
Reasoning in Very Expressive
Description Logics with Varying

Information Completeness

DISSERTATION

zur Erlangung des akademischen Grades

Doktorin der Technischen Wissenschaften

eingereicht von

DI Sanja Lukumbuzya, B.Sc

Matrikelnummer 01227514

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Assistant Prof. Dr.techn. Mantas Šimkus
Zweitbetreuung: Associate Prof. Dr.in techn. Magdalena Ortiz

Diese Dissertation haben begutachtet:

Frank Wolter Filip Murlak

Wien, 3. Juni 2024

Sanja Lukumbuzya

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Reasoning in Very Expressive
Description Logics with Varying

Information Completeness

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktorin der Technischen Wissenschaften

by

DI Sanja Lukumbuzya, B.Sc

Registration Number 01227514

to the Faculty of Informatics

at the TU Wien

Advisor: Assistant Prof. Dr.techn. Mantas Šimkus
Second advisor: Associate Prof. Dr.in techn. Magdalena Ortiz

The dissertation has been reviewed by:

Frank Wolter Filip Murlak

Vienna, June 3, 2024

Sanja Lukumbuzya

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Erklärung zur Verfassung der

Arbeit

DI Sanja Lukumbuzya, B.Sc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit Ű einschließlich Tabellen, Karten und Abbildungen Ű, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 3. Juni 2024

Sanja Lukumbuzya

v

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Acknowledgements

It takes a village to complete a PhD, and I am eternally grateful to mine.

I have nothing but words of praise for my advisors, Mantas Šimkus and Magdalena Ortiz.
Thank you for being excellent teachers and role models. Without your gentle mentorship
Ąlled with encouragement, patience, and understanding, completing this PhD would
not have been possible. I do not think I can appropriately express my gratitude for
everything you have done for me, but I am going to try.

Thank you for passing your excitement for research and knowledge on to me.
Thank you for your guidance.
Thank you for the countless hours of discussions — both the fruitful ones and the ones
where we got lost on tangents.
Thank you for continuing to believe in me even when I did not believe in myself.
Most of all, thank you for always having my back.

Academia needs more people like you.

I would also like to extend my sincere thanks to Frank Wolter and Filip Murlak for
investing their time and effort into reviewing this thesis and for doing it on a tight
schedule. Thank you!

Furthermore, I wish to thank Meghyn Bienvenu for being an amazing host during my
research stay Ů I look back on the time I spent in Bordeaux fondly and I hope we will
have more opportunities for collaboration in the future. Many thanks also to Diego
Calvanese and Marco Montali for all the discussions in the spring of 2021 that landed
my name on the list of people working in Business Process Management.

On this journey, I have come across many wonderful people who have contributed to the
materialization of this thesis in their own way. In particular, I am grateful to:

• My Ąrst DK friends and my go-to crowd for everything, Rafael Kiesel and Anna
Rapberger, for dancing to Severina’s Gas, Gas and for the amazing ideas that never
made it out of the group chat.

• Adrián Rebola Pardo for lending his ear to my wailing.

vii

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

• Ana Costa for our (in)compatible office schedules, Carl Ludwig coffee dates, as well
as for providing a much-needed distraction during the Ąnal preparations for my
defense.

• Soeren Terziadis (né Nickel) for approaching me in that Formal Language Theory
course and all that followed.

• My dear amios, Federica Di Stefano, Giovanni Buraglio, and Pamina Georgiou for
giving me a reason not to work from home as well as for all the yard time spent
together.

• Anouk Oudshoorn for making long nights at the office feel short and for turning
everything into a karaoke session.

• Tommaso Mannelli Mazzoli and Ida Gjergji for tolerating said karaoke sessions.

• Emily Yu and Nils Froleyks for sharing the highs and the lows of parenting with
me.

• Kees van Berkel for music therapy.

• Davide Longo for his efforts to make our lunch breaks more elegant.

• Quentin Manière for Hanabi and wine, and, most of all, for being oh so patient
with me.

• Maya Olszewski for Ćying across Europe just to sleep in my bunk bed in Bordeaux.

• Augusto Blaas Corrêa for his shopping assistance and photography skills.

• Our heroines without capes, Beatrix Buhl, Eva Nedoma, and Juliane Auerböck, for
never rolling their eyes at my Şquick questionsŤ.

• Anna Prianichnikova for making the LogiCS DK feel like a second family.

• The Italian Camouflage playlist curators.

• Monday Cake Meeting crew for letting me eat cake.

• Carl Ludwig crew for providing coffee and emotional support to go with it.

• All other fantastic people at TU Wien and beyond that I did not mention by name
but whose presence made a positive mark on my PhD experience.

A special thank you goes also to all my friends outside of work for their unwavering
support despite not knowing what it is exactly that I do. In particular, I would like to
thank my oldest friends, Milica Petrović (née Milošević) and Teodora Živković, for way
too many things to mention here, but most of all for sticking around all these years. I am
also grateful to Nađa Jelica for showing me that being neighbors is a matter of mindset,

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

and to my spontaneous mom crew, Marija Pajić, Harriet Szanto, and Manu Parisse, for
being brave enough to drop the spreadsheets.

None of this would have been possible without the support of my immediate and extended
family. I am grateful to my parents, Milena and Dejan Pavlović, for believing in me
from day one and for allowing me to chase my dreams. I appreciate everything you
have done and continue to do for me. I am also grateful to my sister and role model,
Mila Pavlović, for her quiet but constant support as well as for providing me with her
Lami Vibing playlist on Spotify that carried me to the Ąnish line. And to the whole
Lukumbuzya-Pomaroli family, I owe a million thanks for welcoming me with open arms
and always making me feel like I am one of their own. I am very lucky to have you guys.

I cannot even begin to express my gratitude to my husband, Michael, for being my
rock throughout this entire journey. Your love, support, and understanding have been
both the wind beneath my sails and my anchor when I needed grounding. Thank you
for taking care of our young family and for teaching me what a true partnership looks
like. Your sacriĄces and encouragement have made this achievement possible, and I am
profoundly grateful for everything you have done. This accomplishment is as much yours
as it is mine.

Finally, my sweet Oliver, thank you for pulling the emergency brakes and forcing me to
slow down. In the past few years, you have taught me more about myself than I ever
thought was possible. I hope I am making you proud.

This research was supported by the Austrian Science Fund (FWF) projects P30873 and
W1255. I would like to thank the funding body for the Ąnancial support.

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Kurzfassung

Seit ihrer Entstehung Ende der 2000er Jahre hat das Datenverwaltungsparadigma namens
Ontologie-basierte Datenzugriff (OBDA) viel Aufmerksamkeit von der wissenschaftlichen
Gemeinschaft auf sich gezogen. Das Ziel von OBDA ist es, nicht sachkundigen Nutzern
die einfache Abfrage mehrerer heterogener und potenziell unvollständiger Datenquellen
zu ermöglichen. Bei diesem Ansatz wird die Struktur der zugrunde liegenden Daten
vor den Nutzer verborgen. Stattdessen wird Ihnen eine Ontologie präsentiert, die einen
konzeptionellen Überblick des Anwendungsbereichs deĄniert und Hintergrundwissen
darüber in Form einer logischen Theorie bereitstellt. Die Nutzer können dann das
Vokabular der Ontologie verwenden um Abfragen zu formulieren, die, basierend auf
Daten die aus verschiedenen Quellen integriert wurden, beantwortet und mit Fakten,
welche mithilfe des verfügbaren Wissens abgeleitet werden können, ergänzt werden.
Solche Abfragen werden als Ontologie-vermittelte Abfragen (OMQs) bezeichnet, und ihre
Beantwortung ist eine der zentralen Aufgaben von OBDA.

Beschreibungslogiken (DLs) sind zweifellos eine der beliebtesten Familien von Formalismen,
die für die Beschreibung von Ontologien verwendet werden. In DLs modellieren wir
das relevante Anwendungsgebiet mit Individuen (=Konstanten), sowie einstelligen und
zweistelligen Prädikatsymbolen, die Konzeptnamen und Rollenamen genannt werden.
DL-Wissensbasen bestehen aus einer TBox, die terminologische Axiome enthält, welche
Beziehungen zwischen Konzepten und Rollen angeben, und einer ABox, die Fakten
enthält, die die Beteiligung bestimmter Individuen an Konzepten/Rollen deĄnieren.
Unterschiedliche DLs unterscheiden sich in Bezug auf verfügbare Konstruktoren zum
Aufbau komplexer Konzepte/Rollen sowie die Formen der terminologischen Axiome, die
sie zulassen. Unabhängig davon können die meisten DLs als entscheidbare Fragmente
der Prädikatenlogik erachtet werden und verwenden daher die Annahme der offenen
Welt (OWA). Intuitiv besagt die OWA, dass alles, was nicht verboten ist, möglich ist,
und sie ist im Allgemeinen angemessen, wenn Daten als unvollständig betrachtet werden.
Wenn jedoch ein bestimmter Teil der Daten vollständig ist, ist die Verwendung von
Annahme der geschlossenen Welt (CWA) angebrachter, welche besagt, dass das, was nicht
als wahr bekannt ist, falsch sein muss. Echtweltanwendungen erfordern oft die Interaktion
unvollständiger und vollständiger Teile der Daten. Als Konsequenz wurden verschiedene
Ansätze zur Kombination von OWA und CWA in DLs vorgeschlagen.

Ein besonders herausragender Ansatz beinhaltet die Erweiterung von DLs um die Möglich-

xi

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

keit, anzugeben, welcher Teil der Signatur als vollständig anzusehen ist. Diese Prädikate
werden als geschlossen bezeichnet und unterliegen der CWA. In dieser Arbeit kon-
zentrieren wir uns auf sehr ausdrucksstarke Beschreibungslogiken mit geschlossenen
Prädikaten und untersuchen ihre algorithmischen und modelltheoretischen Eigenschaften.
Insbesondere präsentieren wir neue scharfe Schanken der Datenkomplexität für einige
Standard-Reasoning-Aufgaben in ausdrucksstarken DLs mit geschlossenen Prädikaten,
die gleichzeitig Nominalformen, Inverse und Zahlenbeschränkungen unterstützen Ű eine
Kombination von Konstruktoren, die bekanntermaßen auch ohne geschlossene Prädikate
algorithmische Probleme verursacht. Speziell zeigen wir, dass das Problem der Ent-
scheidung über die Konsistenz von Wissensbasen, die in der DL ALCHOIQ formuliert
sind, in der Datenkomplexität in Anwesenheit geschlossener Prädikate NP-vollständig
bleibt. Dies ist ein positives Ergebnis, da es zeigt, dass geschlossene Prädikate keinen
Anstieg der Komplexität von grundlegenden Reasoning-Aufgaben in ausdrucksstarken
DLs verursachen. Anschließend wenden wir uns OMQs zu, deren Ontologiekomponente
geschlossene Prädikate enthält und in einer für uns relevanten DL beschrieben ist, und un-
tersuchen ihre Expressivität auf zwei unterschiedliche Arten. Die erste betrifft die relative
Expressivität dieser OMQ-Sprachen im Vergleich zu Standard-Abfragesprachen wie Data-

log und seinen Erweiterungen. Insbesondere präsentieren wir Polynomialzeitumformung
einer großen Klasse von durch ALCHOIQ-Ontologien mit geschlossenen Prädikaten
repräsentierten Abfragen nach Datalog mit Negation unter der stabilen Modellsemantik.
Ein wichtiges Nebenprodukt unserer Umformung ist das die Beantwortung von Abfragen
für die betrachtete Klasse von OMQs co-NP-vollständig in der Datenkomplexität ist.
Die zweite Richtung untersucht die expressive Leistungsfähigkeit dieser OMQ-Sprachen
aus dem Blickwinkel der deskriptiven Komplexität, wobei die zentrale Frage ist, ob eine
gegebene OMQ-Sprache ausdrucksstark genug ist, um alle Abfragen auszudrücken, die
innerhalb einer bestimmten Zeit- oder Speicherbeschränkung berechnet werden können.
Unsere Ergebnisse zeigen, dass die OMQ-Sprache, die atomare Abfragen mit Ontologien
in der sehr ausdrucksstarken DL ALCHOI mit geschlossenen Prädikaten kombiniert,
nicht alle co-NP-berechenbaren booleschen Abfragen ausdrücken kann, obwohl sie in der
Datenkomplexität co-NP-vollständig ist. Nach diesem negativen Ergebnis schlagen wir
eine Erweiterung der betrachteten OMQ-Sprache vor und zeigen, dass sie tatsächlich
ausdrucksstark genug ist, um exakt die Klasse aller booleschen Abfragen zu erfassen,
die in co-NP berechenbar sind. Schließlich stellen wir fest, dass die Deklaration einiger
Prädikate als geschlossen einen interessanten Effekt auf die Modelle der Wissensbasis
haben kann. Es kommt gelegentlich vor, dass die Interaktion zwischen geschlossenen
Prädikaten und den numerischen Beschränkungen in der TBox dazu führt, dass be-
stimmte offene Prädikate nur Erweiterungen begrenzter Größe haben Wir präsentieren
einen Algorithmus zur IdentiĄzierung solcher Prädikate und geben eine allgemeine, im
Schlimmstfall optimale Schranke für die Größe ihrer Erweiterungen an. Unsere Ergebnisse
bieten ein vielversprechendes Werkzeug zur Unterstützung des Aufbaus hochwertiger
Ontologien sowie einen neuen Ansatz, um die Entscheidbarkeitsgrenzen anspruchsvoller
Datenverwaltungsaufgaben voranzutreiben.

Als nächstes wenden wir uns einem anderen Ansatz zur Berücksichtigung der teilweisen

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

CWA in DLs zu, der auf der Kombination von Ontologien und nicht-monotonen Regeln in
sogenannten hybriden Wissensbasen basiert. In diesem Zusammenhang stellen wir einen
neuen hybriden Formalismus namens Resilient Logic Programs (RLPs) vor, der erststellige
Ontologien und nicht-monotone Regeln kombiniert, um Unterstützung für Systeme zu
bieten, die resilient sind, d. h. in allen möglichen Situationen korrekt reagieren. In
dieser Einstellung beschreibt die Ontologie alle möglichen Situationen, denen das System
begegnen könnte. Die Regeln werden verwendet, um auf diese Situationen zu reagieren,
und die Aufgabe, zu entscheiden, ob das System immer korrekt reagiert, kann auf die
Überprüfung der Konsistenz solcher hybriden Wissensbasen reduziert werden. Unsere
Ergebnisse zeigen, dass RLPs unter ein gewissen sinnvollen Annahmen entscheidbar
und sehr ausdrucksstark sind: Sie können elegant ∃∀∃-QBFs, disjunktive Datalog und
KonĄgurationsprobleme unter Unvollständigkeit von Informationen ausdrücken. Dann
identiĄzieren wir eine große Klasse von RLPs, die in disjunktiven Datalog umgeformt
werden können, und präsentieren mehrere Komplexitätsergebnisse für RLPs, deren
Ontologie in einigen Standard-Dls beschrieben ist.

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Abstract

Since its inception in the late 2000s, the data management paradigm termed ontology-
based data access (OBDA) has received a lot of attention from the scientiĄc community.
The goal of OBDA is to allow non-expert users to query multiple heterogeneous and
possibly incomplete data sources in an easy way. In this approach, the structure of
the underlying data is hidden from the users. Instead, they are presented with an
ontology that deĄnes a high-level conceptual view of the application domain and provides
background knowledge about it in the form of a logical theory. The users can then write
queries using the vocabulary of the ontology that are answered over the data integrated
from different sources and supplemented with the facts that can be inferred using the
available knowledge. Such queries are called ontology-mediated queries (OMQs) and
answering them is one of the central tasks of OBDA.

Description logics (DLs) are undoubtedly one of the most popular families of formalisms
used for expressing ontologies. In DLs, we model the domain of interest using individu-
als (=constants), and unary and binary predicate symbols, called concept names and role
names, respectively. DL knowledge bases consist of a TBox containing terminological
axioms that specify relationships between concepts and roles, and an ABox containing
facts that assert participation of certain individuals in concepts/roles. Individual DLs
differ in terms of available constructors for building complex concepts/roles as well as
the shapes of terminological axioms that they allow. Regardless, most DLs can be
seen as decidable fragments of Ąrst-order logic and as such they employ the open-world
assumption (OWA). Intuitively, the OWA states that everything that is not forbidden is
possible and it is generally appropriate when data is considered incomplete. However, if
we know that a certain part of data is complete, then it is more appropriate to employ
the closed-world assumption (CWA) which states that what is not known to be true must
be false. Real-world applications often require that incomplete and complete parts of
data interact. As a result, various approaches have been proposed for combining OWA
and CWA in DLs.

One particularly prominent approach involves enriching DLs with the possibility of
specifying which part of the signature is considered complete. These predicates are called
closed and are to be interpreted under the CWA. In this thesis, we focus on very expressive
description logics with closed predicates and we study their computational and model-
theoretic properties. In particular, we provide new tight data complexity bounds of some

xv

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

standard reasoning tasks in expressive DLs with closed predicates that simultaneously
support nominals, inverses, and number restrictions Ű a combination of constructors that
is known to cause computational issues even without closed predicates. More precisely,
we show that the problem of deciding the consistency of knowledge bases formulated in
the DL ALCHOIQ remains NP-complete in data complexity in the presence of closed
predicates. This is a positive result, as it shows that closed predicates do not cause an
increase in the computational complexity of basic reasoning tasks in expressive DLs. We
then turn to OMQs whose ontology component contains closed predicates and is expressed
in one of our DLs of interest and we investigate their expressive power following two
different directions. The Ąrst one is concerned with the relative expressiveness of these
OMQ languages compared to standard query languages like Datalog and its extensions.
In particular, we present a polynomial-time rewriting of a large class of queries mediated
by ALCHOIQ ontologies with closed predicates into Datalog with negation under the
stable model semantics. As an important by-product of our translation, we get that
the query answering problem is co-NP-complete in data complexity for the considered
class of OMQs. The other direction investigates the expressive power of these OMQ
languages from the descriptive complexity perspective, where the central question is to
understand whether a given OMQ language is powerful enough to express all queries that
can be computed within some bound on time or space. Our results show that the OMQ
language that pairs atomic queries with ontologies in the very expressive DL ALCHOI
with closed predicates cannot express all co-NP-computable Boolean queries, despite
being co-NP-complete in data complexity. Following this negative result, we propose
an extension of the considered OMQ language and prove that it is indeed expressive
enough to precisely capture the class of all Boolean queries computable in co-NP. Finally,
we observe that declaring some predicates to be closed can have an interesting effect
on the knowledge base models. Namely, it sometimes happens that the interaction
between closed predicates and the numeric constraints in the TBox results in certain
open predicates having only extensions of bounded size. We present an algorithm to
identify such predicates and we give a general worst-case optimal bound for the size
of their extensions. Our results yield a promising tool for supporting the construction
of high-quality ontologies as well as a new way to push the decidability frontiers of
challenging data management tasks.

We next turn our attention to another approach for accommodating partial CWA in
DLs that is based on combining ontologies and non-monotonic rules into so-called hybrid
knowledge bases. Along these lines, we introduce a new hybrid formalism called Resilient
Logic Programs (RLPs), coupling Ąrst-order ontologies and non-monotonic rules with
the goal of providing reasoning support for systems that should be resilient, i.e., react
correctly in all possible situations. In this setting, the ontology describes all possible
situations that the system might face and the rules are used to react to these situations.
The task of deciding whether the system always has a correct reaction can then be
reduced to checking the consistency of such hybrid knowledge bases. Our results show
that, under a couple of natural assumptions, RLPs are decidable and very expressive:
they can elegantly express ∃∀∃-QBFs, disjunctive Datalog, and conĄguration problems

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

under incompleteness of information. We then go on to identify a large class of RLPs
that can be rewritten into disjunctive Datalog and we present several complexity results
for RLPs whose ontology is written in some standard DLs.

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Contents

Kurzfassung xi

Abstract xv

Contents xix

1 Introduction 1
1.1 State of the Art . 5
1.2 Main Contributions . 10
1.3 Organization and Relevant Publications 14

2 Preliminaries 17
2.1 General Notations . 17
2.2 Basics of Complexity Theory . 18
2.3 Description Logics . 22
2.4 Datalog . 34

3 Expressive DLs with Closed Predicates 47
3.1 DLs with Closed Predicates . 49
3.2 Characterizing KB SatisĄability via Integer Programming 59
3.3 The ŞsimplerŤ ALCHOIF . 81
3.4 Discussion . 85

4 Datalog Rewritability and Data Complexity of OMQs with Closed
Predicates 87
4.1 KB SatisĄability via Datalog¬ . 89
4.2 Query Rewriting and Complexity . 113
4.3 Discussion . 120

5 Descriptive Complexity of OMQs with Closed Predicates 125
5.1 Generic Boolean Queries . 127
5.2 Inexpressibility Results and Language Extension 128
5.3 Data Complexity of ALCHOIF+ . 133
5.4 Encoding the Turing Machine . 142

xix

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5.5 Discussion . 148

6 Reasoning about Predicate Boundedness 151
6.1 Bounded Predicates . 153
6.2 FI-enriched Systems and Programs . 157
6.3 The case of ALCHOIQ . 163
6.4 Boundedness in Ontology-Mediated Query Answering 171
6.5 Discussion . 180

7 Resilient Logic Programs 183
7.1 Resilient Logic Programs . 185
7.2 Decidable RLPs . 193
7.3 Resilient Logic Programs with DL Theories 201
7.4 RLPs Discussion . 209

8 Summary and Conclusion 211

List of Figures 217

List of Tables 219

List of Algorithms 221

Bibliography 223

Appendices 235
Missing Proof of Theorem 3.3.4 . 235
Missing Proof of Theorem 5.3.6 . 240
Reasoning with Safe RLPs . 252

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

CHAPTER 1
Introduction

It is often said that data is the gold of the digital age, and yet, it is worthless without ways
to convert it into knowledge and draw new conclusions from it. A traditional approach
to data management goes back to the early 1970s and the introduction of the relational
database model by Codd [Cod70], which has since then become a de facto standard for
managing and querying data in many domains. In this model, data is organized into
tables, also known as relations, where each row in some table represents a data record
and each column represents a speciĄc attribute. Within a speciĄc table, a single data
record is uniquely identiĄed by its primary key, i.e., a set of attributes whose combination
of values is unique for each data record in a given table. The relationships between data
stored in different tables are then established via foreign keys, i.e., by storing references to
the primary key attributes of another table. However, despite their popularity, there are
several challenges that relational database management systems (RDBMS) struggle with.
First, they are very rigid in structure, as they require a predeĄned relational schema
which is difficult to adapt in case the data does not conform to it. This rigidity also
makes the integration of data coming from relational databases with different underlying
schemata a challenging task. RDBMS offer very limited support for representing complex
semantic relationships which often results in a large amount of attributes and auxiliary
tables. This often makes querying relational databases a rather cumbersome task as all
of the burden is placed on the user. In order to write a meaningful query, the user must
be familiar with the structure of the database, the names of the attributes, and how
individual tables relate to each other and then build a query that logically encodes all
this information. Finally, RDBMS are not suitable for dealing with incomplete data, i.e.,
with situations where we want to infer and make conclusions about the existence and
properties of some data record that is not explicitly stored in the database.

One way of mitigating these issues is through the use of ontologies Ű formal descriptions of
the domain of interest that detail the relevant concepts in this domain, their characteristics,
and relationships that hold between them. In this context, an ontology deĄnes a

1

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

1. Introduction

vocabulary and provides background knowledge about the application domain, thus
adding meaning back to the data which can further be exploited for integration and
completion purposes. Ontologies are at the heart of the data management paradigm
termed ontology-based data access (OBDA) [PLC+08]. The central idea of OBDA is to
allow non-expert users to query multiple heterogeneous and possibly incomplete data
sources in an easy way by hiding from the users the actual structure of underlying data
sources. Instead, users are presented with an ontology that deĄnes a high-level conceptual
view of the application domain that should ideally match their intuitions about this
domain. All interactions with the data pass through the ontology. Namely, users can
write queries over the vocabulary of the ontology, essentially querying the conceptual
view, which is often an easier task than formulating a query over multiple data sources
with potentially different structures. For example, it was observed in [KHJR+15] that
the adoption of OBDA signiĄcantly reduced the amount of time spent on information
gathering, as non-expert users were suddenly able to independently formulate queries
due to their user-oriented vocabulary. Query answering in OBDA works by mapping
the data from different sources to the concepts and relationships in the ontology and
thus deĄning a uniĄed view of the data that uses only the vocabulary of the ontology.
User queries are then answered over this data view enriched with the facts that can
be inferred from it using the background knowledge stored in the ontology, therefore
providing higher-quality answers.

Description logics (DLs)[BHLS17] are a prominent family of formalisms speciĄcally
tailored for expressing structured knowledge. Backed up by years of active research
that resulted in efficient reasoners along with a relatively good understanding of the
computational properties of these languages, DLs are often the number one choice for
building and reasoning about ontologies. For instance, the Web Ontology Language
(OWL) family proposed by W3C for deĄning ontologies on the Web [Hor08, OWL09] is
based on description logics. In DLs, the domain of interest is represented via individuals
(i.e., constants) and unary and binary predicate symbols, referred to as concept names
and role names, respectively. In the standard setting, a DL knowledge base consists of two
components: (i) a TBox (i.e., an ontology) that contains terminological axioms detailing
the relationships that hold between different individuals, concepts, and roles, and (ii)
an ABox (i.e., data) that contains factual assertions about the participation of speciĄc
individuals in concepts/roles. As already mentioned, the term description logics refers to
a whole family of logics, where individual logics differ in terms of their expressiveness (i.e.,
what types of axioms are permitted by the logic) and computational costs of reasoning.
DLs are generally separated into two broad categories: lightweight and expressive DLs.
Lightweight DLs, like those belonging to the DL-Lite [CDL+07] and EL [BBL05] families,
prioritize computational tractability and scalability over expressiveness, making them
suitable for applications requiring efficient reasoning over large knowledge bases. In
contrast to the lightweight DLs, expressive DLs offer Ąne-grained modeling possibilities
but they are almost always intractable. A wide variety of reasoning tasks has been
considered in the DL literature, including answering database queries over DL knowledge
bases, which is also one of the key reasoning tasks of OBDA. In this setting, we deal with

2

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

so-called ontology-mediated queries (OMQs) that couple an ontology T expressed as a
TBox in some DL and a database query q. Given an ABox A containing concrete data,
we are interested in computing the certain answers to (T , q) over A, which are deĄned
as tuples of individuals that are answers to q over every relational structure that extends
A and satisĄes the ontological axioms in T .

It is important to mention that query answering in DLs is more involved than simple
query evaluation done by traditional database management systems Ű in fact, it amounts
to logical reasoning. The reason behind this is different underlying assumptions about
the completeness of data. More speciĄcally, traditional RBDMS make the so-called
closed-world assumption (CWA), which intuitively says that only the facts that are stored
in the database are considered true, while everything else is assumed false. In other
words, we assume that our data is complete and all relevant information is present in the
database. On the other hand, the OBDA approach in general, and DLs in particular,
were designed to deal with potential information incompleteness. As such, they employ
the open-world assumption (OWA), stating that things that are not known to be true are
not considered false, but rather unknown. As a result, when answering OMQs we have
to consider different possible completions of the data, explaining the need for a notion
like certain answers.

However, things are rarely binary, and real-world data can often contain some parts that
come from trusted sources and are known to be complete (for example, Ćight and train
schedules, or a list of courses offered by a university) as well as other parts that are
considered incomplete. Moreover, incomplete and complete parts may be required to
interact with each other, in which case both CWA and OWA on their own are inadequate
and we need formalisms that offer Ćexible support for both. As a result, there has been a
lot of research effort to extend description logics with some form of partial closed world
assumption, see, e.g., [DNR02, EIL+08, BLW09, SKH11]. In this thesis, we consider two
such prominent approaches: (i) extending DLs with closed predicates and (ii) combining
DLs with non-monotonic rules.

The basic idea behind the Ąrst approach is to equip DLs with the possibility of specifying
which part of the signature should be interpreted under the closed-world assumption
Ű these are the so-called closed predicates [SFdB09, LSW13]. More speciĄcally, a DL
knowledge base with closed predicates, in addition to the TBox T and the ABox A,
also contains a set Σ of predicates that are interpreted exactly as given in A and
all axioms of T that would typically allow us to infer new information over the closed
predicates are viewed as integrity constraints. Naturally, closed predicates affect reasoning
Ű they make ontology-mediated query languages non-monotonic and they have also been
shown to increase the complexity of basic reasoning tasks in some cases. In the Ąrst
part of this thesis, we aim to investigate the effects that closed predicates have on
reasoning in very expressive description logics in terms of their computational and
model-theoretic properties. In particular, we aim to characterize data complexity and
expressiveness of ontology-mediated query languages based on very expressive description
logics that simultaneously support closed predicates, nominals, inverse roles, and qualiĄed

3

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

1. Introduction

number restrictions. When it comes to expressiveness, we consider two directions: (i)
relative expressiveness that compares the expressive power of considered OMQ languages
to traditional database query languages, in our case a non-monotonic extension of
Datalog [GL88], and (ii) expressiveness from a descriptive complexity perspective that
investigates whether some OMQ language is powerful enough to express all queries
of some complexity class. Moving on, we make an interesting observation that closed
predicates can sometimes interact with the axioms in the TBox in a way that also bounds
the size of extensions of open predicates in the models of a given DL knowledge base. In
this work, we are interested in developing a procedure that can decide when this is the
case and provide suitable upper bounds on the sizes of such predicates.

We remark that our choice of logic makes things rather challenging. Indeed, the combi-
nation of nominals, inverse roles, and number restrictions is known to be quite tricky,
even if the integers occurring in the TBox are at most one [GKL11]. This is because
their interaction can result in the creation of inĄnitely many domain elements that are
anonymous (i.e., they do not represent individuals occurring in the knowledge base),
but nonetheless uniquely identiĄable in any model of the considered knowledge base.
Unfortunately, this almost completely destroys the forest model property which is heavily
exploited in decision procedures for less expressive DLs. As a result, we have that some
of the basic reasoning problems, like ontology satisĄability, are NExpTime-hard for
such logics [Tob00]. For comparison, this problem is in ExpTime if any of the three
constructors is omitted.

The second approach for combining OWA and CWA that we consider in this thesis are
combinations of description logics and non-monotonic logic rules into so-called hybrid
knowledge bases [Ros05]. Within this context, we develop a new hybrid formalism that
also couples a Ąrst-order theory (or DL ontology) and a non-monotonic program. However,
unlike other approaches in the literature where the interaction between the program and
the theory is limited to consistency or query entailment tests, in our formalism the answer
sets of the program must be Śresilient’ to the models of the theory, allowing the program to
respond differently to different models. This combination yields a very powerful language
that can elegantly express ∃∀∃-QBFs, disjunctive ASP, and conĄguration problems under
incompleteness of information.

Summing up, the high-level goal of this thesis is to better understand the effects that
the partial CWA has on reasoning in expressive DLs as well as how it can be exploited
for modeling some common practical problems. To this end, we identify the following
concrete goals:

• Characterize data complexity of reasoning in expressive DLs with closed
predicates

• Characterize relative expressiveness of OMQs in the presence of closed
predicates compared to classical query languages

4

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

1.1. State of the Art

• Investigate expressiveness of OMQs with closed predicates from the de-
scriptive complexity perspective

• Understand interactions between closed predicates and number restrictions

• Develop new formalisms based DLs with closed predicates

1.1 State of the Art

We next review the state of the art related to the goals we listed above and we point out
some challenges.

1.1.1 Mixing OWA and CWA in DLs

Closed predicates. Allowing some predicates to be closed is a prominent way of
supporting partial closed-world assumption in DLs. One of the earliest such approaches
proposed replacing ABoxes with DBoxes [SFdB09]. Syntactically, both ABoxes and
DBoxes are sets of assertions, however, there is a semantic difference between the two: a
knowledge base with a DBox D requires its models to interpret every concept and role
name occurring in D exactly as given in D. These predicates are thus considered closed Ű
their extensions are Ąxed and must be the same in every model of the knowledge base.
In contrast, the rest of the predicates are open and their extensions might vary among
interpretations. A generalization of this approach was presented in [LSW13] which does
not interpret all predicates in the DBox in this way but allows the user to explicitly
specify a subset of the signature that is considered closed. This gave rise to description
logics with closed predicates.

Naturally, closed predicates have an effect on reasoning. Recall that in ontology-mediated
query answering (OMQA) we are usually concerned with certain answers, i.e., tuples of
individuals that are answers to the query in every model of the knowledge base. However,
in the presence of closed predicates, we are no longer interested in arbitrary models but
only in those that "obey" the closed predicates by interpreting them according to the
provided data. This may alter our set of certain answers and introduce non-monotonicity.

The computational complexity of standard OMQA is very well understood. There is a
wide range of complexity results in the literature that cover many different DLs and query
languages using various techniques. For lightweight DLs like the members of the DL-Lite
and EL families, answering conjunctive queries (CQs) consisting of existentially quantiĄed
conjunctions of Ąrst-order atoms is tractable in data complexity but not in combined
complexity (see e.g. a recent survey [BO15]). For expressive DLs that extend ALC
answering of CQs is usually coNP-complete in terms of data-complexity, which follows
from the data complexity of the very expressive fragment of Ąrst-order logic that subsumes
most of the expressive DLs [PH09]. Furthermore, the same task is 2ExpTime-complete
in combined complexity for some extensions of ALC [Lut08, ELOŠ09, NOŠ16].

5

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

1. Introduction

Regarding the complexity of query answering in the presence of closed predicates, the
picture is not as detailed but some initial work has been done. For example, [FIS11] shows
that closed predicates make query answering in DL-LiteF intractable in data complexity,
namely, the data complexity is increased from AC0 to coNP-completeness. This was
expanded upon in [LSW13] where a non-uniform analysis of the data complexity of
answering CQs mediated by certain members of the DL-Lite and EL families extended
with closed predicates was performed. The goal of this work was to separate individual
ontologies into tractable and intractable cases, thereby obtaining a dichotomy for the data
complexity of CQ answering between AC0 and coNP for DL-Lite ontologies and between
PTime and coNP for EL. Furthermore, some results on the combined complexity
of query answering can be found in [NOŠ16]. However, these works mainly focus on
lightweight DLs.

In the case of expressive DLs with closed predicates, it was observed in [SFdB09] that
closed predicates can be simulated with the help of nominals in DLs that support
disjunction. As a result, the combined complexity of answering OMQs in these logics
extended with closed predicates remains unaffected. As this involves encoding the ABox
into the TBox, the same strategy is not applicable for obtaining data complexity bound
of the same task. It was shown in [LSW19] that the data complexity of answering
CQs mediated by the expressive DL ALCHI with closed predicates is coNP-complete.
Furthermore, the recent result in [AOŠ20] shows that answering queries consisting of
a single Ąrst-order atom (also called instance queries, or IQs for short) and a certain
fragment of CQs in the expressive DL ALCHIO with closed predicates is also coNP
complete in data complexity.

To the best of our knowledge, so far there are no results on the data complexity of
expressive description logics that simultaneously support nominals, inverses, number
restrictions, and closed predicates. This leads us to one of the main goals of this thesis:
characterizing data complexity of KB satisĄability and query answering for ALCHOIQ
in the presence of closed predicates.

Description Logics and Rules Hybrid languages that couple description logic on-
tologies with non-monotonic rules represent another way of accommodating partial CWA
in DLs. In general, these approaches can be separated into two broad categories: (i)
world-centric and (ii) entailment-centric.

In the Ąrst category, an intended model of the knowledge base is a single Ąrst-order
structure that is, in some sense, acceptable to both components. One of the Ąrst hybrid
formalisms that allow the use of non-monotonic rules is r-hybrid [Ros05]. In this approach,
a knowledge base is a pair H = (T ,P), where T is a Ąrst-order theory (or a DL ontology)
and P is a disjunctive Datalog with negation. The non-monotonic semantics of r-hybrid
is intuitively given as follows: all predicates occurring in the ontology are considered to
be open. That is, in a model I of H these predicates can have arbitrary extensions as
long as I still satisĄes T (in a classical sense). The remainder of the predicates occurring
in the rules are considered closed and their extensions cannot be arbitrary Ű they must

6

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

1.1. State of the Art

be minimal in some sense, i.e., justiĄed by the program. However, it was shown early on
that, if one is not careful, combining DLs with rules (even the non-monotonic ones) leads
to the loss of decidability [LR98]. To combat this issue, the usual approach is to introduce
a syntactic safety condition that ensures that variables in the program range only over a
Ąnite number of constants. Rosati’s r-hybrid employs the well-known DL-safety condition,
which requires that all rule variables occur in predicates which cannot occur in the DL
ontology. The intuition behind this is that the variables are bound to range only over
the constants explicitly mentioned in the knowledge base, restoring decidability. This
restriction was then regarded as too strong and relaxed in a later work [Ros06] of the
same author as well as in [BOŠ18]).

The second category involves approaches in which rules have little to no access to
individual models of the DL component, and instead, they perform the reasoning based on
the logical consequences of the DL component. A notable representative in this class are
dl-programs [EIL+08] and its various generalizations. In this approach, the rules and the
ontology component are seen as separate layers that safely interact through well-deĄned
interfaces. More precisely, dl-rules allow standard Datalog programs with negation to
pose queries to DL knowledge bases with the possibility of (temporarily) modifying the
ABox before querying. This limited form of interaction eliminates the need for previously
discussed syntactic safety conditions.

A further example of an entailment-centric approach are so-called hybrid MKNF knowl-
edge bases [MR07, MHRS06], based on Lifschitz’s logic of minimal knowledge and negation
as failure (MKNF) [Lif91]. In this formalism, a hybrid KB again consists of a DL compo-
nent and a set of non-monotonic rules that can additionally use a modal operator K to
inspect the consequences of the DL knowledge base.

To account for the scenarios where both extremes might be inadequate, in this thesis,
we introduce a new hybrid formalism that blurs the lines between world-centric and
entailment-centric approaches. We thus study hybrid knowledge bases that may process
different models of the input ontology in different ways, in the spirit of world-centric
approaches, but the intended answer sets, which must be resilient to the different scenarios,
are deĄned via a universal quantiĄcation over the models of the ontology, in the spirit of
entailment-centric approaches.

1.1.2 Relative Expressiveness and Rewriting Techniques for OMQs

A distinguishing feature of the logics in the DL-Lite family is that they are Ąrst-order
rewritable, i.e., we can reduce query answering and other reasoning tasks to evaluating
Ąrst-order queries over a relational database. More speciĄcally, given any OMQ Q = (T , q)
with a TBox T in some DL and a Ąrst-order CQ q, we can deĄne a new query q′, expressed
as the union of conjunctive queries, that encodes the semantics of T and q. The query
q′ has the following convenient property: for any ABox A, the answers to q′ over A
coincide with the certain answers to Q over A. Such rewritings come with many beneĄts:
they allow us to reuse the existing database technology that is highly optimized, they

7

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

1. Introduction

help us compare the expressive powers of the query languages, and in some cases allow
us to transfer known results like complexity bounds (see e.g., [CDL+07, CGL+13]). In
fact, Ąrst-order rewritability underlies many of the known results on the tractability
in data complexity of reasoning in DL-Lite. However the original rewriting algorithm
for DL-Lite (see PerfRef algorithm in [CDL+05, CDL+07] has the problem that the
size of the computed query q′ increases exponentially with the number of atoms of the
CQ q. This prompted investigations into shorter and more efficient rewritings, see, e.g,
[RA10, Ros12, CTS11, RMKZ13], and the existence of succinctness of FO rewritings has
been investigated additionally in [BKK+18, GKK+14]. It was then shown in [GS12] that
there exists a polynomial time rewriting of CQs mediated by DL-Lite ontologies into non-
recursive Datalog, with the small caveat that ABox must contain two distinct individuals.
There has also been interest in developing rewriting techniques for the DLs in the EL
family [Ros07b, HLSW15]. One prominent tactic here is to adopt a combined approach to
query rewriting introduced in [LTW09], which produces a succinct non-recursive Datalog

rewriting of the input OMQ if this OMQ is Ąrst-order-rewritable, otherwise, it reports
non-FO-rewritability. Differently from the previous ŞpureŤ rewritings, this approach
involves slightly extending the input ABox over which the query is being answered by
certain facts that can be inferred from the TBox.

Due to their intractability in data complexity, the existence of Ąrst-order rewritings is
generally ruled out for expressive description logics. In these cases, the alternative is to
go for translations into variants of Datalog. One of the Ąrst such approaches provides a
rewriting of instance queries mediated by expressive DL SHIQ ontologies to reasoning
in disjunctive Datalog [HMS07] in exponential time in the size of the TBox, assuming
the unary coding of numbers. In this approach, the DL ontology is viewed as a set of
Ąrst-order sentences, as shown possible by [Bor96], which is then converted into clauses
and saturated using a Ąrst-order resolution/superposition calculus, and the corresponding
program is obtained by eliminating function symbols from the saturated theory. On the
basis of this translation, the authors show that answering instance queries in SHIQ is
coNP-complete in data complexity. Furthermore, it was shown in [EOŠ12] that CQs
mediated by SH and SHQ ontologies can also be rewritten into an exponentially-sized
Datalog program. The technique that has been used in this rewriting hinges on the
fact that one can focus on forest-shaped interpretations when answering CQs over SH
knowledge bases. The authors develop a way to Ąnitely represent such models using
so-called knots, which are further exploited to compute the desired rewriting. Another
result shown in [BtCLW14] states that unions of CQs mediated by certain expressive
DLs (though not as expressive as ALCHOIQ) can be rewritten into monadic disjunctive
Datalog in exponential time.

Regarding succinct polynomial-time rewritings of expressive DLs, the earliest such rewrit-
ing was presented in [ORŠ10]. In this work, the authors show that the KB satisĄability for
the Horn fragment of the expressive DL SHOIQ (i.e., the fragment of SHOIQ that can-
not express disjunctive information) can be translated into a polynomially-sized Datalog

program. The presented technique exploits the fact that the knowledge bases expressed

8

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

1.1. State of the Art

in this logic have a universal model property over which we can do query answering.

Recently, a new rewriting technique was introduced [AOŠ20] for ontology-mediated in-
stance queries in full ALCHOI with closed predicates, albeit without number restrictions.
In this work, the authors provide a game-theoretic characterization of the semantics of
the considered class of OMQs, namely instance queries and a restricted fragment of CQs,
and based on this characterization, they develop a Datalog program with stable negation
that decides the existence of a winning strategy, reminiscent of known type-elimination
algorithms for DLs.

Finally, while in this thesis we focus on Şpure rewritingsŤ, the previously-mentioned
combined approach has also been investigated in the context of expressive DLs [CDK18,
FCS+15], albeit for Horn fragments.

When it comes to query rewriting in description logics with closed predicates, only very few
rewritability results are available: the results from [LSW15] showing that quantiĄer-free
UCQs in DL-LiteR with closed predicates are Ąrst-order-rewritable, the one in [SFdB09]
showing how to rewrite instance queries in ALC with closed predicates into Ąrst-order
queries (when possible) and the previously-mentioned result in [AOŠ20] showing that
instance queries in ALCHOI with closed predicates can be rewritten into Datalog with
negation under the stable model semantics.

Looking at the results above, it becomes apparent that there are no rewriting results
for expressive description logics with or without closed predicates that simultaneously
support nominals, role inverses, and number restrictions. In this thesis, we aim to close
this gap by providing a polynomial translation of a large class of OMQs mediated by
ALCHOIQ ontologies with closed predicates into Datalog with negation under the stable
model semantics. We note that the techniques mentioned above cannot be readily adapted
to obtain the desired rewriting for ALCHOIQ, as they are exponential in size, rely on
model-theoretic properties that our logic does not possess, or are based on resolution
that is known to be tricky for non-monotonic logics.

1.1.3 Expressive Power of OMQs with Closed Predicates

Descriptive complexity [Imm99] is a useful notion that helps us measure the expressiveness
of some query language. In this context, we ask whether a given language is powerful
enough to express all queries computable within some time or space resources, i.e.,
belonging to a certain complexity class. In this case, we say that this query language
captures the considered complexity class.

It is well-known that Datalog, although PTime-complete in data complexity, cannot
express all PTime computable queries [Kol91]. However, if we equip input instances
with a total ordering of their domain, then Datalog precisely captures PTime [DEGV01].
Furthermore, it was also shown that Datalog with negation under the stable model se-
mantics captures coNP [Sch95], while disjunctive Datalog can express all ΣP

2 -computable
queries [EGM97].

9

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

1. Introduction

In contrast, the expressive power of OMQs has thus far received limited attention. It was
shown in [BtCLW14] that there are OMQ languages that capture certain subclasses of
coNP related to constraint satisfaction problems (CSPs). More recently, a close connection
between OMQ languages with the so-called closed predicates and surjective CSPs was
shown in [LSW19].

In this thesis, we continue this line of work and we focus on Ąnding an OMQ language
that precisely captures the complexity class coNP. As there are many coNP-computable
(or even PTime-computable) non-monotonic queries, such an OMQ language inevitably
needs to offer some support for non-monotonic reasoning, making expressive DLs with
closed predicates excellent candidates.

1.2 Main Contributions

Keeping in mind our previously-introduced goals and the observations from the previous
section, we next summarize the main contributions of this thesis:

• A polynomial time rewriting of OMQs over ALCHOIQ with closed pred-
icates into Datalog with negation under the stable model semantics and
novel data complexity results.

In this thesis, we present a polynomial-time rewriting of safe-range first-order queries
mediated by ontologies expressed in the DL ALCHOIQ with closed predicates into a
variant of Datalog that supports negation under the stable model semantics. Informally
speaking, safe-range queries are Ąrst-order queries in which all variables are somehow
guarded by closed predicates. We also present a variant of this translation that
was speciĄcally tailored for ALCHOIF , a fragment of ALCHOIQ where global role
functionality is the only available type of number restrictions. Both of these rewritings
use a very different approach from all other rewritings in the literature and are based
on a characterization of the satisĄability problem for this logic as a system of linear
inequalities with some side conditions.

SatisĄability via integer programming. Inspired by the techniques in [Cal96,
LST05, PH05], we show that, given a ALCHOIQ (resp. ALCHOIF) knowledge
base K, we can construct a system of integer linear inequalities enriched with
implications between inequalities (enriched systems, for short) that has a solution
in which every variable is assigned either a natural number or a special value
representing inĄnity if and only if this knowledge base admits a model (with
some caveats). In such a system obtained from K, every variable corresponds to a
tile for K. In a nutshell, a tile describes a particular kind of domain element that
can be found in the models of K in terms of the basic concepts that it satisĄes
and the kinds of neighbors it must possess. Conditions are placed on tiles to
ensure local consistency of such descriptions. The enriched system then deĄnes
conditions that must be satisĄed in order to ensure global consistency, i.e., to

10

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

1.2. Main Contributions

ensure that a model of K can be built by instantiating all tiles according to the
values that their corresponding variables are assigned.

Building and solving enriched systems in Datalog. Based on the characteri-
zation above, we build a modular Datalog program PT ,Σ

sat with negation under the
stable model semantics that depends only on the TBox T and the set Σ of closed
predicates and has the following property. For any input ABox A, the intended
models of PT ,Σ

sat over A correspond to the solutions of the enriched system for
the KB (T ,Σ,A). Moreover, PT ,Σ

sat is polynomial in the size of the input TBox
and the set of closed predicates assuming the unary coding of numbers occurring
in the TBox.

Rewriting safe-range queries in Datalog. We introduce the notion of safe-
range queries in which non-answer variables are guarded by closed predicates,
which has an effect that during query answering we can focus on the parts of
models that only involve those individuals that occur in the knowledge base.
Exploiting this property, we adapt the program PT ,Σ

sat by adding the rules to non-
deterministically guess the part of the model over the known individuals. We can
then answer database queries over this program instead of the original ontology.
We note that safe-range OMQs subsume instance queries and quantiĄer-free
(unions of) conjunctive queries.

Novel data complexity results. As an important consequence of our results,
we get that the knowledge base satisĄability in ALCHOIQ with closed predicates
is NP-complete and the considered class of safe-range OMQs is coNP-complete
in data complexity. Indeed, in our work, we analyze the size of the enriched
systems that are obtained from a given knowledge base K and we see that such a
system is in general exponential in the size of K, however, it is only polynomial if
the TBox and the set of closed predicates are considered Ąxed. Moreover, deciding
whether an enriched system has a solution can be done using ordinary integer
programming techniques, yielding the desired upper bounds. We also mention
that the same upper bounds follow from our translation and known results about
the complexity of Datalog with negation. This is a positive result, as it shows
that closed predicates in ALCHOIQ do not increase the data complexity.

• An OMQ language based on ALCHOIF with closed predicates that can
precisely express all coNP computable queries over ABoxes.

Encouraged by our novel complexity results, we show that we can deĄne an OMQ
language with closed predicates that can precisely express all generic Boolean queries
over ABoxes that are computable in coNP. We Ąrst observe that, due to their
monotonicity, standard DLs cannot express all coNP queries. Furthermore, we
also show that instance queries based on the non-monotonic ALCHOI with closed
predicates are still not powerful enough to capture coNP. As a Ąrst step towards
a positive result, we present an extension of ALCHOIF with closed predicates
with nominal schemata [KMKH11] of very restricted shapes and argue that they

11

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

1. Introduction

do not cause a complexity increase by suitably modifying our integer programming
characterization. Finally, we show that the OMQ language that couples inconsistency
queries (i.e., queries that ask whether a KB has a model) with ontologies in this
extended language has the desired expressive power. Intuitively speaking, a generic
Boolean query q is computable in coNP if there exists a non-deterministic Turing
machine that in polynomial time decides whether q is "false" over the input ABox.
Our proposed OMQ language can accurately express the computations of such NTMs,
thereby capturing precisely the complexity class coNP.

• A procedure for deciding predicate boundedness in the presence of closed
predicates.

Declaring some predicates closed can result in certain open predicates having only
extensions of bounded size due to possible interaction between closed predicates and
number restrictions. For example, assume we have a DL TBox T stating that each
employee of a company can take part in at most 5 projects and that all projects have
at least one employee: Empl ⊑≤ 5 assgdTo.Proj and Proj ⊑ ∃assgdTo−.Empl. Further,
assume Empl is a closed predicate and we are given an ABox A that contains a list of
all n employees. Then we can easily infer that there are at most 5n projects. We may
not know exactly which projects these are, but in any model of the knowledge base
(T , ¶Empl♢,A) the extension of Proj will contain at most 5 elements, i.e., Proj is in a
way bounded by the TBox and the closed predicates.

Two notions of boundedness. We deĄne two notions of bounded predicates for
DLs with closed predicate: (i) with respect to a particular knowledge base (weak
boundedness) and (ii) with respect to a given TBox and a set of closed predicates,
independently from the actual data (strong boundedness). The intuition behind
the two notions is as follows. We say that a predicate p is bounded in a given
knowledge base (T ,Σ,A) with closed predicates if there exists an integer constant
that provides an upper bound on the cardinality of the predicate’s extension in
all models of this knowledge base. Moreover, if p is bounded regardless of the
concrete contents of the ABox A, p is (strongly) bounded w.r.t. T and Σ.

Decision procedures, complexity results, and concrete upper bounds
on bounded predicate sizes. We provide procedures to decide predicate
boundedness when the TBox is expressed in ALCHOIQ that are once again
based on our integer programming characterization of the satisĄability problem
for ALCHOIQ with closed predicates. For strong boundedness, this step involves
a reformulation in terms of finite-infinite satisfiability problem, where we ask
whether a TBox has a model in which some speciĄc predicates have finite
extensions, while some other given predicates have infinite extensions. Both
procedures are worst-case optimal and show that checking predicate boundedness
in the weak and the strong sense is co-NExpTime-complete for ALCHOIQ
TBoxes. Moreover, if boundedness w.r.t. a KB K is inferred for some predicate,
the concrete bound can be computed and it is double exponential in the size

12

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

1.2. Main Contributions

of the input ontology. For strong boundedness, we establish the existence of a
function fT ,Σ, depending on T and Σ, that computes a Ąnite upper bound on
the number of distinct domain elements occurring in extensions of predicates
bounded by T and Σ, in all models of (T ,Σ,A), where A is any ABox over the
signature of T with a maximum of n distinct individuals. While this function is
generally a double exponential function, it becomes polynomial when the TBox is
Ąxed, implying the number of elements in bounded predicates grows polynomially
relative to the input ABox size.

Relaxation for safe-range queries and safety conditions for ontology-
mediated Datalog queries. Finally, we exploit our results to relax the syntactic
restriction used to deĄne the above-mentioned safe-range queries by allowing
the use of open predicates as guards, as long as they are strongly bounded. We
then apply the same tactic to deĄne a new safety condition for OMQs based on
ALCHOIQ and Datalog, providing worst-case optimal results on the combined
and data complexity along the way.

• A novel combination of DLs and non-monotonic rules. We provide a new
hybrid formalism called Resilient Logic Programs, or RLPs for short, that combine Ąrst-
order theories (or DL ontologies) and rules with non-monotonic negation to provide
reasoning support for systems that should react correctly in all possible situations. In
this setting, the theory component describes the situations that the system might face,
and the rules are used to react to these situations. Our novel semantics allows us to
reduce reasoning tasks like ensuring that the system always has a correct reaction to
common reasoning problems for hybrid knowledge bases such as consistency checking.

Expressiveness analysis. We investigate the expressiveness of RLPs and show
they are very powerful. In fact, they easily capture disjunctive Datalog with
negation under the stable model semantics and ∃∀∃-QBFs. The latter result
already shows that reasoning in RLPs is ΣP

3 -hard in data complexity, setting
them apart from previous hybrid languages. We also illustrate the power of RLPs
for conĄguration problems with incomplete information.

Decidability and complexity bounds. We show that RLPs are decidable,
assuming that reasoning in the logic expressing the theory component is decidable
and some rule safety conditions are applied, including the previously-mentioned
relaxed safety condition for Datalog queries. We also provide a general complexity
upper bound that applies to RLPs whose theory component is written in very
expressive Ąrst-order fragments like the guarded negation fragment (GFNO).
Moreover, we provide concrete algorithms and complexity results for the case
where ontologies are written in ALCHOIQ, ALCHI, and DL-LiteF .

Translation into disjunctive Datalog. Finally, we introduce a restricted
fragment of RLPs, in which theories are given as sets of positive disjunctive
rules, and the use of default negation is slightly restricted and we show that this

13

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

1. Introduction

fragment can be rewritten into disjunctive Datalog with negation, opening up a
perspective for potential implementation.

1.3 Organization and Relevant Publications

The contributions of this thesis are based on the following peer-reviewed publications,
listed in chronological order:

[OPŠ19] Magdalena Ortiz, Sanja Pavlović, and Mantas Šimkus. ŞAnswer Set Pro-
grams Challenged by OntologiesŤ. In Proceedings of the 32nd International
Workshop on Description Logics, DL 2019, CEUR-WS, 2019.

[LOŠ20] Sanja Lukumbuzya, Magdalena Ortiz, Mantas Šimkus. ŞResilient Logic
Programs: Answer Set Programs Challenged by OntologiesŤ. In Proceedings
of the Thirty-Fourth AAAI Conference on ArtiĄcial Intelligence, AAAI 2020,
pp. 2917-2924. 2020.

[GLOŠ20] Tomasz Gogacz, Sanja Lukumbuzya, Magdalena Ortiz, and Mantas Šimkus.
ŞDatalog rewritability and data complexity of ALCHOIF with closed pred-
icatesŤ. In Proceedings of the International Conference on Principles of
Knowledge Representation and Reasoning, KR 2020, vol. 17, no. 1, pp.
434-444. 2020.

[LŠ21] Sanja Lukumbuzya, and Mantas Šimkus. ŞBounded Predicates in Descrip-
tion Logics with CountingŤ. In Proceedings of the Thirtieth International
Joint Conference on ArtiĄcial Intelligence, IJCAI 2021, pp. 1966-1972. 2021.

[LOŠ23] Sanja Lukumbuzya, Magdalena Ortiz, and Mantas Šimkus. ŞOn the expres-
sive power of ontology-mediated queries: Capturing coNPŤ. In Proceedings of
the 36th International Workshop on Description Logics, DL 2023, CEUR-WS,
2023.

[LOŠ24] Sanja Lukumbuzya, Magdalena Ortiz, Mantas Šimkus. ŞDatalog Rewritabil-
ity and Data Complexity of ALCHOIQ with closed predicatesŤ. ArtiĄcial
Intelligence (2024): 104099.

The rest of this thesis is structured as follows:

• In Chapter 2, we introduce the essential concepts, deĄnitions, and background
information that is necessary to understand the subsequent chapters. In particular,
we give an introduction to description logics and Datalog, formally deĄning their
syntax, semantics, and relevant reasoning tasks as well as the concrete languages
that we will focus on throughout the rest of this thesis.

14

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

1.3. Organization and Relevant Publications

• In Chapter 3, we introduce description logics with closed predicates, focusing
speciĄcally on the expressive DLs ALCHOIQ and ALCHOIF . We then show
how we can characterize the knowledge satisĄability problem for these logics via
integer programming and we state the desired data complexity bounds. The
characterization presented in this chapter also plays a major role in the subsequent
three chapters.

The results in this chapter were originally presented in [GLOŠ20] (for ALCHOIF)
and in the appendix to [LŠ21] (for ALCHOIQ). These two works were recently
combined and extended in [LOŠ24].

• In Chapter 4, we present our rewriting from ontology-mediated safe-range queries
in ALCHOIQ with closed predicates into Datalog, based on the satisĄability
characterization from the previous chapter. The results from this chapter were
published in [LOŠ24].

• In Chapter 5, we investigate expressiveness of OMQ languages. In particular, we
Ąrst prove that certain languages are not expressive enough to express all coNP-
computable queries. We then present an extension of ALCHOIF with closed
predicates together along with the proof of its complexity and we show that we can
deĄne an OMQ language based on this logic that is expressive enough to capture the
desired complexity class. The results from this chapter were published in [LOŠ23].

• In Chapter 6, we formalize two notions of predicate boundedness and present
corresponding decision procedures and worst-case optimal complexity bounds. We
also provide concrete bounds for the number of different objects that can occur
in the extensions of bounded predicates, which we then exploit to deĄne relaxed
notions of safe-range and safe Datalog queries mediated by ALCHOIQ ontologies
with closed predicates. The results from this chapter were published in [LŠ21].

• In Chapter 7, we formally introduce our resilient logic programs that combine
Ąrst-order theories with non-monotonic rules. We then proceed to investigate
their decidability and expressiveness, and we provide algorithms and complexity
results for the cases in which the theory component is written in certain description
logics. The results from this chapter were originally published in the workshop
paper [OPŠ19] and its conference version [LOŠ20].

• Finally, chapter 8 serves as the conclusion to this thesis and it provides a summary
of our results, as well as a discussion of interesting problems that remain open and
an outlook on our future plans.

15

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

CHAPTER 2
Preliminaries

This chapter gives a tour through selected background notions that this thesis builds
upon. In particular, in Section 2.1, we Ąx some general notations that are used in the
sequel. In Section 2.2 we review basic notions relating to computational complexity.
Section 2.3 serves as an introduction to Description Logics (DL), reviewing the basic
terminology and reasoning tasks, and formally introducing the speciĄc DL languages that
are the objects of our investigation. Section 2.4 is dedicated to Datalog and its relevant
variants, speciĄcally, disjunctive Datalog and Datalog with negation under the answer
set semantics. We note that this chapter offers a good starting point, however, it may
not cover all the material from the literature that is used in the remainder of this thesis.
Other relevant notions will be recalled as we go along.

2.1 General Notations

We next speciĄcally recall a few relevant notions from Ąrst-order logic (FO), but in
general, familiarity with the syntax and basics of the model theory of FO is assumed. For
a detailed introduction to Ąrst-order logic, we refer interested readers to any standard
textbook on formal logic and model theory (see, e.g., [Fit96, Mar06]).

We assume the following countably inĄnite and mutually disjoint sets:

• NP of predicate symbols,

• NV of variable symbols, and

• NI of constant symbols.

Moreover, each predicate symbol p ∈ NP is associated with a non-negative integer called
arity and denoted by art(p). With the slight abuse of standard FO terminology, the
elements in NP are often simply referred to as predicates or relations.

17

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2. Preliminaries

Terms are the elements in NV ∪NI, atoms are expressions of the form p(t1, . . . , tn), where
p is a predicate symbol from NP that has the arity n, and t1, . . . , tn are terms. When the
arity of the predicate is either clear or irrelevant, we simply write p(⃗t), where t⃗ is a tuple
of terms of length art(p). If α is an atom, the expressions of the form α and ¬α are
called literals. For a literal l, we denote by terms(l) the set of all terms and by vars(l)
the set of all variables occurring in l. We say that a term, an atom, or a literal is ground
if it contains no variables.

2.2 Basics of Complexity Theory

Generally, we assume the reader to be familiar with the basics of complexity theory as
well as the usual time and space complexity classes deĄned upon the Turing model of
computation. For a detailed introduction to this topic, we refer to any standard textbook,
e.g., [Pap94].

We next review some relevant notions, starting with Turing machines.

2.2.1 Turing Machines

Introduced by Alan Turing in 1936 [Tur37], a Turing machine is a relatively simple
abstract computational device with the following main parts:

• A tape with a left-margin that is inĄnite on the right, divided into cells in which
we can write symbols from a given alphabet. Moreover, we can also replace the
symbols that have been already written on the tape with different ones, or we can
delete them altogether, by replacing them with a special blank symbol.

• A read/write head positioned over the tape that points to one speciĄc cell that is
currently being inspected.

• A state register that stores the current state of the Turing machine.

• A transition relation according to which the computation is performed. Depending
on the current state of the machine and the symbol in the cell under the machine’s
head, this relation gives us instructions on how to proceed by telling us what symbol
should be written in this cell, if and how the head should be moved, as well as,
what is the next state that the machine should assume. If there is only one way
to proceed, the Turing machine is called deterministic, and if there are multiple
possible ways, then it is called non-deterministic.

• Three distinguished states: the initial state, the accepting state and the rejecting
state.

Formally, Turing machines are deĄned as follows.

18

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2.2. Basics of Complexity Theory

DeĄnition 2.2.1 (Turing machine). A Turing machine (TM) is a tuple M = (Γ, Q, δ, q0,
qacc, qrej), where Γ is a set of symbols called an alphabet, Q is a set of states, δ ⊆
(Γ ∪ ¶B♢)×Q× (Γ ∪ ¶B♢)×Q× ¶−1,+1♢ is a transition relation, and q0, qacc, qrej ∈ Q
are the initial state, the accepting state, and the rejecting state, respectively. The symbol
B is the blank symbol. Moreover, if for every (s, q) ∈ (Γ ∪ ¶B♢) × Q, there is exactly
one (s′, q′, n) ∈ (Γ ∪ ¶B♢) × Q × ¶−1,+1♢ such that (s, q, s′, q′, n) ∈ δ, M is called a
deterministic Turing machine (DTM), otherwise M is a non-deterministic Turing machine
(NTM).

Let Γ be an alphabet. We denote by Γ∗ the set of all words (i.e., strings) over Γ, including
the empty word ε. Turing machines take words as input and perform computations on
them. When a Turing machine M is presented a word w over the speciĄed alphabet Γ,
this word is written onto its tape surrounded by all blank symbols, the head is positioned
over the Ąrst symbol of w, and M is assumed to be in its initial state. The computation
is then performed according to the transition relation, as explained above. If at some
point during the computation M reaches the accepting state, we say that M accepts w.
The set of all input words over Γ which are accepted by M is considered the language of
M . To formalize this, we next deĄne the notions of configurations and computations of
TMs.

DeĄnition 2.2.2 (ConĄguration). Let M = (Γ, Q, δ, q0, qacc, qrej) be a TM. A conĄgura-
tion of M is a triple (q, w, x, u), where w, u ∈ (Γ ∪ ¶B♢)∗, x ∈ Γ ∪ ¶B♢, and q ∈ Q.

The intuition behind a conĄguration c = (q, w, x, u) is as follows. The head of the TM M
points to a cell with the symbol x, while w is the word on the left of the head, and u is
the word on the right of the head, after which there are only blank symbols written on the
tape. This means that if u is empty, x is followed by only blank symbols. Moreover, M is
in state q. We can now deĄne what it means for M to perform one step of computation.

DeĄnition 2.2.3 (Computation step, computation). Given two configurations c1 =
(q1, w1, x1, u1) and c2 = (q2, w2, x2, u2) of a TM M = (Γ, Q, δ, q0, qacc, qrej), we say that
c1 yields in one step c2, in symbols c1 →M c2, if q1 ̸= qacc, q1 ̸= qrej , and there is some
tuple (x1, q1, b, q2, n) ∈ δ such that one of the following holds:

• if n = +1 and u1 = a · u′
1, where a ∈ Γ ∪ ¶B♢, then w2 = w1 · b, x2 = a, and

u2 = u′
1,

• if n = +1 and u1 is empty, then w2 = w1 · b, x2 = ¶B♢, and u2 = ε, or

• if n = −1 and w1 = w′
1 · a, where a ∈ Γ ∪ ¶B♢, then w2 = w′

1, x2 = a, u2 = b · u1.

A (possibly infinite) sequence of configurations c1, c2, . . . is called a computation of M if:

• ci →M ci+1, for all i ≥ 1, and

19

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2. Preliminaries

• if the sequence is finite with cn being the last configuration in it, then there is no
configuration cn+1 s.t. cn →M cn+1.

A finite computation c1, c2, . . . , cn is called terminating if cn = (q, u, x, u′) and q ∈
¶qacc, qrej♢.

We next deĄne the notion of a computation of M on a word w as well as what it means
for M to accept w.

DeĄnition 2.2.4. Let M = (Γ, Q, δ, q0, qacc, qrej) be a TM and let w be a word over Γ. If
w is non-empty, i.e., w = a · w′, we call a computation c1, c2, . . . where c1 = (q0, ε, a, w

′)
a computation of M on w. The notion is defined analogously for w = ε, where c1 =
(q0, ε, B, ε).

DeĄnition 2.2.5 (Word acceptance). Let M = (Γ, Q, δ, q0, qacc, qrej) be a TM and let w
be a word over Γ. We say that M accepts w if there is some terminating computation
c1, . . . , cn of M on w such that cn = (qacc, u, x, u

′), u, u′ ∈ (Γ ∪ ¶B♢)∗.

We can now we deĄne what it means for a Turing machine to decide a language.

DeĄnition 2.2.6. Let M = (Γ, Q, δ, q0, qacc, qrej) be a TM and let L be a formal language
over Γ. We say that M decides L if the following holds, for every word w ∈ Γ∗:

• all computations of M on w are terminating, and

• w ∈ L if and only if M accepts w.

2.2.2 Complexity Classes

As the name suggests, complexity classes categorize problems based on how difficult they
are to solve. In this thesis, we restrict our attention to decision problems that are simply
yes-or-no questions on a speciĄed set of instances. Each decision problem Π can be seen
as a formal language L(Π) over some alphabet Γ consisting of all the words that encode
the yes-instances of this problem, together with the question of whether a given word
w ∈ Γ∗ encoding a particular problem instance belongs to L(Π). The complexity of Π is
measured in terms of how much running time (i.e., computation steps) or memory space
(i.e., a number of visited cells) a Turing machine needs to determine whether some input
word belongs to L(Π) in the worst-case scenario and is usually given as a function of the
size of the input instance.

We next list some of the most important complexity classes.

• PTime: the class of all problems that can be decided by a deterministic Turing
machine in the amount of time polynomial in the size of the input word. More
precisely, we say that a decision problem Π is in PTime, if there exists some DTM

20

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2.2. Basics of Complexity Theory

M and some polynomial p(n) such that M can decide in p(♣w♣) steps whether the
input word w belongs to L(Π), for every word w encoding an instance of Π.

• NP: the class of all problems that can be decided by a non-deterministic Turing
machine in the amount of time polynomial in the size of the input word. Formally,
this class is deĄned analogously to PTime, with the difference that we are allowed
to use non-deterministic Turing machines.

• ExpTime: the class of all problems that can be decided by a deterministic Turing
machine in the amount of time that is exponential in the size of the input word.
More precisely, a problem Π is in ExpTime, if there exists some DTM M and some
polynomial p(n), such that M can decide in 2p(♣w♣) steps whether the input word w
belongs to L(Π), for every w encoding an instance of Π.

• NExpTime: the class of all problems that can be decided by a non-deterministic
Turing machine in the amount of time exponential in the size of the input word.
Formally, this class is deĄned analogously to ExpTime, with the difference that we
are allowed to use non-deterministic Turing machines.

The classes kExpTime and nkExpTime generalize ExpTime and NExpTime, respec-
tively, but instead of a single exponential function 2p(n), they allow k-time exponential
functions. For example, the class 2ExpTime (resp. n2ExpTime) is deĄned as the class
of all problems that can be decided by a DTM (resp. NTM) M within 22p(n)

computation
steps, where p(n) is a polynomial.

Furthermore, we can also deĄne complexity classes based on how much memory a TM
needs to decide a problem. We say that a problem Π is in PSpace (resp. NPSpace)
if there exists some DTM (resp. NTM) M and some polynomial p(n) such that M can
decide whether the input word w encoding an instance of Π belongs to L(Π) by using at
most p(♣w♣) tape cells. The classes ExpSpace and NExpSpace are deĄned analogously,
but we are allowed to use exponentially many tape cells.

We say that a decision problem Π is a complement of another decision problem Π′ if
they have the same set of instances, but the yes-instances of Π are no-instances of Π′

and vice versa. In terms of the corresponding formal languages, we have that L(Π) is
the complement of L(Π′), i.e., L(Π) = L(Π′). We remark that two formal languages
over some alphabet Γ are complements of each other if they are (i) disjoint and (ii) their
union is not necessarily Γ∗, but some trivially recognizable set. For example, in case of
decision problems, we have that L(Π′)∪L(Π) is the set of all valid encodings of instances
of Π′. Based on this, we can also deĄne complements of complexity classes. For any
given complexity class C, the complement complexity class co-C is deĄned as the class of
all problems whose complement belongs to C.

The following results are known regarding the relationship between individual complexity
classes:

PTime ⊆ NP ⊆ PSpace ⊆ ExpTime ⊆ NExpTime ⊆ ExpSpace ⊆ 2ExpTime

21

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2. Preliminaries

Additionally, as a corollary to Savitch’s theorem [Sav70], we know that PSpace =
NPSpace and ExpSpace =NExpSpace. Whether the inclusions above are proper or
not is a long-standing open problem in computer science, but it is widely believed that
they are.

Polynomial hierarchy. Within the class PSpace, there is a whole hierarchy of
complexity classes, called the polynomial hierarchy, that generalizes the classes NP and
coNP. These classes are deĄned using Turing machines with oracles. In this context, an
oracle is a subroutine that a Turing machine can call to decide problems in a certain
complexity class, under the assumption that these oracle calls take constant time. Given
a complexity class C and an oracle A, we denote by CA the class of all the problems that
can be solved within the resources allowed by C by using an oracle to decide problems in
the class A. The classes in the polynomial hierarchy are then deĄned as follows:

∆P
0 := ΣP

0 := ΠP
0 := PTime,

∆P
i+1 := PTimeΣP

i ,

ΣP
i+1 := NPΣP

i ,

ΠP
i+1 := coNPΣP

i .

So far, we deĄned what it means for a problem to belong to a certain complexity class.
Next, for a complexity class C, we say that a problem Π is hard for C if every problem
in C can be reduced to Π. A problem Π′ can be reduced to Π if there is a function f
that maps the instances of Π′ to instances of Π such that x is a yes-instance of Π′ if and
only if f(x) is a yes-instance of Π, for all instances x of Π′. One important caveat is
that f must be efficiently computable, i.e., for every instance x of Π′, we must be able to
compute f(x) using strictly fewer resources than allowed by the class C.

2.3 Description Logics

First, a little bit of history. Following the Ąndings from cognitive science and the
assumption that the human brain tends to organize information in terms of concepts and
relationships between them [SA77], much of the early efforts in the Ąeld of knowledge
representation were devoted to developing formalisms that allow us to conceptually
model some domain of interest. Within this context, two particularly popular approaches
emerged: semantic networks and frames. The main idea behind semantic networks [Qui67]
was a rather natural one Ű represent knowledge graphically in terms of labeled directed
graphs (a.k.a networks), where the nodes of the graph correspond to the concepts in the
domain of interest and arcs represent the relationships between them. However, with
the desire to support a large number of problems, semantic networks grew more and
more complex, exposing the need for more structured nodes and links. To this end,
many specialized formalisms were introduced, see, e.g., [Bra79] for an overview of the
history of semantic networks. Based on the seminal paper of Minsky [Min74], frame-based

22

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2.3. Description Logics

approaches represent knowledge via frames, which are structures that describe objects or
categories through a collection of attributes and their values. Moreover, one can also
specify relationships between them, basically forming a network of frames. While initially
these approaches were considered preferable to fully-Ćedged logic-based systems due to
their human-centered design, they soon received signiĄcant criticism for their lack of
formal semantics, which made it difficult to interpret and draw conclusions from the
represented knowledge [Woo75]. Description Logics (DLs)[BCM+03] were born out of
a desire to provide a logical account for the network-based approaches that facilitates
both the representation and the reasoning. Most description logics can be viewed as
decidable fragments of Ąrst-order logic in a simpliĄed syntax that was tailored speciĄcally
for representing structured knowledge. Owing to their origins in network-based systems,
description logics describe the knowledge using the following basic building blocks:

• Concept names, i.e., unary predicates that correspond to atomic classes of objects,

• Role names, i.e., binary predicates that correspond to atomic binary relationships
between (classes of) objects, and

• Individuals names, i.e., constants, that correspond to named objects that exist
within this domain.

For example, consider the university domain which is often used for explaining the
basic concepts relating to description logics and also serves as a running example in
[BCM+03, BHLS17]1. In this context, we could imagine having concept names like
Student, Professor, and Course, representing the atomic classes of students, professors,
and courses, respectively. Moreover, we could have role names like attends and teaches

that represent binary relationships between students and the courses that they attend, as
well as professors and the courses they teach. Finally, we can have individual names like
Alice or Bob, representing two named individuals, Alice and Bob, respectively, or CS101,
representing the course with the same name. This is a good point to mention that there
are different ways of interpreting individuals. In this thesis, we make the Standard Name
Assumption (SNA), which stipulates that individual names are interpreted as themselves.
Roughly speaking, this means that the individual name Alice always has to be interpreted
as Alice and can never be interpreted as anything else. SNA also implies the Unique
Name Assumption (UNA), which ensures that distinct individual names always represent
distinct objects.

Concept names, role names, and potentially other primitive elements can be combined
using concept constructors to build (complex) concepts. For example the complex concept

Student ⊓ ∃attends.Course

corresponds to a class of students that are attending at least one course. In the example
above, the symbol ⊓ is to be interpreted as the set intersection (often referred to as

1In fact, this section follows closely the explanations and examples given in [BHLS17].

23

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2. Preliminaries

concept conjunction, in DL jargon) and the expression ∃attends.Course is to be interpreted
as the class of all objects for which there exists an object in the class Course which is
connected to this object via the binary relation attends. Other commonly used concept
constructors include ⊔ interpreted as set union, ¬ interpreted as set complement, and ∀
interpreted as universal restriction on objects connected via the speciĄed role. Moreover,
we can also build (complex) roles using role constructors. For example, the role attend−

represents the inverse of the role attend, i.e., if Alice attends Computer Science 101, then
CS101 is connected via attend− to Alice. Recall that at the beginning of this section,
we said that the term description logics refers to a family of logics. Individual DLs
differ mostly in what type of concept/role constructors they permit to build complex
expressions.

In the DL setting, the knowledge about some domain of interest is stored in knowledge
bases that consist of two parts. The Ąrst part is the terminological part (or a TBox) that
formally describes relationships between relevant concepts and roles in this domain in
the form of a logical theory. The TBox consists of Ąnitely many terminological axioms,
each one expressing a piece of domain knowledge. The most common type of axiom is
called a concept inclusion, saying that one concept is completely subsumed by another.
Going back to our university example, we can assert the fact that all professors are staff
members by writing the following axiom

Professor ⊑ Staff,

where the symbol ⊑ is to be interpreted as set inclusion. Similarly, we can say that all
teachers must teach at least one course by writing

Teacher ⊑ ∃teaches.Course.

Apart from concept inclusions, other types of axioms are possible, like asserting subsump-
tion relationships between roles, role functionality, role transitivity, etc. These will be
introduced a little later. Similarly to before, which types of terminological axioms are
allowed in the TBox is governed by the description logic of choice.

The second part of DL knowledge bases is the assertional part (or an ABox) that stores
the data (also called assertions), usually, ground atoms over concept/role names. For
example, the fact that Alice is attending Computer Science 101 could be stored in an
ABox by writing

attends(Alice,CS101).

So far, we have been very informal in explaining the basic notions of DLs. However,
their main advantage is that they are, in fact, logics, and as such they come with precise
syntax and semantics. In the remainder of this section, we formalize the intuitions given
above.

2.3.1 Expressive DLs

To avoid repeated deĄnitions, we Ąrst deĄne some general DL notions. We then shift our
focus to the basic description logic ALC, formally introducing its syntax. This logic acts

24

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2.3. Description Logics

as a separator between lighweight DLs, which are DLs that are strictly less expressive
than ALC and are usually less computationally expensive, and expressive DLs which
include ALC and its extensions. In this thesis, we mostly focus on expressive DLs. A few
language extensions of ALC that are particularly important for us are recalled in this
section together with ALC, while other DLs, expressive or lightweight, are introduced
where relevant. After recounting the syntax of the chosen DLs, we formally deĄne their
semantics and relevant reasoning tasks.

DeĄnition 2.3.1. Assume the following countably infinite, mutually disjoint sets NC ⊆
NP of concept names, NR ⊆ NP of role names, and NI of constants (also called individual
names, in DL jargon). The tuple (NC,NR,NI) forms a vocabulary that is used to represent
knowledge.

DeĄnition 2.3.2. Let L be a description logic. An L ABox is a finite set of assertional
axioms permitted in L and an L TBox is a finite set of terminological axioms permitted
in L. An L knowledge base (L KB) is a pair (T ,A), where T is L TBox and A is a L
ABox.

When L is irrelevant or clear from the context, we simply refer to L TBoxes, L ABoxes,
and L knowledge bases as TBoxes, ABoxes and knowledge bases (KBs), respectively.

2.3.2 ALC and Extensions

We begin by formally introducing the syntax of ALC and selected extensions.

DeĄnition 2.3.3 (Syntax of ALC). In ALC, the set of roles coincides with the set of
NR of role names, while concepts are defined inductively as follows:

• every concept name A ∈ NC is a concept,

• ⊤ (top) and ⊥ (bottom) are concepts,

• if C1 and C2 are concepts, then so are C1 ⊓ C2 (concept conjunction), C1 ⊔ C2

(concept disjunction), and ¬C1 (concept negation), and

• if C is a concept and r is a role, then ∃r.C (existential restriction) and ∀r.C
(universal restriction) are concepts.

A concept inclusion (CI) is an expression of the form C ⊑ D, where C and D are
concepts. CIs are the only terminological axioms (or simply, axioms) in ALC. An
assertional axiom (or simply, an assertion) is an expression of the form C(a) (positive
concept assertion), ¬C(a) (negative concept assertion), r(a, b) (positive role assertion),
or ¬r(a, b) (negative role assertion), where C is a concept, r is a role, and a and b are
individuals in NI.

25

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2. Preliminaries

Remark 2.3.4. For ease of presentation, our definition of ABoxes allows negative role
assertions. Note that this is, however, a slight deviation from the standard definition,
which only allows positive role assertions.

As usual in DLs, we sometimes use C ≡ D as an abbreviation for C ⊑ D and D ⊑ C,
where C and D are concepts. Furthermore, we may write ∃r (resp. ∀r) to abbreviate
∃r.⊤ (resp. ∀r.⊤).

We next give an example of an ALC KB. To this end, we once again consider the
university domain and we assume that we have the following concept names available
in NC: Student, Professor, TA, Teacher, Course, GradCourse, BScStudent, whose intuitive
meanings should be clear from the chosen names. Moreover, we assume we have the role
name teaches in NR and NI contains the individuals Alice and CS101.

Example 2.3.5. Let T1 be a TBox consisting of the following axioms:

BScStud ⊑ Student,

Student ⊓ ∃teaches.Course ⊑ TA,

BScStud ⊑ ∀teaches.¬GradCourse,

Professor ⊔ TA ⊑ Teacher.

Let A1 be an ABox consisting of the following assertions:

BScStud(Alice), Course(CS101), teaches(Alice,CS101).

Intuitively, the axioms in T1 formalize the following pieces of knowledge: bachelor students
are students, students who teach some courses are teaching assistants, bachelor students
only teach courses that are not bachelor courses, and professors and teaching assistants
are teachers. The assertions in A1 simply state that Alice is a bachelor student teaching
the CS101 course.

The pair K1 = (T1,A1) is an ALC knowledge base.

As already mentioned, ALC can be extended with additional concept and role constructors,
as well as terminological axioms. We next recount some of the most common extensions.

• Role inclusions (H): terminological axioms additionally include role inclusions
(RIs), which are expressions of the form r ⊑ s, where r and s are roles.

• Nominals (O): a ∈ NI, then ¶a♢ is a concept (also called a nominal).

• Role inverses (I): if for every p ∈ NR, then p− is a role.

• Qualified number restrictions (Q): if C is a concept, r is a role, and n is a non-
negative integer and ≤ nr.C, ≥ nr.C are concepts.

26

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2.3. Description Logics

• Role transitivity (S): terminological axioms additionally include expressions of the
form trans(r), where r is a role.

• Role functionality (F): terminological axioms additionally include expressions of
the form func(r), where r is a role.

According to the well-established naming schema for DLs, the letters given in the brackets
next to the extensions listed above are appended to ALC to denote the presence of the
additional constructors that this extension allows. The only exception is transitivity Ű we
simply write S to denote ALC with transitivity. Throughout this thesis, we will mostly
focus on ALCHOIQ and its sublogics ALCHOIF and ALCHI. As the convention
suggests, all of these logics extend ALC with role inclusions, nominals, and inverses. Ad-
ditionally, ALCHOIQ supports general qualiĄed number restrictions, while ALCHOIF
allows for global role functionality.

Let us illustrate the modeling capabilities of ALCHOIQ on an example. Assume that,
in addition to the concept and role names introduced so far, we also have the following
concept names in NC: Curriculum, BCsCurriculum, Subject, CompSci, LargeCourse, and the
following role names in NR: about, hasPart.

Example 2.3.6. Recall the KB K1 = (T1,A1) from Example 2.3.5. Let T2 be the
extension of T1 with the following axioms:

Curriculum ⊑ ∃about.Subject,

Curriculum ⊑ ≥ 5hasPart.Course ⊓ ≤ 20hasPart.Course,

BCsCurriculum ⊑ Curriculum,

CompSci ⊑ Subject,

BCsCurriculum ⊓ ∃about.CompSci ⊑ ∃hasPart.¶CS101♢,

Course ⊑ ∃teaches−.Teacher

LargeCourse ⊑ ≥ 3teaches−.Teacher

The axioms above express the following: each curriculum is about some subject and
consists of at least 5 and at most 20 courses, every bachelor curriculum is a curriculum,
computer science is a subject, CS101 is a part of every bachelor curriculum that is about
computer science, every course is taught by at least one teacher, and large courses must
be taught by at least three teachers.

Furthermore, let A2 = A1 ∪ ¶Curriculum(CSCurr)♢.

The pair K2 = (T2,A2) is an ALCHOIQ knowledge base. In fact, as we do not have any
RIs, K2 is also an ALCOIQ KB.

Before we move on to the semantics, some notational remarks are in order. We denote
the set of all roles as N+

R . With a slight abuse of notation, we write r− to denote p− if

27

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2. Preliminaries

r = p, and p if r = p−, for a role name p ∈ NR. We say that the role r− is the inverse
of r. Given a set R of roles, R− denotes the set ¶r− : r ∈ R♢. Furthermore, we let
N+

C = NC ∪ ¶⊤,⊥♢ ∪ ¶¶c♢ : c ∈ NI♢. The concepts in N+
C are called the basic concepts.

For a TBox, an ABox, or a KB X , we denote by NC(X) and NR(X) the set of concept
and role names occurring in X , their union being the signature of X , denoted by sig(X).
Moreover, we denote by N+

C (X) the set of basic concepts occurring in X , by N+
R (X)

the set of roles occurring in X and their inverses, and by NI(X) the set of individuals
occurring in X . In line with the standard database terminology, we also refer to the set
NI(X) as the active domain of X .

Naturally, as DLs are fragments of Ąrst-order logic, the semantics is given in terms of
Ąrst-order interpretations.

DeĄnition 2.3.7 (Semantics). An interpretation is a pair I = (∆I , ·I), where ∆I is
a non-empty set called the domain and ·I is the interpretation function that assigns to
each a ∈ NI a domain element aI ∈ ∆I , to each A ∈ NC a set AI ⊆ ∆I , and to each
r ∈ NR a set rI ⊆ ∆I ×∆I . The interpretation function is extended to the remaining
concepts and roles in the language as summarized in Table 2.1.

For a concept or a role name P and an interpretation I, we call the set P I ⊆ ∆I the
extension of P (in I). Furthermore, we say that a domain element d ∈ ∆I participates in
the concept C (in I), if d is in the extension of C. Similarly, for a pair of domain elements
(e, d), we say that (e, d) participates in the role r, if (e, d) is in the extension of r.

We next formally deĄne what it means for an interpretation to satisfy axioms or assertions.

DeĄnition 2.3.8. Let I = (∆I , ·I) be an interpretation. We say that I satisĄes

• a concept inclusion C1 ⊑ C2, if CI
1 ⊆ C

I
2 ,

• a role inclusion r1 ⊆ r2, if rI
1 ⊆ r

I
2 ,

• a role transitivity axiom trans(r), if for every e1, e2, e3 ∈ ∆I , ¶(e1, e2), (e2, e3)♢ ⊆ rI

implies (e1, e3) ∈ rI ,

• a role functionality axiom func(r), if ¶(e1, e2), (e1, e3)♢ ⊆ rI implies e2 = e3, for
every e1, e2, e3 ∈ ∆I ,

• a concept assertion C(a), if a ∈ CI , and

• a role assertion r(a, b), if (a, b) ∈ rI .

We next deĄne what it means for an interpretation to be a model of a TBox, an ABox,
or a knowledge base.

28

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2.3. Description Logics

DeĄnition 2.3.9 (TBox, ABox and KB models). Let T be a TBox and A be an ABox.
We say that I satisĄes T , if it satisfies every axiom in T and additionally aI = a, for
each individual a occurring in T (due to SNA). Similarly, I satisĄes A, if it satisfies
every assertion in A and aI = a, for each individual a occurring in A . Finally, I
satisĄes the knowledge base K = (T ,A), if I satisfies both T and A. If I satisfies K
(resp. T or A), then I is called a model of K (resp. T or A).

For an interpretation I and an axiom, an assertion, a TBox, an ABox, or a KB X , we
sometimes write I ⊨ X to denote that I satisĄes X .

Example 2.3.10. Let I be an interpretation with ∆I = ¶Alice,CS101,CSCurr, c1, c2, c3,
c4, p1, p2, cs♢, and ·I is defined as follows:

BScStudI = StudentI = TAI = ¶Alice♢

ProfessorI = ¶p1, p2♢

TeacherI = ¶Alice, p1, p2♢

CourseI = ¶CS101, c1, c2, c3, c4♢

LargeCourseI = ¶CS101♢

GradCourseI = ∅

CurriculumI = BCsCurriculumI = ¶CSCurr♢

SubjectI = CompSciI = ¶cs♢

teachesI = ¶(Alice,CS101), (p1,CS101), (p2,CS101),

(p1, c1), (p1, c2), (p2, c3), (p2, c4)♢

attendsI = ¶(Alice, c2)♢

hasPartI = ¶(CSCurr,CS101♢

aboutI = ¶(CSCurr, cs)♢

Moreover, due to SNA, we have that AliceI = Alice, CS101I = CS101, and CSCurrI =
CSCurr.

It is easy to verify that the interpretation I is a model of K2 from Example 2.3.6. Con-
sider now another interpretation I ′ that is obtained from I by removing (Alice,CS101)
from teachesI . I ′ is not a model of K2 as it violates the axiom LargeCourse ⊑≥
3teaches.Teacher.

A little remark about SNA is in order. In the DL literature, SNA is sometimes deĄned
as interpreting every individual in NI as itself. This has the following effect: all models
of some TBox, ABox, or KB must include all of NI in their domain, which makes these
domains inĄnite. Generally speaking, this is not really a problem, but it is sometimes
counter-intuitive in very expressive logics, like those that simultaneously support nominals,
inverse roles, and number restrictions. Namely, simple KBs that one would expect to be

29

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2. Preliminaries

Constructor Syntax Interpretation

Concept names A AI

Top ⊤ ∆I

Bottom ⊥ ∅
Nominals ¶a♢ a
Negation (¬C) ∆I \ CI

Conjunction (C1 ⊓ C2) CI
1 ∩ C

I
2

Disjunction (C1 ⊔ C2) CI
1 ∪ C

I
2

Existential restr. (∃r.C) ¶d1 ∈ ∆I : for some d2 ∈ ∆I , (d1, d2) ∈ rI and d2 ∈ C
I♢

Universal restr. (∀r.C) ¶d1 ∈ ∆I : for all d2 ∈ ∆I , (d1, d2) ∈ rI implies d2 ∈ C
I♢

Number restr. (?nr.C)I ¶d1 ∈ ∆I : ♣¶d2 ∈ ∆I : (d1, d2) ∈ rI and d2 ∈ C
I♢♣ ?n♢,

for ? ∈ ¶≤,≥♢.

Role names r rI

Inverse role r− ¶(d1, d2) : (d2, d1) ∈ rI♢

Table 2.1: Interpretation function extended to complex concepts and roles, where A ∈ NC,
r ∈ NR, C,C1, and C2 are concepts, and a ∈ NI.

satisĄable are rendered unsatisĄable due to an inĄnite domain that otherwise plays no
role. To illustrate this, consider the following example:

Example 2.3.11. Consider the following KB K = (¶A ⊑ ¶a♢,⊤ ⊑ ∃r.A, func(r−)♢, ∅).
If we do not force interpretations to interpret every individual from NI, the interpretation
I with ∆I = ¶a♢, AI = ¶a♢, and rI = ¶(a, a)♢ would be a model of K and thus, K would
be satisfiable. Notice that any interpretation I ′ with NI ⊆ ∆I′

cannot be a model of K,
which means that K is unsatisfiable under the standard definition of SNA, which forces
interpretation domains to contain the countably infinite set NI. Indeed, due to A ⊑ ¶a♢
we can have at most one element participating in A, i.e., AI′

= ¶a♢. Furthermore, due
to ⊤ ⊑ ∃r.A, every element d in the domain must participate in r together with a, i.e.,
(d, a) ∈ rI′

, for every d ∈ ∆I′

. However, this violates the functionality of r so I ′ does
not satisfy K.

For this reason, our deĄnition of models under SNA requires the interpretations to only
interpret those individual names that are explicitly mentioned in the TBox, ABox, or
KB.

We note that, as description logics use only unary (concept names) and binary (role
names) predicate symbols, a DL interpretation I = (∆I , ·I) can be viewed as a labeled
directed graph whose nodes correspond to the domain elements in ∆I labeled with the
basic concepts that they participate in, and an arc from some node e to some node d
represents the pair (e, d) ∈ ∆I ×∆I and is labeled with the roles that (e, d) participates
in. More formally, I induces the graph GI = (∆I , E,L), where E = ¶(d1, d2) ∈ ∆I ×∆I :
(d1, d2) ∈ rI for some role r♢, and L is a labeling function that associates a label to each
vertex and arc in the graph as follows:

30

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2.3. Description Logics

c1 c2 CS101 c3 c4

Course Course Course CourseCourse,
LargeCourse

p1 Alice p2

Professor,
Teacher

Teacher, TA,
Student, BScStudent

Professor,
Teacher

CSCurr cs

Curriculum,
BScCurriculum

Subject,
CompSci

Labels on arcs:

teaches

attends

hasPart

about

Figure 2.1: Graphical representation of the interpretation I from Example 2.3.10.

• for d ∈ ∆I , L(d) = ¶C ∈ N+
C : d ∈ CI♢, and

• for (d1, d2) ∈ E, L((d1, d2)) = ¶r ∈ N+
R : (d1, d2) ∈ rI♢.

We give an example to illustrate this.

Example 2.3.12. The graph depicted in Figure 2.1 corresponds to the interpretation I
from Example 2.3.10.

In the rest of this thesis, we often talk about R-successors of some domain element e in
some interpretation I, where R ⊆ N+

R is a set of roles. Keeping the previous deĄnition
in mind, it should be intuitively clear that this refers to all domain elements d, such
that (e, d) ∈ E and L(e, d) = R. Being able to visualize interpretations as graphs will be
particularly helpful for explaining the intuitions behind some of our results, but more on
that later.

2.3.3 Standard Reasoning Tasks and Complexity

Description logics were introduced to facilitate reasoning with ontologies and a large
number of different reasoning tasks has been considered in the literature.

Basic reasoning tasks. One of the most basic questions one can ask is whether a
given knowledge base admits a model.

31

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2. Preliminaries

DeĄnition 2.3.13 (KB satisĄability). A KB K is satisĄable (or consistent) if it has
a model, otherwise, it is unsatisĄable (or inconsistent). The corresponding decision
problem of determining whether K is satisfiable is called the knowledge base satisĄability
problem, sometimes also referred to as the knowledge base consistency problem.

Some other common reasoning tasks in DLs include:

• Concept satisĄability w.r.t. a KB: given a KB K and a concept C, is C
satisĄable w.r.t. T , i.e., does there exist a model of K in which the extension of C
is non-empty?

• Concept/role subsumption w.r.t a KB: given a KB K and two concepts C
and D (resp. roles r and s), is C ⊑ D (resp. r ⊑ s) entailed by K?

• Instance checking w.r.t a KB: given a KB K, a concept C (resp. role r) and
an individual a (resp. pair of individuals (a, b)), is a (resp. (a, b)) an instance of C
(resp. r), i.e., does K entails C(a) (resp. r(a, b))?

Query answering. As a technique for information retrieval, answering queries has also
been considered in the context of DL knowledge bases. In this setting, the DL TBox is to
be taken into account as background knowledge, turning simple query evaluation into a
logical reasoning task and resulting in the paradigm often referred to as ontology-mediated
query answering. However, before we focus on ontology-mediated queries, let us Ąrst
introduce the general notion of a query.

DeĄnition 2.3.14 (First-Order Query). A (Ąrst-order) query (or an FO query) q is
a first-order formula over the predicates in NC ∪ NR, the variables from NV, and the
constants from NI. W.l.o.g. we assume that no variable occurs both quantified and free in
q, and we call the free variables of q answer variables. We may write q(x⃗) to denote the
query q with answer variables x⃗. If q contains no free variables, q is a Boolean query.

We often call FO queries also database queries, to emphasize the distinction between
them and ontology-mediated queries that are introduced below. The answers to an FO
query q in some interpretation I are deĄned in terms of matches, which are mappings
from the terms occurring in q, denoted by terms(q), to the domain of I that make the
query true in I.

DeĄnition 2.3.15 (Query Match, Query Answer). Given an interpretation I, a match π
for a query q(x⃗) with answer variables x⃗ = (x1, . . . , xn) in I is a mapping terms(q(x⃗))→
∆I such that the following holds:

• π(a) = aI , for every a ∈ NI that occurs in q, and

• I ⊨ q(π(x⃗)), where q(π(x⃗)) denotes the formula obtained from q(x⃗) by substituting
π(xi) for xi, for each 1 ≤ i ≤ n.

32

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2.3. Description Logics

A tuple a⃗ = (a1, . . . , an) of domain elements in ∆I is an answer to q(x⃗) in I if there
exists a match π for q in I such that π(xi) = ai, for 1 ≤ i ≤ n. We denote by ans(q, I)
the set of all answers to q in I.

We can now deĄne what it means to answer queries over DL knowledge bases which is
deĄned in terms of the certain answer semantics.

DeĄnition 2.3.16 (Query Answering over a KB). Given an KB K and a query q, a
tuple of individuals a⃗ = (a1, . . . , an) from NI(K) is a certain answer to q over K, if a⃗
is an answer to q in every model of K. We denote by cert(q,K) the set of all certain
answers of q over K. The problem of deciding whether a⃗ ∈ cert(q,K) is called the query
answering problem.

In the case of Boolean queries, we also talk about query entailment.

DeĄnition 2.3.17 (Query Entailment Problem). Given a KB K and a query q, we say
that K entails q, in symbols K ⊨ q, if q is true in every model of K. The problem of
deciding whether q is entailed by K is called the query entailment problem.

Finally, it often makes sense to consider the setting in which one has a Ąxed TBox T and
wants to answer the same database query q over different data taking the information
from T into account. To this end, we introduce the notion of ontology-mediated queries.

DeĄnition 2.3.18 (Ontology-Mediated Query). An ontology-mediated query (OMQ) is
a pair (T , q), where T is a DL TBox and q is an FO query.

We can now deĄne certain answers of OMQs over ABoxes as follows:

DeĄnition 2.3.19 (Ontology-Mediated Query Answering (OMQA)). Given an OMQ
Q = (T , q) and an ABox A, a tuple of individuals a⃗ = (a1, . . . , an) from NI(T)∪NI(A) is
a certain answer to Q over A, if a⃗ is an answer to q in every model of (T ,A). We denote
by cert(Q,A) the set of all certain answers of Q over A. The problem of deciding whether
a⃗ ∈ cert(Q,A) is called the ontology-mediated query answering (OMQA) problem.

An ontology-mediated query language is deĄned by the choice of the description logic in
which the TBox component of OMQs is expressed as well as the fragment of Ąrst-order
logic to which the FO query component belongs. For example, the language of instance
queries mediated by ALCHOIQ ontologies consists of all OMQs (T , q) where T is an
ALCHOIQ TBox and q is an atomic query of the shape C(x) or r(x, y), where C ∈ NC

and r ∈ NR.

33

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2. Preliminaries

Monotonicity As previously stated, most standard DLs, including ALCHOIQ and
its sublogics, can be seen as fragments of Ąrst-order logic and, as such, they obey the
principle of monotonic entailment. Let K = (T ,A) and K′ = (T ′,A′) be two knowledge
bases. We say that K′ extends K if T ∪ A ⊆ T ′ ∪ A′. The principle of monotonic
entailment then states that if K logically entails some Boolean query q, then any KB
K′ that extends K also entails q. As a consequence, given an OMQ Q = (T , q) whose
TBox can be expressed in Ąrst-order logic, an ABox A and tuple a⃗ of individuals, we
have that if a⃗ is a certain answer to Q over A then a⃗ is a certain answer to Q over any
ABox extending A. We say that an OMQ language is monotonic if all OMQs expressible
in this language are monotonic.

Complexity of Reasoning. From the very beginning, there has been a lot of interest
in the DL community in characterizing the precise computational complexity of various
reasoning problems across different DLs. As usual, we consider the worst-case complexity
of the problem at hand and we measure it in the size of the input. With a slight abuse of
notation, we use ♣X♣ to denote the length of the encoding of X.

We also distinguish between the following two complexity measures, depending on what
parts of the KB/OMQ are considered parts of the input:

• Combined complexity: everything is considered part of the input. Thus, for the
basic reasoning tasks listed above, the input size is given as ♣T ♣+ ♣A♣, where (T ,A)
is the input KB. In the OMQA setting, the input size additionally takes the size of
the database query q and is given as ♣T ♣+ ♣A♣+ ♣q♣ 2.

• Data complexity: only the ABox A is considered part of the input and the input
size is given as ♣A♣, while the remaining parameters are considered Ąxed and their
size is considered constant.

2.4 Datalog

This section serves as a short introduction to Datalog, a database query language rooted
in Prolog and born out of the desire to bring logic programming and database systems
closer together. The motivation behind this was two-fold. In the mid 1970s, with the
rise of Prolog, the logic programming community was facing the following issue: logic
programs predominantly stored their rules and facts in the local memory, which quickly
proved to be a less-than-optimal approach if a large number of facts was present. For
this reason, the logic programming community started looking into storing facts using
external relational databases[MTKW18]. At around the same time, SQL was being
established as the database query language of choice. However, it was recognized early on
that SQL suffered from limited expressiveness. In particular, SQL’s lack of support for

2The size of the rest of the input, e.g., a pair of concept/role names or a tuple of individuals, is
negligibly small compared to the size of the KB and is therefore usually discarded.

34

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2.4. Datalog

recursive queries meant that many natural queries were inexpressible, typical examples
being reachability queries and computing the transitive closure [AU79]. This prompted
a formal investigation into DatalogŰ a subset of Prolog that is more declarative and
data-oriented in nature and reminiscent of the relational calculus that the database
community was already familiar with [MTKW18].

Datalog programs consist of facts and rules. Facts are ground atoms that are assumed to
be true. For example, consider the following facts:

PhDStudent(Barbara),

advisedBy(Barbara,Charlie),

PhDThesis(cthesis,Charlie),

advised(Dave, cthesis),

advised(Erika, cthesis),

expressing that Barbara is a PhD student who is advised by Charlie, and Charlie wrote
their PhD thesis ŞcthesisŤ which was advised by Dave and Erika.

On the other hand, Datalog rules are inference rules that tell us how we can derive new
atoms from the already derived ones. For example, the following is a Datalog rule saying
that some person Y is an academic descendant of a person Y ′, if Y wrote a thesis that
was supervised by Y ′:

academicDesc(Y, Y ′)← PhDThesis(X,Y), advised(Y ′, X).

Observe also that, unlike facts, rules may contain variables in order to make them more
general. For example, the rule above is applicable whenever we have some constants
t, p1, p2 such that PhDThesis(t, p1) and advised(p2, t) are either facts or have already been
derived, and we can derive academicDesc(p1, p2).

If we further want to include the people who have not yet written their PhD thesis but
are currently being advised by someone, we can add the following rule:

academicDesc(X,Y)← PhDStudent(X), advisedBy(X,Y).

For a rule ρ, we distinguish between the body and the head of ρ, occurring respectively
on the right-hand side and the left-hand side of the ← sign.

As already mentioned, Datalog offers simple support for recursion, by allowing rules to
use the same predicate in both the body and the head. For example, we can compute the
transitive closure of the ’academic descendant’ relation by the following recursive rule:

academicDesc(X,Z)← academicDesc(X,Y), academicDesc(Y,Z).

There are different ways to assign semantics to Datalog programs, however, they all boil
down to the same intuition: models of Datalog programs can be viewed simply as sets
of ground atoms that are minimal in the sense that they only contain the original facts

35

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2. Preliminaries

occurring in the program as well as the atoms that were derived using program rules.
For example, the following is a model of the program consisting of the rules and facts
listed above:

¶PhDStudent(Barbara), advisedBy(Barbara,Charlie),

PhDThesis(cthesis,Charlie), advised(Dave, cthesis),

advised(Erika, cthesis), academicDesc(Charlie,Dave),

academicDesc(Charlie,Erika), academicDesc(Barbara,Charlie),

academicDesc(Barbara,Dave), academicDesc(Barbara,Erika♢.

This concludes our informal introduction to Datalog. It is already easy to see that in
its core version, Datalog also suffers from limited expressiveness, especially due to the
lack of negation. However, before we introduce the relevant extensions, we formalize the
intuitions presented above.

2.4.1 Plain Datalog

We begin with the formal deĄnitions of rules and programs.

DeĄnition 2.4.1 (Rule, program). A Datalog rule ρ is an expression of the form

h← b1, . . . , bn,

where n ≥ 0, h, b1, . . . , bn are atoms over NP with terms from NI ∪ NV, and all variables
in ρ occur in some b1, . . . , bn. We call h the head of ρ, denoted by head(ρ), and the set
¶b1, . . . , bn♢ is the body of ρ, denoted by body(ρ). If ρ contains no variables, ρ is called
ground. Facts are ground rules of the form h ←, abbreviated simply by h. A Datalog

program is a finite set of Datalog rules. A Datalog program is called ground if all its
rules are ground.

We point out that the deĄnition above only allows for safe rules. i.e., the rules that
do not contain variables in their head that do not also appear in their body. This is
known as Datalog safety criterion and is usually required to ensure the decidability of
the formalism.

Semantics In the context of Datalog, we usually talk about Herbrand interpretations,
which are simpliĄed representations of ordinary FO interpretations in the sense that they
list all and only those ground atoms that are considered true.

DeĄnition 2.4.2 (Herbrand interpretation). An Herbrand interpretation over some set
of predicates Σ is a finite set of ground atoms over Σ. If Σ is not specified, we assume
Σ = NP.

36

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2.4. Datalog

We note that every ABox is an Herbrand interpretation, and also any Herbrand interpre-
tation over NC ∪ NR is an ABox.

We now introduce the semantics of ground Datalog programs and then extend the
deĄnition to also include programs with variables. We have mentioned already that the
semantics of Datalog programs is given in terms of sets of ground atoms (a.k.a. Herbrand
interpretations) that are in some sense minimal. We next formally deĄne what it means
for an Herbrand interpretation to be a model and a minimal model of a ground program.

DeĄnition 2.4.3. Let I be an Herbrand interpretation and P be a ground Datalog
program. We say that I is a model of P if body(ρ) ⊆ I implies head(ρ) ⊆ I, for every
rule ρ ∈ P. I is called a minimal model, or an answer set3of P, if there is no J ⊊ I
such that J is a model of P.

The semantics of Datalog programs with variables is deĄned much in the same way as the
semantics of ground programs but it involves an extra preprocessing step called grounding
in which we replace each non-ground rule ρ with the set of its ground instances, i.e., rules
that are obtained from ρ by uniformly substituting constants for the variables in ρ.

DeĄnition 2.4.4 (Grounding). Given a set of constants C ⊆ NI, the grounding of a rule
ρ w.r.t. C, in symbols ground(ρ, C), is a set of rules obtained from ρ by replacing every
variable x in ρ with σ(x), for every total function σ : vars(P)→ C. The grounding of a
program P w.r.t. C is then ground(P, C) =

⋃

ρ∈P ground(ρ, C).

Grounding is normally done with respect to the set of all constants that occur in the
program which is also how the semantics of the non-ground programs is deĄned. For a
program P, this set is called the active domain of the P and we denote it by adom(P).
We note that however, other purposes might require us to ground programs over different
constants, which is the reason why we keep the deĄnition above more general than usual.
We can now deĄne models of non-ground programs as follows:

DeĄnition 2.4.5 (Model, minimal model, answer set). Let P be Datalog program and
I be an Herbrand interpretation. We say that I is a model of P if I is a model of
ground(P, adom(P)), and I is a minimal model, or an answer set of P, if it is a minimal
model of ground(P, adom(P)).

It is well-known that Datalog programs have unique minimal models [Kol91].

Proposition 2.4.6. Let P be a Datalog program. Then, P has a unique minimal model,
denoted by MM (P).

Finally, we note that there are generally three well-established approaches for assigning
semantics to Datalog programs which have been proven equivalent: the model-theoretic

3This is done to keep in line with the terminology that will be introduced later in this section when
we discuss non-monotonic extensions of Datalog.

37

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2. Preliminaries

approach that we presented above, as well as the fixed-point and proof-theoretic ap-
proach. The latter two approaches are not discussed here, but more details can be found
in [AHV95].

2.4.2 Non-monotonic Extensions of Datalog

As already mentioned, plain Datalog does not provide support for reasoning with negative
information, which is often desired and also possible in standard database query languages
such as relational algebra. For example, we cannot compute using plain Datalog the
relation consisting of pairs of persons that are Şacademically unrelatedŤ, i.e., neither is
an academic descendent of the other. To overcome this, we next present Datalog¬, the
extension of Datalog with negation under the stable model semantics [GL88]. Intuitively,
Datalog¬ allows us to additionally use default negation in front atoms in rule bodies,
with the meaning that if this atom cannot be established to be true then its negation is
assumed. We can then compute the desired relation as:

unrelated(X,Y)← Person(X),Person(Y),

not academicDesc(X,Y),not academicDesc(Y,X), X ̸= Y.4

The addition of negation results in a powerful nonmonotonic language that underlies
Answer Set Programming (ASP) [EIK09], a declarative programming paradigm designed
for solving combinatorial problems by expressing them in terms of logic-based rules and
constraints.

We next formally introduce the syntax and the semantics of Datalog¬.

DeĄnition 2.4.7 (Rule, program). A Datalog¬ rule ρ is an expression of the form

h← b1, . . . , bn,not bn+1, . . . ,not bm

where n,m ≥ 0, h, b1, . . . , bm are atoms over NP with terms from NI ∪ NV, and all
variables in ρ occur in some b1, . . . , bn. A Datalog¬ program is a finite set of Datalog¬

rules.

For a Datalog¬ rule ρ, head(ρ) and body(ρ) are deĄned as before, but we additionally
distinguish the positive body of ρ given as body+(ρ) = ¶b1, . . . bn♢, and the negative body
of ρ given as body−(ρ) = ¶bn+1, . . . , bm♢. Observe that the safety criterion was also
updated to ensure that all rule variables occur in its positive body. If body−(ρ) = ∅, ρ is
a positive rule. A Datalog¬ program is positive if all its rules are positive.

Semantics. Following [GL88], the semantics to Datalog¬ programs is given in terms of
stable models, also called answer sets. Roughly speaking, stable models of some Datalog¬

program P are those models I of P that have the following property: if we interpret all

4One often assumes the availability of built-in comparison predicates = and ̸=, since they can be
easily axiomatized in Datalog¬.

38

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2.4. Datalog

the negated atoms as speciĄed by I and we simplify P accordingly, then I is a minimal
model of the obtained program. We simplify P with respect I by doing the following: (i)
we Ąrst delete all rules that do not contribute to the derivation of new information as
they are ŞblockedŤ due to some not α in their body with α ∈ I, and (ii) we then delete
all negated atoms from the remaining rules since they have already been interpreted as
true. The intuition of simplifying the program w.r.t. a given interpretation has been
captured in the notion of a reduct.

DeĄnition 2.4.8 (Reduct). The reduct of a Datalog¬ program P w.r.t. to an Herbrand
interpretation I is a ground positive program PI defined as

PI = ¶head(ρ)← body+(ρ) : body−(ρ) ∩ I = ∅, ρ ∈ ground(P, adom(P))♢.

DeĄnition 2.4.9 (Stable models). We say that an Herbrand interpretation I is a stable
model (or an answer set) of a Datalog¬ program P if I is a minimal model of PI .

We next give a short example to illustrate the most important concepts introduced in
this section.

Example 2.4.10. Consider the Datalog¬ program P consisting of the following rules:

P = ¶ Person(Charlie),

Person(Dave),

Person(Erika),

advisedBy(Charlie,Dave),

advisedBy(Charlie,Erika)

unrelated(X,Y)← Person(X),Person(Y),not advisedBy(X,Y),

not advisedBy(Y,X), X ̸= Y ♢.

Furthermore, let I be the following Herbrand interpretation:

I = ¶ Person(Charlie),Person(Dave),Person(Erika),

advisedBy(Charlie,Dave), advisedBy(Charlie,Erika),

unrelated(Dave,Erika), unrelated(Erika,Dave)♢.

To check whether I is an answer set of P, we need to compute the reduct of P w.r.t. I,
and for this, we first need to ground P over its active domain. In this case, we have:

adom(P) = ¶Charlie,Dave,Erika♢.

The grounding is then done by replacing non-ground rules with the set of their ground
instances. In our case, we replace the last rule in P with the following set of rules:

39

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2. Preliminaries

unrelated(Charlie,Charlie)← Person(Charlie),Person(Charlie),not advisedBy(Charlie,Charlie),

not advisedBy(Charlie,Charlie),Charlie ̸= Charlie,

unrelated(Charlie,Dave)← Person(Charlie),Person(Dave),not advisedBy(Charlie,Dave),

not advisedBy(Dave,Charlie),Charlie ̸= Dave,

unrelated(Charlie,Erika)← Person(Charlie),Person(Erika),not advisedBy(Charlie,Erika),

not advisedBy(Erika,Charlie),Charlie ̸= Erika,

unrelated(Dave,Charlie)← Person(Dave),Person(Charlie),not advisedBy(Dave,Charlie),

not advisedBy(Charlie,Dave),Dave ̸= Charlie,

unrelated(Dave,Dave)← Person(Dave),Person(Dave),not advisedBy(Dave,Dave),

not advisedBy(Dave,Dave),Dave ̸= Dave,

unrelated(Dave,Erika)← Person(Dave),Person(Erika),not advisedBy(Dave,Erika),

not advisedBy(Erika,Dave),Dave ̸= Erika,

unrelated(Erika,Charlie)← Person(Erika),Person(Charlie),not advisedBy(Erika,Charlie),

not advisedBy(Charlie,Erika),Erika ̸= Charlie,

unrelated(Erika,Dave)← Person(Erika),Person(Dave),not advisedBy(Erika,Dave),

not advisedBy(Dave,Erika),Erika ̸= Dave.

unrelated(Erika,Erika)← Person(Erika),Person(Erika),not advisedBy(Erika,Erika),

not advisedBy(Erika,Erika),Erika ̸= Erika.

Observe that we replaced a single non-ground rule with the set of eight ground rules, which
corresponds to art(advisedBy)♣adom(P)♣. It is well-known that computing the grounding of
a program generally causes an exponential blowup and is a major bottleneck for reasoning
in Datalog and its extensions, which can in some cases be overcome through different
optimization methods [LPF+06].

The next step is to remove all the rules ρ from ground(P, adom(P)) that contain some
negated atom not α such that α ∈ I. For example, the rule

unrelated(Charlie,Dave)← Person(Charlie),Person(Dave),

not advisedBy(Charlie,Dave),not advisedBy(Dave,Charlie),

Charlie ̸= Dave,

will be deleted as it contains not advisedBy(Charlie,Dave), but advisedBy(Charlie,Dave) ∈
I. We note that the expression a ̸= a can be viewed as not a = a. Since we treat = as a
built-in predicate, we do not explicitly specify in I which pairs of constants participate in
this predicate, however, we assume that (a = a) ∈ I, for all individuals a in the active
domain of P.

40

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2.4. Datalog

This yields the program that consists of all the facts in P as well as the following two
rules:

unrelated(Dave,Erika)← Person(Dave),Person(Erika),not advisedBy(Dave,Erika),

not advisedBy(Erika,Dave),Dave ̸= Erika,

unrelated(Erika,Dave)← Person(Erika),Person(Dave),not advisedBy(Erika,Dave),

not advisedBy(Dave,Erika),Erika ̸= Dave.

Finally, we remove all negative atoms from this program to obtain PI :

PI = ¶ Person(Charlie),

Person(Dave),

Person(Erika),

advisedBy(Charlie,Dave),

advisedBy(Charlie,Erika),

unrelated(Dave,Erika)← Person(Dave),Person(Erika),

unrelated(Erika,Dave)← Person(Erika),Person(Dave)♢.

It is easy to see that I is indeed a minimal model of PI , and thus I is an answer set of P.

Consider now another Herbrand interpretation J :

J = ¶ Person(Charlie),Person(Dave),Person(Erika),

advisedBy(Charlie,Dave), advisedBy(Charlie,Erika)♢.

Following the same steps as before, we compute PJ :

PJ = ¶ Person(Charlie),

Person(Dave),

Person(Erika),

advisedBy(Charlie,Dave),

advisedBy(Charlie,Erika),

unrelated(Dave,Erika)← Person(Dave),Person(Erika),

unrelated(Erika,Dave)← Person(Erika),Person(Dave)♢.

We can see that J is not a model of PJ , and thus J is not an answer set of P.

Note that unlike Datalog programs, Datalog¬ programs may have no, one, or multiple
answer sets, as illustrated in the following example.

41

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2. Preliminaries

Example 2.4.11. Consider the following ground program:

P = ¶ advisedBy(Charlie,Erika)← not advisedBy(Charlie,Dave),

advisedBy(Charlie,Dave)← not advisedBy(Charlie,Erika)♢.

The program P has the following two answer sets:

I1 = ¶advisedBy(Charlie,Dave)♢, I2 = ¶advisedBy(Charlie,Erika)♢.

We next introduce some notions related to Datalog and its extensions that will be used
throughout this thesis. In what follows, unless speciĄed otherwise, we use program and
rule to denote a program or a rule written in any of the presented extensions of Datalog.

Datalog∨, ¬ Another natural extension of Datalog is called Datalog∨ and it allows us to
write disjunctions of atoms in rule heads. If we additionally allow negation in the rule
bodies, we obtain Datalog∨, ¬, whose rules have the following form:

ρ := h1 ∨ · · · ∨ hl ← b1, . . . , bn,not bn+1, . . . ,not bm,

where l ≥ 1, n,m ≥ 0, h1, . . . , hl, b1, . . . , bm are atoms over NP with terms from NI ∪ NV,
and all variables in ρ occur in one of b1, . . . , bn. We call the set ¶h1, . . . , hl♢ the head of
ρ, denoted by head(ρ), while the notions of the positive and negative body remain the
same.

We say that an Herbrand interpretation satisĄes a positive Datalog∨, ¬ rule h1∨· · ·∨hl ←
b1, . . . , bn, if whenever ¶b1, . . . , bn♢ ⊆ I, then ¶h1, . . . , hl♢∩ I ̸= ∅. With this in mind, the
rest of the semantics is deĄned in the same way as before.

Constraints. Sometimes a program P can contain rules that are not used to derive new
information but rather function as integrity constraints, ensuring that certain situations
do not occur in the answer sets of P . Such rules are called constraints and have the form
p← α,not p (abbreviated as ← α), where p is a fresh propositional atom that does not
occur elsewhere in P. For example, we can write the following constraint to ensure that
in the answer sets of P no person is considered unrelated to themselves.

← unrelated(X,X),Person(X).

Strong negation. In general, there are two different ways to support negation. We
have already covered default negation, which allows us to infer the negation of α, i.e.,
not α if we cannot derive α. However, we can also consider strong (or classical) negation,
denoted by ¬. In this case, in order to infer a strongly negated atom ¬α, we need to have
a justiĄcation for it, i.e., it needs to be derived from the facts by using the program rules.

While some extensions of Datalog allow for the explicit use of it, strong negation is
ultimately simply syntactic sugar and can be expressed as follows: we replace a strongly

42

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2.4. Datalog

negated atom ¬P (⃗a) by P (⃗a), where P is a predicate that does not occur elsewhere in
the program, and an additional constraint ← P (⃗a), P (⃗a), to ensure that in no answer set
of the program both P (⃗a) and P (⃗a) hold. In this thesis, we readily make use of this trick
and therefore do not consider programs with support for strong negation.

Modularity. Depending on the problem at hand, programs can get very large, and
verifying their correctness may be difficult. Therefore, it can be helpful to split a large
program into smaller chunks, called modules or components, where the output of one
module can be used as input to another. The following generalization of Lemma 5.1 in
[EGM97] allows us to deĄne programs in a modular way.

Proposition 2.4.12. Let P1 and P2 be two Datalog∨, ¬ programs with the property that
all shared predicates are EDB predicates of P2 and all constants of P2 occur in P1. The
answer sets of P1 ∪ P2 coincide with the set

¶I : I is an answer set of P2 ∪ J, for some answer set J of P1♢.

External Database. Sometimes it is also convenient to view programs as two separate
components: (i) the part P consisting of all rules and facts over IDB predicates and (ii) an
external database D containing facts over EDB predicates. If the distinction is important,
we may write (P, D) to denote such a program, which is semantically equivalent to P ∪D.
We also point out that D is nothing else but an Herbrand interpretation over the EDB
predicates.

Queries. Datalog is primarily a database query language and as such it should provide
a way to answer queries over databases. We next deĄne the notion of a Datalog query.

DeĄnition 2.4.13 (Datalog query). A Datalog query is a pair (P, Q), where P is a
Datalog program and Q is a distinguished predicate occurring in P.

The answers to a query (P, Q) over some database D are given as all n-tuples a⃗ of
constants, where n is the arity of Q, for which the program P ∪D entails Q(⃗a), i.e., Q(⃗a)
is contained in the minimal model of P ∪D.

DeĄnition 2.4.14. Let (P, Q) be a Datalog query and D be a database over the EDB
predicates of P. The set of answers to (P, Q) over D is denoted by ans((P, Q), D) and
computed as follows:

ans((P, Q), D) = ¶a⃗ ∈ NI
art(Q) : Q(⃗a) ∈ MM (P ∪D)♢.

Syntactically, queries in the extensions of Datalog are deĄned in the same way. However,
since such programs may have more than one answer set, the question of which answer
set should be considered when answering a query arises. In general, there are different
ways to deĄne answers to queries in non-monotonic extensions of Datalog, two of the
most popular being brave and cautious reasoning.

43

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2. Preliminaries

DeĄnition 2.4.15 (Brave/cautious entailment). We say that a program P bravely entails
and atom α if α ∈ I, for some answer set I of P. On the other hand, P cautiously
entails α, if α ∈ I, for every answer set of P.

Depending on what type of entailment we consider, we get two different notions of
answers: possible answers and certain answers.

DeĄnition 2.4.16 (Possible/certain answers). Let (P, Q) be a Datalog∨, ¬ query and D
be a database over the EDB predicates of P. We say that a tuple of constants a⃗ ∈ NI

art(Q)

is a possible answer to (P, Q) over D, if P ∪D bravely entails Q(⃗a). We say that a⃗ is a
certain answer to (P, Q) over D, if P ∪D cautiously entails Q(⃗a).

In this thesis, we only consider cautious reasoning and certain answer semantics. We de-
note the set of all certain answers to a query (P, Q) over a database D by cert((P, Q), D).

Example 2.4.17. Let P be a Datalog¬ program consisting of the following rules:

P = ¶ advisedBy(Charlie,Dave)← not advisedBy(Charlie,Erika)

advisedBy(Charlie,Erika)← not advisedBy(Charlie,Dave)

unrelated(X,Y)← Person(X),Person(Y),not advisedBy(X,Y),

not advisedBy(Y,X), X ̸= Y ♢.

Furthermore, let D be the following database:

D = ¶Person(Charlie),Person(Dave),Person(Erika)♢.

The program P ∪D has two answer sets:

I1 = D ∪ ¶advisedBy(Charlie,Dave, unrelated(Dave,Erika), unrelated(Erika,Dave)♢

I2 =D ∪ ¶advisedBy(Charlie,Erika, unrelated(Dave,Erika), unrelated(Erika,Dave)♢.

Consider the query (P, unrelated). The certain and the possible answers to this query
over D coincide: (Dave,Erika) and (Erika,Dave).

Consider now the query (P, advisedBy). This query has two possible answers over D,
(Charlie,Dave) and (Charlie,Erika), but it has no certain answers over D.

Complexity of reasoning. We now brieĆy recall the most relevant reasoning tasks in
Datalog and its extensions together with their complexity. In this thesis, we are mostly
concerned with the following reasoning tasks:

• Consistency: does a given program have at least one answer set?

• Answer set checking: given a program P and an Herbrand interpretation I, is I
an answer set of P?

44

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2.4. Datalog

Consistency Answer set checking Cautious query answering

Datalog trivial PTime PTime
Datalog¬ NP PTime co-NP
Datalog∨, ¬ NP co-NP Π2

P

Table 2.2: Selected complexity results of standard reasoning tasks with ground programs
in Datalog and its extensions.

Consistency Answer set checking Cautious query answering
data combined data combined data combined

Datalog trivial trivial PTime PTime PTime ExpTime
Datalog¬ NP NExpTime PTime PTime co-NP co-NExpTime
Datalog∨, ¬ NP NExpTime co-NP co-NP Π2

P co-NExpTime NP

Table 2.3: Selected complexity results of standard reasoning tasks with non-ground
programs in Datalog and its extensions.

• Cautious query answering: given a query (P, Q), a database D and a tuple of
constants a⃗, is a⃗ a certain answer to (P, Q) over D?

Table 2.2 summarizes known complexity results of the problems above for ground programs
written in different dialects of Datalog (for details, see [LPF+06] and references therein).

For non-ground programs, we once again distinguish between data and combined complex-
ity. Generally, allowing variables in programs raises the complexity by one exponential
due to the grounding step. For data complexity, we typically view programs as a pair
(P, D) of rules and an external database, as previously explained. The input size is then
simply given as ♣D♣, while P and other relevant parameters are considered Ąxed and
their size is reduced to a constant. We summarize in Table 2.3 known complexity results
for non-ground programs in different dialects of Datalog. Observe that in general, data
complexity of reasoning tasks for non-ground programs coincides with the complexity of
ground programs, as the grounding step no longer causes an exponential explosion.

45

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

CHAPTER 3
Expressive DLs with Closed

Predicates

Equipping DLs with the possibility of specifying which part of the signature should be
regarded as complete is a relatively simple way of accommodating partial closed-world
reasoning in DLs. Nevertheless, OMQ languages based on DLs that support closed
predicates exhibit non-monotonic behavior which allows us to express many natural
queries that cannot be expressed in traditional query languages like Ąrst-order logic or
Datalog. One such example is the famous parity query Qparity Ű given an ABox (or a
database) and a unary relation A, is the number of objects in A odd? This query is
obviously non-monotonic Ű e.g. the answer to Qparity over the ABox A1 = ¶A(a)♢ is 1
(or ŞtrueŤ) but it is 0 (or false) over A2 = A1 ∪ ¶A(b)♢. We will see a little later how we
can express this query as an OMQ with the help of closed predicates. We next formally
introduce description logics with closed predicates, with the focus on the very expressive
ALCHOIQ that simultaneously supports nominals, inverses, and number restrictions.
As already mentioned, this particular combination is known to be computationally
challenging and it increases the complexity of basic reasoning problems from ExpTime to
NExpTime [Tob00]. Complexity-optimal algorithms for DLs supporting at the same time
inverses, nominals, and number restrictions, all rely on some type of characterization of
the KB satisĄability problem as an integer linear programming problem. In this chapter,
we follow this line of work and we provide a characterization of the KB satisĄability
problem of ALCHOIQ with closed predicates as an integer programming problem with
some side conditions, that serves as the basis for showing the results in the later chapters.
In particular, our approach was inspired by works on Ąnite model reasoning in DLs.
Building on the technique from [CLN94], Calvanese shows in [Cal96] that satisĄability and
subsumption w.r.t. TBoxes in ALCIQ can be decided in 2-ExpTime by constructing a
system of linear inequalities from a given knowledge base, and relating the existence of its
solutions to the existence of Ąnite models of the considered knowledge base. The authors

47

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3. Expressive DLs with Closed Predicates

of [LST05] improve Calvanese’s bound by showing that these reasoning problems are
in fact ExpTime-complete for ALCIQ, for both unary and binary encoding of integers.
Their line of reasoning is also based on the same core idea Ű due to the interplay of
inverses and number restrictions, solving combinatorial issues is an important aspect
of deciding Ąnite satisĄability in ALCIQ, and such problems can be addressed using a
suitable integer programming characterization. More recently, a similar technique was
used in [GGI+20] to investigate mixed satisfiability of ALCHOIF knowledge bases, a
generalization of standard satisĄability problems which requires that some predicates
have Ąnite extensions, while others are unrestricted. Finally, in the area of Ąrst-order
logic, [PH05] show that both the Ąnite and the unrestricted satisĄability problem for the
two-variable fragment of FO logic with counting quantiĄers is decidable in NExpTime
using a reduction to integer programming, and [PH09] shows that these problems are
NP-complete in data complexity.

Contributions and Relevant Publications The main contribution of this chapter
is a worst-case optimal satisĄability procedure for ALCHOIQ with closed predicates.
More precisely, we show how to encode the knowledge base satisĄability problem for
this logic as a system of integer linear inequalities enriched with implications that is i)
polynomial in the size of the ABox and exponential in the size of the TBox, and ii) has
a solution if and only if the corresponding KB admits a model. The existence of the
solution to the obtained system can be decided using established integer programming
techniques, yielding a novel NP upper bound for the considered reasoning task.

The results presented here have been published in:

[LOŠ24] Sanja Lukumbuzya, Magdalena Ortiz, Mantas Šimkus. ŞDatalog
Rewritability and Data Complexity of ALCHOIQ with closed predicatesŤ.
ArtiĄcial Intelligence (2024): 104099.

This journal paper was in turn based on the following two conference papers:

[GLOŠ20] Tomasz Gogacz, Sanja Lukumbuzya, Magdalena Ortiz, and Mantas Šimkus.
ŞDatalog rewritability and data complexity of ALCHOIF with closed pred-
icatesŤ. In Proceedings of the International Conference on Principles of
Knowledge Representation and Reasoning, KR 2020, vol. 17, no. 1, pp.
434-444. 2020.

Using the same integer programming technique, this paper presented a simpler
characterization for ALCHOIF , the fragment of ALCHOIQ that in terms
of number restrictions allows only global functionality.

[LŠ21] Sanja Lukumbuzya, and Mantas Šimkus. ŞBounded Predicates in Descrip-
tion Logics with CountingŤ. In Proceedings of the Thirtieth International
Joint Conference on ArtiĄcial Intelligence, IJCAI 2021, pp. 1966-1972. 2021.

48

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3.1. DLs with Closed Predicates

In the main body of this paper, we presented an integer encoding for the
mixed satisfiability problem for ALCHOIQ TBoxes, i.e., the problem of
deciding whether a TBox has a model, where certain predicates are required
to have Ąnite extensions. In the appendix to the same paper, we showed
how this encoding can be extended to reasoning in the presence of data and
closed predicates.

Organization Section 3.1 formally introduces description logics with closed predicates
as well as the normal form for ALCHOIQ with closed predicates that will be used
throughout the rest of this thesis. The main technical result is presented in Section 3.2
and, for easier readability, it is divided into Ąve distinct parts. In Section 3.2.1, we
introduce the notion of chromatic models that satisfy certain properties that make our
characterization easier and we show that we can safely restrict our attention to only
such models. In Section 3.2.2, we present the actual characterization of the considered
satisĄability problem in terms of the existence of mosaics, i.e., functions that tell us
how many domain elements of a certain kind we need in order to build a model and
we show in Section 3.2.3 the correctness of this characterization. In Section 3.2.4, we
introduce enriched systems of integer linear inequalities that extend ordinary systems of
linear inequalities with the set of implications between inequalities and we recall some
results on the complexity of solving such systems. A connection between KB satisĄability
and integer programming is made in Section 3.2.5. Finally, in Section 3.3, we present
a version of our previous characterization that was speciĄcally tailored to ALCHOIF
with closed predicates.

3.1 DLs with Closed Predicates

As previously mentioned, DL knowledge bases with closed predicates differ syntactically
from plain DL KBs in that they additionally contain a set of predicates Σ specifying
the part of the signature that is considered complete. Semantically, the set of models of
such KBs is restricted to those interpretations that satisfy the underlying KB and agree
with the ABox on the extensions of the predicates in Σ. We illustrate this with a short
example.

Example 3.1.1. Recall K2 = (T2,A2) from Example 2.3.6, and consider its variation
K′

2 = (T2, ¶Curriculum,Course♢,A2) with closed predicates that additionally states that the
information we have about the available curricula and courses is complete, i.e., Curriculum
and Course are closed predicates. We note that K′

2 is expressed in ALC(H)OIQ with
closed predicates.

Next, recall the model I of K2 from Example 2.3.10. Observe that this interpretation
is not a model of K′

2 since it violates the closed predicate Course, as ci ∈ CourseI and
Course(ci) ̸∈ A2, for 1 ≤ i ≤ 4. In fact, K′

2 admits no models at all – both Course and
Curriculum are closed, the models of this KB must consist of exactly one curriculum and

49

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3. Expressive DLs with Closed Predicates

exactly one course. This is however inconsistent with the axiom

Curriculum ⊑≥ 5hasPart.Course⊓ ≤ 20hasPart.Course,

requiring that every curriculum consists of at least five and at most 20 courses. However,
I is a model of (T2, ¶Curriculum,Course♢,A2 ∪ ¶c1, c2, c3, c4♢).

We next give formal deĄnitions of the syntax and the semantics of description logic
knowledge bases with closed predicates, without focusing on a speciĄc logic.

DeĄnition 3.1.2. Let T be a TBox, Σ ⊆ NC ∪ NR be a set of predicates, and A be an
ABox. The triple K = (T ,Σ,A) is a knowledge base with closed predicates.

For some DL L, we say that K = (T ,Σ,A) is expressed in L with closed predicates, if
(T ,A) is an L knowledge base. In what follows, if it is clear that we are in the setting
of description logics with closed predicates, we refer to knowledge bases with closed
predicates simply as knowledge bases (KBs).

DeĄnition 3.1.3. Let I be an interpretation, Σ ⊆ NC ∪ NR be a set of closed predicates
and A be an ABox. We say that I satisĄes A w.r.t. Σ, in symbols I ⊨Σ A, if:

• I ⊨ A,

• for every A ∈ Σ ∩ NC, b ∈ AI implies A(b) ∈ A, and

• for every r ∈ Σ ∩ NR, (a, b) ∈ rI implies r(a, b) ∈ A.

We say that I satisĄes a knowledge base with closed predicates K = (T ,Σ,A), in symbols
I ⊨ K, if I ⊨ T and I ⊨Σ A. If I satisfies K, I is a model of K. We say that K is
satisĄable (or consistent) if it has at least one model, otherwise K is unsatisĄable (or
inconsistent).

We remind the reader that all DLs in this thesis, as well as their extensions, make
the standard name assumption that forces the models to interpret the knowledge base
individuals as themselves. We also brieĆy recall some useful notations that were introduced
in the preliminaries to this thesis. For a TBox, an ABox, or a KB X , NC(X), NR(X),
and NI (X) denote the set of concept names, role names and individuals occurring in
X , respectively. Furthermore N+

C (X) = ¶⊤,⊥♢ ∪ NC(X) ∪ ¶¶a♢ : a ∈ NI(X)♢ is the set
of basic concepts occurring in X and N+

R (X) = ¶r, r− : r ∈ NR(X)♢ is the set of roles
occurring in X and their inverses.

50

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3.1. DLs with Closed Predicates

3.1.1 Normal Form

It is often convenient to assume that DL knowledge bases are given in some normal
form. This allows one to focus on knowledge bases with restricted syntax without losing
generality, which greatly simpliĄes algorithms and proofs. The precise choice of the
normal form depends on the application of interest. In what follows, we Ąrst introduce
some general assumptions that we make about the knowledge bases and then describe
the normalization procedure for ALCHOIQ knowledge bases with closed predicates that
will be used in the remainder of this thesis. Finally, we point out how this normal form
is adapted for its sublogic ALCHOIF .

First off, from now on we always assume that any given ABox A only contains assertions
that have one of the following forms:

• A(c) or ¬A(c), where A is a concept name in NC and c is an individual in NI, or

• r(c, d) or ¬r(c, d), where r is a role name in NR and c, d are individual names in NI.

Suppose A is a part of some knowledge base K = (T ,Σ,A). It is well-known (and also
easy to see) that replacing any concept assertion C(a) ∈ A over a complex concept C
by AC(a) and adding the CI AC ⊑ C to the corresponding TBox T , where AC ∈ NC is
assumed to be a fresh concept name, i.e., AC does not occur elsewhere in T , results in a
knowledge base that is equivalent to K, up to the difference in the signature. Moreover,
any role assertion r−(a, b) ∈ A (resp. ¬r−(a, b)), where r is a role name in NR, can simply
be replaced by r(b, a) (resp. ¬r(b, a)).

Another useful assumption that we often make is that TBoxes are closed under role
inclusions.

DeĄnition 3.1.4. We say that a TBox T is closed under role inclusions if the following
conditions hold:

(i) p ⊑ p ∈ T , for each role name p ∈ NR(T),

(ii) if, r ⊑ s ∈ T , then r− ⊑ s− ∈ T , and

(iii) if r1 ⊑ r2 ∈ T and r2 ⊑ r3 ∈ T , then also r1 ⊑ r3 ∈ T .

Every TBox T can be transformed into an equivalent TBox T ′ that is closed under
role inclusions in time polynomial in the size of T . Indeed, this can be achieved in the
following three steps:

1. For every role name p ∈ NR(T), add p ⊑ p to T . This step is linear in the number
of roles that occur in T .

2. For every axiom r ⊑ s ∈ T , add r− ⊑ s− to T . This step is linear in the number
of RIs in T .

51

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3. Expressive DLs with Closed Predicates

3. Compute the transitive closure over role inclusions. This can be done using any
standard algorithm for computing the transitive closure over a binary relation and
is known to be possible in cubic time in the number of RIs in T (e.g., by using the
Floyd-Warshall algorithm [Flo62]).

Let T ′ denote the resulting TBox. As we only added RIs that are logically entailed by
T , it is immediate that T ′ is equivalent to T .

Negation Normal Form. One particular normal form that is often used in the
literature is negation normal form in which the negation is allowed only in front of atomic
concepts (i.e., concept names and nominals).

DeĄnition 3.1.5 (Negation Normal Form (NNF)). A concept is in negation normal
form (NNF) if negation only occurs in front of concept names or nominals. A TBox is
in negation normal form if all its CIs are of the form ⊤ ⊑ C, where C is in NNF.

Proposition 3.1.6. Every concept C can be transformed in polynomial time into an
equivalent concept that is in NNF, denoted by NNF(C). Furthermore, every TBox T can
be transformed in polynomial time into an equivalent TBox NNF(T) that is in NNF.

Proof. To transform C into NNF(C), we simply push the negation inwards until it occurs
only in front of nominals or concept names. To this end, we use the following equivalences:

¬¬C ≡ C,

¬(C ⊓D) ≡ ¬C ⊔ ¬D, ¬(C ⊔D) ≡ ¬C ⊓ ¬D,

¬∃r.C ≡ ∀r.¬C, ¬∀r.C ≡ ∃r.¬C,

¬(≤ nr.C) ≡ ≥ (n+ 1)r.C, ¬(≥ nr.C) ≡

{

⊥, if n = 0,

≤ (n− 1)r.C, otw.

It is easy to see that obtaining NNF(C) can be done in time polynomial in the size of C.

The TBox NNF(T) is obtained from T by replacing every CI C ⊑ D in T by ⊤ ⊑
NNF(¬C ⊔D). This is obviously a polynomial time procedure and NNF(T) is equivalent
to T .

It is important to note that normalization procedures must preserve relevant properties
of the TBox that is being normalized. In the case of NNF, we obtain an equivalent TBox
so all properties are automatically preserved, however may not always the case. For the
purposes of this thesis, it is important that the TBox produced by some normalization
procedure is equi-satisĄable and has the same atomic consequences as the original TBox.
We thus introduce the notion of conservative extensions of TBoxes.

DeĄnition 3.1.7. Let T and T ′ be two TBoxes. We say that T ′ is a conservative
extension of T if the following holds:

52

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3.1. DLs with Closed Predicates

• sig(T) ⊆ sig(T ′),

• every model of T ′ is a model of T , and

• every model I of T can be extended into a model I ′ of T ′ such that I and I ′ agree
on the interpretation of the shared signature, i.e., qI′

= qI , for all q ∈ sig(T).

It is well-known that conservative extensions preserve the satisĄability and atomic
consequences of the original TBox.

ALCHOIQ Normal Form. We now formally deĄne what it means for an ALCHOIQ
TBox or a KB to be in normal form and show that we can transform arbitrary ALCHOIQ
KBs into normalized ones in polynomial time.

DeĄnition 3.1.8 (ALCHOIQ Normal Form). An ALCHOIQ TBox T is in normal
form (or normalized), if every axiom in T has one of the following forms:

(N1) B1 ⊓ · · · ⊓Bk−1 ⊑ Bk ⊔ · · · ⊔Bm,

(N2) B1 ⊑= n p.B2 (N3) B1 ⊑ ∀p.B2, (N4) r ⊑ s,

where ¶B1, . . . , Bm♢ ⊆ N+
C

, n ≥ 0, k > 1, m ≥ k, p ∈ NR, and ¶r, s♢ ⊆ N+
R

, and = n p.B
is an abbreviation for ≥ n p.B ⊓ ≤ n p.B. A KB K = (T ,Σ,A) is in normal form (or
normalized), if T is in normal form.

We refer to the axioms of type (N2) as counting axioms and the roles that occur in such
axioms as counting roles.

To see that restricting our attention to normalized KBs is not a true restriction and,
unless stated otherwise, our results apply to arbitrary KBs, we prove the following result.

Proposition 3.1.9. Let T be an ALCHOIQ TBox. We can obtain an ALCHOIQ
TBox T ′ from T in polynomial time such that T ′ is a conservative extension of T and
T ′ in normal form.

In view of Proposition 3.1.6, we can assume w.l.o.g that T is given in NNF. Furthermore,
we assume that no concept in T is of the form ∃r.C, as we can replace such concepts
with the equivalent concept ≥ 1r.C. We also assume that in any expression of the form
≤ np.C or ≥ np.C, p is a role name. Indeed, expressions of the form ≤ np−.C (resp.
≥ np−.C), where p is a role name, can be replaced by the CI ≤ np′.C (resp. ≥ np′.C)
and two RIs p′ ⊑ p− and p− ⊑ p′, where p′ is a fresh role name.

The normalization procedure now involves the following two steps:

Step 1: We remove all nested concept occurrences by substituting fresh concept and
role names for complex expressions in T , similarly to the normalization procedure in
[Sim13]. Namely, for each concept C occurring in T , we assume two fresh concept names

53

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3. Expressive DLs with Closed Predicates

AC and A¬C in NC. We then deĄne the structural transformation of C, denoted as st(C),
as follows:

st(A) := A, st(C ⊓D) := AC ⊓AD,

st(⊤) := ⊤, st(C ⊔D) := AC ⊔AD,

st(⊥) := ⊥, st(∀r.C) := ∀r.AC ,

st(¶a♢) := ¶a♢, st(≤ nr.C) :=≤ nr.AC ,

st(¬C) := ¬AC , st(≥ nr.C) :=≥ nr.AC ,

where A is a concept name, a is an individual, C,D are concepts, r is a role, and n is a
non-negative integer.

Let T ′ be the TBox consisting of all RIs in T as well as the following CIs:

• st(C) ⊑ AC and AC ⊑ st(C), for every concept C occurring in T ,

• AC ⊓A¬C ⊑ ⊥, and ⊤ ⊑ AC ⊔A¬C , for every concept C occurring in T ,

• ⊤ ⊑ AC , for every ⊤ ⊑ C in T .

To show that T ′ is a conservative extension of T , we Ąrst prove the following claim:

Lemma 3.1.10. Let I be a model of T ′ and let C be an arbitrary concept occurring in
T . Then I has the following properties:

• (AC)I = st(C)I ,

• (¬AC)I = (A¬C)I ,

• CI = (AC)I , and

• (¬C)I = (A¬C)I ,

Proof. As T ′ contains both AC ⊑ st(C) and st(C) ⊑ AC and I is a model of T ′, we
have that (AC)I = st(C)I . Furthermore, since T ′ contains both AC ⊓ A¬C ⊑ ⊥, and
⊤ ⊑ AC ⊔A¬C , we have (A¬C)I = ∆I \ (AC)I = (¬AC)I .

To prove that CI = (AC)I , we proceed by structural induction on C:

Base case: Let C be a basic concept occurring in T , i.e., C is of the form A,⊤,⊥,
or ¶a♢, where A ∈ NC and a ∈ NI. Observe that in this case st(C) = C, and so we
immediately get that (AC)I = CI .

Induction step: Let C be a concept occurring in T and assume the claim holds for all
top-level subconcepts of C. We make the following case distinction:

54

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3.1. DLs with Closed Predicates

¬D Due to our induction hypothesis, we have that (AD)I = DI , and thus also
(¬AD)I = (¬D)I . As (A¬D)I = (st(¬D))I = (¬AD)I , we can conclude
that (¬D)I = (A¬D)I . Due to our induction hypothesis, we have that
(AC1)I = (C1)I and (AC2)I = (C2)I . As (AC1⊓C2)I = (AC1 ⊓ AC2)I =
(AC1)I ∩ (AC2)I = (C1)I ⊓ (C2)I = (C1 ⊓ C2)I , the claim follows.

C1 ⊓ C2 Due to our induction hypothesis, we have that (AC1)I = (C1)I and
(AC2)I = (C2)I . As (AC1⊔C2)I = (AC1 ⊔ AC2)I = (AC1)I ∪ (AC2)I =
(C1)I ⊔ (C2)I = (C1 ⊔ C2)I , the claim follows.

C1 ⊔ C2 Due to our induction hypothesis, we have that (AC1)I = (C1)I and
(AC2)I = (C2)I . As (AC1⊔C2)I = (AC1 ⊔ AC2)I = (AC1)I ∪ (AC2)I =
(C1)I ⊔ (C2)I = (C1 ⊔ C2)I , the claim follows.

∀p.D As (A∀p.D)I = (∀p.AD)I and, due to our induction hypothesis, (AD)I =
DI , then also (A∀p.D)I = (∀p.D)I .

≤ np.D As (A≤np.D)I = (≤ np.AD)I and, due to our induction hypothesis, we
have that (AD)I = DI , then also (A≤np.D)I = (≤ np.D)I .

≥ np.D As (AC)I = (≥ np.AD)I and, due to our induction hypothesis, we have
that (AD)I = DI , then also (A≥np.D)I = (≥ np.D)I .

Finally, due to (AC)I = CI and (A¬C)I = (¬AC)I , we get (A¬C)I = (¬C)I .

Lemma 3.1.11. T ′ is a conservative extension of T and can be obtained in time
polynomial in the size of T .

Proof. Let I be a model of the original TBox T and let I ′ be the interpretation that
extends I by interpreting AC and A¬C , for every concept C occurring in T , as follows:
(AC)I′

= CI and (A¬C)I′

= (¬C)I . Obviously, I ′ is a model of T ′.

Conversely, assume that I is a model of T ′. I satisĄes all RIs in T since they also
occur in T ′. In view of Lemma 3.1.10 we have that (AC)I = CI . Moreover, for every
CI ⊤ ⊑ C ∈ T , we have the CI ⊤ ⊑ AC ∈ T

′, and so ⊤I ⊆ (AC)I . Putting the two
together, this means that ⊤I ⊆ CI , and so I satisĄes ⊤ ⊑ C.

We introduce two fresh concept names and four CI for every complex concept that occurs
in T , as well as one CI for every CI in T . Thus, T ′ is linear in the size of T . Moreover,
it is easy to see that the normalization procedure described above runs in polynomial
time.

Step 2: Observe however that T ′ is not yet in normal form. Thus, we perform
the transformations listed below to obtain a normalized TBox T ′′ that is a conservative
extension of T ′ and therefore also over T . Let α be an axiom in T ′ that violates the
normal form. We make the following case distinction depending on the form of α:

1. ¬AB ⊑ A¬B , for some basic concept B occurring in T (recall that we started from
an TBox in NNF). We replace α by ⊤ ⊑ AB ⊔A¬B.

55

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3. Expressive DLs with Closed Predicates

2. A¬B ⊑ ¬AB , for some basic concept B occurring in T . We replace α by A¬B⊓AB ⊑
⊥.

3. AC1⊓C2 ⊑ AC1 ⊓AC2 , for some C1 ⊓ C2 occurring in T . In this case, we replace α
by two CIs AC1⊓C2 ⊑ AC1 and AC1⊓C2 ⊑ AC2 .

4. AC1 ⊔AC2 ⊑ AC1⊔C2 , for some C1 ⊔ C2 occurring in T . In this case, we replace α
by two CIs AC1 ⊑ AC1⊔C2 and AC2 ⊑ AC1⊔C2 .

5. ∀r.AC ⊑ A∀r.C , for some ∀r.C occurring in T . In this case, α is equivalent to
≤ 0r.¬AC ⊑ A∀r.C . Due to Lemma 3.1.10, we can replace α by ≤ 0r.A¬C ⊑ A∀r.C .

The transformations above make use of well-known equivalences and simple renaming. It
is therefore easy to see that applying them yields a TBox that is a conservative extension
of T ′ and polynomial in the size of T ′. The axioms that involve number restrictions
require greater care and are treated as follows:

6. A≤np.C ⊑≤ np.AC , for some ≤ np.C occurring in T . For 0 ≤ i ≤ n, we assume a
fresh concept name A=ip.C and we add the following CI to T : A=ip.C ⊑= ip.AC .
We then replace α by A≤np.C ⊑

⊔

0≤i≤nA=ip.C .

To see that doing this yields a TBox that is a conservative extension of T ′, let I
be an interpretation and assume I ⊨ T ′ and, thus, I ⊨ A≤np.C ⊑≤ np.AC . We
deĄne the interpretation I ′ as the interpretation that extends I by interpreting
the fresh concept names as follows: (A=ip.C)I′

= (= ip.AC)I , for all 0 ≤ i ≤ n. Let
d ∈ (A≤np.C)I′

. As I ′
⊨ A≤np.C ⊑≤ np.AC , this means that d ∈ (≤ np.AC)I . By

the semantics of ≤ np.AC , there exists kd, 0 ≤ kd ≤ n, such that there are kd distinct
elements e ∈ (AC)I with (d, e) ∈ pI . This means that d ∈ (= kdp.AC)I , and thus, by
deĄnition of I ′, d ∈ (A=kdp.C)I′

. Hence, d ∈ ⊔0≤i≤n(A=ip.C)I′

= (
⊔

0≤i≤nA=ip.C)I′

,
which means that I ′

⊨ A≤np.C ⊑
⊔

0≤i≤nA=ip.C .

Conversely, assume that I ⊨ A≤np.C ⊑
⊔

0≤i≤nA=ip.C and, for 0 ≤ i ≤ n, I ⊨

A=ip.C ⊑= ip.AC . It is easy to see that I ⊨ A≤np.C ⊑
⊔

0≤i≤n = ip.AC , and so
I ⊨ A≤np.C ⊑≤ np.AC .

7. A≥np.C ⊑≥ np.AC , for some ≤ np.C occurring in T .

• n = 0. We replace the axiom by the equivalent A≥np.C ⊑ ⊤.

• n ≥ 1. Assume a fresh role name p′, and add p′ ⊑ p to T . We replace α by
A≥np.C ⊑= np′.AC

Let I be an interpretation and assume that I ⊨ A≥np.C ⊑≥ np.AC . For every
element e ∈ (≥ np.AC)I , there are at least n elements e1, . . . , en in AI

C such
that (e, ei) ∈ pI , for each 1 ≤ i ≤ n. Let I ′ be an interpretation that extends
I by interpreting p′ as the set ¶(e, ei) : e ∈ (≥ np.AC)I , 1 ≤ i ≤ n♢. Obviously,
I ′

⊨ p′ ⊑ p and (≥ np.AC)I′

= (= np′.AC)I′

. Thus, I ′
⊨ A≥np.C ⊑= np′.AC .

Conversely, assume that I ⊨ A≥np.C ⊑= np′.AC and I ⊨ p′ ⊑ p. Then also
I ⊨ A≥np.C ⊑= np.AC .

56

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3.1. DLs with Closed Predicates

8. ≤ np.AC ⊑ A≤np.C , for some ≤ np.C occurring in T . This axiom is equivalent to
¬A≤np.C ⊑≥ (n+ 1)p.AC . We then replace α by A¬≤np.C ⊑≥ (n+ 1)p.AC .

Let I be a model of T ′ and assume that I ⊨ ¬A≤np.C ⊑≥ (n+1)p.AC . Since I ⊨ T ′,
we have (A¬≤np.C)I = (¬A≤np.C)I . Therefore, I ⊨ A¬≤np.C ⊑≥ (n+ 1)p.AC .

Conversely, assume that I satisĄes the TBox obtained from T ′ by replacing α by
A¬≤np.C ⊑≥ (n+1)p.AC . In this case, we still have that (A¬≤np.C)I = (¬A≤np.C)I .
Thus, I ⊨ ¬A≤np.C ⊑≥ (n+ 1)p.AC , and so I ⊨≤ np.AC ⊑ A≤np.C .

To bring A¬≤np.C ⊑≥ (n+ 1)p.AC into normal form, we proceed as explained in
item 6.

9. ≥ np.AC ⊑ A≥np.C , for some concept ≥ np.C occurring in T .

• n = 0. We replace the axiom by the equivalent ⊤ ⊑ A≥np.C .

• n ≥ 1. This axiom is equivalent to ¬A≥np.C ⊑≤ (n− 1)p.AC . We replace α
by A¬≥np.C ⊑≤ (n− 1)p.AC .

The proof that this transformation yields a TBox that is a conservative
extension of the original TBox T is the same as in the previous item.

Finally, we treat A¬≥np.C ⊑≤ (n− 1)p.AC as explained in item 7.

We have shown along the way that performing the steps above yields a TBox T ′′ that is a
conservative extension of T ′ and is in the desired normal form. Moreover, T ′′ is obtained
from T ′ in polynomial time and it involves only linearly many new axioms, provided that
integers are coded in unary. Together with Observation 3.1.11, this means that T ′′ is a
normalized TBox that is a conservative extension of and linear in the size of the original
TBox T and can be obtained from T in polynomial time. Thus, Proposition 3.1.9 holds.
As a corollary of Proposition 3.1.9, we have that every ALCHOIQ KB K with closed
predicates can be normalized in polynomial time in a way that preserves the satisĄability
and atomic consequences over the signature of K:

Proposition 3.1.12. Let K = (T ,Σ,A) be an ALCHOIQ KB with closed predicates.
We can obtain a TBox T ′ from T in polynomial time such that T ′ is in normal form and
for K′ = (T ′,Σ,A) and every interpretation I the following holds:

1. if I ⊨ K′, then I ⊨ K, and

2. if I ⊨ K, then I can be extended into I ′ such that I ′
⊨ K′ and qI′

= qI , for all
q ∈ sig(K).

We next Ąx some notation that remains the same for the remainder of this thesis,
summarized in Table 3.1. For a given ALCHOIQ TBox T , we let nT be the number
of concept names in NC(T), kT be the number of roles in N+

R (T), mT be the number of
counting axioms occurring in T , and we let cT be the maximum integer occurring in T .

57

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3. Expressive DLs with Closed Predicates

nT number of different concept names in NC(T)
kT number of different roles in N+

R (T)
mT number of counting axioms occurring in T
cT maximum integer occurring in T

Table 3.1: Summary of symbols with Ąxed meaning, for a TBox T

ALCHOIF Normal Form. We can easily adapt the ALCHOIQ normalization pro-
cedure to also show that every ALCHOIF TBox T can be transformed in polynomial
time into a TBox T ′ that is a conservative extension of T and in ALCHOIF normal
form, described below.

DeĄnition 3.1.13. [ALCHOIF Normal Form] An ALCHOIF TBox T is in normal
form (or normalized), if every axiom in T has one of the following forms:

(N1) B1 ⊓ · · · ⊓Bk−1 ⊑ Bk ⊔ · · · ⊔Bm,

(N2’) B1 ⊑ ∃p.B2 (N3) B1 ⊑ ∀p.B2, (N4) r ⊑ s, (N5) func(r),

where ¶B1, . . . , Bm♢ ⊆ N+
C

, p ∈ NR, and r ∈ N+
R

.

A KB K = (T ,Σ,A) is in normal form (or normalized), if T is in normal form.

Indeed, we remove nested concept occurrences exactly as before. To further normalize
the axioms that violate the normal form, we use the transformations listed in items 1-4
from Step 2 of the normalization procedure together with the following transformations:

• ∀p.AC ⊑ AC , for some ∀p.C occurring in T . We replace this axiom by A¬∀p.C ⊑
∃pA¬C .

• ∃p.AC ⊑ A∃p.C , for some ∃p.C occurring in T . We replace this axiom by AC ⊑
∀p′.A∃p.C and add two RIs p′ ⊑ p− and p− ⊑ p′.

Let T ′ be the resulting TBox together with all RIs and functionality axioms from T .
Then T ′ is a conservative extension of T that is in ALCHOIF normal form. Moreover,
T ′ was obtained in polynomial time. Thus, we have the following result.

Proposition 3.1.14. Let K = (T ,Σ,A) be an ALCHOIF KB with closed predicates.
We can obtain a TBox T ′ from T in polynomial time such that T ′ is in normal form and
for K′ = (T ′,Σ,A) and every interpretation I the following holds:

1. if I ⊨ K′, then I ⊨ K, and

2. if I ⊨ K, then I can be extended into I ′ such that I ′
⊨ K′ and qI′

= qI , for all
q ∈ sig(K).

58

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3.2. Characterizing KB SatisĄability via Integer Programming

3.2 Characterizing KB Satisfiability via Integer

Programming

We next devise a procedure that decides the satisĄability of ALCHOIQ KBs with closed
predicates using integer programming techniques. Our approach is closely related to
techniques in [Cal96, LST05, PH05] that reduce the finite satisfiability problem to Ąnd-
ing integer solutions to a system of linear inequalities. We use parts of the inequality
systems in [GGI+20], which (among other results) shows that deciding whether a given
ALCHOIF TBox has a model in which some input predicates have Ąnite extensions can
be characterized via integer programming. For our purposes, we modify the procedure
to support ABoxes, closed predicates, and generalized counting axioms instead of func-
tionality. In the remainder of this chapter, we show that we can correctly characterize
the problem of satisĄability of ALCHOIQ KBs with closed predicates as a system of
linear inequalities together with certain side conditions. In view of the results from
the previous section, we restrict our attention to KBs K = (T ,Σ,A) where T is in
ALCHOIQ normal form and closed under role inclusions and A contains only assertions
and negated assertions over concept and role names.

3.2.1 Chromatic models

Inspired by a technique used in [PH05], we begin by introducing the notion of chromatic
models of knowledge bases. This notion will aid us in the correct characterization of
counting axioms and its importance will become obvious in the remainder of this chapter.

We Ąrst recall a standard notion of a type and a role type in description logics.

DeĄnition 3.2.1. Given a knowledge base K = (T ,Σ,A), a role type for K is any set
R ⊆ N+

R
(K) and a type for K is any set T ⊆ N+

C
(K) such that

1. ⊤ ∈ T and ⊥ ̸∈ T ;

2. for all a, b ∈ NI(K), if ¶a♢, ¶b♢ ∈ T , then a = b.

We denote the set of all types for K by Types(K). A type lists the basic concepts that
some domain element participates in and a role type lists the roles that a pair of domain
elements participates in. The intuition behind the Ąrst condition in DeĄnition 3.2.1 is
obvious and the second condition arises due to the SNA.

An important auxiliary notion is the notion of invertibility, formally deĄned as follows.

DeĄnition 3.2.2. Let T be an ALCHOIQ TBox, T, T ′ be types for T , R ⊆ N+
R

(T).
We say that (T,R, T ′) is invertible if the following holds:

1. there exists an axiom A ⊑= n s.B ∈ T s.t. A ∈ T , B ∈ T ′, and s ∈ R, and

59

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3. Expressive DLs with Closed Predicates

2. there exists an axiom A′ ⊑= mp.B′ ∈ T s.t. A′ ∈ T ′, B′ ∈ T , and p− ∈ R.

Consider now an interpretation I. For a domain element d ∈ ∆I , we let t(d) = ¶B ∈
N+

C (T) : d ∈ BI♢ denote the type of d in I, and, for a pair of elements d, d′ ∈ ∆I , we let
rt(d, d′) = ¶r ∈ N+

R (T) : (d, d′) ∈ rI♢ denote the role type of (d, d′) in I.

DeĄnition 3.2.3. Let K be a knowledge base and I be a model of K. We say that I is
chromatic if for distinct elements d, d′, d′′ ∈ ∆I the following holds:

1. If (t(d), rt(d, d′), t(d′)) is invertible, then t(d) ̸= t(d′), and

2. If both (t(d), rt(d, d′), t(d′)) and (t(d), rt(d, d′′), t(d′′)) are invertible, then t(d′) ̸=
t(d′′).

Consider a knowledge base K = (T ,Σ,A). We next show that every model of K can
be converted into a chromatic model of K. To this end, we assume that there are
n = ⌈log(mT · c

2
T + 1)⌉ special concept names Aτ

1 , . . . , A
τ
n ∈ NC(K) that occur only in T

and only in the axioms of type Aτ
i ⊑ A

τ
i , 1 ≤ i ≤ n. Note that, since Aτ

1 , . . . , A
τ
n do not

occur in K other than in the trivial axioms of type Aτ
i ⊑ A

τ
i , it is easy to see that these

concept names have no effect on the satisĄability of K. In particular, if I ⊨ K and I ′ is
an arbitrary interpretation such that the restrictions of I ′ and I to the symbols in K
other than Aτ

1 , . . . , A
τ
n coincide, then also I ′

⊨ K.

Proposition 3.2.4. Let K = (T ,Σ,A) be a knowledge base, and let I be an interpretation.
If I ⊨ K, then I can be modified into a chromatic model of K by suitably interpreting the
concept names AT

1 , . . . , A
T
n , where n = ⌈log(mT · c

2
T + 1)⌉.

Proof. (Proof adapted from [PH05]) Let G = (V,E) be an undirected graph, where
V = ∆I and E = E1 ∪ E2, where

E1 = ¶(d, d′) : d ̸= d′ and (t(d), rt(d, d′), t(d′)) is invertible♢

E2 = ¶(d′, d′′) : d′ ̸= d′′ and for some d ∈ V, (d, d′) ∈ E1 and (d, d′′) ∈ E1♢.

From DeĄnition 3.2.2 it follows that, for all distinct d, d′ ∈ ∆I , if (t(d), rt(d, d′), t(d′)) is
invertible, then (t(d′), rt(d′, d), t(d)) is also invertible. This means that E2 can equivalently
be deĄned as:

E2 = ¶(d, d′′) : d ̸= d′′ and for some d′ ∈ V, (d, d′) ∈ E1 and (d′, d′′) ∈ E1♢.

As explained above, since AT
1 , . . . , A

T
n occur in K only in the trivial axioms Aτ

i ⊑ A
τ
i , I

remains a model of K even if the extensions of AT
1 , . . . , A

T
n are modiĄed in an arbitrary

way. As I is a model of K, that means that for each d ∈ ∆I there are at most mT · cT

60

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3.2. Characterizing KB SatisĄability via Integer Programming

different d′ ∈ ∆I s.t. (d, d′) ∈ rI , for some counting role r, and so there are at most
mT · cT distinct d′ ∈ ∆I s.t. (t(d), rt(d, d′), t(d′)) is invertible. Thus, the maximum
degree of any node in G is (mT · cT)2. It is well known that for an undirected graph with
maximum degree k, we can color the vertices of the graph with (k + 1) different colors
such that no edge connects two vertices with the same color. Thus, by using AT

1 , . . . , A
T
n

to encode these colors, we can transform I into a chromatic model of T .

3.2.2 Satisfiability via Tiles & Mosaics

We next introduce the most important notions that are needed for characterizing the
satisĄability of ALCHOIQ KBs with closed predicates via systems of linear inequalities.

Consider a knowledge base K = (T ,Σ,A) with closed predicates and recall that we can
view models of K as labeled directed graphs. A tile for K describes a kind of domain
element that can occur in a model of K together with the relevant part of its neighborhood
in the graph-theoretical sense. Intuitively, a tile τ carries the following information: (i)
which basic concepts a domain element of the kind τ participates in, as well as (ii) the
kind of neighbors such an element has in a model of K. A mosaic for K is a function N
that assigns to each tile a multiplicity. Mosaics satisfy certain conditions that ensure it
is possible to build a model of K by taking, for each tile τ , N(τ) domain elements that
Ąt the description given by τ . Deciding the satisĄability of K thus amounts to deciding
the existence of a mosaic for K. We next formally deĄne these notions.

DeĄnition 3.2.5. Given an ALCHOIQ KB K = (T ,Σ,A), a tile for K is a tuple (T, ρ),
where T is a type for K and ρ is a set of triples (R, T ′, k) s.t. R ⊆ N+

R
(K), T ′ is a type

for K, k > 0, and the following conditions hold:

T1. If (R, T ′, k) ∈ ρ then (R, T ′, k′) ∈ ρ, for all 0 < k′ < k

T2. For every (R, T ′, k) ∈ ρ, there exists some A ⊑= nr.B ∈ T such that A ∈ T ,
B ∈ T ′ and r ∈ R

T3. If B1⊓· · ·⊓Bk−1 ⊑ Bk⊔· · ·⊔Bm ∈ T and ¶B1, . . . , Bk−1♢ ⊆ T , then ¶Bk, . . . , Bm♢∩
T ̸= ∅

T4. If A ⊑= n r.B ∈ T and A ∈ T , then ♣¶(R, T ′, k) ∈ ρ : r ∈ R and B ∈ T ′♢♣ = n.

T5. For all (R, T ′, k) ∈ ρ, the following hold:

(a) If A ⊑ ∀r.B ∈ T , A ∈ T and r ∈ R, then B ∈ T ′

(b) If A ⊑ ∀r.B ∈ T , A ∈ T ′ and r− ∈ R, then B ∈ T

(c) If r ⊑ s ∈ T and r ∈ R, then s ∈ R

(d) If (T,R, T ′) is invertible, then T ̸= T ′, and there is no other (R′, T ′, k′) ∈ ρ
such that (T,R′, T ′) is invertible,

(e) If ¬p(a, b) ∈ A, ¶a♢ ∈ T , and p ∈ R, then ¶b♢ ̸∈ T ′

61

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3. Expressive DLs with Closed Predicates

(f) If ¬p(a, b) ∈ A, ¶b♢ ∈ T , and p− ∈ R, then ¶a♢ ̸∈ T ′

T6. If A(c) ∈ A and ¶c♢ ∈ T then A ∈ T

T7. If ¬A(c) ∈ A and ¶c♢ ∈ T , then A ̸∈ T

T8. If A ∈ Σ ∩ NC and A ∈ T then there exists c ∈ NI s.t. ¶c♢ ∈ T and A(c) ∈ A

T9. If r ∈ Σ ∩ NR, then for all (R, T ′, k) ∈ ρ with r ∈ R, there exist c, d ∈ NI s.t.
¶c♢ ∈ T , ¶d♢ ∈ T ′ and r(c, d) ∈ A.

We denote by Tiles(K) the set of all tiles for K.

Consider a tile τ = (T, ρ) for K, a model I of K, and a domain element d in ∆I . If
d Ąts the description provided by τ , we call d an instance of τ , which means that
d participates in exactly those basic concepts that are listed in T . Moreover, every
(R, T ′, k) ∈ ρ represents a distinct arc in a graphical representation of I that has d as
its start node, whose label contains all roles in R and whose end node is an element in
∆I that participates exactly in the basic concepts given by T ′. In other words, every
(R, T ′, k) ∈ ρ represents a distinct R-neighbor of d of type T ′. As d might have multiple
neighbors of type T ′ that are connected to d using the same set of roles R, we use the
integer k to denote the k-th neighbor of d of type T ′ connected to d via the roles from R.
Formally, we have the following deĄnition.

DeĄnition 3.2.6. Given an interpretation I and a tile τ = (T, ρ), we say that d is an
instance of τ if:

• t(d) = T ,

• for all (R, T ′, k) ∈ ρ, there exists e ∈ ∆I , referred to as a witness of (R, T ′, k), such
that t(e) = T ′ and R ⊆ rt(t, t′), and

• no two distinct triples in ρ have the same witness.

It is crucial to note that, in general, ρ does not describe all the neighbors that d may
have in I, but only those that are necessary to satisfy the counting axioms in T . This
kind of encoding allows us to keep the size of ρ independent of the ABox, which plays an
important role in deĄning a polynomial and data-independent Datalog translation and
obtaining the desired complexity bounds.

Example 3.2.7. Consider the following KB K = (T , ¶B♢, ¶B(c)♢), where T = ¶B⊓C ⊑
A,A ⊑= 1r.B,A ⊑ ∀r.C, s ⊑ r♢. Let τ be the following tile for K

τ = (¶⊤, A♢, ¶(¶r, s♢, ¶⊤, A,B,C, ¶c♢♢, 1)♢).

In a model I of K, a domain element d ∈ ∆I that is an instance of τ has the following
properties:

62

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3.2. Characterizing KB SatisĄability via Integer Programming

• d has the (unary) type ¶⊤, A♢, i.e., d ∈ AI and d ̸∈ DI , for all D ∈ N+
C

(K)\¶⊤, A♢,

• the constant c is an r-successor and an s-successor of d, i.e, (d, c) ∈ rI ∩ sI , and

• c has the (unary) type ¶⊤, A,B,C, ¶c♢♢.

For example, in the model of K given below, we can say that the element on the left is an
instance of τ .

A

c

A, B, C

r, s

r, s

We next brieĆy explain the intuitions behind the conditions in DeĄnition 3.2.5. Recall
that each triple (R, T ′, k) ∈ ρ represents a distinct neighbor of the domain element d
that is an instance of τ . Notice that, by deĄnition, ρ is a set, which means that it does
not contain duplicates. However, it could be the case that we need to encode two distinct
neighbors that happen to have the same type and are connected to the d via the same
roles. To overcome this issue, we consider triples (R, T ′, k), where k is an integer that
tells us that (R, T ′, k) encodes the k-th R-neighbor of d of type T ′. This is reĆected in
the Ąrst condition. We also already mentioned that the tiles only encode the relevant part
of the neighborhood of a domain element, i.e., those neighbors that serve as witnesses for
counting axioms in TBox T of the knowledge base. This is reĆected in the condition T2.
Note that this condition also places an upper bound on the number of neighbors that
we encode in ρ. The intuition behind conditions T3, T4, and T5 (a)-(c) is rather simple
Ű they all relate to the satisfaction of TBox axioms. In particular, the third condition
ensures the satisfaction of axioms of the type B1 ⊓ · · · ⊓ Bk−1 ⊑ Bk ⊔ · · · ⊔ Bm ∈ T ,
the condition T4 guarantees that d has n witnesses for every axiom = nr.B ∈ T and
conditions T5 (a)-(c) ensure that d and its neighbors respect axioms of the type A ⊑ ∀r.B
and r ⊑ s. Condition T5 (d) makes use of Proposition 3.2.4 which essentially says it is
enough to only focus on chromatic models. We will explain why this is needed a little
later. We next have the conditions that ensure that the description of d is compatible
with the assertions in A (conditions T5 (e), T5 (f), T6, and T7), and those that ensure
that the closed predicates are respected (conditions T8 and T9).

We now move on to deĄning mosaics for a given knowledge base K, which are functions
that tell us, for each tile τ , how many instances of τ we need to build a model of K.
Recall that it is a well-known fact that ALCHOIQ is capable of enforcing inĄnite models,
as shown in the following example.

Example 3.2.8. Consider the knowledge base K = (¶¶a♢ ⊑ ¬A,⊤ ⊑= 1r.A,⊤ ⊑=
1r−.A♢, ∅, ∅). Every model of K must contain an infinite r-chain starting at a, and so K
has only infinite models.

63

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3. Expressive DLs with Closed Predicates

This means that, in order to build a model of K, we might need to instantiate some tiles
inĄnitely many times. Therefore, we consider the set N∗ that extends the set of natural
numbers N with a new value ℵ0, representing inĄnity. We also extend the usual relation
< and operations · and + as follows:

• n < ℵ0, for all n ∈ N,

• ℵ0 · ℵ0 = ℵ0 + ℵ0 = ℵ0 + 0 = 0 + ℵ0 = ℵ0 + n = n+ ℵ0 = ℵ0 · n = n · ℵ0 = ℵ0, for
all n ∈ N \ ¶0♢, and

• 0 · ℵ0 = ℵ0 · 0 = 0.

We let N∗ = N ∪ ¶ℵ0♢. Furthermore, we say that inĄnite sets have cardinality ℵ0.

DeĄnition 3.2.9. Let K = (T ,Σ,A) be a knowledge base. A mosaic for K is a function
N : Tiles(K)→ N∗ such that:

M1. For every ¶c♢ ∈ N+
C

(K) :
∑

(T,ρ)∈Tiles(K),
¶c♢∈T

N((T, ρ)) = 1.

M2. The following inequality is satisfied:
∑

τ∈Tiles(K)

N(τ) ≥ 1.

M3. For every pair T, T ′ ∈ Types(K) and every R ⊆ N+
R

(K) s.t. (T,R, T ′) is invertible,
the following holds:

∑

(T,ρ)∈Tiles(K),
(R,T ′,k)∈ρ

N((T, ρ)) =
∑

(T ′,ρ′)∈Tiles(K),
(R−,T,l)∈ρ′

N((T ′, ρ′)).

M4. For every every tile τ = (T, ρ) and every type T ′:

N(τ) > 0 =⇒
∑

(T ′,ρ′)∈Tiles(K)

N((T ′, ρ′)) ≥ ♣¶(R, T ′, k) : (R, T ′, k) ∈ ρ♢♣

M5. For all ¶a♢, ¶b♢ ∈ N+
C

(K) and all A,B ∈ NC(K), if for some p, r ∈ N+
R

(K) at least
one of the following condition holds

(a) p(a, b) ∈ A, p ⊑ r ∈ T and A ⊑ ∀r.B ∈ T , or

(b) p(b, a) ∈ A, p− ⊑ r ∈ T and A ⊑ ∀r.B ∈ T ,

then the following implication must hold:
∑

(T,ρ)∈Tiles(K),
¶a♢,A∈T

N((T, ρ)) > 0 implies
∑

(T ′,ρ′)∈Tiles(K),
¶b♢,B∈T ′

N((T ′, ρ′)) > 0.

64

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3.2. Characterizing KB SatisĄability via Integer Programming

M6. For all ¶a♢, ¶b♢ ∈ N+
C

(K), all A,B ∈ NC(K), all tiles τ ′ = (T ′, ρ′) with ¶¶b♢, B♢ ⊆
T ′, and all roles r ∈ N+

R
(K), if

(a) A ⊑= nr.B ∈ T , and p(a, b) ∈ A, p ⊑ r ∈ T , for some role name p, or

(b) A ⊑= nr.B ∈ T , and p(b, a) ∈ A, p− ⊑ r ∈ T , for some role name p,

then the following implication must hold:

N((T ′, ρ′)) > 0 implies
∑

(T,ρ)∈Tiles(K),
¶¶a♢,A♢⊆T,

♣¶(R,T ′,k)∈ρ : r∈R♢♣=0

N((T, ρ)) ≤ 0.

Consider a mosaic N for a knowledge base K = (T ,Σ,A). Conditions M1-M5 ensure
that we can build a model I of K such that ∆I = ¶dτ

1 , . . . , d
τ
N(τ) : τ ∈ Tiles(K)♢, where

dτ
i , for 1 ≤ i ≤ N(τ), is an instance of the tile τ . The condition M1 ensures that, for

every constant c occurring in K, there is exactly one element in ∆I that participates
in the nominal ¶c♢ Ű namely the constant c itself. As description logics do not allow
interpretations with empty domains, the condition M2 ensures that at least one tile is
instantiated, i.e., ∆I ≠ ∅. Conditions M3 and M4 together ensure that it is possible to
construct the interpretation function ·I such that each domain element dτ

i ∈ ∆I has the
neighbors prescribed by the tile τ . Recall that if we have a tile τ = (T, ρ) for K with
N(τ) > 0, this means there is a domain element dτ

i ∈ ∆I that is an instance of τ and
thus we have to Ąnd suitable witnesses for every triple in ρ. The condition M4 makes
sure that, for each type T ′, the total number of elements in ∆I that (are instances of
tiles that) have T ′ as the unary type is greater than or equal to the number of triples in
ρ that require a witness of type T ′. Thus, we can simply use a different domain element
of type T ′ as a witness to each such triple.

Unfortunately, M4 alone is not enough to ensure that a mosaic actually encodes a model,
as illustrated by the following example.

Example 3.2.10. Consider the following knowledge base K = (T , ∅, ∅), where T =
¶A ⊑= 2r.B,C ⊑= 1r−.A♢ and let

τ1 = (¶⊤, A♢, ¶(¶r♢, ¶⊤, B♢, 1), (¶r♢, ¶⊤, B,C♢, 1)♢)

τ2 = (¶⊤, B♢, ¶♢)

τ3 = (¶⊤, B, C♢, ¶(¶r−♢, ¶⊤, A♢, 1)♢).

Let N : Tiles(K)→ N∗ such that

N(τ) =



























2, if τ = τ1

1, if τ = τ2

1, if τ = τ3

0, otherwise

65

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3. Expressive DLs with Closed Predicates

Observe that N satisfies every condition in Definition 3.2.9 except M3 and let us try
to build a model I of K according to N . We let ∆I = ¶dτ1

1 , d
τ1
2 , d

τ2
1 , d

τ3
1 ♢. According to

the information provided by the tiles, elements dτ1
1 and dτ1

2 each need two r-successors
participating in the concept name B. As N satisfies M4, it should be possible to follow the
approach described above to find r-successors of dτ1

1 and dτ1
2 . Consider first the element

dτ1
1 . Since there are no other options, we use dτ2

1 as its first r-successor and dτ3
1 as its

second r-successor. We then consider dτ1
2 . The element dτ2

1 can still serve as the first
r-successor to dτ1

2 . However, if we now use dτ3
1 as the second r-successor of dτ1

2 we run
into a problem. Namely, due to the axiom C ⊑= 1r−.A ∈ T , dτ3

1 cannot serve as an
r-successor to more than one domain element participating in A. Hence, N does not
encode a model.

To avoid the issue in the previous example, we must Ąrst identify the problematic situations
that can occur. This is where the notion of invertibility, as deĄned in Section 3.2.1, comes
into play. Consider a tile τ = (T, ρ) and assume (R, T ′, k) ∈ ρ. Furthermore, assume
that (T,R, T ′) is invertible. Obviously, a domain element that is an instance of τ will
require a R-neighbor of type T ′. However, from the deĄnition of invertibility, it follows
that a domain element of type T ′ can be an R-successor only to a limited number of
elements of type T . Note that this is exactly the problematic situation we had in the
previous example. One way to deal with such situations is to restrict our attention solely
to chromatic models, which we know is possible due to Proposition 3.2.4. The condition
T5 (d) in DeĄnition 3.2.5 ensures that the speciĄcation of necessary neighbors in tiles
respects chromaticity. Focusing only on chromatic models allows us to exploit a very
convenient property that they possess and that we describe next. Let T and T ′ be two
types for K, and R ⊆ N+

R (K) such that (T,R, T ′) is invertible. Note that this also means
that (T ′, R−, T) is invertible. It follows from DeĄnition 3.2.3 that, in a chromatic model
of K, a domain element of type T has at most one R-successor of type T ′ and vice versa,
a domain element of type T ′ has at most one R−-successor of type T . This means that,
in order to ensure that a (chromatic) model can be built according to some mosaic for K,
it suffices to ensure that there is a way to pair up domain elements of type T that require
an R-successor of type T ′ with domain elements of type T ′ that require an R−-successor
of type T . If elements d and d′ are paired together, d′ serves as the required R-successor
to d and d serves as the R−-successor for d′. This is precisely what the condition M3
does Ű it ensures that, when building a model I of K according to some mosaic N for K,
the total number of elements in ∆I of type T that require an R-successor of type T ′ is
equal to the number of elements in ∆I of type T ′ that require an R−-successor of type
T , which means that such a pairing exists.

The intuition behind the condition M5 relates to the following situation. Assume we
have p(a, b) ∈ A asserting that, in a model of K, the constant a has as a p-successor
the constant b and assume a participates in a concept name A. Now assume there
are axioms in T that allow us to infer that all p-neighbors of a must participate in a
concept name B. We can conclude that b must participate in B. Conditions M5 (a)-(b)
represent different ways a can communicate information to b. Finally, M6 (a)-(b) express

66

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3.2. Characterizing KB SatisĄability via Integer Programming

that if we additionally know that b participates in B and there is some counting axiom
A ⊑= nr.B ∈ T requiring a to have exactly n r-successors that are B, then a must
explicitly record this in the ρ component of the tile that describes it. In other words, it
cannot be that a is described by a tile τ = (T, ρ) in which b is not recorded in ρ as an
r-successor. This is rooted in the condition T4 in DeĄnition 3.2.5 that requires that tiles
explicitly record information about all the neighbors that are used for satisfying counting
axioms.

Before we state the main result of this chapter, we introduce one more auxiliary notion.
Notice that the way tiles were designed makes sure that all role inclusions are handled
correctly for those connections that are encoded within the tiles. For example, if a tile
τ = (T, ρ) contains some triple (R, T ′, k) ∈ ρ asking for an r-neighbor of type T ′ and we
have some RI r ⊑ s, then this neighbor also acts as an s-neighbor and we must have
s ∈ R. However, recall that tiles do not keep track of all connections that might hold
in a model of the KB K but rather only those that are triggered by counting axioms.
In particular, tiles may not encode all the connections that are asserted by the ABox,
which means that we have to handle those manually. For this reason, we introduce the
notion of KBs that respect role inclusions. Intuitively, if K = (T ,Σ,A) respects role
inclusions, then we can close A under the role inclusions in the TBox and not obtain
blatant contradictions (like, e.g., both p(a, b) ∈ A and ¬p(a, b) ∈ A) nor would we violate
the closed predicates. Obviously, if this is not possible, then K has no model.

DeĄnition 3.2.11. Let K = (T ,Σ,A) be an ALCHOIQ KB. We say that K respects
role inclusions, if the following conditions hold:

1. if r ⊑ s ∈ T and ¬s(a, b) ∈ A, then r(a, b) ̸∈ A,

2. if r− ⊑ s ∈ T and ¬s(a, b) ∈ A, then r(b, a) ̸∈ A,

3. if r ∈ Σ ∩ NR, s ⊑ r ∈ T and s(a, b) ∈ A, then r(a, b) ∈ A, and

4. if r ∈ Σ ∩ NR, s− ⊑ r ∈ T and s(a, b) ∈ A, then r(b, a) ∈ A.

With the previous deĄnition in mind, we state the result that establishes the connection
between mosaic existence and satisĄability.

Theorem 3.2.12. Let K = (T ,Σ,A) be an ALCHOIQ KB. K is satisfiable if and only
if K respects role inclusions and there exists a mosaic for K.

3.2.3 Correctness of Theorem 3.2.12

Consider an arbitrary knowledge base K = (T ,Σ,A). We dedicate this subsection to
showing that the result in Theorem 3.2.12 indeed holds. To this end, we Ąrst show that
if K respects role inclusions and there is a mosaic N for K, we can construct a model I
of K from N . We then show that the converse also holds, i.e., if we are given a model I
of K, then K respects role inclusions and we can easily construct a mosaic for K.

67

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3. Expressive DLs with Closed Predicates

From Mosaic to Model Furthermore, assume K respects role inclusions and let N
be a mosaic for K. We next show how to construct a model I of K.

We have already explained that each tile can be seen as a description of a domain element
and a part of its neighborhood and that a mosaic N tells us how many instances of
each tile we need in order to build a model. Therefore, we build our domain ∆I by
instantiating each tile τ N(τ) times:

∆I = ¶(T, ρ)i : (T, ρ) ∈ Tiles(K), 1 ≤ i ≤ N((T, ρ))♢.

Intuitively, the domain element τi corresponds to the i-th instance of tile τ . Recall that,
due to the condition M1 in DeĄnition 3.2.9, for each constant a ∈ NI(K), there is exactly
one tile τa = (Ta, ρa) for which ¶a♢ ∈ Ta and N(τa) > 0. Moreover, as N(τa) = 1 (again
due to M1), there is a single instance of τa in ∆I and this instance represents the constant
a. For ease of presentation, for the rest of this construction, we use a and τa1 = (Ta, ρa)1

interchangeably, to denote the domain element in ∆I that represents the constant a.

Recall that in a tile τ = (T, ρ), the type T tells us in which basic concepts the instances
of τ participate. Keeping this in mind, we next construct the extensions of concept names
occurring in K. To this end, for every B ∈ NC(K), we let

BI = ¶(T, ρ)i ∈ ∆I : B ∈ T, 1 ≤ i ≤ N((T, ρ))♢.

Constructing the extensions of roles is a more complex matter and it is done in multiple
steps.

Step 1. We Ąrst ensure that I satisĄes the ABox A. For each p(a, b) ∈ A and each
role r such that p ⊑ r ∈ T , we set (a, b) ∈ rI , if r is a role name, and (b, a) ∈ (r−)I ,
otherwise.

Moreover, for each A ⊑= nr.B ∈ T we do the following. If a ∈ AI , b ∈ BI , and
p ⊑ r ∈ T , then, due to M6, there is some (R, Tb, k) ∈ ρa with r ∈ R. Then, for each
s ∈ R, we let (a, b) ∈ sI , if s is a role name, and (b, a) ∈ sI , otherwise. Similarly,
if a ∈ BI , b ∈ AI and p− ⊑ r ∈ T , there is some (R, Ta, k) ∈ ρb with r ∈ R. For
each s ∈ R, we let (b, a) ∈ sI , if s is a role name, and (a, b) ∈ sI , otherwise.

Step 2. Next, for all T, T ′ ∈ Types(K) and R ⊆ N+
R (T), if (T,R, T ′) is invertible, we

do the following. Due to M3, we know that the following equation is satisĄed:

∑

(T,ρ)∈Tiles(K),
(R,T ′,k)∈ρ

N((T, ρ)) =
∑

(T ′,ρ′)∈Tiles(K),
(R−,T,l)∈ρ′

N((T ′, ρ′))

Let XT,R,T ′ and YT,R,T ′ be the following sets of domain elements

68

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3.2. Characterizing KB SatisĄability via Integer Programming

XT,R,T ′ = ¶(T, ρ)i ∈ ∆I : there exists k ≥ 1 s.t. (R, T ′, k) ∈ ρ and 1 ≤ i ≤ N((T, ρ))♢

YT,R,T ′ = ¶(T ′, ρ′)i ∈ ∆I : there exists l ≥ 1 s.t. (R−, T, l) ∈ ρ′ and 1 ≤ i ≤ N((T ′, ρ′))♢

Intuitively, the set XT,R,T ′ contains all domain elements with the unary type T that
require an R-successor of type T ′ and the set YT,R,T ′ contains all domain elements
with the unary type T ′ that require an R−-successor of type T . Due to M3, these
two sets have the same cardinality, i.e., ♣XT,R,T ′ ♣ = ♣YT,R,T ′ ♣, and so there exists a
bijection between them. We choose one such bijection, denoted by fT,R,T ′ , and we
do the following. For every e ∈ XT,R,T ′ and every s ∈ R, we set (e, fT,R,T ′(e)) ∈ sI

if s is a role name and (fT,R,T ′(e), e) ∈ (s−)I otherwise. Intuitively, this connects
via an R-arc, every domain element of type T that requires an R-neighbor of type
T ′ to one domain element of type T ′ that requires an R−-neighbor of type T .

Observe that if (T,R, T ′) is invertible then so is (T ′, R−, T). To avoid conĆict,
when choosing the bijections fT,R,T ′ and fT ′,R−,T we ensure that fT ′,R−,T = f−1

T,R,T ′ .

Further, observe that fT,R,T ′ has the following property: for constants a, b ∈ ∆I

and a role name r s.t. r ∈ R (resp. r− ∈ R), a ∈ XT,R,T ′ and b ∈ YT,R,T ′ , if
(a, b) ∈ rI (resp. (b, a) ∈ rI) was constructed in step 1, then fT,R,T ′(a) = b. To
see this, recall that, due to the deĄnition of sets XT,R,T ′ and YT,R,T ′ , we have that
T = Ta and T ′ = Tb. Due to the condition M1, there is exactly one element in
∆I of the type Ta (the constant a) and exactly one element in ∆I of the type Tb

(the constant b). Therefore, XT,R,T ′ = ¶a♢, YT,R,T ′ = ¶b♢, and so it must be that
fT,R,T ′(a) = b.

Step 3. For each domain element e = (T, ρ)i ∈ ∆I and each type T ′ we do the following.
We say that a counting axiom A ⊑= nr.B ∈ T is relevant (for e and T ′) if A ∈ T
and B ∈ T ′. Moreover, we say that a counting role r is relevant (for e and T ′), if
it occurs in a relevant axiom for e and T . Further, due to the condition T2, each
(R, T ′, k) ∈ ρ contains at least one relevant role.

Let ρT ′ = ¶(R, T ′, k) : (R, T ′, k) ∈ ρ♢, ∆I
T ′ = ¶d ∈ ∆I : d = (T ′, ρ′)j♢, and let ∆I

e,T ′

be the set of all domain elements of type T ′ that are an r-successor of e, for some
relevant counting role r:

∆I
e,T ′ = ¶d ∈ ∆I : d = (T ′, ρ′)j and (e, d) ∈ rI , r is a relevant counting role♢.

Let we,T ′ : ∆I
e,T ′ → ρT ′ be a total injective function such that for every d ∈ ∆I

T ′

with we,T ′(d) = (R, T ′, k), (e, d) ∈ sI , if s ∈ R. We say that d is a witness to
(R, T ′, k) and that (R, T ′, k) is witnessed if it is in the image of we,T ′ . We explain
why it is possible to Ąnd such a function a little later.

Observe that the number of witnessed triples in ρT ′ is exactly ♣∆I
e,T ′ ♣. Due to M4,

we have that ♣ρT ′ ♣ ≤ ♣∆I
T ′ ♣, which means that the number of triples in ρT ′ still

69

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3. Expressive DLs with Closed Predicates

requiring a witness from ∆I
T ′ is smaller than or equal to the number of elements in

∆I
T ′ \∆I

e,T ′ , i.e., the number of domain elements of type T ′ that were not yet used as
witnesses for any relevant counting roles. To Ąnish the construction, for each triple
(R, T ′, k) ∈ ρT ′ that does not have a witness, we take a fresh d ∈ ∆I \∆I

e,T ′ and for
each s ∈ R, we let (e, d) ∈ sI , if s is a role name, and (d, e) ∈ (s−)I , otherwise.

Now, we still need to show that we can Ąnd the total function we,T ′ as described
above. To this end, consider an arbitrary domain element d = ∆I

e,T ′ and a relevant
counting role r. We make the following case distinction:

Ű Assume that (e, d) ∈ rI was constructed in step 1. In this case, the domain
elements e and d represent some constants a, b ∈ NI(K), respectively. Thus,
we have ¶a♢ ∈ T and ¶b♢ ∈ T ′. Moreover, we have that, for some p ∈ NR(K),
either (i) p(a, b) ∈ A and p ⊑ r ∈ T or (ii) p(b, a) ∈ A and p− ⊑ r ∈ T . Due
to M6 in DeĄnition 3.2.9, there exists an (R, T ′, k) ∈ ρT ′ such that r ∈ R.
Moreover, due to M1, ♣∆I

T ′ ♣ = 1 and so there cannot be more than one triple
ρT ′ , otherwise M4 would be violated. Observe that during step 1, we ensured
that for this unique triple (R, T ′, k) ∈ ρT ′ , we have (e, d) ∈ sI , for all s ∈ R.
We let we,T ′(d) = (R, T ′, k).

Ű Assume that (e, d) ∈ rI was constructed during step 2. In this case, (e, d) ∈ rI

was constructed when we considered some R ⊆ N+
R (K) s.t. (T,R, T ′) is

invertible and we have e ∈ XT,R,T ′ and fT,R,T ′(e) = d. We thus know that
there must be some triple (R, T ′, k) ∈ ρT ′ such that r ∈ R and (T,R, T ′) is
invertible. Moreover, due to the condition T5 (d) in DeĄnition 3.2.5, there is
only one such triple in ρ. Note also that, during this step, we ensured that
(e, d) ∈ sI , for all s ∈ R. We let we,T ′(d) = (R, T ′, k).

Ű Assume we constructed (e, d) ∈ rI in step 3 as a witness for some previously
unwitnessed triple (R, T, k) ∈ ρ′

T with r− ∈ R when considering some element
d = (T ′, ρ′)j ̸= e and the unary type T . Recall, once again, that due to the
condition T2, R must contain a relevant counting role s for d and T , which
makes (T ′, R, T) is invertible. However, all invertible triples are dealt with in
step 2, in particular also (R, T, k), so it cannot be the case that (R, T, k) has
no witness. This is a contradiction to (e, d) ∈ rI being constructed in step
3 while considering an element different from e, because we only create new
connections for unwitnessed triples.

Finally, to see that we,T ′ is an injective function, consider some (R, T ′, k) ∈ ρT ′ and
assume that there are two different d1, d2 ∈ ∆I

e,T ′ such that we,T ′(d1) = we,T ′(d2).
Note that as both d1 and d2 are of type T ′, T ′ cannot be a constant type, otherwise
M1 would be violated. Therefore, d1 and d2 were both determined to be witnesses
for (R, T ′, k) in step 2, which means that fT,R,T ′(e) = d1 = d2. Thus, d1 and d2

are in fact the same domain element.

70

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3.2. Characterizing KB SatisĄability via Integer Programming

Observation 3.2.13. The way in which we construct role extensions ensures that, if
(e, d) ∈ rI , for some domain elements e = (T, ρ)i, d = (T ′, ρ′)j and some role r, then at
least one of the following must hold:

(i) e = a, d = b for some a, b ∈ NI(K), and p(a, b) ∈ A for some role name p s.t.
p ⊑ r ∈ T ,

(ii) e = a, d = b for some a, b ∈ NI(K), and p(b, a) ∈ A for some role name p s.t.
p− ⊑ r ∈ T ,

(iii) there is some (R, T ′, l) ∈ ρ s.t. r ∈ R, or

(iv) there is some (R′, T, k) ∈ ρ′ s.t. r− ∈ R′.

We next show that the interpretation we constructed is indeed a model of K.

Satisfaction of T . Consider an arbitrary axiom α in T .

• α is of the shape B1 ⊓ · · · ⊓ Bk−1 ⊑ Bk ⊔ · · · ⊔ Bm: Let e = (T, ρ)i ∈ ∆I and
assume that e ∈ (B1 ⊓ · · · ⊓Bk−1)I . This means that e ∈ BI

j , for all 1 ≤ j < k. By
construction of I, this implies that Bj ∈ T , for all 1 ≤ j < k. By condition T3 in
the deĄnition of tiles, we have that there exists l, k ≤ l ≤ m, such that Bl ∈ T .
Thus, e ∈ BI

l and so e ∈ (Bk ⊔ · · · ⊔Bm)I .

• α is of the shape A ⊑ ∀r.B: Assume e = (T, ρ)i ∈ ∆I , d = (T ′, ρ′)j ∈ ∆I ,
(e, d) ∈ rI , e ∈ AI , and d ̸∈ BI . By construction, this means that A ∈ T and
B ̸∈ T ′. Notice that due to conditions T5 (a) and T5 (b) in the deĄnition of tiles,
there can be no (R, T ′, k) ∈ ρ s.t. r ∈ R and no (R′, T, l) ∈ ρ′ s.t. r− ∈ R. In
view of Observation 3.2.13, this means that e = a and d = b, for some constants
a, b ∈ NI(K) and either (i) p(a, b) ∈ A and p ⊑ r ∈ T or (ii) p(b, a) and p− ⊑ r ∈ T ,
for some role name p. However, this contradicts the conditions M5 and M1, and so
B ∈ T ′.

• α is of the shape r ⊑ s: This axiom is satisĄed due to Observation 3.2.13 and the
condition T5 (c) in the deĄnition of tiles as well as the fact that in step 1 of the
construction of role extensions, whenever we add (a, b) ∈ sI , we do the same for all
roles r ⊑ s ∈ T .

• α is of the shape A ⊑= nr.B: Let e = (T, ρ)i be an arbitrary element in ∆I

and assume e ∈ AI , i.e. A ∈ T . We need to prove that ♣¶d ∈ ∆I : (e, d) ∈
rI , d ∈ BI♢♣ = n. Recall that, due to the condition T4 in DeĄnition 3.2.5, we have
♣¶(R, T ′, k) ∈ ρ : r ∈ R and B ∈ T ′♢♣ = n.

71

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3. Expressive DLs with Closed Predicates

By construction of BI , we have that

♣¶d ∈ ∆I : (e, d) ∈ rI , d ∈ BI♢♣ = ♣¶d = (T ′, ρ′)j ∈ ∆I : (e, d) ∈ rI , B ∈ T ′♢♣.

Let T ′ be an arbitrary unary type with B ∈ T ′. Recall that we use ∆I
T ′ to denote

the set of elements of ∆I that have the unary type T ′, i.e., that are of the form
(T ′, ρ′)j , and ρT ′ to denote the set of triples in ρ that mention the unary type T ′,
i.e., are of the form (R, T ′, k). In step 3 of the construction of role extensions, we
show that each domain element d ∈ ∆I

T ′ with (e, d) ∈ rI is a witness to exactly
one (R, T ′, k) ∈ ρT ′ with r ∈ R. Moreover, we also show that each such triple
(R, T ′, k) ∈ ρT ′ with r ∈ R has exactly one associated witness. Hence,

♣¶d ∈ ∆I
T ′ : (e, d) ∈ rI♢♣ = ♣¶(R, T ′, k) ∈ ρT ′ : r ∈ R♢♣,

Summing up over all unary types that contain B we get:

♣¶d ∈ ∆I : d ∈ BI , (e, d) ∈ rI♢♣ = ♣¶d ∈ ∆I
T ′ : T ′ ∈ Types(K), B ∈ T ′, (e, d) ∈ rI♢♣

= ♣¶(R, T ′, k) ∈ ρ : r ∈ R,B ∈ T ′♢♣

= n.

Satisfaction of A. Let A(c) ∈ A and recall that c = (Tc, ρc)1 ∈ ∆I . As (Tc, ρc)1 is a
tile, A ∈ Tc due to T6 in DeĄnition 3.2.5. By construction of AI , we have that c ∈ AI

and so I satisĄes A(c). Let ¬A(c) ∈ A. Then, by condition T7 in DeĄnition 3.2.5, A ̸∈ Tc

and so c ̸∈ AI . Hence, I satisĄes ¬A(c).

Let p(a, b) ∈ A, where p ∈ NR. Step 1 in our construction of I involved adding (a, b) ∈ rI

for each assertion p(a, b) ∈ A and role r ⊑ p ∈ T . Due to the closure assumption for the
TBox, we have p ⊑ p ∈ T and thus (a, b) ∈ pI . Hence, I satisĄes p(a, b).

Let ¬p(a, b) ∈ A, where p ∈ NR and assume towards a contradiction that (a, b) ∈ pI .
Due to our assumption that K respects role inclusions, (a, b) ∈ pI could not have been
constructed due to conditions (i) or (ii) in Observation 3.2.13. Further, due to condition
T5 (e) in DeĄnition 3.2.5, there is no (R, Tb, k) ∈ ρa such that p ∈ R and, due to
condition T5 (f), there is no (R, Ta, k) ∈ ρb such that p− ∈ R. This is a contradiction to
Observation 3.2.13 and (a, b) ∈ pI could not have been constructed in the Ąrst place.

Satisfaction of the closed predicates. Let A ∈ NC∩Σ and e = (T, ρ)i be an arbitrary
element in AI . By construction of AI , we have that A ∈ T . As A ∈ Σ, by condition T8
in the deĄnition of tiles for K, there exists some c ∈ NI such that ¶c♢ ∈ T and A(c) ∈ A.
Thus, it must be the case that e = c. As A(c) ∈ A, I respects closed concepts.

Let r ∈ NR ∩ Σ and let e1 = (T1, ρ1)i and e2 = (T2, ρ2)j arbitrary elements of ∆I for
which (e1, e2) ∈ rI holds. We now make a case distinction based on at which point in
the construction of I we set (e1, e2) ∈ rI .

72

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3.2. Characterizing KB SatisĄability via Integer Programming

• We set (e1, e2) ∈ rI in step 1 of the construction, in order to satisfy the ABox. In
this case, e1 = a and e2 = b, for some a, b ∈ NI(K) for which either (i) p(a, b) ∈ A
and p ⊑ r ∈ T or (ii) p(b, a) ∈ A and p− ⊑ r ∈ T . Due to the assumption that
K respects role inclusions and therefore, for all r ∈ Σ ∩ NR, if p ⊑ r ∈ T (resp.
p− ⊑ r ∈ T) and p(a, b) ∈ A (resp. p(b, a)), then r(a, b) ∈ A, we can conclude that
r(a, b) ∈ A and thus the closed role is not violated.

• We set (e1, e2) ∈ rI in any of the other cases. In this case, in view of Observa-
tion 3.2.13, we can see that a prerequisite to setting (e1, e2) ∈ rI is that there is
some (R, T2, k) ∈ ρ1 such that r ∈ R. Then, due to condition T9 in the DeĄni-
tion 3.2.5, we have that there exists c ∈ NI(K) occurring in A such that ¶c♢ ∈ T1.
Hence, e1 = c. Further, also due to the same condition, we have that there is some
d ∈ NI(K) such that ¶d♢ ∈ T2 and therefore e2 = d. The Ąnal part of the condition
T9 requires states that r(c, d) ∈ A. Hence (e1, e2) ∈ rI does not violate the closed
role.

From Model to Mosaic Recall that K has a model if and only if it has a chromatic
model and let I be a chromatic model of K. Obviously, as I is a model of K, K must
respect role inclusions. We next show that we can construct a mosaic N for K from I.

Consider an element e ∈ ∆I . We Ąrst extract a tile τe = (Te, ρe) such that e is an
instance of τe. To this end, we let Te = t(e). Further, we deĄne ρe as follows. Since I is
a model of K, I satisĄes every counting axiom in T . This means that for every axiom
α ∈ T that is of the type A ⊑= nr.B, if A ∈ t(e), then there exist exactly n elements
eα

1 , . . . , e
α
n ∈ ∆I such that (e, eα

i) ∈ rI and eα
i ∈ B

I , for i = 1, . . . , n. We let

E(e) = ¶eA⊑=nr.B
i ∈ ∆I : A ⊑= nr.B ∈ T , A ∈ t(e), 1 ≤ i ≤ n♢,

ρe = ¶(R, T ′, i) : T ′ ∈ Types(T), R ⊆ N+
R (T),

1 ≤ i ≤ ♣¶e′ ∈ E(e) : rt(e, e′) = R, t(e′) = T ′♢♣♢.

It is easy to verify that τe is indeed a tile for K. We note that condition T5 (d) is satisĄed
due to chromaticity of I.

We next deĄne a function N : Tiles(T)→ N∗ with

N(τ) = ♣¶e ∈ ∆I : τe = τ♢♣.

Finally, in order to show that N is indeed a mosaic for K, we need to show that N
satisĄes conditions M1-M6 in DeĄnition 3.2.9.

73

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3. Expressive DLs with Closed Predicates

M1. Let a be an arbitrary nominal in N+
C (T). Due to SNA, the constant a is the

only element in ∆I that participates in ¶a♢, i.e., the only element that has ¶a♢ in
its type. This means that there can be no other element e ∈ ∆I such that τa = τe,
and so N(τa) = 1. Further, as τa is the only tile with N(τa) > 1 that contains ¶a♢
in its unary type, we have

∑

(T,ρ)∈Tiles(T),¶a♢∈T

N((T, ρ)) = N(τa) = 1.

M2. As we do not allow interpretations with empty domains, there must be at at
least one element e ∈ ∆I . Then, N(τe) ≥ 1 and M2 is satisĄed.

M3. Let T, T ′ be two arbitrary types for K, let R be an arbitrary subset of N+
R (K)

s.t. (T,R, T ′) is invertible. Since (T,R, T ′) is invertible, by deĄnition, there exists
an axiom α = A ⊑= nr.B ∈ T s.t. A ∈ T , B ∈ T ′, and r ∈ R. Consider an
arbitrary domain element d ∈ ∆I with t(d) = T . We know by construction of E(d),
that d′ ∈ E(d), for every d′ ∈ ∆I with t(d′) = T ′ and rt(d, d′) = R. Further, by
construction of ρd, we have the following observation:

Observation 3.2.14. For each d ∈ ∆I with t(d) = T , there is a one-to-one
correspondence between the triples in ρd of the form (R, T ′, l) and the elements
d′ ∈ ∆I with t(d′) = T ′ and rt(d, d′) = R.

Moreover, as (T,R, T ′) is invertible and I is chromatic, we know that there cannot be
two distinct elements d′, d′′ ∈ ∆I s.t. t(d′) = t(d′′) = T ′ and rt(d, d′) = rt(d, d′′) = R.
This leads us to the following observation:

Observation 3.2.15. For each d ∈ ∆I with t(d) = T , ♣¶d′ ∈ ∆I : t(d′) =
T ′, rt(d, d′) = R♢♣ ≤ 1.

Further, as (T ′, R−, T) is also invertible, analogously we reach the following two
observations:

Observation 3.2.16. For each d′ ∈ ∆I with t(d′) = T ′, there is a one-to-one
correspondence between the triples in ρd′ of the form (R−, T, l) and the elements
d ∈ ∆I with t(d) = T and rt(d′, d) = R−.

Observation 3.2.17. For each d′ ∈ ∆I with t(d′) = T ′, ♣¶d ∈ ∆I : t(d) =
T, rt(d′, d) = R−♢♣ ≤ 1.

We are now ready to show that M3 holds:

74

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3.2. Characterizing KB SatisĄability via Integer Programming

∑

(T,ρ)∈Tiles(K),
(R,T ′,k)∈ρ

N((T, ρ)) =
∑

(T,ρ)∈Tiles(K),
(R,T ′,k)∈ρ

♣¶d ∈ ∆I : Td = T and ρd = ρ♢♣ =

♣¶d ∈ ∆I : Td = T and (R, T ′, k) ∈ ρd, for some k ≥ 1♢♣
Obs. 3.2.14

=

♣¶d ∈ ∆I : Td = T and rt(d, d′) = R, Td′ = T ′, for some d′ ∈ ∆I♢♣
Obs. 3.2.15

=

♣¶(d, d′) ∈ ∆I ×∆I : Td = T, Td′ = T ′, rt(d, d′) = R♢♣ =

♣¶(d′, d) ∈ ∆I ×∆I : Td = T, Td′ = T ′, rt(d′, d) = R−♢♣
Obs. 3.2.17

=

♣¶d′ ∈ ∆I : Td′ = T ′ and rt(d′, d) = R−, Td = T, for some d ∈ ∆I♢♣
Obs. 3.2.16

=

♣¶d′ ∈ ∆I : Td′ = T ′ and (R−, T, l) ∈ ρd′ , for some l ≥ 1♢♣ =
∑

(T ′,ρ′)∈Tiles(K),
(R−,T,l)∈ρ′

♣¶d′ ∈ ∆I : Td′ = T ′ and ρd′ = ρ′♢♣ =
∑

(T ′,ρ′)∈Tiles(K),
(R−,T,l)∈ρ′

N((T ′, ρ′))

M4. Let (T, ρ) be an arbitrary tile and T ′ be an arbitrary type for K. Assume that
N((T, ρ)) > 0. This means that there is an element d ∈ ∆I s.t. Td = T and ρd = ρ.

By construction of ρd, it is easy to see that:

♣¶(R, T ′, k) : (R, T ′, k) ∈ ρd♢♣ = ♣¶d
′ ∈ ∆I : d′ ∈ E(d), Td′ = T ′♢♣

≤ ♣¶d′ ∈ ∆I : Td′ = T ′♢♣.

Finally, by construction of N , we have that

♣¶d′ ∈ ∆I : Td′ = T ′♢♣ =
∑

(T ′,ρ′)∈Tiles(K)

N((T ′, ρ′)).

Thus, we get that
∑

(T ′,ρ′)∈Tiles(K)

N((T ′, ρ′)) ≥ ♣¶(R, T ′, k) : (R, T ′, k) ∈ ρ♢♣.

M5. Let ¶a♢ and ¶b♢ be two nominals in N+
C (K), A,B ∈ NC(K), and assume at

least one of the conditions (a)-(b) is satisĄed. In this case, it is easy to see that
a ∈ AI implies b ∈ BI . Further, assume that

∑

(T,ρ)∈Tiles(K),
¶a♢∈T,A∈T

N((T, ρ)) > 0. This

means that there is a tile τ = (T, ρ) s.t. ¶a♢, A ∈ T . As N satisĄes M1, there can
only be one such tile, namely the tile τa obtained from the domain element a. By
construction of tiles, this means that a ∈ AI . Thus, b ∈ BI and so B ∈ Tb. As
N(τb) > 0, we get that M5 is satisĄed.

M6. Let ¶a♢ and ¶b♢ be two nominals in N+
C (K), A,B ∈ NC(K), r ∈ N+

R (K),
τ ′ = (T ′, ρ′) be a tile for K s.t. ¶¶b♢, B♢ ⊆ T ′. Further assume that at least one of
the conditions a-b is satisĄed, which means that we can conclude that (a, b) ∈ rI .

75

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3. Expressive DLs with Closed Predicates

Now, assume that N(τ ′) ≥ 1. In this case, we know that b ∈ BI . Let τ = (T, ρ) be a
tile with ¶¶a♢, A♢ ⊆ T and ♣¶(R, T ′, k) ∈ ρ : r ∈ R♢♣ ≤ 0, and assume thatN(τ) ≥ 1.
Then, we have that a ∈ AI , and so (due to the condition (a)/(b)) a must have exactly
n r-neighbors of type B, with b being one of them. Recall that, by construction
of tiles, this information is recorded in ρ, i.e., there is a triple (R, T ′, k) ∈ ρ s.t.
R = rt(a, b), which is a contradiction to ♣¶(R, T ′, k) ∈ ρ : r ∈ R♢♣ ≤ 0. Thus, it
must be that N(τ) ≤ 0.

3.2.4 Enriched Systems of Integer Linear Inequalities

So far, we have shown that we can reduce knowledge base satisĄability to deciding the
existence of mosaics. To decide the latter, we next show how to build a system of integer
linear inequalities with implications whose solutions over N∗ correspond to the mosaics,
for some given knowledge base K.

We begin by formally introducing the notion enriched systems of integer linear inequalities.

DeĄnition 3.2.18. An enriched system (of integer linear inequalities) is a tuple (V, E , I),
where:

• V is a set of variables,

• E is a set of inequalities of the form

a1 · x1 + · · ·+ an · xn + c ≤ b1 · y1 + · · ·+ bm · ym + d, (3.1)

where a1, . . . , an, b1, . . . , bm are non-negative integers called variable coefficients, c, d
are non-negative integers called constant coefficients, and x1, . . . , xn, y1, . . . , ym ∈ V ,
and

• I is the set of implications of the form

α⇒ β, (3.2)

where α and β are inequalities of the form (3.1).

Notice that if I = ∅, the enriched system (V, E , I) (or simply (V, E)) is a system of integer
linear inequalities in the ordinary sense. We call such systems ordinary systems (of
integer linear inequalities).

Solutions to enriched systems can be deĄned over any domain D of numbers.

DeĄnition 3.2.19. A solution S over D to an enriched system (V, E , I) is a function
S : V → D that assigns to each variable x ∈ V a value S(x) over D such that all
inequalities and implications are satisfied.

76

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3.2. Characterizing KB SatisĄability via Integer Programming

In this thesis, we are interested in solutions of enriched settings over the aforementioned
set N∗ of non-negative integers with a special value ℵ0 that represents inĄnity. We next
state some useful results on the complexity of deciding whether an enriched system has a
solution over N∗.

We begin by recalling some well-known results about solving ordinary systems. It has
been proven many times that deciding whether an ordinary system has a non-negative
integer solution is possible in NP (see, e.g., [Pap81, KM78] and references therein). The
proof in [KM78] hinges on showing that if an ordinary system has a non-negative integral
solution, then it has one in which all values are bounded by a single exponential function
of the size of the system. This means that we can use only polynomially many bits
to encode such values, so we can devise a guess-and-check procedure for checking the
existence of solutions. We formally state these results below.

Proposition 3.2.20. Given a finite ordinary system of integer linear inequalities S =
(V, E) whose coefficients are in ¶0,±1, . . . ,±a♢. If S has a solution over N, then S has a
solution over N where all values are bounded by (♣V ♣+ ♣E♣) · ((♣E♣) · a)2♣E♣+1.

Proposition 3.2.21. [KM78] Given an ordinary system of integer linear inequalities S,
deciding whether S has a solution over N is possible in NP.

It has also been shown that the same bounds hold when it comes to considering solutions
over N∗. It is easy to see that an ordinary system S has a solution over N∗ if and only
if there is a way to assign ℵ0 to certain variables in a way that ensures that (i) all
inequalities involving these inĄnite values are satisĄed and (ii) removing all inequalities
from S that involve variables that have been assigned to inĄnity results in a system that
has a solution over N. In view of Proposition 3.2.20, this observation already reveals
that if S has a solution over N, it also has one in which all Ąnite values are bounded
by a single exponential function in the size of S. As before, this implies that checking
whether S has a solution over N∗ is possible in NP. This has been observed many times
in the literature, e.g., Lemma 18 in [PH05]. We show that the results stated above also
generalize to enriched systems, which was also observed in Theorem 13 in [GGBIG+19]
(the extended version of [GGI+20]).

Proposition 3.2.22. Let S = (V, E , I) be an enriched system of integer linear inequalities
in which all coefficients are in ¶0,±1, . . . ,±a♢. We have that the following hold:

1. If (V, E , I) has a solution over N, then it also has a solution over N where all values
are bounded by (♣V ♣+ ♣I♣+ ♣E♣) · ((♣E♣+ ♣I♣) · a)2(♣E♣+♣I♣)+1.

2. If (V, E , I) has a solution over N∗, then it also has a solution over N∗ where all
finite values are bounded by (♣V ♣+ ♣I♣+ ♣E♣) · ((♣E♣+ ♣I♣) · a)2(♣E♣+♣I♣)+1.

3. Deciding whether S has a solution over N∗ (resp. N) is in NP.

77

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3. Expressive DLs with Closed Predicates

Proof. We show this result in a couple of steps. The Ąrst step is to remove all implications
from S.

For an inequality α = a1 · x1 + · · ·+ an · xn + c ≤ b1 · y1 + · · ·+ bm · ym + d, let α denote
the negation of α, i.e., α = b1 · y1 + · · ·+ bm · ym + d+ 1 ≤ a1 · x1 + · · ·+ an · xn + c.

It is easy to see that S has a solution over some domain of numbers D if and only if there
is some set of inequalities X such that (V, E ∪ X) has a solution over D and:

• ♣X ♣ = ♣I♣, and

• for every implication α =⇒ β ∈ I, either β ∈ X or α ∈ X .

Indeed, assume S is a solution of S over D and let X be the following set of inequalities:

X = ¶β : α =⇒ β ∈ I s.t. β is satisĄed by S♢

¶α : α =⇒ β ∈ I s.t. β is not satisĄed by S♢,

Note that, by deĄnition of solutions, if S does not satisfy β, then S must not satisfy
α, and thus S satisĄes α, for each α =⇒ β ∈ I. Thus, S is obviously a solution to
(V, E ∪ X).

Conversely, let X ′ be a set of inequalities as described above such that (V, E ∪ X) has
a solution S′ over D. As X ′ contains either α or β, for each α =⇒ β ∈ I, S′ is also a
solution to (V, E , I).

It is now straightforward to show that the claims of the theorem hold:

1. Assume that S has a solution over N. Then, there is a set of inequalities X s.t. (i)
♣X ♣ = ♣I♣, (ii) S ′ = (V, E ∪ X) has a solution over N and (iii) every solution of S ′

over N is also a solution to S.

Due to Proposition 3.2.20, if S ′ has a solution over N, then it has one in which
every value is bounded by (♣V ♣+ ♣X ∪E♣) · ((♣E ∪X ♣) ·a)2(♣E∪X ♣)+1. The claim follows
from ♣X ♣ = ♣I♣.

2. As in the item above, if we assume that S has a solution over N∗, then there is a set
of inequalities X s.t. (i) ♣X ♣ = ♣I♣, (ii) S ′ = (V, E ∪ X) has a solution over N∗ and
(iii) every solution of S ′ over N∗ is also a solution to S. It was shown in [PH05] that
if S ′ has a solution over N∗, then it has one in which all Ąnite values are bounded
by (♣V ♣ + ♣X ∪ E♣) · ((♣E ∪ X ♣) · a)2(♣E∪X ♣)+1. The claim once again follows from
♣X ♣ = ♣I♣.

3. To show that we can decide whether S has a solution over N∗ in NP, we can
non-deterministically guess X , the subset of variables that are assigned to ℵ0 as
well as the bit encoding of the remainder of the Ąnite values (recall we only need
polynomially many bits for this!) and then check in polynomial time whether our
guess is valid.

78

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3.2. Characterizing KB SatisĄability via Integer Programming

4. Analogous to the item above.

3.2.5 Existence of Mosaics via Enriched Systems

Consider an ALCHOIQ knowledge base K with closed predicates. We show how to obtain
an enriched system SK = (V, E , I) from K such that there is a one-to-one correspondence
between the solutions of SK over N∗ and the mosaics for K.

DeĄnition 3.2.23. Let K = (T ,Σ,A) be an ALCHOIQ KB with closed predicates. We
denote by SK the enriched system of integer linear inequalities obtained from K as follows:

• We associate a variable xτ to every tile τ ∈ Tiles(K) and we let V = ¶xτ : τ ∈
Tiles(K)♢.

• We obtain the set of inequalities E from the conditions M1-M3 by replacing every
occurrence of N(τ) by xτ , for every τ ∈ Tiles(K). Note that we treat the equations
α = β in M1 and M3 as two inequalities α ≤ β and β ≤ α.

• We obtain the set of implications I from the conditions M4-M5 in Definition 3.2.9
by, once again, replacing every occurrence of N(τ) by xτ , for every τ ∈ Tiles(K).

Proposition 3.2.24. Let K be an ALCHOIQ knowledge base with closed predicates.
For each solution S over N∗ of SK there exists a mosaic N for K such that S(xτ) = N(τ),
for every τ ∈ Tiles(K), and vice versa.

Although implicit, we can see from the construction in the proof of Theorem 3.2.12 and
the proposition above, that if a KB K has a model I then the enriched system SK has
a solution in which the sum of all the variables representing tiles for K with A in their
unary type is equal to the number of domain elements in the extension of A in I, for
all concept names A ∈ NC(K). Moreover, the converse also holds. We next make this
explicit.

Observation 3.2.25. If K has a model I, then S has a solution S in which ♣AI ♣ =
∑

(T,ρ)∈Tiles(K),A∈TS(x(T,ρ)), for all A ∈ NC(T). Moreover, if SK has a solution S then

K has a model I in which ♣AI ♣ =
∑

(T,ρ)∈Tiles(K),A∈TS(x(T,ρ)), for all A ∈ NC(T).

Size of the enriched system and complexity results. We can now analyze the
size of the obtained enriched system SK = (V, E , I) relative to the size of the knowledge
base K.

Recall that every variable in V corresponds to a tile in Tiles(K), so we start by computing
the number of distinct tiles for K. First off, each unary type T for K consists of a set of
concept names that is a subset of NC(T) together with at most one nominal ¶a♢, where
a ∈ NI(K). This means that we have at most 2♣NC(T)♣ · (♣NI(K)♣+ 1) different unary types
in Types(K). In other words, the number of different unary types is exponential in the

79

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3. Expressive DLs with Closed Predicates

size of K, but only polynomial if we consider T to be Ąxed. Similarly, each role type R is
a subset of N+

R (T), so we have at most 2♣N+
R

(T)♣ different role types for K. Every tile τ
consists of two components: a unary type T and a set ρ of triples of the form (R, T ′, k),
where R is a role type, T ′ is a type and k is an integer. Moreover, due to the condition
T2, ρ contains at most mT · cT triples. Also, observe that due to T1, the choice of k is
not free. It is now easy to see that the number of different tiles in Tiles(K) (and therefore
also the set of variables V) is also exponential in the size of K and polynomial if T is
Ąxed. More precisely, we have the following:

Observation 3.2.26.

♣V ♣ ≤ (2♣NC(T)♣)mT ·cT +1 · (♣NI(K)♣+ 1)mT ·cT +1 · (2♣N+
R

(T)♣)mT ·cT

We next see that similar bounds apply to the size of E and I.

Conditions M1 and M2 only introduce polynomially many inequalities in the size of
K. Indeed, M1 introduces two inequalities for every individual occurring in K and M2
introduces a single inequality. The condition M3 introduces at most two inequalities
for every invertible triple (T,R, T ′), where T and T ′ are unary types and R is a role
type. In the worst case, this means that M3 introduces exponentially many inequalities
in the size of K, however, as before, this number is polynomial if T is considered Ąxed.
Regarding the size needed to encode a single inequality q ∈ E , we note that q contains
every variable x ∈ V at most twice (once on the LHS and once on the RHS). Moreover,
all integer constants occurring in q are bounded by cT . Therefore, q is also exponential
in the size of K and polynomial for a Ąxed T .

Observation 3.2.27.

♣E♣ ≤ 2♣NI(K)♣+ 1 + 2(2♣NC(T)♣ · (♣NI(K)♣+ 1)2 · 2♣NC(T)♣ · 2♣N+
R

(T)♣)

Moving on to I, condition M5 introduces polynomially many implications in the size of
K Ű at most one implication for each pair of individuals and each pair of concept names
in K. Conditions M4 and M6 introduce exponentially many implications in the size of
K (polynomial if T is Ąxed). Indeed, in the worst case, M4 introduces one implication
per pair (τ, T ′), where τ is a tile and T ′ is a unary type for K, and M6 introduces one
implication for every pair a, b of individuals occurring in K, tile τ and role r ∈ N+

R (K).
Moreover, each of these implications consists of two inequalities whose size is once again
at most exponential in K (polynomial if T is Ąxed). Thus the same bounds apply to all
of I.

Observation 3.2.28.

♣I♣ ≤ ♣NI(K)♣2 · ♣NC(K)♣2 + ♣V ♣ · 2♣NC(K)♣ · (♣NI(K)♣+ 1) + ♣NI(K)♣2 · ♣V ♣ · ♣N+
R

(K)♣.

Finally, we can see from the construction of SK that the coefficients in this enriched
system do not exceed max¶1, cT ♢.

80

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3.3. The ŞsimplerŤ ALCHOIF

Observation 3.2.29. If c is a coefficient in SK, then c ∈ ¶0,±1, . . . ,±cT ♢.

Summing up the discussion above, we have the following result for the size of SK.

Proposition 3.2.30. Let K be an ALCHOIQ KB with closed predicates. The size of
the system SK is exponential in the size of K and polynomial in the size of K, if T is
fixed.

Data complexity of ALCHOIQ with closed predicates Finally, we show that the
problem of deciding whether an ALCHOIQ KB with closed predicates admits a model is
NP-complete in data complexity by relying on the previously introduced characterization
together with the well-known results from the realm of integer programming.

We begin by recalling a well-known result on the data complexity of plain ALC.

Proposition 3.2.31. [Sch93] Deciding whether an ALC KB has a model is NP-hard in
data complexity.

The proposition above provides the lower data complexity bound for reasoning in
ALCHOIQ with closed predicates. The matching upper bound comes from Propo-
sition 3.2.22 and the fact that we can decide in NP whether an enriched system has a
solution over N∗.

Theorem 3.2.32. Let K be an ALCHOIQ KB with closed predicates. Deciding whether
K has a model is NP-complete in data complexity.

Proof. Checking whether K respects role inclusions can easily be done in polynomial
time. According to Theorem 3.2.12 and Proposition 3.2.24, deciding whether K that
respects role inclusions is satisĄable amounts to deciding whether SK has a solution over
N∗. The latter is possible in NP in the size of the input system (Proposition 3.2.22).
As SK is polynomial in the size of the data (Proposition 3.2.30, we get that the KB
satisĄability in ALCHOIQ with closed predicates is in NP. The matching lower bound
comes from Theorem 3.2.31.

3.3 The “simpler” ALCHOIF

ALCHOIF is a sublogic of ALCHOIQ Ű indeed, we can replace func(r) by ⊤ ⊑≤ 1r.⊤
and yield an equivalent ALCHOIQ KB. As such, the upper bound on the data complexity
of the knowledge satisĄability problem from the previous section is directly transferred
over to ALCHOIF with closed predicates. Moreover, due to Theorem 3.2.31, this bound
is tight so reasoning in ALCHOIF is not easier. Nevertheless, we present a simpliĄed
characterization of the satisĄability problem for ALCHOIF with closed predicates in
terms of mosaics that will come in useful in the later chapters. The intuition behind the
tiles and the mosaics remains the same as before, but the conditions placed on them were

81

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3. Expressive DLs with Closed Predicates

speciĄcally tailored for functionality axioms instead of the general number restrictions.
More importantly, having a characterization speciĄcally tailored for ALCHOIF will be
useful in Chapter 5, where we extend this logic as well as the notion tiles and mosaics to
provide capturing results for the complexity class coNP.

Similarly to before, we assume w.l.o.g. that all KBs in this section are given in normal
form. To this end, we use the ALCHOIF normal form introduced in DeĄnition 3.1.13.
Consider an ALCHOIF KB K = (T ,Σ,A). Much like in the case of ALCHOIQ, a tile
τ = (T, ρ) for K consists of a unary type T and a component ρ that stores the relevant
part of the neighborhood of the instances of τ . However, instead of triples of the form
(R, T ′, k), ρ now consists of pairs (R, T ′), where R is a role type and T ′ is a unary type
for K. The reason for this is that the only type of "at least" number restrictions in
ALCHOIF KBs are axioms of the type A ⊑ ∃r.B (i.e., A ⊑≥ 1r.B)). This means that
we need only one witness in ρ per existential axiom in T , so there is no need to keep
track of multiple different copies of the same type of neighbor. We next give a formal
deĄnition of tiles.

DeĄnition 3.3.1. Given an ALCHOIF KB K = (T ,Σ,A), a tile for K is a tuple
τ = (T, ρ), where T ∈ Types(K) and ρ is a set of pairs (R, T ′), where R ⊆ N+

R
(K),

T ′ ∈ Types(K) and the following conditions are satisfied:

TF1. ♣ρ♣ ≤ ♣T ♣

TF2. If B1 ⊓ · · · ⊓ Bk−1 ⊑ Bk ⊔ · · · ⊔ Bm ∈ T and ¶B1, . . . , Bk−1♢ ⊆ T , then
¶Bk, . . . , Bm♢ ∩ T ̸= ∅

TF3. If A ⊑ ∃r.B ∈ T and A ∈ T , then there is (R, T ′) ∈ ρ such that r ∈ R and
B ∈ T ′

TF4. For all (R, T ′) ∈ ρ, the following hold:

(a) If A ⊑ ∀r.B ∈ T , A ∈ T and r ∈ R, then B ∈ T ′

(b) If A ⊑ ∀r.B ∈ T , A ∈ T ′ and r− ∈ R, then B ∈ T

(c) If r ⊑ s ∈ T and r ∈ R, then s ∈ R

TF5. If func(r) ∈ T , then ♣¶(R, T ′) ∈ ρ : r ∈ R♢♣ ≤ 1

TF6. If A(b) ∈ A and ¶b♢ ∈ T , then A ∈ T

TF7. If ¬A(b) ∈ A and ¶b♢ ∈ T , then A ̸∈ T

TF8. For all (R, T ′) ∈ ρ, the following hold:

(a) If p(a, b) ∈ A, ¶p ⊑ r, func(r)♢ ⊆ T , ¶a♢ ∈ T and r ∈ R, then ¶b♢ ∈ T ′

(b) If p(a, b) ∈ A, ¶p ⊑ r, func(r−)♢ ⊆ T , ¶b♢ ∈ T , and r− ∈ R, then ¶a♢ ∈ T ′

(c) If ¬p(a, b) ∈ A, r ⊑ p ∈ T , ¶a♢ ∈ T , and r ∈ R, then ¶b♢ ̸∈ T ′

82

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3.3. The ŞsimplerŤ ALCHOIF

(d) If ¬p(a, b) ∈ A, r ⊑ p− ∈ T , ¶b♢ ∈ T , and r ∈ R, then ¶a♢ ̸∈ T ′

TF9. If A ∈ Σ ∩ NC and A ∈ T , then there exists c ∈ NI such that ¶c♢ ∈ T and
A(c) ∈ A

TF10. If r ∈ Σ∩NR, then for all (R, T ′) ∈ ρ with r ∈ R, there exist c, d ∈ NI such that
¶c♢ ∈ T , ¶d♢ ∈ T ′ and r(c, d) ∈ A.

We brieĆy explain the intuitions behind the conditions. Consider some tile τ that
describes some domain element d. Conditions TF1-TF4 are inherited from [GGI+20]
and ensure that the description of d is consistent with the statements in T , from
the perspective of d. Condition TF2 ensures the satisfaction of axioms of the type
B1 ⊓ · · · ⊓Bk−1 ⊑ Bk ⊔ · · · ⊔Bm ∈ T , condition TF3 guarantees that d has a witness for
every axiom ∃R.B ∈ T , conditions TF4 (a)-(c) ensure that d and its neighbors respect
axioms of the type A ⊑ ∀r.B and r ⊑ s, and condition TF5 ensures that the functionality
assertions in T are not violated. We further add the conditions that ensure that the
description of d is compatible with the assertions in A (conditions TF6-TF8), and those
that ensure that the closed predicates are respected (conditions TF9-TF10).

We next deĄne mosaics for ALCHOIF KBs.

DeĄnition 3.3.2. Let K = (T ,Σ,A) be an ALCHOIF KB. A mosaic for K is a function
N : Tiles(K)→ N∗ such that:

MF1. For every ¶c♢ ∈ N+
C

(K) :
∑

(T,ρ)∈Tiles(K),
¶c♢∈T

N((T, ρ)) = 1

MF2. The following inequality is satisfied:
∑

τ∈Tiles(K)

N(τ) ≥ 1

MF3. For every pair T, T ′ ∈ Types(K) and every R ⊆ N+
R

(K) with r ∈ R and
func(r−) ∈ T , the following holds:

∑

(T,ρ)∈Tiles(K),
(R,T ′)∈ρ

N((T, ρ)) ≤
∑

(T ′,ρ′)∈Tiles(K),
(R−,T)∈ρ′

N((T ′, ρ′))

MF4. For all (T, ρ) ∈ Tiles(K) and (R, T ′) ∈ ρ the following holds: if N((T, ρ)) > 0,
then there exists ρ′ such that (T ′, ρ′) ∈ Tiles(K) and N((T ′, ρ′)) > 0.

MF5. For all ¶a♢, ¶b♢ ∈ N+
C

(K) and all A,B ∈ NC(K), if there exist p, r ∈ N+
R

(K) for
which any of the following conditions hold:

(a) p(a, b) ∈ A, p ⊑ r ∈ T and A ⊑ ∀r.B ∈ T ,

(b) p(b, a) ∈ A, p ⊑ r− ∈ T and A ⊑ ∀r.B ∈ T ,

83

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3. Expressive DLs with Closed Predicates

(c) p(a, b) ∈ A, p ⊑ r ∈ T and A ⊑ ∃r.B ∈ T and func(r) ∈ T , or

(d) p(b, a) ∈ A, p ⊑ r− ∈ T and A ⊑ ∃r.B ∈ T and func(r) ∈ T ,

we have that the following implication holds:

∑

(T,ρ)∈Tiles(K),
¶a♢∈T,A∈T

N((T, ρ)) > 0 =⇒
∑

(T ′,ρ′)∈Tiles(K),
¶b♢∈T ′,B∈T ′

N((T ′, ρ′)) > 0

Conditions MF1 and MF2 are the same as the conditions M1 and M2 for ALCHOIQ
mosaics. The condition MF3 ensures that we have enough domain elements to satisfy
the functionality assertions in T . More precisely, assume we are given types T, T ′ and
R ⊆ N+

R (K), where a role r whose inverse is functional occurs in R. Let n be the number
of domain elements in a model of K that participate in basic concepts in T and have
an outgoing arc labeled by R to some neighbor of type T ′. Since r− is functional, each
domain element can ŞacceptŤ at most one incoming arc labeled by R, or equivalently,
has at most one outgoing arc labeled by R−. Thus, to build a model of K, there must
be n or more elements of type T ′ that have an outgoing arc to an element of type T
that is labeled by R−. The condition MF4 says that if we obtain a domain element d
by instantiating a tile (T, ρ) and ρ asserts the existence of some neighbors of d, we can
also instantiate tiles to provide suitable neighbors for d. Condition MF5 relates to the
following situation. Assume we have p(a, b) ∈ A asserting that, in a model of K, a has as
a p-neighbor the constant b and assume a participates in a concept name A. Now assume
there are axioms in T that allow us to infer that all p-neighbors of a must participate
in a concept name B. We can conclude that b must participate in B. Constant a can
ŞsendŤ such a message to b either via universal axioms in T or via existential axioms
and functionality assertions in T . Conditions MF5 (a)-(d) represent different ways a can
communicate information to b.

The following result establishes the connection between the existence of mosaics and the
satisĄability of ALCHOIF KBs with closed predicates. Similarly to DeĄnition 3.2.11,
we Ąrst deĄne what it means for an ALCHOIF KB with closed predicates to respect
role inclusions.

DeĄnition 3.3.3. Let K = (T ,Σ,A) be an ALCHOIF KB with closed predicates. We
say that K respects role inclusions if it satisfies the following conditions:

1. for all r ∈ Σ ∩ NR and s ⊑ r ∈ T (resp. s− ⊑ r): if s(a, b) ∈ A, then r(a, b) ∈ A
(resp. r(b, a)), and

2. for all r ∈ N+
R

(A) with func(r) ∈ T and all a ∈ NI(A), the set

¶b : p(a, b) ∈ A, p ⊑ r ∈ T ♢ ∪ ¶b : p(b, a) ∈ A, p− ⊑ r ∈ T ♢

has at most one element.

84

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3.4. Discussion

Intuitively, these two conditions ensure that if we were to compute the closure of A under
the role inclusions from T we would not violate any closed predicates or functionality
assertions. The Ąrst condition states that for each role r ∈ Σ, if p(a, b) ∈ A and p ⊑ r ∈ T
then also r(a, b) ∈ A must hold. If this is not the case, every interpretation satisfying
p ⊑ r would violate the closed predicates, and as such K would not have a model. The
second condition checks for each constant a in A and each functional role r, whether A
asserts the existence of more than one r−neighbor of a. If that is the case, then K also
does not have a model.

Theorem 3.3.4. Let K = (T ,Σ,A) be an ALCHOIF KB with closed predicates. K is
satisfiable if and only if it respects role inclusions and there exists a mosaic for K.

As the proof of Theorem 3.3.4 is very similar to the proof of Theorem 3.2.12, we delegate
it to the appendix to this thesis.

In view of the previous theorem, deciding whether K is satisĄable amounts to checking
whether it respects role inclusions and whether there exists a mosaic for K. The former
can be easily done in polynomial time. To decide the latter, we can once again build an
enriched system of linear inequalities whose solutions over N∗ correspond to the mosaics
for K, and then use regular integer programming techniques to test for the existence of a
solution.

3.4 Discussion

In this chapter, we presented a characterization of the knowledge base satisĄability
problem in ALCHOIQ with closed predicates as a system of integer linear inequalities
enriched with implications and we obtained a tight coNP data complexity bound.
Our technique was inspired by several other works that use integer programming to
characterize different reasoning problems in various DLs. Amongst them, the work
of Pratt-Hartmann [PH09] stands out, showing the same data complexity bound for
a fragment of Ąrst-order logic that subsumes many expressive DLs, in particular also
standard ALCHOIQ. However, our result is novel and it does not follow from previous
results as we are in the setting with closed predicates that were not handled in [PH09].
Furthermore, the technique from Pratt-Hartmann was introduced for a fragment of FO
that supports additional features that are not available in ALCHOIQ. One of our aims
was also to simplify the approach, deĄning a characterization speciĄcally designed for
the logic at hand that clearly reĆects its (restricted) syntax of ALCHOIQ ontologies
and semantics. Although our deĄnitions of tiles and mosaics involve many conditions,
all of them are quite intuitive and relatively easy to implement in Datalog¬, as we will
see in Chapter 4. Unfortunately, one disadvantage of our method is that our tiles need
to explicitly store all relevant neighbors of some domain element, the number of which
depends on the actual numerical values in the TBox. This means that the size needed
to encode a single tile is polynomial in the size of the given knowledge base only if we
assume the unary encoding of the numbers occurring in the TBox. While this does not

85

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3. Expressive DLs with Closed Predicates

affect the data complexity bound obtained in Theorem 3.2.32, it does have an effect on
the succinctness of our Datalog¬ encoding, as discussed in the next chapter. Investigating
how our approach can be adapted to also obtain results in the case of binary encoding is
left as future work.

86

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

CHAPTER 4
Datalog Rewritability and Data

Complexity of OMQs with Closed

Predicates

In the previous chapter, we investigated the data complexity of deciding whether an
arbitrary ALCHOIQ knowledge base with closed predicates admits a model and we
showed that it is unaffected by the addition of the closed predicates. In this chapter, we
shift our focus to the query answering problem in the presence of closed predicates. In
this setting, an OMQ Q consists of a TBox T , a set of predicates Σ whose extensions are
considered to be complete, and a database query q. The certain answers to Q over an
ABox A are then deĄned as those tuples of KB individuals that are the answers to q in
every model of T and A that obeys the closed predicates from Σ. In this chapter, we
are primarily interested in understanding the relative expressiveness of OMQs expressed
in ALCHOIQ with closed predicates compared to more standard query languages like
Datalog and its extensions. More precisely, we show the existence of a succinct rewriting
(or a translation) of OMQs with closed predicates into Datalog¬, which is a procedure
that takes as input an OMQ Q in the source language and produces a query q in the
target language such that the certain answers to Q over A coincide with the answers to
q over A, for any ABox A.

Contributions and publications. The key result presented in this chapter is a
polynomial-time rewriting of instance (i.e., atomic) queries as well as ŞsafeŤ Ąrst-order
queries mediated by ALCHOIQ ontologies with closed predicates into Datalog¬. This
translation is based on the satisĄability characterization of ALCHOIQ with closed
predicates presented in the previous chapter, and it is done in two steps:

• Given an ALCHOIQ TBox T and a set Σ of closed predicates, we Ąrst show

87

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. Datalog Rewritability and Data Complexity of OMQs with Closed Predicates

how to construct a Datalog¬ program PT ,Σ
sat with the following property: PT ,Σ

sat

together with some input data A has a stable model if and only if (T ,Σ,A) is
satisĄable. This program is modular and it consists of two components that do
the following. Based on the characterization from the previous chapter, the Ąrst
component computes the relational representation of the system of integer linear
inequalities and implications for (T ,Σ,A), and the second component solves the
computed system. Moreover, PT ,Σ

sat is polynomial in the size of (T ,Σ).

• In the second step, we modify PT ,Σ
sat to preserve atomic consequences of (T ,Σ)

over input data, which gives us a way to answer instance queries mediated by
ALCHOIQ ontologies with closed predicates. We also introduce a large class of
so-called safe-range OMQs, which support Ąrst-order queries where quantiĄcation
is ŞguardedŤ by closed predicates and we show that they are Datalog¬-rewritable.

As an important consequence of our results, we get that the considered class of safe-range
OMQs is co-NP-complete in data complexity, which follows from the complexity of
Datalog with negation under the stable model semantics. This is a positive result, as it
shows that closed predicates in ALCHOIQ do not increase the data complexity. We note
that this is not obvious, as closed predicates are known to increase the data complexity in
some cases, e.g., for ontology languages based on existential rules [BBtCP16]. As a Ąnal
remark, we note that for expressive DLs that simultaneously support nominals, inverses,
and number restrictions, the computational complexity of answering even very simple
FO queries consisting only of existential quantiĄcation and conjunction (i.e., conjunctive
queries) is unknown. It was shown in [GKL11] that conjunctive queries mediated by
ALCOIF ontologies are co-N2ExpTime-hard, but so far there is no upper bound on the
same problem, apart from decidability [RG10]. It is thus beneĄcial to consider fragments
of FO queries for which one can pinpoint the complexity, especially those that can be
answered at no additional cost.

The results presented in this chapter have been published in:

[LOŠ24] Sanja Lukumbuzya, Magdalena Ortiz, Mantas Šimkus. ŞDatalog
Rewritability and Data Complexity of ALCHOIQ with closed predicatesŤ.
ArtiĄcial Intelligence (2024): 104099.

Organization In Section 4.1, we show how to construct a Datalog program with
negation under the stable model semantics for deciding the satisĄability problem for
ALCHOIQ KBs with closed predicates. In Section 4.2, we explain how this program can
be augmented for answering certain types of OMQs and we present our complexity results.
Conclusions and a discussion about potential future work are given in Section 4.3.

88

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4.1. KB SatisĄability via Datalog¬

4.1 KB Satisfiability via Datalog¬

As a Ąrst step towards our goal of providing a rewriting of ALCHOIQ OMQs with closed
predicates into Datalog, we show that, given an ALCHOIQ TBox T and a set of closed
predicates Σ, we can construct a Datalog¬ program PT ,Σ

sat with the following properties:

• the size of PT ,Σ
sat is polynomial in the size of T and Σ, and

• the program (PT ,Σ
sat , Â) has a stable model if and only if the KB (T ,Σ,A) has a

model. Notice that in this case, A is considered to be an external database, i.e., an
input to PT ,Σ

sat .

Since the considered variant of Datalog does not provide support for strong negation,
we resort to a common technical trick to accommodate negative assertions in A, i.e.,
assertions of the form ¬q(⃗a) (cf. the discussion about supporting strong negation in
Datalog in Section 2.4). For each predicate q occurring in some TBox, we assume a
predicate q that does not occur in any TBox. For an ABox A, we denote by Â the set of
atoms obtained from A by replacing all assertions of the form ¬q(⃗a) by q(⃗a). Note that
if A contains no negative assertions, A and Â coincide.

We base our translation on the characterization of the KB satisĄability problem for
ALCHOIQ with closed predicates via the existence of mosaics, as described in the
previous chapter. Relying on Theorem 3.2.12, we construct the program PT ,Σ

sat consisting
of two components, PT ,Σ

sys and PT ,Σ
sol . These components communicate through a shared

part of the signature summarized below, which is used for representing enriched systems
of linear inequalities in a relational way. Assuming that, given an enriched system S, every
variable, every implication of the form (3.2), and every inequality of the form (3.1) (also
including those occurring within implications) in S can be assigned a unique identiĄer
(ID) encoded as a string over certain constants, we deĄne the following predicates for
encoding enriched systems of linear inequalities:

• A unary relation Cst storing constants, including 0 and 1.

• A binary relation LEQ deĄning a linear order over the constants in Cst, where 0 is
the least constant w.r.t. LEQ.

• Relation Int storing integers relevant to the system using standard binary encoding.

• Relations Var, Im, and Iq, storing IDs of variables, implications, and inequalities
(either stand-alone or occurring within implications) in the enriched system

• Relation Iq∗ storing IDs of inequalities in the enriched system that must be satisĄed

• Relations Iqv
L and Iqv

R storing a pair (q⃗, v⃗), for each inequality ID q⃗ and a variable
ID v⃗ for which the variable identiĄed by v⃗ occurs on the left-hand side (LHS) (resp.
right-hand side (RHS)) of the inequality identiĄed by q⃗.

89

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. Datalog Rewritability and Data Complexity of OMQs with Closed Predicates

PT ,Σ
sys PT ,Σ

sol
sat?

PT ,Σ
sat (T ,Σ,A) is unsatisĄable

mosaics for (T ,Σ,A),
i.e, (T ,Σ,A) is satisĄableÂ

Rel(S(T ,Σ,A)) yes

no

Figure 4.1: PΣ,T
sat and its components.

• Relations Iqint
L and Iqint

R storing a pair (q⃗, n⃗), for each inequality ID q⃗ and an integer
n (in binary encoding) for which n occurs on the LHS (resp. RHS) of the inequality
identiĄed by q⃗.

• Relations ImL and ImR storing a pair (m⃗, q⃗), for each implication ID m⃗ and an
inequality ID q⃗ for which the inequality identiĄed by q⃗ occurs on the LHS (resp.
RHS) of the implication identiĄed by m⃗.

For ease of presentation, here we focus on the intuition behind the predicates, omitting
technicalities like, e.g., their arities. These will become clear in the remainder of this
chapter. We use Rel(S) to denote some relational encoding of the enriched system S
using the aforementioned predicates.

We now brieĆy explain what each component of PT ,Σ
sat does. For an input ABox A,

the program (PT ,Σ
sys , Â) checks whether (T ,Σ,A) respects role inclusions as given in

DeĄnition 3.2.11, and, if that is the case, it computes Rel(S(T ,Σ,A)), for the enriched

system S(T ,Σ,A) deĄned in Section 3.2.5. The program PT ,Σ
sol then operates on the

computed relational representation of S(T ,Σ,A) and checks whether S(T ,Σ,A) has solutions
over N∗. The two components together thus check whether (T ,Σ,A) is satisĄable. This
is depicted in Fig. 4.1. It is worth noting that our constructed Datalog¬ program PT ,Σ

sat

is modular in the sense that PT ,Σ
sys computes the extensions of the shared predicates,

which are then only used as an input (i.e., EDB predicates) to PT ,Σ
sol . Thus, in view

of Proposition 2.4.12 we can compute the answer sets of PT ,Σ
sol by Ąrst computing the

answer sets to PT ,Σ
sys and then using them as inputs to PT ,Σ

sys . Finally, we remark that the

program PT ,Σ
sol depends on Σ and T only in terms of the arities of the shared predicates

and can otherwise be used to solve arbitrary enriched systems of linear inequalities as
long as they can be represented using the provided signature.

4.1.1 Generating Linear Inequalities

Consider anALCHOIQ TBox T and a set of closed predicates Σ. For ease of presentation,
we will assume that every predicate from Σ also occurs in T . Indeed, if there is some
predicate p ∈ Σ that does not occur in T , we can simply add p ⊑ p to obtain a TBox
equivalent to T s.t. p occurs in it. We next show how to obtain in polynomial time the
program PT ,Σ

sys that has the following properties:

90

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4.1. KB SatisĄability via Datalog¬

• for every ABox A over the signature of T , the program (PT ,Σ
sys , Â) has a stable

model if and only if the KB (T ,Σ,A) respects role inclusions, and

• the stable models of (PT ,Σ
sys , Â) correspond to Rel(S(T ,Σ,A)), differing only in terms

of which IDs they use for the variables, inequalities, and implications in S(T ,Σ,A).

We now sketch the construction of PT ,Σ
sys . This program is modular and consists of four

distinct components that, given an input ABox A, do the following:

1. Compute all possible candidate tiles for (T ,Σ,A).

2. Eliminate the candidates that do not satisfy the conditions in DeĄnition 3.2.5
leaving behind only proper tiles Ű these are the variables of S(T ,Σ,A).

3. Compute the inequalities and implications of SK.

4. Check whether (T ,Σ,A) respects role inclusions.

We note that all constants used by PT ,Σ
sys (and also PT ,Σ

sol) are introduced right at the
beginning, and each of the components uses the relations computed by the previous
components only as EDB predicates. Thus, in view of Proposition 2.4.12, the answer sets
of PT ,Σ

sys can be computed by computing the answer sets of the Ąrst component extended
with the facts from the input ABox, then feeding these answer sets, one by one, as facts
into the second component, and repeating this procedure until all components have been
considered. Relevant dependencies among the predicates used to deĄne PT ,Σ

sys are depicted
in Figure 4.2 and the complete overview of the signature is listed in Table 4.1. For ease
of presentation, we also assume the following convention: all symbols occurring in the
predicates within the rules of our program represent variables (or variable vectors) unless
they are 0, 1, ∗, or it is speciĄcally stated otherwise. Furthermore, we use the notation 0⃗
to refer to the vector consisting of only zeroes. We note that the length of 0⃗ might vary
from rule to rule. We are now ready to begin with our construction.

Let K = (T ,Σ,A), for some input ABox A. We Ąrst present the rules that compute the
basic building blocks for computing our relational representation of relations SK, namely
the relations Bin, Int, Adom and Cst. We begin with the relation Bin, that simply stores
constants 0 and 1 and is computed using the following two facts:

Bin(0), Bin(1).

Building on Bin, the relation Int stores all relevant integers for computing the system
SK. From T1 and T2 in DeĄnition 3.2.5, we can conclude that for any tile (T, ρ), if
(R, T ′, k) ∈ ρ, then 1 ≤ k ≤ cT . Further, by closely inspecting DeĄnition 3.2.9, we can
see that if an integer k occurs in SK as a constant, then 0 ≤ k ≤ max(cT ·mT , 1). This
means that we can encode all relevant integers as strings of length log(max(cT ·mT , 1))

91

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. Datalog Rewritability and Data Complexity of OMQs with Closed Predicates

using the usual binary encoding. These strings are stored in the relation Int that is
computed using the following rule:

Int(x1, . . . , xlog(max(cT ·mT ,1)))← Bin(x1), . . . ,Bin(xlog(max(cT ·mT ,1))).

Further, we need access to the constants that occur in K, i.e., the active domain of K.
For this, we deĄne the relation Adom and add the following facts:

Adom(c),

for all constants c occurring in T . Note that this adds polynomially many facts to PT ,Σ
sys

in the size of T . To gain access to the constants that occur in the ABox A while keeping
the size of PT ,Σ

sys independent of A, we add the following generic rules that collect all the
constants occurring in A:

Adom(x)← A(x), Adom(x)← A(x),
Adom(x)← r(x, y), Adom(x)← r(y, x),
Adom(x)← r(x, y), Adom(x)← r(y, x),

for each concept name A ∈ NC(T) and role name r ∈ NR(T).

We also deĄne another relation Adom∗ that contains all of the constants from Adom as
well as a special constant ∗ whose signiĄcance will be explained later. We add:

Adom∗(∗), Adom∗(x)← Adom(x).

Finally, we use the relation Cst to store all the constants from Bin and Adom:

Cst(x)← Bin(x), Cst(x)← Adom∗(x).

Computing candidate tiles We are now ready to deĄne the rules that compute the
relation CandT, storing a relational representation of all candidate tiles for K. Similarly
to a proper tile, a candidate tile for K consists of a type T for K and a set ρ of triples
(R, T ′, k), where T ′ is a type for K, R is a role type for K and 1 ≤ k ≤ cT . However, the
difference between tiles and candidate tiles for K is that the latter need not satisfy all
the conditions in Def. 3.2.5. As types and role types are integral components of tiles, we
Ąrst deĄne the rules that compute and store all types and role types for K using relations
Type and RType, respectively.

Let us Ąrst focus on role types, as they are easier to explain. Recall that a role type
is simply a subset of N+

R (T), which means that there are 2kT different role types for K,
where kT is the number of roles in N+

R (T) (see Table 3.1). Hence, we need exponentially
many different constants to represent every role type, which is a problem, as we want to
obtain a polynomially-sized program. To overcome this, we resort to a common trick and

92

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4.1. KB SatisĄability via Datalog¬

encode role types as strings of length kT over constants 0 and 1, where each binary string
represents a different role type. To this end, we Ąx an (arbitrary) enumeration r1, . . . , rkT

of the roles in N+
R (T) and associate to every role type R a binary string of length kT

that acts as an identiĄer for R and indicates which roles occur in R. More precisely, let l
be a binary string of length kT and let l[i], 1 ≤ i ≤ kT denote the constant at the i-th
position in l. Then, l is the identiĄer for the role type R for which the following holds:
ri ∈ R if and only if l[i] = 1. For example, the string 11100 . . . 0 uniquely identiĄes the
role type ¶r1, r2, r3♢. Strings that are used as identiĄers for role types are stored in the
relation RType and are computed using the following simple rule:

RType(x1, . . . , xkT
)← Bin(x1), . . . ,Bin(xkT

).

Next, we show how to encode types. Recall that a type T for K is a subset of N+
C (K), with

the caveat that T contains at most one nominal. Naturally, one might want to employ
the same approach as the one used for encoding role types, i.e., Ąx an enumeration of
all concept names and nominals in N+

C (K) and encode types as binary strings of length
♣N+

C (K)♣. However, as the number of nominals in N+
C (K) depends on the ABox A, this

would make our translation data-dependent, as the arity of the Type relation would
depend on the number of constants in A. Relying on the fact that there can be at most
one nominal in a type, we overcome this issue as follows. Similarly to before, we Ąx an
enumeration B1, . . . , BnT

of the concept names in NC(T). We assign to every type T a
string of length nT + 1, where the Ąrst nT positions are either 0 or 1, indicating which
concept names occur in T . The last position in the string indicates which nominal (if
any) occurs in T and is Ąlled by either a constant from K, denoting a speciĄc nominal,
or a special constant ∗, denoting the lack of nominals in T . More precisely, each type T
is encoded by the string l of length nT + 1 such that, for 1 ≤ i ≤ nT , l[i] = 1 if Bi ∈ T ,
otherwise l[i] = 0, and if there is a nominal ¶a♢ ∈ T , then l[nT + 1] = a, otherwise
l[nT + 1] = ∗. For example, the string 11100 . . . 0a represents the type ¶B1, B2, B3, ¶a♢♢,
whereas the string 11100 . . . 0∗ represents the type ¶B1, B2, B3♢. These strings are stored
in the relation Type and are computed using the rule:

Type(x1, . . . , xnT +1)← Bin(x1), . . . ,Bin(xk),Adom∗(xnT +1).

Recall once again that a candidate tile consists of a type T and a set of triples ρ of the form
(R, T ′, k), where R is a role type, T ′ is a type and k is an integer with 1 ≤ k ≤ cT ·mT .
We introduce a new relation Triple that stores all such triples and is computed by the
following rule:

Triple(R⃗, T⃗ , k⃗)← Type(T⃗),RType(R⃗), Int(k⃗).

We can now make use of the relations Type and Triple to compute the relation CandT

that stores all candidate tiles for K. Once again, our goal is to encode candidate tiles as
strings over 0, 1, and the constants from K of Ąxed length that is polynomial in the size
of T and Σ and constant in the size of A.

93

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. Datalog Rewritability and Data Complexity of OMQs with Closed Predicates

The Ąrst thing that we need to decide is exactly how long these strings should be.
Conditions T2 and T4 in DeĄnition 3.2.5 together tell us that, for each (candidate) tile
τ = (T, ρ) for K, ♣ρ♣ ≤ cT ·mT . However, it should be noted that cT ·mT is only an
upper bound, meaning that τ is not required to have exactly cT ·mT elements in ρ. This
makes encoding tiles via strings of Ąxed length a little tricky. To overcome this issue, if
♣ρ♣ < cT ·mT for some candidate tile (T, ρ), during the encoding we pad ρ to the desired
size by allowing duplicates in ρ. Thus, we can encode (candidate) tiles as strings of
length nT + 1 + cT ·mT · (nT + 1 + kT + log(max(cT ·mT , 1)). From now on, unless
stated otherwise, let n = cT ·mT .

Now, a natural way of computing the relation CandT would be by adding the following
in PT ,Σ

sys :

CandT(T⃗ , R⃗1, T⃗1, k⃗1, . . . , R⃗n, T⃗n, k⃗n)← Type(T⃗),Triple(R⃗1, T⃗1, k⃗1), . . . ,Triple(R⃗n, T⃗n, k⃗n).

However this approach is too naive for the following reason. Recall that ρ is a set, which
means that duplicates and the order in which the triples occur in ρ are ignored. Therefore,
if we compute CandT using the rule given above, we will inevitably have multiple different
tuples in CandT encoding the same tile. We deal with this as follows. First, we guess a
linear order over the constants used to encode the triples (i.e., the constants stored in
Cst) using a binary predicate LEQ, where 0 is the least constant with respect to LEQ.
This is done using the following rules:

LEQ(0, x)← Cst(x),

LEQ(x, x)← Cst(x),

LEQ(x, y)← Cst(x),Cst(y),not LEQ(y, x),

LEQ(x, z)← LEQ(x, y), LEQ(y, z).

We use the standard approach to lift this linear order to strings of length (nT + 1 +
kT + log(max(n, 1))) (see e.g., [DEGV01]), using the 2(nT + 1 + kT + log(max(n, 1)))-ary
relation LEQnT +1+kT +log(max(n,1)) which allows us to compare strings stored in relation
Triple.

We assume the following convention for encoding (candidate) tiles. The only tuples that
are valid encodings of candidate tiles are tuples of the form (T⃗ , R⃗1, T⃗1, k⃗1, . . . , R⃗n, T⃗n, k⃗n),
where T⃗ , T⃗1, . . . , T⃗n are in Type, (R⃗i, T⃗i, k⃗i) ∈ Triple, for 1 ≤ i ≤ n, and the following
holds:

(i) (R⃗i, T⃗i, k⃗i, R⃗j , T⃗j , k⃗j) is in LEQnT +1+kT +log(max(n,1)), for all 1 ≤ i < j ≤ n, and

(ii) if (R⃗i, T⃗i, k⃗i) = (R⃗j , T⃗j , k⃗j), then R⃗i = (0, . . . , 0), T⃗i = (0, . . . , 0, ∗) and k⃗i =
(0, . . . , 0, 1), for all 1 ≤ i, j ≤ n.

Intuitively, this condition assumes that given a tile (T, ρ), ρ is encoded by the string that
lists the triples of ρ in the ascending order with respect to the guessed linear order, and,
in case ρ contains less than n triples, pads it at the beginning with empty triples.

94

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4.1. KB SatisĄability via Datalog¬

Tuples that have the correct form but violate (i) or (ii) are stored in a separate relation
InvCandT that is computed as follows:

InvCandT(T⃗ , R⃗1, T⃗1, k⃗1, . . . , R⃗n, T⃗n, k⃗n)← Type(T⃗),Triple(R⃗1, T⃗1, k⃗1), . . . ,Triple(R⃗n, T⃗n, k⃗n),

not LEQnT +1+kT +log(max(n,1))(R⃗i, T⃗i, k⃗i, R⃗j , T⃗j , k⃗j),

InvCandT(T⃗ , R⃗1, T⃗1, k⃗1, . . . , R⃗n, T⃗n, k⃗n)← Type(T⃗),Triple(R⃗1, T⃗1, k⃗1), . . . ,Triple(R⃗n, T⃗n, k⃗n),

(R⃗i, T⃗i, k⃗i) = (R⃗j , T⃗j , k⃗j), R⃗i ̸= (0, . . . , 0),

InvCandT(T⃗ , R⃗1, T⃗1, k⃗1, . . . , R⃗n, T⃗n, k⃗n)← Type(T⃗),Triple(R⃗1, T⃗1, k⃗1), . . . ,Triple(R⃗n, T⃗n, k⃗n),

(R⃗i, T⃗i, k⃗i) = (R⃗j , T⃗j , k⃗j), T⃗i ̸= (0, . . . , 0, ∗),

InvCandT(T⃗ , R⃗1, T⃗1, k⃗1, . . . , R⃗n, T⃗n, k⃗n)← Type(T⃗),Triple(R⃗1, T⃗1, k⃗1), . . . ,Triple(R⃗n, T⃗n, k⃗n),

(R⃗i, T⃗i, k⃗i) = (R⃗j , T⃗j , k⃗j), k⃗i ̸= (0, . . . , 0, 1),

for all for 1 ≤ i, j ≤ n. Note that the Ąrst of the rules above stores in InvCandT the potential
encodings for a tile that violates the condition (i), while the other three rules together store the
ones that violate the condition (ii).

Finally, we can compute the relation CandT with the help of the following rule:

CandT(T⃗ , R⃗1, T⃗1, k⃗1, . . . , R⃗n, T⃗n, k⃗n)← Type(T⃗),Triple(R⃗1, T⃗1, k⃗1), . . . ,Triple(T⃗n, R⃗n, k⃗n),

not InvCandT(T⃗ , R⃗1, T⃗1, k⃗1, . . . , R⃗n, T⃗n, k⃗n).

This concludes the construction of the Ąrst component of PT ,Σ
sys . It is easy to verify that

the answer sets of this component in conjunction with the ABox, contain exactly one
tuple in CandT per candidate tile τ of K that encodes τ as explained above.

Eliminating bad candidate tiles The second component, takes the computed relation
CandT and eliminates the ones that do not encode a valid tile. To this end, we introduce
a new relation BadTile storing bad candidate tiles, i.e., those that violate one of the
conditions in DeĄnition 3.2.5. From now on, unless stated otherwise, we assume that
T⃗ , T⃗ ′ and T⃗i, are variable vectors of length nτ + 1, R⃗ and R⃗i are variable vectors of length
kT , k⃗ and k⃗i are variable vectors of length log(max(n, 1)), and t⃗, t⃗′, and t⃗i are variable
vectors of length nT + 1 + n · (nT + 1 + kT + log(max(n, 1))), for all i ≥ 1.

We begin by introducing a couple of auxiliary relations. Recall that we assume enu-
merations B1, . . . , BnT

concept names in NC(T) and r1, . . . , rkT
of roles in N+

R (T). For
every concept name Bi, 1 ≤ i ≤ nT , we deĄne an auxiliary nT + 1-ary relation InBi

that
stores all types containing Bi occurs, i.e., whose i-th position is set to 1. The relation is
computed by the following rule:

InBi
(x1, . . . , xnT

, xnT +1)← Type(x1, . . . , xnT
, xnT +1), xi = 1.

Similarly, for each role rj , 1 ≤ j ≤ kT , we deĄne an kT -ary relation Inrj
that stores all

role types containing rj , i.e., whose j-th position is set to 1. This relation is computed by

Inrj
(x1, . . . , xkT

)← RType(x1, . . . , xkT
), xkT

= 1.

95

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. Datalog Rewritability and Data Complexity of OMQs with Closed Predicates

We now go through the conditions of DeĄnition 3.2.5 and add the corresponding rules that
ŞinvalidateŤ candidate tiles that do not satisfy them, i.e., that store the tuple representing
this candidate tile in the relation BadTile:

T1. In order to properly capture T1, we need to Ąnd a way to talk about predecessors
and successors of integers stored in the relation Int. To this end, we compute the
relation LEQlog(max(n,1) that is obtained by lifting the linear order LEQ to strings
of length log(max(n, 1)). We then use this relation to extract the successor relation
on the integers in Int as follows:

Succint(x⃗, y⃗)← Int(x⃗), Int(z⃗), Int(y⃗), LEQlog(max(cT ·mT ,1))(x⃗, z⃗),

LEQlog(max(n,1))(z⃗, y⃗), x⃗ ̸= y⃗, x⃗ ̸= z⃗, y⃗ ̸= z⃗,

Succint(x⃗, y⃗)← Int(x⃗), Int(y⃗), LEQlog(max(n,1))(x⃗, y⃗), x⃗ ̸= y⃗,not Succint(x⃗, y⃗).

The Ąrst rule stores all pairs (x⃗, y⃗) in Succint for which the integer encoded by y⃗ is
not the successor of the integer encoded by x⃗, i.e., if there is some integer encoded
by z⃗, different from the ones encoded by x⃗ and y⃗, which is greater than x⃗ and
smaller than y⃗. The second rule then stores pairs (x⃗, y⃗) in Succint, if y⃗ encodes an
integer that is greater than the one encoded by x⃗ and for which there is no other
integer that is in between them. Thus, Succint encodes the successor relation over
available integers.

Next, for all 1 ≤ i ≤ n, we deĄne an auxiliary relation OKT 1
i , for all 1 ≤ i ≤ n, that

stores candidate tiles (T, ρ) whose i-th triple in ρ satisĄes T1 in DeĄnition 3.2.5.
This is done using two rules Ű the Ąrst one Şaccepts" the i-th triple (Ri, Ti, ki) ∈ ρ
if ki = 1, as it trivially satisĄes T1, and the second one Şaccepts" (Ri, Ti, ki) if we
can Ąnd some other triple (Rj , Tj , kj) ∈ ρ such that kj is the predecessor of ki:

OKT 1
i (T⃗ , R⃗1, T⃗1, k⃗1, . . . , R⃗n, T⃗n, k⃗n)← CandT(T⃗ , R⃗1, T⃗1, k⃗1, . . . , R⃗n, T⃗n, k⃗n),

k⃗i = (0, . . . , 0, 1),

OKT 1
i (T⃗ , R⃗1, T⃗1, k⃗1, . . . , R⃗n, T⃗n, k⃗n)← CandT(T⃗ , R⃗1, T⃗1, k⃗1, . . . , R⃗n, T⃗n, k⃗n),

R⃗j = R⃗i, T⃗j = T⃗i,Succint(k⃗j , k⃗i),

for 1 ≤ j ≤ n, j ̸= i.

Finally, if there is a triple in a candidate tile that does not satisfy T1, then this
candidate is a Şbad tile". Thus, we add the following rule, for all 1 ≤ i ≤ n:

BadTile(⃗t)← CandT(⃗t),not OKT 1
i (⃗t).

T2. For all 1 ≤ i ≤ n, we deĄne an auxiliary relation OKT 2
i that collects all candidate

tiles (T, ρ) whose i-th triple in ρ fulĄlls T2 in DeĄnition 3.2.5. The relation OKT 2
i

96

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4.1. KB SatisĄability via Datalog¬

is then computed using the following rules:

OKT 2
i (T⃗ , R⃗1, T⃗1, k⃗1, . . . , R⃗n, T⃗n, k⃗n)← CandT(T⃗ , R⃗1, T⃗1, k⃗1, . . . , R⃗n, T⃗n, k⃗n),

R⃗i = (0, . . . , 0), T⃗i = (0, . . . , 0, ∗),

OKT 2
i (T⃗ , R⃗1, T⃗1, k⃗1, . . . , R⃗n, T⃗n, k⃗n)← CandT(T⃗ , R⃗1, T⃗1, k⃗1, . . . , R⃗n, T⃗n, k⃗n),

InBi1
(T⃗), InBi2

(T⃗i), Inrh
(R⃗i),

for every axiom Bi1 ⊑= m rh.Bi2 ∈ T . Let (Ri, Ti, ki) denote the i-th triple in
ρ. The Ąrst rule Şaccepts" (Ri, Ti, ki) if both Ri and Ti are empty. Recall that
such triples were used for padding ρ to the desired size and they do not represent
any real connections. The second rule actually checks whether there is an axiom
Bi1 ⊑= m rh.Bi2 ∈ T such that Bi1 ∈ T , Bi2 ∈ Ti and m ∈ Ri, and if this is the
case, it ŞacceptsŤ (Ri, Ti, ki).

As before, we eliminate all tiles for which this does not hold:

BadTile(⃗t)← CandT(⃗t),not OKT 2
i (⃗t), for 1 ≤ i ≤ n.

T3. The rule for T3 is rather straightforward. For every Bi1 ⊓ · · · ⊓Bim−1 ⊑ Bim ⊔ · · · ⊔
Bit ∈ T we add:

BadTile(T⃗ , r⃗)← CandT(T⃗ , r⃗), InBi1
(T⃗), . . . , InBim−1

(T⃗),

not InBim
(T⃗), . . . ,not InBit

(T⃗).

T4. Eliminating the candidate tiles that violate T4 is done in mulitple steps. First, given
an axiom Bi1 ⊑= m rh.Bi2 ∈ T and a candidate tile (T, ρ) with Bi1 ∈ T , we need a
way of determining how many triples (R, T ′, k) there are in ρ, for which Bi2 ∈ T

′ and
rh ∈ R. To this end, for every 1 ≤ j ≤ n and every axiom α = Bi1 ⊑= m rh.Bi2 ∈ T ,
we introduce a new auxiliary relation Uptoj,Bi1

⊑=m rh.Bi2
whose role is the following.

Assume that t⃗ ∈ CandT represents the candidate tile (T, ρ) and let k⃗ ∈ Int be a
binary representation of some integer k ≤ n. The relation Uptoj,Bi1

⊑=m rh.Bi2
stores

(⃗t, k⃗) if and only if Bi1 ∈ T and among the Ąrst j triples of ρ, there are exactly
k triples (R, T ′, k) such that Bi2 ∈ T

′ and rh ∈ R. This relation is computed by
adding the following rules, for all j = 1, . . . , n:

Upto0,α(T⃗ , r⃗, 0⃗)← CandT(T⃗ , r⃗), InBi1
(T⃗), Int(⃗0),

Uptoj,α(T⃗ , r⃗, k⃗)← Uptoj−1,α(T⃗ , r⃗, k⃗′),Succint(k⃗′, k⃗), InBi2
(T⃗j), Inrh

(R⃗j),

Uptoj,α(T⃗ , r⃗, k⃗)← Uptoj−1,α(T⃗ , r⃗, k⃗),not InBi2
(T⃗j),

Uptoj,α(T⃗ , r⃗, k⃗)← Uptoj−1,α(T⃗ , r⃗, k⃗),not Inrh
(R⃗j),

97

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. Datalog Rewritability and Data Complexity of OMQs with Closed Predicates

where r⃗ = R⃗1, T⃗1, k⃗1, . . . , R⃗n, T⃗n, k⃗n. The Ąrst of the rules given above initializes the
sum to 0, if Bi1 is in T . The rest of the rules iterate through ρ and do the following.
The second rule increases the previously-computed sum stored in Uptoj−1,α by one,
if in the j-th triple (Rj , Tj , kj) ∈ ρ, rh ∈ R and Bi2 ∈ T . If this is not the case, the
previous result is simply copied using the third and the fourth rule.

We can now make use of these auxiliary relations to compute candidate tiles that
violate T4. To this end, for each axiom Bi1 ⊑= m rh.Bi2 ∈ T , we add the following
rule

BadTile(⃗t)← CandT(⃗t),not Upton,Bi1
⊑=m rh.Bi2

(⃗t, b⃗),

where b⃗ is the vector of constants stored in Int corresponding to the binary repre-
sentation of m.

T5. For each axiom Bi1 ⊑ ∀rh.Bi2 ∈ T , assume rh′ = r−
h . We add the following rules:

BadTile(T⃗ , R⃗1, T⃗1, k⃗1, . . . , R⃗n, T⃗n, k⃗n)← CandT(T⃗ , R⃗1, T⃗1, k⃗1, . . . , R⃗n, T⃗n, k⃗n),

InBi1
(T⃗), Inrh

(R⃗j),not InBi2
(T⃗j),

BadTile(T⃗ , R⃗1, T⃗1, k⃗1, . . . , R⃗n, T⃗n, k⃗n)← CandT(T⃗ , R⃗1, T⃗1, k⃗1, . . . , R⃗n, T⃗n, k⃗n),

InBi1
(T⃗j), Inrh′ (R⃗j),not InBi2

(T⃗),

for all 1 ≤ j ≤ n. This makes sure to eliminate the tiles that do not satisfy T5a
and T5b.

To satisfy the T5c we do the following. For 1 ≤ j ≤ n and each rh ⊑ rg ∈ T , we
add the following rule:

BadTile(T⃗ , R⃗1, T⃗1, k⃗1, . . . , R⃗n, T⃗n, k⃗n)← CandT(T⃗ , R⃗1, T⃗1, k⃗1, . . . , R⃗n, T⃗n, k⃗n),

Inrh
(R⃗j),not Inrg (R⃗j).

The rules for T5a-T5c are rather simple Ű they are direct translations of the
conditions in DeĄnition 3.2.5.

To deal with T5d, we Ąrst need a way to represent invertible triples (see Def-
inition 3.2.2). To this end, we introduce a new relation Invrt that stores such
triples and is computed as follows. For each pair of axioms Bi1 ⊑= m1rh.Bi2 and
Bj1 ⊑= m2rg.Bj2 occurring in T , we add the following rule:

Invrt(T⃗1, R⃗, T⃗2)← Type(T⃗1),RType(R⃗),Type(T⃗2), InBi1
(T⃗1), InBj2

(T⃗1),

InBi2
(T⃗2), InBj1

(T⃗2), Inrh
(R⃗), Inrg′ (R⃗),

where rg′ denotes the role r−
g .

98

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4.1. KB SatisĄability via Datalog¬

Then, adding the rules that ŞinvalidateŤ candidate tiles that violate T5d is once
again straightforward:

BadTile(T⃗ , R⃗1, T⃗1, k⃗1, . . . , R⃗n, T⃗n, k⃗n)← CandT(T⃗ , R⃗1, T⃗1, k⃗1, . . . , R⃗n, T⃗n, k⃗n),

Invrt(T⃗ , R⃗i, T⃗i), T⃗ = T⃗i,

BadTile(T⃗ , R⃗1, T⃗1, k⃗1, . . . , R⃗n, T⃗n, k⃗n)← CandT(T⃗ , R⃗1, T⃗1, k⃗1, . . . , R⃗n, T⃗n, k⃗n),

Invrt(T⃗ , R⃗i, T⃗i), Invrt(T⃗ , R⃗j , T⃗j), T⃗i = T⃗j ,

for all 1 ≤ i, j ≤ n, i ̸= j.

Finally, we also translate the conditions T5e and T5f as follows. For each role name
rh ∈ NR(T), and each i = 1, . . . , n, we add:

BadTile(T⃗ , R⃗1, T⃗1, k⃗1, . . . , R⃗n, T⃗n, k⃗n)← CandT(T⃗ , R⃗1, T⃗1, k⃗1, . . . , R⃗n, T⃗n, k⃗n),

rh(x, x′), Inrh
(y⃗i), wi = x′,

BadTile(T⃗ , R⃗1, T⃗1, k⃗1, . . . , R⃗n, T⃗n, k⃗n)← CandT(T⃗ , R⃗1, T⃗1, k⃗1, . . . , R⃗n, T⃗n, k⃗n),

rh(x′, x), Inrh′ (R⃗i), wi = x′,

where rh′ = r−
h , T⃗ = x1, . . . , xnT

, w, and T⃗i = xi1 , . . . , xinT
, wi.

The rules that invalidate the tiles that violate one of T6-T9 are once again straightforward.
In what follows, we assume T⃗ = x1, . . . , xnT

, w and T⃗i = xi1 , . . . , xinT
, wi, for all 1 ≤ i ≤ n.

T6. For each Bi ∈ NC(T) we add:

BadTile(T⃗ , r⃗)← CandT(T⃗ , r⃗), Bi(w),not InBi
(T⃗).

T7. For each Bi ∈ NC(T) we add:

BadTile(T⃗ , r⃗)← CandT(T⃗ , r⃗), Bi(w), InBi
(T⃗).

T8. For each Bi ∈ Σ ∩ NC(T),

BadTile(T⃗ , r⃗)← CandT(T⃗ , r⃗), InBi
(T⃗),not Bi(w).

T9. For each rh ∈ Σ ∩ NR(T) and each i = 1, . . . , n, we add:

BadTile(T⃗ , R⃗1, T⃗1, k⃗1, . . . , R⃗n, T⃗n, k⃗n)← CandT(T⃗ , R⃗1, T⃗1, k⃗1, . . . , R⃗n, T⃗n, k⃗n),

Inrh
(R⃗i),not rh(w,wi).

99

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. Datalog Rewritability and Data Complexity of OMQs with Closed Predicates

At this point, the relation BadTile contains all candidate tiles that violate one of the tile
conditions. We now add the following rule that Ąlters out bad candidate tiles and leaves
behind only true tiles for K:

Tile(⃗t)← CandT(⃗t),not BadTile(⃗t).

Recall that the answer sets of the Ąrst component enriched with the facts from the ABox
A contain precisely one tuple t⃗ in CandT, for each candidate tile τ encoded by t⃗. It
is then not difficult to see that every answer set of the program combining A and the
Ąrst two components has the following property: it contains precisely one tuple in Tile

encoding τ , for each τ ∈ Tiles(K).

Building the enriched system We now present the rules that build the enriched
system SK. As each tile represents a variable in the system, we store tiles for K in the
relation Var by adding the rule

Var(⃗t)← Tile(⃗t).

Next, we compute the relations that encode the inequalities and implications in SK. To
this end, we agree on the convention, summarized in Table 4.2, that assigns to each
implication of the form (3.2), and inequality of the form (3.1) occurring in SK a string of
length lid over the available constants that uniquely identiĄes it.

The IDs of inequalities and implications are stored in relations Iq and Im, respectively.
Additionally, we use the relation Iq∗ to store the IDs of true inequalities, i.e., those that
must be satisĄed in the system. Note that Iq∗ ⊆ Iq. Therefore, we add the following rule:

Iq(x⃗)← Iq∗(x⃗).

Once we agree on how IDs are assigned to the implications and inequalities, we go through
the conditions in DeĄnition 3.2.9 and add the rules that compute the relevant relations
storing implications and inequalities.

M1. As Table 4.2 suggests, for each knowledge base constant c, M1 gives rise to two
inequalities identiĄed by (0, c, 0⃗) and (1, c, 0⃗). We add the rules that store these
IDs in Iq∗:

Iq∗(0, x, 0⃗)← Adom(x), Iq∗(1, x, 0⃗)← Adom(x).

We next need to relate these inequalities with the variables and integers that occur
in them using relations Iqv

L, Iqv
R, Iqint

L , and Iqint
R .

On the LHS of the inequality identiĄed by (0, c, 0⃗) as well as the RHS of the
inequality identiĄed by (1, c, 0⃗), where c is, once again, a concrete knowledge base

100

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4.1. KB SatisĄability via Datalog¬

constant, we have 1) no integers and 2) all tiles (T, ρ) for which ¶c♢ ∈ T . Thus, we
add:

Iqv
L(0, x, 0⃗, T⃗ , r⃗)← Iq(0, x, 0⃗),Adom(x),Var(T⃗ , r⃗), w = x,

Iqv
R(1, x, 0⃗, T⃗ , r⃗)← Iq(1, x, 0⃗),Adom(x),Var(T⃗ , r⃗), w = x,

where T⃗ = x1, . . . , xnT
, w.

On the RHS of the inequality identiĄed by (0, c, 0⃗) as well as the LHS of the
inequality identiĄed by (1, c, 0⃗) is equal to 1. We encode this using the following:

Iqint
R (0, x, 0⃗, 1)← Adom(x),

Iqint
L (1, x, 0⃗, 1)← Adom(x).

M2. The inequality in M2 is simply identiĄed by 0⃗ of length lid. Thus, we add the fact
Iq∗(⃗0). On the RHS of this inequality we have all variables and on the LHS we
have the constant 1. Thus, we add:

Iqv
R(⃗0, t⃗)← Var(⃗t) and Iqint

L (⃗0, 1).

M3. For all types T, T ′ ∈ Types(K) and a role type R ⊆ N+
R (K) such that (T,R, T ′) is

invertible, the condition M3 introduces two inequalities identiĄed by (0, T⃗ , T⃗ ′, R⃗, 0⃗)
and (1, T⃗ , T⃗ ′, R⃗, 0⃗), where T⃗ and T⃗ ′ identify T and T ′, respectively, and R⃗ identiĄes
R. We thus add the following rules to store these IDs in Iq∗ using the following
rules:

Iq∗(0, T⃗ , T⃗ ′, R⃗, 0⃗)← Type(T⃗),Type(T⃗ ′),RType(R⃗), Invrt(T⃗ , R⃗, T⃗ ′),

Iq∗(1, T⃗ , T⃗ ′, R⃗, 0⃗)← Type(T⃗),Type(T⃗ ′),RType(R⃗), Invrt(T⃗ , R⃗, T⃗ ′).

On the LHS of the inequality identiĄed by (0, T⃗ , T⃗ ′, R⃗, 0⃗) and the RHS of the
inequality identiĄed by (1, T⃗ , T⃗ ′, R⃗, 0⃗), we have all tiles (T, ρ) with (R, T ′, k) ∈ ρ,
for some k. Thus, we add:

Iqv
L(0, T⃗ , T⃗ ′, R⃗, 0⃗, t⃗)← Iq∗(0, T⃗ , T⃗ ′, R⃗, 0⃗),Var(⃗t), R⃗i = R⃗, T⃗i = T⃗ ′,

Iqv
R(1, T⃗ , T⃗ ′, R⃗, 0⃗, t⃗)← Iq∗(1, T⃗ , T⃗ ′, R⃗, 0⃗),Var(⃗t), R⃗i = R⃗, T⃗i = T⃗ ′,

for all 1 ≤ i ≤ n, where t⃗ = T⃗ , R⃗1, T⃗1, k⃗1, . . . , R⃗n, T⃗n, k⃗n.

Further, on the RHS of the inequality identiĄed by (0, T⃗ , T⃗ ′, R⃗, 0⃗) and the LHS of the
inequality identiĄed by (1, T⃗ , T⃗ ′, R⃗, 0⃗), we have all tiles (T ′, ρ′) with (R−, T, k) ∈ ρ′,
for some k. We therefore add:

Iqv
R(0, T⃗ , T⃗ ′, R⃗, 0⃗, t⃗)← Iq∗(0, T⃗ , T⃗ ′, R⃗, 0⃗),Var(⃗t),RType−(R⃗, R⃗′), R⃗i = R⃗′, T⃗i = T⃗ ,

Iqv
L(1, T⃗ , T⃗ ′, R⃗, 0⃗, t⃗)← Iq∗(1, T⃗ , T⃗ ′, R⃗, 0⃗),Var(⃗t),RType−(R⃗, R⃗′), R⃗i = R⃗′, T⃗i = T⃗ ,

for all 1 ≤ i ≤ n, where t⃗ = T⃗ ′, R⃗1, T⃗1, k⃗1, . . . , R⃗n, T⃗n, k⃗n.

101

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. Datalog Rewritability and Data Complexity of OMQs with Closed Predicates

The rules above make use of an auxiliary relation RType−, that stores (R⃗, R⃗′) if R⃗
encodes a role type R and R⃗′ encodes R−. To compute RType−, for each role pair
of roles rg, rg′ ∈ N+

R (K) such that rg′ = r−
g , we add the following:

RType−(R⃗, R⃗′)← RType(R⃗),RType(R⃗′), Inrg (R⃗),not Inrg′ (R⃗
′),

RType−(R⃗, R⃗′)← RType(R⃗),RType(R⃗′), Inrg (R⃗′),not Inrg′ (R⃗),

RType−(R⃗, R⃗′)← RType(R⃗),RType(R⃗′),not RType−(R⃗, R⃗′).

The Ąrst two rules tell us that for two role types R and R′, R′ ≠ R−, if there is some
role r such that (i) r ∈ R but r− /∈ R′ or (ii) r ∈ R′ but r− /∈ R. The third rule lets
us infer that if we cannot Ąnd such r, then R′ = R, and thus (R⃗, R⃗′) ∈ RType−.

M4. For each tile τ = (T, ρ) ∈ Tiles(K) and each type T ′ ∈ Types(K), the condition
M4 introduces an implication with the ID (⃗t, T⃗ ′, 0⃗), which in turn consists of two
inequalities identiĄed by (⃗t, 0⃗) and (⃗t, T⃗ ′, 0⃗), where t⃗ encodes τ and T⃗ ′ encodes T ′.
We deĄne rules that store these IDs in Im and Iq:

Im(⃗t, T⃗ ′, 0⃗)← Tile(⃗t),Type(T⃗ ′),

Iq(⃗t, 0⃗)← Tile(⃗t),

Iq(⃗t, T⃗ ′, 0⃗)← Tile(⃗t),Type(T⃗ ′).

We also add the rules that relate the implications with the inequalities they consist
of:

ImL(⃗t, T⃗ ′, 0⃗1, t⃗, 0⃗2)← Im(⃗t, T⃗ ′, 0⃗1), Iq(⃗t, 0⃗2),Tile(⃗t),Type(T⃗ ′),

ImR(⃗t, T⃗ ′, 0⃗1, t⃗, T⃗
′, 0⃗2)← Im(⃗t, T⃗ ′, 0⃗1), Iq(⃗t, T⃗ ′, 0⃗2),Tile(⃗t),Type(T⃗ ′).

Further, we need to relate the newly introduced inequalities with the corresponding
variables and integers. Observe that the LHS of the inequality with the ID (⃗t, 0⃗) is
equal to 1 and the RHS simply consists of the tile encoded by t⃗. Thus, we have:

Iqv
R(⃗t, 0⃗, t⃗)← Iq(⃗t, 0⃗),Tile(⃗t),

Iqint
L (⃗t, 0⃗, 1)← Iq(⃗t, 0⃗),Tile(⃗t),

On the LHS of the inequality with the ID (⃗t, T⃗ ′, 0⃗) we have all tiles τ ′ = (T ′, ρ′)
such that T ′ is encoded by T⃗ ′, while on the RHS we have the number of triples in
ρ that contains the type encoded by T⃗ ′. We add the following rules:

Iqint
L (⃗t, T⃗ ′, 0⃗, k⃗)← Iq(⃗t, T⃗ ′, 0⃗),Tile(⃗t),Type(T⃗ ′),Upton(⃗t, T⃗ ′, k⃗),

Iqv
R(⃗t, T⃗ ′, 0⃗, t⃗′)← Iq(⃗t, T⃗ ′, 0⃗),Tile(⃗t),Type(T⃗ ′),Tile(⃗t′),

where t⃗ = T⃗ , R⃗1, T⃗1, k⃗1, . . . , R⃗n, T⃗n, k⃗n and t⃗′ = T⃗ ′, R⃗′
1, T⃗

′
1, k⃗

′
1, . . . , R⃗

′
n, T⃗

′
n, k⃗

′
n.

102

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4.1. KB SatisĄability via Datalog¬

The relation Uptoi, for all 1 ≤ i ≤ n, is an auxiliary relation with the following
meaning. Let (T, ρ) be a tile identiĄed by t⃗, T ′ be a type identiĄed by T⃗ ′ and k be
an integer whose binary representation k⃗ is stored in Int. The relation Uptoi stores
the tuple (⃗t, T⃗ ′, k⃗) if and only if among the Ąrst i triples in ρ, there are exactly k
triples of the form (R, T ′, l), and is computed by following rules:

Upto0(⃗t, T⃗ ′, 0⃗)← Tile(⃗t),Type(T⃗ ′),

Uptoi(⃗t, T⃗
′, k⃗)← Uptoi−1(⃗t, T⃗ ′, k⃗′),Succint(k⃗

′, k⃗), T⃗i = T⃗ ′,

Uptoi(⃗t, T⃗
′, k⃗)← Uptoi−1(⃗t, T⃗ ′, k⃗),not T⃗i ̸= T⃗ ′,

for each 1 ≤ i ≤ n, where t⃗ = T⃗ , R⃗1, T⃗1, k⃗1, . . . , R⃗n, T⃗n, k⃗n.

For the next two conditions, let b⃗i be the vector of constants that corresponds to the
ID of the type for K that contains only Bi, for each concept name Bi, 1 ≤ i ≤ nT , and
let r⃗j be the vector of constants that corresponds to the ID of the role type for K that
contains only rj , for each role rj , 1 ≤ j ≤ kT .

M5. For all knowledge base constants c1, c2 and all concept names Bi, Bj ∈ NC(K)
fulĄlling certain conditions (see DeĄnition 3.2.9), M5 introduces an implication
with the ID (c1, c2, b⃗i, b⃗j , 0⃗). This implication, in turn, consists of two inequalities
with the IDs (c1, b⃗i, 0⃗) and (c2, b⃗j , 0⃗).

We Ąrst deal with the condition (a). For every pair of axioms Bi1 ⊑ ∀rh.Bi2 ∈ T
and rg ⊑ rh, we add:

Im(x, y, b⃗i1 , b⃗i2 , 0⃗)← rg(x, y),

Iq(x, b⃗i1 , 0⃗)← rg(x, y),

Iq(y, b⃗i2 , 0⃗)← rg(x, y).

Similarly, we deal with the condition (b) as follows. For every pair of axioms
Bi1 ⊑ ∀rh.Bi2 ∈ T and r−

g ⊑ rh, we add:

Im(x, y, b⃗i1 , b⃗i2 , 0⃗)← rg(y, x),

Iq(y, b⃗i1 , 0⃗)← rg(x, y),

Iq(x, b⃗i2 , 0⃗)← rg(x, y).

To relate the implications with the corresponding inequalities, we do the following:

ImL(x, y, T⃗ , T⃗ ′, 0⃗, x, T⃗ , 0⃗)← Im(x, y, T⃗ , T⃗ ′, 0⃗), Iq(x, T⃗ , 0⃗),Adom∗(x),Adom∗(y),

ImR(x, y, T⃗ , T⃗ ′, 0⃗, y, T⃗ ′, 0⃗)← Im(x, y, T⃗ , T⃗ ′, 0⃗), Iq(y, T⃗ ′, 0⃗),Adom∗(x),Adom∗(y).

103

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. Datalog Rewritability and Data Complexity of OMQs with Closed Predicates

The last step is to compute the LHS and RHS of the introduced inequalities. The
LHS of the inequality with the ID (c, b⃗i, 0⃗) is equal to 1, while on the RHS we have
all tiles (T, ρ) such that ¶¶c♢, Bi♢ ⊆ T . Thus, for all Bi ∈ NC(K), we add:

Iqint
L (x, b⃗i, 0⃗, 1)← Iq(x, b⃗i, 0⃗),Adom∗(x),

Iqv
R(x, b⃗i, 0⃗, t⃗)← Iq(x, b⃗i, 0⃗),Adom∗(x),Tile(⃗t), InBi

(T⃗), w = x,

where t⃗ = T⃗ , r⃗ and T⃗ = x1, . . . , xnT
, w.

M6. Finally, for every tile τ ′ = (T ′, ρ′) ∈ Tiles(K), every knowledge base constant
c, every Bi ∈ NC(K) and every rj ∈ N+

R (K) that satisfy some conditions (see
DeĄnition 3.2.9), M6 gives rise to an implication with the ID (c, t⃗′, b⃗i, r⃗j , 0⃗), which
in turn consists of two inequalities with the IDs (c, T⃗ ′, b⃗i, r⃗j , 0⃗) and (t⃗′, 0), where t⃗′

encodes τ ′ and T⃗ ′ encodes T ′.

Note that the inequalities with the ID of the form (⃗t, 0), where t⃗ identiĄes a tile,
were already computed in M4.

We Ąrst deal with (a) and for all pairs of axioms p ⊑ rh and Bi1 ⊑= m rh.Bi2 in
T , we add:

Im(x, t⃗, b⃗i1 , r⃗h, 0⃗)← Tile(⃗t), p(x, y), InBi2
(T⃗), w = y,

Iq(x, T⃗ , b⃗i1 , r⃗h, 0⃗)← Tile(⃗t), p(x, y), InBi2
(T⃗), w = y,

where t⃗ = T⃗ , r⃗ and T⃗ = x1, . . . , xnT
, w.

The condition(b) is dealt with in a similar manner. Namely, for all pairs of axioms
p− ⊑ rh and Bi1 ⊑= m rh.Bi2 in T , we add the following rule

Im(x, t⃗, b⃗i1 , r⃗h, 0⃗)← Tile(⃗t), p(y, x), InBi2
(T⃗), w = y,

where t⃗ = T⃗ , r⃗ and T⃗ = x1, . . . , xnT
, w.

We then relate inequalities to the corresponding implications:

ImL(x, t⃗, b⃗i1 , r⃗h, 0⃗, t⃗, 0⃗)← Im(x, t⃗, b⃗i1 , r⃗h, 0⃗), Iq(⃗t, 0⃗),Adom∗(x),Tile(⃗t),

ImR(x, t⃗, b⃗i1 , r⃗h, 0⃗, x, T⃗ , b⃗i1 , r⃗h, 0⃗)← Im(x, t⃗, b⃗i1 , r⃗h, 0⃗), Iq(x, T⃗ , b⃗i1 , r⃗h, 0⃗),

Adom∗(x),Tile(⃗t),

where t⃗ = T⃗ , r⃗ and T⃗ = x1, . . . , xnT
, w.

Finally, we compute the LHS and RHS of the newly introduced inequalities. The
RHS of the inequality with the ID (c, T⃗ ′, b⃗i, r⃗h, 0⃗) is equal to 0, while the LHS
contains all tiles τ = (T, ρ) such that ¶¶c♢, Bi♢ ∈ T and there is no (R, T ′, k) ∈ ρ

104

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4.1. KB SatisĄability via Datalog¬

such that rh ∈ R. Thus, for all Bi ∈ NC(K) and rh ∈ N+
R (K), we add:

Iqint
R (x, T⃗ ′, b⃗i, r⃗h, 0⃗, k⃗)← Iq(x, T⃗ ′, b⃗i, r⃗h, 0⃗),Adom∗(x), Int(k⃗), k⃗ = (0, . . . , 0),

Iqv
L(x, T⃗ ′, b⃗i, r⃗h, 0⃗, t⃗)← Iq(x, T⃗ ′, b⃗i, r⃗h, 0⃗),Tile(⃗t),Adom∗(x),

w = x, InBi1
(T⃗),Upton,rh

(⃗t, T⃗ , 0, . . . , 0),

for all rh ∈ N+
R (K), where t⃗ = T⃗ , r⃗ and T⃗ = x1, . . . , xnT

, w.

Similar to the previously introduced relation Uptoi, the relation Uptoi,rh
, for all

1 ≤ i ≤ n is an auxiliary relation with the following meaning. Let (T, ρ) be a tile
identiĄed by t⃗, T ′ be a type identiĄed by T⃗ ′, rh be a role in N+

R (K), and k be an
integer whose binary representation k⃗ is stored in Int. The relation Uptoi,rh

stores

the tuple (⃗t, T⃗ ′, k⃗) if and only if among the Ąrst i triples in ρ, there are exactly k
triples of the form (R, T ′, l), where rh ∈ R, and is computed by following rules:

Upto0,rh
(⃗t, T⃗ ′, 0⃗)← Tile(⃗t),Type(T⃗ ′)

Uptoi,rh
(⃗t, T⃗ ′, k⃗)← Uptoi−1,rh

(⃗t, T⃗ ′, k⃗′),Succint(k⃗
′, k⃗), T⃗i = T⃗ ′, Inrh

(R⃗i)

Uptoi,rh
(⃗t, T⃗ ′, k⃗)← Uptoi−1,rh

(⃗t, T⃗ ′, k⃗),not T⃗i ̸= T⃗ ′

Uptoi,rh
(⃗t, T⃗ ′, k⃗)← Uptoi−1,rh

(⃗t, T⃗ ′, k⃗),not Inrh
(R⃗i),

for each 1 ≤ i ≤ n and counting role rh ∈ N+
R (K), where T⃗ = x1, . . . , xnT

, w and
t⃗ = T⃗ , R⃗1, T⃗1, k⃗1, . . . , R⃗n, T⃗n, k⃗n.

At this point in the construction, each answer set of the program that combines an input
ABox A with the three components described above corresponds to Rel(SK), up to the
renaming of IDs of the variables, implications and inequalities.

Checking that A respects role inclusions To complete our construction of PT ,Σ
sys ,

we add the rules that ensure that K respects role inclusions, i.e., that it satisĄes the
conditions listed in DeĄnition 3.2.11. This is achieved via constraints (i.e., rules with
empty bodies) and is rather straightforward:

1. For all r ⊑ s ∈ T , we add
← s(x, y), r(x, y).

2. For all r− ⊑ s ∈ T , we add
← s(x, y), r(y, x).

3. For all r ∈ Σ ∩ NR and all s ⊑ r ∈ T , we add

← s(x, y),not r(x, y).

105

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. Datalog Rewritability and Data Complexity of OMQs with Closed Predicates

Type CandT Tile

BadTile

Var

Iq

Im

Iqint
L/R

Iqv
L/R

ImL/R

RType

Figure 4.2: Partial dependency graph of PT ,Σ
sat (negation represented via dashed arcs).

4. For all r ∈ Σ ∩ NR and all s− ⊑ r ∈ T , we add

← s(x, y),not r(y, x).

We now make a couple of observations about the constructed program PT ,Σ
sys . First, the

arities of the predicates occurring in PT ,Σ
sys are polynomial in the size of T and Σ and do

not depend on A (see Table 4.1). Moreover, looking at the encoding above, we can easily
verify that the number of non-ground rules in PT ,Σ

sys is polynomial in the size of T and
Σ and does not depend on A. Further, we already argued during the construction that
the answer sets of the Ąrst three components together extended with A correspond to
the Rel(SK). The fourth component consists of the constraints that simply Şkill" all the
answer sets if K violates one of the conditions 1-4 in DeĄnition 3.2.11. This leads us to
the following statement.

Proposition 4.1.1. Given a TBox T and a set Σ of closed predicates, PT ,Σ
sys has the

following properties:

• PT ,Σ
sys is polynomial in the size of T and Σ and it does not depend on the size of

the input ABox,

• for any ABox A over the signature of T , K = (T ,Σ,A) does not respect role
inclusions if and only if the program (PT ,Σ

sys , Â) has no answer sets,

• each answer set of (PT ,Σ
sys , Â) corresponds to Rel(SK), up to the renaming of IDs of

the variables, implications and inequalities.

4.1.2 Solving Linear Inequalities

We next discuss the construction of the program PT ,Σ
sol that, given a relational repre-

sentation of an enriched system S encoded using the previously-described signature,
decides whether there exists a solution over N∗ to S. Running this program on a system
generated by the program (PT ,Σ

sys , Â) thus decides whether there is a mosaic for (T ,Σ,A).

We note that PT ,Σ
sol depends on T and Σ only in terms of the arity of the predicates that

106

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4.1. KB SatisĄability via Datalog¬

are shared with PT ,Σ
sys and can handle arbitrary enriched systems, as long as they are

encoded using the provided signature.

The intuition behind PT ,Σ
sol is relatively simple Ű it is a Śguess-and-check’ procedure that

non-deterministically guesses the values of the variables of the input enriched system and
then checks whether the guess is valid, i.e., whether all implications and inequalities of
the system are satisĄed. However, for this approach to work we need to ensure that the
search space that we have to explore in order to determine whether an enriched system
has a solution is Ąnite. To this end, we recall the result from Proposition 3.2.22 of the
previous chapter stating that the existence of a solution over N∗ implies the existence of
a solution over N∗ in which variables are assigned values that are at most exponential in
the size of the system. This result indeed ensures that PT ,Σ

sol has to consider only Ąnitely
many different options for the values of the variables. However, those values are extremely
large. Moreover, recall that, for a given KB K = (T ,Σ,A), the enriched system SK is
already exponential in the size of T and Σ, which means that the values that we have
to consider for determining whether SK has a solution are, in fact, doubly exponential
in the size of T and Σ. As we would like to keep PT ,Σ

sol polynomial in the size of T
and Σ, the Ąrst and most crucial step in our construction is to come up with a succinct
representation of solutions. To this end, consider an enriched system S. Let d denote
the number of constants in Cst and lv, le, li, and la denote the arity of Var, Iq, Im, and
Int in the relational representation of S, respectively. Since variables, inequalities, and
implications are encoded as strings over Cst of length lv, le and li, respectively, we know
that there are at most dlv variables, at most dle inequalities and at most dli implications.
Further, the maximum integer occurring in S is bounded by dla . Let l = (lv + le + li + la).
In view of Proposition 3.2.22, for deciding whether S has a solution it is sufficient to
consider only those solutions whose Ąnite values do not exceed 2d2l

. Thus, the maximum
Ąnite value that our program must be able to handle is bounded by 2d3l

. A naive way of
encoding a solution S is to associate to each variable whose value in S is Ąnite, a binary
string of length d3l that encodes this value. However, this makes the translation both
exponential as well as dependent on the number of constants in the data, which goes
against our goal of having a polynomial, data-independent translation. We overcome this
challenge in the following way: instead of having binary strings of length d3l, we encode
the addresses of these d3l bits as a string of length 3l over the constants in Cst. We then
encode the values of the variables using a lv + 3l+ 1-ary predicate Val, with the following
meaning: (x⃗, z⃗, b) in the relation Val denotes that in the value of the variable encoded by
x⃗ the bit at the position z⃗ has the value b, where b is either 0 or 1. This is depicted in
Figure 4.3.

We are now ready to present the guessing part of PT ,Σ
sol , which is rather straightforward. In

the remainder of this section, we write Csti(x1, . . . , xi) to abbreviate Cst(x1), . . .Cst(xi),
for i ≥ 1. We begin by adding the rules that guess which variables in a potential solution
are set to inĄnity:

Fin(x⃗)← Var(x⃗),not Inf(x⃗), Inf(x⃗)← Var(x⃗),not Fin(x⃗).

107

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. Datalog Rewritability and Data Complexity of OMQs with Closed Predicates

c 0 . . . a 0 0 . . . 1

c 0 . . . a a a . . . b 0c 0 . . . a a a . . . a 0 . . . c 0 . . . a 0 0 . . . 0 1

bit address as a string
over Cst of length 3l

variable ID

value as bit string
of length d3l

Figure 4.3: Naive (top) vs. our encoding (bottom) of solutions in PT ,Σ
sol

If a variable is not set to inĄnity, we separately guess each bit of its value by using the
following rules:

Val(x⃗, z⃗ ′, z⃗, 0)← Fin(x⃗),Cstl(z⃗ ′),Cst2l(z⃗), z⃗ ′ ̸= (0, . . . , 0),

Val(x⃗, z⃗, 0)← Fin(x⃗),Cst3l(z⃗),not Val(x⃗, z⃗, 1),

Val(x⃗, z⃗, 1)← Fin(x⃗),Cst3l(z⃗),not Val(x⃗, z⃗, 0).

As the variables take values that are bounded by 2d2l
, we only need the Ąrst d2l bits to

encode them. Note that first here refers to the linear order from LEQ in the relational
representation of S and recall that 0 is the least constant according to LEQ. The remaining
dl bits are set to 0 and reserved for accommodating addition, which is reĆected in the
Ąrst rule. The other two rules freely guess the values of the Ąrst d2l bits.

We now move to the checking part of PT ,Σ
sol . We use the le-ary predicate Sat to store the

inequalities that are satisĄed by our guess. Due to the shape of the enriched systems
(see DeĄnition 3.2.18), checking whether inequalities with occurrences of ℵ0 (i.e., inĄnity)
are satisĄed is easy Ű such inequality is satisĄed if and only if inĄnity occurs on its RHS.
We thus have the following rule:

Sat(y⃗)← Var(x⃗), Iq(y⃗), IqR(y⃗, x⃗), Inf(x⃗).

We next focus on the inequalities where all the variables are assigned Ąnite values. These
inequalities are stored in the relation FinIq, which is computed as follows:

InfIq(y⃗)← Iq(y⃗),Var(x⃗), Inf(x⃗), IqL(y⃗, x⃗),

InfIq(y⃗)← Iq(y⃗),Var(x⃗), Inf(x⃗), IqR(y⃗, x⃗),

FinIq(y⃗)← Iq(y⃗),not InfIq(y⃗).

To check whether an inequality in FinIq is satisĄed by our guess, we incrementally compute
its LHS (resp. RHS) by iterating through all the variables in the relation Var and all
the integers in Int, and storing, at each iteration, the sum of all the variables/integers

108

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4.1. KB SatisĄability via Datalog¬

considered so far that occur on the LHS (resp. RHS). These intermediate results are
stored using (le + max(lv, la) + 3l + 1)-ary predicates Uptov

L, Uptov
R, Uptoint

L and Uptoint
R .

Intuitively, Uptov
L (resp. Uptov

R) stores a tuple (q⃗, v⃗, p⃗, b) if and only if the bit with the
address p⃗ in the sum of all variables up to and including the variable v⃗ that occur on the
LHS (resp. on the RHS) of the inequality q⃗ has the value b. We do this until we reach
the very last variable. Once we have summed up the values of all the variables, we do
the same for the integers. The relation Uptoint

L stores a tuple (q⃗, k⃗, p⃗, b), if the bit with
the address p⃗ in the sum of all variables and all integers occurring on the LHS of the
inequality q⃗ up to k⃗ (including k⃗) has the value b.

For iterating through the variables and integers, we use the linear order stored in the
relation LEQ and we lift it to strings over Cst of length at most max(2lv, 2la, 3l). We
further extract the relations Firsti, Lasti,Succi, 1 ≤ i ≤ max(2lv, 2la, 3l), that store the
least string of length i, the greatest string of length i, and the successor relation on the
strings of length i, respectively. We also extract from LEQ a 2la-ary successor relation
Succint over the integers in Int. In fact, we have already done this during the construction
of Psys. Using this relation, we can further extract the relations Firstint and Lastint that
store, respectively, the Ąrst and the last integer with respect to this successor relation.
Next, we do the same for the variables. We extract a successor relation on the variables
in the 2lv-ary relation SuccV and we compute the relations FirstV and LastV, storing the
Ąrst and the last variable with respect to SuccV, respectively.

Recall that integers are stored in the relation Int as binary strings of length la. To
facilitate the computation, we next show how to represent integers in the same way as
the values of variables. We introduce a new relation Valint that stores a tuple (k⃗, p⃗, b)
if and only if for the integer k⃗, the bit at the position p⃗ is set to b. To compute this
relation, we rely on the auxiliary relations Valint

i , for each 1 ≤ i ≤ la, and Valint
>lathat are

computed as follows:

Valint
1 (x⃗, z⃗, x1)← Int(x⃗),First3l(z⃗),

Valint
i (x⃗, z⃗, xi)← Valint

i−1(x⃗, z⃗′, x′),Succ3l(z⃗′, z⃗),

Valint
>la(x⃗, z⃗, 0)← Valint

la (x⃗, z⃗′, x⃗′), LEQ3l(z⃗′, z⃗),

for all 1 < i ≤ la, where x⃗ = xla , . . . , x1. Intuitively, the relation Valint
i , 1 ≤ i ≤ la, stores

the value of the i-th bit, for every integer in Int. As we only use la bits to encode integers,
for each integer in Int, we set the value of the remaining bits to 0. This is stored in the
relation Valint

>la . We then simply copy the information stored in the auxiliary relations
into the relation Valint using the following rules, for all 1 ≤ i ≤ la:

Valint(x⃗, z⃗, x)← Valint
i (x⃗, z⃗, x),

Valint(x⃗, z⃗, x)← Valint
>la(x⃗, z⃗, x).

Finally, we need to add the rules that deĄne the addition of binary numbers. To this
end, we use a 5-ary relation Add, where a tuple (b, b′, b′′, c, r) in Add denotes that the

109

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. Datalog Rewritability and Data Complexity of OMQs with Closed Predicates

result of adding bits b, b′, and b′′ is r with the carry c. As these rules are standard, we
omit them here. Further, we use the (le + max(lv, la) + 3l + 1)-ary predicates Carryint

L ,
Carryint

R , Carryv
L, and Carryv

R to mark relevant carry bits. A tuple (q⃗, x⃗, p⃗, c) is in Carryv
L

(resp. Carryint
L) if when adding the bit at the position p⃗ of the variable (resp. integer) x⃗

to the result we have obtained so far for the LHS of the inequality q⃗, we need to take
into account a bit with the value c that was carried over from the previous computation.
The meaning of the relation Carryv

R and Carryint
R is deĄned analogously.

We are now ready to deĄne the rules that compute Uptov
L, Uptov

R, Uptoint
L , and Uptoint

R .
For ease of presentation, we assume that there is at least one variable and one integer
in the enriched system. Notice that this is not a limitation since we can always have
a variable in the system that occurs in no inequalities and thus does not inĆuence the
solutions. We begin with the rules for Uptov

L. For an inequality q in FinIq, we add the
rules that initialize the sum to the value of the Ąrst variable, if it occurs in q on the LHS,
and to 0, otherwise:

Uptov
L(y⃗, 0⃗, x⃗, z⃗, 0)← FinIq(y⃗),FirstV(x⃗),not Iqv

L(y⃗, x⃗),Cst3l(z⃗),

Uptov
L(y⃗, 0⃗, x⃗, z⃗, x)← FinIq(y⃗),FirstV(x⃗),Val(x⃗, z⃗, x), Iqv

L(y⃗, x⃗).

At the beginning of each new iteration, there is nothing to carry over from the previous
computation, so we add the rules that initialize the carry bit at the Ąrst position (i.e,
the address of the least signiĄcant bit in the value of the considered variable) to 0:

Carryv
L(y⃗, 0⃗, x⃗, z⃗, 0)← FinIq(y⃗),Var(x⃗),First3l(z⃗).

We then add the rules that perform the addition of the sum we have so far and the next
variable with respect to SuccV:

Uptov
L(y⃗, 0⃗, x⃗, z⃗, x′)← Uptov

L(y⃗, 0⃗, x⃗ ′, z⃗, x′),SuccV(x⃗ ′, x⃗),not Iqv
L(y⃗, x⃗),

Uptov
L(y⃗, 0⃗, x⃗, z⃗, x)← Uptov

L(y⃗, 0⃗, x⃗ ′, z⃗, x′),SuccV(x⃗ ′, x⃗), Iqv
L(y⃗, x⃗),Val(x⃗, z⃗, x′′),

Carryv
L(y⃗, 0⃗, x⃗, z⃗, z),Add(x′, x′′, z, y, x),

Carryv
L(y⃗, 0⃗, x⃗, z⃗ ′, y)← Uptov

L(y⃗, 0⃗, x⃗ ′, z⃗, x′),SuccV(x⃗ ′, x⃗), Iqv
L(y⃗, x⃗),Val(x⃗, z⃗, x′′),

Succ3l(z⃗, z⃗ ′),Carryv
L(y⃗, 0⃗, x⃗, z⃗, z),Add(x′, x′′, z, y, x),

where 0⃗ is the 0-vector of length max(lv, la)− lv.

110

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4.1. KB SatisĄability via Datalog¬

Similarly, the relation Uptoint
L is computed as follows:

Uptoint
L (y⃗, 0⃗1, x⃗, z⃗, x)← FinIq(y⃗),Firstint(x⃗),Uptov

L(y⃗, 0⃗2, x⃗
′, z⃗, x), LastV(x⃗′),

not Iqint
L (y⃗, x⃗),

Carryint
L (y⃗, 0⃗, x⃗, z⃗, 0)← FinIq(y⃗), Int(x⃗),First3l(z⃗),

Uptoint
L (y⃗, 0⃗1, x⃗, z⃗, x)← FinIq(y⃗),Firstint(x⃗), Iqint

L (y⃗, x⃗),Uptov
L(y⃗, 0⃗2, x⃗

′, z⃗, x′), LastV(x⃗′),

Valint(x⃗, z⃗, x′′),Carryint
L (y⃗, 0⃗1, x⃗, z⃗, z),Add(x′, x′′, z, y, x),

Carryint
L (y⃗, 0⃗1, x⃗, z⃗

′, y)← FinIq(y⃗),Firstint(x⃗), Iqint
L (y⃗, x⃗),Uptov

L(y⃗, 0⃗2, x⃗
′, z⃗, x′), LastV(x⃗′),

Valint(x⃗, z⃗, x′′),Succ3l(z⃗, z⃗′),Carryint
L (y⃗, 0⃗1, x⃗, z⃗, z),

Add(x′, x′′, z, y, x),

Uptoint
L (y⃗, 0⃗1, x⃗, z⃗, x

′)← Uptoint
L (y⃗, 0⃗1, x⃗

′, z⃗, x′),Succint(x⃗
′, x⃗),not Iqint

L (y⃗, x⃗),

Uptoint
L (y⃗, 0⃗1, x⃗, z⃗, x)← Uptoint

L (y⃗, 0⃗1, x⃗
′, z⃗, x′),Succint(x⃗

′, x⃗), Iqint
L (y⃗, x⃗),Val(x⃗, z⃗, x′′),

Carryint
L (y⃗, 0⃗1, x⃗, z⃗, z),Add(x′, x′′, z, y, x),

Carryint
L (y⃗, 0⃗1, x⃗, z⃗

′, y)← Uptoint
L (y⃗, 0⃗1, x⃗

′, z⃗, x′),Succint(x⃗
′, x⃗), Iqint

L (y⃗, x⃗),Val(x⃗, z⃗, x′′),

Succ3l(z⃗, z⃗ ′),Carryint
L (y⃗, 0⃗1, x⃗, z⃗, z),Add(x′, x′′, z, y, x),

where 0⃗1 is the 0-vector of the length la −max(lv, la) and 0⃗2 is the 0-vector of the length
lv −max(lv, la). The relations Uptov

R and Uptoint
R are computed analogously.

We next store the Ąnal result of our computation using the relations LHS and RHS as
follows:

LHS(y⃗, z⃗, b)← Uptoint
L (y⃗, 0⃗, x⃗, z⃗, b), Lastint(x⃗),

RHS(y⃗, z⃗, b)← Uptoint
R (y⃗, 0⃗, x⃗, z⃗, b), Lastint(x⃗),

where 0⃗ is the 0-vector of the length la −max(lv, la).

Recall that we distinguish between general inequalities, stored in the relation Iq, and
those inequalities that must be satisĄed, stored in the relation Iq∗. We next add the rules
that check whether all the inequalities in Iq∗ are indeed satisĄed by comparing the LHS
and RHS of inequalities, bit by bit:

Sat(y⃗)← LHS(y⃗, z⃗, c),RHS(y⃗, z⃗, c′), Last3l(z⃗), LEQ(c, c′), c ̸= c′,

Sat′(y⃗, z⃗)← LHS(y⃗, z⃗, c),RHS(y⃗, z⃗, c′), Last3l(z⃗), c = c′,

Sat(y⃗)← LHS(y⃗, z⃗ ′, c),RHS(y⃗, z⃗ ′, c′),Sat′(y⃗, z⃗),Succ3l(z⃗ ′, z⃗), LEQ(c, c′), c ̸= c′,

Sat′(y⃗, z⃗)← Sat′(y⃗, z⃗′),Succ3l(z⃗, z⃗′), LHS(y⃗, z⃗, c),RHS(y⃗, z⃗, c′), c = c′,

Sat(y⃗)←Sat′(y⃗, z⃗),First3l(z⃗),

← Iq∗(y⃗),not Sat(y⃗).

111

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. Datalog Rewritability and Data Complexity of OMQs with Closed Predicates

Note that we do not speciĄcally deal with the case where variables that are set to inĄnity
occur on the LHS but not on the RHS of some inequality. Such an inequality y⃗ cannot be
satisĄed and indeed, due to the stable model semantics, we are not able to derive Sat(y⃗).

Finally, we Ąnish the construction of PT ,Σ
sol by adding the constraints that ensure that all

the implications are satisĄed:

← ImL(x⃗, y⃗), ImR(x⃗, z⃗), Iq(y⃗), Iq(z⃗),Sat(y⃗),not Sat(z⃗).

The construction above makes sure that PT ,Σ
sol has the following properties. Firstly, just

like before, all predicates occurring in PT ,Σ
sol have an arity that is polynomial in the size

of T and Σ and do not depend on the input ABox. Further, the same also holds for the
number of rules in PT ,Σ

sol Ű it is polynomial in the size of T and Σ and data-independent.
Now, let Rel(S) be the relational representation of a given enriched system S using the
predicates described at the beginning of this section. If we pass S to PT ,Σ

sol as additional
facts, the answer sets of this program correspond to the solutions of S over N∗. Moreover,
if there is a solution S over N∗ to S such that all Ąnite values are bounded by 2d2l

, then
there is an answer set of (PT ,Σ

sol ,Rel(S)) that corresponds to this solution. To see this last
point, observe that for every variable, PT ,Σ

sol freely guesses any value between 0 and 2d2l
.

The observations above in conjunction with Proposition 3.2.22 give rise to the following
proposition:

Proposition 4.1.2. Given an enriched system S with the relational representation
Rel(S), S has a solution over N∗ if and only if the program (PT ,Σ

sys ,Rel(S)) has an answer

set. Moreover, PT ,Σ
sol is polynomial in the size of T and Σ.

Recall that every answer set of the program (PT ,Σ
sys , Â) corresponds to the relational repre-

sentation of SK, for a given ABox A and K = (T ,Σ,A). Thus, in view of Proposition 4.1.2,
we have the following result:

Proposition 4.1.3. Given an input ABox A over the signature of T , let K = (T ,Σ,A).
The program PT ,Σ

sol is polynomial in the size of T and Σ and SK has a solution over N∗

iff there is an answer set I of (PT ,Σ
sys , Â) such that (PT ,Σ

sol , I) has an answer set.

Theorem 4.1.4. For a TBox T and Σ ⊆ NC ∪ NR, we can obtain a program PT ,Σ
sat

in polynomial time such that (PT ,Σ
sat , Â) has a stable model if and only if (T ,Σ,A) is

satisfiable, for all ABoxes A over the signature of T .

Proof. The program PT ,Σ
sat is simply the union of PT ,Σ

sys and PT ,Σ
sol , both of which can be

obtained in polynomial time from T and Σ (Propositions 4.1.1 and 4.1.3). Moreover, all
constants of PT ,Σ

sol occur also in PT ,Σ
sys , the predicates occurring in Â are EDB predicates of

both PT ,Σ
sys and PT ,Σ

sol , and all shared predicates of PT ,Σ
sys and PT ,Σ

sol are EDB predicates in

PT ,Σ
sol . Due to Proposition 2.4.12, the answer sets of (PT ,Σ

sat , Â) = PT ,Σ
sat ∪ Â correspond to

112

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4.2. Query Rewriting and Complexity

the set ¶I : I is an answer set of PT ,Σ
sol ∪ J, for some answer set J of PT ,Σ

sys ∪ Â♢. Finally,
combining this with the result from Proposition 4.1.3, we get that (T ,Σ,A) is satisĄable,
if PT ,Σ

sat ∪ Â = (PT ,Σ
sat , Â) has an answer set.

4.2 Query Rewriting and Complexity

In this section, we formally introduce the notion of ontology-mediated queries in the
presence of closed predicates and we present a large class of such queries that can be
rewritten into Datalog¬.

4.2.1 Ontology-Mediated Queries with Closed Predicates

As expected, an ontology-mediated query with closed predicates is simply an ordinary
ontology-mediated query augmented with a set Σ of predicates whose extensions are to
be interpreted under the closed-world assumption.

DeĄnition 4.2.1. An ontology-mediated query with closed predicates is a triple Q =
(T ,Σ, q), where T is a TBox, Σ ⊆ NC ∪ NR is a set of closed predicates and q is a
first-order query over NC ∪ NR.

As before, if it is clear that we are in a setting that involves closed predicates, we refer
to these queries simply as ontology-mediated queries, or OMQ for short. All standard
notions relating to query answering in description logics also carry over to OMQs with
closed predicates.

DeĄnition 4.2.2. Given an ABox A, a tuple of constants a⃗ = (a1, . . . , an) from NI(A)∪
NI(T) is a certain answer to Q over A, if a⃗ is an answer to q in every model I of
(T ,Σ,A). We denote the set of certain answers to Q over A by cert(Q,A). The query
answering problem is the problem of deciding, given an OMQ Q, an ABox A, and a tuple
of constants a⃗, whether a⃗ ∈ cert(Q,A).

One of the most important effects that the closed predicates have on query answering
is that setting they make OMQs non-monotonic, which is not the case in the standard
setting. This means that adding new facts to the ABox may destroy previous answers,
i.e., a tuple a⃗ that was a certain answer to some OMQ Q over an ABox A may no longer
be a certain answer to Q over some ABox A′ that extends A. To illustrate the additional
expressive power that closed predicates bring with them, we consider the following simple
examples.

Example 4.2.3. Let Q = (T , ¶B♢, q(x)) be an OMQ, where

T = ¶A ⊑ ∃r.B,C ⊑ ∃r.B,A ⊓ C ⊑ ⊥♢

q(x) = ∃y∃z.r(y, x) ∧ r(z, x) ∧A(y) ∧ C(z)

113

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. Datalog Rewritability and Data Complexity of OMQs with Closed Predicates

Observe that here T is an ALC TBox. Consider an ABox A = ¶A(a), B(b), C(c)♢. Since
B is closed, BI = ¶b♢, for every model I of (T , ¶B♢,A). According to T , in every model
I of (T , ¶B♢,A), both a and c need an r-successor that is in BI , and so (a, b) ∈ rI and
(c, b)I . Hence, b is a certain answer to Q over A.

To see that the closed predicates indeed have an effect on reasoning, consider the following
OMQ Q′ = (T , ∅, q(x)) where the concept name B is considered open. Q′ has no certain
answers over A.

Further, closed predicates make OMQs non-monotonic. For example, b is no longer a
certain answer to Q over A′ = A ∪ ¶B(d)♢.

Example 4.2.4. Recall the parity query Qparity that asks whether an ABox A has an odd
number of objects in some unary relation A. We can easily express Qparity as a Boolean
OMQ with closed predicates (T ,Σ,⊥), where the TBox T consists of the following axioms:

A ≡ B1 ⊔B2 B1 ⊓B2 ⊑ ⊥ B1 ⊑≥ 1r.B2 B2 ⊑≥ 1r.B1 ⊤ ⊑≤ 1r.⊤ ⊤ ⊑≤ 1r−.⊤

and Σ = ¶A♢ is the set of predicates that are considered closed. Let a1, . . . , an be the
elements in A, as given by some ABox A. The axioms in T force models to partition
a1, . . . , an into two sets B1 and B2. Further, every element in B1 has an r-arc to an
element in B2 and vice versa. Due to the functionality of r and r−, which is encoded
using the last two axioms of the TBox, each element has exactly one outgoing and at
most one ingoing r-arc. As A is a closed predicate, this forces the existence of a cycle in
models of T and A of the following form:

a1

B1

a2

B2

a3

B1

a4

B2

. . . an

B2

r r rr r r

r

Such a cycle exists if and only if n is even, which means that for odd n, the ⊥ is entailed.
We call (T ,Σ,⊥) is called an incon

Other examples of non-monotonic queries that can be easily expressed using ALCHOIQ
with closed predicates include queries that compare cardinalities of two database relations,
e.g., checking whether there are twice as many elements in relation B than in relation A.

For ease of presentation, we note that we only consider OMQs Q = (T ,Σ, q) such that
all predicates from Σ occur in T , and q is a constant-free query over the predicates
occurring in T . Notice that none of these conditions is a true limitation. In particular,
if a predicate p occurs in Σ or q and not T , we can simply add an axiom p ⊑ p to
T . Further, we can easily simulate a constant c that occurs in q but not in T using
fresh concept names. Let Ac ∈ NC be a fresh concept name and xc ∈ NV be a fresh
variable. Let T ′ = T ∪ ¶¶c♢ ⊑ Ac♢ and q′ = q[xc/c] ∧Ac(xc). Then the certain answers
to Q′ = (T ′,Σ, q′) coincide with those of Q, for any ABox A over the signature of T .

114

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4.2. Query Rewriting and Complexity

In the remainder of this chapter, we show that we can rewrite a large class of OMQs
expressed in ALCHOIQ with closed predicates into Datalog¬ in polynomial time. We
Ąrst clarify what exactly we mean when by rewriting.

DeĄnition 4.2.5. Let Q = (T ,Σ, q(x⃗)) be an OMQ. A Datalog¬ query (P, P) is said to
be a Datalog¬-rewriting (or a translation) of Q if

cert((P, P), Â) = cert(Q,A),

for every ABox A over the signature of T . Recall that Â is obtained from A by replacing
each negative assertion ¬p(⃗a) with p̄(⃗a). Moreover, if such a Datalog¬ query exists, we
say that Q is Datalog¬-rewritable. A class of OMQs is called Datalog¬-rewritable if
every query in this class is Datalog¬-rewritable.

4.2.2 Safe-Range OMQs

Recall that, other than decidability, so far there are no upper bounds on the complexity
of answering even very simple FO queries, such as conjunctive queries, mediated by
ALCHOIQ ontologies. Therefore, we consider a fragment of FO queries mediated by
ALCHOIQ ontologies with closed predicates for which we can provide some complexity
guarantees. In the context of relational databases, one of the most commonly required
properties of FO queries is domain independence which ensures that queries have a well-
deĄned meaning and their answers do not depend on the objects outside of the database.
As this property is generally undecidable for FO logic, the usual way of ensuring domain
independence is to consider safe-range FO queries whose variables are guaranteed to
range only over the constants in the database, achieved by guarding each variable by
a positive atom over some database predicate (in traditional databases each predicate
is considered closed). Inspired by this approach, we next introduce ontology-mediated
safe-range queries and we provide Datalog¬-rewritability and tight complexity results
for the case when TBoxes are written in ALCHOIQ. In a nutshell, a safe-range OMQ
Q = (T ,Σ, q) is an OMQ for which we can guarantee that the variables of q range only
over known objects, i.e., those constants that occur in either T or A, where A is the ABox
over which Q is being answered. We do this by placing a syntactic restriction on the
queries that demands each non-answer variable be guarded by a positive atom over some
closed predicate. As a result, safe-range OMQs have the following convenient property:
in order to answer a safe-range OMQ Q = (T ,Σ, q) over some ABox A, it suffices to
answer q over all completions of A with atoms over the predicates in T and the constants
in A and T that are consistent with T and Σ. For the case where T is an ALCHOIQ
TBox, this property can be exploited to compute a succinct Datalog¬-rewriting, which in
turn gives us the co-NP data complexity upper bound for the query answering problem.
As answering even the simplest queries mediated by ALCHOIQ TBoxes is known to
be co-NP hard, the obtained complexity result is tight. We note that our safe-range
OMQs are close in spirit to many existing approaches that, in one way or another, restrict
certain variables to known individuals. For example, similar restrictions, such as the
well-known DL-safety criterion [MSS05] and its variations, are commonly used to ensure

115

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. Datalog Rewritability and Data Complexity of OMQs with Closed Predicates

decidability when combining DLs and Datalog rules into hybrid knowledge bases. Some
further examples of languages that ensure certain variables are bound only to known
individuals, although for different purposes, include description logics with nominal
schemata [KMKH11, KR14] and existential rules with closed variables [ALMV18].

We begin by formally deĄning safe-range OMQs. Much like the traditional approach for
safe-range FO queries, we provide the following multi-step syntactic characterization of
safe-range OMQs:

1. the procedure SRNF for transforming a FO query q into a logically equivalent query
that is in safe-range normal form (SRNF) and is therefore more suitable for safety
analysis,

2. the procedure rr that takes a FO query q in SRNF and a set Σ of predicates and
checks whether all quantiĄed variables of q are Σ-range restricted, i.e., guarded by
positive atoms over predicates from Σ. If this is the case, the procedure returns a
subset of the free variables in q that are Σ-range restricted, otherwise, it returns
Śfail’, and

3. a global property that an OMQ Q must satisfy in order to be considered safe-range.

Regarding the Ąrst item, we recall the standard procedure in the literature (see [AHV95])
that takes as input an arbitrary FO query q and performs the following equivalence
preserving syntactic transformations to place q into SRNF :

Rename variables: Rename variables such that no distinct pair of quantiĄers binds
the same variable and no variable occurs both free and bound

Eliminate universal quantifiers: Replace ∀x⃗ψ by ¬∃x⃗¬ψ.

Eliminate implications and equivalences: Replace ψ → ξ by ¬ψ ∨ ξ and similarly
for ↔.

Push negations: Replace

1. ¬¬ψ by ψ,

2. ¬(ψ1 ∧ · · · ∧ ψn) by (¬ψ1 ∨ · · · ∨ ¬ψn), and

3. ¬(ψ1 ∨ · · · ∨ ψn) by (¬ψ1 ∧ · · · ∧ ¬ψn).

so that for every subformula ¬ψ, ψ is either an atom or an existentially quantiĄed
formula.

Flatten the formula so that no child of ∧ (resp. ∨/∃) in the syntax tree of the
formula is an ∧ (resp. ∨/∃).

116

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4.2. Query Rewriting and Complexity

We denote the resulting formula by SRNF(q).

Next, Algorithm 4.1 presents the procedure rr that takes as input a FO query q in
SRNF and a set of predicates Σ and recursively computes the set of variables that are
Σ-range-restricted. Simply put, if a variable x is Σ-range-restricted in q, then we can
be sure that when evaluating q over some interpretation, x can only take as values
constants that occur in the extensions of the predicates from Σ. If at any point the
procedure discovers that some existentially quantiĄed variable is not Σ-range-restricted,
it immediately rejects the query by returning ’fail’. Note that this procedure is an
adaptation of the procedure rr presented in [AHV95] for computing range-restricted
variables of FO queries. In particular, for a constant-free FO query q, if Σ contains all
predicates occurring in q, i.e., all relevant predicates are considered closed, then the two
procedures coincide.

We are now Ąnally ready to give a formal deĄnition of safe-range OMQs.

DeĄnition 4.2.6. An OMQ Q = (T ,Σ, q) is safe-range if rr(SRNF(q),Σ) ̸= ′fail ′.

Example 4.2.7. Consider again the OMQ Q = (T ,Σ, q(x)) from Example 4.2.3, where

T = ¶A ⊑ ∃r.B,C ⊑ ∃r.B,A ⊓ C ⊑ ⊥♢,

Σ = ¶B♢,

q(x) = ∃y∃z.r(y, x) ∧ r(z, x) ∧A(y) ∧ C(z).

This query is not safe-range since the existentially quantified variables y and z do not
occur in positive atoms over closed predicates (i.e., B) and are therefore not recognized
as Σ-range-restricted, so the procedure rr(SRNF(q),Σ) returns Śfail ′.

In contrast, the OMQ Q′ = (T , ¶B, r♢, q(x)) is safe-range, as the role r is considered
closed and can be used as a guard for y and z.

In simple terms, an OMQ is safe-range if all its non-answer variables are guarded by
closed predicates. To understand the intuition behind this deĄnition, consider an OMQ
Q = (T ,Σ, q) and an arbitrary ABox A over the signature of T . Recall that, by deĄnition,
only the constants from A and T can occur in certain answers of Q over A. Therefore,
the range of the answer variables in q is already implicitly restricted to known constants
only. On the other hand, during query answering, a quantiĄed variable x of q is free to
take any value, including anonymous domain elements, which means that considering
only those cases where x is a constant from T or A may yield wrong results. However,
since the predicates in Σ are considered closed and their extensions are fully speciĄed by
the ABox A, guarding x by a positive atom over a predicate from Σ ensures that x is
mapped to a known constant. With this in mind, it is easy to see that Q being safe-range
has the following effect: for any model I of (T ,Σ,A), a⃗ is an answer to q in I if and only
if it is an answer to q in I restricted to only those constants that appear in A and T .
Thus, safe-range OMQs can be answered over consistent completions of the data.

117

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. Datalog Rewritability and Data Complexity of OMQs with Closed Predicates

DeĄnition 4.2.8. Given a TBox T and a set of closed predicates Σ, we say that an
ABox A′ is a completion of A w.r.t T and Σ if the following holds:

• A ⊆ A′,

• for each a ∈ NI(T) ∪ NI(A) and concept name C ∈ NC(T), either C(a) ∈ A′ or
¬C(a) ∈ A′,

• for each ¶a, b♢ ⊆ NI(T) ∪ NI(A) and role name r ∈ NR(T), either r(a, b) ∈ A′

or ¬r(a, b) ∈ A′,

• C(a) ∈ A′ and C ∈ Σ implies C(a) ∈ A, and

• r(a, b) ∈ A′ and r ∈ Σ implies r(a, b) ∈ A.

We say that A′ is a consistent completion of A w.r.t. T and Σ if A′ is a completion of A
w.r.t. T and Σ, and (T ,Σ,A′) is satisfiable.

Proposition 4.2.9. Let Q = (T ,Σ, q(x1, . . . , xn)) be a safe-range OMQ. A tuple
of constants a⃗ = (a1, . . . , an) is a certain answer to Q over an ABox A iff A′

⊨

q[a1/x1 . . . , an/xn], for every consistent completion A′ of A w.r.t. T and Σ.

The proposition above already hints at a strategy for obtaining the desired rewriting.
Namely, given a safe-range OMQ Q = (T ,Σ, q), it is enough to (i) compute a Datalog¬

program PT ,Σ
OMQ whose stable models over the input ABox A represent consistent comple-

tions of A w.r.t. T and Σ, for any ABox A over the signature of T and (ii) rewrite the
FO query q as Datalog¬ query (Pq, pq).

Regarding (ii), it is well known that a FO query q that is safe-range in a traditional
sense can be written as a Datalog¬ query (Pq, pq), where Pq is a Datalog¬ program that
is polynomial in the size of q and that, given a set of ground atoms I, computes the
answers to q over I and stores them in the relation pq. We note that the program Pq

uses only stratiĄed negation, i.e., there are no cyclic dependencies between predicates
that involve negation. It is a well-known fact that stratiĄed programs have exactly one
stable model [ABW88]. Thus, we have that a⃗ is an answer to q over I if and only if
pq (⃗a) occurs in the stable model of Pq ∪ I. Now, given an arbitrary safe-range OMQ Q =
(T ,Σ, q(x1, . . . , xn)), the FO query q(x1, . . . , xn) might not satisfy the syntactic criterion
that makes it safe-range in the traditional sense, because that additionally requires that
each x1, . . . , xn is guarded by some positive atom in q. Note that safe-range OMQs do not
place this restriction, as the semantics of OMQs already deĄnes answers to be only over the
set of known individuals. To overcome this issue and reuse the rewriting procedure from
the literature, we consider the query q′(x1, . . . , xn) = q(x1, . . . , xn) ∧

∧

i=1,...n Adom(xi),
where Adom is a predicate whose extension consists of constants that occur in T and A
that is equivalent to q when evaluated over consistent completions of A w.r.t. T and Σ,
for any ABox A over the signature of T . As this query is safe-range in the traditional
sense, it can be rewritten into Datalog¬ and so can q(x1, . . . , xn).

118

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4.2. Query Rewriting and Complexity

To deal with (i), consider the program PT ,Σ
sat from the previous section and let A be

an input ABox. Even though each stable model of (PT ,Σ
sat , Â) implicitly corresponds to

a consistent completion of A and vice versa, due to the stable model semantics, this
program does not actually infer any new atoms over the signature of the TBox and can
therefore not be directly used for query answering. We next deĄne a program PT ,Σ

cmpl that,
for an input ABox A over the signature of T , generates a completion of A w.r.t. T and
Σ. To this end, for all A ∈ NC(T) \ Σ, B ∈ NC(T), r ∈ NR(T) \ Σ and s ∈ NR(T), we
add the following rules to PT ,Σ

cmpl :

A(x)← Adom(x),not A(x),

B(x)← Adom(x),not B(x),

r(x, y)← Adom(x),Adom(y),not r(x, y),

s(x, y)← Adom(x),Adom(y),not s(x, y).

Let PT ,Σ
OMQ = PT ,Σ

sat ∪P
T ,Σ
cmpl . It is easy to see that A′ is a consistent completion of A w.r.t.

T and Σ iff there is a stable model I of (PT ,Σ
OMQ, Â) with Â′ ⊆ I, for any ABox A over the

signature of T . Note that PT ,Σ
OMQ is obtained from T and Σ in polynomial time, which

leads to the following result.

Theorem 4.2.10. Let Q = (T ,Σ, q) be a safe-range OMQ. We can obtain in polynomial
time a program PT ,Σ

OMQ from T and Σ such that the certain answers to Q over A coincide

with the certain answers of (PT ,Σ
OMQ ∪ Pq, pq) over Â, for any ABox A over the signature

of T , where (Pq, pq) is a Datalog¬- rewriting of q. In other words, safe-range queries
mediated by ALCHOIQ ontologies with closed predicates are Datalog¬-rewritable.

The previous theorem allows us to infer data complexity upper bound. To obtain tight
complexity results, observe that safe-range OMQs subsume the class of OMQs whose
associated FO queries are instance queries (IQ), i.e., they consist simply of a Ąrst-order
atom.

Theorem 4.2.11 ([Sch93]). Answering ontology-mediated IQs is coNP-complete in data
complexity for ALC even without closed predicates.

Theorem 4.2.12. The query answering problem for safe-range OMQs is coNP-complete
in data complexity for ALCHOIQ.

Proof sketch. Checking whether a tuple of constants is a certain answer to a Datalog¬

query is coNP-complete in terms of data complexity (see Table 2.3 and also [DEGV01]).
As the obtained query does not depend on A, and Â is obtained from A in polynomial
time, we get the desired upper data complexity bound. The matching lower bound comes
from Theorem 4.2.11.

119

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. Datalog Rewritability and Data Complexity of OMQs with Closed Predicates

As a Ąnal remark, we note that safe-range OMQs also subsume the recently-studied
ontology-mediated unions of quantifier-free conjunctive queries with closed predicates
(qfUCQs)[LSW19]. We can thus transfer our rewritability and complexity results to IQs
and qfUCQs mediated by ALCHOIQ ontologies with closed predicates.

Theorem 4.2.13. There is a polynomial rewriting of IQs and qfUCQs mediated by
ALCHOIQ ontologies with closed predicates into Datalog¬.

Theorem 4.2.14. The query answering problem for IQs and qfUCQs mediated by
ALCHOIQ ontologies with closed predicates is coNP-complete in data complexity.

4.3 Discussion

In this chapter, we presented a translation of ALCHOIQ with closed predicates into
Datalog with negation under the stable model semantics. Our translation uses a very
different approach from all other translations in the literature and it is based on a
characterization of the satisĄability problem for this logic as a system of linear inequalities
with some side conditions. Relying on the integer programming characterization from
Chapter 3, given a TBox T and a set of closed predicates Σ, we Ąrst showed how to
construct in polynomial time a program for deciding, given an input ABox A, whether
the KB (T ,Σ,A) is satisĄable. As stated in the discussion of the previous chapter, our
approach assumes unary encoding of the numerical values that occur in the given TBox.
In particular, if binary encoding is assumed, the size of tiles used in the characterization
of the satisĄability problem for some KB K becomes exponential in the size of K, meaning
that our translation is no longer polynomial. At this moment, it remains unclear how
our technique could be adapted to also provide a polynomial translation in the case of
binary encoding, and is something that needs further investigation. We also remark
that our translation hinges on the availability of two distinct constants, 0 and 1, which
are always present in the obtained Datalog¬ program. This is not surprising, since, as
argued in [AOŠ20], under the standard complexity assumptions, even plain ALC TBoxes
(i.e., those without closed predicates) cannot be rewritten to Datalog¬ if constants are
disallowed from appearing in the rules of the obtained program.

We next showed how to further extend the obtained program to answer safe-range OMQs
which subsume popular classes of OMQs like ontology-mediated instance queries and
quantiĄer-free unions of conjunctive queries. Even though our results were obtained for
ALCHOIQ, we can use the existing results in the literature for eliminating transitivity
axioms (see, e.g., [HMS07]) to lift our rewritability and complexity results to SHOIQ
with closed predicates, provided that the queries are formulated only over concepts
and simple role names. An important by-product of our polynomial translation, we
obtained a complexity result stating that answering these queries is coNP-complete in
data complexity.

Our approach already covers a very large class of OMQs, namely the safe-range OMQs.
Going above this class would be difficult as it is known that Ąrst-order queries quickly

120

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4.3. Discussion

become undecidable, even for very basic extensions of conjunctive queries (CQs) and
very lightweight DLs [GBIGKK15]. Also considering conjunctive queries is not a viable
option, since it is known that ALCOIF -mediated CQs are co-N2ExpTime-hard even in
the absence of closed predicates [GKL11]. Thus, under standard complexity assumptions,
there cannot exist a polynomial translation of ALCHOIQ mediated CQs into Datalog

with stable negation. In fact, answering CQs in expressive description logics with nominals,
inverses, and number restrictions is a long-standing open problem in the Ąeld of DLs for
which the only known upper bound is decidability. Although not immediately tied to
our goal of providing polynomial time rewritings, in our future work we plan to try to
investigate the complexity of this problem.

As a Ąnal remark, we note that the considered variant of Datalog underlies Answer
Set Programming (ASP), which is a very mature area and many efficient reasoning
engines for this rule language exist. While our polynomial time translation is unlikely to
yield an efficient tool for reasoning with ALCHOIQ ontologies, it nevertheless draws an
important new connection between DLs and ASP.

121

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. Datalog Rewritability and Data Complexity of OMQs with Closed Predicates

Relation Arity Meaning
A, A, for A ∈ NC(T) 1 A or ¬A, resp., for A ∈ NC(T)
r, r, for r ∈ N+

R (T) 2 role r or ¬r, resp., for r ∈ N+
R (T)

Bin 1 constants 0 and 1
Int lint integers using standard binary encoding
Adom 1 constants in K
Adom∗ 1 constants in K and a special constant ∗
Cst 1 all constants in Psys(K), i.e., constants in Bin and Int

RType kT role types for K
Type nT + 1 types for K
Triple nT + 1 + kT + lint triples (R, T, k), where T is a type, R is a role type

and k is an integer
LEQi, for i = 1, . . . , ltile 2i linear order over strings Cst of length i
Tile ltile tiles for K
CandT ltile candidate tiles for K,
InvCandT ltile syntactically same as candidate tiles but triples for K

that are out of order
BadTile ltile candidate tiles for K that violate some condition in

Def 3.2.5
InBi

, for i = 1, . . . , nT nT + 1 types for K that contain concept name Bi

Inri
, for i = 1, . . . , kT kT role types for K that contain role ri

Succint 2lint successor relation over integers w.r.t. LEQ

Succint 2lint complement of Succint

OK1
i , for i = 1, . . . , n ltile candidate tiles whose i-th triple (R, T ′, k) satisĄes T1

in DeĄnition 3.2.5
OK2

i , for i = 1, . . . , n ltile candidate tiles whose i-th triple (R, T ′, k) satisĄes T2
in DeĄnition 3.2.5

Uptoi,A⊑=nr.B∈T , for
i = 1, . . . , n

ltile + lint pairs (τ, z) where τ = (T, ρ) is a tile for K s.t. A ∈ T ,
z is an integer, and among the Ąrst i triples of ρ there
are z triples (R, T ′, k) for which r ∈ R and B ∈ T ′

Invrt 2(nT + 1) + kT invertible triples (T,R, T ′), where T, T ′ are types, and
R is a role type for K

RType− 2kT pairs of role types (R,R−)
RType− 2kT complement of RType−

Uptoi, for i = 1, . . . , n ltile + nT + 1 + lint triples (τ, T ′, z), where τ = (T, ρ) is a tile for K, T ′

is a type for K, z is an integer, and among the Ąrst i
triples in ρ there are z triples of the form (R, T ′, k)

Uptoi,rh
, for i = 1, . . . , n

and rh ∈ N+
R (T)

ltile + nT + 1 + lint triples (τ, T ′, z), where τ = (T, ρ) is a tile for K, T ′

is a type for K, z is an integer, and among the Ąrst
i triples in ρ there are z triples of the form (R, T ′, k)
with rh ∈ R

Var ltile variables in SK

Iq lid inequalities in SK (stand-alone or within implications)
Iq∗ lid stand-alone inequalities in SK

Im lid implications in SK

Iqint
L /Iqint

R lid + lint pairs of (q, z) s.t. integer z occurs in inequality q on
the LHS/RHS

Iqv
L/Iqv

R lid + ltile pairs of (q, v) s.t. variable v occurs in inequality q on
the LHS/RHS

ImL/ImR 2lid pairs of (m, q) such that inequality q occurs in impli-
cation m on the LHS/RHS

where n = cT ·mT , lint = log(max(1, n)), ltile = nT + 1 + n(nT + 1 + kT + lint), and
lid = 2(nT + 2) + kT + max(n, 1)(nT + 1 + kT + lint).

Table 4.1: Overview of the signature used for in Psys
122

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4.3. Discussion

Cond. Inequality/Implication ID

M1
∑

(T,ρ)∈Tiles(K),¶c♢∈T

x(T,ρ) ≤ 1, for ¶c♢ ∈ N+
C (K) (0, c, 0⃗)

M1 1 ≤
∑

(T,ρ)∈Tiles(K),¶c♢∈T

x(T,ρ), for ¶c♢ ∈ N+
C (K) (1, c, 0⃗)

M2 1 ≤
∑

τ∈Tiles(K)

xτ (⃗0)

M3
∑

(T,ρ)∈Tiles(K),
(R,T ′,k)∈ρ

x(T,ρ) ≤
∑

(T ′,ρ′)∈Tiles(K),
(R−,T,l)∈ρ′

x(T ′,ρ′),

for T, T ′ ∈ Types(K), R ⊆ N+
R (K) s.t. (T,R, T ′) invertible

(0, T⃗ , T⃗ ′, R⃗, 0⃗), where T⃗ and T⃗ ′ encode T
and T ′, respectively, and R⃗ encodes R

M3
∑

(T ′,ρ′)∈Tiles(K),
(R−,T,l)∈ρ′

x(T ′,ρ′) ≤
∑

(T,ρ)∈Tiles(K),
(R,T ′,k)∈ρ

x(T,ρ),

for T, T ′ ∈ Types(K) and R ⊆ N+
R (K) s.t. (T,R, T ′) invertible

(1, T⃗ , T⃗ ′, R⃗, 0⃗), where T⃗ and T⃗ ′ encode T
and T ′, respectively, and R⃗ encodes R

M4/M6 1 ≤ xτ , for τ ∈ Tiles(K) (⃗t, 0⃗), where t⃗ encodes τ

M4 ♣¶(R, T ′, k) : (R, T ′, k) ∈ ρ♢♣ ≤
∑

(T ′,ρ′)∈Tiles(K)

x(T ′,ρ′),

for τ = (T, ρ) ∈ Tiles(K) and T ′ ∈ Types(K)

(⃗t, T⃗ ′, 0⃗), where t⃗ encodes τ and T⃗ ′ en-
codes T ′

M4 1 ≤ xτ =⇒ ♣¶(R, T ′, k) : (R, T ′, k) ∈ ρ♢♣ ≤
∑

(T ′,ρ′)∈Tiles(K)

x(T ′,ρ′),

for τ = (T, ρ) ∈ Tiles(K) and T ′ ∈ Types(K),

(⃗t, T⃗ ′, 0⃗), where t⃗ encodes τ and T⃗ ′ en-
codes T ′

M5 1 ≤
∑

(T,ρ)∈Tiles(K),
¶c♢,B∈T

x(T,ρ), for ¶c♢ ∈ N+
C (K), B ∈ NC(K) (c, b⃗, 0⃗), where b⃗ encodes the type contain-

ing only B

M5 1 ≤
∑

(T,ρ)∈Tiles(K),
¶c1♢,B∈T

x(T,ρ) =⇒ 1 ≤
∑

(T ′,ρ′)∈Tiles(K),
¶c2♢,B′∈T ′

x(T ′,ρ′),

for ¶c1♢, ¶c2♢ ∈ N+
C (K) and B,B′ ∈ NC(K)

(c1, c2, b⃗, b⃗
′, 0⃗), where b⃗ (resp. b⃗′) encodes

the type containing only B (resp. B′)

M6
∑

(T,ρ)∈Tiles(K),¶¶c♢,B♢⊆T,

♣¶(R,T ′,k)∈ρ : r∈R♢♣≤0

x(T,ρ) ≤ 0,

for T ′ ∈ Types(K), c ∈ NI(K), B ∈ NC(K), and r ∈ N+
R (K)

(c, T⃗ ′, b⃗, r⃗, 0⃗), where T⃗ ′ encodes T ′, b⃗ en-
codes the type containing only B, and r⃗
encodes the role type containing only r

M6 1 ≤ xτ ′ =⇒
∑

(T,ρ)∈Tiles(K),¶¶c♢,B♢⊆T,

♣¶(R,T ′,k)∈ρ : r∈R♢♣≤0

x(T,ρ) ≤ 0,

for c ∈ NI(K), B ∈ NC(K), τ ′ = (T ′, ρ′) ∈ Tiles(K), and
r ∈ N+

R (K)

(c, t⃗′, b⃗, r⃗, 0⃗), where t⃗′ encodes τ ′, b⃗ encodes
the type containing only B, and r⃗ encodes
the role type containing only r

where lid = 2(nT + 2) + kT + max(cT ·mT , 1)(nT + 1 + kT + log(max(cT ·mT , 1))), and 0⃗ is
always a all-zero vector of the appropriate length.

Table 4.2: IdentiĄers of inequalities and implications of SK,

123

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. Datalog Rewritability and Data Complexity of OMQs with Closed Predicates

Algorithm 4.1: Computation of Σ-range-restricted free variables in a FO query
q(x⃗)

Input: a constant-free FO query q(x⃗) in SRNF and a set Σ of predicates
Result: a subset of free variables of q or ‘fail’

1 case q of
2 R(x⃗) :
3 if R ∈ Σ then
4 rr(q,Σ) = x⃗
5 else
6 rr(q,Σ) = ∅

7 (φ1 ∧ φ2) :
8 rr(q,Σ) = rr(φ1,Σ) ∪ rr(φ2,Σ)

9 (φ1 ∨ φ2) :
10 rr(q,Σ) = rr(φ1,Σ) ∩ rr(φ2,Σ)

11 (¬φ) :
12 rr(q,Σ) = ∅

13 φ ∧ x = y :
14 if rr(φ,Σ) ∩ ¶x, y♢ = ∅ then
15 rr(q,Σ) = rr(φ,Σ)
16 else
17 rr(q,Σ) = rr(φ,Σ) ∪ ¶x, y♢

18 ∃xφ :
19 if x ∈ rr(φ,Σ) then
20 rr(q,Σ) = rr(φ,Σ) \ ¶x♢
21 else
22 return ‘fail’

124

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

CHAPTER 5
Descriptive Complexity of OMQs

with Closed Predicates

So far, we have explored the relative expressiveness and data complexity of OMQs with
closed predicates and we have shown that there is a large class of such OMQs that
can be rewritten into Datalog¬ and answered in coNP. In this chapter, we investigate
the expressive power of OMQs from a descriptive complexity [Imm99] perspective. In
this context, we ask whether a given OMQ language is powerful enough to express all
queries computable within some time or space resources, i.e., belonging to a certain
complexity class. In fact, many OMQ languages based on expressive DLs (including the
ones investigated in the previous chapter) are coNP complete in data complexity, but,
to the best of our knowledge, no capturing results exist. It was shown in [BtCLW14]
that there are OMQ languages that capture certain subclasses of coNP related to
constraint satisfaction problems (CSPs). More recently, a close connection between
OMQ languages with the so-called closed predicates and surjective CSPs was shown in
[LSW19]. We continue this line of work and we focus on Ąnding an OMQ language that
precisely captures the complexity class coNP. It is easy to see that OMQs based on
standard expressive DLs and conjunctive queriesŮwhile being coNP-complete in data
complexityŮare not powerful enough to express all queries computable in coNP. This
follows directly from the monotonicity of standard OMQ languages (e.g., in all cases where
the OMQ language is based on Ąrst-order logic). SpeciĄcally, if Q is a Boolean OMQ
in such a language, then for all ABox pairs A1 ⊆ A2 we have that Q(A1) = 1 implies
Q(A2) = 1. These OMQ languages cannot capture coNP since there exist (rather trivial)
non-monotonic queries computable in coNP (or even polynomial time). Here is a simple
example of such a (non-monotonic) query: ŞDoes the input ABox have an odd number
of individuals?Ť We have already seen that closed predicates introduce non-monotonicity,
making OMQ languages with closed predicates a good candidate for capturing coNP. In
this chapter, we investigate what features, other than closed predicates, make an OMQ

125

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5. Descriptive Complexity of OMQs with Closed Predicates

language sufficiently expressive to capture the class of all queries computable in coNP,
while still maintaining coNP-completeness in data complexity.

Contributions and Relevant Publications. We can summarize the contributions
presented in this chapter as follows:

• We Ąrst present an inexpressibility result for non-monotonic OMQs based on
ALCHOI with closed predicates. For such expressive OMQs the aforementioned
monotonicity-based argument does not apply, and we need a more sophisticated
approach. SpeciĄcally, by analyzing an existing algorithm in [AOŠ20] and invoking
the Non-deterministic Time Hierarchy Theorem, we show that instance queries
mediated by ALCHOI TBoxes with closed predicates are not expressive enough to
capture coNP.

• We then present an OMQ language that is powerful enough to express all coNP
computable queries. As our base DL we choose ALCHOIF (with closed predicates)
and we add to it restricted forms of transitivity, complex role expressions and
nominal schemata [KMKH11]. We argue that these additions do not cause an
increase in combined complexity and data complexity, i.e. answering ontology-
mediated instance queries remains complete for NExpTime and coNP, respectively.
This is done by suitably modifying the mosaic-based algorithm from Chapter 3.

• We prove that our enriched OMQ language is powerful enough to express all (so-
called generic) Boolean queries computable in coNP. Each such generic query q
is associated to a signature Σ as well as to a set of ABoxes over Σ (also called Σ-
ABoxes) in which the answer to the query is ŞtrueŤ. By saying that Şq is computable
in coNPŤ we mean that there is a non-deterministic Turing Machine Mq that
recognizes the language of strings representing Σ-ABoxes in which the answer to the
query is ŞfalseŤ and runs in polynomial time in the size (of the string representation)
of the input ABox. We show that the enriched OMQ language can properly express
the computations of Mq. As a consequence of this and the previous point, we
obtain a language that captures precisely coNP.

The results from this chapter have been published in:

[LOŠ23] Sanja Lukumbuzya, Magdalena Ortiz, and Mantas Šimkus. ŞOn
the expressive power of ontology-mediated queries: Capturing coNPŤ. In
Proceedings of the 36th International Workshop on Description Logics, DL
2023, CEUR-WS, 2023.

Organization In Section 5.1 we introduce the notion of generic Boolean queries and
what it means for such a query to be coNP-computable. In Section 5.2 we present our
observation about expressiveness limitations of standard (i.e., monotonic) DLs when it

126

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5.1. Generic Boolean Queries

comes to capturing coNP. Furthermore, we show also show that inconsistency/instance
queries mediated by ALCHOI ontologies with closed predicates are still not expressive
enough. In the same section, we present our candidate OMQ language: the extension of
ALCHOIF with restricted nominal schemata in combination with inconsistency queries.
Section 5.3 is dedicated that the query answering problem for the chosen OMQ language
is still coNP-complete in data complexity. The main result of this chapter is presented
in Section 5.4.2, where we show that our language indeed captures coNP. Finally, we
end this chapter with a brief discussion in Section 5.5.

5.1 Generic Boolean Queries

The main goal of this chapter is to show that we can deĄne an OMQ language based on
the DL ALCHOIF with closed predicates that captures the complexity class coNP. As
a Ąrst step, we need to precisely deĄne what we mean by Şcapturing a complexity classŤ.
To this end, we introduce the notion of generic boolean queries over DL ABoxes, which
are simply functions that map ABoxes to either 0 (false) or 1 (true), and we clarify what
it means for such a query to be a member of a certain complexity class.

DeĄnition 5.1.1. We say ABoxes A1,A2 are isomorphic, if they are equal up to
the renaming of individuals, i.e. there is a bijection f : NI(A1) → NI(A2) such that
A2 = ¶A(f(c)) : A(c) ∈ A1)♢ ∪ ¶r(f(c), f(d)) : r(c, d) ∈ A1)♢.

DeĄnition 5.1.2 (Generic Boolean Queries). A Generic Boolean Query Q over a
signature Σ ⊆ NC ∪ NR (Σ-GBQ) is a function that maps each Σ-ABox A to a value
Q(A) ∈ ¶0, 1♢, and is such that Q(A1) = Q(A2) holds for any pair A1, A2 of isomorphic
Σ-ABoxes.

The assumption that answers GBQs are invariant under isomorphic ABoxes is natural: we
are interested in queries about the structure of ABoxes, and they should not depend on the
concrete names of individuals. Dropping this assumption would render the expressiveness
analysis virtually meaningless: because an OMQ (or any standard database query) can
only use a Ąnite number of constants in the query expression, many computationally
trivial queries could not be expressed even in very powerful query languages.

Recall that standard complexity classes, including coNP, are deĄned using Turing
machines (cf. Chapter 2). Intuitively, a Σ-GBQ Q belongs to a complexity class C if there
is a suitable Turing machine that can decide, for every Σ-ABox A, whether Q maps A to
1 within the time and space bounds that are imposed by C. However, Turing Machines
do not operate on ABoxes but rather on strings, which means that in order to compute
an answer to Q over an ABox A, we need to suitably encode A as a string. To this end,
we choose a simple encoding, where we Ąrst enumerate all pairs ci, cj of individuals in
A. Then, for each such pair, we store in a single symbol all the concept names asserted
for those individuals along with the roles that link them. Note that different types of
encodings are possible (cf. [Imm99], Chapter 2.2).

127

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5. Descriptive Complexity of OMQs with Closed Predicates

DeĄnition 5.1.3 (Encoding ABoxes as words). Consider a fixed signature Σ. A 2-type
over Σ is a tuple (T,R, T ′), where T, T ′ ⊆ Σ ∩ NC and R ⊆ Σ ∩ N+

R
. We let ΓΣ denote

the set of all 2-types over Σ. We next define an encoding function encΣ that maps Σ-
ABoxes to words over ΓΣ. Assume a Σ-ABox A with ℓ individuals and take an arbitrary
enumeration c1, . . . , cℓ of the individuals in A. Then we define

encΣ(A) = σ1,1 . . . σ1,ℓ σ2,1 . . . σ2,ℓ . . . σℓ,1 . . . σℓ,ℓ,

where each σi,j := (¶A : A(ci) ∈ A♢, ¶r : r(ci, cj) ∈ A♢, ¶A : A(cj) ∈ A♢).

Based on the encoding above, we can now formally deĄne membership of a GBQ in a
complexity class.

DeĄnition 5.1.4. Let Σ be a signature and Q a Σ-GBQ. We say Q belongs to a
complexity class C, if there is a Turing machine M that decides the language

¶encΣ(A) : A is a Σ-ABox with Q(A) = 1♢,

over ΓΣ within the time or space bounds imposed by C.

Proposition 5.1.5. Assume a GBQ Q over Σ. The following are equivalent:

1. Q belongs to coNP.

2. There is an integer k and a NTM M with alphabet ΓΣ such that, for any Σ-ABox
A we have:

• Q(A) = 0 if and only if M accepts encΣ(A);

• M terminates within ♣encΣ(A)♣k computation steps.

5.2 Inexpressibility Results and Language Extension

As stated in Chapter 2, OMQ languages based on standard DLs whose TBoxes can
be expressed in Ąrst-order logic are monotonic. In particular, this holds even for very
expressive DLs, like ALCHOIQ and its sublogics. There are many very simple GBQs
that can be computed in coNP (or even PTime) but are non-monotonic and therefore
not expressible in monotonic OMQ languages.

Theorem 5.2.1. There exists a GBQ Q1 over Σ such that (a) Q1 belongs to coNP, and
(b) there is no OMQ Q2 = (T , q), with an ALCHOIQ TBox T and a FO query q, such
that Q1(A) = Q2(A) for all Σ-ABoxes A.

Proof. Take any signature Σ and let Q1 = Qparity be the previously-introduced parity
query that asks whether in a given Σ-ABox A there is an odd number of individuals in
some unary relation A ∈ Σ. In other words, for all Σ-ABoxes A, Q1(A) = 1 if and only

128

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5.2. Inexpressibility Results and Language Extension

if Ś This query is clearly in coNP, in fact, it can be answered using logarithmic space
only. However, as already explained, Q1 is not monotonic. For example, Q1(¶A(c1)♢) = 1
but Q1(¶A(c1), A(c2)♢) = 0. Thus Q1 cannot be captured as Q2 above, since any such
Q2 is monotonic, i.e. for any pair A1 ⊆ A2 of Σ-ABoxes, if Q2(A1) = 1, then also
Q2(A2) = 1.

We have already seen in Example 4.2.4 in Chapter 4, the parity query from the previous
example can easily be expressed in ALCHOIQ with closed predicates since closed
predicates add non-monotonicity. In fact, Example 4.2.3 from Chapter 4 shows that even
much weaker DL ALC with closed predicates already exhibits non-monotonic behavior.
Thus, we need a different argument to show that a certain OMQ language with closed
predicates does not capture coNP.

We next argue that OMQ languages whose query answering problem can be reduced to
deciding the inconsistency of the DL ALCHOI with closed predicates do not capture
coNP. To this end, we introduce the notion of ontology-mediated inconsistency queries.

DeĄnition 5.2.2 (Inconsistency query). Let Q = (T ,Σ, q) be an OMQ. If q = ⊥,
we say that Q is an ontology-mediated inconsistency query with closed predicates, or
simply an inconsistency query. We often omit ⊥, and simply write (T ,Σ) to denote the
inconsistency query (T ,Σ,⊥).

Theorem 5.2.3. There exists a GBQ Q1 over Σ such that:

(a) Q1 belongs to coNP, and

(b) there is no inconsistency query Q2 = (T ,Σ′), with T in ALCHOI, such that
Q1(A) = Q2(A) holds for all Σ-ABoxes A.

Proof. To see this, we can analyze the running time of the algorithm in [AOŠ20] for
checking satisĄability of an ALCHOI knowledge base K = (T ,Σ′,A), where Σ′ is a set
of closed predicates. We assume that T ,Σ′ are Ąxed, and we want an algorithm that
takes an ABox A as input and checks if K = (T ,Σ′,A) is consistent. SpeciĄcally, the
algorithm presented in [AOŠ20] runs in time bounded by ♣A♣k × ℓ+ v, where ℓ and v are
constants that depend on T and Σ′, while k is a constant that does not depend on T or
Σ′. In other words, there is a constant k, such that for any T and Σ′, we can build a
non-deterministic algorithm that checks the consistency of an input ABox A in the KB
K = (T ,Σ′,A), and that runs in time O(♣A♣k).

The key here is that the constant k does not depend on T or Σ′. Using an ALCHOI
TBox with closed predicates one can capture decision problems that can be solved via
a non-deterministic TM in time that is polynomial with degree k. However, using the
Non-deterministic Time Hierarchy Theorem [Coo72] (see also [Žák83]), we know that
there are problems that can be solved in non-deterministic polynomial time, but not in
non-deterministic polynomial time with the polynomial degree k. SpeciĄcally, there a
problems solvable in time O(nk+1) but not O(nk).

129

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5. Descriptive Complexity of OMQs with Closed Predicates

We note that the above result can be formulated also for OMQs with atomic queries and
a certain class of conjunctive queries, but it is unclear if it generalizes to OMQs with full
conjunctive queries. This is because the proof of Theorem 5.2.3 relies on an upper bound
on the running time of a known algorithm for ALCHOI with closed predicates. To the
best of our knowledge, no suitable upper bounds on data complexity are known in the
case of CQs over ALCHOI KBs. Furthermore, at this point, it is unfortunately unclear
whether one can prove the same inexpressibility result for ALCHOIF or ALCHOIQ
with closed predicates. This is left as future work.

5.2.1 ALCHOIF+

As stated above, it is unclear whether OMQs based on ALCHOIF with closed predicates
are capable of capturing coNP. However, we present an extension of ALCHOIF that
we call ALCHOIF+, and we prove that the OMQ language based on ALCHOIF+ with
closed predicates and inconsistency queries is indeed powerful enough to capture the
desired class of GBQs. In addition to standard ALCHOIF axioms and closed predicates,
this logic supports (i) transitivity axioms over roles with whose domain/range is restricted
to the active domain of the KB and (ii) axioms involving role composition and nominal
schemata. Regarding (ii), nominal schemata were introduced in [KMKH11] and they
are known to cause an exponential increase in the complexity of reasoning [KR14]. In
order to keep the complexity unaffected, our language extension only allows syntactically
restricted shapes of nominal schemata that we show that we can handle within the
provided complexity bounds, i.e., coNP in data complexity. Moreover, our extension
also allows us to combine nominal schemata with role composition, however, once again,
only in axioms of certain syntactic shape. We next formally introduce the syntax and
semantics of ALCHOIF+ and explain the intuitions behind the non-standard axioms.

Syntax. We begin with the syntax of ALCHOIF+.

DeĄnition 5.2.4. In ALCHOIF+, a role is an expression of the form p or p−, where
p ∈ NR is a role name. An expression of the form A?, where A ∈ NC, is called a test
role, and complex roles are expressions of the form

A? ◦ r1 ◦A1? ◦ . . . rn ◦An,

where n ≥ 1, ri is a role, and A,Ai are test roles, for all 1 ≤ i ≤ n.

(Complex) concepts in ALCHOIF+ are simply the complex concepts in ALCHOIF . As
a reminder, they are defined inductively as follows:

• every concept name A ∈ NC is a concept,

• every nominal ¶o♢, o ∈ NI is a concept,

• ⊤ (top) and ⊥ (bottom) are concepts,

130

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5.2. Inexpressibility Results and Language Extension

• if C1 and C2 are concepts, then so are C1 ⊓ C2 (concept conjunction), C1 ⊔ C2

(concept disjunction), and ¬C1 (concept negation), and

• if C is a concept and r is a role, then ∃r.C (existential restriction) and ∀r.C
(universal restriction) are concepts.

Terminological axioms in ALCHOIF+ have one of the following forms:

A1. C ⊑ D,

A2. func(r),

A3. trans(p),

A4. ∃P.(¶x♢ ⊓ ∃s.¶y♢) ⊓ ∃R.¶y♢ ⊑ B,

A5. ∃P.(¶x♢ ⊓ ¬∃s.¶y♢) ⊓ ∃R.¶y♢ ⊑ B,

A6. ¶x♢ ⊑ ∀S.¶x♢, or

A7. ¶x♢ ⊓A ⊑ ∀s.¬¶x♢,

where A,B are concept names, C,D are concepts, r is a role, p, s are restricted roles
and p ∈ NR, P,R are complex roles consisting only of test roles and functional roles, S is
a complex role and ¶x, y♢ ∈ NV.

Note that in the previous deĄnition, we refer to functional and restricted roles. We that
a role p is functional if func(p) ∈ T . Intuitively, a role p is restricted if we can guarantee
that, in any model I of the KB, (e, e′) ∈ pI implies that e and e′ are constants occurring
in the KB. We next give a syntactic criterion that characterizes such roles. We note that
this characterization is incomplete, in the sense that there may be other roles whose
extensions are restricted over the active domain, however, it is nonetheless sufficient for
our purposes.

DeĄnition 5.2.5. A basic concept A ∈ N+
C

is restricted w.r.t. an ALCHOIF+ TBox T
and a set Σ of closed predicates if one of the following conditions hold:

• A ∈ Σ ∪ ¶¶a♢ : a ∈ NI(T)♢ ∪ ¶⊥♢,

• A ⊑ B1 ⊔ · · · ⊔ Bn ∈ T , where Bi is a restricted concept or an expression of the
form ∃r.C or ∃r−.C, for a restricted role r and a concept C, for all 1 ≤ i ≤ n.

A role r ∈ N+
R

is called restricted w.r.t. a TBox T and a set Σ of closed predicates if one
of the following holds:

• r ∈ Σ,

131

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5. Descriptive Complexity of OMQs with Closed Predicates

• ¶∃r ⊑ A,∃r− ⊑ B♢ ⊆ T , where A and B are restricted concepts,

• r− is a restricted role, or

• r ⊑ s, where s is a restricted role.

Proposition 5.2.6. It can be recognized in polynomial time whether a given role r ∈
N+

R
(T) or a basic concept A ∈ N+

R
(T) is restricted w.r.t. a given ALCHOIF+ TBox T

and a set of closed predicates Σ.

Proof. Observe that DeĄnition 5.2.5 does not use axioms (A4)-(A7) to infer that some
concept or role is restricted. Thus, we can assume that T is an ALCHOIF ABox. We
can then devise an algorithm that, starting from the initial sets SC = (Σ ∩ NC) ∪ ¶¶a♢ :
a ∈ NI(T)♢ ∪ ¶⊥♢ of restricted basic concepts and SR = ¶r, r− : r ∈ Σ∩NR♢ of restricted
role names, saturates these sets with all restricted basic concepts and roles, respectively.
The algorithm computes in one step all concept names and roles that we can infer are
restricted from SC , SR and the axioms of T . This clearly takes polynomial time. This
is repeated as long as new information is inferred. In the worst case, we have one
iteration per each A ∈ NC and r ∈ N+

R , which means there are at most polynomially many
iterations of the loop. Finally, we simply check whether r (resp. A) is in the saturated
set SR (resp. SC).

We next brieĆy present the intuitions behind axioms (A4)-(A7) rather informally. Consider
some interpretation I = (∆I , ·I). Axioms of the form (A4) allow an anonymous domain
element d ∈ ∆I to infer its participation in the concept B as a result of some connection
between individuals in the data part (i.e., ABox) that this element can see using chains
of test and functional roles. More precisely, if d has a way to reach some individual a
using a chain P of test and functional roles, d can reach some individual b in the same
way via a chain R, and the pair (a, b) participates in the extension of some restricted
role s, then it can be inferred that d is in B (axiom (A4)). Similarly, axioms of the form
(A5) allow us to infer the same from the absence of such connection in the data part,
i.e., if (a, b) is not in the extension of some restricted role s. Moving on to axioms of the
form (A6), they allow us to assert that all role chains of a certain type starting from an
individual must in fact be cycles. Finally, (A7) is used to forbid the existence of certain
self-loops on individuals.

Semantics We next present the semantics of ALCHOIF+. Let I = (∆I , ·I) be an
interpretation. The extension of the interpretation function ·I to complex roles P of the
form A? ◦ r1 ◦A1? ◦ · · · ◦ rn ◦An? is deĄned as:

P I := ¶e0 ∈ ∆I ∩AI : ∃e1, . . . , en ∈ ∆I s.t. (ei−1, ei) ∈ r
I
i , ei ∈ A

I
i , for all 1 ≤ i ≤ n♢.

We still need to deĄne what it means for I to satisfy axioms that contain nominal variables,
i.e., axioms (A4)-(A7). In [KR14, KMKH11] the semantics of axioms containing nominal

132

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5.3. Data Complexity of ALCHOIF+

variables is given by grounding the axiom with respect to the set of all individuals NI,
where NI is assumed to be Ąnite. For our purposes, we ground such axioms with respect
to NI(K) by uniformly replacing all nominal variables with nominals ¶a♢, s.t. a ∈ NI(K)
in all possible ways. We Ąrst deĄne what it means to ground an axiom with nominal
variables with respect to a given set of individuals, similarly to the way that the grounding
is deĄned in Datalog (cf. Section 2.4).

DeĄnition 5.2.7. Given a set of individuals C ⊆ NI, the grounding of an axiom α w.r.t.
C, in symbols ground(α,C), is a set of axioms obtained from α by replacing every nominal
variable ¶x♢ in α with the nominal ¶σ(x)♢, for every total function σ : vars(α) → C,
where vars(α) denotes the set of all variables occurring in α. The grounding of a KB
K = (T ,Σ,A) w.r.t. C is then computed as ground(K, C) =

⋃

α∈T ground(α,C).

DeĄnition 5.2.8. Let I be an interpretation and let K = (T ,Σ,A) be an ALCHOIF+

KB with closed predicates. We say that I satisĄes K, if I satisfies ground(K,NI(K)).

The way that ALCHOIF+ was crafted ensures that the computational complexity of
answering inconsistency queries is the same as that of ALCHOIF .

Theorem 5.2.9. The KB satisfiability problem in ALCHOIF+ with closed predicates
is NP-complete in data complexity, and NExpTime-complete in combined complexity.
Answering Boolean inconsistency queries mediated by ALCHOIF+ ontologies with closed
predicates is coNP-complete in data complexity and co-NExpTime-complete in combined
complexity.

We dedicate the next section to the proof of Theorem 5.2.9.

5.3 Data Complexity of ALCHOIF+

The goal of this section is to provide a proof of Theorem 5.2.9 by devising a decision
procedure for KB satisĄability of ALCHOIF+ KBs with closed predicates that runs
in nondeterministic exponential time in the size of the given knowledge base, and in
nondeterministic polynomial time, if the TBox and the set of closed predicates are
considered Ąxed. We begin by giving a brief overview of the steps involved in this
procedure. The Ąrst step is to guess the extensions of restricted concepts and roles over
the individuals occurring in the given knowledge base Ű these concepts and role names
are now considered closed. Since all transitivity axioms only involve restricted roles,
whose extensions are fully known after the Ąrst step, we can right away check whether
they are satisĄed and eliminate them. Thus, what is left to do is devise a procedure
that can decide the satisĄability of KBs with closed predicates whose TBox contains no
transitivity axioms, and where all restricted concepts and role names are closed. We
do this by modifying the mosaic approach introduced in Chapter 3 for ALCHOIF (cf.
Section 3.3).

We next formalize this. To this end, consider an ALCHOIF+ KB K = (T ,Σ,A).

133

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5. Descriptive Complexity of OMQs with Closed Predicates

Guess restricted concepts and roles. As already mentioned, the Ąrst step is to guess
the extensions of restricted concepts and roles. To this end, we non-deterministically
construct a new KB Kext = (T ,Σ∪RestrPred,Aext), where Aext is obtained by potentially
adding A(a), for each individual a ∈ NI(K) and each restricted concept name A, and
r(a, b), for each pair of individuals a, b ∈ NIK and each restricted role name r. Notice
that Kext is obtained in time polynomial in the size of K.

Eliminate transitivity. For all transitivity axioms trans(r) ∈ T , check whether
whenever ¶r(a, b), r(b, c)♢ ∈ Aext, then also r(a, c) ∈ Aext, for all individuals a, b, c
occurring in Aext. This check is also done in time polynomial in the size of Kext (and
therefore in the size of K). If this is not the case, Kext is unsatisĄable. Otherwise Kext is
satisĄable if and only if Kntr

ext is satisĄable, where Kntr
ext is obtained from Kext by removing

all transitivity axioms.

Decide satisĄability of Kntr
ext . We now show how to decide satisĄability of an

ALCHOIF+ KB K = (T ,Σ,A) that contains no transitivity axioms, and where the role
s in the axioms of the form (A4), (A5) and (A7) is closed instead of restricted. To this
end we modify the approach from Chapter 3 to characterize models of K in terms of
tiles, i.e., compact description of domain elements and their relevant neighborhood, and
mosaics, i.e., functions that tell us how many instances of tiles of each kind we need
in order to build a model. We can then use regular integer programming techniques to
decide whether such a mosaic exists.

As before, our characterization assumes (w.l.o.g.) that KBs are given in a certain normal
form and their TBoxes are closed under role inclusions. Here, we reuse the ALCHOIF
normal form (cf. DeĄnition 3.1.14 in Chapter 3) for the part of the TBox that can
be expressed in ALCHOIF (i.e., axioms of the form (A1) and (A2)) and we leave the
remaining axioms as they are, with the caveat that all restricted roles must be in the set
of closed predicates Σ. More precisely, given a KB K = (T ,Σ,A), we assume that all
axioms in T have one of the following forms:

(N1) B1 ⊓ · · · ⊓Bk−1 ⊑ Bk ⊔ · · · ⊔Bm,

(N2’) B1 ⊑ ∃p.B2 (N3) B1 ⊑ ∀p.B2, (N4) r ⊑ s, (N5) func(r),

(A4) ∃P.(¶x♢ ⊓ ∃s.¶y♢) ⊓ ∃R.¶y♢ ⊑ B, (A5) ∃P.(¶x♢ ⊓ ¬∃s.¶y♢) ⊓ ∃R.¶y♢ ⊑ B,

(A6) ¶x♢ ⊑ ∀S.¶x♢, (A7) ¶x♢ ⊓A ⊑ ∀s.¬¶x♢,

where ¶B,B1, . . . , Bm♢ ⊆ N+
C , p ∈ NR, and r ∈ N+

R , S is a complex role, P,R are complex
roles consisting only of functional roles and tests, s ∈ Σ ∪ NR, and ¶x, y♢ ⊆ NV.

Let us next deĄne the relevant notions. In Section 3.2.2, we introduced the notion of
a (unary) type for a knowledge base K and we denoted the set of all types for K by
Types(K). Recall, a type T for K is a subset of N+

C (K) that speciĄes which basic concepts
a domain element of this type participates in. Recall also that, due to SNA, T contains at

134

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5.3. Data Complexity of ALCHOIF+

most one nominal. We import this notion of the unary type, and we additionally deĄne
two sets Paths∃(K) and Paths∀(K) that store all complex roles (without the initial test)
and their subroles that occur in existential and universal restrictions in K, respectively.
We note that ε serves as a marker for the end of the role, and is there simply for the
ease of presentation. The signiĄcance of these sets will become obvious in the rest of this
section.

DeĄnition 5.3.1. Given a knowledge base K = (T ,Σ,A), let Paths∃(K) be defined as

Paths∃(K) = ¶f1 ◦A1? ◦ f2 ◦A2? ◦ · · · ◦ fn, ◦An? ◦ ε,

f2 ◦A2? ◦ · · · ◦ fn ◦An? ◦ ε,

. . . ,

fn ◦An? ◦ ε,

ε : P = A0? ◦ f1 ◦A1? ◦ f2 ◦A2? ◦ · · · ◦ fn, ◦An?,

and P occurs in K in some axiom of the form (A4) or (A5)♢

Similarly we let Paths∀(K) be defined as follows:

Paths∀(K) = ¶f1 ◦A1? ◦ f2 ◦A2? ◦ · · · ◦ fn, ◦An? ◦ ε,

f2 ◦A2? ◦ · · · ◦ fn ◦An? ◦ ε,

. . . ,

fn ◦An? ◦ ε

ε : P = A0? ◦ f1 ◦A1? ◦ f2 ◦A2? ◦ · · · ◦ fn, ◦An?,

and ∀P.¶x♢ occurs in some axiom of K♢

Furthermore, we let Π∃(K) and Π∀(K) be defined as:

Π∃(K) = ¶(P, ¶a♢) : P ∈ Paths∃(K), ¶a♢ ∈ N+
C

(K)♢

Π∀ = ¶(P, ¶a♢), (P,⊥) : P ∈ Paths∀(K), ¶a♢ ∈ N+
C

(K)♢

Observation: For each pair (P,C) ∈ Π∃(K), the complex role P consists only of tests
and functional roles.

Next, we adapt the previously-introduced notion of tiles for ALCHOIF (see DeĄni-
tion 3.3.1) to cater to ALCHOIF+ KBs. The main difference between the two notions
is that the tiles for ALCHOIF+, in addition to the unary type T of the central element
d and the description ρ of its relevant neighborhood, also need to keep track of whether d
is a part of some relevant role chain whose existence forces us to infer some information.
More precisely, given an ALCHOIF+ KB with closed predicates and an interpretation
I, a tile (T, ρ, π∃, π∀) for K describes a domain element d ∈ ∆I for which the following
hold:

135

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5. Descriptive Complexity of OMQs with Closed Predicates

1. d participates in exactly in those basic concepts that are given in T ,

2. for each (P,C) ∈ π∃, there is an element e s.t. (d, e) participates in the complex
role P and e participates in C or, in case P = ε, d participates in C

3. for each (P,C) ∈ π∀ and all elements e, if (d, e) participates in the complex role P ,
then e participates in C, or in case P = ε, d participates in C, and

4. for each 4-tuple (R, T ′, π′
∃, π

′
∀) ∈ ρ, d has an arc labeled by R to a domain element

that participates in the basic concepts given by T ′ and satisĄes π′
∃, π′

∀ as explained
in items 1 and 2.

In this case, we say that d is an instance of τ . We illustrate this rather informal
explanation on a short example.

Example 5.3.2. Consider the following ALCHOIF+ KB K = (T , ¶s♢, ¶s(a, b)♢), where
the TBox T consists of the following axioms:

A1 ⊑ ∃r1.A2, A2 ⊑ ∃r3.¶a♢,

A1 ⊑ ∃r2.A3, A3 ⊑ ∃r4.¶b♢,

∃P.(¶x♢ ⊓ ∃s.¶y♢) ⊓ ∃R.¶y♢ ⊑ B,

¶x♢ ⊑ ∀S.¶x♢,

func(r1), func(r2), func(r3), func(r4),

where P = A1? ◦ r1 ◦A2? ◦ r3 ◦ ¶a♢?, R = A1? ◦ r3 ◦A3? ◦ r4 ◦ ¶b♢?, S = ⊤? ◦ r−
3 ◦A2? ◦

r−
1 ◦A1? ◦ r2 ◦A3? ◦ r4 ◦ ⊤? ◦ s− ◦ ⊤?.

Let τ = (¶A1, B,⊤♢, ρ, π∃, π∀) be a tile for K where ρ, π∃, and π∀ are given as follows:

ρ = ¶ (¶r1♢, ¶A2,⊤♢, ¶(r2 ◦ ¶a♢? ◦ ε, ¶a♢)♢,

¶(r−
1 ◦A1? ◦ r2 ◦A3? ◦ r4 ◦ ⊤? ◦ s− ◦ ⊤? ◦ ε, ¶a♢)♢),

(¶r2♢, ¶A3,⊤♢, ¶(r4 ◦ ¶b♢? ◦ ε, ¶b♢)♢, ¶(r4 ◦ ⊤? ◦ s− ◦ ⊤? ◦ ε, ¶a♢)♢)♢,

π∃ = ¶ (r1 ◦A2? ◦ r2 ◦ ¶a♢? ◦ ε, ¶a♢),

(r3 ◦A3? ◦ r4 ◦ ¶b♢? ◦ ε, ¶b♢)♢,

π∀ = ¶ (r2 ◦A3? ◦ r4 ◦ ⊤? ◦ s− ◦ ⊤? ◦ ε, ¶a♢)♢

In a model I of K, a domain element d ∈ ∆I that is an instance of T has the following
properties:

• d has the unary type ¶A1, B,⊤♢, i.e., d ∈ AI
1 , d ∈ BI and d /∈ DI , for all

D ∈ N+
C

(K) \ ¶A1, B,⊤♢.

• d can reach the individual a via some the complex role A1? ◦ r1 ◦A2? ◦ r3 ◦ ¶a♢?.

136

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5.3. Data Complexity of ALCHOIF+

• d can reach the individual b via some the complex role A1? ◦ r3 ◦A3? ◦ r4 ◦ ¶b♢?.

• The only element that d can reach via the complex role r2 ◦A3? ◦ r4 ◦ ⊤? ◦ s− ◦ ⊤?
is the individual a.

• d has an r1-successor e with the unary type ¶A2,⊤♢ that can reach the individual a
via some complex role r3 ◦ ¶a♢?. Moreover, a is the only element that e can reach
via r−

1 ◦A1? ◦ r2 ◦A3? ◦ r4 ◦ ⊤? ◦ s− ◦ ⊤?.

• d has an r2-successor e′ with the unary type ¶A3,⊤♢ that can reach the individual b
via some complex role r4 ◦ ¶b♢?. Moreover, a is the only element that e′ can reach
via r4 ◦ ⊤? ◦ s− ◦ ⊤.

For example, in the model I of K given below, we can say that the left-most element is
an instance of τ .

a

b

r1

r2

r3

r4

s

A1, B

A2

A3

We are now ready to give the formal deĄnition of tiles for ALCHOIF+ KBs.

DeĄnition 5.3.3. Given a KB K = (T ,Σ,A), a tile for K is a tuple τ = (T, ρ, π∃, π∀),
where T ∈ Types(K), π∃ ⊆ Π∃(K), π∀ ⊆ Π∀(K) and ρ is a set of tuples (R, T ′, π′

∃, π
′
∀),

where R ⊆ N+
R(K), T ′ ∈ Types(K), π′

∃ ⊆ Π∀(K), π′
∀ ⊆ Π∀(K) and the following conditions

are satisfied:

TF+1. ♣ρ♣ ≤ ♣T ♣

TF+2. If B1 ⊓ · · · ⊓ Bk−1 ⊑ Bk ⊔ · · · ⊔ Bm ∈ T and ¶B1, . . . , Bk−1♢ ⊆ T , then
¶Bk, . . . , Bm♢ ∩ T ̸= ∅

TF+3. If A ⊑ ∃r.B ∈ T and A ∈ T , then there is (R, T ′, π′
∃, π

′
∀) ∈ ρ such that r ∈ R

and B ∈ T ′

TF+4. For all (R, T ′, π′
∃, π

′
∀) ∈ ρ, the following hold:

(a) If A ⊑ ∀r.B ∈ T , A ∈ T and r ∈ R, then B ∈ T ′

(b) If A ⊑ ∀r.B ∈ T , A ∈ T ′ and r− ∈ R, then B ∈ T

(c) If r ⊑ s ∈ T and r ∈ R, then s ∈ R

137

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5. Descriptive Complexity of OMQs with Closed Predicates

TF+5. If func(r) ∈ T , then ♣¶(R, T ′, π′
∃, π

′
∀) ∈ ρ : r ∈ R♢♣ ≤ 1

TF+6. If A(b) ∈ A and ¶b♢ ∈ T , then A ∈ T

TF+7. If ¬A(b) ∈ A and ¶b♢ ∈ T , then A ̸∈ T

TF+8. For all (R, T ′, π′
∃, π

′
∀) ∈ ρ, the following hold:

(a) If p(a, b) ∈ A, ¶p ⊑ r, func(r)♢ ⊆ T , ¶a♢ ∈ T and r ∈ R, then ¶b♢ ∈ T ′

(b) If p(a, b) ∈ A, ¶p ⊑ r, func(r−)♢ ⊆ T , ¶b♢ ∈ T , and r− ∈ R, then ¶a♢ ∈ T ′

(c) If ¬p(a, b) ∈ A, r ⊑ p ∈ T , ¶a♢ ∈ T , and r ∈ R, then ¶b♢ ̸∈ T ′

(d) If ¬p(a, b) ∈ A, r ⊑ p− ∈ T , ¶b♢ ∈ T , and r ∈ R, then ¶a♢ ̸∈ T ′

TF+9. If A ∈ Σ ∩ NC and A ∈ T , then there exists c ∈ NI such that ¶c♢ ∈ T and
A(c) ∈ A

TF+10. If r ∈ Σ ∩NR, then for all (R, T ′, π′
∃, π

′
∀) ∈ ρ with r ∈ R, there exist c, d ∈ NI

such that ¶c♢ ∈ T , ¶d♢ ∈ T ′ and r(c, d) ∈ A.

TF+11. ♣π∃♣ ≤ ♣Paths∃(K)♣

TF+12. ♣π∀♣ ≤ ♣Paths∀(K)♣

TF+13. If ¶a♢ ∈ N+
C

(K), ¶a♢ ∈ T , then (ε, ¶a♢) ∈ π∃

TF+14. If ∃A1? ◦ P.(¶x♢ ⊓ ∃s.¶y♢) ⊓ ∃A2? ◦ R.¶y♢ ⊑ A ∈ T , ¶¶a♢, ¶b♢♢ ⊆ N+
C

(K),
¶A1, A2♢ ⊆ T , ¶(P, ¶a♢), (R, ¶b♢)♢ ⊆ π∃ and s(a, b) ∈ A, then A ∈ T .

TF+15. If ∃A1? ◦ P.(¶x♢ ⊓ ¬∃s.¶y♢) ⊓ ∃A2? ◦ R.¶y♢ ⊑ A ∈ T , ¶¶a♢, ¶b♢♢ ⊆ N+
C

(K),
¶A1, A2♢ ⊆ T , ¶(P, ¶a♢), (R, ¶b♢)♢ ⊆ π∃ and s(a, b) /∈ A, then A ∈ T .

TF+16. If ¶x♢ ⊑ ∀A? ◦ P.¶x♢ ∈ T , ¶a♢ ∈ N+
C

(K), and ¶¶a♢, A♢ ∈ T , then either
(P, ¶a♢) ∈ π∀ or (P,⊥) ∈ π∀.

TF+17. If (ε, C) ∈ π∀, then C ∈ T .

TF+18. For all (R, T ′, π′
∃, π

′
∀) ∈ ρ

(a) If (r ◦ A? ◦ P, ¶a♢) ∈ Π∃(K), and r ∈ R, A ∈ T ′, and (P, ¶a♢) ∈ π′
∃, then

(r ◦A? ◦ P, ¶a♢) ∈ π∃

(b) If (r ◦A? ◦ P, ¶a♢) ∈ Π∃(K), and r− ∈ R, A ∈ T , and (P, ¶a♢) ∈ π∃, then
(r ◦A? ◦ P, ¶a♢) ∈ π′

∃.

(c) if (r ◦A?◦P,C) ∈ π∀, r ∈ R and A ∈ T ′, either (P,C) ∈ π′
∀ or (P,⊥) ∈ π′

∀.

(d) if (r◦A?◦P,C) ∈ π′
∀, r− ∈ R and A ∈ T , either (P,C) ∈ π∀ or (P,⊥) ∈ π∀.

(e) If ¶x♢⊓A ⊑ ∀s.¶x♢ ∈ T , ¶a♢ ∈ N+
C

(K), ¶¶a♢, A♢ ⊆ T and ¶s, s−♢∩R ̸= ∅,
then ¶a♢ ̸∈ T

138

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5.3. Data Complexity of ALCHOIF+

TF+19. If p(a, b) ∈ A, p ⊑ r ∈ T , func(r) ∈ T , ¶a♢ ∈ T , there is some (R, T ′, π′
∃, π

′
∀) ∈ ρ

s.t. r ∈ R and ¶b♢ ∈ T ′.

TF+20. If p(a, b) ∈ A, p− ⊑ r ∈ T , func(r) ∈ T , ¶b♢ ∈ T , there is some (R, T ′, π′
∃, π

′
∀) ∈

ρ s.t. r ∈ R and ¶a♢ ∈ T ′.

TF+21. If ¶a♢ ∈ N+
C

(K), s(a, a) ∈ A and ¶x♢ ⊓A ⊑ ∀s.¬¶x♢ ∈ T , then ¶¶a♢, A♢ ̸⊆ T .

As before, we explain the intuitions behind the conditions placed on tiles. Conditions
TF+1-TF+10 are inherited from the characterization of ALCHOIF (see DeĄnition 3.3.1)
and ensure that the description of d is locally consistent withALCHOIF axioms occurring
in T and the assertions in A under the closed predicates Σ. We further add conditions
TF+11-TF+21 to support axioms of the forms (A4)-(A7). Namely, TF+11 and TF+12
ensure that our extended tiles are still ’small’, i.e. polynomial in the size of (T ,Σ) but
constant in the size of A. To support axioms of type (A4) and (A5) we do the following.
Assume ∃P.(¶x♢ ⊓ ∃s.¶y♢) ⊓ ∃R.¶y♢ ∈ T , where P = A0? ◦ r1 ◦A1? ◦ · · · ◦ rn ◦An?. We
start from the nominals and add a pair (ε, ¶a♢) ∈ π∃ whenever ¶a♢ is in the unary type
of τ = (t, ρ, π∃, π∀) (TF+13). Now, if we have a tile τ ′ = (T ′, ρ′, π′

∃, π
′
∀) such that the

rn-connection to τ is enforced in some way, (rn, ¶a♢) ∈ π′
∃ must exist. This backwards

labelling from the nominals is repeated and we have that whenever a tile has a forced
S-connection to a τ , there is a pair (S, ¶a♢) in its π∃ component, for each subrole of S
of P (TF+18 (a)-(b)). Finally, TF+14 requires that if a tile is aware there is a P path
to some nominal ¶a♢ and an R path to another nominal ¶b♢ s.t. s(a, b) is in the ABox
(recall s is a closed role), then A must be in its unary type. Axiom of the form (A5) is
handled similarly using TF+15. Further, we also handle axiom of the form (A6) similarly,
but for each such axiom ¶x♢ ⊑ ∀P.¶x♢, where P = A0? ◦ r1 ◦ A1? ◦ · · · ◦ rn ◦ An?, we
start by adding either (P, ¶a♢) ∈ π∀ or (P,⊥), for each tile τ = (t, ρ, π∃, π∀) s.t. ¶a♢ and
A0 occur in T (TF+16). Intuitively, this ensures that starting from the nominal ¶a♢,
either all paths of shape P lead back to ¶a♢ or no such path exists. Then, using TF+18
(c)-(d), we label all known rn-successors of τ with either (R, ¶a♢) in their π∀ components
denoting that all R-paths from domain elements with this description must end in a,
or with (R,⊥) stating that domain elements with this description have no R-paths to
any other elements, where R = r2 ◦ A2? ◦ · · · ◦ rn ◦ An?. TF+17 then simply checks
that all P -paths from some nominal ¶a♢ also end in ¶a♢, i.e., that the axiom is satisĄed.
Condition TF+18 (e) is rather straightforward and it handles axiom of the form (A7).
Conditions TF+19 and TF+20 ensure that all connections involving functional roles are
stored within the tiles. Finally, condition TF+21 deals with axioms of type (A7) by
disallowing for all nominals ¶a♢ ∈ N+

C (K) that both ¶a♢ and A are in the unary type of
some tile, if ¶x♢ ⊓A ⊑ ∀s.¬¶x♢ and we know that s(a, a) ∈ A. Recall that, since s is a
closed role, and so the only way to have (a, a) participate in s is if this is asserted by the
ABox.

We next also adapt the deĄnition of mosaics.

139

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5. Descriptive Complexity of OMQs with Closed Predicates

DeĄnition 5.3.4. Let K = (T ,Σ,A) be a KB. A mosaic for K is a function N :
Tiles(K)→ N∗ such that:

MF+1. For every ¶c♢ ∈ N+
C

(K) :
∑

τ=(T,ρ,π∃,π∀)∈Tiles(K),
¶c♢∈T

N(τ) = 1

MF+2. The following inequality is satisfied:
∑

τ∈Tiles(K)

N(τ) ≥ 1

MF+3. For all T, T ′ ∈ Types(K), R ⊆ N+
R(K) with r ∈ R and func(r−) ∈ T , every

π∃, π
′
∃ ⊆ Π∃(K), π∀, π

′
∀ ⊆ Π∀(K), the following holds:

∑

τ=(T,ρ,π∃,π∀)∈Tiles(K),
(R,T ′,π′

∃
,π′

∀
)∈ρ

N(τ) ≤
∑

τ ′=(T ′,ρ′,π′
∃

,π′
∀

)∈Tiles(K),

(R−,T,π∃,π∀)∈ρ′

N(τ ′)

MF+4. For all τ = (T, ρ, π∃, π∀) ∈ Tiles(K) and (R, T ′, π′
∃, π

′
∀) ∈ ρ the following holds:

if N(τ) > 0, then there exists ρ′ such that τ ′ = (T ′, ρ′, π′
∃, π

′
∀) ∈ Tiles(K) and

N(τ ′) > 0.

MF+5. For all ¶a♢, ¶b♢ ∈ N+
C

(K) and all A,B ∈ NC(K), if there exist p, r ∈ N+
R(K) for

which any of the following conditions hold:

(a) p(a, b) ∈ A, p ⊑ r ∈ T and A ⊑ ∀r.B ∈ T ,

(b) p(b, a) ∈ A, p ⊑ r− ∈ T and A ⊑ ∀r.B ∈ T ,

(c) p(a, b) ∈ A, p ⊑ r ∈ T and A ⊑ ∃r.B ∈ T and func(r) ∈ T , or

(d) p(b, a) ∈ A, p ⊑ r− ∈ T and A ⊑ ∃r.B ∈ T and func(r) ∈ T ,

we have that the following implication holds:

∑

τ=(T,ρ,π∃,π∀)∈Tiles(K),
¶a♢∈T,A∈T

N(τ) > 0 =⇒
∑

τ ′=(T ′,ρ′,π′
∃

,π′
∀

)∈Tiles(K),

¶b♢∈T ′,B∈T ′

N(τ ′) > 0

MF+6. For all p(a, b) ∈ A and τ = (T, ρ, π∃, π∀) ∈ Tiles(K) with ¶a♢ ∈ T , N(τ) > 0
implies that there exists a tile τ ′ = (T ′, ρ′, π′

∃, π
′
∀) with N(τ ′) > 0 s.t.

(a) ¶b♢ ∈ T ′,

(b) for all (r ◦ A? ◦ P,C) ∈ Π∃(K), p ⊑ r ∈ T , (P,C) ∈ π′
∃, and A ∈ T ′, we

have (r ◦A? ◦ P,C) ∈ π∃,

(c) for all (r ◦ A? ◦ P,C) ∈ Π∃(K), p− ⊑ r ∈ T , (P,C) ∈ π∃, and A ∈ T , we
have (r ◦A? ◦ P,C) ∈ π′

∃,

140

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5.3. Data Complexity of ALCHOIF+

(d) for all (r ◦A? ◦ P,C) ∈ π∀, p ⊑ r ∈ T , and A ∈ T ′, we have

¶(P,C), (P,⊥)♢ ∩ π′
∀ ̸= ∅,

(e) for all (r ◦A? ◦ P,C) ∈ π′
∀, p− ⊑ r ∈ T , and A ∈ T , we have

¶(P,C), (P,⊥)♢ ∩ π∀ ̸= ∅.

In the deĄnition above, MF+1-MF+5 are direct adaptations from the characterization
of ALCHOIF to include the extended notion of tiles, so we do not discuss them here.
Finally, the new condition MF+6 ensures that if a connection is enforced between two
elements due to some ABox assertion p(a, b) and this is not reĆected in the ρ component
of either tile, it must still be the case that π∃ and π∀ components of these elements are
compatible, i.e., the connection p(a, b) is taken into account.

Example 5.3.5. Consider the ALCHOIF+ KB K = (T , ¶s♢, ¶s(a, b)♢) from Exam-
ple 5.3.2 and consider the following tiles for K:

τa = (¶¶a♢,⊤♢, ∅, π∃a
, π∀a

), where π∃a
and π∀a

are given as follows:

π∃a
= ¶(ε, ¶a♢)♢

π∀a
= ¶(r−

3 ◦A2? ◦ r−
1 ◦A1? ◦ r2 ◦A3? ◦ r4 ◦ ⊤? ◦ s− ◦ ⊤? ◦ ε, ¶a♢)♢

τb = (¶¶b♢,⊤♢, ∅, π∃b
, π∀b

), where π∃b
and π∀b

are given as follows:

π∃b
= ¶(ε, ¶b♢)♢

π∀b
= ¶(r−

3 ◦A2? ◦ r−
1 ◦A1? ◦ r2 ◦A3? ◦ r4 ◦ ⊤? ◦ s− ◦ ⊤? ◦ ε,⊥), (s− ◦ ⊤? ◦ ε, ¶a♢)♢

τ1 = (¶A2,⊤♢, ρ1, π∃1 , π∀1), where ρ1, π∃1, and π∀1 are given as follows:

ρ1 = ¶(¶r3♢, ¶¶a♢,⊤♢, π∃a
, π∀a

)♢, π∃1 = ¶(r2 ◦ ¶a♢? ◦ ε, ¶a♢)♢,

π∀1 = ¶(r−
1 ◦A1? ◦ r2 ◦A3? ◦ r4 ◦ ⊤? ◦ s− ◦ ⊤? ◦ ε, ¶a♢)♢

τ2 = (¶A3,⊤♢, ρ2, π∃2 , π∀2), where ρ2, π∃2, and π∀2 are given as follows:

ρ2 = ¶(¶r4♢, ¶¶b♢,⊤♢, π∃b
, π∀b
♢, π∃2 = ¶(r4 ◦ ¶b♢? ◦ ε, ¶b♢)♢,

π∀2 = ¶(r4 ◦ ⊤? ◦ s− ◦ ⊤? ◦ ε, ¶a♢)♢

τ3 = (¶A1, B,⊤♢, ρ3, π∃3 , π∀3), where ρ3, π∃3, and π∀3 are given as follows:

ρ3 = ¶(¶r1♢, ¶A2,⊤♢, π∃1 , π∀1), (¶r2♢, ¶A3,⊤♢, π∃2 , π∀2)♢,

π∃3 = ¶(r1 ◦A2? ◦ r2 ◦ ¶a♢? ◦ ε, ¶a♢), (r3 ◦A3? ◦ r4 ◦ ¶b♢? ◦ ε, ¶b♢)♢,

π∀3 = ¶(r2 ◦A3? ◦ r4 ◦ ⊤? ◦ s− ◦ ⊤? ◦ ε, ¶a♢)♢

Then the following function is a mosaic for K and it corresponds to the model I from
Example 5.3.2:

N =

{

1, if τ ∈ ¶τa, τb, τ1, τ2, τ3♢,

0, otherwise.

141

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5. Descriptive Complexity of OMQs with Closed Predicates

We say that an ALCHOIF+ KB K respects role inclusions if it satisĄes the two condition
in DeĄnition 3.3.3. The following result establishes the connection between the existence
of mosaics and the satisĄability of ALCHOIF+ KBs with closed predicates.

Theorem 5.3.6. Let K = (T ,Σ,A) be a KB. K is satisfiable if and only if K respects
role inclusions and there exists a mosaic for K.

Although the extended notion of tiles makes the proof of the theorem above more involved,
at its essence, this proof is very similar to the proofs of Theorems 3.2.12 and 3.3.4 and
is therefore delegated to the appendix.

Consider an ALCHOIF+ KB K = (T ,Σ,A). Having established the connection between
mosaic existence and satisĄability of K, we can follow the same steps as before to build
an enriched system of integer linear inequalities whose solutions over N∗ correspond
to the mosaics of K and then use integer programming techniques to decide whether
K is satisĄable. Regarding the size of the obtained system, we note that, due to
conditions TF+1, TF+11, and TF+12, as well as the fact that the sets Π∃(K) and
Π∀(K) are polynomial in the size of K, the number of tiles for K is exponential in the
size of K, but only polynomial if T and Σ are considered Ąxed. Moreover, it is easy
to see that each condition in the mosaic introduces at most an exponential number
of inequalities/implications in the size of K (polynomial, if T and Σ are Ąxed), and
the same bounds also apply to the size of each of these inequalities, whether they are
stand-alone or they occur in some implication, as well as the whole enriched system for
K. As we can decide the existence of integer solutions to enriched systems in NP (see
Proposition 3.2.22), the result in Theorem 5.2.9 follows.

5.4 Encoding the Turing Machine

In the previous section, we showed that inconsistency queries mediated by ALCHOIF+

ontologies with closed predicates are coNP complete in data complexity. We next present
the main result of this chapter which states that the same query language is also capable
of expressing all coNP-computable GBQs.

Theorem 5.4.1 (Main result). Assume a signature Σ and a GBQ Q over Σ that belongs
to coNP. Then there is a TBox T in ALCHOIF+ such that the Boolean inconsistency
query OMQ q = (T ,Σ) has the following property: for all Σ-ABoxes A, Q(A) = q(A).

The rest of this section serves as a proof sketch for the theorem above. Let Q be a
GBQ over some signature Σ that is in coNP. According to Proposition 5.1.5, there is
a nondeterministic Turing machine M that decides the language ¶encΣ(A) : Q(A) =
0,A is a Σ-ABox♢ and its running time is bounded by nk, where k is a constant and n is
the size of the input word. We show that we can come up with a TBox TM such that for
the ontology-mediated inconsistency query QM = (TM ,Σ), QM (A) = Q(A), for all Σ-
ABoxes A. The basic idea is to craft TM in a way that ensures that all models of (T ,Σ,A)

142

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5.4. Encoding the Turing Machine

n2

r1
y

!"#$

c
1 c

5

%&'$%&'$

ABox (

c
2

c
3

c
4

)*+#$

)*+#$
!"#$

c
1 c

5

ABox (

c
2

c
3

c
4

h

r1
y r2

y

r1
y r2

y

r1
x r2

x

r1
x r2

x

r2
yr1

x r2
x

n2

h

v

Figure 5.1: Construction of the nk × nk grid, for k = 2. Left: Assigning coordinates to
grid nodes. Right: Propagation of coordinates along horizontal successors.

contain a grid structure of size nk × nk. We then use this grid to simulate the given
Turing machine M as follows. The Ąrst row of the grid stores the initial conĄguration of
M while each subsequent row stores the next conĄguration in some computation of M .
Finally, we eliminate those computations that do not end in acceptance of the word. As
a result, we have that each model of (TM ,Σ,A) corresponds to a computation of M that
accepts encΣ(A), and vice versa: every computation of M that ends in acceptance of
encΣ(A) corresponds to some model of (TM ,Σ,A), for all Σ-ABoxes A. Thus, checking
whether M accepts encΣ(A) boils down to checking whether (TM ,Σ,A) is unsatisĄable,
which is equivalent answering the inconsistency query QM .

We now begin with our construction. In the rest of this section we assume we are given a
GBQ in the form of a nondeterministic Turing machine M = (ΓΣ, Q, δ, q0, qacc, qrej) and
an integer constant k.

5.4.1 Constructing the n
k × n

k Grid

Consider an arbitrary ABox A over some signature Σ. We next show how to build a KB
K = (T ,Σ,A) s.t. that each model I of K contains a nk × nk grid formed by the domain
elements, where n is the number of known individuals (i.e., the number of individuals
occurring in A plus two special constants first and last).

We begin by generating different domain elements that serve as grid nodes. Each such grid
node is associated with two words of length k over the known individuals that serve as its
x- and y-coordinate in the grid. This is accomplished using two sets of functional roles:
r1

x, . . . r
k
x and r1

y, . . . r
k
y . We say that a domain element e has an x-coordinate c1c2 · · · ck, if

(e, ci) participates in ri
x, for each i, 1 ≤ i ≤ k. The y-coordinate of e is deĄned analogously.

This is illustrated in Figure 5.1, left. In the Ąrst step of the construction, we let the
special individual first be the origin of the grid and set its x- and y- coordinates to

143

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5. Descriptive Complexity of OMQs with Closed Predicates

first · · · first. To generate the remainder of the grid nodes, we add axioms that create
a binary tree rooted in first using two roles h and v, denoting horizontal and vertical
successors, respectively. We next assign the x- and y-coordinates to each grid node in
the tree making sure that they respect a certain pattern. To do this, we use a linear
order over the known individuals that we can can easily generate by using first and last

as the designated Ąrst and last elements and guessing the remaining part of the successor
relation, encoded using the role . We then lift this linear order to words of length k over
the available individuals and add axioms that require that for each grid node e with the
horizontal successor e′, the x-coordinate of e′ is the successor of the x-coordinate of e
with respect to the generalized linear order, while the y-coordinate remains unchanged.
We then do a similar thing with the vertical successor e′′ of e. Namely, the y-coordinate
of e′′ is the successor of the y-coordinate of e with respect to the generalized linear order,
while the x-coordinate stays the same. Figure 5.1, on the right illustrates this. It is not
hard to see that all possible pairs of x- and y-coordinates occur within this tree. Now,
the only thing that is left to do is to merge nodes with same coordinates. This is easy:
we simply let the special individual last be the only grid node with last · · · last as its x-
and y-coordinate. Propagating backwards from last while relying on the fact that each
grid node has at most one h- and at most one v-predecessor, we can easily see that each
different combination of the coordinates occurs exactly one time Ű thus we have n2k

different grid nodes. Moreover, the way we assigned their coordinates ensures that they
form a proper grid. We next detail the construction by providing all the relevant axioms.

Collect constants from A. We Ąrst collect in Adom all the individuals occurring
in A:

Adom ≡
⊔

A∈N+
C

∩Σ

A ⊔
⊔

r∈N+
R

∩Σ

(∃r ⊔ ∃r−)

Guess a linear order. We next add the axioms that guess a linear order over the
known individuals, stored using the concept name Node. We use two individuals First

and Last as designated Ąrst and last elements in this linear order. The role stores the
successor relation, and lessThan is a role that stores the induced "less than" relation.

Node ≡ Adom ⊔ ¶First♢ ⊔ ¶Last♢ ¶x♢ ⊓ Node ⊑ ∀lessThan.¬¶x♢
Node ⊑ ∃next.Node ⊔ ¶Last♢ next ⊑ lessThan

Node ⊑ ∃next−.Node ⊔ ¶First♢ (trans lessThan)
func(next) ∃lessThan ⊑ Node

func(next−) ∃lessThan− ⊑ Node

Axioms on the left-hand side are responsible for guessing the successor relation of the
linear order that is being generated. They ensure that all individuals except for the
last one have a successor, and all individuals except for the Ąrst one have a predecessor.
Moreover, successors and predecessors must be unique. Axioms on the right-hand side
say that the transitive closure of next contains no cycles, meaning that we have a proper

144

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5.4. Encoding the Turing Machine

linear order. The last two axioms serve as guards to ensure that a transitivity assertion
is made over a restricted role.

Creating the grid structure. To create a nk × nk grid, we take the approach above
and add, for all 1 ≤ i ≤ k, the following axioms that create a binary tree routed in first

using h and v:

GridNode ⊑
d

1≤i≤k(∃ri
x.Node ⊓ ∃ri

y.Node) func(h)

¶First♢ ≡ GridNode ⊓
d

1≤i≤k(∃ri
x.¶First♢ ⊓ ∃ri

y.¶First♢) func(h−)

GridNode ⊑ ∃h.GridNode ⊔ (
d

1≤i≤k ∃r
i
x.¶Last♢) func(v)

GridNode ⊑ ∃v.GridNode ⊔ (
d

1≤i≤k ∃r
i
y.¶Last♢) func(v−)

d
1≤i≤k ∃r

i
x.¶Last♢ ⊑ ¬∃h.⊤ func(ri

x)
d

1≤i≤k ∃r
i
y.¶Last♢ ⊑ ¬∃v.⊤ func(ri

y)

The Ąrst axiom on the left-hand side states that every grid node has 2k pointers to the
known individuals using functional roles ri

x and ri
y, 1 ≤ i ≤ k that encode its x- and

y-coordinates. The second axiom on the left-hand side sets first as a designated origin
point with x- and y-coordinates first · first. The rest of the axioms simply create the tree.

We next make sure that the coordinates align, i.e., if e′ is an h-successor of e, then
the y-coordinates of e and e′ coincide, while the x-coordinate of e′ is a successor of the
x-coordinate of e w.r.t. to the linear order in extended to words of length k. For example,
if the x-coordinate of e is ck · · · ci · last · · · last, where ci ≠ 1, then the x-coordinate of d is
ck · · · c

′
i · first · · · first, where c′

i is the successor of ci according to the given linear order.
We now deĄne the axioms that do this and add for all i, 1 ≤ i ≤ k:

GridNode ⊓ ¬∃ri
x.¶Last♢ ⊓

d
1≤j≤i ∃r

j
x.¶Last♢ ⊑ IncrXi

IncrXi ⊑ ∀h.(
d

1≤j≤i ∃r
j
x.¶First♢)

¶First♢ ⊑ ∀(ri
x)−.∀h−.∀ri

x.¶Last♢)

¶x♢ ⊑ ∀Node? ◦ (ri
x)− ◦ IncrXi? ◦ h ◦ ri

x ◦ next−.¶x♢)

¶x♢ ⊑ ∀Node? ◦ (rj
x)− ◦ IncrXi? ◦ h ◦ rj

x.¶x♢

¶x♢ ⊑ ∀Node? ◦ (ri
y)− ◦ h ◦ ri

y.¶x♢

We only show how to handle the x-coordinate, the y-coordinate is treated analogously.

Finally, we add the axiom that triggers the merging of the nodes with same coordinates:

¶Last♢ ≡ GridNode ⊓
l

1≤i≤k

(∃ri
x.¶Last♢ ⊓ ∃ri

y.¶Last♢)

145

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5. Descriptive Complexity of OMQs with Closed Predicates

5.4.2 Encoding the Runs

We next simulate the computation of M using the grid we just created. We assume we
have the following concept names available: (i) A1, Ā1, A2, Ā2, As, Ās, for all A ∈ Σ∩NC

and all r ∈ Σ∩NR, (ii) Lγ , for all symbols γ ∈ ΓΣ′

∪ ¶B♢, (iii) Sq, for all q ∈ Q, and (iv)
H< and H>.

Copying A onto the input tape. The Ąrst row of the grid, referred to as the input
tape, represents the initial conĄguration of M . Recall that we encode Σ-ABoxes over
the signature as words of length n2 where each position in the word represents a pair of
individuals in A and each pair of individuals occurring in A is represented by one position
in the word. We now add axioms that make sure that each one of the Ąrst n2 cells on
the input tape corresponds to a single pair of individuals occurring in the KB, while the
remainder of the cells on the input tape are Ąlled out with the blank symbol B. This
is done by assuring that every input cell, i.e., a node in the Ąrst row, has two pointers
to known individuals: hasFst and hasSnd. If for some input cell e there are two known
individuals a, b s.t. (e, a) participates in hasFst and (e, b) participates in hasSnd, then
e represents the pair (a, b). To ensure that all pairs are represented on the input tape,
we follow the same approach as for the grid construction. Namely, the available linear
order is lifted to pairs of known individuals, and we require that a horizontal successor of
some input cell also represents the next pair w.r.t. to this linear order. Once all pairs
are represented, the remaining input cells are set to blank, i.e., they participate in the
concept LB. The axioms that are used to achieve this are given as follows:

InputCell ≡ GridNode ⊓
l

1≤i≤k

∃ri
y.¶First♢

LB ⊑ ¬∃hasFst ⊓ ¬∃hasSnd

InputCell ⊑ LB ⊔ (∃.hasFst.Node ⊓ ∃.hasSnd.Node)

InputCell ⊓
l

1≤i≤k

∃ri
x.¶First♢ ⊑ ∃.hasFst.¶First♢ ⊓ ∃.hasSnd.¶First♢

¬LB ⊓ ¬∃hasFst.¶Last♢ ⊑ IncrFst

∃hasFst.¶Last♢ ⊓ ¬∃hasSnd.¶Last♢ ⊑ IncrSnd

∃hasFst.¶Last♢ ⊓ ∃hasSnd.¶Last♢ ⊑ SwitchToBlank

SwitchToBlank ⊑ ∀h.SwitchToBlank

¶x♢ ⊑ ∀hasFst− ◦ IncrFst? ◦ h ◦ hasFst ◦ next−.¶x♢

¶x♢ ⊑ ∀hasSnd− ◦ IncrFst? ◦ h ◦ hasSnd.¶x♢

¶x♢ ⊑ ∀hasSnd− ◦ IncrSnd? ◦ h ◦ hasSnd ◦ next−.¶x♢

IncrSnd ⊑ ∀h.∃hasFst.¶First♢

SwitchToBlank ⊑ ∀h.LB

We next need put the correct symbols in each cell on the input tape. Recall that, if
position i in the encoding of the ABox represents the pair (a, b), we have the following

146

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5.4. Encoding the Turing Machine

symbol at position i: γ = (¶A : A(a) ∈ A♢, ¶r : r(a, b) ∈ A♢, ¶A : A(b) ∈ A♢) ∈ ΓΣ′

. We
next add axioms that ensure exactly that. Namely, if a cell on the input tape represents
the pair (a, b), then it participates in the concept Lγ . We Ąrst copy the information
about which concept and role names a and b participate in. To this end, for A ∈ Σ ∩NC

and every r ∈ Σ ∩NR we add:

A1 ⊓ Ā1 ⊑ ⊥ ∃hasFst.A ⊑ A1 ∃¬hasFst.A ⊑ Ā1

A2 ⊓ Ā2 ⊑ ⊥ ∃hasSnd.A ⊑ A2 ∃¬hasSnd.A ⊑ Ā2

As ⊓ Ās ⊑ ⊥ ∃hasFst.(¶x♢ ⊓ ∃s.¶y♢) ⊓ ∃hasSnd.¶y♢ ⊑ As

∃hasFst.(¶x♢ ⊓ ¬∃s.¶y♢) ⊓ ∃hasSnd.¶y♢ ⊑ Ās

Finally, for each γ = (T,R, T ′) ∈ ΓΣ, we add:

l

A∈T,
B∈(Σ∩NC)\T

(A1 ⊓ B̄1) ⊓
l

A∈T ′,
B∈(Σ∩NC)\T ′

(A2 ⊓ B̄2) ⊓
l

s∈R,
(r∈Σ∩NR)\R

(As ⊓ Ār) ⊑ Lγ ,

We now use the rest of the grid to simulate the computation of the TM M . Recall that a
row in the grid stores a conĄguration that M is currently in, while v corresponds to time.
To this end, we need to ensure that for each row ϱ in the grid satisĄes two conditions.
Firstly, there is exactly one element e in ϱ where Sq holds for some and at most one
q ∈ Q. For other elements e′ ̸= e in ϱ, Sq does not hold for any q. Secondly, for all
elements of e in ϱ, Lγ holds for exactly one γ ∈ Γ∪ ¶B♢. It is then clear that each row is
indeed a valid encoding of some conĄguration of M . If Sq for a node e in ϱ, then M is in
state q and the read-write head is in the position e.

We next add the axioms that ensure that at the beginning, M is in the state q0 and the
read-write head is above the Ąrst symbol:

InputCell ⊓
l

1≤i≤k

ri
x.¶First♢ ⊑ Sq0 Sq ⊑

l

q′∈(Q\¶q♢)

Sq′ , for all q ∈ Q

Further, for all (q, γ) ∈ Q × Γ ∪ ¶B♢, we add the following axiom that selects one
conĄguration among possible next conĄgurations, and overwrites the current symbol,
changes the state and moves the read-write head accordingly:

Sq ⊓ Lγ ⊑
(

⊔

(q′,γ′,+1)∈δ(q,γ)

∀v.(Lγ′ ⊓ ∀h.Sq′)
)

⊔
(

⊔

(q′,γ′,−1)∈δ(q,γ)

∀v.(Lγ′ ⊓ ∀h−.Sq′)
)

For all states q ∈ Q, we mark the positions that are not under the read-write head:

Sq ⊑ (∀h.H<) ⊓ (∀h−.H>) H< ⊑
l

q∈Q

Sq′ ⊓ ∀h.H< H> ⊑
l

q∈Q

Sq′ ⊓ ∀h−.H<

147

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5. Descriptive Complexity of OMQs with Closed Predicates

The intuition of the above is as follows. If in some position e we have Sq, then all the
position to the right from e are marked with H<. Intuitively, H< (resp. H>) says that
the read-write head is behind (resp. ahead) and thus these positions do not participate
in Sq, for any q.

As one of the last steps, we need to add an axiom that copies the content of the tape
that is not overwritten. For all γ ∈ Γ ∪ ¶B♢ we add: Lγ ⊓ (H> ⊔H<) ⊑ ∀v.Lγ

We are now almost done with our construction of TM : for any Σ-ABox A, each model of
(T ,Σ,A), where T is the TBox we have constructed so far, corresponds to one possible
computation of M on the encoding of A. By assumption, M always terminates, which
means that in each model of the theory we will either have some object for which qacc holds
or some object for which qrej holds. Finally, to obtain TM , we add the axiom qrej ⊑ ⊥
to T . Now, every model of (TM ,Σ,A) corresponds to computation of M accepting the
encoding of A. Thus, for QM = (TM ,Σ), QM (A) = 1 if and only if there are no accepting
computations of M ran on encΣ, that is, Q(A) = 1.

5.5 Discussion

In this chapter, we have discussed some of the expressiveness limitation of very expressive
OMQ languages, and then proposed an extension of ALCHOIF equipped with closed
predicates as OMQ language that captures precisely the class of generic Boolean queries
over ABoxes that are computable in coNP.

We saw that ALCHOI with closed predicates and IQs/inconsistency queries cannot
express all coNP computable queries. However, the relationship between richer OMQ
languages that are based on this logic, e.g., CQs mediated by ALCHOI ontologies
with closed predicates and coNP remains unclear. We note that there is no known
upper bound on the data complexity of this language, so investigating this problem is
an important step towards characterization of its expressive power. Another question
that remains open is whether inconsistency queries mediated by plain ALCHOIF (i.e.,
without nominal schemata) ontologies with closed predicates can express all coNP
computable GBQs. At this point the argument of Theorem 5.2.3 cannot be adapted.
To see this, observe that the key observation leading to the result of Theorem 5.2.3 is
that there is an algorithm that checks whether a given ALCHOI KB K = (T ,Σ,A) is
satisĄable in ♣A♣k × l + v, where k, l, v are constants and k does not depend on T or
Σ. However, in our satisĄability procedure for ALCHOIF with closed predicates, this
constant depends on the TBox.

We conclude this chapter by observing that the arguments presented in the chapter can
also be applied to standard Horn-DLs (with no closed predicates). For instance, the
OMQ language that couples inconsistency and instance queries with ELHIF ontologies
is PTime-hard, but it cannot express all queries computable in PTime. We believe that
extending ELHIF with a built-in linear order is not sufficient to capture PTime, but

148

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5.5. Discussion

that the further addition of the features described in Section 5.2.1 leads to a DL that
precisely captures PTime. This remains to be investigated in our future work.

149

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

CHAPTER 6
Reasoning about Predicate

Boundedness

A distinguishing feature of DLs, aimed at dealing with information incompleteness, is the
ability to describe and reason about anonymous objects, that is, elements in the domain
of interest that are not represented by known individuals but whose existence is logically
implied by the background knowledge.

Consider a simple TBox with the following two axioms:

Employee ≡ ¶Robin♢ ⊔ ¶Skyler♢

Employee ⊑ ¬Task ⊓ ≥ 2hasTask.Task ⊓ ≤ 5hasTask.Task

which state that Robin and Skyler are precisely the employees of some company, that
the sets of employees and tasks are disjoint, and that each employee must be assigned
between 2 and 5 tasks to work on. If we inspect the models of this TBox, then the named
objects corresponding to Robin and Skyler will be associated with 2 to 5 anonymous
objects corresponding to tasks.

When the number of anonymous objects cannot be bounded (e.g., when it is forced to be
inĄnite by a recursive TBox), one often faces high computational complexity of standard
reasoning tasks, and undecidability of more sophisticated problems, like answering Datalog-
based recursive queries (see, e.g., [LR98, Ros07a]) or reasoning about data-manipulating
actions (see, e.g., [BHCDG+13]). However, in many scenarios, the number of anonymous
objects in relevant predicates can be inferred to be bounded due to numeric constraints
present in the TBox. For example, if we add to the above TBox the statement that every
task must be associated to an employee (Task ⊑ ∃hasTask−.Employee), then the extension
of Task in any model is bounded by 10. We suggest [BBR20] for a longer discussion of
numeric constraints in DLs.

151

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6. Reasoning about Predicate Boundedness

The question we investigate in this chapter is the existence of upper bounds on predicate
sizes for ontologies written inALCHOIQ with closed predicates. Our goal is to understand
when and how we can infer bounds on the sizes of open predicates from the extensions of
closed predicates, by taking into account the (numeric and other) constraints speciĄed in
a TBox.

Contributions and Relevant Publications. Our contributions can be summarized
as follows:

• We introduce the notion of bounded predicates for DLs with closed predicates.
Intuitively, a predicate is bounded w.r.t a concrete knowledge base, if there exists an
integer constant that provides an upper bound on the size of the predicate’s extension
in all models of the knowledge base. Since we are interested in aiding the design of
ontologies and ontology-mediated queries, we also consider a stronger variant of
predicate boundedness that requires the predicate to be bounded independently of
the actual extensional data stored in a knowledge base.

• We formalize two decision problems Ű checking predicate boundedness in the weak
and in the strong sense, and we characterize their computational complexity. For
ALCHOIQ, our method is based on integer programming and it involves an
intermediate step that reformulates the problem in terms of another problem called
finite-infinite satisfiability. The task in this problem is to check whether a TBox
has a model in which some speciĄc predicates have a finite extension, while some
other given predicates have an infinite extension. This is closely related to mixed
satisfiability studied in [GGI+20] and is interesting in its own right.

• We show that our results yield worst-case optimal complexity bounds in all cases.
SpeciĄcally, checking boundedness in the weak and the strong sense is co-NExpTime-
complete for ALCHOIQ TBoxes. Moreover, in case predicate boundedness is
inferred, the concrete bound can be readily computed; it is double exponential in
the size of the input. This is worst-case optimal: one can craft a TBox that forces
a double exponential number of elements in a bounded predicate. For the case of
strong boundedness, we show that there exists a function fT ,Σ depending on T and
Σ, such that fT ,Σ computes a Ąnite upper bound on the number of different domain
elements that can occur in extensions of predicates that are bounded w.r.t T and Σ,
for all models of (T ,Σ,A), where A is an arbitrary ABox A over the signature of T
with at most n distinct individuals. This function is generally doubly-exponential
in the size of (T ,Σ,A), but it is polynomial function if we Ąx the TBox, i.e., the
number of elements in bounded predicates will grow polynomially in the size of the
input ABox.

• Finally, we show how our results can be used to extend safe-range queries introduced
in Chapter 4 as well as to deĄne a new decidability-ensuring safety condition for
OMQs based on ALCHOIQ and Datalog, providing worst-case optimal results

152

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6.1. Bounded Predicates

on the combined and data complexity. This is interesting because there are very
few positive results on query answering in this expressive DL. We also infer that
the data complexity of satisĄability of ALCHOIQ KBs with closed predicate is
coNP-complete.

The results from this chapter have been published in:

[LŠ21] Sanja Lukumbuzya, and Mantas Šimkus. ŞBounded Predicates in
Description Logics with CountingŤ. In Proceedings of the Thirtieth Interna-
tional Joint Conference on ArtiĄcial Intelligence, IJCAI 2021, pp. 1966-1972.
2021.

Organization. The rest of this chapter is organized as follows. In Section 6.1, we
introduce two notions of predicate boundedness with respect to Ąrst-order logic theories
and a set of distinguished predicates: (i) weak boundedness, i.e., predicates whose
extension is bounded in size in all models of a given KB and (ii) strong boundedness,
which is the data independent version of weak boundedness, i.e., predicates that are
weakly bounded in all KBs (T ,Σ,A), for a given FO-theory T and Σ. We next deĄne
the problem of FI-satisĄability of FO theories which asks whether some theory T has a
model in which some predicates must have Ąnite extensions while some other predicates
must have inĄnite extensions. Finally, we show that we can reduce the problem of
deciding whether all predicates in some set are strongly bounded w.r.t. some theory T
and set of predicates Σ by reduction to FI-unsatisĄability. In Section 6.3 we show how
we can use integer programming to decide boundedness when FO theories are written in
ALCHOIQ and we provide tight complexity results as well as a general bound on the size
of extensions of bounded predicates. Finally, in Section 6.4, we use bounded predicates
to show decidability and complexity results for answering Datalog and safe-range queries
with a relaxed safety condition, followed by a discussion of our results in Section 6.5.

6.1 Bounded Predicates

Let us begin with an example that illustrates boundedness of predicates.

Example 6.1.1. Consider an ALCHOIQ TBox T consisting of the following axioms:

Empl ⊑≤ 5 assgndTo.Proj,

Proj ⊑≥ 1assgndTo−.Empl,

Empl ⊓ Proj ⊑ ⊥,

stating that each employee in some company can be assigned to at most five projects,
that all projects must be assigned to least one employee, and that the sets of projects and
employees are disjoint. Let A be an arbitrary ABox over Empl that lists all n employees
of the company, i.e., A = ¶Empl(a1), . . . ,Empl(an)♢. Further, let I be an arbitrary model

153

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6. Reasoning about Predicate Boundedness

of (T , ¶Empl♢,A). As Empl is viewed as a closed predicate, ♣EmplI ♣ = ♣A♣ = n. Taking
into account the axioms from T , it is easy to see that the number of projects in I can be
at most 5n, i.e., ♣ProjI ♣ ≤ 5n. Therefore, the size of the extensions of Proj is in a way
bounded w.r.t. T and Empl.

Consider a TBox T and a set of predicates Σ occurring in T . Intuitively, the predicates
in Σ are either considered closed or their extensions are known to be of bounded size.
We next formally deĄne what it means for some predicate to be bounded with respect
to a speciĄc knowledge base (T ,Σ,A), in case we are given an ABox A, as well as with
respect to T and Σ, if the ABox is not given.

DeĄnition 6.1.2. Let T be a DL TBox, Σ be a set of predicates occurring in T , and
A be an ABox over the signature of T . A predicate p is bounded w.r.t the knowledge
base (T ,Σ,A) if there exists an integer bound b ∈ N s.t. in every model I of (T ,Σ,A),
♣pI ♣ ≤ b holds. We say that p is bounded w.r.t T and Σ if p is bounded w.r.t. (T ,Σ,A),
for every ABox A over the signature of T .

Based on the deĄnition above, we can deĄne two decision problems. The Ąrst problem is
the problem of deciding whether all predicates in a given set are bounded w.r.t. a given
TBox formulated in the DL L and a set of closed predicates is called strong boundedness,
or Boundedness(L), and it is deĄned as follows:

Boundedness(L)

Input: A triple (T ,Σ,ΣB), where T is a TBox in DL L and Σ,ΣB

are sets of predicates occurring in T .

Question: Is each p ∈ ΣB bounded w.r.t. T and Σ?

Notation: For a given TBox T and a set of predicates Σ ⊆ NC ∪ NR, let BP(T ,Σ) be
the set of all predicates occurring in T and Σ that are bounded w.r.t. T and Σ:

BP(T ,Σ) = ¶p ∈ NC(T) ∪ NR(T) ∪ Σ : p is bounded w.r.t. T and Σ♢.

Moreover, let BC(T ,Σ) = BP(T ,Σ) ∩ NC and BR(T ,Σ) = BP(T ,Σ) ∩ NR.

The second decision problem, called weak boundedness, or W-Boundedness(L), refers to
the problem of deciding, given an L-KB K and a set ΣB of predicates over the signature
of T , whether all predicates in ΣB are bounded w.r.t. K.

154

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6.1. Bounded Predicates

W-Boundedness(L)

Input: A pair (K,ΣB), where K = (T ,Σ,A), T is a TBox in DL L,
Σ,ΣB are sets of predicates occurring in T , and A is an ABox
over the signature of T .

Question: Is each C ∈ ΣB bounded w.r.t. K?

Boundedness via FI-SatisĄability. We now focus speciĄcally on strong boundedness
for description logics that are fragments of the Ąrst-order logic. Note that, if not speciĄed
otherwise, under boundedness we understand strong boundedness. As a technical tool
we introduce another decision problem called FI-satisfiability, or FI-SAT(L), which is
the problem of deciding for a given TBox T expressed in the DL L, and two sets of
predicates ΣF and ΣI , whether T has a model in which all the predicates in ΣF have
Ąnite extensions and all the predicates in ΣI have inĄnite extensions.

FI-SAT(L)

Input: A triple (T ,ΣF ,ΣI), where T is a TBox in DL L, ΣF ∪ ΣI

is a set of predicates occurring in T .

Question: Is there an FI-model of (T ,ΣF ,ΣB), i.e., a model I of T
s.t. pI is Ąnite for all p ∈ ΣF and is inĄnite for all p ∈ ΣI?

If an instance (T ,ΣF ,ΣI) of FI-SAT(L) has an FI-model, we say that this instance is
FI-satisfiable, otherwise it is FI-unsatisfiable.

Example 6.1.3. Recall the TBox T from Example 6.1.1 and let ΣF = ¶Empl♢, ΣI =
¶Proj♢. Let I be an arbitrary model of I such that EmplI is finite. We have already
argued that the axioms of T force us to have ♣ProjI ♣ ≤ 5 · ♣EmplI ♣. Thus, whenever EmplI

is finite, so is ProjI and the triple (T ,ΣF ,ΣI) is not FI-satisfiable.

By contrast, the triple (T ,Σ′
F ,Σ

′
I) where Σ′

F = ¶Proj♢ and Σ′
I = ¶Empl♢, is FI-satisfiable.

Indeed, it is easy to see that T has a model in which there are infinitely many employees
but only finitely many projects.

We next show that we can reduce the boundedness problem to deciding FI-satisĄability.
From the DeĄnition 6.1.2, it is easy to observe that a concept or a role name p is not
bounded w.r.t. T and Σ if and only if there exists an ABox A over the signature of T
such that for every natural number n there exists a model I of (T ,Σ,A) with ♣pI ♣ > n.
The following proposition, formulated for FO, shows that in this case (T ,Σ,A) also has
a model in which the extension of p is inĄnite.

155

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6. Reasoning about Predicate Boundedness

Proposition 6.1.4. Let T be an arbitrary FO theory and let p be a unary or a binary
predicate. If for every natural number n there exists a model I of T in which ♣pI ♣ > n,
then there also exists a model J of T in which pJ is infinite.

Proof. Let p be a binary predicate. For every k ≥ 1, let φk be a formula which is satisĄed
by interpretations in which there are k or more tuples in the extension of p:

φk := ∃x1, x
′
1, . . . , xk, x

′
k

∧

1≤i<j≤k

(xi ̸= xj ∨ x
′
i ̸= x′

j) ∧ p(xi, x
′
i).

Consider the FO theory T ′ = T ∪ ¶φn : n ≥ 1♢. As for every n, there is a model I
of T in which ♣pI ♣ > n, every Ąnite subset of T ′ is satisĄable. By compactness of FO,
T ′ is satisĄable as well. However, by construction, T ′ only admits models in which the
extension of p is inĄnite. Hence, there exists a model J of T ′ such that pJ is inĄnite.
As T ⊆ T ′, J is also a model of T and so there is a model of T in which the extension
of p is inĄnite. The case where p is a unary predicate is shown analogously.

In view of the previous proposition, it is easy to show that the problem of boundedness
reduces to deciding FI-unsatisĄability.

Proposition 6.1.5. Let T be a TBox in DL L, and Σ,ΣB be sets of predicates occurring
in T . (T ,Σ,ΣB) is a yes-instance of Boundedness(L) if and only if (T ,Σ, ¶p♢) is a
no-instance of FI-SAT(L), for all p ∈ ΣB.

Proof. We Ąrst show that a predicate p ∈ ΣB is not bounded w.r.t. T and Σ if and only
if there exists a model I of T in which all predicates from Σ have Ąnite extensions and
pI is inĄnite.

(⇒:) Assume that p is not bounded w.r.t. T and Σ. By deĄnition, this means that
there is some ABox A over the signature of T s.t. for every b ∈ N, there exists a model
J of (T ,Σ,A) in which ♣pJ ♣ > b. Note that, since we are considering DLs that are
fragments of FO, we can obtain from (T ,Σ,A) an FO theory T ′ whose models coincide
with those of (T ,Σ,A) as follows:

T ′ = fo(T) ∪ A ∪ ¶φp : p ∈ Σ♢,

where fo(T) is a theory obtained by translating T into FO, and for every p ∈ Σ, φp

encodes the semantics of the closed predicates. Namely, for each concept name A ∈ Σ,
we let ∆A = ¶c : A(c) ∈ A♢ and φA := ∀xA(x)→

∨

c∈∆A
x = c. For a role name r ∈ Σ,

φr is deĄned in a similar manner. It is easy to see that T ′ has exactly the same models
as (T ,Σ,A). Due to Proposition 6.1.4, there exists a model I of T ′ (and thus also of
(T ,Σ,A)) in which pI is inĄnite. As ABoxes are Ąnite by deĄnition and the extensions
of the predicates in Σ are fully speciĄed by A, we have that the predicates in Σ have
Ąnite extensions in I.

156

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6.2. FI-enriched Systems and Programs

(⇐:) Let J be a model of T s.t. the predicates in Σ have Ąnite extensions and p has an
inĄnite extension in J , and let A = ¶q(c⃗) : c⃗ ∈ qI , q ∈ Σ♢. As J is a model of (T ,Σ,A)
and ♣pJ ♣ > k, for all k ∈ N, p is not bounded w.r.t. T and Σ.

We have therefore shown that a predicate p ∈ ΣB is bounded w.r.t. T and Σ if and
only if (T ,Σ, ¶p♢) is a no-instance of FI-SAT(L). The result of the proposition is now
immediate.

Corollary 6.1.6. Let T be a TBox in DL L, and Σ,ΣB be sets of predicates occurring
in T . (T ,Σ,ΣB) is a yes-instance of Boundedness(L) if and only if (T ,Σ, ¶p♢) is a
no-instance of FI-SAT(L), for all p ∈ ΣB.

6.2 FI-enriched Systems and Programs

In this Section, we introduce FI-enriched systems as an auxiliary tool that will be useful
in for analyzing predicate boundedness when the theory is written in the DL ALCHOIQ.
Intuitively, FI-enriched systems further extend the notion of enriched systems introduced
in Chapter 3 (see DeĄnition 3.2.18) in a way that allows us to specify that certain
variables must take on Ąnite values, as well as that in a certain set of variables, at least
one variable needs to take on the inĄnite value ℵ0. We next formally deĄne such systems.

DeĄnition 6.2.1. An FI-enriched system (of integer linear inequalities) is a tuple
(V, E , VF , VI , I), where:

• V is a set of variables,

• E is a set of inequalities of the form

a1 · x1 + · · ·+ an · xn + c ≤ b1 · y1 + · · ·+ bm · ym + d,

where a1, . . . , an, b1, . . . , bm ≥ 0 are variable coefficients, c, d ≥ 0 are constant
coefficients, and x1, . . . , xn, y1, . . . , ym ∈ V ,

• VF ⊆ V ,

• VI ⊆ 2V , and

• I is the set of implications of the form α⇒ β, where α and β are inequalities.

We also extend the deĄnition of solutions as follows. We say that a function S : V → N∗

is a solution of (V, E , VF , VI , I) over N∗ if all inequalities and implications are satisĄed
and additionally:

• S(x) ̸= ℵ0, for every x ∈ VF ,

• for every set X ∈ VI , there exists some variable x ∈ X s.t. S(x) = ℵ0.

157

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6. Reasoning about Predicate Boundedness

Another notion that will be useful throughout this chapter is the notion of FI-enriched
integer linear programs that couple FI-enriched systems with an objective function that
admissible solutions should maximize.

DeĄnition 6.2.2. An FI-enriched integer linear program (FI-enriched ILP), is a pair
I = (a1 · x1 + · · ·+ an · xn,F), where F = (V, E , VF , VI , I) is an FI-enriched system of
integer linear inequalities, x1, . . . , xn ∈ V and a1, . . . , an are integers. A solution S to
F over N∗ is an optimal solution to I if for all solutions S′ of F over N∗ we have that
a1·S(x1)+· · ·+an·S(xn) ≥ a1·S

′(x1)+· · ·+an·S
′(xn). The value a1·S(x1)+· · ·+an·S(xn)

is the optimal value of I.

In the rest of this section, we show that we can decide existence of solutions to FI-enriched
systems as well as compute optimal solutions to FI-enriched ILPs using ordinary integer
programming techniques. In Chapter 3 we deĄned ordinary systems of integer linear
inequalities. Ordinary integer linear programs can be deĄned analogously to FI-enriched
ILPs.

DeĄnition 6.2.3. We call a pair (a1 · x1 + · · ·+ an · xn,S), where a1, . . . , an are integers
and x1, . . . , xn ∈ V , an enriched integer linear program (enriched ILP) if S = (V, E , I) is
an enriched system and ordinary integer linear program (ordinary ILP) if I = ∅. Optimal
solutions and optimal values of enriched and ordinary ILPs are defined analogously to
those of FI-enriched ILPs, but only solutions to S over N are considered.

An ordinary ILP may have none, one or multiple optimal solutions. However, it follows
from well-known integer programming results (cf. Theorem 10.3 in [Sch99]) that if an
ordinary ILP has an optimal solution, then it has one in which all values are bounded by
a certain function. We recall this result below.

Proposition 6.2.4. Let I = (a1 · x1 + · · · + an · xn,S) be an ordinary ILP, where
S = (V, E). Assume that I has a finite optimum value b, let c be a coefficient in E s.t.
for all other coefficients c′ occurring in E, ♣c♣ ≥ ♣c′♣, and let a = max¶♣c♣, ♣a1♣, . . . , ♣an♣, 1♢.
Then

b ≤ (a+ 1)16(♣V ♣+♣E♣+♣V ♣·♣E♣).

Proof. From Theorem 10.3 in [Sch99], we have that the following holds:

2 + log2(b+ 1) ≤ 4(♣V ♣ · ♣E♣+ ♣V ♣ · ♣E♣ · (2 + log2(a+ 1)) + ♣E♣+ ♣E♣ · (2 + log2(a+ 1)))

+ ♣V ♣+ ♣V ♣ · (2 + log2(a+ 1))

≤ 4(♣V ♣ · ♣E♣+ ♣V ♣+ ♣E♣) · (3 + log2(a+ 1))

≤ 4(♣V ♣ · ♣E♣+ ♣V ♣+ ♣E♣) · (4 log2(a+ 1))

≤ 16(♣V ♣ · ♣E♣+ ♣V ♣+ ♣E♣) · log2(a+ 1).

From this, it is easy to see that b ≤ (a+ 1)16(♣V ♣·♣E♣+♣V ♣+♣E♣).

158

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6.2. FI-enriched Systems and Programs

We next show that we can transfer the above-presented complexity results as well as
properties of ordinary systems and ILPs to the FI-enriched setting. Relying on the result
from [GGBIG+19] (see proof of Theorem 13 in [GGBIG+19]), given an FI-enriched
system F , we can reduce F to an enriched system S = (V ′, E ′, I ′) whose solutions over N

correspond to the solutions of F over N∗.

Proposition 6.2.5. Let F = (V, E , VF , VI , I) be an FI-enriched system such that all the
coefficients of F are in ¶0,±1, . . . ,±a♢. We can obtain in polynomial time an enriched
system S = (V ′, E ′, I ′) from F with the following properties:

• For every solution S of F over N∗, there is a solution S′ of S over N such that
S(x) = S′(x), for every x ∈ V with S(x) ̸= ℵ0,

• For every solution S′ of S over N∗, there is a solution S of F over N∗ such that
either S(x) = S′(x) or S(x) = ℵ0, for every x ∈ V ,

• ♣V ′♣ = 2♣V ♣,

• ♣E ′♣ ≤ ♣E♣+ ♣VF ♣+ ♣VI ♣,

• ♣I ′♣ ≤ ♣I♣+ ♣E♣, and

• all coefficients in S are in ¶0,±1, . . . ,±a♢.

Proof. (Proof adapted from [GGI+20]) The enriched system S is obtained as follows. For
every variable x ∈ V we introduce a fresh variable x∞ and set V ′ = V ∪ ¶x∞ : x ∈ V ♢.

The set E ′ of inequalities is obtained from E as the smallest set that contains:

• x∞ = 0, for every x ∈ VF ,

• x∞
1 + · · ·+ x∞

n > 0, for every set ¶x1, . . . , xn♢ ∈ VI , and

• a1 · x1 + · · ·+ an · xn + c ≤ b1 · y1 + y∞
1 + · · ·+ bm · ym + y∞

m + d, for each inequality
a1 · x1 + · · ·+ an · xn + c ≤ b1 · y1 + · · ·+ bm · ym + d ∈ E .

Furthermore, the set I ′ of implications is obtained from I as the smallest set for which
the following holds:

• For every implication α =⇒ β ∈ I, where

α = a1 · x1 + · · ·+ an · xn + c ≤ b1 · y1 + · · ·+ bm · ym + d,

β = a′
1 · x

′
1 + · · ·+ a′

l · x
′
l + c′ ≤ b′

1 · y
′
1 + · · ·+ b′

k · y
′
k + d′,

α′ =⇒ β′ ∈ I ′, where α′ and β′ are deĄned as follows:

α′ = a1 · x1 + x∞
1 + · · ·+ an · xn + x∞

n + c ≤ b1 · y1 + · · ·+ bm · ym + d,

β′ = a′
1 · x

′
1 + · · ·+ a′

l · x
′
l + c′ ≤ b′

1 · y
′
1 + y′∞

1 + · · ·+ b′
1 · y

′
1 + y′∞

1 + d′.

159

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6. Reasoning about Predicate Boundedness

• For every inequality a1 · x1 + · · ·+ an · xn + c ≤ b1 · y1 + · · ·+ bm · ym + d ∈ E , we
have that 1 ≤ x∞

1 + · · ·+ x∞
n =⇒ 1 ≤ y∞

1 + · · ·+ y∞
m is in I ′.

Let S = (V ′, E ′, I ′). We next show that S has a solution over N if and only if F has
a solution over N∗. Indeed, let S be a solution of F over N∗ and let B = 1 + c +
∑

x∈V,S(x) ̸=ℵ0
c · S(x), where c be the maximal coefficient in F . Let S′ : V ′ → N be a

function deĄned as follows:

S′(x) =



























S(x), if x ∈ V and S(x) ̸= ℵ0,

0, if x ∈ V and S(x) = ℵ0,

0, if x = y∞, y ∈ V, and S(y) ̸= ℵ0,

B, if x = y∞, y ∈ V, and S(y) = ℵ0.

It is easy to verify that S′ is indeed a solution to S. Conversely, let S′ be a solution to S
and let S : V → N∗ be a function deĄned as

S(x) =

{

S′(x), if x∞ ∈ V ′ and S′(x∞) = 0,

ℵ0, if x∞ ∈ V ′ and S′(x∞) > 0.

Once again, we can readily verify that S is a solution to F .

By the construction of S, we can easily see that:

• ♣V ′♣ = 2♣V ♣,

• ♣E ′♣ ≤ ♣E♣+ ♣VF ♣+ ♣VI ♣,

• ♣I ′♣ ≤ ♣I♣+ ♣E♣, and

• all coefficients in S are in ¶0,±1, . . . ,±a♢.

The proposition above allows us to transfer the following results from enriched systems
to FI-enriched systems.

Proposition 6.2.6. An FI-enriched system F = (V, E , VF , VI , I) with the coefficients
from ¶0,±1, . . . ,±a♢ has a solution over N∗ if it has a solution over N∗ where all finite
values are bounded by:

(2♣V ♣+ ♣I♣+ 2♣E♣+ ♣VF ♣+ ♣VI ♣) · ((2♣E♣+ ♣VF ♣+ ♣VI ♣+ ♣I♣) · a)2(2♣E♣+♣VF ♣+♣VI ♣+♣I♣)+1.

Moreover, deciding whether F has a solution over N∗ is in NP.

160

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6.2. FI-enriched Systems and Programs

Proof. Let S = (V ′, E ′, I ′) be an enriched system obtained from F with the properties
from Proposition 6.2.5. Due to Proposition 3.2.22, if S has a solution over N, then it has
one in which all values are bounded by (♣V ′♣+ ♣I ′♣+ ♣E ′♣) · ((♣E ′♣+ ♣I ′♣) · a)2(♣E ′♣+♣I′♣)+1,
where a is the maximal coefficient in S. Thus, in view of Proposition 6.2.5, we can
conclude that if F has a solution over N∗, then it has one in which all Ąnite values are
bounded by

(2♣V ♣+ ♣I♣+ 2♣E♣+ ♣VF ♣+ ♣VI ♣) · ((2♣E♣+ ♣VF ♣+ ♣VI ♣+ ♣I♣) · a)2(2♣E♣+♣VF ♣+♣VI ♣+♣I♣)+1.

Furthermore, as we can decide in NP whether S has a solution over N and S was obtained
in polynomial time from F , the NP upper bound for FI-enriched systems follows.

We have already seen that we can decide if an enriched system S has a solution by non-
deterministically constructing an ordinary system that completes the set of inequalities
of S with the inequalities occurring in the implications of S s.t. all solutions to this
ordinary system are also solutions to S. Together with the previous two propositions, we
can now show that there is an upper bound on the optimal value of FI-enriched systems.

Proposition 6.2.7. Let I = (a1 · x1 + · · · + an · xn,F) be an enriched ILP, where
F = (V, E , VF , VI , I), and assume that I has a finite optimal value b. Then b ≤ (a +
1)16(2♣E♣+♣I♣+♣VF ♣+♣VI ♣+1)·(2♣V ♣+1), where c is a coefficient in F with the maxium absolute
value and a = max¶c, ♣a1♣, . . . , ♣an♣, 1♢.

Proof. Let I = (a1 · x1 + · · · + an · xn,F) be an FI-enriched linear program, where
F = (V, E , VF , VI , I). Moreover, let I′ = (a1 · x1 + · · ·+ an · xn,S), where S = (V ′, E ′, I ′)
is an enriched system as described in Proposition 6.2.5.

Observation 6.2.8. It is immediate from the properties of S in Proposition 6.2.5 that I
has the finite optimal value b if and only if b is the optimal value of I′.

Furthermore, it is implicit in the proof of Proposition 3.2.22 that we can obtain a set
of ordinary systems S such that the set of solutions to S over N coincides with the set
consisting of all functions that are solutions over N to some S ′ ∈ S. More precisely, the
set S is obtained as follows:

S = ¶(V ′, E ′ ∪ X) : ♣X ♣ = I and for each α =⇒ β ∈ I, either α ∈ X or β ∈ I♢,

where α denotes the inequality corresponding to the negation of α.

Let P = ¶(a1 · x1 + · · ·+ an · xn,S
′) : S ′ ∈ S♢. It is now easy to show that I has a Ąnite

optimal value b if and only if all ILPs in P have optimal solutions and the following
holds:

max¶a1 · S(x1) + · · ·+ an · S(xn) : S is an optimal solution to some ILP in P♢ = b.

161

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6. Reasoning about Predicate Boundedness

(⇒:) Assume that I has an optimal solution S with a Ąnite optimal value b. Due to
Observation 6.2.8, b is the optimal value of I′. This means that there is a solution S′ to
S over N such that a1 · S

′(x1) + · · ·+ an · S
′(xn) = b. Furthermore, S′ must be a solution

to some ILP in P and so, we have:

max¶a1 · S(x1) + · · ·+ an · s(xn) : S is an optimal solution to some ILP in P♢ ≥ b.

Let S ′ be an ILP in S and assume towards a contradiction that either (i) S ′ in S

that does not have a Ąnite optimal value or (ii) S ′ has an optimal solution S′ s.t.
a1 · S

′(x1) + · · ·+ an · S
′(xn) > b.

(i) Assume that S ′ does not have an optimal solution. In particular, this means that for
every solution S1 of S ′, there is another solution S2 of S ′ s.t. a1 · S1(x1) · · · an · S1(xn) <
a1 · S2(x1) · · · an · S2(xn). As all of these solutions are also solutions of S, it follows that
there exists a solution S′′ of S over N for which a1 · S

′′(x1) + · · ·+ an · S
′′(xn) > b which

is a contradiction to the optimality of b.

(ii) Assume that S ′ has an optimal solution S′′ s.t. a1 · S
′′(x1) + · · ·+ an · S

′′(xn) > b.
The argument is now the same as in the previous case. This S′′ is also a solution to S
which is a contradiction to the optimality of b.

(⇐:) Assume that all ILPs in P have optimal solutions and the following holds:

max¶a1 · S(x1) + · · ·+ an · S(xn) : S is an optimal solution to some ILP in P♢ = b.

Assume towards a contradiction that (I) one of the following holds: (i) has no optimal
solution, (ii) has an optimal solution S s.t. a1 · S(x1) + · · ·+ an · S(xn) = ℵ0, or (iii) has
a Ąnite optimal value that is greater than b.

(i) Assume that I has no optimal solution. In particular, this means that for every solution
S1 of F over N∗, there is another solution S2 of F over N∗ s.t. a1 ·S1(x1) · · · an ·S1(xn) <
a1 ·S2(x1) · · · an ·S2(xn). We also point out that in this case, none of the S(x1), . . . , S(xn)
can be ℵ0, since according to our deĄnition of optimal solutions, that would make S
optimal. Due to the properties of S, we can conclude that S also does not have an
optimal solution and hence there must be at least one ILP in S for which the same holds,
contradicting our assumption.

(ii) Assume that I has an optimal solution S s.t. a1 ·S(x1)+ · · ·+an ·S(xn) = ℵ0. In this
case, we can show that the enriched system S once again has no solution that maximizes
a1 · x1 + · · · + an · xn. Indeed, for each n ≥ 0, the function S′ : V ′ → N that assigns
S′(x) = S(x), if S(x) ̸= ℵ0, and S(x) = 1 + c +

∑

x∈V,S(x) ̸=ℵ0
c · S(x) + n, otherwise,

where c be the maximal coefficient in F , is a solution to S. The rest of the argument is
now the same as in the previous case.

(iii) Assume that I has a Ąnite optimal value b′ s.t. b′ > b. Then, I′ has the optimal
value b′, which means there is a solution S′ to S such that a1 · S

′(x1) · · · an · S
′(xn) = b′.

162

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6.3. The case of ALCHOIQ

This means that there must be some ILP in S s.t. S′ is a solution to it, which is a
contradiction to b being the maximal value among the optimal values of ILPs in S.

By the construction of S and the enriched system S, we have that the following holds
for each S ′ = (V ′′, E ′′) ∈ S:

• ♣V ′′♣ = ♣V ′♣ ≤ 2♣V ♣,

• ♣E ′′♣ ≤ ♣E ′♣+ ♣I ′♣ ≤ 2♣E♣+ ♣I♣+ ♣VF ♣+ ♣VI ♣, and

• every constant occurring in S (and therefore in F) also occurs in S ′.

In view of Proposition 6.2.4, we therefore have that the value

max¶a1 · S(x1) + · · ·+ an · S(xn) : S is an optimal solution to some ILP in P♢

is bounded by

(a+ 1)16(2♣V ♣+(2♣E♣+♣I♣+♣VF ♣+♣VI ♣)+2♣V ♣·(2♣E♣+♣I♣+♣VF ♣+♣VI ♣),

and thus also by
(a+ 1)16(2♣E♣+♣I♣+♣VF ♣+♣VI ♣+1)·(2♣V ♣+1),

where a = max¶♣c♣, ♣a1♣, . . . , ♣an♣, 1♢. The same holds for the Ąnite optimal value of I, if
it exists.

6.3 The case of ALCHOIQ

Due to its support for number restrictions, ALCHOIQ stands out as a natural candidate
to investigate boundedness of predicates. In view of Proposition 6.1.5, we focus on
the problem of FI-satisĄability in ALCHOIQ and we show how we can adapt the
satisĄability procedure for ALCHOIQ with closed predicates from Chapter 3 into a
worst-case complexity-optimal decision procedure for FI-SAT(ALCHOIQ). We then
proceed to show that there is a function depending on a given TBox T and a set Σ of
closed predicates, that computes for every n ≥ 0 an upper bound on the size of extensions
of bounded predicates in the models of (T ,Σ,A), for all ABoxes A of size n.

Before we begin, we make a simplifying assumption. Let (T ,ΣF ,ΣI) be an instance of
FI-SAT(ALCHOIQ). For ease of presentation, we assume that ΣF and ΣI contain only
concept names. This is not a limitation, as role names can be eliminated from both sets
in polynomial time while preserving FI-satisĄability. This is done by introducing a fresh
concept name Ar, for each role name r ∈ ΣF ∪ ΣI , and adding axioms that ensure Ar

collects the domain elements in the domain and range of r. Finally, r is replaced by Ar

in ΣF and ΣI . More precisely, let T ′ be the following TBox:

T ′ = T ∪ ¶∃r.⊤ ⊔ ∃r−.⊤ ≡ Ar : r ∈ ΣF ∪ ΣI , ♢

163

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6. Reasoning about Predicate Boundedness

where Ar is a fresh concept name. Moreover, let Σ′
F = (ΣF ∩ NC) ∪ ¶Ar : r ∈ ΣF ♢

and Σ′
I = (ΣI ∩ NC) ∪ ¶Ar : r ∈ ΣI♢. Then, (T ,ΣF ,ΣI) is a yes-instance of FI-

SAT(ALCHOIQ) if and only if (T ′,Σ′
F ,Σ

′
I) is a yes-instance of FI-SAT(ALCHOIQ).

The main idea behind the FI-satisĄability procedure is the same as before: for an instance
(T ,ΣF ,ΣI) of FI-SAT(ALCHOIQ), we want to build an enriched system of integer
linear inequalities whose solutions over N∗ correspond to the models of T in which all
predicates in ΣF have Ąnite extensions and all predicates in ΣI have inĄnite extensions.
To this end, we rely on the results from Chapter 3 where we showed that given an
ALCHOIQ KB K = (T ,Σ,A), we can build an enriched system SK whose solutions
over N∗ correspond to the models of K (see DeĄnition 3.2.23 and Proposition 3.2.24).
For a given ALCHOIQ TBox T , we can readily reuse this characterization to deĄne an
enriched system ST = S(T ,∅,∅) whose solutions over N∗ correspond to the models of T .
However, we still need to Ąlter out those solutions that correspond to models that violate
the constraints on the predicate extensions given by ΣF and ΣI . To this end, we turn to
the FI-enriched systems of the previous section.

DeĄnition 6.3.1. Let T be an ALCHOIQ TBox, and ΣF ,ΣI ⊆ NC(T) be two sets of
concept names that occur in T . Furthermore, let K denote the following ALCHOIQ
KB with closed predicates: K = (T , ∅, ∅) and let SK = (V, E , I) be the enriched sys-
tem as given in Definition 3.2.23. We denote by F(T ,ΣF ,ΣI) the FI-enriched system
(V, E , VF , VI , I), where:

• VF = ¶x(T,ρ) : (T, ρ) ∈ Tiles(K) and T ∩ ΣF ̸= ∅♢, and

• VI = ¶¶x(T,ρ) : (T, ρ) ∈ Tiles(K) and A ∈ T♢ : A ∈ ΣI♢.

Proposition 6.3.2. Let T be an ALCHOIQ TBox, and ΣF ,ΣI ⊆ NC(T). The FI-
enriched system F(T ,ΣF ,ΣI) has the following properties:

• F(T ,ΣF ,ΣI) is exponential in the size of T ,

• F(T ,ΣF ,ΣI) has a solution S over N∗ if and only if there exists an FI-model I of
(T ,ΣF ,ΣI).

Proof. The proof of the proposition above follows from the results presented in Chapter 3.
More precisely, the underlying enriched system of F(T ,ΣF ,ΣI) is simply the enriched
system SK for the ALCHOIQ KB K = (T , ∅, ∅), where the set of closed predicates and
the ABox are empty. Recall that SK was obtained by translating the conditions placed
on the mosaics for K into an enriched system, and due to Proposition 3.2.24, there
is a each solution to SK can be seen as a mosaic for K and vice versa. Furthermore,
Theorem 3.2.12 states that K is satisĄable if and only if it has a mosaic. Moreover,
due to Observation 3.2.25, we know that SK has the following property: if K has
a model I, then S has a solution S in which ♣AI ♣ =

∑

(T,ρ)∈Tiles(K),A∈TS(x(T,ρ)), for

164

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6.3. The case of ALCHOIQ

all A ∈ NC(T). Moreover, if SK has a solution S then K has a model I in which
♣AI ♣ =

∑

(T,ρ)∈Tiles(K),A∈TS(x(T,ρ)), for all A ∈ NC(T).

This already explains the intuition behind the sets VF and VI . Let A be an arbitrary
concept name in ΣF . In order to Ąlter out the solutions that lead to models in which A
has an inĄnite extension, we need to make sure that the solution S of F(T ,ΣF ,ΣI) assigns
a Ąnite value to every variable representing a tile with A in its unary type. This is done
by adding all such variables to VF . Furthermore, let B be an arbitrary concept name in
ΣI . We ensure that we only consider solutions to F(T ,ΣF ,ΣI) which correspond to models
of T in which B has an inĄnite extension by making sure that all solutions assign ℵ0

to at least one of the variables that represents a tile with B in its unary type. To this
end, we add the set ¶x(T,ρ) : (T, ρ) ∈ Tiles(K) and B ∈ T♢ to VI . It is now easy to see
that F(T ,ΣF ,ΣI) has a solution S over N∗ if and only if there exists an FI-model I of
(T ,ΣF ,ΣI).

Regarding the size of the FI-system, we already know that the enriched system S(K) is
exponential in the size of K (i.e., in the size of T). As we have that ♣VF ♣ ≤ ♣V ♣ and
♣VI ♣ ≤ ΣI as well as ♣X♣ ≤ ♣V ♣, for each set X ∈ VI , we have that F(T ,ΣF ,ΣI) is also
exponential in the size of K.

Theorem 6.3.3. FI-SAT(ALCHOIQ) is NExpTime-complete.
Boundedness(ALCHOIQ) is co-NExpTime-complete.

Proof. Let T be an ALCHOIQ TBox, and ΣF ,ΣI ⊆ NC(T). In view of Proposi-
tion 6.3.2, we know that there is an enriched system F(T ,ΣF ,ΣI) exponential in the size of
T s.t. F(T ,ΣF ,ΣI) has a solution over N∗ if and only if (T ,ΣF ,ΣI) is a yes-instance of
FI-SAT(ALCHOIQ). Due to Proposition 6.2.6, we can decide whether F(T ,ΣF ,ΣI) has a
solution over N∗ in nondeterministic polynomial time in the size of F(T ,ΣF ,ΣI), i.e., in non-
deterministic exponential time in the size of T . Hence, FI-SAT(ALCHOIQ) is feasible
in NExpTime. The matching lower bound comes from the fact that deciding ordinary sat-
isĄability is already a NExpTime-complete problem in ALCHOIQ [Tob00]. Finally, due
to Corollary 6.1.6, we have that Boundedness(ALCHOIQ) is a co-NExpTime-complete
problem.

6.3.1 Size of Bounded Extensions

The main advantage of predicates that are bounded w.r.t. a given TBox T and a set Σ of
predicates occurring in T is that we can readily compute an upper bound on the number
of different objects that can participate in their extensions that is dependent on the shape
of T and the number of objects in the extensions of the predicates in Σ. The remainder
of this section is dedicated to exactly that Ű we compute a function fT ,Σ : N → N s.t.
∑

p∈BP(T ,Σ)(♣p
I ♣) ≤ fT ,Σ(n), for every model I of T in which, for all concept names

A ∈ Σ, there are at most n domain elements participating in A. In the Ąrst line, we only
consider the case where bounded predicates and predicates in Σ are concept names, as
roles can be eliminated using the same trick as that was used in the previous section. To

165

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6. Reasoning about Predicate Boundedness

compute fT ,Σ, we proceed as follows. We once again rely on our results from Chapter 3
and we consider the enriched system S(T ,∅,∅) whose solutions over N∗ correspond to the
models of T . Furthermore, let A1, . . . , A♣Σ♣ be an arbitrary enumeration of the concept

names in Σ and assume that we are given an vector b⃗ = (b1, . . . , b♣Σ♣). We next show that
we can build an FI-enriched ILP I

(T ,Σ,⃗b)
whose optimal value is the upper bound on the

cumulative size of extensions of concept names that are strongly bounded w.r.t. T and
Σ in every model I of T in which ♣Ai♣

I = bi, for every 1 ≤ i ≤ ♣Σ♣. We formalize this in
the proposition below.

Proposition 6.3.4. Let T be an ALCHOIQ TBox, Σ ⊆ NC(T), b⃗ = (b1, . . . , b♣Σ♣) be
a vector over N. We can build an FI-enriched system F

(T ,Σ,⃗b)
= (V, E , VF , VI , I) and an

FI-enriched ILP I
(T ,Σ,⃗b)

= (f,F
(T ,Σ,⃗b)

) with the following properties:

• I
(T ,Σ,⃗b)

has a finite optimal value b
(T ,Σ,⃗b)

.

• for every model of I of T in which, for all 1 ≤ i ≤ ♣Σ♣, ♣AI
i ♣ = bi, we have that

∑

B∈BC(T ,Σ)(♣B
I ♣) ≤ b

(T ,Σ,⃗b)
.

• ♣V ♣, ♣E♣, ♣I♣ ≤ 3(2lT · (♣NI(T)♣ + 1))mT ·cT +2 and ♣VF ♣ = ♣VI ♣ = 0, where lT =
♣NC(T)♣+ ♣N+

R
(T)♣, cT is the maximum integer occurring in T .

• c ≤ max¶1, cT , b1, . . . , b♣Σ♣♢, where c is a coefficient occurring in F
(T ,Σ,⃗b)

such that

♣c♣ ≥ ♣c′♣, for all coefficients c′ of F
(T ,Σ,⃗b)

.

Proof. We Ąrst give a deĄnition of isomorphic ABoxes w.r.t. a given TBox T , as well as
a lemma that shows that if some concept name B has only extensions of bounded size in
models of (T ,Σ,A), for some ABox A over Σ, the same bound applies to the extensions
of B in models of (T ,Σ,A′), for any ABox A′ that is isomorphic to A w.r.t. T .

DeĄnition 6.3.5. Let T be an ALCHOIQ TBox, Σ ⊆ NC(T) and A1,A2 be two ABoxes
over the signature of T . We say that A1 and A2 are isomorphic w.r.t. T if there exists
a bijection f : NI(A1) → NI(A2) s.t. A2 = ¶A(f(c)) : A(c) ∈ A1)♢ ∪ ¶r(f(c), f(d)) :
r(c, d) ∈ A1)♢, and if c ∈ NI(T), then f(c) = c.

Lemma 6.3.6. Let T be an ALCHOIQ TBox, Σ ⊆ NC(T), A1,A2 be two ABoxes over
the signature of T that are isomorphic w.r.t. T . Let B be a concept name and assume
that there is a natural number b s.t. for every model I of (T ,Σ,A1), ♣BI ♣ ≤ b. Then
♣BJ ♣ ≤ b also holds for every model J of (T ,Σ,A2).

Let now S(T ,∅,∅) = (V, E , I) be an enriched system obtained from T that has the properties
given in DeĄnition 3.2.23. Let F

(T ,Σ,⃗b)
= (V, E ′, ∅, ∅, I) be an FI-enriched system, where

E ′ is obtained from E by adding the following set of inequalities, for each 1 ≤ i ≤ ♣Σ♣:
∑

(T,ρ)∈Tiles(T),
Ai∈T

x(T,ρ) ≤ bi and
∑

(T,ρ)∈Tiles(T),
Ai∈T

x(T,ρ) ≥ bi.

166

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6.3. The case of ALCHOIQ

It is not hard to see that the following holds:

• for every model I of T s.t. ♣AI
i ♣ = bi, for every 1 ≤ i ≤ ♣Σ♣, there is a solution S of

F
(T ,Σ,⃗b)

s.t.
∑

(T,ρ)∈Tiles(T),
Ai∈T

S(x(T,ρ)) = bi, for all 1 ≤ i ≤ ♣Σ♣, and

• for every solution S of F
(T ,Σ,⃗b)

, there is a model I of T s.t. ♣AI
i ♣ = bi and

∑

(T,ρ)∈Tiles(T),
Ai∈T

S(x(T,ρ)) = ♣AI
i ♣, for every 1 ≤ i ≤ ♣Σ♣.

We next deĄne an FI-enriched ILP I
(T ,Σ,⃗b)

as follows:

I
(T ,Σ,⃗b)

= (
∑

(T,ρ)∈Tiles(T),
T ∩BC(T ,Σ) ̸=∅

x(T,ρ),F(T ,Σ,⃗b)
).

• We Ąrst prove that I
(T ,Σ,⃗b)

has a Ąnite optimal value. To this end, let Π
b⃗

be the
following set of ABoxes over Σ:

Π
b⃗

= ¶A : A is an ABox over Σ s.t. ♣A♣Ai
♣ = bi, for all 1 ≤ i ≤ ♣Σ♣♢.

There are only Ąnitely many (say n) different ABoxes in ΠA (up to isomorphism
w.r.t. T). As every B ∈ BC(T ,Σ) is bounded w.r.t. T and Σ, by deĄnition of
boundedness and due to Lemma 6.3.6, there exist some l1, . . . , ln ∈ N s.t. for
every A ∈ Π

b⃗
the following holds: if J is a model of the KB (T ,Σ,A) with closed

predicates,
∑

B∈BC(T ,Σ)(♣B
I ♣) ≤ li, for some 1 ≤ i ≤ n. Let l⃗

b
= max¶l1, . . . , ln♢.

Obviously, for every A ∈ Π and every model J of (T ,Σ,A),
∑

B∈BC(T ,Σ)(♣B
I ♣) ≤ l⃗

b
.

Now, let I be an arbitrary model of T s.t. ♣AI
i ♣ = bi, for all 1 ≤ i ≤ ♣Σ♣. We can

easily extract from I an ABox A over Σ s.t. I is a model of (T ,Σ,A). Note that
A ∈ Π

b⃗
and therefore,

∑

B∈BC(T ,Σ)(♣B
I ♣) ≤ l⃗

b
. Thus, we conclude that in every

model I of T s.t. ♣AI
i ♣ = bi, for every 1 ≤ i ≤ ♣Σ♣,

∑

B∈BC(T ,Σ)(♣B
I ♣) ≤ l⃗

b
holds.

This in turn means that for every solution S of F
(T ,Σ,⃗b)

,
∑

(T,ρ)∈Tiles(T),
T ∩BC(T ,Σ) ̸=∅

S(T, ρ) ≤ l⃗
b

and so I
(T ,Σ,⃗b)

has the Ąnite optimal value b
(T ,Σ,⃗b)

which does not exceed l⃗
b
.

• We next prove that the optimal value of I
(T ,Σ,⃗b)

represents an upper bound on
∑

B∈BC(T ,Σ)(♣B
I ♣) for each model I of T in which ♣AI

i ♣ = bi, for all 1 ≤ i ≤ ♣Σ♣.
This is almost immediate. Let I be an arbitrary such model of T . Due to the
way F

(T ,Σ,⃗b)
was constructed, we know that there exists a solution S of F

(T ,Σ,⃗b)
s.t.

∑

B∈BC(T ,Σ)(♣B
I ♣) =

∑

(T,ρ)∈Tiles(T),T ∩BC(T ,Σ) ̸=∅S(x(T,ρ)) (see Observation 3.2.25).
By deĄnition of optimal values, we have that

∑

(T,ρ)∈Tiles(T),T ∩BC(T ,Σ) ̸=∅S(x(T,ρ)) ≤
b

(T ,Σ,⃗b)
and thus

∑

B∈BC(T ,Σ)(♣B
I ♣) ≤ b

(T ,Σ,⃗b)
.

167

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6. Reasoning about Predicate Boundedness

• Finally, we show the desired bounds on the size of F
(T ,Σ,⃗b)

. By construction,
♣VF ♣ = ♣VI ♣ = 0. From Observations 3.2.26 and 3.2.28, using simple calculations we
can see that both ♣V ♣ and ♣I♣ are less than or equal to 3(2lT · (♣NI(T)♣+ 1))♣T ♣·cT +2.
From Observation 3.2.27 and the fact that we only add at most 2nT new inequalities,
we obtain the same bound on ♣E♣.

To show that for the maximal coefficient c of F
(T ,Σ,⃗b)

, c ≤ max¶cT , b1, . . . , b♣Σ♣, 1♢

holds, we rely on Observation 3.2.29 telling us that every coefficient c′ of S(T ,∅,∅)

is in ¶0,±1, . . . ,±cT ♢. As we obtain F
(T ,Σ,⃗b)

by adding to S(T ,∅,∅) the inequalities
whose coefficients are in ¶0,±1,±b1, . . . ,±b♣Σ♣♢, the result follows.

Before we state the main result of this subsection, we still need to make a couple Ąnal
observations.

Observation 6.3.7. Given two vectors b⃗ = (b1, . . . , bn) and a⃗ = (a1, . . . , an), FI-enriched
ILPs I(T ,Σ,⃗a) and I

(T ,Σ,⃗b)
differ only in terms of coefficients that occur in the underlying

FI-enriched systems F
(T ,Σ,⃗b)

and F(T ,Σ,⃗a).

In particular, together with Proposition 6.2.7, the previous observation implies the
following.

Observation 6.3.8. Given two vectors b⃗ = (b1, . . . , bn) and a⃗ = (a1, . . . , an), if
max¶♣a1♣, . . . , ♣an♣♢ = max¶♣b1♣, . . . , ♣bn♣♢, then the optimal values of I(T ,Σ,⃗a) and I

(T ,Σ,⃗b)

coincide.

Finally, this observation in conjunction with Propositions 6.2.7 and 6.3.4 leads us to the
following result:

Theorem 6.3.9. Let T be an ALCHOIQ TBox and Σ ⊆ NC(T). Furthermore, let
fT ,Σ : N → N s.t. fT ,Σ(n) = (a + 1)16·12·e2

, where e = 3(2lT · (♣NI(T)♣ + 1))mT ·cT +2,
lT = ♣NC(T)♣+ ♣N+

R
(T)♣ and a = max¶1, cT , n♢.

For every ABox A over the signature of T with max¶♣A♣A♣ : A ∈ Σ♢ = n the following
holds: in every model I of (T ,Σ,A),

∑

B∈BC(T ,Σ)

(♣BI ♣) ≤ fT ,Σ(n).

Theorem 6.3.9 shows that the desired function fT ,Σ(n) that computes the upper bound on
the cumulative size of extensions of bounded concept names w.r.t. T and Σ in models in
which the extensions of predicates in Σ do not exceed n is doubly-exponential in the size
of T but only polynomial in the size of the data (i.e., n). Note that the bound computed
by fT ,Σ is asymptotically optimal in the sense that there exists a TBox that creates a
binary tree of exponential depth, whose every node belongs to a bounded predicate. Such
a TBox is later used in the proof of Theorem 6.4.7.

168

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6.3. The case of ALCHOIQ

Bringing roles back. We remark that the results stated above are only formulated for
concept names but similar bounds hold for bounded role names. Namely, recall that we
decide whether a role name r is bounded w.r.t. a TBox T and a set of predicates Σ by
deciding whether the concept name Ar that subsumes its domain and range is bounded
w.r.t. T and Σ. We can use the function fT ,Σ from the previous theorem to compute the
bound on the extensions of Ar in models of T in which the size of extensions of predicates
in Σ does not exceed n. It is easy to see that in such models, the number of pairs of
domain elements participating in the extensions of r cannot exceed fT ,Σ(n) · fT ,Σ(n).

Finally, we make one last observation on the number of distinct domain elements that
can occur in the extensions of bounded predicates.

Theorem 6.3.10. For a given T and a set of predicates Σ ⊆ NC(T) ⊔ NR(T), let
T ′ = T ∪ ¶∃r.⊤ ⊔ ∃r−.⊤ ≡ Ar : r ∈ NR(T)♢ and Σ′ = (Σ ∩ NC) ∪ ¶Ar : r ∈ Σ ∩ NR♢.
Furthermore, let A be an arbitrary ABox over the signature of T with ♣NI(A)♣ = n. Then,
in every model I of (T ,Σ,A) we have the following:

♣¶d occurs in pI : p ∈ BP(T ,Σ)♢♣ ≤ fT ′,Σ′(n).

Proof. First of all, it is easy to see that a concept name B ∈ NC(T) is bounded w.r.t T
and Σ if and only if B is bounded w.r.t. T ′ and Σ′. Furthermore, Ar is bounded w.r.t.
T ′ and Σ′ if and only if r is bounded w.r.t. T and Σ (resp. T ′ and Σ′).

Let A′ be an ABox obtained from A as follows A′ = A♣NC(T) ∪ ¶Ar(a) : there exists b ∈
NI(A) s.t. r(a, b) ∈ A or r(b, a) ∈ A♢. Now, let I be an arbitrary model of (T ,Σ,A).
It is easy to see that this model can be extended into a model I ′ of (T ′,Σ′,A′) by
simply interpreting the fresh predicate Ar as (Ar)I′

= ¶e ∈ ∆I : there exists d ∈
∆I s.t. (e, d) ∈ rI or (d, e) ∈ rI♢. In particular, the extension of Ar in I ′ contains all
domain elements of ∆I that occur in the extension of r in I. This together with the
observation that BC(T ,Σ) = BC(T ′,Σ′) as well as that r is bounded w.r.t. T and Σ if
and only if Ar is bounded w.r.t. T ′ and Σ′ implies the following:

♣¶d occurs in pI : p ∈ BP(T ,Σ)♢♣ =

♣¶d occurs in rI : r ∈ BR(T ,Σ)♢ ∪ ¶d ∈ BI : B ∈ BC(T ,Σ)♢♣ =

♣¶d occurs in rI′

: Ar ∈ BC(T ′,Σ′)♢ ∪ ¶d ∈ BI′

: B ∈ BC(T ′,Σ′)♢♣ =

♣¶d ∈ BI′

: B ∈ BC(T ′,Σ′)♢♣.

Obviously, from the way that A′ was deĄned, we have ♣NI(A′)♣ = n. It now follows from
the results above as well as Theorem 6.3.9 that

♣¶d occurs in pI : p ∈ BP(T ,Σ)♢♣ = ♣¶d ∈ BI′

: B ∈ BC(T ′,Σ′)♢♣ ≤ fT ′,Σ′(n).

169

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6. Reasoning about Predicate Boundedness

Weak boundedness So far we have focused on showing results for strongly bounded
predicates w.r.t. some TBox T and a set of predicates Σ. Recall that a predicate is
strongly bounded w.r.t. T and Σ, if it is bounded w.r.t. all KBs (T ,Σ,A), where A is
an arbitrary ABox over the signature of T . However, it is possible to have a predicate
p that is not strongly bounded w.r.t. T and Σ, but p is nonetheless bounded in some
concrete KB (T ,Σ,A). We illustrate this on the following example.

Example 6.3.11. Let T be a TBox consisting of the following axioms:

¶o♢ ⊑ A ⊔B,

A ⊓B ⊑ ⊥,

⊤ ⊑ ∃r−.¶o♢,

A ⊓ ¶o♢ ⊑≤ 1r.⊤.

Furthermore, let Σ = ∅. In general no predicates are bounded w.r.t. T and Σ. To see
this, we show that for the empty ABox, there is a model I of (T , ∅, ∅) in which AI , BI

and rI are all infinite and therefore unbounded. Indeed, let ∆I = N ∪ ¶o♢ and let ·I be
defined as follows:

AI = ¶n ∈ N : n is even♢,

BI = ¶n ∈ N : n is odd♢ ∪ ¶o♢, and

rI = ¶(o, d) : d ∈ ∆I♢.

Consider now the ABox A consisting of a single fact A(o). Due to the last two axioms of
T , it follows that the KB (T , ∅,A) only has models whose domain consists of a single
individual o. Thus, all predicates are bounded w.r.t. (T , ∅,A).

We once again use the same role elimination strategy as before and we focus only on
bounded concept names. Given a KB K, it is straightforward to devise a procedure that
decides whether every concept name in a given a set of concept names Γ is bounded w.r.t.
K, and if so, provides an upper bound on the size of

∑

B∈Γ(♣BI ♣), in all models I of K.
This is done by taking the enriched system SK from DeĄnition 3.2.23 whose solutions
correspond to the models of K and adding an objective function that maximizes the sum
of extensions of the concepts in Γ.

Proposition 6.3.12. Let K = (T ,Σ,A) be a KB, where T is an ALCHOIQ TBox, Σ is
a set of predicates occurring in T , and A is an ABox over the signature of T . Consider
a set of concept names Γ ⊆ NC(T). We can build an FI-enriched ILP IΓ

K that has a finite
optimal value if and only if each B ∈ Γ is bounded w.r.t. K. Moreover, if b is the finite
optimal value of IΓ

K, then
∑

B∈Γ(♣BI)♣ ≤ b for all models I of (T ,Σ,A).

Proof. Let SK = (V, E , I) be the system from DeĄnition 3.2.23 and let IΓ
K be the following

FI-enriched ILP:
IΓ

K = (
∑

(T,ρ)∈Tiles(T),
T ∩Γ̸=∅

x(T,ρ), (V, E , ∅, ∅, I)).

170

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6.4. Boundedness in Ontology-Mediated Query Answering

Due to Observation 3.2.25, the result above is immediate.

Furthermore, from the previously-made observations on the size of K as well as the fact
that we can compute an upper bound on the Ąnite optimal solution of a given FI-enriched
ILP, should one exist, we can formulate the following theorem.

Theorem 6.3.13. W-Boundedness(ALCHOIQ) is co-NExpTime-complete. Further-
more, for a given KB K, we can compute an integer bound b that is doubly-exponential
in the size of K s.t. for all models I of K,

∑

p∈BP(K)(♣p
I ♣) ≤ b holds, where BP(K) is the

set of all predicates p that are bounded w.r.t. K.

6.4 Boundedness in Ontology-Mediated Query Answering

We next discuss how the results presented in the previous section can be applied in
the context of ontology-mediated query answering. We have already mentioned in
the introduction to this thesis that there are very few results on query answering in
ALCHOIQ, even without closed predicates. In Chapter 4, we presented a generalization
of ontology-mediated instance queries called safe-range OMQs. Moreover, we showed that
these queries are Datalog¬-rewritable and we provided tight complexity results for the
query answering problem. The main idea behind safe-range OMQs is to allow arbitrary
Ąrst-order queries as long as the quantiĄcation happens only over the known individuals,
i.e., those individuals that occur in the TBox or the data. One way to ensure that this
safety criterion is met by an OMQ (T ,Σ, q) is to guard all non-answer variables in q by
closed predicates. The procedure for answering safe-range OMQs over some ABox A
hinges on the fact that the introduced safety criterion ensures that there is a Ąnite upper
bound on the number of different domain elements that the variables of q can take on. In
order to check whether a certain model I of (T ,Σ,A) is a counter-model to some tuple
a⃗ of individuals being an answer to q over (T ,Σ,A), it suffices to consider only the Ąnite
part of I that pertains to the elements that the variables of q range over, in this case the
individuals occurring in T and A. As there is a bounded number of different possibilities
for what this part of I can look like, we can provide upper complexity bounds for the
query answering problem for safe-range OMQs. We exploit the same idea to answer
Ąrst-order and Datalog OMQs whose variables are not necessarily restricted to range only
over the known individuals, but rather to a set of domain elements whose size is Ąnite
and known.

6.4.1 Extended Safe-Range OMQs

We next introduce the notion of relaxed safe-range OMQs that also allow open predicates
to be used as guards, as long as they are bounded. To this end, we import all the notions
deĄned in Section 4.2 and we adapt DeĄnition 4.2.6 as given below.

DeĄnition 6.4.1. An OMQ Q = (T ,Σ, q) is a relaxed safe-range OMQ if

rr(SRNF(q),BP(T ,Σ)) ̸= ′fail ′.

171

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6. Reasoning about Predicate Boundedness

We next illustrate this on a short example.

Example 6.4.2. Consider the OMQ Q′ = (T ′,Σ, q(x)) similar to the query Q =
(T ,Σ, q(x)) from Example 4.2.7 but whose TBox T ′ contains an additional axiom ensuring
that each domain element participating in B can have at most one incoming r-arc. More
precisely, let

T = ¶A ⊑ ≥ 1r.B,C ⊑ ≥ 1r.B,A ⊓ C ⊑ ⊥, B ⊑ ≤ 1r−.⊤♢,

Σ = ¶B♢,

q(x) = ∃y∃z.r(y, x) ∧ r(z, x) ∧A(y) ∧ C(z).

This query Q′ is not safe-range since the existentially quantified variables y and z do
not occur in positive atoms over closed predicates from Σ (i.e., B) and are therefore not
recognized as Σ-range-restricted, so the procedure rr(SRNF(q),Σ) returns Śfail ′. However,
notice that both A and C are bounded w.r.t. T and Σ. Thus, rr(SRNF(q),BP(T ,Σ)) ̸=′

fail ′ and so Q′ is relaxed safe-range.

We next show that, given a relaxed safe-range OMQ Q = (T ,Σ, q(x1, . . . , xn)), an ABox
T over the signature of T and a tuple a⃗ over the constants occurring in T and A, we can
decide whether a⃗ is a certain answer to Q over A. Intuitively, every variable occurring
in q is guarded by a positive atom over some bounded predicate, which means that in
any model I of (T ,Σ,A), q can only be mapped into the part of I that occurs in the
extensions of bounded predicates. Fortunately, in view of Theorem 6.3.10, the function
fT ,Σ provides us with a concrete upper bound on the number of domain elements that
this part of I contains. This leaves us with the following guess-and-check strategy for
deciding whether a⃗ is not an answer to q over (T ,Σ,A):

• Guess a set ∆ ⊆ NI such that ♣∆♣ ≤ fT ,Σ(♣NI(A)♣) and an ABox A′ with the
following properties:

Ű for each a ∈ ∆ and concept name C ∈ NC(T) \ Σ, either C(a) ∈ A′ or
¬C(a) ∈ A′,

Ű for each ¶a, b♢ ⊆ ∆ and role name r ∈ NR(T) \ Σ, either r(a, b) ∈ A′

or ¬r(a, b) ∈ A′,

• Check whether (i) a⃗ is not an answer to q over A′ and (ii) (T ,Σ,A∪A′) is satisĄable.
If so, then a⃗ is not a certain answer to Q over A.

Regarding the Ąrst guess, in general, as the set NI is countably inĄnite, there are also
inĄnitely many different possibilities for ∆, however, only Ąnitely many up to isomorphism
w.r.t. the individuals from A and T . This, in conjunction with the results from Chapter 3
on the complexity of consistency checking in ALCHOIQ with closed predicates as well as
the results from Theorem 6.3.10, we obtain the following complexity results for answering
relaxed safe-range OMQs in ALCHOIQ.

172

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6.4. Boundedness in Ontology-Mediated Query Answering

Theorem 6.4.3. The query answering problem for relaxed safe-range queries mediated
by ALCHOIQ ontologies with closed predicates is coNP-complete in data complexity
and in co-N2ExpTime in combined complexity.

Proof. Given a relaxed safe-range OMQ Q = (T ,Σ, q(x⃗), where T is an ALCHOIQ
TBox and ♣NI(A)♣ = n, in view of Theorem 6.3.10, the set ∆ that we have to guess as
well as the ABox A′ with the properties listed above are both doubly-exponential in the
size of (T ,Σ,A), but only polynomial if T and Σ are considered Ąxed. Checking whether
a⃗ is an answer to q over A′ can be done in time polynomial in the size of A′. Finally,
from the results in Chapter 3 (see Theorem 3.2.32), we know that checking whether
(T ,Σ,A ∪A′) is satisĄable can be done by a nondeterministic procedure in the amount
of time that is exponential in the size of T and Σ, but only polynomial in the size of
A ∪A′, i.e., in time that is doubly-exponential in the size of (T ,Σ,A).

We have thus shown that deciding whether a⃗ is not a certain answer to Q over A is
in N2ExpTime and the corresponding co-N2ExpTime upper bound for the combined
complexity of the query answering problem of relaxed safe-range OMQs in ALCHOIQ
with closed predicates follows.

Regarding the coNP upper bound on the data complexity of the same problem, we
simply note that both ∆ and A′ are of size polynomial in (T ,Σ,A), if T and Σ are
considered Ąxed. The matching lower bound comes from Theorem 4.2.12.

6.4.2 Datalog-Based OMQs

So far, our focus has mostly been on Ąrst-order OMQs, i.e., those OMQs whose database
query component is given in the form of a Ąrst-order formula. As we will see in the rest
of this thesis, there has also been signiĄcant interest in the DL community in even more
expressive OMQ languages like those that couple DL ontologies with Datalog queries.

The ability of DLs to assert the existence of anonymous domain elements together
with Datalog’s support for recursion makes such OMQ languages very powerful and,
unsurprisingly, undecidable even for much less expressive DLs than ALCHOIQ (see,
e.g., [LR98, Ros07a]). In order to regain decidability, one needs to somehow limit the
number of different domain objects that rule variables can be bound to. This can
be done by applying the well-known DL-safety restriction on Datalog queries, which
ensures that that all query variables are guarded by predicates that do not occur in
the TBox [MSS05, Ros05]. Unfortunately, this signiĄcantly restricts reasoning about
anonymous domain elements. Our next goal is to show that we can relax this safety
condition using a strategy similar to the one we used for relaxing safe-range queries. In a
nutshell, the new safety condition requires all query variables be guarded by a predicate
that is bounded by the input TBox and a given set of closed predicates. This relaxation
allows us to support reasoning about anonymous objects, while retaining decidability.
We next make this more formal.

173

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6. Reasoning about Predicate Boundedness

We assume a countably inĄnite set ND ⊆ NP\(NC∪NR) of Datalog predicates. Furthermore,
note that every interpretation I can be seen as an Herbrand interpretation I = ¶p(⃗a) :
a⃗ ∈ pI , p ∈ NP♢ and vice versa. We say that I is a model of a Datalog program P if I is
a model of P.

DeĄnition 6.4.4. An ontology-mediated Datalog query (Datalog OMQ) is a tuple
Q = (T ,Σ,P, q), where T is a TBox, Σ ⊆ NC ∪ NR, and (P, q) is a Datalog query with
q ∈ ND. Furthermore, let A be an ABox over the predicates from T . A tuple a⃗ of
individuals from NI(T) ∪ NI(A) ∪ adom(P) is a certain answer to Q over A, if a⃗ ∈ qI ,
for every interpretation I that is a model of (T ,Σ,A) and P. The problem of deciding
whether a⃗ is a certain answer to Q over A is the query answering problem for Datalog
OMQs.

To ensure decidability of Datalog OMQs, we deĄne a new safety condition that exploits
predicate boundedness.

DeĄnition 6.4.5 (Safe Datalog OMQs). A rule ρ is called safe for a given Datalog OMQ
Q = (T ,Σ,P, q) if every variable of ρ occurs in the body of ρ in an atom p(⃗t) such that
either (i) p ∈ ND or (ii) p ∈ BP(T ,Σ). We say Q is safe if every ρ ∈ P is safe for Q.

Example 6.4.6. Consider the following Datalog OMQ Q = (T ′, ¶Empl♢, ¶ρ♢, pair), where
T ′ is some company ontology that includes the TBox T from Example 6.1.1, and ρ is the
following rule:

pair(X,Y)← Empl(X),Empl(Y),Proj(Z)
assgndTo(X,Z), assgndTo(Y, Z)

Intuitively, this query computes pairs of employees working on a common project. Observe
that Q is safe as both Proj and assignedTo are bounded w.r.t. T and Σ, but is not DL-safe
in the sense of [MSS05, Ros05] as all body atoms of ρ involve predicates that occur in T .

We next characterize the complexity of query answering in the proposed OMQ language.

Theorem 6.4.7. The query answering problem for safe Datalog queries mediated by
ALCHOIQ ontologies with closed predicates is co-2NExpTime-complete in combined
complexity and coNP-complete in data complexity.

Proof of Theorem 6.4.7. Assume a safe OMQ Q = (T ,Σ,P, q), an ABox A, and a tuple
of a⃗ of individuals occurring in T , P or A. The upper bound can be shown by a
non-deterministic procedure to check that a⃗ does not belong to the answer to Q over
A, analogous to the one used in the proof of Theorem 6.4.3. By Theorem 6.3.9, the
value fT ,Σ(♣NI(A)♣) provides an upper bound on the number of distinct elements that
can participate in extensions of predicates bounded w.r.t. T and Σ in any model of
K = (T ,Σ,A). This value is double exponential in the size of K, but polynomial if the
size of T is considered Ąxed. Let I be a model of K and P with a⃗ ̸∈ qI and let B ⊆ ∆I be
the set of all elements that occur in I in the extension of some predicate that is bounded

174

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6.4. Boundedness in Ontology-Mediated Query Answering

by T and Σ. Due to our safety condition, there also exists a model of J of K and P such
that (i) a⃗ ̸∈ qJ , and (ii) a1, . . . , an ∈ B for all p ∈ ND of arity n and all (a1, . . . , an) ∈ pJ .
In other words, if a⃗ is not an answer to Q over A, then there is a model of K and P
in a⃗ is not in the extension of q and in which the extensions of program predicates are
restricted to elements that occur in the extensions of bounded predicates For this reason,
we can use the following guess-and-check procedure to decide whether a⃗ is not an answer
to Q over A:

• Step 1: Guess an interpretation I such that ∆I ⊆ NI, ♣∆I ♣ ≤ fT ,Σ(♣NI(A)♣) and
wI = ∅ for every w ∈ NP that appears neither in K nor in P.

• Step 2: Construct a new ABox

A′ = ¶p(⃗a) : a⃗ ∈ pI , p ∈ sig(T)♢

∪ ¶¬A(c) : c ∈ ∆I \AI , A ∈ NC(K)♢

∪ ¶¬r(c, d) : (c, d) ∈ (∆I)2 \ rI , r ∈ NR(T)♢.

• Step 3: Check whether the following hold: (i) I is a model of P, (ii) a⃗ ̸∈ qI , and
(iii) K′ = (T ,Σ,A ∪A′) is satisĄable. If so, then return “yes”.

It is not difficult to verify that a⃗ is not a certain answer to Q over A if and only if
and only if there exists a guess for I such that Step 3 of the procedure above returns
“yes”. In terms of complexity, note that the size of I produced in Step 1 is bounded
by a doubly-exponential function in the size of K. By Theorem 3.2.32, we can decide
consistency of K′ = (T ,Σ,A ∪ A′) produced in Step 3 non-deterministically in time
that is exponential in the size of T but only polynomial in the size of A ∪ A′, i.e. in
the amount of time that is doubly-exponential in size of K. Further, if the size of T is
bounded by a constant, then I is of polynomial size in the size of K, and thus we can
decide consistency of K′ = (T ,Σ,A∪A′) non-deterministically in polynomial time in the
size of K. Finally, checking that I is a model of P and that a⃗ ̸∈ qI are both polynomial
time checks. Thus, the complexity results follow.

co-N2ExpTime Lower Bound. For the lower bound of combined complexity, we
provide a reduction from the domino tiling problem for grids of double exponential size.

DeĄnition 6.4.8. A domino system is a tuple D = (T,H, V), where T is a finite set of
tiles, and H,V ⊆ T×T . A tiling of an m×m grid w.r.t. to a domino system D = (T,H, V)
and an initial condition (t1, . . . , tn) ∈ Tn is a mapping π : ¶0, . . . ,m−1♢×¶0, . . . ,m−1♢ →
T such that:

1. ((i, j), (i, j + 1 mod m)) ∈ V for all 0 ≤ i, j < m;

2. ((i, j), (i+ 1 mod m, j)) ∈ H for all 0 ≤ i, j < m;

175

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6. Reasoning about Predicate Boundedness

3. π(0, 0) = t1, · · · , π(n− 1, 0) = tn.

It is a well-known fact that deciding given an domino system D and an initial condition
condition c = (t1, . . . , tn) whether there exists a tiling of the 22n

× 22n
grid w.r.t.D and

c is a N2ExpTime-hard problem [BGG97].

We now provide a reduction from the above problem to the query answering problem
for safe Datalog OMQs. For this, assume an arbitrary domino system D and an initial
condition condition c = (t1, . . . , tn). We will now construct a TBox T and a safe program
P such that T and P have a model if and only if there exists a tiling of the 22n

× 22n

grid w.r.t.D and c. Our goal now is to use inclusions and rules in order to generate a
22n
× 22n

grid stored in binary relations H and V . Actually, H and V will encode a torus,
i.e. the last column will be connected with the Ąrst column, while the last row will be
connected to the Ąrst row.

The tiling conditions can then be expressed quite easily. Overall the construction consists
of 4 parts:

1. (Part A) Using TBox axioms we generate a binary tree of depth 2n. Using rules,
the 22n

leaves of this tree are linearly ordered and stored in relations First, Last,
and Succ. One can see this ordering a counter of rows in our grid.

2. (Part B) For each point in Succ, we again create a separate binary tree of depth 2n,
with its 22n

leaves again linearly ordered and stored in relations First′, Last′, and
Succ′. This provides us 22n

rows of length 22n
.

3. (Part C) The different rows are aligned into a grid.

4. (Part D) The assignment of compatible tiles is expressed.

(Part A) The successor relation is populated by enforcing a binary tree of exponential
depth, and then collecting its leaf nodes of which we have a double exponential number.
We call that we want to create an order of length 22n

. We will construct a TBox T , and
a program P that force the successor relation to store 22n

elements in the binary Datalog
relation Succ, where in addition the unary relations First and Last are used for the Ąrst
and the last elements of the ordering, respectively.

We start with the construction of the desired T . Let L,R,E be role names and
B1, F1, . . . , Bn, Fn be concept names. Let Node, Leaf be concept names.

To enforce a tree of exponential depth, we use an n-bit counter encoded at an element
using the concept names B1, . . . , Bn. We will use the role E for the child relation. We use
Node to indicate a node in our tree. We Ąrst state that the individual root corresponds
to the root of the tree, which stores the initial counter value (all n bits set to 0). The
root node is the only node that is allowed to store this value.

¶root♢ ⊑ Node ⊓ ¬B1 ⊓ . . . ⊓ ¬Bn ⊓ ¬∃E
−.⊤ ¬B1 ⊓ . . . ⊓ ¬Bn ⊑ ¶root♢

176

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6.4. Boundedness in Ontology-Mediated Query Answering

We use Leaf to capture the leaves of our exponentially deep tree. We require that the
objects in Leaf are exactly the objects whose counter value is 2n − 1 (all bits set to 1).
We also require such nodes to not have child nodes.

B1 ⊓ . . . ⊓Bn ≡ Leaf Leaf ⊑ ¬∃E.⊤

We need to enforce a binary tree. For this, every non-leaf node must have precisely two
children, one given via the role L and one via the role R.

¬Leaf ⊑ =1L.⊤ ⊓=1R.⊤ L ⊑ E R ⊑ E ∃E−.⊤ ⊑ Node Node ⊑ ≤2E.⊤

We require that every object in Node that does not correspond to the root appears
somewhere in the tree, which is done by requiring it to be an L-child or an R-child of
some node.

Node ⊓ ¬¶root♢ ⊑ ∃L−.Node ⊔ ∃R−.Node Node ⊑ ≤1E−.⊤

It remains now to implement the counter. Assume that a non-leaf node has a counter
value c. We need to make sure that its two child nodes have the counter value c+ 1. For
this we employ the auxiliary concept names F1, . . . , Fn. Intuitively, if Fi holds at a point,
it means that the i-th bit of the counter needs to be Ćipped to obtain the next counter
value. When performing addition by one, the least signiĄcant bit needs to be Ćipped.

Node ⊑ Fn

If the ith bit is 1 and it needs to be Ćipped, then the (i− 1)-th bit needs to be Ćipped as
well.

Node ⊓Bi ⊓ Fi ⊑ Fi−1 for all 1 < i ≤ n

If the ith bit is 0, then the (i− 1)-th bit must not be Ćipped.

Node ⊓ ¬Bi ⊑ ¬Fi−1 for all 1 < i ≤ n

If the ith bit must not be Ćipped, then the (i− 1)-th bit must not be Ćipped.

Node ⊓ ¬Fi ⊑ ¬Fi−1 for all 1 < i ≤ n

Once the decision is made on which bits need to be inverted, we can now form the new
counter value at the two child nodes:

Node ⊓Bi ⊓ Fi ⊑ ∀E.¬Bi Node ⊓ ¬Bi ⊓ Fi ⊑ ∀E.Bi for all 1 ≤ i ≤ n

Node ⊓Bi ⊓ ¬Fi ⊑ ∀E.Bi Node ⊓ ¬Bi ⊓ ¬Fi ⊑ ∀E.¬Bi for all 1 ≤ i ≤ n

177

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6. Reasoning about Predicate Boundedness

This completes the construction of the TBox T . It is not difficult to see that in any
model I of this TBox, we will have ♣LeafI ♣ = 22n

, i.e. Leaf has double exponential number
of element but is still bounded by T and Σ = ∅. For this observe that every element in
e ∈ LeafI is identiĄed by a unique word σ1 · · ·σ2n with σi ∈ ¶L,R♢. Observe also that
Node is also bounded by T and Σ = ∅.

We now turn our attention to constructing the program P , which will populate the Succ,
First and Last Datalog relations. We need a small addition to the TBox T , for which we
use fresh concept names AllL and AllF. We use the following inclusions that will help us
to identify the left most leaf node and the right most leaf node in our tree:

¶root♢ ⊑ AllL ⊓ AllF AllL ⊑ ∀L.AllL AllR ⊑ ∀R.AllR

We can now state the rules for First and Last:

First(X)← Leaf(X),AllL(X) Last(X)← Leaf(X),AllR(X)

We use the following rule to order the two child nodes of a given node.

AuxSucc(Y, Y ′)← Node(X),Node(Y),Node(Y ′), L(X,Y), R(X,Y ′)

If a pair a, b of non-leaf nodes are related by the AuxSucc relation, then the R-child of a
and the L-child of b are related by this relation as well.

AuxSucc(Z,Z ′)← AuxSucc(Y, Y ′), R(Y,Z), L(Y ′, Z ′),Node(Z),Node(Z ′)

At the leaf level, AuxSucc contains the desired successor relation:

Succ(Z,Z ′)← AuxSucc(Z,Z ′), Leaf(Z), Leaf(Z ′)

One can check that the program P is safe. It is also not difficult to see that in any
model I of the constructed TBox T and the program P, the relation Succ will encode a
sequence of 22n

nodes.

(Part B) We now add further axioms and rules to generate the second level of trees.
We take a copy of the axioms and rules obtained in Part A and perform the following
steps :

1. Replace every concept name A and role name r by the ŞprimedŤ version A′ of the
concept name and r′ of the role name, respectively.

2. Replace ¶root♢ by Leaf.

The effect of these additions is that at every point in Succ, we have a tree hanging whose
leaves are linearly ordered and stored in relations First′, Last′, and Succ′.

178

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6.4. Boundedness in Ontology-Mediated Query Answering

(Part C) We now need to align the different rows stored in the Succ′ predicate into a
grid. This is done using the following rules:

hasParent(X ′, X)← E′(X,X ′)

hasParent(X,Z)← hasParent(X,Y), hasParent(Y, Z)

ver(X,X ′)← First′(X), hasParent(X,Z),Succ(Z,Z ′),First′(X ′), hasParent(X ′, Z ′)

ver(X ′, X)← First′(X), hasParent(X,Z),First(Z),First′(X ′), hasParent(X ′, Z ′), Last(Z ′)

ver(Y, Y ′)← ver(X,X ′),Succ′(X,Y),Succ′(X ′, Y ′)

The above populates the relation hor. We can now populate the relation ver, which is
simply done by copying the content of Succ′, and connecting the last element of the order
with the Ąrst element of the order (to achieve a torus):

hor(Z,Z ′)← Succ′(Z,Z ′)

SuccTC′(Z,Z ′)← Succ(Z,Z ′)

SuccTC′(Z,Z ′)← SuccTC′(Z,X),Succ(X,Z ′)

hor(Z ′, Z)← First′(Z),SuccTC′(Z,Z ′), Last′(Z ′)

(Part D) We can now express the tiling conditions. For every tile t ∈ T , let At be a
fresh concept name. We add the following to T and P to expressed that one tile needs to
be assigned to every element of the grid, and that adjacent tiles must obey the vertical
and horizontal compatibility restrictions given in H and V :

Leaf′ ⊑
⊔

t∈T

(

At ⊓
l

t′∈T \¶t♢

¬At′

)

q(err)← Leaf′(X), At(X), Leaf′(Y), At′(Y), hor(X,Y) for all (t, t′) ∈ T × T \H

q(err)← Leaf′(X), At(X), Leaf′(Y), At′(Y), ver(X,Y) for all (t, t′) ∈ T × T \ V

Finally, it remains express the initial condition (t1, . . . , tn). We add the following rules
for all 1 ≤ i ≤ n and all t ∈ T \ ¶ti♢:

q(err)← First′(X1),Succ′(X2), . . . ,Succ′(Xn), hasParent(X1, Z),First(Z), At(Xi).

We are now Ąnished with the construction of T and P. One can verity that a proper
tiling for the 22n

× 22n
grid w.r.t.D and c grid exists if and only if there exists a model

I of T and P such that I does not satisfy err /∈ q, i.e., if err is not a certain answer to
(T , ∅,P, q) over the empty ABox.

179

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6. Reasoning about Predicate Boundedness

6.5 Discussion

In this chapter we have presented a method to reason about the number of anonymous
objects in the models of KBs written in the expressive DL ALCHOIQ with closed
predicates. This provides a new tool to aid the design of ontologies, also opening the way
for sophisticated yet decidable reasoning tasks for data management.

One challenging task left for future work is to provide an implementation of our method
for checking boundedness. Due to the large size of the inequality systems, it is clear
that we cannot explicitly build them and reuse existing integer programming solvers
Ű this would require (best-case) exponential time. In fact, in Chapter 7, we present a
procedure that approximates bounded concept names for ALCHOIQ (two other less
expressive DLs) by simply looking at the shapes of the axioms in the TBox. This
procedure yields a subset of strongly bounded concept names for a given TBox T and
a set Σ of closed predicates, their extensions being bounded by a single-exponential
function depending on the size of T and Σ. Another promising way to efficiently recognize
predicate boundedness is to consider small systems of inequalities that provide a sound
(but incomplete) approximation of the full systems deĄned here.

In the previous section, we showed that predicates boundedness has application is relaxing
the notions of safety for safe-range and rule-based queries over ontologies expressed in
the DL ALCHOIQ with closed predicates. Another application, which we brieĆy discuss
next is veriĄcation of temporal properties of evolving graph databases. Namely, we
believe that using the same ideas that we used in Section 6.4, we can identify new settings
with decidable veriĄcation tasks, e.g., by developing methods to identify state bounded
systems in the sense of [BHCDG+13].

Decidable VeriĄcation of Temporal Properties In this setting, we consider
databases that evolve over time due to the execution of data-manipulating actions
by various agents. Effective methods to verify temporal properties of such systems are
currently unavailable, but would be extremely useful in the design of data-centric appli-
cations. The key challenge here is to deal with actions that may introduce fresh values,
which may result in an unbounded growth of the database during the passage of time.
Technically speaking, we are interested in the model checking problem for (temporal)
logic formulae in infinite-state transition systems, where each state corresponds to a
possible legal database. This problem is undecidable already for very simple action
languages and temporal properties, but decidability can be regained, e.g., for the so-called
state bounded systems, even for rich speciĄcations of temporal properties based on µ-
calculus [BHCDG+13]. The latter systems are deĄned by imposing a global upper bound
on the size of the active domain of the database during its evolution. Recognizing state
bounded systems is undecidable though, which raises the challenge to Ąnd sound (but
necessarily incomplete) methods to identify state boundedness. Our results immediately
yield one such method, when we consider evolving (graph) databases G equipped with
integrity constraints expressed as a TBox T , assuming a set Σ of relations that are
required to be read-only (i.e., acting as master data), and requiring all the remaining

180

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6.5. Discussion

relations to be bounded by T and Σ (in the sense of DeĄnition 6.1.2). Here G is a
DL interpretation that is required to be a model of T at each point in time. If the
extension of the predicates in Σ is assumed Ąxed for the whole evolution (or allowed to
vary while obeying some predeĄned bound on its size), then in all legal databases (i.e.,
those satisfying T) the remaining predicates will have bounded size, which leads to state
boundedness and the transfer of results from [BHCDG+13]. We remark that the idea to
exploit cardinality constraints (available, e.g., in UML) to identify cases with decidable
veriĄcation can be found in [CMET14, MC16], but they do not study DLs.

181

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

CHAPTER 7
Resilient Logic Programs

As we have already seen, rule-based languagesŮespecially those supporting non-monotonic
negationŮand description logics offer complementary modeling and reasoning capabilities.
Indeed, rule-based languages like Datalog and its extansions are tailored to provide
powerful closed-world reasoning about known objects, and features like the default
negation are important when modeling dynamic domains, e.g., in reasoning about actions
and change. On the other hand, DLs are suitable for open-world reasoning, especially for
reasoning about anonymous objects, i.e., objects whose identity is unknown but whose
existence is implied.

Motivated by this contrast, combining rule-based languages and DLs into Hybrid Knowl-
edge Bases (HKBs) is a well-established research topic in KR&R [Ros05, EIL+08, MR10,
KAH11]. Such hybrid languages can be divided into two classes: the world-centric
and the entailment-centric approaches. The languages in [Ros05, Ros06, BOŠ18] are
world-centric because an intended structure (i.e., an answer set) of a HKB is a single
Ąrst-oder structure that is ŞacceptableŤ both to the rule and to the DL component of
that HKB. Intuitively, in such HKBs the rules base their inferences on a given model of
the DL component, rather than accessing the knowledge that is entailed. In other words,
this means that inferences via rules must only be consistent with the DL component,
which is a rather weak way of using the knowledge stored there. The entailment-centric
approaches like [EIL+08, MR10] are the other extreme: when ontological reasoning is
considered, rules can base their inferences only on the logical consequences of the DL
component, which means that rules have very limited access to individual models of the
DL component.

There are many KR problems where both extremes are inadequate, since solutions must
be resilient to a range of possible scenarios. For a simple (synthetic) example, assume we
are given a set of nodes and we want to generate a directed graph G such that removing
any single node from G will always result in a strongly connected graph. In this example,
an ontology can model the possible choices of nodes to be removed. Intuitively, in order

183

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

7. Resilient Logic Programs

to validate our choice of edges for G, we have to make sure that every possible induced
subgraph G′, obtained by removing a single node from G, is strongly connected. However,
the reachability relation in G′ will be different for different choices of G′. This and similar
examples reveal the need for a new approach that blurs the lines between the world-centric
and the entailment-centric approaches. We thus study HKBs that may process different
models of the input ontology in different ways, in the spirit of world-centric approaches,
but the intended answer sets, which must be resilient to the different scenarios, are
deĄned via a universal quantiĄcation over the models of the ontology, in the spirit of
entailment-centric approaches.

Contributions and Relevant Publications. Our contributions can be summarized
as follows:

• We introduce resilient logic programs (RLPs), a formalism in which a standard
Datalog¬ program P is paired with a Ąrst-oder theory (or a DL ontology) T and
the predicates are divided into output, response, and open-world predicates. The
semantics is deĄned via a ŞnegotiationŤ between P and T : the two components
need to agree on an answer set I over the output signature, so that no matter
how I is extended into a model of T (by interpreting the open-world predicates),
the program P can give a matching and justiĄed interpretation to the response
predicates. Both ∃∀∃-QBFs and disjunctive Datalog with negation under the stable
model semantics (Datalog∨, ¬) are naturally captured by resilient programs, and
in fact, the QBF reduction shows that reasoning in RLPs is ΣP

3 -hard in data
complexity, setting them apart form previous hybrid languages. We also illustrate
the power of RLPs for conĄguration problems with incomplete information.

• Inevitably, reasoning in RLPs is undecidable unless restrictions are imposed on how
rules are allowed to manipulate anonymous objects. We argue that by applying some
natural restrictions, including a rule safety condition reminiscent of the well-known
DL-safety [MSS05, Ros05], decidability of reasoning can be achieved. We provide a
general complexity upper bound that applies to very expressive FO fragments like
the guarded negation fragment (GFNO).

• We further introduce a slightly more restricted fragment of RLPs, in which theories
are given as sets of positive disjunctive rules and the use of default negation in
front of response predicates is restricted. These restrictions cause a decrease in
computational complexity of RLPs and allow us to provide a translation into
disjunctive Datalog, opening up a perspective for implementation.

• We then turn to RLPs where the theory is a DL ontology, and show decidability of
reasoning under the relaxed rule safety condition based on predicate boundedness,
similar to the safety condition introduced in Chapter 6. Finally, for the case where
ontologies are written in the well-known DLs ALCHOIQ, ALCHI and DL-LiteF ,
we provide algorithms and complexity results.

184

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

7.1. Resilient Logic Programs

The results from this chapter have been published in:

[LOŠ20] Sanja Lukumbuzya, Magdalena Ortiz, Mantas Šimkus. ŞResilient
Logic Programs: Answer Set Programs Challenged by OntologiesŤ. In Pro-
ceedings of the Thirty-Fourth AAAI Conference on ArtiĄcial Intelligence,
AAAI 2020, pp. 2917-2924. 2020,

as well as the workshop version of the work above:

[OPŠ19] Magdalena Ortiz, Sanja Pavlović, and Mantas Šimkus. ŞAnswer Set
Programs Challenged by OntologiesŤ. In Proceedings of the 32nd International
Workshop on Description Logics, DL 2019, CEUR-WS, 2019.

Organization The rest of this chapter is organized as follows. In Section 7.1 we
introduce the syntax and the semantics of our formalism and provide some illustrating
examples, including a translation of regular Datalog∨, ¬ programs into RLPs. As RLPs
are generally undecidable, in Section 7.2, we identify a large fragment of RLPs for which
we can guarantee decidability. Moreover, in Section 7.2.1, we show that by further
constraining this fragment, we get RLPs that can be translated into disjunctive Datalog.
In Section 7.3, we turn to RLPs whose theory component is given as a DL TBox. In
this setting, we deĄne a relaxed safety condition based on bounded predicates and we
provide complexity results. Finally, we conclude this chapter with a brief discussion of
our results in Section 7.4.

7.1 Resilient Logic Programs

Before we present our formalism, a few remarks are in order.

Preliminaries For convenience, in this chapter, we only consider Herbrand interpreta-
tions and we denote them by uppercase letters I and J . Given that we also talk about
FO theories, we specify what we mean when we say that an Herbrand interpretation is a
model of a FO theory. Let I be an Herbrand interpretation. Then, I induces the FO
interpretation Ĩ = (∆Ĩ , ·Ĩ), where:

• ∆Ĩ = NI(I), and

• pĨ = ¶a⃗ : p(⃗a) ∈ I♢, for every p ∈ NP.

We say that I is a model of a FO theory T , if the induced FO interpretation Ĩ is a model
of T .

Given an interpretation I and a set Σ of predicates, I♣Σ denotes the restriction of I to
the predicates in Σ, i.e., I♣Σ = ¶p(⃗a) ∈ I : p ∈ Σ♢. Similarly, for a rule ρ, we denote by
ρ♣Σ the rule obtained from ρ by deleting all atoms over predicates that are not in Σ.

185

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

7. Resilient Logic Programs

We next present the syntax and the semantics of our resilient logic programs. Syntactically,
resilient logic programs consist of an ordinary Datalog¬ program equipped with a FO
theory and a partition of the signature. Recall that we denote the predicate symbols that
occur in a program P or a theory T by sig(P) and sig(T), respectively.

DeĄnition 7.1.1 (Syntax). A resilient logic program (RLP) is a tuple

Π = (P, T ,Σout,Σowa,Σre),

where P is a program, T is an FO theory, and the sets Σout, Σowa, Σre are a partition of
sig(P) ∪ sig(T) with Σre ∩ sig(T) = ∅. We call Σout the set of output predicates, Σowa

the set of open predicates, and Σre the set of response predicates of Π. The predicates
in Σout ∪ Σre are called closed predicates of Π.

DeĄning the semantics of RLPs involves the same general steps as deĄning the semantics
of ordinary Datalog¬ programs. To this end, we introduce the notion of a reduct of a
program w.r.t a given interpretation and a set of predicates, that is a generalization of
the notion presented in DeĄnition 2.4.8.

DeĄnition 7.1.2. The reduct of a Datalog¬ program P w.r.t. to an interpretation I
and a set of predicates Σ ⊆ NP is the following ground positive program PI,Σ:

PI,Σ = ¶(head(ρ)← body+(ρ))♣sig(P)\Σ : body+(ρ)♣Σ ⊆ I,

head(ρ)♣Σ ∩ I = ∅, body−(ρ) ∩ I = ∅, ρ ∈ ground(P,NI)♢.

In other words, PI,Σ is obtained from ground(P,NI) as follows:

1. Delete every rule ρ that contains a literal p(u⃗) such that:

• p(u⃗) ∈ body+(ρ), p(u⃗) ̸∈ I, and p ∈ Σ,

• p(u⃗) ∈ head(ρ), p(u⃗) ∈ I, and p ∈ Σ, or

• p(u⃗) ∈ body−(ρ) and p(u⃗) ∈ I.

2. In the remaining rules, delete all negated atoms and all atoms p(u⃗) with p ∈ Σ.

The deĄnition above is inherited from Clopen KBs [BOŠ18], which in turn borrow the
principle from r-hybrid KBs [Ros05]. Intuitively, PI,Σ is the result of partially evaluating
P according to the facts in I, interpreting the predicates in Σ as open-world. Note that
in order to compute the regular reduct PI we evaluate only the negated atoms in P. In
contrast, the generalized reduct requires us to additionally evaluate all atoms p(u⃗) with
p ∈ Σ, so that the remaining program contains no predicates from Σ. Observe that if
Σ = ∅, PI coincides with PI,Σ.

We are now ready to deĄne the semantics of RLPs.

186

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

7.1. Resilient Logic Programs

DeĄnition 7.1.3 (Semantics). Let Π = (P, T ,Σout,Σowa,Σre) be an RLP, and let I be
an interpretation over Σout. Then I is an answer set of Π if:

(i) there exists some model J of T such that I = J ♣Σout, and

(ii) for each model J of T with I = J ♣Σout, there is an interpretation H such that
J ♣Σout∪Σowa = H♣Σout∪Σowa and H♣Σout∪Σre is a minimal model of PH,Σowa.

We call H a response to J w.r.t. I and Π.

Intuitively, an answer set of an RLP Π = (P, T , Σout, Σowa, Σre) is an interpretation I
over the output predicates that fulĄlls the following two conditions:

(i) I is consistent with the theory, i.e., we can extend I into a model of T by interpreting
the open predicates, and

(ii) no matter how we extend I into a model of T , we can always Ąnd a matching
interpretation for the response predicates that, together with I, will be justiĄed by
the program P.

RLPs provide an easy way of modeling and solving problems with an underlying exist-
forall-exist structure. More precisely, RLPs are suitable for problems where we have
control over some parameters that might, to some extent, inĆuence the environment that
we can otherwise not control and is unknown to us a priori, but to which we have to
be able to respond adequately. Note that different states of the environment will likely
require different responses. In such scenarios, we use the theory to describe the possible
states of the environment, and the rules of the program to process a given state. The
partitioning of the predicates into three different sets can be intuitively explained as
follows. The output predicates are the predicates whose extensions can be controlled and
that do not depend on the unknown environment, but rather might inĆuence the set of
possible states of the environment one has to consider. The predicates whose extensions
we have absolutely no control over are the open predicates. These predicates are used
to describe the unknown parts of the environment that we must react to (e.g., things
related to user input). Finally, the response predicates are the predicates used in the
rules for computing responses to the environment and their extensions are dependent on
the speciĄc extensions of the open predicates.

We next illustrate RLPs through a few examples.

Example 7.1.4. We show how to express the graph problem from the introduction as an
RLP. Given nodes n1, . . . , nk, let Π = (P, T , ¶V,E♢, ¶in, out♢, ¶E,R♢), where

T = ¶∃xout(x),∀x(V (x)→ in(x) ∨ out(x)),

∀x(V (x)→ ¬in(x) ∨ ¬out(x)),∀x∀yout(x) ∧ out(y)→ x = y♢

187

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

7. Resilient Logic Programs

P = ¶V (n1), · · · V (nk),

E(x, y)← V (x), V (y),not E(x, y),

E(x, y)← V (x), V (y),not E(x, y),

R(x, z)← R(x, y), R(y, z),

R(x, y)← E(x, y),not out(x),not out(y),

← V (x), V (y), x ̸= y,not out(x),not out(y),not R(x, y).♢

In each answer set of Π, E defines the edge relation of a directed graph G such that
removing any single node ni, i ∈ ¶1, . . . , k♢, from G (i.e., ni is the only node in out),
results in a graph that is still strongly connected. For example, for k = 4 we have that

I = ¶ V (n1), V (n2), V (n3), V (n4),

E(n1, n2), E(n2, n3), E(n3, n4), E(n4, n1),

E(n1, n3), E(n3, n1), E(n2, n4), E(n4, n2), ♢

is an intended answer set as removing any single node from this graph (and all edges
relating to this node) yields a strongly connected graph. The set obtained from I by
removing, e.g., E(n1, n2) is not an intended answer set. In such a graph, removing n3

results in n2 not being reachable from n1.

Furthermore, the next example shows that RLPs can elegantly capture ∃∀∃-quantiĄed
Boolean formulas (QBFs).

Example 7.1.5. Consider the evaluation problem for QBFs of the form

Φ = ∃X1, . . . , Xn∀Y1, . . . , Ym,∃Z1, . . . , Zkφ,

where φ is in 3-CNF, i.e., φ is of the form
∧

1≤i≤l

∨

1≤j3 Lij and each Lij is either a
Boolean variable (= a predicate with arity 0) or a negated Boolean variable. We define
an RLP Π whose answer sets directly correspond to the truth-value assignments for
X1, . . . , Xn for which Φ evaluates to true.

Note that Π reflects the quantifier alternation in Φ: we want to output an assignment for
the Xi (i.e., an interpretation over TX and FX) such that for every assignment for the
open-world Yi we can respond with an assignment for the Zi that satisfies the constraints,
i.e., the clauses in Φ. We let Π = (P, T ,¶VX ,VY ,VZ ,TX ,FX♢,¶TY ,FY ♢,¶TZ ,FZ♢),

T = ¶∀x(VY (x)→ TY (x) ∨ FY (x)),

∀x(VY (x) ∧ TY (x) ∧ FY (x)→ ⊥)♢

P = ¶Vα(cα
1), . . . Vα(cα

nα
),

TX(x)← VX(x),not FX(x)

FX(x)← VX(x),not TX(x)

TZ(x)← VZ(x),not FZ(x)

FZ(x)← VZ(x),not TZ(x)

← σ(Li,1), σ(Li,2), σ(Li,3), for each clause Ci in φ♢

188

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

7.1. Resilient Logic Programs

where, given a literal l, σ(l) is defined as:

σ(l) =

{

Tα(cα
i) if l = ¬αi, i = 1, . . . , nα

Fα(cα
i) if l = αi, i = 1, . . . , nα

where α ∈ ¶X,Y, Z♢, nX = n, nY = m, and nZ = k.

Intuitively, each Boolean variable Xi (resp. Yi, Zi) in Φ is represented by a constant
cX

i (resp. cY
i , c

Z
i). The predicate symbols VX , VY , and VZ are used to partition these

constants into three sets that correspond to the partitioning of variables into different
quantifier blocks in Φ. For example, VX(cX

i) means that variable Xi is in the first
quantifier block. We use predicate symbols TX , FY (resp., TY , FY /TZ , FZ) to indicate
the truth value assigned to X (resp., Y/Z) variables. Namely, the expression TX(cX

i)
is understood as ‘variable Xi is assigned true’ and FX(cX

i) as ‘Xi is assigned false’.
The meaning of other predicates is defined analogously. The theory component T makes
sure that we only consider interpretations that can be seen as well-defined truth-value
assignments to variables Y1, . . . , Ym. In particular, this means that in any model I of
T , exactly one of TY (cY

i) ∈ I and FY (cY
i) ∈ I holds, for each i = 1, . . . ,m. Rules rX

and rY serve a similar purpose. We also add a rule ← σ(Li,1), σ(Li,2), σ(Li,3) for each
clause Ci = Li,1 ∨ Li,2 ∨ Li,3 in φ. Intuitively, this ensures that in every model of P, at
least one literal per clause must be satisfied. Finally, we choose our output predicates to
be VY , TX , FX . Notice that we can interpret candidate answers sets of Π as truth-value
assignments to X1, . . . , Xn, models of T as truth-value assignments to Y1, . . . , Yn, and
interpretations over the response predicates as truth-value assignments to Z1, . . . , Zk.
Additionally, P is defined in a way that given a candidate answer set I, a model of the
theory J and an interpretation H over the response predicates, H ∪ I is a minimal model
of PH ∪ I ∪ J, Σowa if H ∪ I ∪ J defines an assignment to the variables of φ that satisfies φ.
Clearly, the answer sets of Π are in direct correspondence with the truth-value assignments
to X1, . . . , Xn for which Φ evaluates to true.

As mentioned above, RLPs can be used to solve problems in which one needs to come up
with robust settings that allow for a successful processing of all events that may come
in many possible conĄgurations. In such scenarios, the role of the theory is to describe
all possible conĄgurations of events and the rules of the program are used to process
the given conĄguration. Our semantics then ensures that the answer sets of such RLPs
coincide with the sought-after settings. We next present an example that illustrates this.

Example 7.1.6. Assume a company has to process a fixed amount of customer orders
per day. The company does not know what the exact configuration of these orders will be,
but it knows that each of them consists of up to 5 tasks and each task requires one service
offered by the company. The company has a task of selecting which services to offer so
that no matter what the actual configuration of the orders is, the tasks can be scheduled
to employees in a way that each task will be completed by the end of the day.

This problem is solved by an RLP in which the offered services are captured by the output
predicates, models of the theory correspond to possible configurations of orders, and the

189

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

7. Resilient Logic Programs

models of the program define viable schedules of tasks to employees. The answer sets of
such an RLP then correspond to sets of services that, if offered, guarantee that for every
configuration of orders there exists a schedule in which each task is completed by the end
of the workday.

We define a program P1 consisting of the rules that model the timeline of the workday:

Next(i,i+1), for 0 ≤ i < tmax,

Time(y)← Next(x, y),

Time(x)← Next(x, y),

ltHour(x0, xn)← Next(x0, x1), . . . ,Next(xn−1, xn), 0 ≤ n < 60

Assume that the employees work eight hours per day and the granularity of Next is one
minute. We set tmax = 480.

As facts, we store the employees, the services, as well as which employee can provide
which service. For simplicity assume that each service takes the same amount of time to
be completed, e.g., 60 minutes, and that the company needs to process two orders per day.
We also encode this information using facts. Consider, for demonstration purposes, the
following set of facts:

P2 = ¶Service(s1),Service(s2),Service(s3),

Employee(e1),Employee(e2),Order(o1),Order(o2),

Provides(e1, s1),Provides(e1, s2),

Provides(e2, s1),Provides(e2, s2),Provides(e2, s3)♢

We further introduce two binary predicates hasTask and Req for specifying which orders
have which tasks associated to them and which tasks require which offered services,
respectively. Assume we have an FO theory T expressing the following information:
(i) each order has at least one and at most five tasks associated to it, (ii) each task is
associated to exactly one order and (iii) each task requires exactly one offered service.
We show later that such a theory can be elegantly expressed using description logics.

The rules that select services are defined as follows:

P3 = ¶OfferedService(x)← Service(x),not OfferedService(x)

OfferedService(x)← Service(x),not OfferedService(x)♢

Next, the set P4 of rules generates a viable schedule (Sched) consisting of tuples (x, y, z),

190

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

7.1. Resilient Logic Programs

assigning task y to employee x to be performed starting at time point z.

P4 = ¶Sched(x, y, z)← Task(y),Time(z),Req(y, u),Provides(x, u),not Illegal(x, y, z)

Illegal(x, y, z)← Task(y),Time(z), ltHour(z, tmax),Employee(x)

Illegal(x, y, z)← Sched(x′, y, z′), T ime(z),Employee(x), x ̸= x′

Illegal(x, y, z)← Sched(x′, y, z′), T ime(z),Employee(x), z ̸= z′

Illegal(x, y, z)← Task(y),Sched(x, y′, z′), ltHour(z′, z), z ̸= z′

Illegal(x, y, z)← Task(y),Sched(x, y′, z′),Time(z), z = z′, y ̸= y′

OKTask(y)← Sched(x, y, z)

← not OKTask(y), Task(y)♢

Let Σout = ¶Order,OfferedService♢, Σowa = sig(T) \ Σout, and Σre = sig(P) \ (Σout ∪
Σowa). The answer sets of the RLP (P, T ,Σout,Σowa,Σre), where P = P1 ∪ P2 ∪ P3 ∪ P4,
represent sets of services that can be offered and completed within the given time con-
straints regardless of the type of received orders. One example of such an answer set is
I = ¶Order(o1),Order(o2), OfferedService(s1)OfferedService(s2)♢. It can be verified that
whatever the configurations o1 and o2 might be, we can always find a schedule in which
all tasks are completed on time.

Note that, unlike traditional Datalog¬, RLPs can have comparable answer sets. For
example, the set ¶OfferedService(s1)Order(o1), Order(o2)♢ ⊂ I is also an answer set of Π.

Let J = ¶OfferedService(s3),Order(o1),Order(o2)♢ and consider a model of T in which
each order consist of five tasks associated with the service s3. Since only employee e2

can perform s3, she needs to perform this service ten times. However, this takes more
than the 480 minutes and so no valid schedule can be found. This means that J is not an
answer set of Π.

7.1.1 Encoding Datalog∨, ¬ into RLPs

There is a strong connection between RLPs and Datalog∨, ¬, i.e., disjunctive logic programs
with negation under the stable model semantics [EGM97]. Recall that Datalog∨, ¬ programs
extend Datalog¬ rules by allowing disjunctions of atoms in rule heads. Namely, Datalog∨, ¬

rules are of the form

h1 ∨ . . . ∨ hl ← b1, . . . , bn,not bn+1, . . . ,not bm,

where l > 1, n,m ≥ 0, h1, . . . , hl, b1, . . . , bm are atoms and every variable occurring in
h1, . . . , hl, bn+1, . . . , bm must occur in some b1, . . . , bn. We next show that Datalog∨, ¬

programs are fully captured by RLPs.

Theorem 7.1.7. Every Datalog∨, ¬ program P can be translated in polynomial time into
a resilient logic program Π = (P ′, ¶⊤♢,Σout, Σowa,Σre) whose answer sets coincide with
those of P.

191

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

7. Resilient Logic Programs

Proof. The core idea of the translation is to use two copies of the signature of P, both
encoding possible interpretations over the signature and the constants of P. As the
theory component plays no role in this translation we simply use ⊤. Our strategy is
the following. We Ąrst deĄne rules that generate a candidate answer set I of P and use
constraints to ensure that I satisĄes all the rules of P. For this we use the signature of
P Ű our set of output predicates, and one of its copies Ű the response predicates. The
other copy constitutes the set of open predicates and is used to verify that I is indeed
an answer set of P. To do this, we need to make sure that there is no interpretation
J ⊊ I that is a model of PI . In other words, we need to check that for all possible
interpretations J , either (i) J = I, (ii) there is an atom h such that h ∈ J and h ̸∈ I,
i.e., J ̸⊂ I, or (iii) J violates some rule in PI . We deĄne the rules, using some additional
response predicates, to check for a given J if one of these conditions holds. Since we have
a universal quantiĄcation over interpretations, we use open predicates to encode J . Our
semantics then ensures that if I is an answer set of Π then for any possible interpretation
J at least one of (i)-(iii) holds. Hence, the answer sets of P and Π coincide. We next
present our translation below.

Assume that p1, . . . , pn are the predicate symbols in P. For each pi, we take two fresh
predicate symbols pi and p′

i of the same arity as pi.

The set of rules P ′ is now deĄned as follows. First, we add all the facts of P together
with the rule Adom(xi) ← p(x1, . . . , xk) for each k-ary p ∈ Σ with k > 0, and each
1 ≤ i ≤ k. For any k > 0 and tuple (t1, . . . , tk) of terms, in rule bodies we may write
Adomk(t1, . . . , tk) instead of Adom(t1), . . . ,Adom(tk). For each k-ary predicate p ∈ Σ, we
take a fresh k-ary predicate p and we add:

p(x⃗)← Adomk(x⃗),not p(x⃗)

p(x⃗)← Adomk(x⃗),not p(x⃗),

where x⃗ is a tuple of k variables. For every rule

h1(t⃗1) ∨ . . . ∨ hk(t⃗k)← b1(u⃗1), . . . , bn(u⃗n),not bn+1(u⃗n+1), . . . ,not bm(u⃗m)

in P, we add the following constraint to P ′:

← h1(t⃗1), . . . , hk(t⃗k), b1(u⃗1), . . . , bn(u⃗n), bn+1(u⃗n+1), . . . , bm(u⃗m).

We set Σout = ¶p1, . . . , pn♢. These rules guess a structure I that corresponds exactly to
a classical model of P, i.e. a model of P seen as a theory in classical logic, with ŞnotŤ
interpreted as the standard negation operator ¬. To guarantee that such I is an answer
set to P, it remains to make sure that there is no J ⊊ I such that J is a model of PI . In
other words, we have to make sure that for all interpretations J , we have that (i) J = I,
(ii) there is an atom h such that h ∈ J and h ̸∈ I, or (iii) there is a rule in PI that is
violated in J . We use the theory T = ¶⊤♢ and the open predicates Σowa = ¶p′

1, . . . , p
′
n♢

to set up a universal quantiĄcation over the candidate interpretations J . We now deĄne

192

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

7.2. Decidable RLPs

the rules to check if one of (i)-(iii) holds, which is indicated by justifying a 0-ary predicate
ok.

To deal with (i), we add ok← not neq and the following rules for all predicates p of P:

neq← p(x⃗), p′(x⃗) neq← p(x⃗),not p′(x⃗),

with x⃗ an arbitrary k-tuple of variables and k the arity of p.

To deal with (ii), we add for every predicate p of P , the rule ok← p(x⃗), p′(x⃗), where x⃗ is
an arbitrary k-tuple of variables with k the arity of p.

Finally, to deal with (iii), for every rule

h1(t⃗1) ∨ . . . ∨ hk(t⃗k)← b1(u⃗1), . . . , bn(u⃗n),not bn+1(u⃗n+1), . . . ,not bm(u⃗m)

in P, we add the following rule to P ′:

ok← not h′
1(t⃗1), . . . ,not h′

k(t⃗k), b′
1(u⃗1), . . . , b′

n(u⃗n), bn+1(u⃗n+1), . . . , bm(u⃗m).

Intuitively, ok will be justiĄed in all possible models of T iff (i)-(iii) hold, i.e., any
interpretation I over Σout does not have an interpretation J ⊊ I such that J is a model
of P I . To Ąnish the translation, we add to P ′ the constraint

← not ok.

One can easily verify that the answer sets of P and Π coincide.

7.2 Decidable RLPs

The main reasoning task for RLPs is deciding the answer set existence, i.e., given an RLP
Π, decide whether there exist an answer set I of Π. We note that other common reasoning
problems like skeptical (resp., brave) entailment can be easily reduced to checking non-
existence (resp., existence) of an answer set. In particular, a ground atom p(c⃗) is true in
all answer sets of Π (i.e., p(c⃗) is a skeptical consequence) iff the result of adding ← p(c⃗)
to (the program component of) Π does not have an answer set. Similarly, a ground atom
p(c⃗) is true in some answer set of Π (i.e., p(c⃗) is a brave consequence) iff Π augmented
with ← not p(c⃗) does have an answer set. With this in mind, the rest of this chapter is
focused on the problem of deciding answer set existence.

Unsurprisingly, this task is undecidable for RLPs in their general form. This is not hard
to show adapting analogous results for some well-known hybrid languages [LR98, Ros07a].
Thus, the main goal of this section is to identify a class of RLPs for which decidability
can be regained.

The Ąrst step is to introduce a safety condition for RLPs that ensures that variables
in the program range only over a Ąnite number of constants. To this end, we use
the notion of safety presented in [BOŠ18] which was inspired by the well-known DL-
safety [MSS05, Ros05]:

193

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

7. Resilient Logic Programs

DeĄnition 7.2.1. An RLP Π = (P, T ,Σout,Σowa,Σre) is safe if for each rule ρ ∈ P,
each variable in ρ occurs in some p(u⃗) ∈ body+(ρ), where p ∈ Σout ∪ Σre.

Intuitively, for RLPs that fulĄll this condition, variables in the program P range only
over the active domain of the program, i.e., the set of constants explicitly mentioned in
P . This is exploited to devise a terminating algorithm for answer set existence of RLPs.

An obvious further requirement for decidability is that the theory component of RLPs
must belong to a fragment of FO in which satisĄability is decidable. However, we need
something stronger: the theory must be in a logic for which the problem of satisfiability
in the presence of closed predicates is decidable, i.e., given a theory T , a set of predicates
Σ regarded as closed, and an interpretation I, we can decide whether there is a model J
of T s.t. J ♣Σ = I.

Theorem 7.2.2. The problem of answer set existence is decidable for safe RLPs whose
theory is in a logic for which satisfiability under closed predicates is decidable.

Proof. Algorithm 7.1 decides the answer set existence for such RLPs. In a nutshell, the
algorithm takes an RLP Π = (P, T ,Σout,Σowa,Σre), guesses an interpretation I and
subsequently uses two oracle calls to check whether I is an answer set of Π. The Ąrst call
checks whether there is a model J of T s.t. J ♣Σout = I. The second call tries to verify
whether each such model of T has a response w.r.t. I and Π by attempting to guess a
model J ′ of T for which this does not hold. In order to check that J ′ has no response,
another oracle call is made which tries to guess a response. If this fails, there is a counter
example to I being an answer set of Π. Note that, due to our safety condition, it suffices
to make the guesses only over adom(P). Further, the subroutine isConsistent(T , I,Σ)
checks whether there exists a model J of T s.t. J ♣Σ = I. For RLPs that fulĄll the
conditions from Theorem 7.2.2 this problem is decidable and the subroutine terminates,
yielding a decision procedure.

A naive analysis of Algorithm 7.1 yields the following upper bound in terms of computa-
tional complexity:

Theorem 7.2.3. Let L be a logic in which satisfiability under closed predicates is in
some complexity class C that contains NP. Deciding answer set existence of safe RLPs
with theories in L is in NExpTime CNP

.

One of the most expressive decidable fragments of FO is the so-called guarded negation
fragment (GNFO) [BCS15], which extends the guarded fragment of FO and also captures
most description logics. As in GNFO satisĄability under closed predicates is decidable in
2ExpTime [BBtCP16, BOŠ18], by Theorem 7.2.3, answer set existence for safe RLPs
with GNFO theories is decidable and belongs to the class NExpTime 2ExpTime NP

=
NExpTime 2ExpTime.

194

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

7.2. Decidable RLPs

Algorithm 7.1: Answer set existence for safe RLPs.

1 Algorithm hasAnswerSet(Π)
Input : RLP Π = (P, T ,Σout,Σowa,Σre)
Output : true iff Π has an answer

2 Guess an interpretation I over Σout and adom(P)

3 return isConsistent(T ,Σout, I) and not hasCE(I,Π, adom(P),Σout)

1 Subroutine hasCE(I,Π,∆,B)
Input : Interpretation I, RLP Π = (P, T , Σout, Σowa,Σre), ∆ ⊆ NI, and

B ⊆ sig(T)
Output : true iff there is a counter example to I being an answer set of Π

2 Guess an interpretation J over sig(P) ∩ sig(T) ∪ Σout and the constants from
∆ s.t. J ♣Σout = I♣Σout

3 J ′ ← J ∪ ¶¬p(c⃗) : c⃗ ∈ ∆art(p), p ∈ sig(P) ∩ (sig(T) \ B), and p(c⃗) ̸∈ J♢

4 return isConsistent(T ,B, J ′) and not hasResp(J,Π)

1 Subroutine hasResp(J,Π)
Input : Interpretation J , RLP Π = (P, T ,Σout,Σowa,Σre)
Output : true iff there exists a response to J w.r.t. J ♣Σout and Π

2 Guess an interpretation H over sig(P) and the
constants from J and adom(P) s.t. H♣Σout∪Σowa = J

3 return H♣Σout∪Σre is a min. model of PH,Σowa

7.2.1 Translation into Disjunctive Datalog

We now identify a fragment of RLPs that can be translated into disjunctive Datalog. First,
we require that all RLPs in this fragment are safe, as described in the previous section.

To this end, we disallow default negation in front of response predicates in rules other
than constraints. This restriction has as an effect that, given a candidate answer set I and
a model of the theory J that agrees with I on the output predicates, deciding whether
there is a response to J can be done deterministically, which reduces the computational
complexity of reasoning with such RLPs. We note that many problems, like Example 7.1.4
and Example 7.1.6, can be captured in this fragment.

Furthermore, we restrict the theory component of RLPs in this fragment essentially
to a set of positive disjunctive rules which allows us to easily encode formulas of the
theory as rules of the program component. More formally, we consider FO formulas
of the form ∀x1, . . . , xl φ, where φ is a disjunction of literals using only constants and
variables x1, . . . , xl in which every variable occurring in a positive literal involving an
output predicate also occurs in a negative literal involving an output predicate. This
fragment of FO is particularly important for DL research as the formulas in it can be

195

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

7. Resilient Logic Programs

seen as positive disjunctive rules and many standard DLs are rewritable into positive
disjunctive Datalog (see, e.g., [HMS07, BtCLW14]).

We next show that the considered fragment of RLPs is captured by disjunctive logic
programs with negation under the stable model semantics.

Theorem 7.2.4. Let Π = (P, T ,Σout, Σowa,Σre) be an RLP for which:

• for every rule ρ ∈ P, if ρ is not a constraint, then default negation does not occur
in front of response predicates, and

• each formula in T is of the form ∀x1, . . . , xl φ, where φ is a disjunction of literals
using only constants and variables x1, . . . , xl and in which every variable occurring
in a positive literal over an output predicate also occurs in a negative literal over a
an output predicate.

We can obtain a Datalog∨, ¬ program PΠ
solve whose answer sets restricted to Σout coincide

with the answer sets of Π.

The rest of this section serves as the proof of the theorem above. To this end, we employ
the technique from [EP03] that transforms two non-disjunctive programs P1 and P2 into
a single disjunctive program P3 whose answer sets correspond to the answer sets S of P1

for which P2 ∪ S does not have an answer set.

As a Ąrst step, we can obtain from an RLP Π = (P, T ,Σout, Σowa,Σre) two programs
PΠ

guess and PΠ
check that do the following:

• PΠ
guess guesses a structure over the output predicates and makes sure that it can be

extended into a model of T by interpreting the open predicates. Answer sets of
PΠ

guess consist of such structures, extended into models of T .

• PΠ
check checks, given an answer set S of PΠ

guess, whether there is a model of T that
agrees with S on the output predicates and has no response. Such models constitute
the answer sets of PΠ

check ∪ S.

The second step is to use the above-mentioned technique to obtain a disjunctive program
PΠ

solve whose answer sets correspond to the answer sets S of PΠ
guess for which PΠ

check ∪ S

does not have an answer set. This results in the program PΠ
solve having answer sets that

correspond to structures S over output predicates (extended into models of T in possibly
multiple different ways) for which there is no model of T that agrees with S on the
output predicates and has no response. Thus, we have that the answer sets of PΠ

solve

(restricted to the output predicates) and the answer sets of Π coincide.

We now make the intuitions above more precise. Consider an RLP Π = (P, T ,Σout,
Σowa,Σre). The construction of PΠ

guess is rather straightforward. We Ąrst add the fact

196

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

7.2. Decidable RLPs

Adom(c), for every c ∈ adom(P) and Const(c) for every c ∈ NI occurring in T or adom(P).
Next, we guess the structure over the output predicates by adding the following for every
p ∈ Σout of arity k ≥ 0:

p(x⃗)← Adomk(x⃗),not p(x⃗),

p(x⃗)← Adomk(x⃗),not p(x⃗),

where x⃗ is k-tuple of variables from NV.

We then check whether there is a model of T in which the extensions of output predicates
correspond exactly to the ones we guessed using the previous rule. We do this by adding,
for each q ∈ Σowa of arity k ≥ 0, the rule

q(x⃗)← Constk(x⃗),not q(x⃗),

q(x⃗)← Constk(x⃗),not q(x⃗),

where x⃗ is k-tuple of variables from NV.

Finally, for every formula ∀x1, . . . , xl(a1 ∨ . . . ∨ aj ∨ ¬aj+1 ∨ . . . ∨ ¬ah) ∈ T , we add the
constraint:

← aj+1, . . . , ah,not a1, . . . ,not aj ,Constl(x1, . . . , xl).

This completes our construction of the program PΠ
guess.

Let us denote by ground(T ,∆) the grounding of the theory T with respect to the
constants in ∆ ⊆ NI, i.e., the quantiĄer-free theory obtained from T by taking each
formula φ ∈ T , uniformly replacing all variables in it by all possible elements from ∆ ⊆ NI

and then removing all universal quantiĄers. Once PΠ
guess guesses the output structure

I, it checks whether there is a model J of T s.t. J ♣Σout = I. As explained above, this
check is implemented by further guessing the extensions of the open predicates over the
constants from adom(P) and T , and transforming formulas in T into constraints in the
program. If there is an answer set of PΠ

check , these constraints ensure that our guesses for
the output and the open predicates deĄne a model of ground(T ,∆), where ∆ is the set
of constants from adom(P) and T .

The correctness of this approach relies on the following lemma.

Lemma 7.2.5. Let Π = (P, T ,Σout,Σowa,Σre) be an RLP in the considered class and
let I be an interpretation over Σout ∪ Σowa using only the constants from ∆ ⊆ NI s.t. all
constants occurring in T are also in ∆. If I is a model of ground(T ,∆), then there is a
model J of ground(T ,NI) s.t. J ♣Σout = I♣Σout and ¶p(c⃗) : p(c⃗) ∈ J, c⃗ ∈ ∆art(p)♢ = I.

Proof. Assume I is a model of ground(T ,∆) and consider the following theory:

T ′ = ground(T ,NI) ∪ I ∪

¶¬p(c⃗) : p(c⃗) ̸∈ I, c⃗ ∈ ∆art(p)♢ ∪

¶¬p(c⃗) : p ∈ Σout, c⃗ ∈ NI
art(p) \∆art(p)♢

197

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

7. Resilient Logic Programs

It is easy to verify that there is a model J of ground(T ,NI) s.t. ¶p(c⃗) : p(c⃗) ∈ J, c⃗ ∈
∆art(p)♢ = I and J ♣Σout = I♣Σout if and only if T ′ is consistent.

We now proceed as follows. First, we show that the following theory is consistent:

T ′′ =ground(T ,NI) ∪ I ∪ ¶¬p(c⃗) : p(c⃗) ̸∈ I, c⃗ ∈ ∆art(p)♢

Suppose towards a contradiction that this is not the case. Then, as T ′′ is a set of
clauses, we use resolution to obtain a proof of ⊥. Denote the set of the initial clauses
in this proof by S. First note that at least one of the clauses in S must contain an
atom that uses a constant from NI \ ∆, otherwise this proof would be valid also in
ground(T ,∆) ∪ I ∪ ¶¬p(c⃗) : p(c⃗) ̸∈ I, c⃗ ∈ ∆art(p)♢ which is a contradiction to I being a
model of ground(T ,∆). We now take an arbitrary constant d ∈ ∆ and for every constant
d′ ̸∈ ∆, we replace each occurrence of d′ in this proof by d. Note that this procedure still
yields a proof of ⊥, but from a different set of initial clauses, call it S′. Consider a clause
C from S that contains atoms using constants from NI \∆. Then C ∈ ground(T ,NI).
As these constants do not occur in T , C must have been obtained during grounding
from some φ ∈ T by replacing the variables in φ were replaced by these constants. This
however means that when we performed grounding to obtain ground(T ,∆), we must
have also replaced these variables with d and hence there is a clause in ground(T ,∆) that
corresponds to C in which all occurrences of constants that are not in ∆ are replaced
by d. Hence, each clause in S′ is in ground(T ,∆), which means that the proof obtained
by this procedure is a proof of ⊥ in ground(T ,∆) ∪ I ∪ ¶¬p(c⃗) : p(c⃗) ̸∈ I, c⃗ ∈ ∆art(p)♢.
This is however a contradiction to I being a model of ground(T ,∆). Hence, T ′′ must be
consistent.

Let H be a model of T ′′ and consider an interpretation H ′ obtained from H by deleting
every atom that uses a predicate from Σout and a constant from NI \ ∆. Assume H ′

is not a model of T ′. Then, there must be a clause in ground(T ,NI) that H ′ does not
satisfy. Additionally, such a clause must contain a positive literal that uses a predicate
from Σout and constants from NI \∆. As these constants do not occur in T , this clause
must have been obtained from some φ′ ∈ T by replacing variables in φ′ with these
constants. But as each variables that occur in a positive literal using predicates from
Σout must be guarded by a negative literal also using a predicate from Σout, this clause
contains at least one negative literal that uses a constant from from NI \∆. Due to our
construction of H ′, this clause is satisĄed, which is a contradiction to H ′ not being a
model of T ′. Thus T ′ is consistent. It follows that there is a model J of ground(T ,NI)
s.t. ¶p(c⃗) : p(c⃗) ∈ J, c⃗ ∈ ∆art(p)♢ = I and J ♣Σout = I♣Σout .

Intuitively, the lemma above tells us that, in the considered fragment of RLPs, we can
extend a model I of ground(T ,∆), where ∆ consists of all constants from adom(P) and
T , into a model J of ground(T ,NI) such that (i) J agrees with I on the output predicates
and (ii) if p(c⃗), p ∈ Σowa, is in J but not in I, then no constants from adom(P) and T
occur in c⃗. Roughly, the second condition ensures that I fully speciĄes those parts of
extensions of open predicates that involve known constants. Well-known results from

198

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

7.2. Decidable RLPs

Ąrst order logic then tell us that J is a model of T , which means that there is a model of
T that agrees with I on closed predicates.

Before we provide the construction of PΠ
check , we deĄne the notion of a partial reduct

PI,Σ,Σ′

of P w.r.t. an interpretation I and two sets Σ and Σ′ of predicates.

DeĄnition 7.2.6. Let P be a Datalog¬ program, I be an interpretation and Σ,Σ′ ⊆ NP.
The partial reduct PI,Σ,Σ′

of P w.r.t. I, Σ and Σ′ is obtained from ground(P,NI) as
follows:

1. Delete every rule ρ that contains a literal p(u⃗) such that:

• p(u⃗) ∈ body+(ρ), p(u⃗) ̸∈ I, and p ∈ Σ,

• p(u⃗) ∈ head(ρ), p(u⃗) ∈ I, and p ∈ Σ, or

• p(u⃗) ∈ body−(ρ) and p(u⃗) ∈ I.

2. In the remaining rules, delete negated atoms over the predicates from sig(T) \ Σ′.

Observe that if predicates from Σ′ occur negated only in constrains, the program PI,Σ,Σ′

either has no answer sets of it has a unique answer set. Indeed, we can see this program as
a union of a plain Datalog program (i.e, a program that contains no negation) and a set of
constraints. Recall that the latter cannot be used to derive any new information but only
to eliminate potential answer sets. Thus, PI,Σ,Σ′

either has no answer sets or its answer
set is the unique minimal model of its plain Datalog component (see Proposition 2.4.6).

Lemma 7.2.7. Let Π = (P, T ,Σout,Σowa,Σre) be an RLP in the considered class. If I
is an answer set of Π, each model J of T with J ♣Σout = I has a unique response M w.r.t.
I and Π. Moreover, M coincides with the unique answer set of PJ,Σowa,Σre.

Proof. Consider an arbitrary response H to J w.r.t. I and Π. From H♣Σout∪Σowa = J
it follows that PH♣Σout∪Σowa ,Σowa,Σre = PJ,Σowa,Σre . That means that PH,Σowa is a subset of
PJ,Σowa,Σre . Moreover, the only difference between the two is that PJ,Σowa,Σre might contain
additional constraints ρc1 , . . . , ρcn that have negated atoms using response predicates.
Recall that a constraint is a rule of the form p← α,not p (abbreviated as ← α), where p
is a fresh propositional atom that does not occur elsewhere in P.

Let a be an arbitrary atom in M . By deĄnition of constraints, a ̸∈ head(ρci
), for all i ≥ 1.

Thus, in order for M to be the minimal model, a must have a derivation from facts using
rules of PJ,Σowa,Σre \ ¶ρc1 , . . . ρcn♢. As all rules in the derivation of a are also present in
PH,Σowa , a must be contained it the minimal model of this program. Furthermore, as H
is a response to J w.r.t. I, H♣Σout∪Σre is the minimal model of PH,Σowa , so a ∈ H♣Σout∪Σre .

Assume now that a ∈ H♣Σout∪Σre . As H♣Σout∪Σre is the minimal model of PH,Σowa , a must
have a derivation from facts using rules in PH,Σowa . As PH,Σowa ⊆ PJ,Σowa,Σre , then a is
also derivable using the facts and rules in PJ,Σowa,Σre , and so a ∈ M . Hence, we have
M = H♣Σout∪Σre .

199

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

7. Resilient Logic Programs

We are now ready to build PΠ
check . We again start by adding Const(c) for every c ∈ NI

that occurs in T or adom(P). We then add, for each q ∈ Σowa,

q′(x⃗)← Constk(x⃗),not q′(x⃗)

q′(x⃗)← Constk(x⃗),not q′(x⃗),

where x⃗ is k-tuple of variables from NV and k is the arity of q.

Intuitively, these rules extend our previously-guessed structure over the output predicates
I by guessing the extensions of the open predicates. Let J denote this extension. We
now need to check whether J is a counter-example to I being an answer set of Π, i.e., we
check whether the following two hold:

1. J ∪ I can be extended into a model of T , and

2. we cannot Ąnd an extension H of J by interpreting the response predicates such
that H is a minimal model of PH,Σowa . In other words, we cannot Ąnd a response
for J .

To check the Ąrst condition, for all ∀x1, . . . , xl(a1 ∨ . . . ∨ aj ∨ ¬aj+1 ∨ . . . ∨ ¬ah) in T ,
we add:

← a′
j+1, . . . , a

′
h,not a′

1, . . . ,not a′
j ,Constl(x1, . . . , xl),

where, for 1 ≤ i ≤ h, a′
i is obtained from ai by replacing the predicate symbol p by p′, if

p ∈ Σowa, otherwise a′
i = ai.

We deal with the second condition as follows. In view of Lemma 7.2.7, we only need to
test whether the minimal model M of the partial reduct of P w.r.t. J , Σowa and Σre is a
response to J w.r.t I and Π, i.e. we need to check if M is a minimal model of PM∪J,Σowa .
If not, we obtained a counter-example.

We now do the following: for every rule ρ ∈ P, we add the rule ρ′ to PΠ
check obtained from

ρ by (i) replacing each occurrence of p in body+(ρ) ∪ head(ρ) by p′, for each p ∈ Σout,
(ii) replacing each occurrence of q in head(ρ) by q′′, for each q ∈ Σowa, (ii) replacing all
remaining occurrences of q in ρ by q′, for each q ∈ Σowa. Further, if ρ is a constraint we
set head(ρ′) = ¶Violation♢.

To complete our construction, for each p ∈ Σout we add:

not_equal← p(x⃗),not p′(x⃗),Constk(x⃗) not_equal← p′(x⃗),not p(x⃗),Constk(x⃗),

where x⃗ is an arbitrary k-ary tuple of variables with k the arity of p, and for each
q ∈ Σowa:

Violation← q′′(x⃗),not q′(x⃗),Constk(x⃗),

where x⃗ is an arbitrary k-ary tuple of variables with k the arity of q. Finally, we add
← not not_equal,not Violation.

200

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

7.3. Resilient Logic Programs with DL Theories

combined bounded arities data
DL-LiteF NExpTime NP-complete ΣP

3 - complete ΣP
3 - complete

ALCHI NExpTime NP-complete ExpTime-complete ΣP
3 - complete

ALCHOIQ in NExpTime NExpTime in NP NExpTime ΣP
3 - complete

Table 7.1: Complexity of answer set existence for safe RLPs.

Intuitively, PΠ
check computes and ŞstoresŤ the minimal model M of the partial reduct

using predicate symbols in Σre ∪ ¶p
′ : p ∈ Σout♢. If during the computation of M a

constraint in P is violated we know that M cannot be a response to J and so we derive
the atom Violation. We also use the predicate symbols in ¶q′′ : q ∈ Σowa♢ to keep track of
whether there are atoms in M that use open predicates but were not a part of our guess.
If such an atom is derived, then there is a violation of some constraint in PM ∪ J,Σowa .
This in turn means that M is not a response to J .

If no constraint was violated we have to compare whether exactly those atoms involving
output predicates were derived that are in I. If this is not the case, we derive not_equal

which again means that M is not a response to J . If neither Violation nor not_equal are
derived, M is a response to J . The Ąnal constraint in our construction is then used to
ŞkillŤ an answer set of Pcheck that does not deĄne a counter-example to I being an answer
set of Π.

It can be easily veriĄed that the following holds: if S is an answer set of Π then there is
an answer set S′ of PΠ

guess s.t. S′♣Σout = S and PΠ
check ∪ S

′ does not have an answer set.
Conversely, if S′ is an answer set of PΠ

guess s.t. PΠ
check ∪ S

′ has no answer set, S′♣Σout is
an answer set of Π. Hence, the answer sets of Π are in one-to-one correspondence with
answer sets of PΠ

solve (modulo the predicates from Σowa).

7.3 Resilient Logic Programs with DL Theories

In this section, we focus on RLPs whose theory component is given as a DL TBox in one
of the considered logics and we provide some complexity results.

Description Logics Preliminaries. Recall that most DLs, in particular those consid-
ered in this chapter, are fragments of FO with only unary and binary predicate symbols,
and a slightly modiĄed syntax that allows us to write formulas more concisely. We next
consider RLPs whose theories are written in one of the following DLs: the expressive
ALCHI and ALCHOIQ, and the lightweight DL-LiteF . The Ąrst two DLs have already
been introduced and studied throughout this thesis. The last one is an extension of
the basic lightweight DL-Lite with global role functionality. We next recall the syntax
of these logics. For all three logics, roles are deĄned according to the following syntax:

201

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

7. Resilient Logic Programs

r := p ♣ p−, where p ∈ NR, whereas complex concepts are deĄned as follows:

DL-LiteF : C :=⊥ ♣ A ♣ ∃r

ALCHI : C :=⊤ ♣ A ♣ ¬C ♣ C ⊓ C ♣ C ⊔ C ♣ ∃r.C ♣ ∀r.C

ALCHOIQ : C :=⊤ ♣ A ♣ ¬C ♣ C ⊓ C ♣ C ⊔ C ♣≥ nr.C ♣≤ nr.C ♣ ¶a♢,

where A ∈ NC, r is a role, a ∈ NI, and n ≥ 0. Hereinafter, C,D denote complex concepts
and r, s denote roles in the considered logic. Moreover, we abbreviate ≤ nr.C ⊓ ≥ nr.C
by = nr.C.

In ALCHI and ALCHOIQ, a TBox is a Ąnite set concept inclusions of the form C ⊑ D
and role inclusions of the form r ⊑ s. In DL-LiteF , a TBox consists of concept inclusions
of the form C ⊑ D and C ⊑ ¬D and axioms of the form func(r).

7.3.1 Relaxed Safety for DL RLPs

Recall the RLP from Example 7.1.6. This RLP is considered unsafe as there are rules
that contain atoms of the form Task(x) in which the variable x is not safeguarded by
a closed predicate. However, it is easy to see that Task is a bounded predicate with
respect to the given theory and the set of output predicates. According to our results
from Chapter 6, in any model of the theory, there is an upper bound on the number of
constants that can occur in atoms over the predicate Task that depends on the theory
and the number of constants that occur in output predicates, which makes this predicate
a suitable guard for program variables.

The results in Theorem 6.3.9 and Theorem 6.3.10 from the previous chapter give us a
concrete upper bound on the number of distinct elements in bounded predicates, however
this number is very high Ű doubly-exponential in the size of T . To keep the cost of
reasoning lower, especially for ALCHI and DL-LiteF , we next present a way to obtain a
certain set of bounded concept names that is incomplete, but for which we can give a
better bound on the number of distinct elements that can occur in their extensions.

Approximation of bounded concept names. We begin by formally deĄning the
particular set Bcn(T ,Σ) of concept names bounded w.r.t. a TBox T and a set Σ of
predicates that we consider for our safety condition.

DeĄnition 7.3.1. Let T be an ALCHOIQ TBox, Σ be a finite set with Σ ⊆ NP, and
Nom(T) = ¶¶c♢ : c occurs in T ♢. The set Bcn(T ,Σ) of bounded concept names w.r.t.
T and Σ is the smallest set that contains every concept name A ∈ NC(T) for which at
least one of the following holds:

1. A ∈ Σ,

2. there is a role r ∈ N+
R

(T) ∩ Σ s.t. T ⊨ A ⊑ ∃r.⊤,

3. T ⊨ A ⊑
⊔

B∈B∪Nom(T)B, or

202

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

7.3. Resilient Logic Programs with DL Theories

Algorithm 7.2: Algorithm for computing Bcn(T ,Σ) for a given T and Σ, where
T is in ALCHOIQ

1 Algorithm getBoundedCN(T ,Σ, b)
Input : An ALCHOIQ TBox T , Σ ⊆ NP, and an integer b
Output : A set of bounded concept names in T w.r.t. Σ, an integer bound b’

2 B ← ¶A : A ∈ NI(T) ∩ Σ♢
3 Nom(T)← ¶¶a♢ : a ∈ NI occurs in T ♢
4 n← max int i s.t. ≤ i occurs in T
5 m← min int i s.t. ≥ i occurs in T
6 b′ ← b
7 B′ ← B
8 repeat
9 B ← B′

10 foreach concept name A ∈ Σ(T) \ B do
11 if T ⊨ A ⊑

⊔

B∈B∪Nom(T)B then f ← true
12 if not f then
13 foreach role name r ∈ Σ do
14 if (T ⊨ A ⊑ ∃r.⊤ or T ⊨ A ⊑ ∃r−.⊤) then
15 f ← true
16 break

17 if not f then
18 foreach role r ∈ N+

R
(T) do

19 foreach B ∈ B ∪ Nom(T) do
20 if T ⊨ A ⊑≥ mr.B and T ⊨ B ⊑≤ nr−.A then

21 b′ ← b′ + ⌊ b′·n
m
⌋

22 f ← true
23 break

24 if f then B′ ← B′ ∪ ¶A♢

25 until B ≠ B′

26 return (B, b′)

4. there exists B ∈ Bcn(T ,Σ) ∪ Nom(T), a role r ∈ N+
R

(T), and integers n,m ≥ 0 s.t.
T ⊨ A ⊑≥ mr.B and T ⊨ B ⊑≤ nr−.A.

If T is in ALCHI, item 4. in the definition above is omitted and Nom(T) = ∅. Similarly,
if T is in DL-LiteF , item 3. is omitted and item 4. is replaced by the following:

4a. there exists B ∈ Bcn(T ,Σ) and a role r ∈ N+
R

(T) s.t. T ⊨ A ⊑ ∃r−, T ⊨ ∃r ⊑ B,
and func(r) ∈ T .

Algorithm 7.2 computes the set Bcn(T ,Σ) for a given ALCHOIQ TBox T and a set
of predicate symbols Σ ⊆ NP. This algorithm can easily be modiĄed to cater to both

203

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

7. Resilient Logic Programs

ALCHI and DL-LiteF . Indeed, for these logics, we replace line 2 with Nom(T) ← ∅.
Further, for ALCHI, lines 17-22 are omitted from Algorithm 7.2. For DL-LiteF , lines
19-20 are replaced by the following:

19 if T ⊨ A ⊑ ∃r− and T ⊨ ∃r ⊑ B and func(r) ∈ T then

20 b′ ← b′ + b

As reasoning in selected logics is decidable, the algorithm is guaranteed to terminate and
hence Bcn(T ,Σ) can be effectively computed. In fact, given T and Σ, computing the set
Bcn(T ,Σ) requires a polynomial number of steps, some of which use an entailment test
as an oracle.

Our algorithm also takes as input an upper bound b on the number of different constants
that can occur in extensions of predicates from Σ and computes an upper bound b′ on
the number of different constants that can occur in extensions of predicates in Bcn(T ,Σ).
By closely inspecting Algorithm 7.2 we get that the bound b′ is at most exponential for
ALCHOIQ and polynomial in DL-LiteF and ALCHI. In fact, for ALCHI b′ = b. This
is observation is formalized in the following proposition.

Proposition 7.3.2. Let T be a TBox in one of the DLs above, Σ ⊆ NP, and b ≥ 0. We
can compute a constant b′ s.t. ♣¶c : A(c) ∈ J,A ∈ Bcn(T ,Σ)♢♣ ≤ b′ holds in every model
J of T in which ♣¶c : p(c⃗) ∈ J, p ∈ Σ, c occurs in c⃗♢♣ ≤ b. If T is in ALCHOIQ, b′ has
the value that is at most exponential in the size of T . Otherwise, b′ has the value that is
polynomial in the size of T .

Proof. Let J be an arbitrary model of T s.t. ♣¶c⃗ : p(c⃗) ∈ J, p ∈ Σ♢♣ ≤ b. Further, let
∆0 = ¶c⃗ : p(c⃗) ∈ J, p ∈ Σ♢ ∪ NI(T) and let B0

cn(T ,Σ) be the set of all the concept names
that we can infer are in Bcn(T ,Σ) using only rules 1-3 in Def. 7.3.1. Obviously, if a
concept name is in B0

cn(T ,Σ), then only the elements of ∆0 can be in its extension.
Hence, an upper bound on the number of different elements in the extension of any
concept name in B0

cn(T ,Σ) is b0 = ♣∆0♣. Let B1
cn(T ,Σ) be the set of all the concept

names that we can infer are in Bcn(T ,Σ) using only rules 1-3 in Def. 7.3.1 and a single
application of rule 4. Assume we inferred that some concept name A is in B1

cn(T ,Σ)
directly by the rule 4. Then there is some B ∈ B0

cn(T ,Σ), a role r in T , and integers
n,m ≥ 0 s.t. T ⊨ A ⊑≥ mr.B and T ⊨ B ⊑≤ nr−.A. It is not hard to see that even
though we do not know which elements occur in the extension of A, there could be at
most ⌊ b0·n

m
⌋ of them. Then, the extension of any bounded concept names in B1

cn(T ,Σ)
contains at most b1 = b0 + ⌊ b0·n

m
⌋. We repeat these calculations, at each level obtaining a

new bound bi = bi−1 + ⌊ bi−1·n
m
⌋, until Bn

cn(T ,Σ) = Bn+1
cn (T ,Σ). Finally, bn is an upper

bound on the number of different constants that can occur in the extension of some
concept name in Bcn(T ,Σ). Similar observations can be made also in the case where
functionality is the only allowed number restriction.

In what follows, a predicate symbol p occurring in an RLP Π = (P, T ,Σout,Σowa,Σre) is
said to be bounded in Π if p ∈ Σout ∪ Σre ∪Bcn(T ,Σout).

204

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

7.3. Resilient Logic Programs with DL Theories

Relaxed safety. We now use an approach similar to those from the previous chapter
to signiĄcantly relax the safety restriction from DeĄnition 7.2.1. The main idea here is to
guard every variable with a positive body atom over some bounded predicate which means
that program variables can only range over a bounded number of constants. However, in
order for our notion of boundedness to make sense, we need to ensure that the output
predicates themselves are not directly or indirectly guarded by bounded open predicats,
i.e., that the variables in output predicates still range only over the active domain of the
program. To this end, we introduce the following auxiliary notions.

Given a program P, for each p ∈ sig(P) and 1 ≤ i ≤ art(p), we denote by p[i] the i-th
position in the predicate p. Given a set of predicates Σ, the set ap(P,Σ) of affected
positions (see [CGK13]) in P w.r.t. Σ is inductively deĄned as follows:

• p[i] ∈ ap(P,Σ), for p ∈ Σ and 1 ≤ i ≤ art(p), and

• if there exists a rule ρ ∈ P s.t. a variable x appears in body+(ρ) only in affected
positions and x appears in head(ρ) in position π, then π ∈ ap(P,Σ).

Intuitively, the set of affected positions consists of all the positions of the program
predicates in which a constant that is not in the active domain of the program can
appear.

DeĄnition 7.3.3. An RLP Π = (P, T ,Σout,Σowa,Σre) fulfills the relaxed safety condition
if for each rule ρ ∈ P: every variable in ρ occurs in some p(u⃗) ∈ body+(ρ), where p
is a bounded predicate in Π and q[i] ̸∈ ap(P,Bcn(T ,Σout) \ Σout), for all q ∈ Σout and
1 ≤ i ≤ art(q).

Algorithm 7.3 is an adaptation of Algorithm 7.1 that checks whether an RLP with a DL
theory fulĄlling the relaxed safety condition has an answer set. SpeciĄcally, we modify
the subroutine hasCE to guess a candidate structure J for the counter-example to I
being the answer set of Π over a larger set of constants Ű exponential in the size of T
if T is an ALCHOIQ TBox, and polynomial if T is given in ALCHI or DL-LiteF . We
note that, in the original algorithm, this guess is limited to the constants that already
appear in the input rules.

Theorem 7.3.4. For DL-LiteF ,ALCHI and ALCHOIQ the procedure hasAnswerSet(Π)
from Algorithm 7.3 correctly decides the existence of an answer set of Π.

The intuition behind the result above is similar to the intuition behind Theorem 7.2.3.
Namely, Algorithm 7.3 takes an RLP Π = (P, T ,Σout,Σowa,Σre), guesses an interpretation
I over the output predicates and the active domain of P. We note that our relaxed
safety condition excludes the possibility that all positions of output predicates are not
affected, hence these predicates range only over the constants in the program and it
suffices to guess I over the active domain. After this initial guess, two oracle calls are

205

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

7. Resilient Logic Programs

Algorithm 7.3: Answer set existence of RLPs with DL theories under relaxed
safety, where isConsistent(T ,Σ, I) checks consistency of DL KB (T , I) with
closed predicates Σ.

1 Algorithm hasAnswerSet(Π)
Input : An RLP Π = (P, T ,Σout,Σowa,Σre)
Output : true iff Π has an answer

2 Guess an interpretation I over Σout using constants from adom(P)
3 B ← Bcn(T ,Σout)
4 b← max number of different const. in extensions of bounded concept names
5 ∆← adom(P) ∪ NI(T) ∪ ¶a1, . . . , ab−b′♢, where b′ = ♣adom(P)♣+ ♣NI(T)♣
6 return isConsistent(T ,Σout, I) and not hasCE(I,Π,∆,B)
7

1 Subroutine hasCE(I,Π,∆,B)
Input : An interpretation I, an RLP Π = (P, T ,Σout,Σowa,Σre), ∆ ⊆ NI,

and B ⊆ sig(T)
Output : true iff there is a counter example to I being an answer set of Π

2 Guess an interpretation J over sig(P) ∩ sig(T) ∪ Σout and constants from ∆
s.t. J ♣Σout = I♣Σout

3 J ′ ← J ∪ ¶¬p(c⃗) : c⃗ ∈ ∆art(p), p ∈ sig(P) ∩ (sig(T) \ B), and p(c⃗) ̸∈ J♢
4 return isConsistent(T ,B, J ′) and not hasResp(J,Π)
5

1 Subroutine hasResp(J,Π)
Input : An interpretation J and an RLP Π = (P, T ,Σout,Σowa,Σre)
Output : true iff there is a response for J w.r.t. J ♣Σout and Π

2 Guess an interpretation H over sig(P) and the constants from J and
adom(P) s.t. H♣Σout∪Σowa = J

3 if H♣Σout∪Σre is a min. model of PH,Σowa then return true
4 else return false

made to check whether I is indeed an answer set of Π. As before, the Ąrst call checks
whether there is a model I can be extended into a model of T without modifying the
interpretation of the output predicates. This involves evoking a decision procedure for
KB satisĄability in the presence of closed predicates for the chosen logic. We note that for
our logics this problem is known to be decidable. The second call tries to verify whether
each such model of T has a response w.r.t. I and Π by attempting to guess a model
J of T for which this does not hold. This guess is done over a set ∆ of constants such
that NI(T), adom(P) ⊆ ∆ and ♣∆♣ = b, where b is a bound on the number of different
constants that can occur in bounded concept names as computed by Algorithm 7.2.
We remark that ∆ contains exponentially many constants in the size of T , if T is an
ALCHOIQ TBox, and polynomially many constants in the size of T , if T is written
in ALCHI or DL-LiteF . It is easy to see that this guess is sufficient due to our safety
restriction that ensures that the variables of P range only over the constants that appear

206

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

7.3. Resilient Logic Programs with DL Theories

in bounded concept names in answer sets of Π, however, a formal proof can be found
in the appendix to this thesis. Finally, to check that J has no response, another oracle
call is made which tries to guess a response. If this fails, there is a counter-example to I
being an answer set of Π.

Complexity results. By analyzing Algorithm 7.3 and relying on known complexity
results for Datalog¬ and DLs with closed predicates, we can characterize the complexity of
RLPs whose theories are given as TBoxes expressed in one of the logics mentioned above
under the relaxed safety. We provide results for both combined complexity, measured in
terms of the size of the whole RLP, as well as for data complexity in which only the size
of the facts matter, while the size of the theory and the non-factual rules of the RLP’s
program component are treated as constant. Additionally, as the program component
can contain predicates of arbitrary arities, we also provide some results for the case where
these arities are bounded by a constant.

Theorem 7.3.5. Table 7.1 provides correct complexity results for deciding the answer
set existence for RLPs fulfilling the relaxed safety condition.

We brieĆy guide the reader through the entries in Table 7.1. Observe that for predicates
of arbitrary arities, the guess for I over the output predicates is at most exponential in ♣P♣.
Let us Ąrst consider the logic ALCHI. In view of Proposition 7.3.2, ∆ is polynomial in
♣Π♣ and thus there are only exponentially many different guesses for J . As ALCHI with
closed predicates is ExpTime-complete, we modify the algorithm to do the following in
exponential time: guess I, compute Bcn(T ,Σout), construct ∆ and check whether there is
a model of T that agrees with I on Σout. If so, iterate through possible guesses for J and
check for each whether it corresponds to some model. If so, call an oracle to determine
whether there is a response H to J . Due to unbounded predicate arities, both H and
the grounding ground(P,∆) may be at most of exponential size. Thus, we can guess H,
compute the corresponding reduct and verify whether H♣Σout∪Σre is its minimal model
in exponential time. Observe that, by the standard padding argument [Pap94, AB09],
this oracle can be implemented as an NP oracle, and so the overall complexity of the
algorithm is NExpTime NP. If predicate arities are bounded, instead of guessing I and
H we simply iterate through all the possibilities. The ExpTime upper bound follows.
Data complexity follows from the fact that consistency checking in ALCHI with closed
predicates is in NP in terms of data complexity [LSW15]. Hence, each part of the original
algorithm can be implemented as an NP oracle and the complexity result is immediate.
As DL-LiteF with closed predicates is in NP both in data and in combined complexity
[FIS11, GGI+20], arguments for DL-LiteF are virtually the same as for ALCHI. The
difference is that in the case of bounded predicate arities, we obtain the ΣP

3 upper bound
due to lower combined complexity of DL-LiteF with closed predicates. For ALCHOIQ,
the constructed set of constants ∆ is at most exponential in ♣T ♣, and polynomial if T is
considered Ąxed. Moreover, consistency checking of ALCHOIQ knowledge bases with
closed predicates is NExpTime-complete [Tob00], so it suffices to iterate through possible
guesses for J (exponentially many in ♣Π♣) and have a single NExpTime oracle to check

207

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

7. Resilient Logic Programs

for consistency and the existence of response to J . The upper bound follows. Similarly,
for the bounded arities case, we make our Ąrst guess for I Ű this time polynomial in the
size of P Ű and then we place two calls to a NExpTime oracle to check for consistency
and the existence of response to J . Finally, as we have shown earlier in this thesis that
consistency checking in ALCHOIQ with closed predicates in in NP, the data complexity
bound follows by the same argument that was used for ALCHI.

The data-complexity bound for ALCHOIQ as well as all bounds for DL-LiteF and
ALCHI are tight. ExpTime-hardness for ALCHI in the case of bounded predicate
arities is due to ExpTime-completeness of ALCHI with closed predicates. NExpTime
NP-hardness in the case of unbounded predicate arities is obtained by a reduction from
answer set existence problem for disjunctive datalog which is known to be complete
for this class. Finally, ΣP

3 -hardness is shown by a reduction from ∃∀∃-QBFs to RLPs
with ALCHI/DL-LiteF theories. We note that the reduction that was provided in
Example 7.1.5, although natural, does not allow us to infer the desired data-complexity
lower-bound, since the the rules of P are dependent on the given QBF Ű indeed, we
introduce one rule per each clause in the formula. Fortunately, we can modify this
reduction in a way that encodes the given formula as facts and otherwise uses a Ąxed set
of rules. We present this reduction below.

ΣP
3 lower bound for data-complexity. Let Φ be the following QBF:

Φ = ∃X1, . . . , Xn∀Y1, . . . , Ym,∃Z1, . . . , Zkφ.

We Ąrst explain how we obtain the program P ′.

First we add to P ′ the following facts and rules that carry the same intuitive meaning as
in the Example 7.1.5:

VX(cX
1), . . . , VX(cX

n), VY (cY
1), . . . , VY (cY

m), VZ(cZ
1), . . . , VZ(cZ

k),

TX(x)← VX(x),not FX(x), TZ(x)← VZ(x),not FZ(x),

FX(x)← VX(x),not TX(x), FZ(x)← VZ(x),not TZ(x).

Let Ş Ť be an additional constant representing a blank symbol. We use a 6-ary relation
Clause and for each clause Ci = Li,1 ∨ Li,2 ∨ Li,3 in Φ we add the following fact to our
program P ′ :

Clause(σp(Li,1), σn(Li,1), σp(Li,2), σn(Li,2), σp(Li,3), σn(Li,3)),

where, given a literal l, σp(l) and σn(l) are deĄned as:

σp(l) =

{

cα
i , if l = αi, 1 ≤ i ≤ nα

, if l = ¬αi, 1,≤ i ≤ nα

σn(l) =

{

, if l = αi, 1 ≤ i ≤ nα

cα
i , if l = ¬αi, 1 ≤ i ≤ nα

where α = X,Y, Z, nX = n, nY = m, and nZ = k.

We add the following rules for succinctness:

208

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

7.4. RLPs Discussion

T (x)← TX(x), T (x)← TY (x), T (x)← TZ(x),
F (x)← FX(x), F (x)← FY (x), F (x)← FZ(x).

Next, we add the rules that ensure that P ′ only admits models that deĄne an assignment
to Boolean variables that satisĄes each clause in the program:

violation← Clause(x, , y, , z,), F (x), F (y), F (z),
violation← Clause(, x, y, , z,), T (x), F (y), F (z),
violation← Clause(x, , y, , , z), F (x), F (y), T (z),
violation← Clause(, x, y, , , z), T (x), F (y), T (z),
violation← Clause(x, , , y, z,), F (x), T (y), F (z),
violation← Clause(, x, , y, z,), T (x), T (y), F (z),
violation← Clause(x, , , y, , z), F (x), T (y), T (z),
violation← Clause(, x, , y, , z), T (x), T (y), T (z).

As we use this reduction to show that answer set existence of RLPs is ΣP
3 -hard in data

complexity for DL-LiteF (and ALCHI), we also need to write the theory as a DL-LiteF

TBox. We do something stronger and let our theory be empty, i.e. T ′ = ⊤. For this
reason, we add additional rules that help us Ąlter out those truth-value assignments to
Y1, . . . , Ym that are not well-deĄned. Namely, if we get a model of a theory that deĄnes
such an assignment, we simply justify it:

ok← VY (x), FY (x), TY (x), ok← VY (x),not FY (x),not TY (x).

Finally, we add:
ok← not violation, ← not ok.

It is easy to verify that the RLP

Π′ = (P ′, T ′, ¶VY , TX , FX♢, ¶TY , FY ♢, ¶TZ , FZ , VZ , VX , ok, violation,Clause♢)

has an answer set if and only if Φ is satisĄable.

7.4 RLPs Discussion

In this chapter, we have formalized and studied resilient logic programs as a novel hybrid
language that addresses some of the shortcomings of the previous world-centric and
entailment-centric approaches. There are several directions for future research. First, it is
important to identify syntactic restrictions to lower the complexity of reasoning. The use
of stratiĄed negation for response predicates seems to be a promising approach, which
we believe will allow us to avoid an NP oracle for checking the existence of responses in
the computation of answer sets (roughly, eliminating the third-level NP oracle in the
complexity results of this chapter; see Theorem 7.2.2 and Table 7.1). The second direction
is to study and implement various rewritings of DL-based RLPs into disjunctive Datalog,

209

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

7. Resilient Logic Programs

which has efficient reasoners [LPF+06]. The presented translation of the fragment of
RLPs with theories consisting of positive disjunctive rules provides the groundwork
for this.

We note that, in this chapter, FO theories and DL ontologies were interpreted over
Herbrand interpretations (whose domain is a Ąxed inĄnite set of constants). This was
done for mathematical clarity of the semantics of RLPs, but it has some side-effects, e.g.,
ruling out ontology models with a Ąnite domain. This can be easily Ąxed using a more
complicated deĄnition that handles two kinds of interpretations: Herbrand interpretations
for rules, and ordinary Ąrst-order structures for DL ontologies.

210

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

CHAPTER 8
Summary and Conclusion

In this concluding chapter, we provide a brief summary of our results and discuss some
interesting questions that still remain open and that we would like to tackle in our future
work. The main goal of this thesis was to study two particular ways of mixing the open
and the closed world assumption in description logics: (i) the one that involves extending
standard DL with closed predicates and (ii) the one that combines standard DLs with
non-monotonic rules.

In the closed predicate setting, our focus was on very expressive DLs that extend the
basic ALC with nominals, inverses, and number restrictions, a combination that leads to
the loss of convenient model-theoretic properties and for which only very few results are
known. In fact, we have already remarked that the only complexity-optimal technique
for reasoning in the presence of these constructors is the one in [PH05, PH09] which is
based on characterizing the satisĄability problem of knowledge bases expressed in this
logic as a system of integer linear inequalities. However, this technique does not take into
account closed predicates. Indeed, due to the observations made in [SFdB09], if we are
only interested in the combined complexity of reasoning tasks, we can simply hardcode
the extensions of closed predicates as given in the ABox directly into the TBox using
disjunctions of nominals. Unfortunately, this technique is not suitable for establishing
data complexity, and adapting it to the closed predicate setting is a non-trivial task.
To this end, in Chapter 3 we presented a new characterization of the knowledge base
satisĄability problem for ALCHOIQ that is able to handle closed predicates without
internalizing parts of the ABox. More precisely, we used tiles, also known as star-types
in the DL literature, which generalize the notion of the type that is commonly used to
design decision procedures in DLs. In addition to the unary type of the central element,
a tile τ for a particular ALCHOIQ KB with closed predicates additionally keeps track
of the part of the neighborhood of this domain element that is relevant to the satisfaction
of number restrictions. We subjected tiles to certain syntactic conditions that ensure
they are of ŞmanageableŤ size and encode descriptions of domain elements that are

211

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

8. Summary and Conclusion

locally consistent with respect to the TBox. Moreover, we also deĄned global consistency
conditions formalized in the notion of mosaics for K. These conditions are given in terms
of integer linear inequalities and implications that tell us how many instances of each tile
for K we need to build a model of K. Finally, we showed that the existence of mosaics
can be decided by using common techniques to solve the induced system of integer linear
inequalities with implications (a.k.a., enriched system), allowing the transfer of known
complexity results from the realm of integer programming. In particular, we observed
that the size of the enriched system that we obtain from K = (T ,Σ,A) is bounded by
a function that grows exponentially in the size of K, but only polynomially in the size
of A, i.e., if the size of T and Σ are considered constant. As a result, we were able to
infer NP-completeness of KB satisĄability in ALCHOIQ with closed predicates. We
concluded Chapter 3 with another version of the presented characterization that was
speciĄcally tailored for the weaker logic ALCHOIF , and which serves as the basis for
Chapter 5.

In Chapter 4 we presented a novel rewriting of safe-range queries mediated by ALCHOIQ
ontologies with closed predicates into Datalog¬. In a nutshell, safe-range queries are
Ąrst-order queries in which all quantiĄed variables are guarded by closed predicates, which
ensures that in a model I of the considered knowledge base, such queries can only map
into the part of I that relates to named individuals of this knowledge base. Safe-range
queries subsume simple instance queries as well as quantiĄer-free unions of conjunctive
queries that were recently studied in [LSW19]. The main idea behind our rewriting was
to encode the satisĄability procedure presented in Chapter 3 in Datalog¬ by deĄning a
modular program that Ąrst computes a relational representation of the enriched system
for a given knowledge base and then solves it. An important property of our rewriting
is that it is (i) data-independent Ű the computed program depends only on the given
TBox T and the set Σ of closed predicates whereas the ABox is considered an input to
the program and (ii) it is succinct, i.e, the size of the program is only polynomial in the
size of T and Σ. We remark that achieving succinctness was a challenging task. Namely,
the part of the program that solves the computed enriched system is a guess-and-check
procedure that guesses a solution to the system and checks whether it is valid. However,
we are dealing with very large systems of integer linear inequalities, namely exponential
in the size of T and Σ, whose solutions might encode structures whose domains are
doubly exponential in the size of the given ontology, requiring great care to ensure that
we keep within our desired bounds. As a by-product of our rewriting we obtained a
novel coNP upper data complexity bound for answering safe-range queries mediated by
ALCHOIQ ontologies with closed predicates. This bound is worst-case optimal.

We continued exploring expressiveness of OMQ formulated in these very expressive DLs
extended with closed predicates in Chapter 5, however from a slightly different perspective.
Here, we were interested in Ąnding an OMQ language that is expressive enough to capture
the class of all generic Boolean queries over ABoxes that are computable in coNP. To this
end, we presented inexpressibility results for OMQs based on standard DLs (i.e., without
closed predicates) as well as for instance queries mediated by ALCHOI ontologies with

212

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

closed predicates. We then presented an extension of ALCHOIF with closed predicates
with nominal schemata [KMKH11] of very restricted shapes and showed that there is
no complexity increase for the problem of knowledge base satisĄability compared to
ALCHOIQ. This was done by modifying the integer programming characterization from
Chapter 3. Encouraged by this result, we proceeded to show that the OMQ language
that couples inconsistency queries (i.e., queries that ask whether a KB has a model)
with ontologies in this extended language have the desired expressive power by showing
that such queries can express computations of non-deterministic Turing machines over
(encoding of) ABoxes that run in polynomial time.

BrieĆy stepping away from expressiveness analysis, in Chapter 6 we tackled the question
of whether closed predicates, whose extensions are by deĄnition bounded in size, allow us
to infer some bounds on the number of domain elements in extensions of open predicates.
To this end, we proposed two notions of bounded predicates, together with worst-case
optimal procedures for deciding predicate boundedness, and concrete upper bounds on
the size of their extensions. These results were then used to relax the syntactic restriction
in the deĄnition of safe-range queries and as well as to introduce a new safety condition
for combining ALCHOIQ knowledge bases with Datalog rules.

Finally, in Chapter 7 we proposed a novel hybrid formalism called resilient logic programs
for combining ontologies (expressed in Ąrst-order logic or a description logic) and non-
monotonic rules. The main motivation behind this formalism is to provide reasoning
support for systems that need to react correctly in all situations. In a nutshell, RLPs
are hybrid knowledge bases consisting of a theory component whose models represent
potential scenarios that the system might encounter and a rule component that represents
the actual system, i.e., reactions to given situations. RLPs assume that there is a set of
parameters that we can control that somehow inĆuences the set of potential scenarios
(i.e., output predicates). The semantics of RLPs then has the existŰforallŰexists structure.
Namely, we are interested in those structures over output predicates for which the
following holds: no matter how this structure is extended over the open predicates,
there will be a way to further extend it into a model of the rule component. We then
proceeded in a similar fashion as in the previous chapters, analysing complexity and
expressiveness of our new formalism. Namely, we showed that RLPs are decidable under
some natural assumptions. We considered the setting where the theory is expressed using
a few concrete Ąrst-logic fragments and we provided algorithms and complexity results.
We also investigated how expressive DLs are compared to Datalog and its extensions by
showing that RLPs can express Datalog∨, ¬ even when their theory component is empty
as well as identifying a fragment of RLP that can be embedded back into Datalog∨, ¬.

Open Problems & Future work Throughout the thesis, we discussed some open
questions that we would like to tackle in the future. We next give a brief summary:

Unary vs binary encoding of integers.

As ALCHOIQ TBoxes may contain integers greater than one, the choice of how we
encode integers becomes relevant. SpeciĄcally, the integer n in some number restriction

213

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

8. Summary and Conclusion

of the form ≤ nr.C or ≥ nr.C can be represented using either unary or binary encoding,
and the latter results in TBoxes that are exponentially shorter. The characterization
in [PH09] is invariant to the choice of number encoding. Unfortunately, ours is not. Recall
that our satisĄability characterization is based on the notion of tiles τ = (T, ρ), consisting
of a central type T and an encoding of the neighborhood ρ. Due to the fact that our tiles
explicitly store n different neighbors in ρ, for every applicable number restriction that
requires the existence of n neighbors, the number of elements in ρ depends polynomially
on the value of the numbers in the TBox. Thus, if the binary encoding of integers is
assumed, the Datalog¬ translation obtained in Chapter 4 is no longer polynomial.

Richer query languages in ALCHOIF and ALCHOIQ.

Characterizing the complexity of answering conjunctive queries is a long-standing open
problem in expressive description logics that at the same time admit nominals, inverses,
and number restrictions. So far, we only know that the problem of CQ answering is
decidable for ALCOIQ [RG10] and that it is co-N2ExpTime-hard [GKL11]. Unfortu-
nately, the proof in [RG10] does not provide any upper bounds on the complexity of the
problem. While we obtain favorable complexity results for a large class of Ąrst-order
queries, we are still interested in closing this major remaining gap.

Expressive power of ALCHOIF and ELHIF .

In Chapter 5 we showed that adding certain features to ALCHOIF with closed predicates
makes inconsistency queries in this logic powerful enough to express all generic Boolean
queries over ABoxes that are computable in coNP. However, it remains unclear whether
these additional features are in fact necessary, in other words, it still needs to be
investigated whether basic ALCHOIF with closed predicates can express all coNP-
computable queries. It is worth noting that the argument presented in Theorem 5.2.3
cannot be directly applied here as it relies on the existence of an algorithm that determines
whether a given ALCHOI KB is satisĄable in the time bound that is polynomial in the
size of the ABox (if the TBox and the set of closed predicates are considered Ąxed) and
the degree of the polynomial is a constant that does not depend on the knowledge base in
any way. However, in our satisĄability procedure for ALCHOIQ with closed predicates,
the degree of the polynomial actually depends on the size of the TBox.

Another open question that remains is whether we can precisely capture coNP using
an OMQ language that uses a less expressive DL but a more expressive query language,
speciĄcally, conjunctive queries and ALCHOI with closed predicates. An important Ąrst
step towards investigating the expressive power of this language would be to characterize
its data complexity, as there are currently no known upper bounds.

Finally, we believe that the arguments in Chapter 5 can also be extended to standard
Horn Description logics without closed predicates. For example, the OMQ language that
combines inconsistency and instance queries with ELHIF ontologies is proven to be
PTime-hard, yet it fails to express all queries computable in PTime. We believe that
simply adding a built-in linear order to ELHIF is insufficient to capture PTime. However,
we suspect that incorporating additional features similar to those of ALCHOIF+ leads

214

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

to a language that is still in PTime but is also powerful enough to express all PTime-
computable queries. This, however, requires further investigation and is left for future
work.

Using boundedness for verification.

We are conĄdent that the boundedness of predicates can be exploited for the veriĄcation of
temporal properties of graph databases that evolve over time. The major challenge here is
that data-manipulating actions may introduce fresh values into the database, potentially
causing the database to grow indeĄnitely over time. This means that veriĄcation needs
to be done on an inĄnite-state transition system, which is known to be undecidable even
for very simple action languages and temporal properties. It was shown in [BHCDG+13]
that this problem becomes decidable if one is able to obtain a global upper bound on the
number of elements in the active domain of the database during its evolution. Transition
systems with this property are referred to as state-bounded systems, however, recognizing
whether a system is state-bounded is generally undecidable. We remark that by exploiting
the results presented in Chapter 6, we can identify some cases in which state boundedness
is ensured. More speciĄcally, consider the setting in which we are given a graph database
G with integrity constraints expressed as a TBox T and a set Σ of relations that are
read-only. Assuming that the extension of the predicates in Σ is either Ąxed for the
whole evolution or allowed to vary while obeying some predeĄned bound on its size
and that all the remaining relations are strongly bounded w.r.t. T and Σ, we obtain
state boundedness of the corresponding transition system and we can transfer the results
from [BHCDG+13]. We plan to make this more precise in our future work.

Implementation of RLPs.

One drawback of RLPs is that they suffer from quite high complexity which makes it
important to identify syntactic restrictions for which the computational cost of reasoning
is lower. Allowing only stratiĄed negation for response predicates seems to be a good
candidate Ű we believe this will allow us to avoid an NP oracle for checking the existence
of responses in the computation of answer sets (roughly, eliminating the third-level NP
oracle; see Theorem 7.2.2 and Table 7.1).

Another problem that we leave for future work is studying and implementing various
rewritings of DL-based RLPs into Datalog∨, ¬, which has efficient reasoners [LPF+06].
The presented translation of the fragment of RLPs with theories consisting of positive
disjunctive rules provides the groundwork for this.

215

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

List of Figures

2.1 Graphical representation of the interpretation I from Example 2.3.10. . . 31

4.1 PΣ,T
sat and its components. 90

4.2 Partial dependency graph of PT ,Σ
sat (negation represented via dashed arcs). 106

4.3 Naive (top) vs. our encoding (bottom) of solutions in PT ,Σ
sol 108

5.1 Construction of the nk × nk grid, for k = 2. Left: Assigning coordinates to
grid nodes. Right: Propagation of coordinates along horizontal successors. 143

217

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

List of Tables

2.1 Interpretation function extended to complex concepts and roles, where A ∈ NC,
r ∈ NR, C,C1, and C2 are concepts, and a ∈ NI. 30

2.2 Selected complexity results of standard reasoning tasks with ground programs
in Datalog and its extensions. 45

2.3 Selected complexity results of standard reasoning tasks with non-ground
programs in Datalog and its extensions. 45

3.1 Summary of symbols with Ąxed meaning, for a TBox T 58

4.1 Overview of the signature used for in Psys 122
4.2 IdentiĄers of inequalities and implications of SK, 123

7.1 Complexity of answer set existence for safe RLPs. 201

219

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

List of Algorithms

4.1 Computation of Σ-range-restricted free variables in a FO query q(x⃗) . . 124

7.1 Answer set existence for safe RLPs. 195

7.2 Algorithm for computing Bcn(T ,Σ) for a given T and Σ, where T is in
ALCHOIQ . 203

7.3 Answer set existence of RLPs with DL theories under relaxed safety, where
isConsistent(T ,Σ, I) checks consistency of DL KB (T , I) with closed predi-
cates Σ. 206

221

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Bibliography

[AB09] Sanjeev Arora and Boaz Barak. Computational complexity: a modern
approach. Cambridge University Press, 2009.

[ABW88] Krzysztof R. Apt, Howard A. Blair, and Adrian Walker. Chapter 2 -
towards a theory of declarative knowledge. In Foundations of Deductive
Databases and Logic Programming, pages 89Ű148. Morgan Kaufmann,
1988.

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[ALMV18] Giovanni Amendola, Nicola Leone, Marco Manna, and Pierfrancesco Veltri.
Enhancing existential rules by closed-world variables. In Proceedings of
the 27th International Joint Conference on Artificial Intelligence, IJCAI
2018, pages 1676Ű1682. ijcai.org, 2018.

[AOŠ20] Shqiponja Ahmetaj, Magdalena Ortiz, and Mantas Šimkus. Polynomial
rewritings from expressive description logics with closed predicates to
variants of datalog. Artificial Intelligence, 280:103220, 2020.

[AU79] Alfred V Aho and Jeffrey D Ullman. Universality of data retrieval lan-
guages. In Proceedings of the 6th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages, pages 110Ű119, 1979.

[BBL05] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL
envelope. In Proceedings of the 19th International Joint Conference on
Artificial Intelligence, IJCAI 2005, pages 364Ű369. Professional Book
Center, 2005.

[BBR20] Bartosz Bednarczyk, Franz Baader, and Sebastian Rudolph. SatisĄability
and query answering in description logics with global and local cardinality
constraints. In Proceedings of ECAI 2020, June 2020.

[BBtCP16] Michael Benedikt, Pierre Bourhis, Balder ten Cate, and Gabriele Puppis.
Querying visible and invisible information. In Proceedings of LICS 2016,
pages 297Ű306. ACM, 2016.

223

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

[BCM+03] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi,
and Peter F. Patel-Schneider, editors. The Description Logic Handbook:
Theory, Implementation, and Applications. Cambridge University Press,
2003.

[BCS15] Vince Bárány, Balder Ten Cate, and Luc SegouĄn. Guarded negation.
Journal of the ACM (JACM), 62(3):22:1Ű22:26, June 2015.

[BGG97] Egon Börger, Erich Grädel, and Yuri Gurevich. The Classical Decision
Problem. Perspectives in Mathematical Logic. Springer, 1997.

[BHCDG+13] Babak Bagheri Hariri, Diego Calvanese, Giuseppe De Giacomo, Alin
Deutsch, and Marco Montali. VeriĄcation of relational data-centric dy-
namic systems with external services. In Proceedings of PODS 2013. ACM,
2013.

[BHLS17] Franz Baader, Ian Horrocks, Carsten Lutz, and Uli Sattler. An Introduction
to Description Logic. Cambridge University Press, 2017.

[BKK+18] Meghyn Bienvenu, Stanislav Kikot, Roman Kontchakov, Vladimir V.
Podolskii, and Michael Zakharyaschev. Ontology-mediated queries: Com-
bined complexity and succinctness of rewritings via circuit complexity.
Journal of the (JACM), 65(5), aug 2018.

[BLW09] Piero A. Bonatti, Carsten Lutz, and Frank Wolter. The complexity of
circumscription in description logics. Journal of Artificial Intelligence
Research, 35:717Ű773, 2009.

[BO15] Meghyn Bienvenu and Magdalena Ortiz. Ontology-mediated query an-
swering with data-tractable description logics. In Proceedings of Reasoning
Web Summer School 2015, volume 9203 of LNCS, pages 218Ű307. Springer,
2015.

[Bor96] Alex Borgida. On the relative expressiveness of description logics and
predicate logics. Artificial Intelligence, 82(12):353 Ű 367, 1996.

[BOŠ18] Labinot Bajraktari, Magdalena Ortiz, and Mantas Šimkus. Combining
rules and ontologies into Clopen knowledge bases. In Proceedings of AAAI
2018, 2018.

[Bra79] Ronald J Brachman. On the epistemological status of semantic networks.
In Associative networks, pages 3Ű50. Elsevier, 1979.

[BtCLW14] Meghyn Bienvenu, Balder ten Cate, Carsten Lutz, and Frank Wolter.
Ontology-based data access: A study through disjunctive datalog, CSP,
and MMSNP. ACM Transactions on Database Systems, 39(4):33:1Ű33:44,
2014.

224

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

[Cal96] Diego Calvanese. Finite model reasoning in description logics. In Proceed-
ings of the 5th International Conference on the Principles of Knowledge
Representation and Reasoning, KR 1996, pages 292Ű303. Morgan Kauf-
mann, 1996.

[CDK18] David Carral, Irina Dragoste, and Markus Krötzsch. The combined
approach to query answering in horn-alchoiq. In Proceedings of the 16th
International Conference on Principles of Knowledge Representation and
Reasoning, KR 2018, pages 339Ű348, 2018.

[CDL+05] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio
Lenzerini, and Riccardo Rosati. DL-Lite: Tractable description logics for
ontologies. In Proceedings of the 20th National Conference on Artificial
Intelligence and the 17th Innovative Applications of Artificial Intelligence
Conference, pages 602Ű607. AAAI Press / The MIT Press, 2005.

[CDL+07] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio
Lenzerini, and Riccardo Rosati. Tractable reasoning and efficient query
answering in description logics: The DL-Lite family. Journal of Automated
Reasoning, 39(3):385Ű429, 2007.

[CGK13] Andrea Calì, Georg Gottlob, and Michael Kifer. Taming the inĄnite
chase: Query answering under expressive relational constraints. Journal
of Artificial Intelligence Research (JAIR), 48:115Ű174, 2013.

[CGL+13] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio
Lenzerini, and Riccardo Rosati. Data complexity of query answering in
description logics. Artificial Intelligence, 195:335Ű360, 2013.

[CLN94] Diego Calvanese, Maurizio Lenzerini, and Daniele Nardi. A uniĄed frame-
work for class-based representation formalisms. In Principles of Knowledge
Representation and Reasoning, pages 109Ű120. Elsevier, 1994.

[CMET14] Diego Calvanese, Marco Montali, Montserrat Estaĳol, and Ernest Teniente.
VeriĄable UML artifact-centric business process models. In Proceedings of
CIKM 2014, pages 1289Ű1298. ACM, 2014.

[Cod70] E. F. Codd. A relational model of data for large shared data banks.
Communications of the ACM, 13(6):377Ű387, june 1970.

[Coo72] Stephen A Cook. A hierarchy for nondeterministic time complexity. In
Proceedings of the 4th annual ACM symposium on Theory of computing,
pages 187Ű192, 1972.

[CTS11] Alexandros Chortaras, Despoina Trivela, and Giorgos Stamou. Optimized
query rewriting for owl 2 ql. In Automated Deduction – CADE-23, pages
192Ű206, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

225

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

[DEGV01] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov.
Complexity and expressive power of logic programming. ACM Computing
Surveys, 33(3):374Ű425, 2001.

[DNR02] Francesco M. Donini, Daniele Nardi, and Riccardo Rosati. Description
logics of minimal knowledge and negation as failure. ACM Transactions
on Computational Logic, 3(2):177Ű225, 2002.

[EGM97] Thomas Eiter, Georg Gottlob, and Heikki Mannila. Disjunctive Datalog.
ACM Transactions on Database Systems (TODS), 22(3):364Ű418, 1997.

[EIK09] Thomas Eiter, Giovambattista Ianni, and Thomas Krennwallner. Answer
set programming: A primer. In Reasoning Web, volume 5689 of LNCS,
pages 40Ű110. Springer, 2009.

[EIL+08] Thomas Eiter, Giovambattista Ianni, Thomas Lukasiewicz, Roman Schind-
lauer, and Hans Tompits. Combining answer set programming with descrip-
tion logics for the semantic web. Artificial Intelligence, 172(12-13):p. 1495,
2008.

[ELOŠ09] Thomas Eiter, Carsten Lutz, Magdalena Ortiz, and Mantas Šimkus. Query
answering in description logics with transitive roles. In Proceedings of the
21st International Joint Conference on Artificial Intelligence, IJCAI 2009,
pages 759Ű764, 2009.

[EOŠ12] Thomas Eiter, Magdalena Ortiz, and Mantas Šimkus. Conjunctive query
answering in the description logic SH using knots. J. Comput. Systems
Sci., 78(1):47Ű85, 2012.

[EP03] Thomas Eiter and Axel Polleres. Transforming co-np checks to answer
set computation by meta-interpretation. In Informal Proceedings of Joint
Conference on Declarative Programming (AGP 2003), pages 410Ű421, 2003.

[FCS+15] Cristina Feier, David Carral, Giorgio Stefanoni, Bernardo Cuenca Grau,
and Ian Horrocks. The combined approach to query answering beyond
the owl 2 proĄles. In 24th International Joint Conference on Artificial
Intelligence, 2015.

[FIS11] Enrico Franconi, Yazmín Angélica Ibáĳez-García, and Inanç Seylan. Query
answering with dboxes is hard. Electronic Notes in Theoretical Computer
Science, 278:71Ű84, 2011.

[Fit96] Melvin Fitting. First-order logic and automated theorem proving (2nd ed.).
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1996.

[Flo62] Robert W. Floyd. Algorithm 97: Shortest path. Communications of the
ACM, 5(6):345, jun 1962.

226

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

[GBIGKK15] Víctor Gutiérrez-Basulto, Yazmín Ibáĳez-García, Roman Kontchakov, and
Egor V Kostylev. Queries with negation and inequalities over lightweight
ontologies. Journal of Web Semantics, 35:184Ű202, 2015.

[GGBIG+19] Tomasz Gogacz, Víctor Gutiérrez-Basulto, Yazmín A Ibáĳez-García,
Filip Murlak, Magdalena Ortiz, and Mantas Šimkus. Ontology fo-
cusing: Knowledge-enriched databases on demand. arXiv preprint
arXiv:1904.00195, 2019.

[GGI+20] Tomasz Gogacz, Víctor Gutiérrez-Basulto, Yazmín Ibáĳez-García, Filip
Murlak, Magdalena Ortiz, and Mantas Šimkus. Ontology focusing:
Knowledge-enriched databases on demand. In Proceedings of ECAI 2020,
volume 325 of Frontiers in Artificial Intelligence and Applications, pages
745Ű752. IOS Press, 2020.

[GKK+14] Georg Gottlob, Stanislav Kikot, Roman Kontchakov, Vladimir V. Podolskii,
Thomas Schwentick, and Michael Zakharyaschev. The price of query
rewriting in ontology-based data access. Artificial Intelligence, 213:42Ű59,
2014.

[GKL11] Birte Glimm, Yevgeny Kazakov, and Carsten Lutz. Status QIO: an update.
In Proceedings of the 24th International Workshop on Description Logics,
DL 2011,, volume 745 of CEUR Workshop Proceedings. CEUR-WS.org,
2011.

[GL88] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for
logic programming. In Proceedings of ICLP/SLP 1988, pages 1070Ű1080.
MIT Press, 1988.

[GLOŠ20] Tomasz Gogacz, Sanja Lukumbuzya, Magdalena Ortiz, and Mantas Šimkus.
Datalog rewritability and data complexity of ALCHOIF with closed predi-
cates. In Proceedings the 17th International Conference on the Principles
of Knowledge Representation and Reasoning of KR 2020, pages 434Ű444,
2020.

[GS12] Georg Gottlob and Thomas Schwentick. Rewriting ontological queries
into small nonrecursive datalog programs. In Proceedings of the 13th
International Conference on the Principles of Knowledge Representation
and Reasoning, KR 2012. AAAI Press, 2012.

[HLSW15] Peter Hansen, Carsten Lutz, Inanç Seylan, and Frank Wolter. Efficient
query rewriting in the description logic EL and beyond. In Proceedings of
the 24th International Joint Conference on Artificial Intelligence, IJCAI
2015, pages 3034Ű3040. AAAI Press, 2015.

227

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

[HMS07] Ullrich Hustadt, Boris Motik, and Ulrike Sattler. Reasoning in descrip-
tion logics by a reduction to disjunctive datalog. Journal of Automated
Reasoning, 39(3):351Ű384, 2007.

[Hor08] Ian Horrocks. Ontologies and the semantic web. Communications of the
ACM, 51(12):58Ű67, 2008.

[Imm99] Neil Immerman. Descriptive complexity. Graduate texts in computer
science. Springer, 1999.

[KAH11] Matthias Knorr, José Júlio Alferes, and Pascal Hitzler. Local closed
world reasoning with description logics under the well-founded semantics.
Artificial Intelligence, 175(9-10):1528Ű1554, 2011.

[KHJR+15] Evgeny Kharlamov, Dag Hovland, Ernesto Jiménez-Ruiz, Davide Lanti,
Hallstein Lie, Christoph Pinkel, Martin Rezk, Martin G. Skjæveland, Ev-
genij Thorstensen, Guohui Xiao, Dmitriy Zheleznyakov, and Ian Horrocks.
Ontology based access to exploration data at statoil. In The Semantic
Web - ISWC 2015, pages 93Ű112, Cham, 2015. Springer International
Publishing.

[KM78] Ravindran Kannan and Clyde L Monma. On the computational complex-
ity of integer programming problems. In Optimization and Operations
Research: Proceedings of a Workshop Held at the University of Bonn,
October 2–8, 1977, pages 161Ű172. Springer, 1978.

[KMKH11] Markus Krötzsch, Frederick Maier, Adila Krisnadhi, and Pascal Hitzler. A
better uncle for OWL: nominal schemas for integrating rules and ontologies.
In Proceedings of the 20th International Conference on World Wide Web,
WWW 2011, pages 645Ű654. ACM, 2011.

[Kol91] Phokion G Kolaitis. The expressive power of stratiĄed logic programs.
Information and Computation, 90(1):50Ű66, 1991.

[KR14] Markus Krötzsch and Sebastian Rudolph. Nominal schemas in description
logics: Complexities clariĄed. In Principles of Knowledge Representation
and Reasoning: Proceedings of the 14th International Conference, KR
2014. AAAI Press, 2014.

[Lif91] Vladimir Lifschitz. Nonmonotonic databases and epistemic queries. In
Proceedings of the 12th International Joint Conference on Artificial Intelli-
gence - Volume 1, IJCAI 91, page 381Ű386. Morgan Kaufmann Publishers
Inc., 1991.

[LOŠ20] Sanja Lukumbuzya, Magdalena Ortiz, and Mantas Šimkus. Resilient logic
programs: Answer set programs challenged by ontologies. In Proceedings
of the 34th AAAI Conference on Artificial Intelligence, AAAI 2020, pages
2917Ű2924. AAAI Press, 2020.

228

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

[LOŠ23] Sanja Lukumbuzya, Magdalena Ortiz, and Mantas Šimkus. On the expres-
sive power of ontology-mediated queries: Capturing conp. In Proceedings of
the 36th International Workshop on Description Logics, DL 2023, volume
3515 of CEUR Workshop Proceedings. CEUR-WS.org, 2023.

[LOŠ24] Sanja Lukumbuzya, Magdalena Ortiz, and Mantas Šimkus. Datalog
rewritability and data complexity of alchoiq with closed predicates. Artifi-
cial Intelligence, 330:104099, 2024.

[LPF+06] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gott-
lob, Simona Perri, and Francesco Scarcello. The dlv system for knowledge
representation and reasoning. ACM Transactions on Computational Logic
(TOCL), 7(3):499Ű562, 2006.

[LR98] Alon Y Levy and Marie-Christine Rousset. Combining horn rules and
description logics in carin. Artificial intelligence, 104(1-2):165Ű209, 1998.

[LŠ21] Sanja Lukumbuzya and Mantas Šimkus. Bounded predicates in description
logics with counting. In Proceedings of the 30th International Joint Con-
ference on Artificial Intelligence, IJCAI 2021, pages 1966Ű1972. ijcai.org,
2021.

[LST05] Carsten Lutz, Ulrike Sattler, and Lidia Tendera. The complexity of Ąnite
model reasoning in description logics. Information and Computation,
199(1-2):132Ű171, 2005.

[LSW13] Carsten Lutz, Inanç Seylan, and Frank Wolter. Ontology-based data access
with closed predicates is inherently intractable(sometimes). In Proceedings
of the 23rd International Joint Conference on Artificial Intelligence, IJCAI
2013, pages 1024Ű1030. IJCAI/AAAI, 2013.

[LSW15] Carsten Lutz, Inanç Seylan, and Frank Wolter. Ontology-mediated queries
with closed predicates. In Proceedings of the 24th International Joint
Conference on Artificial Intelligence, IJCAI 2015, pages 3120Ű3126. AAAI
Press, 2015.

[LSW19] Carsten Lutz, Inanç Seylan, and Frank Wolter. The data complexity
of ontology-mediated queries with closed predicates. Logical Methods in
Computer Science, 15(3), 2019.

[LTW09] Carsten Lutz, David Toman, and Frank Wolter. Conjunctive query an-
swering in the description logic el using a relational database system.
In Proceedings of the 21st International Joint Conference on Artificial
Intelligence, IJCAI 2009, volume 9, pages 2070Ű2075, 2009.

[Lut08] Carsten Lutz. The complexity of conjunctive query answering in ex-
pressive description logics. In Proceedings of Automated Reasoning, 4th

229

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

International Joint Conference, IJCAR 2008, volume 5195 of LNCS, pages
179Ű193. Springer, 2008.

[Mar06] David Marker. Model theory: an introduction, volume 217. Springer
Science & Business Media, 2006.

[MC16] Marco Montali and Diego Calvanese. Soundness of data-aware, case-
centric processes. International Journal on Software Tools for Technology
Transfer, 18(5):535Ű558, 2016.

[MHRS06] Boris Motik, Ian Horrocks, Riccardo Rosati, and Ulrike Sattler. Can OWL
and logic programming live together happily ever after? In Proceedings
of the Semantic Web - ISWC 2006, 5th International Semantic Web
Conference, ISWC 2006, volume 4273 of Lecture Notes in Computer
Science, pages 501Ű514. Springer, 2006.

[Min74] Marvin Minsky. A framework for representing knowledge, 1974.

[MR07] Boris Motik and Riccardo Rosati. A faithful integration of description
logics with logic programming. In Proceedings of the 20th International
Joint Conference on Artificial Intelligence, IJCAI 2007, pages 477Ű482,
2007.

[MR10] Boris Motik and Riccardo Rosati. Reconciling description logics and rules.
Journal of the ACM (JACM), 57(5):30:1Ű30:62, 2010.

[MSS05] Boris Motik, Ulrike Sattler, and Rudi Studer. Query answering for OWL-
DL with rules. Journal of Web Semantics, 3(1):41Ű60, 2005.

[MTKW18] David Maier, K. Tuncay Tekle, Michael Kifer, and David Warren. Datalog:
concepts, history, and outlook, pages 3Ű100. Association for Computing
Machinery and Morgan & Claypool, 09 2018.

[NOŠ16] Nhung Ngo, Magdalena Ortiz, and Mantas Šimkus. Closed predicates in
description logics: Results on combined complexity. In Proceedings of the
15th International Conference on the Principles of Knowledge Representa-
tion and Reasoning, KR 2016, pages 237Ű246, 2016.

[OPŠ19] Magdalena Ortiz, Sanja Pavlovic, and Mantas Šimkus. Answer set pro-
grams challenged by ontologies. In Proceedings of the 32nd International
Workshop on Description Logics, DL 2019, volume 2373 of CEUR Work-
shop Proceedings. CEUR-WS.org, 2019.

[ORŠ10] Magdalena Ortiz, Sebastian Rudolph, and Mantas Šimkus. Worst-case
optimal reasoning for the Horn-DL fragments of OWL 1 and 2. In Proceed-
ings of the 12th International Conference on the Principles of Knowledge
Representation and Reasoning, KR 2010. AAAI Press, 2010.

230

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

[OWL09] W3C OWL Working Group. OWL 2 Web Ontology Language: Document
Overview. W3C Recommendation, 27 October 2009. Available at http:
//www.w3.org/TR/owl2-overview/.

[Pap81] Christos H Papadimitriou. On the complexity of integer programming.
Journal of the ACM (JACM), 28(4):765Ű768, 1981.

[Pap94] Christos H. Papadimitriou. Computational Complexity. Addison Wesley
Publ. Co., 1994.

[PH05] Ian Pratt-Hartmann. Complexity of the two-variable fragment with count-
ing quantiĄers. Journal of Logic, Language and Information, 14(3):369Ű395,
2005.

[PH09] Ian Pratt-Hartmann. Data-complexity of the two-variable fragment with
counting quantiĄers. Information and Computation, 207(8):867Ű888, 2009.

[PLC+08] Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Gia-
como, Maurizio Lenzerini, and Riccardo Rosati. Linking data to ontologies.
Journal on Data Semantics, 10:133Ű173, 2008.

[Qui67] M Ross Quillian. Word concepts: A theory and simulation of some basic
semantic capabilities. Behavioral science, 12(5):410Ű430, 1967.

[RA10] Riccardo Rosati and Alessandro Almatelli. Improving query answering
over DL-Lite ontologies. In Principles of Knowledge Representation and
Reasoning: Proceedings of the 12th International Conference, KR 2010.
AAAI Press, 2010.

[RG10] Sebastian Rudolph and Birte Glimm. Nominals, inverses, counting, and
conjunctive queries or: Why inĄnity is your friend! Journal of Artificial
Intelligence Research, 39:429Ű481, 2010.

[RMKZ13] Mariano Rodrıguez-Muro, Roman Kontchakov, and Michael Za-
kharyaschev. Ontop at work. In Proceedings of the 10th OWL: Experiences
and Directions Workshop (OWLED 2013), 2013.

[Ros05] Riccardo Rosati. On the decidability and complexity of integrating on-
tologies and rules. J. Web Sem., 3(1):61Ű73, 2005.

[Ros06] Riccardo Rosati. DL+log: Tight integration of description logics and
disjunctive datalog. In Proceedings of 10th International Conference on the
Principles of Knowledge Representation and Reasoning, KR 2006. AAAI
Press, 2006.

[Ros07a] Riccardo Rosati. The limits of querying ontologies. In Proceedings of
the Database Theory - ICDT 2007, 11th International Conference, pages
164Ű178. Springer, 2007.

231

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/
https://www.tuwien.at/bibliothek

[Ros07b] Riccardo Rosati. On conjunctive query answering in EL. In Proceedings of
the 2007 International Workshop on Description Logics, DL 2007, volume
250 of CEUR Workshop Proceedings. CEUR-WS.org, 2007.

[Ros12] Riccardo Rosati. Query rewriting under extensional constraints in DL-Lite.
In Proceedings of the 2012 International Workshop on Description Logics,
DL-2012, Rome, Italy, June 7-10, 2012, volume 846 of CEUR Workshop
Proceedings. CEUR-WS.org, 2012.

[SA77] Roger C Schank and Robert P Abelson. Scripts, plans, goals, and un-
derstanding: an inquiry into human knowledge structures. Hillsdale, NJ:
Lawrence Erlbaum Associates, 1977.

[Sav70] Walter J. Savitch. Relationships between nondeterministic and deter-
ministic tape complexities. Journal of Computer and System Sciences,
4(2):177Ű192, 1970. ISSN 1439-2275.

[Sch93] Andrea Schaerf. On the complexity of the instance checking problem in
concept languages with existential quantiĄcation. Journal of Intelligent
Information Systems, 2(3):265Ű278, 1993.

[Sch95] JS Schlipf. The expressive powers of the logic programming semantics.
Journal of Computer and System Sciences, 51(1):64Ű86, 1995.

[Sch99] Alexander Schrijver. Theory of linear and integer programming. Wiley-
Interscience series in discrete mathematics and optimization. Wiley, 1999.

[SFdB09] Inanç Seylan, Enrico Franconi, and Jos de Bruijn. Effective query rewriting
with ontologies over dboxes. In Proceedings of the 21st International Joint
Conference on Artificial Intelligence, IJCAI 2009, pages 923Ű925, 2009.

[Sim13] František Simančík. Consequence-based Reasoning for Ontology Classi-
fication. PhD thesis, University of Oxford, Oxford, United Kingdom,
2013.

[SKH11] Kunal Sengupta, Adila Alfa Krisnadhi, and Pascal Hitzler. Local closed
world semantics: Grounded circumscription for OWL. In Proceedings
of The Semantic Web - ISWC 2011 - 10th International Semantic Web
Conference, pages 617Ű632. Springer, 2011.

[Tob00] Stephan Tobies. The complexity of reasoning with cardinality restric-
tions and nominals in expressive description logics. Journal of Artificial
Intelligence Research, 12:199Ű217, 2000.

[Tur37] A. M. Turing. On computable numbers, with an application to the
entscheidungsproblem. Proceedings of the London Mathematical Society,
s2-42(1):230Ű265, 1937.

232

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

[Woo75] William A Woods. What’s in a link: Foundations for semantic networks.
In Representation and understanding, pages 35Ű82. Elsevier, 1975.

[Žák83] Stanislav Žák. A turing machine time hierarchy. Theoretical Computer
Science, 26(3):327Ű333, 1983.

233

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Appendices

Missing Proof of Theorem 3.3.4

We next provide the proof of Theorem 3.3.4. The result states that an ALCHOIF KB
K = (T ,Σ,A) with closed predicates is satisĄable if and only if it respects role inclusions
and there exists a mosaic for K, as given in DeĄnition 3.3.2.

(⇒) : Assume K is satisĄable. It is easy to show that K respects role inclusions.

1. Assume r ∈ Σ ∩ NR and s(a, b) ∈ A. If we have s ⊑ r ∈ T , as I ⊨ T , we have
sI ⊆ rI . Moreover, as I ⊨Σ A, we have (a, b) ∈ sI and thus also (a, b) ∈ rI . Since
r ∈ Σ, we must have r(a, b) ∈ A. Similarly, if s− ⊑ r ∈ T , we have that (s−)I ⊆ r.
This means that (b, a) ∈ (s−)I and thus (b, a) ∈ rI . Since r ∈ Σ, we must have
r(b, a) ∈ A.

2. Let r be a role with func(r) ∈ T and let a be a constant in A and assume that
¶b : p(a, b) ∈ A, p ⊑ r ∈ T ♢ ∪ ¶b : p(b, a) ∈ A, p− ⊑ r ∈ T ♢ has more than one
element. It is easy to verify that there can be no interpretation that satisĄes func(r)
and so K = (T ,Σ,A) is unsatisĄable which contradicts our assumption.

We next show that we can construct a mosaic for K from a model I of K. To this
end, we extract for each element e ∈ ∆I a tile τe = (Te, ρe) that describes it. Recall
that we denote by t(e) the unary type of an element (i.e., the set of all basic concepts
that e participates in), and we denote by rt(e, e′) the set of all roles that the pair (e, e′)
participates in. We now set Te = t(e). To deĄne ρe we do the following. As I is a
model of K, I satisĄes every existential axiom in T . This means that for every axiom
α ∈ T that is of the type A ⊑ ∃r.B, if A ∈ t(e), then there exists at least one element
eα ∈ ∆I such that (e, eα) ∈ rI and eα ∈ B

I . If there are multiple choices for eα, we
pick an arbitrary one. Let E(e) = ¶eα : α = A ⊑ ∃r.B ∈ T , A ∈ t(e)♢. Further, let
F (e) = ¶e′ : (e, e′) ∈ rI , func(r) ∈ T ♢. We set

ρe = ¶(rt(e, e′), t(e′)) : e′ ∈ E(e) ∪ F (e)♢.

It is easy to verify that τe is a proper tile for K.

235

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

To deĄne a mosaic for K, we deĄne a function N : Tiles(K)→ N∗ as

N(τ) = ♣¶e ∈ ∆I : τe = τ♢♣.

Note that if this set is inĄnite, we set N(τ) = ℵ0. Finally, in order to show that N
is indeed a mosaic for K, we need to show that N satisĄes conditions MF1-MF5 in
DeĄnition 3.2.9.

MF1. Let a be an arbitrary constant in K. The only domain element that participates
in ¶a♢ is the element that I maps a to, which is a itself. Thus, τa is the only
tile that contains ¶a♢ in its type, and moreover N(τa) = 1.

MF2. As we do not allow interpretations with empty domains, there must be at at
least one element e ∈ ∆I . Then N(τe) ≥ 1 and thus MF2 is satisĄed.

MF3. Let T, T ′ be two arbitrary types for K, let R be an arbitrary subset of N+
R (K)

and assume that there is a role r with func(r−) ∈ T such that r ∈ R. By
construction, the number of tiles (T ′, ρ′) where (R−, T) ∈ ρ′ is exactly the
number of pairs (e′, e) ∈ (r−)I , where t(e′) = T ′, t(e) = T , and rt(e′, e) = R−.
This is the value of the sum on the right-hand side of the inequality in MF3.

Consider now an element e with t(e) = T . Note that the way we construct
τe guarantees that each pair (R, T ′) ∈ ρe corresponds to an element e′ with
t(e′) = T ′ and rt(e, e′) = R. We compute the left-hand side of the inequality in
MF3 as the number of tiles (T, ρ) with (R, T ′) ∈ ρ, which, in the light of the
previous observation, can be at most the number of pairs (e, e′) ∈ rI such that
t(e) = T , t(e′) = T ′, and rt(e, e′) = R. The latter is exactly the number of pairs
(e′, e) ∈ (r−)I , where t(e′) = T ′, t(e) = T , and rt(e′, e) = R−, which is the value
of the sum of the right-hand side of the inequality. This establishes that the
inequality in MF3 holds.

MF4. Assume there is a tile τ for K such that N(τ) > 0. That means that there
is at least one element e ∈ ∆I with τ = τe. Let (R, T ′) be a pair in ρ. By
construction, this pair corresponds to some domain element e′ with t(e′) = T ′

and rt(e, e′) = R. We then have that N(τe′) ≥ 1, and so the inequality in MF4
holds.

MF5. Let ¶a♢ and ¶b♢ be two nominals in N+
C (K), A,B ∈ NC(K) and assume at least

one of the conditions (a)-(d) is satisĄed. In this case, it is easy to see that if
a ∈ AI , then b ∈ BI . Assume that

∑

(T,ρ)∈Tiles(K),
¶a♢∈T,A∈T

N((T, ρ)) > 0. As τa = (Ta, ρa) is

the only tile that contains ¶a♢ in its type, A must be in Ta, and so a ∈ AI . This
means that b ∈ BI , and so B ∈ Tb. As τb is the only tile with ¶b♢ in its type,
this means that there exist no tile (T, ρ) such that ¶b♢ ∈ T and B ̸∈ T . Hence,
MF5 holds.

236

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

We have thus shown that N is a mosaic for K.

(⇐) : Assume K respects role inclusions and let N be a mosaic for K. We show how to
construct a model I of K. Intuitively, each tile can be seen as a description of a domain
element and a part of its neighborhood. A mosaic for K tells us for each tile τ , how many
domain elements that Ąt the description provided by τ we need in order to build a model
of K. Thus, we set our domain

∆I = ¶τi : τ ∈ Tiles(K) and 0 < i ≤ N(τ)♢.

Intuitively, the constant τi corresponds to the i-th domain element described by the tile
τ . Further, for every B ∈ N+

C (K) \ ¶⊤,⊥♢, we set

BI = ¶τi ∈ ∆I : τ = (T, ρ), B ∈ T, 1 ≤ i ≤ N(τ)♢.

The extensions of roles are constructed in multiple steps.

1. We Ąrst make sure that that I satisĄes the ABox A. Due to MF1, for each nominal
¶a♢ ∈ N+

CK, we know that there is exactly one domain element ea = (Ta, ρa)1 s.t.
¶a♢ ∈ Ta. Hence, there is exactly one domain element participating in ¶a♢I and
that is ea. This element ŞrepresentsŤ the constant a in I (and can be renamed to
a to comply with SNA). Now, for each assertion r(a, b) ∈ A and each role s with
r ⊑ s ∈ T , we set (ea, eb) ∈ sI , if s is a role name and (eb, ea) ∈ sI , otherwise.

We need to take special care when we construct the extensions of roles that are involved
in functionality assertions.

2. For each role r ∈ N+
R (K) with func(r) ∈ T and func(r−) ∈ T we do the following.

Using the inequalities from MF3 in two directions, we have that for every pair
T, T ′ ∈ Types(K) and every R ⊆ N+

R (K) with r ∈ R, the following is satisĄed: Thus,
the sets

XT,T ′,R = ¶(T, ρ)i ∈ ∆I : (R, T ′) ∈ ρ, 1 ≤ i ≤ N((T, ρ))♢

YT,T ′,R = ¶(T ′, ρ′)i ∈ ∆I : (R−, T) ∈ ρ′, 1 ≤ i ≤ N((T ′, ρ′))♢

have the same cardinality and so there exists a bijection fT,T ′,R between them with
them.

Furthermore, the bijection fT,T ′,R has the following property for all elements
e ∈ XT,T ′,R: If r is a role name (resp. an inverse role) and (e, e′) ∈ rI (resp.
(e′, e) ∈ (r−)I) was constructed in step 1, then fT,T ′,R(e) = e′.

Assume r is a role name and (e, e′) ∈ rI or was constructed in the Ąrst step
(similarly for r an inverse role and (e′, e) ∈ (r−)I). Then, e and e′ correspond to
some constants a and b and we must have one of the following scenarios:

237

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

a) p(a, b) ∈ A, p ⊑ r ∈ T , or

b) p(b, a) ∈ A, p ⊑ r− ∈ T .

This means that ¶a♢ ∈ T . Due to the conditions TF8 (a) and TF8 (b), we can
conclude that ¶b♢ ∈ T ′. In the light of this, due to MF1, e is the only element in
XT,T ′,R and e′ is the only element in YT,T ′,R. Thus, fT,T ′,R(e) = e′.

We now do the following. For every e ∈ XT,T ′,R and every s ∈ R, we set
(e, fT,T ′,R(e)) ∈ sI if s is a role name and (fT,T ′,R(e), e) ∈ (s−)I otherwise. Intu-
itively, this connects via an r-arc, every domain element of type T that requires an
r-neighbor of type T ′ to one domain element of type T ′ that requires an r−-neighbor
of type T .

3. Next, for every role r ∈ N+
R (K) such that func(r−) ∈ T but func(r−) ̸∈ T we do the

following. For every pair T, T ′ ∈ Types(K) and every R ⊆ N+
R (K) with r ∈ R, we

get by employing MF3 that the following is satisĄed: If we deĄne the sets XT,T ′,R

and YT,T ′,R as before, we get that ♣XT,T ′,R♣ ≤ ♣YT,T ′,R♣, for every T, T ′, R. Thus,
there exists an injection gT,T ′,R from XT,T ′,R onto YT,T ′,R. This injection gT,T ′,R

has the same property as the bijection fT,T ′,R in the previous case. Once again, for
every e ∈ XT,T ′,R and every s ∈ R, we set (e, gT,T ′,R(e)) ∈ sI if s is a role name and
(gT,T ′,R(e), e) ∈ (s−)I otherwise. We note that, if there is a role s s.t. func(s) ∈ T
and func(s−) ∈ T and s ∈ R, the injection gT,T ′,R is exactly the bijection fT,T ′,R

from the previous case.

4. Finally, we do the following for each e = (T, ρ)i ∈ ∆I with (R, T ′) ∈ ρ for which
there is no d ∈ ∆I such that d = (T ′, ρ′) and (e, d) ∈ rI , for all r ∈ R. Due to MF4,
there exists some ρ′ such that (T ′, ρ′) ∈ Tiles(K) and N((T ′, ρ′)) > 0. Let e′ denote
the domain element (T ′, ρ′)1 ∈ ∆I . For each r ∈ R, if r ∈ NR we set (e, e′) ∈ rI ,
otherwise we set (e′, e) ∈ (r−)I . This concludes the construction of I.

We next need to show that I is indeed a model of K under Σ.

Satisfaction of A under Σ. Let A(c) ∈ A, where A ∈ NC. As ¶c♢ ∈ N+
C (K), we

have that ec ∈ ∆I , where, as explained above, ec = (Tc, ρc) is an element in ∆I that
is associated to c and is unique. As (Tc, ρc) is a tile, it must satisfy the condition TF6
and hence A ∈ Tc. Since AI is deĄned as a set of all domain elements (T, ρ)i such that
A ∈ T , we have that ec ∈ A

I and so I satisĄes A(c). Let p(a, b) ∈ A, where p ∈ NR.
The Ąrst step in our construction of I involved adding (ea, eb) ∈ rI for each assertion
p(a, b) ∈ A and role r ⊑ p ∈ T . Due to the closure assumption for the TBox, we have
p ⊑ p ∈ T and thus (ea, eb) ∈ pI . Hence, I satisĄes r(a, b).

Assume that ¬A(b) ∈ A and assume towards a contradiction that eb ∈ A
I . Then A ∈ Tb,

which contradicts condition TF7. Further, assume ¬p(a, b) ∈ A and (ea, eb) ∈ pI . In

238

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

order to construct (ea, eb) ∈ pI it must be the case that either there is a pair (R, Tb)
in ρa where p ∈ R, which contradicts TF8 (c) or (R, Ta) in ρb, where p− ∈ R, which
contradicts TF8 (d).

I respects closed predicates. Let A ∈ NC∩Σ and e = (T, ρ)i be an arbitrary element
in AI . By construction of AI , we have that A ∈ T . Further, by condition TF9 there
exists some c ∈ NI such that ¶c♢ ∈ T and A(c) ∈ A. As ¶c♢ ∈ N+

C (K), as explained above,
there is exactly one domain element ec = (Tc, ρc) ∈ ∆I with ¶c♢ ∈ Tc. Hence, e = ec and
as A(c) ∈ A, I respects closed concepts.

Let r ∈ NR ∩ Σ and let e1 = (T1, ρ1)i and e2 = (T2, ρ2)j arbitrary elements of ∆I for
which (e1, e2) ∈ rI holds. We now make a case distinction based on at which point in
the construction of I we set (e1, e2) ∈ rI .

• We set (e1, e2) ∈ rI in the Ąrst step of the construction, in order to satisfy the
ABox. In this case, e1 = ea and e2 = eb, for some a, b for which r(a, b) ∈ A (also
since K respects RIs). Hence, the closed role is not violated.

• We set (e1, e2) ∈ rI in any of the other cases. In this case, we can see that a
prerequisite to setting (e1, e2) ∈ rI is that there is some (R, T2) ∈ ρ1 such that
r ∈ R. Then, due to condition TF10, we have that there exists c ∈ NI occurring
in A such that ¶c♢ ∈ T1. Hence, e1 = ec. Further, also due to the same condition,
we have that there is some d ∈ NI occurring in A such that ¶d♢ ∈ T2 and therefore
e2 = eb. The Ąnal part of the condition TF10 requires states that r(c, d) ∈ A.
Hence (e1, e2) ∈ rI does not violate the closed role.

We can conclude that I respects closed roles. From this and the fact that I satisĄes all
assertions in A, it follows that I ⊨Σ A.

Satisfaction of T . Consider an arbitrary axiom α in T .

• α is of the shape B1 ⊓ · · · ⊓ Bk−1 ⊑ Bk ⊔ · · · ⊔ Bm: Let e = (T, ρ)i ∈ ∆I and
assume that e ∈ (B1 ⊓ · · · ⊓Bk−1)I . This means that e ∈ BI

j , for all 1 ≤ j < k. By
construction of I, this implies that Bj ∈ T , for all 1 ≤ j < k. By condition TF2.
of DeĄnition 3.2.5 we have that there exists l, k ≤ l ≤ m, such that Bl ∈ T . Thus,
e ∈ BI

l and so e ∈ (Bk ⊔ · · · ⊔Bm)I .

• α is of the shape B1 ⊑ ∀r.B2: Assume e = (T, ρ)i ∈ ∆I , e′ = (T ′, ρ′)j ∈ ∆I ,
(e, e′) ∈ rI , e ∈ BI

1 , and e2 ̸∈ B
I
2 . By construction, B1 ∈ T and B2 ̸∈ T

′. Due to
items TF4 (a) and TF4 (b), (e, e′) ∈ r could not have been constructed in steps 2-4.
Thus, it must be the case that e and e′ represent constants. Since this contradicts
condition MF5, we can conclude that this situation is impossible and t is satisĄed.

239

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

• α is of the shape B1 ⊑ ∃r.B2: Let e = (T, ρ)i ∈ ∆I and assume that e ∈ BI
1 . By

construction of I, we have that B1 ∈ T . By condition TF3 of DeĄnition 3.2.5 we
have that there is some (R, T ′) ∈ ρ such that r ∈ R and B2 ∈ T

′. Hence, latest
at step 3, we will construct (e, e′) ∈ rI , for some e′ = (T ′, ρ′). As B2 ∈ T

′, by
construction we have e′ ∈ BI

2 and so α is satisĄed.

• t is of the shape r ⊑ s: The satisfaction of these axioms is due to the condition TF4
(c) as well as that in the Ąrst step of the construction, whenever we add (e, e′) ∈ rI ,
we do the same for all roles s with r ⊑ s.

• t is of the shape func(r): Let e = (T, ρ)i, e1 = (T1, ρ1)j , and e2 = (T2, ρ2)k be
elements in ∆I and assume that (e, e1) ∈ rI and (e, e2) ∈ rI . Note that, steps
1-3 can together construct at most one r-arc from e to some other element, thus
these steps alone cannot be responsible for the situation. The same holds for step
4. We conclude that the violation arises as follows. W.lo.g., assume that steps 1-3
construct (e, e1) ∈ rI and step 4 constructs (e, e2) ∈ rI due to a pair (R2, T2) ∈ ρ
with r ∈ R2. Now, if (e, e1) ∈ rI was constructed in steps 2-3, then there must be
also be a pair (R1, T1) ∈ ρ with r ∈ R1. Due to TF5, (R1, T1) and (R2, T2) must
be the same pair. Thus, there already exists a witness for (R2, T2) and step 4. is
never actually executed. On the other hand, if (e, e1) ∈ rI was constructed in step
1, then due to conditions TF8 (a) and TF8 (b) and MF1, we can conclude that
T1 = T2. As e1 represents a constant and is thus the only element with the type
T2, we can conclude that e1 = e2 and that there is no violation.

As we have shown that I ⊨Σ A and I ⊨ T , we have that I ⊨ K and thus K is satisĄable.

Missing Proof of Theorem 5.3.6

In this section, we provide the proof of Theorem 5.3.6. The following proof relies greatly
on the proof of Theorem 3.3.4 from the previous section and omits the cases can trivially
adapted.

Let K = (T ,Σ,A) be an ALCHOIF+ KB.

(⇒) : Assume K is satisĄable, i.e., there is an interpretation I = (∆I , ·I). It is easy to
show that K respects role inclusions.

We next show that we can construct a mosaic for K from I. For each domain element
e ∈ ∆I we deĄne the type of e as the set of basic concepts e participates in:

t(e) = ¶⊤♢ ∪ ¶A ∈ N+
C (K) : e ∈ AI♢.

Further, for each pair of elements e, e′ ∈ ∆I , we deĄne a role type of (e, e′) as

rt(e, e′) = ¶r ∈ N+
R(K) : (e, e′) ∈ rI♢.

240

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Next, we need to extract π∃(e) and π∀(e). We begin with the former.

To this end, for each e ∈ ∆I , we set

π∃(e) := ¶(ε, ¶a♢)♢,

if e = a, for some ¶a♢ ∈ N+
C (K), otherwise π∃(e) := ∅. We then go through all pairs in

Π∃(K) of the shape (r ◦A? ◦ P,C) ∈ Π∃(K), where r ∈ N+
R, A ∈ N+

C (K), P ∈ Paths∃(K),
and C ∈ N+

C (K), and we do the following. For each (e, e′) ∈ rI , if (r ◦A? ◦ P,C) ∈ π∃(e)
and A ∈ t(e′), we set π∃(e′) := π∃(e′) ∪ ¶(P,C)♢. Finally, we go through all pairs Π∃(K)
of the shape (A? ◦R,D), where A ∈ N+

C (K), R is a complex role and D ∈ N+
C (K), and for

each e ∈ AI , if (R,D) ∈ π∃(e) then (A ◦R,D) ∈ π∃(e). This concludes the construction
of π∃(e).

We next extract π∀(e), for all e ∈ ∆I . We begin by setting

π∀(e) := ¶(P, ¶a♢) : (A? ◦ P, ¶a♢) ∈ Π∀(K), A ∈ t(e)♢,

if e = a for some ¶a♢ ∈ N+
C (K). Otherwise, π∀(e) := ∅. Further, for each e ∈ ∆I

s.t. (a, e) ∈ rI , for some ¶a♢ ∈ N+
C (K), A ∈ t(e) and (r ◦ A? ◦ P, ¶a♢) ∈ π∀(a), we

set π∀(e) := π∀(e) ∪ ¶(P, ¶a♢)♢. Finally, for all e ∈ ∆I and each P ∈ Paths∀(K)
s.t. there are two nominals ¶a♢, ¶b♢ ∈ N+

C (K) with (P, ¶a♢), (P, ¶b♢) ∈ π∀(e), we set
π∀(e) := π∀(e) \ ¶(P,C) : (P,C) ∈ π∀(e)♢ ∪ ¶(P,⊥)♢.

Observation 1. Given an arbitrary domain element e ∈ ∆I , if (r ◦A? ◦R,⊥) ∈ π∀(e),
then (R,⊥) ∈ π∀(e′), for all e′ with (e, e′) ∈ rI and e′ ∈ AI .

Finally, for each element e ∈ ∆I , we extract a tile τe = (t(e), ρ(e), π∃(e), π∀(e)) that
describes it. Sometimes we write Te as an abbreviation for t(e). To deĄne ρ(e) we do the
following. As I is a model of K, I satisĄes every existential axiom in T . This means
that for every axiom α ∈ T that is of the type A ⊑ ∃r.B, if A ∈ t(e), then there exists
at least one element eα ∈ ∆I such that (e, eα) ∈ rI and eα ∈ B

I . If there are multiple
choices for eα, we pick an arbitrary one. Let E(e) = ¶eα : α = A ⊑ ∃r.B ∈ T , A ∈ t(e)♢.
Further, let F (e) = ¶e′ : (e, e′) ∈ rI , func(r) ∈ T ♢. We set

ρ(e) = ¶(rt(e, e′), t(e′), π∃(e′), π∀(e′)) : e′ ∈ E(e) ∪ F (e)♢.

Observation 2. By construction of ρe, if (R, T ′, π′
∃, π

′
∀) ∈ ρe, then there is an element

e′ ∈ ∆I s.t. t(e′) = T ′, rt(e, e′) = R, π′
∃ = π′

∃(e′) and π′
∀ = π′

∀(e′).

We next need to verify that τe is a proper tile. We only give details for the newly-
introduced conditions , i.e., TF+11-TF+21.

Notational remark: For P = r1 ◦A1? ◦ · · · ◦ rn ◦An? ∈ Paths∃ ∪ Paths∀, we deĄne the
length of P as len(P) = n. Furthermore, len(ε) = 0.

241

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

TF+11. ♣π∃♣ ≤ ♣Paths∃(K)♣

By construction, for each e ∈ ∆I and each P ∈ Paths∃(K), if (P, ¶a♢) ∈ π∃(e)
then (e, ¶a♢) ∈ P I . Moreover, by deĄnition of Paths∃(K), P consists of only
tests and functional roles, which means that there there is at most one domain
element e′ ∈ ∆I s.t. (e, e′) ∈ P I . Thus, for each P ∈ Paths∃(K) there is at most
one ¶a♢ ∈ N+

C (K) with (P, ¶a♢) ∈ π∃(e) and so ♣π∃♣ ≤ ♣Paths∃(K)♣.

TF+12. ♣π∀♣ ≤ ♣Paths∀(K)♣

It is easy to verify that, by construction, for each element e ∈ ∆I and each
P ∈ Paths∀(K) either (i) (P,⊥) ∈ π∀(e), (ii) there is exactly one nominal
¶a♢ ∈ N+

C (K) s.t. (P, ¶a♢) ∈ π∃(e), or (iii) there is no C ∈ N+
C (K) ∪ ¶⊥♢ s.t.

(P,C) ∈ π∃(e). Thus, ♣π∀♣ ≤ ♣Paths∀(K)♣.

TF+13. If ¶a♢ ∈ N+
C (K), ¶a♢ ∈ T , then (ε, ¶a♢) ∈ π∃

Follows immediately from the construction of π∃(e)

TF+14. If ∃A1? ◦ P.(¶x♢ ⊓ ∃s.¶y♢) ⊓ ∃A2? ◦ R.¶y♢ ⊑ A ∈ T , ¶¶a♢, ¶b♢♢ ⊆ N+
C (K),

¶A1, A2♢ ⊆ T , ¶(P, ¶a♢), (R, ¶b♢)♢ ⊆ π∃ and s(a, b) ∈ A, then A ∈ T .

Let α = ∃A1? ◦ P.(¶x♢ ⊓ ∃s.¶y♢) ⊓ ∃A2? ◦R.¶y♢ ⊑ A s.t. α ∈ T , let e ∈ ∆I be
an arbitrary domain element and consider the tile τe extracted from e. Assume
that ¶A1, A2♢ ∈ t(e). By construction, this means that e ∈ AI

1 and e ∈ AI
2 .

Further, assume that ¶(P, ¶a♢), (R, ¶b♢)♢ ⊆ π∃(e). Observe once again that, by
construction of π∃(e), this means that (e, a) ∈ P I and (e, b) ∈ RI . If s(a, b) ∈ A,
then it must be the case that (a, b) ∈ sI . In the light of our previous observations,
both (e, b) ∈ A1? ◦ P.(¶a♢ ⊓ ∃s.¶b♢) and (e, b) ∈ A2? ◦R.¶b♢ must hold, and so
e ∈ AI . Once again, by construction of t(e), we have that A ∈ t(e).

TF+15. If ∃A1? ◦ P.(¶x♢ ⊓ ¬∃s.¶y♢) ⊓ ∃A2? ◦ R.¶y♢ ⊑ A ∈ T , ¶¶a♢, ¶b♢♢ ⊆ N+
C (K),

¶A1, A2♢ ⊆ T , ¶(P, ¶a♢), (R, ¶b♢)♢ ⊆ π∃ and s(a, b) /∈ A, then A ∈ T .

Let α = ∃A1? ◦P.(¶x♢⊓¬∃s.¶y♢)⊓∃A2? ◦R.¶y♢ ⊑ A s.t. α ∈ T , let e ∈ ∆I be
an arbitrary domain element and consider the tile τe extracted from e. Assume
that ¶A1, A2♢ ∈ t(e). By construction, this means that e ∈ AI

1 and e ∈ AI
2 .

Further, assume that ¶(P, ¶a♢), (R,∃(b))♢ ⊆ π∃(e). Observe once again that, by
construction of π∃(e), this means that (e, a) ∈ P I and (e, b) ∈ RI . If s(a, b) /∈ A,
then it must be the case that (a, b) /∈ sI . In the light of our previous observations,
both (e, b) ∈ A1? ◦ P (¶x♢ ⊓ ¬∃s.¶b♢) and (e, b) ∈ A2? ◦R.¶b♢ must hold, and so
e ∈ AI . Once again, by construction of t(e), we have that A ∈ t(e).

TF+16. If ¶x♢ ⊑ ∀A? ◦ P.¶x♢ ∈ T , ¶a♢ ∈ N+
C (K), and ¶¶a♢, A♢ ∈ T , then either

(P, ¶a♢) ∈ π∀ or (P,⊥) ∈ π∀.

242

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Let ¶¶a♢, A♢ ∈ t(e), for some ¶a♢ ∈ N+
C (K). This means that e ∈ AI and e = a.

Moreover, assume ¶x♢ ⊑ ∀A? ◦ P.¶x♢ ∈ T . By construction of Π∀(K), we have
that (A? ◦ P, ¶a♢) ∈ Π∀(K), and in the Ąrst step of the construction of π∀(a),
we let (P, ¶a♢) ∈ π∀(a). Thus, the only way to achieve (P, ¶a♢) /∈ π∀(a) is if we
replace it by (P,⊥) at some later step.

TF+17. If (ε, C) ∈ π∀, then C ∈ T .

We make a case distinction:

• C = ¶a♢, for some ¶a♢ ∈ N+
C (K). Looking at the construction of π∀(e), it is

easy to see that if (ε, ¶a♢) ∈ π∀(e), then there is some (A?◦P, ¶a♢) ∈ Π∀(K)
s.t. ¶a♢ ∈ t(a), i.e., AI , and (a, e) ∈ P I . Further, by the construction of
Π∀(K), there must be some axiom α = ¶x♢ ⊑ ∀A? ◦ P.¶x♢ ∈ T . As I ⊨ α,
and (a, e) ∈ P I , it must be that e = a and so ¶a♢ ∈ t(e).

• C = ⊥. Since t(e) can never contain ⊥, we need to show that (ε,⊥) cannot
possibly be in π∀(e). To this end, observe that the only way to obtain
(ε,⊥) in π∀(e) is by replacing (ε, ¶a♢) and (ε, ¶b♢) during the construction
of π∀(e), for two nominals ¶a♢, ¶b♢ ∈ N+

C (K). Analogously to the previous
case, this means that there are two axioms α1 = ¶x♢ ⊑ ∀A1? ◦ P1.¶x♢ ∈ T
and α2 = ¶x♢ ⊑ ∀A2? ◦ P2.¶x♢ ∈ T s.t. a ∈ AI

1 , b ∈ AI
2 , (a, e) ∈ P I

1 and
(b, e) ∈ P I

2 . As I ⊨ α1 and I ⊨ α2, it must be that e = a = b, which cannot
happen due to SNA. Thus, (ε,⊥) /∈ π∀(e).

TF+18. For all (R, T ′, π′
∃, π

′
∀) ∈ ρ

a) If (r ◦A? ◦ P, ¶a♢) ∈ Π∃(K), and r ∈ R, ¶A♢ ∈ T ′, and (P, ¶a♢) ∈ π′
∃, then

(r ◦A? ◦ P, ¶a♢) ∈ π∃

Assume (r ◦A? ◦ P, ¶a♢) ∈ Π∃(K), (P, ¶a♢) ∈ π′
∃, A? ∈ T ′ and r ∈ R. Due

to Observation 2, we have that there is some domain element e′ ∈ ∆I s.t.
e′ ∈ AI , π′

∃ = π∃(e), and (e, e′) ∈ rI . Thus, by construction, we have that
(r ◦A? ◦ P, ¶a♢) ∈ π∃(e).

b) If (r ◦A? ◦ P, ¶a♢) ∈ Π∃(K), and r− ∈ R, A ∈ T , and (P, ¶a♢) ∈ π∃, then
(r ◦A? ◦ P, ¶a♢) ∈ π′

∃.

Assume (r◦A?◦P, ¶a♢) ∈ Π∃(K), (P, ¶a♢) ∈ π∃, A? ∈ T and r− ∈ R. Then
e ∈ AI . Moreover, due to Observation 2, we have that there is some domain
element e′ ∈ ∆I s.t. π′

∃ = π∃(e), and (e′, e) ∈ rI . Thus, by construction of
π∃(e), we have that (r ◦A? ◦ P, ¶a♢) ∈ π∃(e′), i.e., (r ◦A? ◦ P, ¶a♢) ∈ π′

∃.

c) If (r ◦A? ◦P,C) ∈ π∀, r ∈ R and A ∈ T ′, either (P,C) ∈ π′
∀ or (P,⊥) ∈ π′

∀.

We do a case distinction

• C = ¶a♢, for some ¶a♢ ∈ N+
C (K). Assume that (r ◦A? ◦ P, ¶a♢) ∈

π∀(e), r ∈ R, and A ∈ T ′. Due to Observation 2, there is some

243

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

e′ ∈ ∆I s.t. e′ ∈ AI , (e, e′) ∈ rI , and π′
∀ = π∀(e′). By construction

of π∀(e′), we either have (P, ¶a♢) ∈ π∀(e′) or we replaced it by
(P,⊥) at a later stage of the construction.

• C = ⊥. Assume that (r ◦ A? ◦ P,⊥) ∈ π∀(e), r ∈ R, and A ∈
T ′. Due to Observation 2, there is some e′ ∈ ∆I s.t. e′ ∈ AI ,
(e, e′) ∈ rI , and π′

∀ = π∀(e′). Further, by Observation 1, we have
(P,⊥) ∈ π∀(e′).

d) If (r◦A?◦P,C) ∈ π′
∀, r− ∈ R and A ∈ T , either (P,C) ∈ π∀ or (P,⊥) ∈ π∀.

We do a case distinction

• C = ¶a♢, for some ¶a♢ ∈ N+
C (K). Assume that (r ◦A? ◦ P, ¶a♢) ∈ π′

∀,
r− ∈ R, and A ∈ T , i.e., e ∈ AI . Due to Observation 2, there is some
e′ ∈ ∆I s.t. (e, e′) ∈ (r−)I , i.e., (e′, e) ∈ rI , and π′

∀ = π∀(e′). Thus, by
construction of π∀(e), we either have (P, ¶a♢) ∈ π∀(e′) or we replaced
it by (P,⊥) at a later stage of the construction.

• C = ⊥. Assume that (r ◦ A? ◦ P,⊥) ∈ π′
∀, r− ∈ R, and A ∈ T , i.e.,

e ∈ AI . Due to Observation 2, there is some e′ ∈ ∆I s.t (e, e′) ∈ (r−)I ,
i.e., (e′, e) ∈ rI , and π′

∀ = π∀(e′) Further, by Observation 1, we have
(P,⊥) ∈ π∀(e).

e) If ¶x♢⊓A ⊑ ∀s.¬¶x♢ ∈ T , ¶a♢ ∈ N+
C (K), ¶¶a♢, A♢ ⊆ T and ¶s, s−♢∩R ̸= ∅,

then ¶a♢ ̸∈ T

Assume ¶¶a♢, A♢ ∈ t(e), i.e., e = a and e ∈ AI . Further assume towards a
contradiction that ¶s, s−♢∩R ≠ ∅ and ¶a♢ ∈ T . Due to Observation 2, this
means that (a, a) ∈ sI , which is a contradiction to I ⊨ ¶x♢ ⊓A ⊑ ∀s.¬¶x♢.

TF+19. If p(a, b) ∈ A, p ⊑ r ∈ T , func(r) ∈ T , ¶a♢ ∈ T , there is some (R, T ′, π′
∃, π

′
∀) ∈ ρ

s.t. r ∈ R and ¶b♢ ∈ T ′.

Immediate by construction of ρa (if r is a functional role, then all r-neighbors
are stored).

TF+20. If p(a, b) ∈ A, p− ⊑ r ∈ T , func(r) ∈ T , ¶b♢ ∈ T , there is some (R, T ′, π′
∃, π

′
∀) ∈

ρ s.t. r ∈ R and ¶a♢ ∈ T ′.

Immediate by construction of ρb (if r is a functional role, then all r-neighbors
are stored).

TF+21. If ¶a♢ ∈ N+
C (K), s(a, a) ∈ A and ¶x♢ ⊓A ⊑ ∀s.¬¶x♢ ∈ T , then ¶¶a♢, A♢ ̸⊆ T .

Assume s(a, a) ∈ A. As I ⊨ ¶x♢ ⊓A ⊑ ∀s.¬¶x♢, this means that a /∈ A. Thus,
by construction, A /∈ t(a). Furthermore, the only tile containing ¶a♢ in its unary
type is the tile τa = (t(a), ρa, π∃(a), π∀(a)). Thus, τ = τa, and A /∈ T .

244

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

To deĄne a mosaic for K, we deĄne a function N : Tiles(K)→ N∗ as

N(τ) = ♣¶e ∈ ∆I : τe = τ♢♣.

Note that if this set is inĄnite, we set N(τ) = ℵ0. Finally, in order to show that N
is indeed a mosaic for K, we need to show that N satisĄes conditions MF+1-MF+6 in
DeĄnition 3.2.9. We only show the proof for MF+3, MF+4 and MF+6, as the rest are
simple adaptations of the proof from the previous section.

MF+3. For all T, T ′ ∈ Types(K), R ⊆ N+
R(K) with r ∈ R and func(r−) ∈ T , every

¶π∃, π
′
∃♢ ⊆ Π∃(K), ¶π∀, π

′
∀♢ ⊆ Π∀(K), the following holds:

∑

τ=(T,ρ,π∃,π∀)∈Tiles(K),
(R,T ′,π′

∃
,π′

∀
)∈ρ

N(τ) ≤
∑

τ ′=(T ′,ρ′,π′
∃

,π′
∀

)∈Tiles(K),

(R−,T,π∃,π∀)∈ρ′

N(τ ′)

Let T, T ′ be two arbitrary types for K, let R be an arbitrary subset of N+
R(K)

and assume that there is a role r with func(r−) ∈ T such that r ∈ R, let π∃, π
′
∃

be arbitrary subsets of Π∃(K), and let π∀, π
′
∀, be arbitrary subsets of Π∀(K).

Since r− is a functional role and r− ∈ R−, by construction, the number of
tiles (T ′, ρ′, π′

∃, π
′
∀) where (R−, T, π∃, π∀) ∈ ρ′ is exactly the number of pairs

(e′, e) ∈ (r−)I , where t(e′) = T ′, t(e) = T , π∃(e) = π∃, π∀(e) = π∀, π∃(e′) = π′
∃,

π∀(e′) = π′
∀, and rt(e′, e) = R−. This is the value of the sum on the right-hand

side of the inequality in MF+3.

Consider an element e with t(e) = T . By Observation 2, each (R, T ′, π′
∃, π

′
∀) ∈ ρe

corresponds to an element e′ with t(e′) = T ′,rt(e, e′) = R, π′
∃ = π∃(e′) and

π′
∀ = π∀(e′). We compute the left-hand side of the inequality in MF+3 as

the number of tiles (T, ρ) with (R, T ′) ∈ ρ, which can be at most the number
of pairs (e, e′) ∈ rI such that t(e) = T , t(e′) = T ′, π∃(e) = π∃, π∀(e) = π∀,
π∃(e′) = π′

∃, π∀(e′) = π′
∀, and rt(e, e′) = R. The latter is exactly the number

of pairs (e′, e) ∈ (r−)I , where t(e′) = T ′, t(e) = T , π∃(e) = π∃, π∀(e) = π∀,
π∃(e′) = π′

∃, π∀(e′) = π′
∀, and rt(e′, e) = R−, which is the value of the sum of

the right-hand side of the inequality. This establishes that the inequality in
MF+3 holds.

MF+4. For all τ = (T, ρ, π∃, π∀) ∈ Tiles(K) and (R, T ′, π′
∃, π

′
∀) ∈ ρ the following holds:

if N(τ) > 0, then there exists ρ′ such that τ ′ = (T ′, ρ′, π′
∃, π

′
∀) ∈ Tiles(K) and

N(τ ′) > 0.

Assume there is a tile τ for K such that N(τ) > 0. That means that there
is at least one element e ∈ ∆I with τ = τe. Let (R, T ′, π∃, π∀) ∈ ρ. By
Observation 2, this corresponds to some domain element e′ with t(e′) = T ′,
rt(e, e′) = R, π′

∃ = π∃(e′) and π′
∀ = π∀(e′). We then have that N(τe′) ≥ 1, and

so the inequality in MF+4 holds.

245

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

MF+6. For all p(a, b) ∈ A and τ = (T, ρ, π∃, π∀) ∈ Tiles(K) with ¶a♢ ∈ T , N(τ) > 0
implies that there exists a tile τ ′ = (T ′, ρ′, π′

∃, π
′
∀) with N(τ ′) > 0 s.t.

a) ¶b♢ ∈ T ′,

b) for all (r ◦ A? ◦ P,C) ∈ Π∃(K), p ⊑ r ∈ T , (P,C) ∈ π′
∃, and A ∈ T ′, we

have (r ◦A? ◦ P,C) ∈ π∃,

c) for all (r ◦ A? ◦ P,C) ∈ Π∃(K), p− ⊑ r ∈ T , (P,C) ∈ π∃, and A ∈ T , we
have (r ◦A? ◦ P,C) ∈ π′

∃,

d) for all (r ◦A? ◦ P,C) ∈ π∀, p ⊑ r ∈ T , and A ∈ T ′, we have

¶(P,C), (P,⊥)♢ ∩ π′
∀ ̸= ∅,

e) for all (r ◦A? ◦ P,C) ∈ π′
∀, p− ⊑ r ∈ T , and A ∈ T , we have

¶(P,C), (P,⊥)♢ ∩ π∀ ̸= ∅.

Assume p(a, b) ∈ A. The only tile τ = (T, ρ, π∃, π∀) with ¶a♢ ∈ T is the tile
obtained from the constant a itself, i.e., τa = (t(a), ρa, π∃(a), π∀(a)). Then,
showing that MF+6 holds boils down to showing that the following conditions
hold for the tile τb = (t(b), ρb, π∃(b), π∀(b)) obtained from the constant b.

(b) for all (r ◦ A? ◦ P,C) ∈ Π∃(K), p ⊑ r ∈ T , (P,C) ∈ π∃(b), and A ∈ t(b),
we have (r ◦A? ◦ P,C) ∈ π∃(a):
Assume (r ◦A? ◦ P,C) ∈ Π∃(K), p ⊑ r ∈ T , (P,C) ∈ π∃(b), and A ∈ t(b).
As I ⊨ p ⊑ r and (a, b) ∈ pI , due to p(a, b) ∈ A, we have that (a, b) ∈ rI .
Moreover, we have b ∈ AI and (P,C) ∈ π∃(b). Thus, by construction of
π∃(a), we must have (r ◦A? ◦ P,C) ∈ π∃(a).

(c) for all (r ◦A? ◦ P,C) ∈ Π∃(K), p− ⊑ r ∈ T , (P,C) ∈ π∃(a), and A ∈ t(a),
we have (r ◦A? ◦ P,C) ∈ π∃(b):
Assume (r ◦A? ◦P,C) ∈ Π∃(K), p− ⊑ r ∈ T , (P,C) ∈ π∃(a), and A ∈ t(a).
As I ⊨ p− ⊑ r and (a, b) ∈ pI , due to p(a, b) ∈ A, we have that (b, a) ∈ rI .
Moreover, we have a ∈ AI and (P,C) ∈ π∃(a). Thus, by construction of
π∃(b), we must have (r ◦A? ◦ P,C) ∈ π∃(b).

(d) for all (r ◦ A? ◦ P,C) ∈ π∀(a) s.t. p ⊑ r ∈ T and A ∈ t(b), we have that
¶(P,C), (P,⊥)♢ ∩ π∀(b) ̸= ∅:
As I ⊨ p ⊑ r and (a, b) ∈ pI , due to p(a, b) ∈ A, we have that (a, b) ∈ rI .
Since A ∈ t(b), i.e., b ∈ AI , we have by construction of π∀(b), that (P,C)
or (P,⊥) is in π∀(b) (same argument as in the proof of TF+18 (b))

(e) for all (s ◦B? ◦ S,D) ∈ π∀(b) s.t. p− ⊑ s ∈ T and B ∈ t(a), we have that
¶(S,D), (S,⊥)♢ ∩ π∀(a) ̸= ∅:
As I ⊨ p− ⊑ r and (a, b) ∈ pI , due to p(a, b) ∈ A, we have that (b, a) ∈ rI .
Since B ∈ t(a), i.e., a ∈ BI , we have by construction of π∀(a), that (S,D)
or (S,⊥) is in π∀(a) (same argument as in the proof of TF+18 (c))

246

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Thus, the condition MF+6 is satisĄed by N .

We have thus shown that N is indeed a mosaic for K, which completes this
direction of the proof.

(⇐) : K respects role inclusions and let N be a mosaic for K. We show how to construct
a model I of K.

Intuitively, each tile can be seen as a description of a domain element and a description
of (the relevant part of) its neighborhood. A mosaic for K tells us for each tile τ , how
many domain elements that Ąt the description provided by τ we need in order to build a
model of K. Thus, we set our domain

∆I = ¶τi : τ ∈ Tiles(K) and 0 < i ≤ N(τ)♢.

Intuitively, the constant τi corresponds to the i-th domain element described by the tile τ .
Further, for every B ∈ N+

C (K) \ ¶⊤,⊥♢, we set

BI = ¶τi ∈ ∆I : τ = (T, ρ, π∃, π∀), B ∈ T, 1 ≤ i ≤ N(τ)♢.

The extensions of roles are constructed in multiple steps.

1. We Ąrst make sure that that I satisĄes the ABox A. Due to MF+1, for each
nominal ¶a♢ ∈ N+

C (K), we know that there is exactly one domain element ea =
(Ta, ρa, π∃a, π∀a)1 s.t. ¶a♢ ∈ Ta. Hence, there is exactly one domain element
participating in ¶a♢I and that is ea. This element ŞrepresentsŤ the constant a
in I (and can be renamed to a to comply with SNA). Now, for each assertion
r(a, b) ∈ A and each role s with r ⊑ s ∈ T , we set (ea, eb) ∈ sI , if s is a role name
and (eb, ea) ∈ sI , otherwise.

We need to take special care when we construct the extensions of roles that are involved
in functionality assertions.

2. For each role r ∈ N+
R(K) with func(r) ∈ T and func(r−) ∈ T we do the following.

Using the inequalities from MF+3 in two directions, we have that for every T, T ′ ∈
Types(K), π∃, π

′
∃ ∈ Π∃(K), π∀, π

′
∀ ∈ Π∀(K), and R ⊆ N+

R(K) with r ∈ R, the
following is satisĄed:

∑

τ=(T,ρ,π∃,π∀)∈Tiles(K),
(R,T ′,π′

∃
,π′

∀
)∈ρ

N(τ) =
∑

τ ′=(T ′,ρ′,π′
∃

,π′
∀

)∈Tiles(K),

(R−,T,π∃,π∀)∈ρ′

N(τ ′)

Thus, the sets

XT,T ′,π∃,π′
∃

,π∀,π′
∀

,R =¶(T, ρ, π∃, π∀)i ∈ ∆I : (R, T ′, π′
∃, π

′
∀) ∈ ρ,

1 ≤ i ≤ N((T, ρ, π∃, π∀))♢

247

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

YT,T ′,π∃,π′
∃

,π∀,π′
∀

,R =¶(T ′, ρ′, π′
∃, π

′
∀)i ∈ ∆I : (R−, T, π∃, π∀) ∈ ρ,

1 ≤ i ≤ N((T ′, ρ′, π′
∃, π

′
∀))♢

have the same cardinality and so there exists a bijection fT,T ′,π∃,π′
∃

,π∀,π′
∀

,R between
them with them.

Furthermore, the bijection fT,T ′,π∃,π′
∃

,π∀,π′
∀

,R has the following property for all ele-
ments e ∈ XT,T ′,π∃,π′

∃
,π∀,π′

∀
,R: If r is a role name (resp. an inverse role) and (e, e′) ∈

rI (resp. (e′, e) ∈ (r−)I) was constructed in step 1, then fT,T ′,π∃,π′
∃

,π∀,π′
∀

,R(e) = e′.

To see this, assume r is a role name and (e, e′) ∈ rI or was constructed in the Ąrst
step (similarly for r an inverse role and (e′, e) ∈ (r−)I). Then, e and e′ correspond
to some constants a and b and we must have one of the following scenarios:

a) p(a, b) ∈ A, p ⊑ r ∈ T , or

b) p(b, a) ∈ A, p ⊑ r− ∈ T .

This means that ¶a♢ ∈ T . Due to the conditions TF+8 (a) and TF+8 (b), we
can conclude that ¶b♢ ∈ T ′. In the light of this, due to MF+1, e is the only
element in XT,T ′,π∃,π′

∃
,π∀,π′

∀
,R and e′ is the only element in YT,T ′,π∃,π′

∃
,π∀,π′

∀
,R. Thus,

fT,T ′,π∃,π′
∃

,π∀,π′
∀

,R(e) = e′.

We now do the following. For every e ∈ XT,T ′,π∃,π′
∃

,π∀,π′
∀

,R and every s ∈ R, we set

(e, fT,T ′,π∃,π′
∃

,π∀,π′
∀

,R(e)) ∈ sI if s is a role name and (fT,T ′,π∃,π′
∃

,π∀,π′
∀

,R(e), e) ∈ (s−)I

otherwise. Intuitively, this connects via an r-arc, every domain element of type
T that requires an r-neighbor of type T ′ to one domain element of type T ′ that
requires an r−-neighbor of type T .

3. Next, for every role r ∈ N+
R(K) such that func(r−) ∈ T but func(r) ̸∈ T we do the

following. For every pair T, T ′ ∈ Types(K), π∃, π
′
∃ ∈ Π∃(K), π∀, π

′
∀ ∈ Π∀(K), and

every R ⊆ N+
R(K) with r ∈ R, we get by employing MF+3 that the following is

satisĄed:
∑

τ=(T,ρ,π∃,π∀)∈Tiles(K),
(R,T ′,π′

∃
,π′

∀
)∈ρ

N(τ) ≤
∑

τ ′=(T ′,ρ′,π′
∃

,π′
∀

)∈Tiles(K),

(R−,T,π∃,π∀)∈ρ′

N(τ ′)

We next deĄne the sets XT,T ′,π∃,π′
∃

,π∀,π′
∀

,R and YT,T ′,π∃,π′
∃

,π∀,π′
∀

,R as before, we
get that ♣XT,T ′,π∃,π′

∃
,π∀,π′

∀
,R♣ ≤ ♣YT,T ′,π∃,π′

∃
,π∀,π′

∀
,R♣.Thus, there exists an injection

gT,T ′,π∃,π′
∃

,π∀,π′
∀

,R from XT,T ′,π∃,π′
∃

,π∀,π′
∀

,R onto YT,T ′,π∃,π′
∃

,π∀,π′
∀

,R. This injection
gT,T ′,π∃,π′

∃
,π∀,π′

∀
,R has the same property as the bijection fT,T ′,π∃,π′

∃
,π∀,π′

∀
,R in the

previous case. Once again, for every e ∈ XT,T ′,π∃,π′
∃

,π∀,π′
∀

,R and every s ∈ R, we set

(e, gT,T ′,π∃,π′
∃

,π∀,π′
∀

,R(e)) ∈ sI if s is a role name and (gT,T ′,π∃,π′
∃

,π∀,π′
∀

,R(e), e) ∈ (s−)I

otherwise. We note that, if there is a role s s.t. (func s)∈ T and (func s−)∈ T and
s ∈ R, we let the injection gT,T ′,π∃,π′

∃
,π∀,π′

∀
,R be exactly the bijection fT,T ′,R from

the previous case.

248

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. Finally, we do the following for each e = (T, ρ, π∃, π∀)i ∈ ∆I with (R, T ′, π′
∃, π

′
∀) ∈ ρ

for which there is no d ∈ ∆I such that d = (T ′, ρ′, π′
∃, π

′
∀) and (e, d) ∈ rI , for all

r ∈ R. Due to MF+4, there exists some ρ′ such that τ ′ = (T ′, ρ′, π′
∃, π

′
∀) ∈ Tiles(K)

and N(τ ′)) > 0. Let e′ denote the domain element τ ′
1 ∈ ∆I . For each r ∈ R, if

r ∈ NR we set (e, e′) ∈ rI , otherwise we set (e′, e) ∈ (r−)I . This concludes the
construction of I.

We note that the construction of the model I is virtually the same as in the previous
section, the satisfaction of the ABox and standard ALCHOIF axioms in I under closed
predicates is immediate and therefore omitted. We only show that I satisĄes axioms of
the form (A4)-(A7).

• α is of the shape func(r): Let e = (T, ρ)i, e1 = (T1, ρ1)j , and e2 = (T2, ρ2)k be
elements in ∆I and assume that (e, e1) ∈ rI and (e, e2) ∈ rI . Note that, steps
1-3 can together construct at most one r-arc from e to some other element, thus
these steps alone cannot be responsible for the situation. The same holds for step
4. We conclude that the violation arises as follows. W.lo.g., assume that steps 1-3
construct (e, e1) ∈ rI and step 4 constructs (e, e2) ∈ rI due to a pair (R2, T2) ∈ ρ
with r ∈ R2. Now, if (e, e1) ∈ rI was constructed in steps 2-3, then there must
be also be a pair (R1, T1) ∈ ρ with r ∈ R1. Due to condition TF+5, (R1, T1) and
(R2, T2) must be the same pair. Thus, there already exists a witness for (R2, T2)
and step 4. is never actually executed. On the other hand, if (e, e1) ∈ rI was
constructed in step 1, then due to conditions TF+8 (a) and TF+8 (b) and MF+1,
we can conclude that T1 = T2. As e1 represents a constant and is thus the only
element with the type T2, we can conclude that e1 = e2 and that there is no
violation.

• α is of the shape ∃A? ◦ P.(¶x♢ ⊓ ∃s.¶y♢) ⊓ ∃B? ◦ R.¶x♢ ⊑ C, where A,B ∈ N+
C ,

C ∈ NC , s ∈ Σ and P,R are complex roles starting with a role an consisting of
only tests and functional roles:

Let e = (Te, ρe, π∃, π∀) ∈ ∆I and ¶a♢, ¶b♢ be nominals in N+
C (K) s.t. e ∈ (∃A ◦

P.(¶a♢ ⊓ ∃s.¶b♢) ⊓ ∃B ◦ R.¶b♢)I . This means that e ∈ AI , e ∈ BI , (e, a) ∈ P I ,
s(a, b) ∈ A, and (e, b) ∈ RI . Assume towards a contradiction that e /∈ CI , i.e.,
C /∈ T .

We next show that (e, a) ∈ P I implies that (P, ¶a♢) ∈ π∃ by induction on the
length of P .

Base case: len(P) = 0, i.e., P = ε.

The only way (e, a) ∈ εI , is if e = a = (Ta, ρa, π∃a, π∀a)1, where ¶a♢ ∈ Ta. By
TF+13, we have that (ε, ¶a♢) ∈ π∃a.

Induction step: The statement holds for all P of length n. We show that it also
holds if len(P) = n+ 1, i.e, P = rn+1 ◦An+1? ◦ S where len(S) = n.

249

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

By assumption (e, a) ∈ P I . This means that there is some e′ = (T ′, ρ′, π′
∃, π

′
∀)j ∈ ∆I

s.t. (e, e′) ∈ (rn+1)I , e′ ∈ (An+1)I and (e′, a) ∈ SI . We have that An+1 ∈ T ′.
Moreover, by induction hypothesis, (S, ¶a♢) ∈ π′

∃.

We now do a case distinction based on how (e, e′) ∈ (rn+1)I was created.

Ű In Step 1, due to p(e, e′) ∈ A, p ⊑ rn+1 ∈ T . In that case, e = c =
(Tc, ρc, π∃c, π∀c)1, where ¶c♢ ∈ Tc, and e′ = d = (Td, ρd, π∃d, π∀d)1, where
¶d♢ ∈ Td, for some ¶c♢, ¶d♢ ∈ N+

C (K). Recall that P consists only of functional
roles and so rn+1 is a functional role. Thus, by TF+19 (and by MF+1,
stating that there is only one realized tile with d in its unary type), there
is some (R, Td, π∃d, π∀d) ∈ ρ s.t. rn+1 ∈ R and ¶d♢ ∈ Td. This means that
(R, T ′, π′

∃, π
′
∀) ∈ ρ, where rn+1 ∈ R, An+1 ∈ T

′, and (S, ¶a♢) ∈ π′
∃. Finally, by

TF+18 (a), we have (rn+1 ◦An+1? ◦ S, ¶a♢) ∈ π∃.

Ű In Step 1, due to p(e′, e) ∈ A, p− ⊑ (rn+1) ∈ T . Analogous to the previous
case, but using the condition TF+20 instead of TF+19.

In that case, e = c = (Tc, ρc, π∃c, π∀c)1, where ¶c♢ ∈ Tc, and e′ = d =
(Td, ρd, π∃d, π∀d)1, where ¶d♢ ∈ Td, for some ¶c♢, ¶d♢ ∈ N+

C (K). Recall that
P consists only of functional roles and so rn+1 is a functional role. Thus,
by TF+20 (and by MF+1, stating that there is only one realized tile with
d in its unary type), there is some (R, Td, π∃d, π∀d) ∈ ρ s.t. rn+1 ∈ R and
¶d♢ ∈ Td. This means that (R, T ′, π′

∃, π
′
∀) ∈ ρ, where rn+1 ∈ R, An+1 ∈ T

′,
and (S, ¶a♢) ∈ π′

∃. Finally, by TF+18 (a), we have (rn+1 ◦An+1?◦S, ¶a♢) ∈ π∃.

Ű In Step 2-4, due to some (R, T ′, π′
∃, π

′
∀) ∈ ρ with rn+1 ∈ R. As A ∈ T ′, we

have by TF+18 (a) that (rn+1 ◦An+1? ◦ S, ¶a♢) ∈ π∃.

Ű In Step 2-4, due to some (R′, T, π∃, π∀) ∈ ρ′, with (rn+1)− ∈ R. Since A ∈ T ′,
by TF+18 (b), we have that (rn+1 ◦An+1? ◦ S, ¶a♢) ∈ π∃.

Thus, we have shown that (P, ¶a♢) ∈ π∃, for all P of length n+ 1, which concludes
our proof by induction.

The same argument also applies to show that (S, ¶b♢) ∈ π∃. Finally, as e ∈ AI , i.e.,
A ∈ T , e ∈ BI , i.e., B ∈ T , (P, ¶a♢) ∈ π∃, (S, ¶b♢) ∈ π∃, and s(a, b) ∈ A, we have,
by TF+14 that C ∈ T , which is a contradiction.

• α is of the shape ∃A? ◦ P.(¶x♢ ⊓ ¬∃s.¶y♢) ⊓ ∃B? ◦ R.¶x♢ ⊑ C, where A,B ∈ N+
C ,

C ∈ NC , s ∈ Σ and P,R are complex roles starting with a role an consisting of
only tests and functional roles:

Let e = (Te, ρe, π∃, π∀) ∈ ∆I and ¶a♢, ¶b♢ be nominals in N+
C (K) s.t. e ∈ (∃A ◦

P.(¶a♢ ⊓ ¬∃s.¶b♢) ⊓ ∃B ◦ R.¶b♢)I . This means that e ∈ AI , e ∈ BI , (e, a) ∈ P I ,
s(a, b) /∈ A, and (e, b) ∈ RI . Assume towards a contradiction that e /∈ CI , i.e.,
C /∈ T .

250

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Using the same argument from the case before, we have that ¶(P, ¶a♢), (R, ¶b♢)♢ ⊆
π∃(e) = π∃. Finally, as e ∈ AI , i.e., A ∈ T , e ∈ BI , i.e., B ∈ T , (P, ¶a♢) ∈ π∃,
(S, ¶b♢) ∈ π∃, and s(a, b) /∈ A, we have, by TF+15 that C ∈ T , which is a
contradiction.

• α is of the shape ¶x♢ ⊑ ∀P.¶x♢, where P is a complex role

Assume towards a contradiction that α is not satisĄed in I. This means that there
is some nominal ¶a♢ ∈ N+

C (K) and some domain elements a = (Ta, ρa, π∃a, π∀a)1,
¶a♢ ∈ Ta, e = (T, ρ, π∃, π∀)i, s.t., a ∈ AI , (a, e) ∈ P I and e ̸= a.

As a ∈ AI , we have by construction that A ∈ Ta.

We next prove that (a, e) ∈ P I implies (ε, ¶a♢) ∈ π∃.

Assume (a, e) ∈ P I , where P = r1 ◦A1? ◦ . . . rn ◦An?. That means that there exist
e0 = a, e1, . . . , en−1, en = e ∈ ∆I s.t. ei = (Ti, ρi, π∃i, π∀i, and (ei, ei+1) ∈ ri+1,
ej ∈ (Aj)I , for 0 ≤ i ≤ n− 1, 1 ≤ j ≤ n.

We next prove that for each ei, 0 ≤ i ≤ n− 1, either (*) (ri+1 ◦Ai+1? . . . rn ◦An? ◦
ε, ¶a♢) or (ri+1 ◦Ai+1? . . . rn ◦An? ◦ ε,⊥) occurs in π∀i. Proof is given by induction
on i:

Base case: i=0: We know that e0 = a, thus T0 = Ta and so ¶¶a♢, A♢ ⊆ T0. By
TF+16, we have that either (P, ¶a♢) ∈ π∀0 or (P,⊥) ∈ π∀0.

Induction step Assume the statement (*) holds for all 1 ≤ i ≤ n− 2. We show
that it holds for i+ 1.

By assumption, (*) holds for ei, and so (ri+1 ◦ Ai+1? . . . rn ◦ An? ◦ ε, ¶a♢) or
(ri+1 ◦ Ai+1? . . . rn ◦ An? ◦ ε,⊥) occurs in π∀i. By assumption, we have that
(ei, ei+1) ∈ (ri+1)I . We do a case distinction on when (ei, ei+1) ∈ (ri+1)I was
created.

Ű In Step 1, due to p(ei, ei+1) ∈ A, p ⊑ ri+1 ∈ T . In that case, ei = c =
(Tc, ρc, π∃c, π∀c)1, where ¶c♢ ∈ Tc, and ei+1 = d = (Td, ρd, π∃d, π∀d)1, where
¶d♢ ∈ Td, for some ¶c♢, ¶d♢ ∈ N+

C (K). Recall also, that we assumed that
ei+1 ∈ (Ai+1)I , i.e., Ai+1 ∈ Ti+1 and so Ai+1 ∈ Td Now, due to MF+6 c) and
MF+1, we can conclude that, due to (ri+1 ◦ Ai+1? . . . rn ◦ An? ◦ ε, C) ∈ π∀c,
where C ∈ ¶¶a♢,⊥♢, that either (ri+2 ◦ Ai+2? . . . rn ◦ An? ◦ ε, C) ∈ π∀c or
(ri+2 ◦Ai+2? . . . rn ◦An? ◦ ε,⊥) ∈ π∀c.

Ű In Step 1, due to p(ei+1, ei) ∈ A, p− ⊑ (ri+1) ∈ T . Analogous to the previous
case, but using the condition MF+6 (d)

Ű In Step 2-4, due to some (R, Ti+1, π∃i+1, π∀i+1) ∈ ρi with ri+1 ∈ R. As
Ai+1 ∈ Ti+1, we have by TF+18 (c) that (ri+2◦Ai+2? . . . rn◦An?◦ε, C) ∈ π∀i+1,
where C ∈ ¶¶a♢,⊥♢.

251

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Ű In Step 2-4, due to some (R′, Ti, π∃i, π∀i) ∈ ρi+1, with (ri+1)− ∈ R. Since
Ai+1 ∈ Ti+1, by TF+18 (d), we have that (ri+2 ◦Ai+2? . . . rn ◦An? ◦ ε, C) ∈
π∀i+1, where C ∈ ¶¶a♢,⊥♢.

Thus, we have shown that for all 1 ≤ i ≤ n− 1, (ri+1 ◦Ai+1? . . . rn ◦An? ◦ ε, ¶a♢)
or (ri+1 ◦Ai+1? . . . rn ◦An? ◦ ε,⊥) occurs in π∀i.

In particular, we have that (rn ◦ An? ◦ ε, ¶a♢) or (rn ◦ An? ◦ ε, C). As An ∈ Tn

and (en−1, en) ∈ (rn)I , we have that (ε, ¶a♢) or (ε,⊥) in π∀n (once again proven
by case distinction on when (en−1, en) ∈ (rn)I was created. Now, due to TF+17, if
(ε, C) ∈ π∀n, then C ∈ Tn. As ⊥ /∈ Tn always holds, it must be that C = ¶a♢ and
¶a♢ ∈ Tn, making e = a. This is a contradiction, and thus I ⊨ α.

• α is of the shape ¶x♢ ⊓A ⊑ ∀s.¬¶x♢, where A ∈ NC , s ∈ Σ

Assume to the contrary, that there is some nominal ¶a♢ ∈ N+
C (K) s.t. a ∈ AI and

(a, a) ∈ sI . We have already shown that I respects closed predicates and thus
s(a, a) ∈ A. Now, recall that a nominal a is actually a domain element ea obtained
from the unique tile τa = (Ta, ρa, π∃a, π∀a) s.t. ¶a♢ ∈ Ta. Due to the condition
TF+21, this means that A /∈ Ta and so a /∈ AI , which is a contradiction.

As we have shown that I ⊨Σ A and I ⊨ T , we have that I ⊨ K and thus K is satisĄable.

Reasoning with Safe RLPs

The correctness of both of Algorithm 7.1 and Algorithm 7.3 relies on the following results:

Lemma 1. Let P be a Datalog¬ and let B,Σ ⊆ NP. Further, assume that P fulfills the
following condition:

for each ρ ∈ P every variable in ρ occurs in some p(u⃗) ∈ body+(ρ), p ∈ B. (∗)

Given an Herbrand interpretation I, let J be a minimal model of PI,Σ. For each c ∈ NI

that occurs in J , either c ∈ adom(P) or c occurs in some q(c⃗) ∈ I, where q ∈ B ∩ Σ.
Additionally, if for some 1 ≤ i ≤ art(q1), c occurs in position q1[i] in some atom
q1(c⃗1) ∈ J s.t. q1[i] ̸∈ ap(P,B ∩ Σ), then c ∈ adom(P).

Proof. By deĄnition PI,Σ is a ground positive program and so each atom in J must have
a derivation from the facts of PI,Σ using its rules. Let c be the constant in the i-th
position of some q1(c⃗)1 ∈ J . Both statements of the lemma can be shown using induction
on the length of the derivation of q1(c⃗). We only show the second. To this end, assume
that q1[i] ̸∈ ap(P,B ∩ Σ).

252

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Base case: q1(c⃗1) is a fact in PI,Σ. Then, this atom must have been obtained from
some rule ρ ∈ ground(P,NI) of the following form:

ρ : q1(c⃗1)←q2(c⃗2), . . . , qm(c⃗m),not qm+1(c⃗m+1), . . . ,not ql(c⃗l),

s.t. ¶q2(c⃗2), . . . , qm(c⃗m)♢ ⊆ I, ¶qm+1(c⃗m+1), . . . , ql(c⃗l)♢ ∩ I = ∅, and ¶q2, . . . , qm♢ ⊆ Σ.
In turn, ρ was obtained from some ρ′ ∈ P of the form:

ρ′ : q1(⃗t1)←q2(⃗t2), . . . , qm(⃗tm),not qm+1(⃗tm+1), . . . ,not ql(⃗tl),

where each t in position qj [k] in qj(t⃗j) is either a variable or the constant in position
qj [k] in qj(c⃗), for 1 ≤ j ≤ l, 1 ≤ k ≤ art(qj).

If c is in position q1[i] in q1(⃗t1), then obviously c ∈ adom(P). Otherwise, there must be
a variable in position q1[i] in q1(⃗t1). Due to condition (∗), this variable would have to
occur in some t⃗j , 1 ≤ j ≤ m s.t. qj ∈ B. However, as qj ∈ Σ, for all 2 ≤ j ≤ m, this
would make the position q[i] affected in P w.r.t. Σ, which contradicts our assumption.
Hence, the only option is that c ∈ adom(P).

Step: Assume that every constant that occurs in a position unaffected in P w.r.t. Σ in
some atom in J with a derivation of length ≤ n also occurs in adom(P). If q1(c⃗1) has a
derivation of length n then it was obtained using some rule ρ ∈ PI,Σ of the form

ρ : q1(c⃗1)← q2(c⃗2), . . . , qm(c⃗m),

where each qj(c⃗j), 2 ≤ j ≤ m, has a derivation of length less than n. Then, ρ must have
been obtained from some ρ′ ∈ ground(P,NI) :

ρ′ : q1(c⃗1)←q2(c⃗2), . . . , qm(c⃗m), qm+1(c⃗m+1), . . . , ql(c⃗l),not ql+1(c⃗l+1), . . . ,not qh(c⃗h),

where ¶qm+1(c⃗m+1), . . . , ql(c⃗l)♢ ⊆ I, ¶ql+1(c⃗l+1), . . . , qh(c⃗h)♢∩I = ∅, and ¶qm+1, . . . , ql♢ ∈
Σ.

This rule was in turn obtained from some ρ′′ ∈ P s.t.

ρ′′ : p(⃗t1)←q2(⃗t2), . . . , qm(⃗tm), qm+1(⃗tm+1), . . . , ql(⃗tl),not ql+1(⃗tl+1), . . . ,not qh(⃗th),

where each t in position qj [k] in qj(t⃗j) is either a variable or the constant in position
qj [k] in qj(c⃗), for 1 ≤ j ≤ h, 1 ≤ k ≤ art(qj).

As before, if c is in position q1[i] in q1(⃗t1), then obviously c ∈ adom(P). Otherwise, there
must be a variable x in position q1[i] in q1(⃗t1). Due to condition (∗), x would have to
occur in some t⃗j s.t. qj ∈ B, 2 ≤ j ≤ l. If m+ 1 ≤ j ≤ l, then qj ∈ Σ and so this would
make the position q[i] affected in P w.r.t. Σ, which contradicts our assumption. Similarly,
if 2 ≤ j ≤ m and the position where x occurs in qj (⃗tj) is affected in P w.r.t. Σ, then q1[i]
would be affected as well, which once again contradicts our assumption. Hence, it must
be that the position where x occurs in qj is unaffected, and so the constant c′ occurring
in this position in c⃗j is in adom(P). As, c′ = c, this means that c ∈ adom(P).

253

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

As a corollary of the lemma above we get the following two results:

Proposition 1. Let Π = (P, T ,Σout,Σowa,Σre) be an RLP and let I be an answer set of
Π. For every c ∈ NI occurring in I, c ∈ adom(P) holds.

Proposition 2. Assume a Datalog¬ program P s.t. (∗) from Lemma 1 holds for some
sets B and Σ of predicate symbols, and interpretations I, J . Then J is a minimal model
of PI,Σ iff J is a minimal model of ground(P, C)I,Σ, where C is the set of constants from
adom(P) and those that occur in some q(c⃗) ∈ I with q ∈ B ∩ Σ.

Lemma 2. Assume a Datalog¬ program P that fulfills condition (∗) from Lemma 1
for two sets B and Σ of predicate symbols. Let I be an interpretation and let ∆ =
adom(P) ∪ ¶c : c occurs in some q(c⃗) ∈ I, q ∈ B ∩ Σ♢. Then, J is a minimal model of
P I,Σ iff J is a minimal model of P I′,Σ, where I ′ = ¶p(c⃗) ∈ I : c⃗ ∈ ∆art(p)♢.

Proof. Consider a rule ρ ∈ PI,Σ s.t. ρ ̸∈ PI′,Σ. Then, there must be some atom
p(c⃗) ∈ body+(ρ) s.t. p(c⃗) ∈ I and p(c⃗) ̸∈ I ′. Hence, c⃗ must contain a constant c that is
not in ∆. Then c was then obtained from a variable by grounding P, and hence, due to
(∗), there must be a positive atom q(d⃗) containing c s.t. either (i) q ∈ B ∩Σ and q(d⃗) ∈ I
or (ii) q ∈ B \ Σ and q(d⃗) ∈ body+(ρ). In the Ąrst case, c would occur in ∆ which is a
contradiction. In the second case, we have that due to Lemma 1, this atom cannot be
contained in a minimal model of P I,Σ and so this rule does not participate.

Similarly, consider a rule ρ′ ∈ PI′,Σ s.t. ρ′ ̸∈ PI,Σ. Then this rule cannot participate in
the computation of the minimal model of PI′,Σ.

Hence, the rules that are relevant for determining the minimal model of P I,Σ and P I′,Σ

are the same for both programs. It follows that they have the same minimal model.

From Lemma 2 we get the following result:

Proposition 3. Let Π = (P, T ,Σout,Σowa,Σre) be an RLP , I and J be interpretations
over Σ and sig(T), respectively. Let J ′ = ¶p(c⃗) ∈ J : p ∈ Σowa ∩ sig(P), c⃗ ∈ ∆art(p)♢,
where ∆ is the set of constants that occur in P or in some q(⃗a) ∈ J with q ∈ Bcn(T ,Σout).
Then J and J ′ have the same responses w.r.t. I and Π.

Based on the results above, we can now give a formal proof of Theorem 7.3.4.

Proof sketch. Due to Proposition 1, the maximum number of different constants occurring
in some answer set of Π is bounded by ♣adom(P)♣. In view of Proposition 7.3.2, we can
thus compute an integer b that limits the amount of different constants that can be in
the extension of any concept name in Bcn(T ,Σout) in any model of T that agrees with
some answer set of Π on Σout, referred to as a relevant model of T . We construct a set
∆ of size b consisting of adom(P), constants occurring in T and additionally of fresh
constants giving a name to each anonymous element that could hypothetically occur in

254

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

the extension of some A ∈ Bcn(T ,Σout) in some relevant model of T . Checking whether
there are models of T that agree with I on Σout is a well-known problem in the literature
and it boils down to checking the consistency of a description logic knowledge base (T , I)
in the presence of closed predicates from Σout, where I is seen as an ABox. In view of
Proposition 3, to Ąnd a model of T with no response we only guess the extensions of
open predicates that occur in P using the constants from ∆. We next check whether
our partial guess J actually corresponds to some model of T and if so, we check whether
there is a response H to J . Due to our safety condition, for this guess it suffices to
consider only the constants from J and adom(P). Note that to verify whether H is a
response to J , we need not fully compute the possibly inĄnite reduct PH,Σowa . Instead,
we use the reduct ground(P,∆)H,Σowa which is guaranteed to be Ąnite and has the same
minimal model as the original reduct.

255

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

	Kurzfassung
	Abstract
	Contents
	Introduction
	State of the Art
	Main Contributions
	Organization and Relevant Publications

	Preliminaries
	General Notations
	Basics of Complexity Theory
	Description Logics
	Datalog

	Expressive DLs with Closed Predicates
	DLs with Closed Predicates
	Characterizing KB Satisfiability via Integer Programming
	The ``simpler'' ALCHOIF
	Discussion

	Datalog Rewritability and Data Complexity of OMQs with Closed Predicates
	KB Satisfiability via Datalog
	Query Rewriting and Complexity
	Discussion

	Descriptive Complexity of OMQs with Closed Predicates
	Generic Boolean Queries
	Inexpressibility Results and Language Extension
	Data Complexity of ALCHOIF+
	Encoding the Turing Machine
	Discussion

	Reasoning about Predicate Boundedness
	Bounded Predicates
	FI-enriched Systems and Programs
	The case of ALCHOIQ
	Boundedness in Ontology-Mediated Query Answering
	Discussion

	Resilient Logic Programs
	Resilient Logic Programs
	Decidable RLPs
	Resilient Logic Programs with DL Theories
	RLPs Discussion

	Summary and Conclusion
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography
	Appendices
	Missing Proof of Theorem 3.3.4
	Missing Proof of Theorem 5.3.6
	Reasoning with Safe RLPs

