathematische Grundlagen der Quan-
tenmechanik" [1] provided a rigorous mathematical foundation for quantum me-
chanics, marking a significant milestone in the theory’s development. However, just
three years later, von Neumann expressed doubts about his formalism in a letter to
Garrett Birkhoff, stating that "I would like to make a confession which may seem
immoral: I do not believe absolutely in Hilbert space no more" - sic [2]. Despite this,
the Hilbert space formalism remains a cornerstone of quantum mechanics education
and practice up to this day.

Throughout the 20th century, foundational issues in quantum mechanics, such
as quantum non-locality and the measurement problem, challenged the theory’s va-
lidity. Quantum non-locality, exemplified by the EPR paradox [3], describes non-
classical correlations between distant quantum systems that cannot be explained by
past interactions, while the measurement problem concerns the unexplained col-
lapse of the wavefunction and the inherent non-determinism in quantum measure-
ments [4]. These paradoxes led some to question the completeness of quantum the-
ory, but robust experimental confirmations and discoveries, like quantum teleporta-
tion [5] and quantum key exchange [6], have reinforced the validity of the theory.

In recent decades, the field of quantum information has emerged, embracing
these peculiarities of quantum mechanics not as bugs, but as features. This shift
in perspective has allowed the development of fundamentally new quantum al-
gorithms, most notably Shor’s algorithm [7], which have drastically changed the
course of modern cryptography:.

Nevertheless, one has to wonder why it took over 60 years to discover the pos-
sibility of teleporting quantum states. A possible reason for this might be that the
standard Hilbert space formalism of quantum mechanics does not paint the clearest
picture of the underlying quantum processes. An attempt to alleviate this issue has
been made by Abramsky and Coecke [8] with their formalism of categorical quan-
tum mechanics. Categorical quantum mechanics describes quantum processes and
their composition within a diagrammatic language. A few simple diagrammatic
rules determine its graphical calculus, which enables one to argue about quantum
processes in a high-level language.

The mathematical backbone of this formalism is monoidal category theory, a branch
of category theory that originated from pure mathematics, that has been applied to
logic in computer science [9] and semantics in natural language [10]. Monoidal cat-
egories are particularly effective in representing the algebra of linear maps in finite-
dimensional Hilbert spaces, making them well-suited for quantum mechanics. Even
though we will mostly discuss its applications to quantum processes, many of the
theorems also have applications in some of these completely different fields of study,
due to the general and abstract nature of category theory.
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The following chapters will give a brief introduction to the field of categori-
cal quantum mechanics guided by the introductory book "Picturing quantum pro-
cesses" by Bob Coecke and Aleks Kissinger [11]. The definitions and proofs have
been adopted from the book, although minor adjustments have been made for some
of the diagrams.
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Chapter 2

Process theories

Many different kinds of systems admit a description in terms of a process theory.
From the computer program that takes data as input and outputs a different kind
of data to proofs of propositions in formal logic. The processes we are going to
be concerned with are the processes of quantum theory. Any such process theory
admits a graphical description in terms of diagrams. Informally speaking:

Definition 1. A process theory consists of:
1. a collection T of system-types represented by wires

2. a collection P of processes represented by boxes, where for each process in P the input
types and output types are taken from T

3. a means of composition of diagrams. We can wire processes together to get different
processes.

A theory of systems with sequential and parallel composition of processes is
mathematically described by a monoidal category [12]. Physically speaking, the se-
quential composition of processes represents a "time-like" separation, whereas the
parallel composition represents a "space-like" separation. All of the entailed algebra
of a monoidal category can be fully expressed within a graphical calculus, where the
equations are governed purely by diagrammatic rules. These diagrams are complete
for monoidal categories [11], which means that an equational statement between
formal expressions in the language of (symmetric) monoidal categories holds if and
only if it is derivable in the graphical calculus.

Definition 2. A monoidal category C consists of:
1. a collection ob(C) of objects.
2. for every pair of objects A, B, a set C(A, B) of morphisms.
3. for every object A, a special identity morphism: 14 € C(A, A).
4. a sequential composition operation for morphisms: o : C(B,C) xC(A,B) - C(A,C).
5. a parallel composition operation for objects: ® : 0b(C) x ob(C) — 0b(C).
6. a unit object: I € ob(C).
7

. a parallel composition operation for morphisms:

®:C(A,B)xC(C,D) - C(A®B,C®D).
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satisfying the following equations:

1. ® is associative and unital on objects:
(A®B)®C=A®(B®C(C) Aol=A=1I®A
2. ® is associative and unital on morphisms:

(feg)eh=fe(geh) feli=f=11®f

juRoiogaoinguRioin)

3. o is associative and unital on morphisms:

(hog)of=ho(gof) lpof=f=fols

4. ® and o satisfy the interchange law:

(g1®82)0(f1® f2) = (810 f1) ® (820 f2)

(e () -2 2 -0
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Using the above mentioned definitions, we can illustrate the following sample
process:

(la®g)o(f®h) : A->A®B®C

in the form of a simple diagram:

A

D
A

A composite process consisting of multiple processes that are com-
bined by parallel and sequential composition.

2.1 States, effects and numbers

In the process theory of quantum systems, there are some special processes we call
states and effects. States are processes without any inputs. For a system of type A
there are multiple possible states the system could be in. The particular state ¢ then
denotes the singular result of a certain preparation process. Effects are dual to states,
as they are processes with no outputs. Operationally they correspond to measure-
ments or tests, where the system is destroyed after measurement, or to processes
where the system is simply just discarded. A number is a process without any inputs

or outputs.

States have no inputs, effects have no outputs and numbers are pro-
cesses without any inputs or outputs.

When one sequentially composes a state and an effect, a number results. In our
theory of quantum processes, the number will be interpreted as a kind of probability
measure for a positive outcome when testing the state i for the effect 7r, similar to
the Born rule.

The state 1 is tested for the effect 7, resulting in a number propor-
tional to the probability of a positive test outcome.
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2.2 Equality up to a number

In some instances we are only interested in some qualitative feature of a process, e.g.
if a process separates into disconnected pieces. For those reasons we will define a
notion of equality up to a number, which only preserves the structural features of a
diagram.

Definition 3. Two processes are equal up to a number, if there exist two non-zero numbers

A,y such that:
R OIURROIE:

~
4
0Q

2.3 Separability

One of the most crucial and foundational aspects of quantum mechanics is entan-
glement. Entanglement shows that there are multipartite systems that cannot be
described merely as the sum of their individual parts. To be able to translate this
phenomenon into our graphical calculus, we will first define a notion of separabil-

ity.
Definition 4. A bipartite state  is a state of two systems, and we call such a state ®-
separable if there exist states P and P, such that:

Similarly to ®-separability we will also define the following notion:

Definition 5. A process f is o-separable if there is an effect 7t and a state 1 such that:

Both kinds of separability correspond to a disconnected diagram.
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These notions of separability are also related to each other in the following way.
If a process f is o-separable, then for any bipartite state ¢ also the following state is
®-separable:

13-

And vice versa, if the bipartite state ¢ is ®-separable, then for any bipartite effect
7t the following process is o-separable:

|
7D A % X

One might wonder how a process theory looks like, if all processes f are o-
separable. The answer is that such a theory can only describe constant processes:

v

Since for any arbitrary input state i that we feed into the process f, we always
receive an output state which is (up to a number) equal to ¢. This means that all pro-
cesses are essentially constant processes, or in other words nothing ever happens,
as we can not describe the temporal evolution of a system. This of course contra-
dicts our everyday experience of physical reality, meaning that any process theory
that describes physical reality has to contain processes, that are not o-separable. In the later
chapters of this thesis we will use this fact to prove several 'no-go” theorems. We will
show that certain assumptions imply that every process is o-separable, and therefore
arrive at a contradiction.

<<
<
<
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2.4 Process-state duality

Another feature of quantum mechanics is that processes and bipartite states are
in one to one correspondence. This is called the Choi-Jamiolkowski isomorphism
[13][14] which utilises maximally entangled states to create this bijection. In our for-
malism we will represent the maximally entangled state and its related effect as the
cup-state and the cap-effect.

Sy > I AeA
i

Sii] >  A®AD]
i

Or diagrammatically the cup-state and the cap-effect will be represented as:

U <o Py

Cup-state

N- a4t

Cap-effect

These states and effects can now be used to convert bipartite states into processes
and vice versa.

To ensure that this process-state duality is really a bijection, we then further re-
quire the newly defined cup-state and cap-effect to be inverse to each other:
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And that the cup-state is symmetric under exchange of its outputs:

oL

Graphically these equations can be interpreted as a bent wire being straightened
by pulling on its ends, therefore we will sometimes also refer to these equations as
yanking equations.

2.5 Transposition and Trace

We have already seen that we can create new processes by adjoining cups and caps to
processes. The transposition and the trace of a process are two important examples
of such new processes. For the transpose, we take all the inputs and turn them into
outputs by adjoining a cup-state and turn the outputs into inputs.

Definition 6. The transpose f of a process f is another process:

A

We also notice that the transposition of a process is involutive, since transposing
fT again equals f simply by applying the yanking equation.

We will now introduce a slight modification to the boxes we used to denote pro-
cesses. From now on we will display them as trapezia with one side slightly skewed.
By doing so, we can indicate a transposed process as a trapezium that has been ro-
tated by 180°.
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10

With this new notation, we can also prove the sliding rule, which graphically
speaking tells us that we can treat processes similar to beads we can slide along a
necklace:

Y'E/ ltranspose\Y'}}E'

A similar modification will be made for states to express the transpose of states:

v

The transpose can now be expressed by a state that has been rotated by 180°:

11y

2.6 Trace and Partial Trace

Using both a cup-state and a cap-effect, we can transform a process into a number.
This is also called taking the trace of a process.

Definition 7. For a process f where the input type matches the output type, the trace of this
process is:
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11

For processes with multiple inputs and outputs, with a matching input and out-
put type, we can define the partial trace:

Al |C C

TI'A

)
I
BN

AllB B

One can now easily prove the cyclicity of the trace by just moving the boxes along
the wire using the sliding rule we previously derived:

_ — Tr{(fog)} =Tr{(gof)}

2.7 Adjoint Processes

Since quantum-mechanical observables are described by self-adjoint operators, we
will also have to define the notion of adjoint processes. Diagrammatically, the oper-
ation of adjoining a process is represented by flipping a process upside down. We
denote this transformation by a t-symbol and the resulting process theory is called
a dagger monoidal category:

Definition 8. A dagger monoidal category is a monoidal category C equipped with an in-
volutive dagger structure t such that:

1. for all morphisms f : A v B, there exists its adjoint f* : B+ A.
2. for all morphisms f, (f1)" = f.

3. for all objects A, id", = id 4.

4. forall f: AwBandg: B~ C,(gof)' = flog":Cr A.

B A

A B
) ®) *)
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12
Using the adjoint, we can now define the inner product of two states ¢ : [ — A

and ¢ : [~ A as the number ¢pTop: [ = I.

Definition 9. The inner product of states  and ¢ of the same type is:

By b

two states are called orthogonal if:

The squared-norm of a state 1 is the inner product of ¢ with itself. A state 1 is called
normalised if its squared-norm is equal to 1:

In this equation, we have also encountered the empty diagram, which is equal to
1, as it can be multiplicatively added without changing the diagram.

2.8 Conjugate Processes

We will now go on to combine the operations of adjoining and transposing a process.
This rotates the process by 180° and then reflects it vertically, resulting in a horizontal
reflection. The order in which we apply these two transformations does not matter,
as both operations mutually commute.

Definition 10. The conjugate of a process is the transpose of its adjoint f .= (fT)T = (fH)T:

As with the adjoint or transpose, conjugation is an involutive operation, as two
horizontal reflections result in the identity transformation.
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13

The following diagram summarizes the relations between the three transforma-
tions:

conjugate

adjoint transpose < adjoint

1
1
I
1
1
1

, N
, N
, N
\ s N i
\ /
\ /
\ )
~ -

conjugate

A process is termed self-conjugate if it is invariant under conjugation or diagram-

matically:

We define unitary processes as those that preserve the inner product between any
two states when applied to both states.

2.9 Unitarity

Definition 11. A process U is unitary if U" is a two-sided inverse of U:

A B
7
B = A A = B
y
A B

If only the weaker condition on the left side UTU = 14 is satisfied, then the pro-
cess U is called isometry. The condition on the right side UU" = 15 defines a coisom-
etry.
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14

2.10 Positivity

In quantum theory the density operator for a system is given by a positive semi-
definite Hermitian operator of trace one. We are now going to look into how this
concept of positivity translates into our diagrammatic formalism:

Definition 12. A process f is positive if for some g we have:

A A
g

L

s/

A A

From this definition follows, that every positive process f is also self-adjoint, as

every positive f is also invariant under vertical reflection.
We can extend the notion of positivity to include bipartite states:

Definition 13. A bipartite state i is ®-positive if for some g we have:

i

Due to process-state duality both of these traits of positivity are closely related.
Since a bipartite state i is ®-positive if and only if the process corresponding to it by
process-state duality is positive:
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15

211 Projectors

We also have to define projectors, as they are needed to describe the quantum me-
chanical process of measurement.

Definition 14. A projector is a process P that is positive and idempotent:

v -

For every normalized state ) we can construct its matching projections operator

poy':

This projector is obviously positive and, as can be quickly checked, also idempo-
tent:

¥ P
I
¥
¥
_’#ﬁ
Nt

These types of projection operators are called separable projection operators, which
correspond to projections on to the one-dimensional subspace spanned by ¢.
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Chapter 3

Quantum processes

Up to this point we have mostly looked into the process theory of linear maps, where
the system types were Hilbert spaces or vector spaces and the processes were lin-
ear maps on these spaces. To construct a theory of quantum processes we have to
slightly modify our theory, since the process theory of linear maps contains redun-
dant data in the form of a ‘global phase’, which has no effect on any measurable
observable. Furthermore, the Born rule we previously defined:

IN
4

produces complex numbers and is therefore not apt to describe the probabilities
of certain events, which have to be real numbers from the unit interval. To resolve
both of these problems we will introduce a new procedure called doubling. When a
process from linear maps is doubled, it turns into a pure quantum map.

We will then also introduce an entirely new process called discarding, which is a
new effect, that corresponds to ignoring parts of a larger system. By combining the
theory of pure quantum maps with the discarding effect, we obtain the theory of
quantum maps, which also includes impure processes (= processes that cannot be
written as a doubled process from linear maps).

The last step in this process to describe the complete theory of quantum pro-
cesses is to add nondeterminism to our theory. In quantum mechanics there is an
irreducible uncertainty as to which quantum map (e.g. measurement outcome) ac-
tually results from a measurement. To account for this fact, we will define quantum
processes as a set of quantum maps that collectively satisfy the causality postulate we
will define later on.
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17

3.1 Pure quantum maps

Multiplying a state ¢ with a complex number of the form ¢ with a ¢ R should
not lead to different predictions. We can therefore get rid of these so-called "global
phases’. Since we want to produce probabilities for measurement outcomes, we also
want the resulting numbers to be real numbers from the unit interval. This is done
by multiplying processes of linear maps with their conjugate counterparts. By doing
so we get a pure quantum map indicated by a thick border and a wedge symbol:

) 7 -

Similarly, we get our new identity for this type of quantum system by doubling
the identities of linear maps:

double( ) =

Our new Born rule for pure quantum maps then looks very similar to the one
in linear maps with the difference being that we now test the doubled state ¢ for
the doubled effect ¢ resulting in a real number that measures the probability of a
successful test outcome, e.g. a click in a detector:

v K

We are now going to define pure quantum maps by doubling processes from the
theory of linear maps:

o) g
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This notion then extends to processes with multiple inputs and outputs, but we
have to remember to pair up the inputs and outputs that correspond to each other
by conjugation:

1...n
g )
1 m

)

1 m

Another very important bipartite state we have to consider is the doubled cup-

state and its adjoint the doubled-cap effect:

double( U ) - u

Doubled cup-state

double( m ) = m

Doubled cap-effect

(3

One can then show that these new cup and cap processes still satisfy the yanking
equations and that doubling a transposed process f from linear maps is equal to
transposing a doubled process f from pure quantum maps.

To sum up, the same equations that hold in pure quantum maps also hold in
linear maps up to a complex ‘global phase”:

Theorem 1. Let D and D' be arbitrary diagrams in linear maps, and D and D' be their
doubled versions in pure quantum maps, then:

Proof. (=) follows directly from doubling the left hand side of the diagram.
For (<) we need to show that:

AR

the starred equation implies that the linear maps f and g only differ by a global
complex phase.




Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

19

Let A and y be defined as:

where the dashed lines indicate the use of (*). Now there are two cases, either
A #0or A =0. In the first case, we can divide both sides of the equation by AA:

-0

So therefore £ = ¢'* is a global phase for some & € R. And thus:

o
.

So we indeed see that f = ¢*g. In the second case it follows from positive defi-
niteness, that f = 0 and f = 0 and therefore also ¢ and g have to be 0. So f = ¢*g is
also satisfied. ]

The only things that do change from the switch of linear maps to pure quantum
maps are the numbers, sums and ONBs. As already mentioned the numbers of
pure quantum maps only include positive real numbers as every doubled number
is multiplied by its complex conjugate:

RO

Another important change is that the doubled sum of processes is not equal to
the sum of the doubled processes, since we get additional terms where the indices

mismatch:
w(z )21 5 0 5
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The same goes for the bases of our Hilbert spaces, since a doubled base for type
A does not suffice as a base for the product space A x A:

) 1<) - <)

3.2 Discarding effect

For some applications in quantum theory, we are not interested in every subsystem
of a larger system. This might be due to the fact that we are only interested in a
specific measurement outcome of a subsystem or due to parts of our system not
being accessible to us, e.g. because of spatial separation. In our theory we will
model this procedure by the process of discarding a system. When any arbitrary
normalized state ¢ is discarded it should just disappear from our diagram, meaning
it should equal the empty diagram:

But there is no pure quantum effect that is non-orthogonal to all pure quantum
states and therefore the discarding map can not be a pure quantum process. Thus
we are going to define our first impure quantum map (:= a map that cannot be writ-

ten as a doubled linear map):

When applying this discard effect to any normalised state i, we indeed see that
we obtain the empty diagram:

iy

One then might ask if there is another effect with the same property of sending
all normalised states to the empty diagram. It turns out that the discarding map
we defined is unique, because if there was another quantum effect with the same
property it would agree on all basis states of the Hilbert space and therefore has to
be equal to the discarding map we defined.
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We can now also consider the transpose of the discarding map by turning its
input wire into an output wire with the quantum cup state:

LU

We will call this state the maximally mixed state, which results from discard-
ing half of a Bell state. Now every impure quantum state can be seen as a result
of feeding the maximally mixed state into a pure quantum map or equivalently as
discarding one half of the bell state and applying a pure quantum map to the other

AR

We now have all necessary tools to define the entire process theory of quantum
maps.

Definition 15. The process theory of quantum maps consists of all diagrams made of pure
quantum maps (= linear maps that were doubled) combined with the discarding map. So
every quantum map P can be written in the form of:

A <
=

The pure quantum map f then is called the purification of ®.

3.3 Causality

As a concept causality stems from the theory of relativity, where space-like sepa-
rated events are in no causal relationship, meaning that they cannot influence each
other. In our theory causal processes (and especially causal states) are processes that
when their outputs are discarded, they might as well have never happened. In other
words, if a quantum process happens somewhere far away and we have no access
to the system, we can ignore it. We can summarise this as:

Definition 16. A quantum map ® is called causal if it satisfies:

7T
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or similarly:

Definition 17. A quantum state p is called causal if it satisfies:

A very interesting consequence of this is the following theorem:

Theorem 2. All causal pure quantum maps are isometries.

u
i = — = —
u

Proof. For the proof of this statement, we can unfold the causality equation:

5T -

By bending up the left wire and then applying the yanking equation, we then
end up with the isometry equation:

Doubling this equation then shows that this also holds for the doubled pure

quantum process U.
O
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3.4 Stinespring Dilation

We already saw that any quantum map & can be purified, meaning that it is equal
to a pure quantum map, with one of its outputs discarded. It now also follows that:

Theorem 3. For any causal quantum map ® there exists an isometry U such that:

*
o] - [27

Proof. We have established that any quantum map & can be extended to a pure
quantum process U, with one of its outputs being discarded. Furthermore, due to
the causality condition of @, it follows that the corresponding U must also adhere to
causality:

As we already established in Theorem 2, this implies that U is an isometry.  []

We can then even extend this result by showing that every causal quantum map
® can be realized by feeding a pure quantum state i into a unitary transformation
U and then discarding one of its outputs:

c1>/:

a/
The proof of this version of the Stinespring dilation can be found in [11, p. 316].

This conclusion leads some physicists to believe that there only exist unitary pure
quantum processes in a larger Hilbert space, of which we can only access a smaller
part. This point of view is consistent with quantum theory, and as it is neither prov-
able nor disprovable, it is rather a question of belief rather than a scientific question.
We will continue to use all kinds of quantum maps to avoid over-complicating our
diagrams.



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

24

3.5 Non-deterministic quantum processes

Up to this point, we have only encountered a single causal quantum effect, namely
the discarding map. Furthermore, the discarding map is deterministic, as the same
result always happens: the state is discarded. However, there are many more pos-
sible quantum effects that are non-deterministic, which means that the actual quan-
tum effect that is realized is completely random and unpredictable. Such a non-
deterministic quantum process consists of a collection of quantum maps:

7B - B
1

which together satisfy the causality postulate:

T3

The individual quantum maps ®; are called branches and when a system is pass-
ing through such a quantum process, only one of the branches actually takes place.
The particular branch that occurs is called outcome of the process. Given a causal
quantum state p we can assign probabilities to each of the branches by the number:

P(®jlp) = |P;

This generalized Born rule shows us the probability of each of the branches and
because of the causality postulate they all have to add up to 1.

3.6 Quantum measurements

In quantum mechanics, measurements play a crucial role as they are the only way to
extract information from a quantum state. But unlike the classical idea of a measure-
ment as a mere act of observation that simply reveals a preexisting property of the
system while leaving the system unchanged, this is no longer the case for a quantum
measurement.

For a given state of a quantum system and a specific quantum measurement,
there is a range of possible measurement outcomes. It is not possible to predict
which of the potential outcomes is actually realized, but only to assign them a prob-
ability of occurring. Also, the measurement irreversibly changes the state of the
system in accordance with the measurement outcome and leaves no traces behind
as to what the quantum state previously was.
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We will be describing quantum measurements as non-deterministic quantum
processes, with three different kinds of possible measurements:

1. ONB measurements
2. von Neumann measurements (=PVM)

3. POVM measurements

where ONB measurements are the most specific and purest kind of measurement
and the other measurements are achieved by coarse-graining them.
3.6.1 ONB measurements

For every ONB of a Hilbert space, we have its corresponding doubled effects:

(7)== (N

which constitute a non-deterministic quantum process. A process like this is
called demolition ONB measurement because there is a quantum system entering the
process, but only the information of the measurement outcome i exits this process
and no quantum system remains. Since unitary processes are exactly those processes
that send ONBs to ONBs, it can be shown that any two ONB measurements are equal
up to a unitary transformation. Our put diagrammatically:

Given an ONB measurement on a system:

(IS

All other ONB measurements on that system are obtained as follows:

where U is a unitary quantum map.
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But we can also perform non-demolition ONB measurements consisting of effect-

state pairs:
|
i 7
N

The difference being that after we have performed the measurement there is still
a quantum system present and it is in the state according to the measurement out-
come. When this outgoing state is discarded, we end up with a demolition ONB
measurement. Experimentally, a non-demolition ONB measurement can be thought
of as a demolition ONB measurement followed by a controlled preparation. The
only states that are left unchanged by a non-demolition ONB measurement are the
basis states of the measurement.

3.6.2 von Neumann measurements

Von Neumann measurements are a generalization of ONB measurements, as they
do not have to be o-separable like the ONB measurements. But what both types of
measurement have in common, is that if we perform the same type of measurement
twice in a row, we are bound to get the same measurement outcome twice. This
behavior can be modeled by orthogonal projection operators:

Definition 18. A non-demolition von Neumann measurement is a quantum process:

(&)

such that:

For this reason von Neumann measurements are also called projective-valued mea-
surements or PVMs for short. PVMs can also be obtained by coarse-graining ONB
measurements, where all non-demolition ONB measurements corresponding to the
basis states are partitioned into a number of disjoint sets. When summing over all of
the projection operators one receives the identity transformation, a procedure also
called the resolution of the identity.

An advantage of PVMs is that they allow us to ask a larger set of questions about
the system, while possibly not being as destructive as an ONB measurement. While
ONB measurements are analogous to basis states, PVMs are analogous to pure quan-
tum states. However to end up with a quantum process theory, we have to con-
sider even more general processes than von Neumann measurements, as they are
not closed under composition.
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If we consider two different von Neumann measurements P: and Qj, their se-

quential composition Qj oD; only constitutes a von Neumann measurement, if their
projection operators mutually commute. To resolve this issue we are going to intro-
duce POVM measurements.

3.6.3 POVM measurements

Positive operator-valued measures or POVM represent the most general kind of
measurements as they are comparable to mixed quantum states. They are described
by a collection of effects that are jointly causal:

Definition 19. A demolition POVM measurement is any quantum process of the form:
( )i

with the sum of its branches being causal:
N

The term positive refers to the fact, that the branches of a POVM are represented
by positive operators. Purifying the branches ¢; of the POVM yields:

®-positive

So every ¢; corresponds to a positive operator f; o f;. The probability for the i-th
outcome can be calculated using the Born rule for POVM measurements:

P
Y

P(lo) =

Experimentally POVM measurements are realised by performing an ONB mea-
surement on parts of a larger system (Naimark dilation), but they can also occur due
to noise or limited access to the physical system (similar to mixed quantum states).
POVM measurements are also very useful for the task of unambiguously discrim-
inating between non-orthogonal quantum states, a task that is not possible with a
PVMs [15].
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Chapter 4

Classical-quantum processes

We have now developed a theoretical framework to describe quantum processes.
Our next endeavor involves integrating an interface designed for interaction with
the classical domain, enabling the transmission of data between the two realms. This
integration is crucial, especially in scenarios where a quantum protocol requires uti-
lizing the results of quantum measurements to trigger controlled operations on other
quantum systems, such as in quantum teleportation. Consequently, we must incor-
porate the flow of classical information into our framework of classical-quantum pro-
cesses. In this framework, quantum processes will be represented by thick or double
lines, while classical systems will be denoted by thin single lines.

quantum: b classical:

41 Measurement and encoding

The most important additional processes will be the measurement and the encoding
process. The measurement process we introduced in the previous chapter takes in
a quantum system and outputs classical information corresponding to the measure-
ment outcome. Diagrammatically, the measurement process consists of a sum over
all the basis states i and their doubled effects. We are therefore going to adapt the
following notation:

The classical (thin) basis states form a basis, whereas the doubled quantum ef-
fects do not, since they do not suffice to span the entire doubled Hilbert space H x H.
Therefore information is lost during the measurement process, a phenomena also
known as decoherence.
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The adjoint of the measurement process is called encoding. The encoding process
takes in classical information in a specific basis and then prepares the corresponding

quantum state:
A
We now have all the necessary components to define the process theory of classical-

quantum maps:

Definition 20. A classical-quantum map (=cq-map) is a linear map obtained by composing
quantum maps, encoding and measurement process:

So therefore any cq-map with a single classical and quantum in- and output can
be written in the form of:

4.2 Deleting

For quantum systems we already defined the discarding map, which describes the
process of getting rid of or ignoring a quantum (sub-)system. We are going to ex-
tend this notion to our classical systems and call it the deleting process. The deleting
process takes in a classical state (= classical information) and deletes it:

-4 -
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However, this is not a completely new map, as the deleting map can also be
constructed by the encoding map followed by the discarding process:

The adjoint of the deleting process is called the uniform probability distribution,
which is the sum over all basis states (similar to the maximally mixed state as a

quantum state):
| - ¥
1

4.3 Copying and matching

For classical states, we can define the copying (= cloning) map as:

A
A

It tests for a set of basis states and if they agree, it doubles the incoming state
weighted by their inner product. But, as we will show later on with the no-cloning
theorem, copying or cloning arbitrary states is not possible as we are limited to copy-
ing normalized orthogonal states corresponding to a specific ONB.

So every copying map fixes a particular ONB and it copies the incoming state if
and only if it is a member of its ONB:

e
N/
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By adjoining the copying map, we get the matching process:

A i

It takes in two classical states and outputs a single state. If both incoming states
are from the ONB the matching process is constructed and they match, a single copy
is released. If they do not match, we get the zero process or impossible process.

Aéﬁ

N

4.4 Classical spiders

We have now encountered numerous instances of so-called spiders. In general, a
spider is a classical map that compares a number of m input states and outputs n
identical states, if they agree. We can define a (m, n)-spider as:

n
n outputs —
e l l l
i i i
ST
i i i
.. I I I
m inputs ——
m

The matrix entries of a spider are the numbers that result from adjoining basis
states to the in- and outputs. For a spider, they turn out to be the Kronecker delta:

B L e
fetm 10 otherwise

Spiders of the same ONB compose in a very elegant way, as they simply fuse
together, if they touch.
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Or more formally, if a (m1,n1)-spider and a (my,ny)-spider share at least one
connection (k > 1), they form a (17 + my, 1y + ny)-spider:

ny+np

mq + mnip

Furthermore it can be shown that spiders are invariant under ’leg-swapping’,
meaning the exchange of the order of in- or outputs:

Spiders with exactly two legs are equal to a plain wire, as they form a resolution
of identity (this is no longer the case for the decoherence spider, as we will see later
on):

EX - L[]

By redirecting the output wire, it follows that the maximally correlated cap- and
cup-state can also be seen as (2,0)- and (0,2)-spider respectively and that both of
them are base independent.

A special case of spider worth considering is the leg-less spider. Since it has no
in- or outputs it is a number:

0-0-4 )-8 )

with D being the dimension of the Hilbert space.

1=
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We have now developed a set of rules we can apply to spiders. This comes in
handy, as it enables us to look at the measuring and encoding process in a new light.
It turns out the measuring process is just a (2,1)-spider and the encoding process a

(1,2)-spider:
N ¢
A A

Measurement process

Equipped with the spider fusion rule we can now consider what happens, when
we compose the measuring and the encoding process. When the encoding process
is followed by the measuring process we get the identity:

So the measuring process is the inverse of the encoding process. However when
these processes are in reverse order, we see that the encoding process is not the
inverse of the measuring process:

instead we get a new kind of quantum map called decoherence. Decoherence is a
non-invertible process that happens when we force a quantum state to pass through
a classical channel. During this process some information is lost as can be seen by
the following diagram:

= 8 = = = 2"
e e

A general (possibly impure) quantum state p passes through a decoherence chan-
nel and as we can see the off-diagonal entries of our density matrix are lost in the
process. What exits this process is a quantum state, that behaves just like a classical
probability distribution.
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Once a quantum state goes through the process of decoherence, it is then not
affected by further decoherence, as the decoherence process is idempotent:

4.5 Quantum spiders

Whereas the spiders up to this point have been purely classical linear maps and the
measuring and encoding processes have been transitional maps from quantum sys-
tems to classical systems and back, we will now introduce purely quantum spiders.
Analogous to the construction of pure quantum maps, quantum spiders are created
by doubling classical spiders.

= double

they also behave similarly to classical spiders, as the spider fusion rule also ap-
plies to quantum spiders:

But unlike the decoherence process the (1,1)-quantum spider acts as an identity
on quantum systems:
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Some special cases of quantum spiders, which we will later come back to, are the
two-system quantum spider state or otherwise also called Bell-state and the three-
system quantum spider state or Greenberger-Horner-Zeilinger state:

| | | |

O/ \oj=doubze(\oj):doubze( 0/\0/ + \1/\1

W double(W) = double( 0 0 0/ + \1 1 1

These states are examples of maximally entangled quantum states. This means
that if one of the systems is measured to be in a specific basis state of the dou-
bled ONB, the other systems will also be in the same state. This phenomenon
can be understood by interpreting the GHZ state as a copying map in the follow-
ing way(noting that only the orthogonal basis states of the quantum spider can be
cloned):

NERNV R

We now have two different kinds of spiders: classical spiders with a thin dot and
quantum spiders with a bold dot. While classical spiders can have single legs or
doubled legs (e.g. measuring process) quantum spiders can only have doubled legs.
When a classical spider and a quantum spider fuse together the resulting spider is a
classical spider due to decoherence:
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4.6 Phase spiders

We are going to expand our repertoire of spiders to include phase spiders. Phase
spiders are defined similarly to normal spiders except that they equip each of the
basis states i with a (possibly different) complex phase ¢*. These new spiders will
enable us to construct any kind of quantum map solely from phase spiders. But
before we get there we need to define the notion of unbiased states.

Definition 21. A normalised pure state 1 is unbiased for the O -basis if we have:

a

Or in other words if we measure our unbiased state in the 0 -basis, all of the
possible measurement outcomes are equally likely to occur with a probability of %.
This result can also be directly calculated with the Born rule:

/N

ZEA D D
> %

If we express our quantum state in column form through its components in the
O -basis, this fact can be stated as:

) (b

Sl -

D-TypP-1
it then follows that the most general form our unbiased component vector 1 can
have is:

1 iDLO
—=e
D

1100

IPD*1 _L_piapy
VD

for the angles ; € [0,277). To define the phase states we will drop the normali-
sation factor of % for diagrammatic simplicity, but otherwise the phase states for a

given basis are exactly its unbiased states.
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Definition 22. A phase state for a given basis O is a pure state { that satisfies:

and in bracket notation a phase state can be expressed as an unnormalized column vector:
q)o eiﬂég

lpb—l ei“‘D—l

Without loss of generality we can set ag = 0, since our vector is invariant under a
global phase transformation of 7. Therefore the phase state ¢ is uniquely defined
by D -1 complex phases: & := (a1, ...,&p_1).

We will denote the phase state as:

o ) - {3

Complex conjugation of a phase state is equal to putting a minus sign in front of
the phases a;, the transposed of a phase state is just the phase state rotated by 180°
and the adjoint is the combination of the two:

& -0

r \

The simplest non-trivial quantum system is a two-dimensional system, also called
qubit. Its Hilbert space is spanned by two basis vectors over the field of complex
numbers. Every pure quantum state from this space can be expressed by two angle

variables 0 < 0 < 7t and 0 < & < 277, due to the normalization of the state vector and its
invariance under a global phase transformation. Diagrammatically we can represent

those states as:
= double(cos% i()? +singei”‘ i? )

It is then very instructive to visualize these states on a three-dimensional sphere
also called Bloch sphere. 6 represents the polar angle from the north pole and « is
taken as the azimuthal angle.
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On the Bloch sphere pure quantum states lie on the surface of the sphere, while
impure or mixed states are located on the inside of the sphere. Antipodal points
on the surface of the Bloch sphere correspond to orthogonal states, which we will
use to construct different bases. If embedded into a Cartesian coordinate system,
the two states corresponding to the intersection points on the surface with the z-axis
constitute what is called the z-basis, which is our standard basis and will diagram-
matically be indicated by the white basis states. The same can be done for the x-basis
and the y-basis, which we will denote as gray and black basis states respectively.

%
et
)
Y.

(4 ()
dou 07 - l))
|

double

Sl

double

@:
v;
V:
#:

l l
double( % 0 -i\1 )

(B) x- and y-basis states. Note that the black y-basis states are
not self-conjugate in contrast to the other two bases.
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We are now returning to the topic of unbiased states or phase states and their
placement on the Bloch sphere. Since we are dealing with a two-dimensional system,
the phase states are parameterised by a single complex phase «:

O

For the z-basis the set of unbiased states is located at the equator of the Bloch
sphere, equidistant from both z-basis states on the poles:

NI—=

By comparing the two representations of states on the Bloch sphere, one notices
that the x- and y-basis states are proportional to the z-basis phase states for phase
angles that are integer multiples of 7.

When a phase state is connected to a quantum spider, we get what is called a
phase spider:

= double Zi:elki f f = double
eia;
2

The quantum spider takes in the phase information and they fuse together. For
this process it does not matter, if the phase state is connected to an input or an output
or to which of the legs it is connected, as a quantum spider is also invariant under

leg-swapping:
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When a phase spider is measured (comes into contact with a classical spider), all
of the phase information is lost, and a classical spider results:

Once again, we observe that decoherence eliminates any purely quantum phase
information. Next, we will examine the consequences of combining two phase spi-
ders with each other:

the quantum spiders fuse together and we get an additional phase state of & and
B combined. When expanding this combined phase state into basis states, we notice
that this fusion of phase states is equal to just adding their complex phases:

= double Zk:el(aﬁﬁk) %k7 ) = double

Z eitxi
i

So when a couple of phase spiders touch, they all fuse together and their phases
add up:

This behaviour suggests that there exists an abelian group structure within the
composition of phase spiders.
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For any set of phase states, there exists a binary operation that is both commuta-
tive and associative, an identity element and an inverse element for every element:

6] & Sy Gy >

(A)  Set (B) Commutative group operation
phase states

b b 67

(C) Associativity (D) Identity ele- (E) Inverse element
ment

From the periodicity of the complex exponential function it follows that the com-
position of phase states is isomorphic to addition modulo 27r. Thus, in total the
phase group is isomorphic the (D —1)-fold product of the circle group: U (1) x ... x U(1)

D-1
A phase spider with a single in- and output is called a phase gate:

¢ To

A phase gate is a unitary transformation as its adjoint is also its inverse:

:

For qubit states on the Bloch sphere, the application of a phase gate corresponds
to rotations along the axis of its basis states for an angle of a:
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4.7 Spiders from different bases and complementarity

Until now, we have only used z-basis states to encode our spiders, but we are free to
do so with any other ONB. By considering different kinds of spiders, we will be able
to describe and reason about the measuring and encoding process in different ONBs
and how they interact. Spiders constructed from x-basis states will be colored gray:

l l l

> >

z-basis spider x-basis spider

Whereas spiders of the same basis (or color) fuse together, this is no longer the
case for spiders of different bases as they tend to disconnect, we will call these spi-
ders complementary.

Definition 23. Two different spiders are complementary if and only if:

L
T

This diagram indicates that if we encode classical information in a certain basis of
quantum states and then measure this quantum system in another complementary
basis, the result is equivalent to deleting the classical input and producing only a
uniform probability distribution, or pure noise. Consequently, no data can be trans-
mitted through this channel, as the output is completely independent of the input.

Analogous to the uncertainty principle, one can say that if we have maximal
knowledge of a state with respect to one basis, we have no information regarding
another complementary basis.

We now have an understanding of what it means for two bases to be comple-
mentary, but how do we determine if they are complementary? It turns out that the
concept of complementarity of bases is closely linked to their mutual unbiasedness.

Ol=

Definition 24. Two ONBs are called mutually unbiased if for all basis states i, j we have:

/N
\/

Q=
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Theorem 4. Two spiders are complementary if and only if their respective ONBs are mutu-
ally unbiased.

Proof. If we assume that two spiders are complementary, then their mutual unbi-
asedness follows:

com.

A A
\ V%

Conversely, if we assume mutual unbiasedness, then complementarity also holds:

mb.éﬁl
vV %

Here we have demonstrated that the matrix entries for the left-hand side and
the right-hand side are identical for all basis states i, j, and therefore the process in

between them must also be identical.
O

We can now proceed to verify if the x, y, and z bases are mutually unbiased by
calculating their inner products. This can be done by expressing all basis states in
the z-basis:

Vs ) W)
polvo) )

We determine their respective inner products by adjoining the states and plug-
ging them together. It turns out that for all basis states i, j we have:

2
Thus, all of the three ONBs are mutually unbiased and therefore also comple-
mentary.

S
S

Sl
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It can also be shown that these three pairwise mutually unbiased bases (MUBs)
form a maximal set of pairwise MUBs for a qubit system, as there is no other distinct
basis we can add to this set while maintaining unbiasedness.

Although determining the size of a maximal set of pairwise MUBs for a given
dimension D is generally challenging, boundaries for this number have been estab-
lished [16][17]. If we decompose the dimension D into its prime-power factorization
D = py'py*-p* where pi' < py? < - < p/¥, then the number of MUBs satisfies
pi' +1 <#MUBs < D + 1. As a special case, if the dimension D is an integer power of
a single prime number D = p”, then this boundary exactly determines the number
of MUBs to be #MUBs = p" + 1, or in the case of a qubit: #MUBs = 3.

4.8 Strong complementarity

We have discussed how the set of unbiased states for a given ONB forms a set of
phase states and how a commutative group structure can be developed on them. We
then established that two bases are complementary if and only if their basis states
are mutually unbiased. Building upon this foundation, we introduce the notion of
strong complementarity. Two ONBs are strongly complementary if the basis states of one
basis form a subgroup of the phase group of the other basis, and vice versa. We will

illustrate this concept through an example.
O-p
2

The Bloch sphere is depicted with the z-basis states (white) and its
respective phase states highlighted. The x-basis states (gray) and the
y-basis states (black) coincide with certain z-basis phase states.

As the x- and y- basis, as well as any other basis of antipodal phase states, lie on
the equator of the Bloch sphere, they form a complementary basis to the z-basis.
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However only the phase states corresponding the x-basis form a subgroup of the
phase group:

550 6600 &

As they are the only states that are closed under the group operation. While the
entire phase group is isomorphic to the circle group U(1), the subgroup generated
by the x-basis states is isomorphic to the two-element cyclical group Z.

It can also be shown that the z-basis states form a subgroup of the phase group
of the x-basis, and consequently, the x- and z-bases are strongly complementary.

Vo v
Ve o

There is a bijective correspondence between basis states of the x-basis
and phase states of the z-basis and vice versa.

We will now establish a set of diagrammatic equations that capture the notion of
strong complementarity. The first one is the following;:

A i
/NN 7N

The first equation holds, as the x-basis states are cloned by the x-basis spider. The
second equation holds up to a number, because the x-basis states are proportional
to z-basis phase states and they are closed under the group operation due to strong
complementarity, and thus the combined states can also be cloned by the x-spider.
This holds for all basis states 7, j, so the first characteristic equation is:

R

R
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The second characteristic equation will relate to the cloning of phase states:

Loy WY

By adjoining the equation and swapping the colors we get the third characteristic

equation:

To summarize, we combine these three equations together, include the normal-
ization constants, and state that a pair of spiders is strongly complementary if and only
if the following set of equations is satisfied:

gx fi\%m :

This set of equations can even be extended, to include all kinds of complete bi-
partite diagrams, which are diagrams where every spider of one color is connected to
every spider of the other color, but not amongst each other.

Starting from the three previous equations, it can be shown by induction, that
strong complementarity is equivalent to:

o/l

n n

—_— T

W—J Rf—/

m m

This equation generalizes the previous equations and also expresses how strongly
complementary spiders can commute past each other. When viewed from a perspec-
tive of category theory, this strongly complementary pair forms a bialgebra, with
its defining equations describing how multiplication and comultiplication commute
past each other [18].

L
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Theorem 5. Strong complementarity implies complementarity (the inverse is not true).

Proof. Diagrammatically this can be shown by the following equation:

é
7

O]

Another important difference between the two concepts is the number of bases
that can be mutually complementary or mutually unbiased in other words. For a
given dimension D the maximum number of mutually complementary bases is un-
known, while the number of mutually strongly complementary bases is always 2,
independent of D.

Theorem 6. For a finite dimension of D, there is a maximum of 2 mutually strongly com-
plementary bases.

Proof. If there were three mutually strongly complementary bases 0 / 0 , O / ®
and O / @ , then the following equations would hold:

X R 1

Since both the gray phase state and the black phase state get cloned by the white
spider, they both have to be equal up to a number:

I1l- 11

This holds assuming that the number 2 is cancelable. However, it then follows
that the identity is o-separable, which cannot hold for any non-trivial system:
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4.9 Quantum teleportation

We have now developed the necessary tools to fully describe quantum teleportation
using only complementary quantum spiders. The general idea of quantum tele-
portation is the transmission of an unknown quantum state p across a large spatial
distance. To achieve this, two parties share a maximally entangled Bell-state. Then,
party A performs a Bell measurement on both the unknown quantum state and their
shared qubit. This measurement yields one of four possible outcomes, which A com-
municates to party B over a classical information channel. With the knowledge of
the measurement outcome, B can now perform a controlled operation on their en-
tangled qubit, thus converting it into the unknown quantum state p.

Even though this process is called quantum teleportation, it does not enable
faster-than-light communication, as it relies on the transfer of classical information.
Without classical communication, the only quantum state A can send is the maxi-
mally mixed state or just pure noise. Diagrammatically, the structure of the quantum
teleportation protocol can be summarized by the following simplified diagram:

A possesses the arbitrary quantum state p and one half of the

Bell-state (=cup-state) and then performs a Bell-measurement (=cap-

effect) on his two states. This scenario is equivalent to B holding the
p-state.

On the left-hand side of the equation, we see the Bell-state being distributed
to both parties A and B, and A performing a Bell measurement. By applying the
yanking equation, it follows that after the measurement, B is in possession of the
unknown quantum state p. However, this diagram is not complete, as the Bell effect
is not a deterministic quantum effect, meaning that it cannot be performed with
certainty. A can only carry out a Bell measurement with the Bell effect as one of its
four possible branches, with the other branches disturbing p. A then has to inform B
which of the four possible outcomes was actually realized, allowing B to revert the
change to the quantum state with a controlled unitary operation.
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The four possible measurement outcomes equate to two classical bits of infor-
mation, which A can send through two binary classical channels. So the complete
protocol to be performed looks like this:

B

P A

On the left side, A performs a non-local Bell-basis measurement on the quan-
tum state p and his entangled qubit, and then transmits the measurement outcome
through the two classical information channels, which B then uses to retrieve the
original quantum state p.

But we can also interpret this Bell-basis measurement, which takes in two quan-
tum states and outputs two classical bits, differently:

I-—-rFr-—---|-- 1

Bell-basis measurement ! «——2- and x-measurement

| L i CNOT-gate

While diagrammatically there is no difference between performing a Bell-basis
measurement and carrying out a quantum CNOT-gate' followed by two measure-
ments in the z- and x-basis respectively, experimentally there is quite a difference. It
might be harder to experimentally implement a non-local Bell measurement on two
systems, than to carry out a quantum CNOT followed by two single-system mea-
surements.

'a quantum CNOT-gate is a logic gate, that swaps the value of the target qubit (grey), if the control
qubit (white) is 1 and does nothing if the control qubit is 0. This process can be described by connecting
a quantum x- and z-spider.
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We will now demonstrate that the protocol indeed describes the teleportation of
a quantum state. As an intermediate step, we are going to employ the fact that a
quantum spider and its complementary classical spider separate, when connected
by two quantum wires:

4

In essence, the quantum teleportation diagram boils down to the following dia-
gram:

ddadaq

After a couple of steps we notice, that this diagram reduces to the quantum iden-
tity. This implies that there is a direct and undisturbed quantum channel from A to
B and thus the arbitrary quantum state p is transmitted.
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Chapter 5

Quantum foundations

We have now developed the necessary tools to dive into some of the foundational
properties of quantum mechanics. One of quantum mechanics core fundamental
features is a kind of indeterminism or uncertainty, that manifests itself in various
forms. Ranging from the fact, that quantum mechanics only allows one to compute
probabilities for certain measurement outcomes to the inability to simultaneously
predict the outcome of complementary observables. Quantum theory even raised
additional philosophical questions concerning properties such as locality and real-
ism, that were taken for granted during the era of classical physics. We are going to
review some of these features in the framework of a quantum process theory.

5.1 No Cloning Theorem

A fundamental principle of classical computation is that we can read out, change or
copy informational bits at will, without interfering with the underlying information
medium. For quantum information, this is no longer the case. We are now going to
prove that it is not possible to clone any arbitrary unknown quantum state within
the framework of quantum theory.

In process-theoretic terms, a cloning process for a system of type A is a process
that takes in a single state ¢ and produces two identical copies 1:

G

Since both copies are identical, it does not make a difference if we interchange
the outputs after copying them:
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If we wanted to clone a composite system of type A ® B, it should be possible to
clone each subsystem of type A and B individually and then put them back together:

A‘ B><A ‘B A‘ ‘B A‘ ‘B
A A

A B

The last, but rather trivial assumption we have to make is that our process-theory
contains at least one normalized state 1, for which we have:

We will now show that if there existed a cloning process for a system of type
A, which satisfies the three previous equations, it then follows that every process of
type A is o-separable, which as we mentioned earlier is an unphysical matter of fact.
The state we are going to clone is the maximally correlated cup-state:

L

If we plug the cup-state into our cloning process we get the following equation:

The starred equations are just deformations of the diagram.
The dashed square indicates the use of the properties of the cloning
map.
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For the next step, we are going to bend down the outermost outputs of the equa-
tion by adjoining cap-effects:

We have now shown that the parallel composition of two identities is equal to
the disconnected sequential composition of a cap-effect and a cup-state. In our final
step, we are going to substitute in this process in the following diagram:

» 4
= = =
¥
¥
ﬂi

We have now shown, that any process f of type A is o-separable. As already
mentioned, this would imply that there only exist constant processes and therefore
we have to refute the existence of a cloning process with the above mentioned prop-
erties.

The usual no-cloning theorem in most textbooks is laid out differently, so we will
also revisit the standard way of reasoning. For the standard proof, we assume the
existence of a cloning process A’ that takes in two input states, an unknown state ¢
which ought to be copied onto another state ¢, which gets overwritten in the process.
It then outputs two identical copies of the input state 1:

o

However we can define a cloning process similar to the one we previously de-
fined, by fixing one of the inputs of the A’ process, so there is practically no difference
between those two cloning processes:

A = A

4
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The second assumption usually made, is that A" is a unitary process. This as-
sumption stems from the fact that in quantum mechanics the temporal evolution of
a system is governed by a unitary time-evolution operator.

The unitarity of A’ immediately implies the isometry of A:

A ¢
= = I:
A (P

We are now going to show that if two normalized states ¢, and 1, can be cloned
by the isometry we just specified, then either ¢; and 1, have to be equal or orthogo-
nal:

7} 112 117)
= =] \
LA P 21

We have shown that the number A := i} o ¢ satisfies the equation A = A%. This
leaves only two options for our states i and ;. Either their inner product is equal
to 1, which means a certain positive test outcome when testing state ¢, for effect
Y, and therefore the states being equal 1; = ¢, or their inner product is equal to
0, which means that both states are orthogonal. Therefore, if there is a system of
type A, that contains at least two different states, only the orthogonal states can be
cloned. This is closely related to the fact, that orthogonal states can be used to encode
classical bits within a quantum system, due to their similar behaviour.

When comparing these two methods of proof, we see that for the first proof the
critical assumption is the ability to clone a composite system by cloning each of its
parts individually, and for the second proof we assumed that our cloning process is
a unitary process. These two proofs are independent of each other but arrive at a
similar result, namely, not every quantum state can be cloned.
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5.2 Quantum non-locality

After the establishment of the theory of relativity, it became widely held belief that
any future physical theory must adhere to the principle of locality. This principle
posits that any interaction between two physical entities must be mediated by some
form of wave or particle and is therefore limited by the speed of light. In other
words, there is no instantaneous action at a distance. Another core tenet of physics
was the concept of realism, which asserts that measurements have predetermined
outcomes and that the measurement process merely reveals them to the observer.

Both of these assumptions were widely accepted until 1935 when Einstein, Podol-
sky, and Rosen published their influential paper [3], stating that quantum theory is
not a locally realistic theory. To reconcile this issue, one must abandon at least one
of the assumptions, which did not sit well with Einstein, leading him to refuse to
accept quantum theory as a complete theory.

We will now demonstrate that quantum theory is not compatible with local real-

ism through the GHZ-Mermin measurement scenario. The Greenberger-Horne—Zeilinger

state will be measured in various setups to investigate the resulting correlations of
the measurement outcomes.

| | | \ \ \

W = double( W) = double( 0 0 0/ +\1 1 1

The maximally correlated GHZ-state in the z-basis.

We are going to look into four different measurement scenarios of the following
type:

The GHZ-state is locally measured in three different bases, that are determined
by the local phases a, f and <. Due to the phase spider fusion rule and the property
of strong complementarity, this measurement setup is equivalent to the one on the
right-hand side of the equation. The equation also shows, that a local phase gate
on a single subsystem affects all of the other subsystems as well, even if they are
separated in space.
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If « + B + 1y is either O or 77, then the phase state is in the classical subgroup for the

z-basis O and we get the even-parity and odd-parity state respectively:

ed

.
.

gy
g

T
T

o

N

In our measurement scenarios the phases «, 8 and - will either be 0 or 7 to rep-

resent Z- or Y-measurements:

Z-measurement :=

Y-measurement :=

We now consider the following four measurement scenarios of the GHZ-state.

system A | system B | system C
scenariol | Z Z Z
scenario2 | Z Y Y
scenario3 | Y Z Y
scenario4 | Y Y Z

and combine the measurement results

with an parity-gate represented by the

x-basis spider © to produce a singular valued output. The diagrammatic represen-
tation of the GHZ-Mermin scenario looks like this:

R
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which reduces to the following diagram after employing the previously stated
relations:

TTDD -+

We end up with the odd-parity state, which is proportional to the second z-basis
vector, in the quantum mechanical case.

We will now calculate the result of this measurement setup for a locally realistic
model. For this model we are assuming that some classical hidden-variables have
already determined the measurement outcomes in advance. The most general state
in this case is a tripartite classical probability distribution over all possible measure-
ment outcomes:

1st system 2nd system 3rd system

In such a case all of the possible z and y states have a pre-defined value from the
set {0,1}. Thus if we measured the same four measurement scenarios, the results
would be given by the states:

777 ZYY YZY YYZ
S S A s A
Z Z Zj Zj Yi Yi Y; Zj Yi Y; Yi Z

If we combine duplicate states via z-basis copy spiders, we get:

7277 ZYY YZY YYZ
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The overall parity of the measurement setup is then given by:

A A B B C C
Zj W Zj Yi Zj Y

In this diagram every O spider is connected to the o spider by exactly two legs
and thus they disconnect due to complementarity.

e A A

The following state is independent of i and proportional to the first z-basis vector
state. This difference in parity constitutes a contradiction and therefore quantum
theory cannot be described by a locally realistic model.
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5.3 Kochen-Specker Theorem

The Kochen-Specker theorem is another quantum mechanical no-go theorem, that
excludes the possibility of quantum mechanics being described by a non-contextual
hidden variable model. This means that there are possible measurement scenarios
where the measurement of a physical property depends on its measurement context,
namely the other compatible properties that are measured simultaneously.

In this thesis, we will try to reformulate the state-independent proof of the Kochen-
Specker theorem of Peres and Mermin [19][20] diagrammatically. The proof involves
the so-called Peres-Mermin square, which consists of nine measurements arranged
in a square:

B C ;1 1o, 0,90,
b ¢ |=] 1®0, 0,01 0,®0,
B 0;®0y 0x®0; 0y®0y

Each of these two-qubit measurements is dichotomic, which means that there are
only two possible outcomes +1 and -1. The three measurements in each row and col-
umn form a context, that is, a set of commuting observables that could in principle
be jointly measured. We will consider the product of these measurement contexts
and denote them as ABC, abc, Aax, etc. In a non-contextual classical model, each
of the measurements takes on the same definite value, regardless of the context in
which it is being measured. Therefore, the set {ABC, abc,aBy, Aaw, Bbp,Ccy} can
only contain an even number of products with the value of +1, since changing a
single measurement changes the value of two products. When we define the expec-
tation value of each context as:

(ABC) = Prob[ ABC = +1] - Prob[ ABC = —1]

The previous argument shows that the following inequality holds:

(PM) = (ABC) + (abc) + (aBy) + (Aaa) + (Bbp) — (Ccy) < 4

An inequality that is defied by the predictions of quantum mechanics. Since all
observables within each column and row mutually commute, they can be simultane-
ously measured, and we can therefore meaningfully speak of the expectation values
of the products ABC, etc. For a given system in the normalized state |¢) such an
expectation value is calculated as (ABC) = (| ABC|y). It turns out that the product
for each of the measurement contexts in each column and row ABC = abc = ... =1,
except for the third column where Ccy = -1. By summing up all of the expectation
values, we get (PM) = 6, which clearly violates the inequality mentioned above.

We therefore conclude that the context-independent approach is not compatible
with quantum mechanics, this phenomenon is also known as quantum contextuality.
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To reformulate the proof within the theory of quantum processes, we will model
each column and row as three consecutive two-qubit measurements. The outcomes
of the three measurements will then be combined using the parity map to calculate
the product of the measurement outcomes. The first row ABC consists of 0; ® 1, 1 ®
0, and 0, ® 0; measurements. This measurement scenario can be diagrammatically
represented as:

Firstrow: 0; ® 1,1 0,, 0, ® 0

This process takes in two quantum states and performs sequential non-demolition
z-measurements on each of them. The measurement outcomes are then combined
using a x-basis spider, which behaves like a parity map on z-basis states. This fol-
lows directly from the fact that z-basis states are proportional to x-phase states:

Ve e

together with the phase spider fusion rule, which combines the phases under
addition modulo 27t:

§o® o0 S éo 0

When the spider fusion rule and the complementarity rule are applied to the
context of the first row, we end up with a definite outcome of the z-basis state 0 that
represents a total product of +1.

For the second row 1 ® 0y, 0, ® 1, 0 ® 0y, we need to exchange the z-measurements
for x-measurements. This can be realized by adding additional Hadamard gates that
facilitate a basis change from the z- to x-basis:

\
/A
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These Hadamard maps are self-adjoint and even involutory. Incorporating them
into the diagram for the second row yields the following diagram:

Second row: 1 ® 0y, 0, ® 1, 0 ® 0y

Since the Hadamard gates are involutory they cancel out and the graph resolves
in a similar manner, resulting in a total outcome of the 0 z-basis state. The calcula-
tions for the first and second columns of the Peres-Mermin square proceed analo-

B o[ld |

First column: 0, @1, 1 ® 0y, 0, ® 0

il Bl Lo

|
bed
R

Second column: 1® 05, 0y ® 1, 0y ® 0,

and again the 0 z-basis state results for both columns.

For the third column and row we need to adapt a different approach, as they re-
quire a global dichotomic non-local measurement, instead of two local single-qubit
measurements. The last column and row involve 0y ® 0y and 0y ® 0, measurements,
which decompose into sums of projection operators that are formed by the dyadic
products of the entangled Bell states. Instead of the previous setups, where we com-
bined the results of two local qubit measurements, we are going to implement a
non-local measurement setup similar to the one described in [21].



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

62

A non-local 7, ® 0; measurement is realized by performing a quantum CNOT-
gate on each of the incoming states and their respective half of a maximally en-

tangled state |®*) = iz(|00) +[11)). The resulting states are then measured in the

z-basis and the measurement outcomes are combined by a parity map. This process
is described by the following diagram, which can be further simplified by the spider

fusion rule and strong complementarity.

O b
AR

A non-local non-demolition ¢y ® 0y measurement is achieved by adding addi-
tional Hadamard gates before and after the quantum CNOT-gate.
Using the color change rule:

and the self-inverse property of the Hadamard gate, one can simplify the graph
and push the Hadamard gates towards the middle. The simplified oy ® o, measure-
ment now looks like:

For the third row of the Peres-Mermin square we also need non-local ¢; ® oy and
0x ® 0, measurements, which equate to the following diagrams:




Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

63

The last measurement we need to encode is the 0y, ® 0, measurement. To execute
such a measurement we need to map the y-basis states onto the z-basis states before
performing the quantum CNOT-gate. This is done by a unitary process consisting of
a -7 phase gate followed by a Hadamard transformation. The simplified diagram
for the 0, ® 0, measurement is given by:

We now have all the necessary non-local measurements needed for the last col-
umn and row. The third column results from sequential composition of the o, ® o,
0y ® 0y and 0y, ® 0, measurements:

The three measurement outcomes then have to be combined using the parity
map to obtain the corresponding product of outcomes. The third row involves o, ®
0y, 0x ® 0> and 0y ® 0, measurements, which yields the following diagram:
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However, in contrast to the previous diagrams, the diagrams for the last column
and row do not appear to resolve in a similar fashion to produce a definite mea-
surement outcome. Neither I myself nor the semi-automatic diagrammatic proof
assistant Quantomatic' have been able to simplify the two graphs to arrive at a def-
inite outcome. Therefore, the question remains whether I have missed a step in the
derivation or if this is even a valid approach at all.

A possible issue might be the incompatibility of quantum logic with categorical
quantum mechanics. While quantum logic describes the propositional structure of
a single system, categorical quantum mechanics focuses on relationships between
different systems. Therefore, categorical quantum mechanics might not be the right
framework to argue about quantum contextuality.

https:/ /quantomatic.github.io/
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Chapter 6

Conclusion

In this thesis, we have provided an overview of categorical quantum mechanics,
illustrating its capability to describe the flow of information between classical and
quantum realms. This formalism is particularly useful for describing quantum com-
putational protocols using the ZX-calculus [22]. Despite its abstract mathematical
foundation, the general rules for reasoning about quantum processes are straight-
forward and user-friendly, making it a potential entry point into quantum theory.
We conclude that categorical quantum mechanics is a suitable formalism for
high-level discussions of classical-quantum processes. In certain cases, such as quan-
tum teleportation and entanglement swapping, the Hilbert space formalism does not
clearly depict the underlying mechanisms. In contrast, the diagrammatic formalism
captures the essence of these procedures, presenting them clearly and concisely.

Underlying structure of quantum teleportation and entanglement
swapping

Although efforts have been made to reconcile categorical quantum mechanics
with quantum logic [23][24], there may be an underlying incompatibility between
the two fields. Despite numerous attempts, I have been unable to fully formalize a
proof of the Kochen-Specker theorem within the framework of categorical quantum
mechanics. Only time will tell if this formalization is possible and whether categor-
ical quantum mechanics will significantly advance our understanding of quantum
theory.
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