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Kurzfassung

Immer komplexere Systeme führen zu einem erhöhten Bedarf an verantwortungsvollem
Umgang mit sensiblen und kritischen Daten. Richtlinien zur Verwendung und zum
Schutz von Daten legen fest, wie Informationen durch Systeme Ćießen und beobachtet
werden dürfen. Die Durchsetzung dieser Richtlinien stellt eine Herausforderung dar,
weil Informationen aus der Analyse mehrerer Systemausführungen abgeleitet werden
können. Um solche Richtlinien durchzusetzen, reicht es nicht aus, jede Systemausführung
einzeln zu prüfen (wie bei trace properties). Aus formaler Sicht werden Richtlinien zum
InformationsĆuss durch hyperproperties beschrieben. In dieser Arbeit setzen wir uns
mit den mathematischen Grundlagen zur Gestaltung und Überprüfung sicherer Systeme
auseinander.

Im ersten Teil der Dissertation beschäftigen wir uns mit dem Problem der ĎSecurity
by DesignŞ, indem wir die strukturelle Sicht auf InformationsĆüsse (wo Informationen
Ćießen) von der semantischen Sicht (was ein InformationsĆuss ist) trennen. Danach führen
wir eine Schnittstellentheorie ein, um die Gestaltung aus der Perspektive der Richtlinien
zu unterstützen.

Im zweiten Teil der Dissertation konzentrieren wir uns auf die SpeziĄkation des Informa-
tionsĆusses und beweisen, dass die erfolgreichste Logik für hyperproperties, HyperLTL,
asynchrone hyperproperties nicht ausdrücken kann.

Im letzten Beitrag der Dissertation nähern wir uns dieser Beschränkung, indem wir
Automaten und Logik in einem neuen Formalismus namens hypernode automata kombi-
nieren. Die Logik regelt Asynchronität innerhalb von SpeziĄkationszuständen, während
Automaten-Transitionen Synchronisationspunkte zwischen diesen Zuständen ermöglichen.
Abschließend führen wir einen neuen lösbaren Modellprüfungsalgorithmus für asynchrone
hyperproperties ein, welche mittels hypernode automata beschrieben werden.
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Abstract

The ever-increasing systemsŠ interconnectivity with the amount of information made
available lead to a growing demand for responsible handling of sensitive and critical data.
Data use and protection policies can be speciĄed as information-flow policies that state
how information can Ćow and be observed through systems or computations.

Enforcing information-Ćow policies is notoriously a challenging problem because infor-
mation can be inferred by analyzing multiple executions of a system. To enforce such
policies, verifying each system execution separately (as it is done for trace properties)
is not enough. From a formal standpoint, information-Ćow policies are speciĄed by
hyperproperties. In this work, we dive into the mathematical foundations for designing
and verifying secure systems.

Many challenges must be addressed to design frameworks that help build secure systems.
Due to the complexity of the systemsŠ development cycle, security requirements should
be laid down as soon as possible. This approach, called security by design, is difficult to
achieve in practice because hyperproperties are not closed under reĄnement. Moreover,
it is usually unclear how to interpret security policies in terms of hyperproperties at
the early stages of a system design. We address this in the Ąrst part of the thesis by
separating the structural view of information Ćow (where information Ćows) from its
semantic view (what is a Ćow of information). We then introduce an interface theory to
support contract-based design for the structural perspective.

Observations of different systemsŠ executions are often not aligned temporally, with
information-Ćow speciĄcation often deĄning asynchronous hyperproperties. In the second
part of the thesis, we focus on the speciĄcation of information-Ćow and prove that
the most successful logic for hyperproperties, HyperLTL, cannot express asynchronous
hyperproperties.

Asynchronous hyperproperties received much attention recently, with many logics pro-
posed to specify them. They all have, however, undecidable model-checking problems,
with decidability achieved only for restricted fragments. In the last contribution of this
thesis, we approach this difficulty by combining automata and logic in a new formal-
ism called hypernode automata. The logic handles asynchronicity within speciĄcation
states, while automata transitions enable synchronization points between those states.
We Ąnish by introducing a novel decidable model-checking algorithm for asynchronous
hyperproperties speciĄed with hypernode automata.

xi
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CHAPTER 1
Introduction

In our highly connected world, the fast development of technology and its ever-increasing
reach in all facets of peopleŠs lives makes it a priority to Ąnd solutions to guarantee
that systems function safely and securely. Technological solutions are becoming more
complex and interconnected, with systems encompassing diverse components and having
sophisticated architectures. In this thesis, we delve into the problem of designing,
specifying and verifying secure Ćow of information in systems with complex architectures.

As an example of challenging systems to formally ensure security features, we look at the
case of Cyber-Physical Systems (CPS) that combine computational and physical processes
by integrating functionalities from different components like sensors and actuators [Tri16,
RKG+19]. Recently, CPS have become prominent in many vital areas of our society,
such as transportation (e.g. advanced automotive control, avionics or traffic control) or
healthcare (e.g. high-conĄdence medical devices or assisted living) [Lee08]. A modern
car, for example, is a CPS consisting of several computational units such as the Engine
Control Unit (ECU), the Electronic Stability Control (ESC), and an Electronic Brake
Control Module (EBCM). Undoubtedly, decisions made by these control units do not
only affect the physical hardware of the car but also its surroundings. Thus, there are
rising concerns about the reliability and safety guarantees of CPS because their failures
can be life-threatening. These concerns are supported by many examples of life-critical
malfunctioning or unsafe CPS [AFRP15, RKG+19, Hel18].

Security policies are usually instantiated by restricting information Ćows in a system.
The main idea is to prevent a user who can only observe the systemŠs public behavior
from learning its secrets, i.e., preventing information leakage to an unauthorized user.
For example, in a modern car, an attacker may try to gain control by taking advantage of
the information we can gather by observing its physical and computational behavior. The
tight coupling between the cyber and the physical components enables the attacker to
deduce computational properties, like encryption secrets, by exploiting side channels such
as power consumption and electromagnetic radiation [SDK19]. These attacks often require

1
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1. Introduction

you to analyze multiple signals from such channels to deduce the necessary information.
Hence, this type of security vulnerabilities cannot be characterized by properties of a
single execution trace, i.e., they cannot be characterized by trace properties. Instead,
security properties veriĄcation requires comparing different executions of the system.
From a language point-of-view, they deĄne hyperproperties [CS10]. While trace properties
deĄne sets of traces (i.e., a set with all correct executions), hyperproperties deĄne sets of
trace sets (i.e., a set with all well-behaved systems). This added level of sets brings in
interesting questions. For instance, how to deĄne reĄnement to support a step-wise design
of systems or build formal frameworks that effectively allow reasoning about information
Ćow requirements.

In this work, we explore three perspectives in which formal methods can aid in developing
secure systems. In particular, we investigate how to add security considerations while
designing a system; we explore expressivity boundaries of languages for hyperproperties;
and, Ąnally, we propose a new formalism that combines logic and automata to verify
security requirements effectively. Naturally, we organize the contributions present in
this thesis in three parts, namely: (I) Information-flow Design, (II) Information-flow
Specification and (III) Information-flow Verification.

Information-flow Design

In the Ąst part of this thesis, we address the problem of adding security considerations
while designing a system. When we look, for instance, at CPS, their heterogeneous nature
often requires different teams and providers to be involved during the systemŠs life cycle.
Therefore, security requirements should be laid down as soon as possible, as it may not
be possible to enforce them later without compromising the systemŠs functionality due to
earlier design or implementation decisions. This approach called security-by-design, is
essential to address reliability and safety concerns in such complex systems. In particular,
in this part, we explore how to use contract-based design [BCN+18] ideas and techniques
to design secure systems.

A theory of contracts provides operators and relations to support both top-down design
steps (i.e., starting from an abstract speciĄcation, reĄning it step-by-step and possibly
decomposing it into smaller components) and bottom-up design steps (i.e., assembling a
system by composing different components). In this work, we are interested in contract-
based design theories formalized by interface theories [dAH01b]. Interfaces specify
requirements over open systems where part of the systemŠs behavior is inĆuenced by its
interaction with its environment (i.e., the context in which it will be executed) and the
rest is determined by the systemŠs implementation. Hence, an interface speciĄcation
distinguishes between its requirements on the environment, called assumptions, and its
promises on its implementation behavior, called guarantees.

We introduce a new interface theory tailored to support a contract-based design approach
of information-Ćow policies, called information-flow interfaces. This theory focuses on
the structural view of information Ćow, i.e., in specifying where information cannot Ćow,
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instead of what is an information leak. Focusing on the structural aspect addresses two
key points to enable secure-by-design for complex systems (like CPS): it allows delaying
semantical considerations to a later design phase (effectively allowing the addition of
formal security guarantees at early design stages), and it supports compositional and
uniform reasoning across heterogeneous components, where a common semantic-view
may not be possible.

Information-flow Specification

As we transition from the systemŠs design to its implementation, it becomes necessary
to instantiate the information-Ćow requirements established at design time to concrete
security properties to be enforced and veriĄed. Unfortunately, this step (from policies to
properties) is not always straightforward because it may, for example, depend on how
the system runs or how we observe its executions.

Let us look at the example of using the general notion of independence to instantiate
information-Ćow requirements. Concretely, we can require that there is no Ćow of
information from variables holding secret information to public channels by specifying
that observations of the public channels must be independent of the secret values. Without
formally deĄning independence, it is already possible to identify some considerations
that will affect the speciĄcation of such a property. For example, we can adopt either a
point-wise or a trace-segment view on the scope of the independence requirement. In the
point-wise view, we check if each time point across all executions satisĄes the independence
requirement, while, in the trace-segment view, we check if all the executions observed
behavior meets the intended independence constraint. When, additionally, we need to
account for misalignment between observations of different executions of the system, the
possible semantic interpretations (and, consequently, encoding) of independence grow
considerably.

In this part of the thesis, our goal is to investigate how minor changes in a property
speciĄcation can signiĄcantly affect the set of models it generates (i.e., the set with
all systems that satisfy it) and, in particular, how it affects the possibility to express
the property with a HyperLTL formula. To study such expressiveness boundaries, we
consider the sequential information-Ćow policy requiring values of a variable y to be
independent of a variable x until the values of a variable z are independent of x. We
prove that we cannot use HyperLTL formulas to specify most of the variants of this
sequential information-Ćow policy because they cannot deal with the speciĄcation state
change that may happen asynchronously across the system executions. We can generalize
these results to the inadequacy of HyperLTL to express asynchronous hyperproperties,
which are hyperproperties where the comparison points between different executions
may be arbitrarily far. Additionally, our results illustrate the struggle to deĄne truly
declarative security speciĄcations, i.e., that are not dependent on the system to verify.
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1. Introduction

Information-flow Verification

In the Ąnal part of this thesis, we delve into the problem of verifying information-Ćow
policies. In particular, we look into model-checking asynchronous hyperproperties. We
are interested in asynchronous hyperproperties because they are less sensitive to small
changes in how the system runs or is observed, offering a more general speciĄcation of
our intended properties.

Verifying asynchronous hyperproperties is notoriously challenging, with many formalisms
introduced recently to address this problem [GMO21, BPS21, BCB+21, BFFM23] having
a highly undecidable model-checking. The undecidability stems from the analysis of
asynchronous hyperproperties having two different ways to diverge: the analysis may be
unbounded due to an inĄnite number of traces to consider or the distance between the
parts to be compared in different traces may be arbitrarily far. While the formalisms
introduced recently achieved decidability by introducing fragments limiting one of these
two directions, we propose a novel approach to this problem. In this part, we introduce
hypernode automata that mix automata and logic, where the automata structure speciĄes
synchronization points between fully asynchronous state speciĄcations. We present a
novel model-checking algorithm for hypernode automata, effectively introducing the Ąrst
formalism with a decidable model-checking problem for all asynchronous hyperproperties
speciĄed with it.

1.1 Organization and Contributions

The Ąrst part of this thesis, titled Information-flow Design, has two chapters. The Ąrst
chapter, Chapter 2, gives an overview of the contract-based design approach, presenting
its historical development and relevant state-of-art. In this introductory view, we dedicate
a section to present interface theories in detail, as they are the contract-based formalism
we are interested in. In the following chapter, Chapter 3, we present information-Ćow
interfaces introduced in the joint collaboration below:

[BFH+22b] Ezio Bartocci, Thomas Ferrère, Thomas A. Henzinger, Dejan Nickovic,
and Ana Oliveira da Costa. Information-Ćow interfaces. In International Conference
on Fundamental Approaches to Software Engineering (FASE), volume 13241 of LNCS,
pages 3Ű22, 2022.

This publication was awarded the EASST best paper award at ETAPS (the European
Joint Conferences on Theory and Practice of Software) in 2022. An extended version of
this work was later published in the journal Formal Methods in System Design[BFH+24].

The main contribution in this part is the novel interface theory supporting the speciĄca-
tion of information-Ćow requirements, paving the way for a formal method approach to
safety and security co-engineering.
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1.1. Organization and Contributions

The second part of the thesis, titled Information-flow Specification, has three chapters.
The Ąrst two chapters include preliminaries related to information-Ćow policies and their
instantiation with security properties. Chapter 4 introduces trace properties and explains
how they differ from hyperproperties. This chapter introduces the most successful logics
to express linear-time trace properties and hyperproperties: LTL and HyperLTL. We
follow this with Chapter 5, where we introduce information-Ćow policies and different
information-Ćow properties to instantiate the policies. For the information-Ćow properties
introduced, we specify some variants with HyperLTL and set comprehension together
with Ąrst-order logic formulas. In the last chapter of this part, Chapter 6, we present the
results in the joint work below:

[BFH+22a] Ezio Bartocci, Thomas Ferrère, Thomas A. Henzinger, Dejan Nickovic,
and Ana Oliveira da Costa. Flavors of sequential information Ćow. In Bernd
Finkbeiner and Thomas Wies, editors, Verification, Model Checking, and Abstract
Interpretation (VMCAI), pages 1Ű19. Springer International Publishing, 2022.

This joint work, published as an invited paper, studies the expressiveness boundaries of
the most successful logic to specify hyperproperties, HyperLTL. This chapter proves that
HyperLTL can not express hyperproperties with simple sources of asynchronicity (e.g.,
just an asynchronous state speciĄcation change). In our proofs, we introduce general
lemmas and techniques that can be used to prove that HyperLTL cannot express other
properties.

In the last part of this thesis, titled Information-flow Verification, we present hypernode
automata, a new formalism for asynchronous hyperproperties introduced in the following
joint work:

[BHNOdC23] Ezio Bartocci, Thomas A. Henzinger, Dejan Nickovic, and Ana Oliveira da
Costa. Hypernode Automata. In Guillermo A. Pérez and Jean-François Raskin,
editors, International Conference on Concurrency Theory (CONCUR), volume 279 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 21:1Ű21:16. Schloss
Dagstuhl Ű Leibniz-Zentrum für Informatik, 2023.

Hypernode automata is the Ąrst formalism for asynchronous hyperproperties mixing an
asynchronous logic with an automaton specifying synchronous speciĄcation state changes.
By taking advantage of the underlying synchronization provided by the automata, we
present an effective algorithm to model-check sets of traces generated by Kripke structures.
Hypernode automata is the Ąrst formalism for asynchronous hyperproperties with a
decidable model-checking problem. In contrast, the other formalisms for asynchronous
hyperproperties in the literature have a highly undecidable model-checking problem, with
some fragments identiĄed with decidable model-checking.
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Part I

Information-flow Design
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CHAPTER 2
Contract-based Design

This chapter introduces an overview of contract-based design, motivated by challenges
from designing cyber-physical systems (CPS). Two concepts prevail in different software
engineering approaches to address complex systemsŠ designs: abstract/refinement to
express hierarchies and composition/decomposition to reason about systems and their
subsystems. We focus our overview on formalisms that address these foundational
concepts to support a modular and hierarchical design of systems.

We start by motivating and giving a historical overview of the development of the contract-
based design paradigm. We focus on dynamic reactive systems, like CPS, and, from a
theoretical point of view, we limit ourselves to a discrete-time view of time progression.
We then introduce the main concepts related to interface theories.

2.1 Contracts for Systems Design

Consider, for instance, CPS that integrate computation, networking and physical processes
and naturally lead to systems which combine multiple heterogeneous sub-systems[Lee08].
Approaches like layered design and component based-design, used in the automobile and
avionics industry, are employed to cope with the intricacies of CPS as systems of systems1.
Common to all these methods is the need to split concerns clearly (between different
teams or companies) during design time to allow distributing, parallelizing and re-using
implementations and designs. This split can be formalized as a contract that speciĄes
what is expected from each design component (its guarantee) and, at the same time, it
states what each component needs from its environment to meet its requirements (its
assumption). In Figure 2.1, we depict a timeline of foundational work on contract-based
reasoning in different communities that we elaborate on next.

1Surveys on approaches and techniques developed to address the increasing complexity of systems
(in particular, CPS) can be found in the survey by Sangiovanni-Vincentelli et al. [SVDP], and in the
monograph about contract-based design by Benviste et al. [BCN+18].
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2. Contract-based Design

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

Hoare Logic
[Flo67, Hoa69]

Rely/Guarantee
[Jon81]

Interface Automata
[dAH01a]

Interface Languages
[dAH05]

Relational Interfaces
[TLHL11]

Trace Structures
[Dil89]

Contract-Based
Design [Mey92]

Assume/Guarantee
Composition [AL93]

Assume/Guarantee
Contracts [BCF+08]

Meta-theory of
Contracts [BCN+18]

Hypercontracts
[IBSS22]

Figure 2.1: Timeline of foundational results in contract-based veriĄcation and design.

Side note: Graph vs Game view on open systems

While designing a complex system, it is necessary to consider how its different parts
interact to reach a common goal. We work then with open systems, where their
output behavior (implementations) is inĆuenced by their inputs (environment).
There are two natural views on the role of inputs and outputs in formalisms to
verify or design systems: the graph and the game view [CDAHM02]. The graph
view treats inputs and outputs equally, while they assume opposite polarities
under the game view (environment and implementations are interpreted as the
opposing Input and Output players [dA03]). This distinction results in different
interpretations of reĄnement and composition.

Refinement: In the graph view, reĄnement corresponds to behavior containment,
usually deĄned as trace inclusion or simulation. If we treat inputs and outputs
equally under this reĄnement interpretation, a reĄned system can refuse inputs
accepted by the original speciĄcation. Then, the speciĄcation can not be safely
substituted by the reĄned system.

The game view adopts an alternating view of reĄnement, usually deĄned as
alternating trace reĄnement or alternating simulation [AHKV98], to support safe
substitutability under reĄnement. We say that a system P alternate reĄnes a
system Q if P accepts at least the same inputs as Q and, for all inputs common to
P and Q, the output behavior of P under these inputs is a subset of the output
behaviors of Q. Then, Q accepts a subset of the environments of P, while P
produces a subset of the behaviors of Q.

Composition: The graph view interprets composition as conjunction because
there is no distinction between inputs and outputs. This deĄnition fails, however,
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2.1. Contracts for Systems Design

to capture the causality between input and output actions. Formalisms, like
Input/Output (I/O) automata [LT87], capture this causality but, in turn, require
systems to be input-enabled, i.e., they must be able to accept all possible inputs
from the environment.

Game-based formalisms, like interface theories [dAH01b], introduced the notion
of compatibility for composition. Two systems are not required to be able to
work together under all environments, but instead, it suffices that there exists one
environment in which they can collaborate. Compatibility is then translated to
the following game problem: Is there a winning strategy for the Input player that
guarantees that no (local) incompatibilities between the two systems are reached?.
The set of such strategies deĄnes the environment assumption of the composite.

Programs. The use of contracts in software development dates back to Hoare logic
[Flo67, Hoa69] by Floyd and Hoare, which formalizes such a split of concerns (program
vs environment) for sequential imperative programs with support for reĄnement and
composition of programs. The main building block of Hoare logic is the Hoare triple
¶P♢C¶Q♢, which deĄnes a contract where Q (called post-condition) speciĄes the outcome
of a command C given that assumption P (called pre-condition) holds. The software
engineering technique of design-by-contract, popularized by Bertrand Meyer [Mey92,
Mey09], extends this idea by requiring software designers to specify interfaces for classes in
object-oriented programming with veriĄable pre-conditions, post-conditions and invariants.
Pre- and post-conditions are predicates for the methods in the class, while invariants
are predicates that must hold in all class states. Class inheritance is deĄned in terms of
reĄnement, where a subclass can weaken pre-conditions or strengthen post-conditions or
invariants.

For concurrent programs, it is necessary to consider also interference through shared
variables, i.e. when a program and its environment can update the same state. Jones in
[Jon81] proposes to add rely- and guarantee-conditions to the speciĄcation of concurrent
programs to handle requirements on concurrent state updates. A contract is then
represented by a quadruple (pre, rely, gar, post). Elements pre and post are pre- and
post-conditions as deĄned previously by Hoare triples, i.e., they are concerned with the
program outcome. The rely speciĄes how much interference on the shared variables the
program can tolerate and still satisfy the functional contract speciĄed by pre and post.
While gar speciĄes how the program inĆuences shared variables. A recent overview of
the subsequent development of Rely/Guarantee approach can be found in [JHC15].

Trace Structures. In [Hoa80], Hoare proposes to deĄne the behavior of a concurrent
process as the set of all traces describing its communication with other processes. Later,
in [Dil89], Dill extends this idea to design and verify asynchronous circuits from the
observation that sequences of input and output wires describe a circuitŠs behavior. Dill
then introduces trace structures as pairs of trace sets: a success set with all traces
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2. Contract-based Design

that describe the correct circuit behavior; and a failure set identifying undesirable (but
possible) circuit behaviors. The failure set deĄnes the complement of assumptions on the
environment. Note that the failure set does not restrict the circuit environment, i.e., trace
structures are input-enabled. Dill deĄnes a composition operator and a conformation
relation (akin to our notion of reĄnement) for trace structures to support the hierarchical
speciĄcation and veriĄcation of asynchronous circuits. The conformation relation identiĄes
circuits that can safely be used instead of a given circuit. It requires the conforming
circuit not to introduce new failures, i.e., it should work correctly in at least the same
environments as the circuit it will substitute. Then, the conforming circuit can weaken
its assumptions on the environment (fewer failures) or strengthen its guarantees (fewer
successes). This work is later extended to synchronous circuits by Wolf, in [Wol96].

Transition Systems. For reactive systems interpreted over a discrete-time abstraction,
transition systems are a natural choice to model and reason about them. Abadi, Lamport,
and Wolper in [ALW89] were the Ąrst to introduce processes speciĄed by a pair of
transition systems (Pt, Pi) where Pt is a Ąnite-state transition system, and Pi deĄnes
an inĄnitary restriction on the process communication actions (which can act as an
assumption on the process environment). The behavior of a process is the intersection
of the languages deĄned by the two machines in its deĄnition. The authors deĄne a
reĄnement relation between such processes in the same paper, where a process PŠ reĄnes
a process P iff PŠ has the same or fewer behaviors with the same or fewer failures than P.

In [AL93], Abadi and Lamport propose an Assume/Guarantee speciĄcation theory where
they introduce a composition principle for modular speciĄcations, depicted below2. A
system speciĄcation is given by a pair (E,M) requiring that if the assumption E on the
environment holds, then the system guarantees M , formally E → M . The composition
principle establishes that a system speciĄed by (E,M) abstracts the composition of two
processes (E1,M1) and (E2,M2), if when its assumption is composed with each of the
sub-process guarantees (for example, E ∩M1), then it deĄnes an environment allowed by
the other sub-process (E ∩M1 ⊆ M2). They prove that the proof rule below is sound
for assumptions that are safety properties. For this reason, they can strengthen the rule
to consider guarantees closure, denoted by [M ], which is the smallest safety property
containing M .

E ∩ [M1] ∩ [M2] ⊆ E1 ∩ E2
Composition Principle [AL93]

(E1,M1) ∩ (E2,M2) ⊆ (E, (M1 ∩M2))

Interface Automata. Lynch and Turtle introduce, in [LT87], Input/Output (I/O) au-
tomata to model asynchronous concurrent systems. An I/O automaton is a state machine
with transitions labeled as either input, output or hidden. The labeling establishes the
action ownership: input actions are generated by the automaton environment, while the

2For simplicity, we assume specifications to be realizable and omit realizability concerns from the
rule statement.
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2.1. Contracts for Systems Design

automaton controls output and hidden actions. Interface automata (IA), introduced by
de Alfaro and Henzinger in [dAH01a], adopt the syntax of I/O automaton but change its
semantics. While I/O automata are assumed to be input-enabled, interface automata as-
sume the environment to be helpful, which results in different notions of composition and
reĄnement between these two formalisms. The main features of IA are (i) their optimistic
view on composition, where two interfaces are compatible if there exists an environment
where they can work together; and (ii) the alternating approach to reĄnement, where more
detailed interfaces can be more restrictive on outputs but must not be more restrictive
on inputs. IA was later enriched to incorporate extra-functional requirements like time
constraints [dAHS02, DLL+10], resources management [CdAHS03], modalities [LNW07]
and non-interference requirements [LD10b, LD10c]. We discuss the development of modal
interface automata and interface automata for structure and security next.

Larsen, Nyman, and Wasowski introduce in [LNW07] modal I/O automata, which extend
Modal Transition Systems (MTS) with a distinction between input and output actions.
Modal theories deĄne the modality of actions, i.e., whether they are required (must)
or allowed (may). Later, in [LV12], Gerald Lüttgen and Walter Vogler deĄne Modal
Interface Automata (MIA). They specify Ąrst disjunctive Modal Transition Systems
(dMTS) as an MTS with disjunctive must transitions. MIA is then deĄned as a dMTS
with deterministic inputs transitions and the requirement that every input-may transition
is an input-must transition, as well. This last constraint is necessary to guarantee that
reĄnement deĄnes a precongruence for composition, i.e., reĄnement is preserved under
composition.

Interface for structure and security (ISS) [LD10b, LD10c] introduced by Lee and DŠArgenio,
extends IA by annotating visible actions as either public (low conĄdentiality) or private
(high conĄdentiality). They then deĄne that two ISS automata are compatible for com-
position if their composite satisĄes the intended non-interference property. They explore
two different notions of non-interference. In [LD10b], they use a bisimulation-based view
of non-interference that requires the system to behave the same way when high actions
are performed or hidden. Alternatively, in [LD10c], they introduce a non-interference
deĄnition based on alternating reĄnement, requiring that input restriction does not reveal
information about high-level behavior.

Interface Languages. In [dAH01b], de Alfaro and Henzinger formalize the distinction
between interface and component models, laying the groundwork for formal deĄnitions
of interface models, referred to as interface theories. The main difference between
components and interfaces is their view of environments. Component theories adopt a
pessimistic view in which all environments are allowed. In contrast, interface theories
follow an optimistic view in that two interfaces are only compatible for composition if
they can be part of an environment that satisĄes both interface assumptions. Later,
in [dAH05], the same authors deĄne interface languages as a formalism that satisĄes the
incremental design and the independent implementability of systems. We will explore
these notions more in-depth in section 2.2.
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2. Contract-based Design

Tripakis et al. introduce relational interfaces, in [TLHL11], as tuples (X,Y, f) where X
and Y are disjoint sets of input and output variables, and f is a contract deĄned as a
preĄx-closed set of Ąnite sequences of input and output assignments. Then, as RI do not
have assumptions and guarantees deĄned separately, they can explicitly relate input and
output interaction in a system execution (but not across multiple executions).

Contract theories. Benviste et al. present, in [BCF+08], a contract-based formalism
to support the speculative design of systems, where different parts of the system can be
independently and concurrently designed. They introduce Assume/Guarantee (A/G)
contracts, which in addition to reĄnement and composition, can handle componentsŠ mul-
tiple viewpoints (functional and non-functional speciĄcation) by deĄning new operators
to fuse their different dimensions. Assume/Guarantee contracts approach the design of
correct systems from a semantic perspective: they work directly with the objects we
intend to design, which we refer to as components. Interfaces theories, on the other hand,
focus on the syntactic aspect, i.e., they deĄne languages to specify and relate the objects
we are interested in during the design process.

Example: Assume/Guarantee Contracts

We present a simpliĄed view on the A/G contract theory introduced in [BCF+08].
Contracts are deĄned around the notion of a component, which represents a system
design unit. Components are characterized by a set of variablesa equipped with a
domain. A component implementation is then deĄned by a set of traces describing
its execution runs. Components are connected by their common variables that
have the same value. Then, composition is reduced to set intersection.

An A/G-contract is deĄned by a tuple C = (A,G) where A is a set of traces
specifying its assumptions on the environment, and G is a set of traces specifying
its guarantees. An implementation of a component, M , satisĄes the contract C,
denoted M ♣= C, if it meets the guarantees under permitted environments. In this
setting, satisfaction reduces to trace containment, then formally M ♣= (A,G) iff
A ∩ M ⊆ G. An A/G-contract C = (A,G) is saturated iff G = G ∪ A, where A
is the complement of A. Note that we can interpret G ∪ ¬A as an implication,
i.e., A → G, which captures or intended meaning for the guaranteed behavior
of a component (behavior described by G holds if the assumption A is satisfied).
From now on, we work only with saturated contracts. and refer to the following
contracts C = (A,G) and C′ = (A′, G′).

Contracts refinement is deĄned as an alternating reĄnement. Formally, a contract
C′ reĄnes C, denoted C′ ≤ C, iff A′ ⊇ A (more environments) and G′ ⊆ G (less
implementations). ReĄnement then induces an order on contracts with greatest-
lower bound (GLB) and least-upper bounds (LUB) deĄning conjunction (⊓) and
disjunction (⊔) of contracts, respectively, as follows: C ⊓ C′ = (A ∪A′, G ∩G′) and
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2.2. Interface Theory

C ⊔ C′ = (A ∩A′, G ∪G′). The conjunction operator can be used to aggregate in a
contract its multiple-view points.

The guarantee of the composition of contracts C and C′ is naturally deĄned by
the composition of their guarantees, i.e., G ∩G′. For the composite assumptions,
we observe that for each contract in the composition, its guarantee partially
deĄnes the environment for the other contracts being composed. So, we need
to evaluate what assumptions are missing to be satisĄed. Giving two contracts
C and C′ their composition, denoted C ⊗ C′, is the contract (A⊗, G⊗) where:
A⊗ = (G ∩G′) ∪ (A ∩A′) and G⊗ = G ∩G′.

aA component is usually defined with a set of variables and a set of ports. For simplicity, we
only refer to variables and omit ports.

In [BDH+12], Bauer et al. show how to derive a contract theory from a speciĄcation theory
of component behaviors. Given a class S of speciĄcations, a speciĄcation theory is deĄned
by a triple (S,⊗,≤) where ⊗ is a composition operator and ≤ is a reĄnement relation
that deĄnes a pre-order over the speciĄcations. Additionally, to support compositionality
and the independent design of systems, the composition operator must preserve the
reĄnement and be a commutative and associative function over the equivalence relation
deĄned by the reĄnement. Given such a speciĄcation theory, the authors show how to
lift the composition and reĄnement operators to their counterparts in a contract theory.

Later, Benviste et al. [BCN+18] present a meta-theory for the contract-based approach
to design systems, which builds from component algebras. The meta-theory presents a
general characterization of concepts like reĄnement, implementations, composition, and
conjunction. A drawback of this approach is that, due to its generality, it builds from
unstructured sets of components, leading to too abstract deĄnitions at times.

Incer et al. introduce in [IBSS22] hypercontracts as an A/G contract theory built from
lattices of component sets equipped with composition and reĄnement. As their building
blocks are structured, they can exploit it to introduce more concrete deĄnitions of the
usual operators and relations in a contract theory. Moreover, contrary to the A/G
contracts by Benviste et al. [BCF+08], they support the speciĄcation of assumptions
and guarantees as hyperproperties by using the lattice induced by subset inclusion over
components that are trace sets.

2.2 Interface Theory

Interface theories formalize the hierarchical component-based approach for systemsŠ
design [dAH01b]. In what follows, the elements in the system design are referred to as
interfaces and their respective implementations as components. Additionally, we refer
to the environment part of an interface speciĄcation as the interface assumption and
the implementation part as the interface guarantee. In a nutshell, an interface theory

15

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


2. Contract-based Design

provides relations and operators to address the following questions of component-based
design [CDAHM02]:

Well-formedness Is there an environment compatible with a given interface?

Compatibility Can two interfaces interact successfully?

Verification Do all interface possible implementations satisfy a given property?

Refinement Can an interface substitute another without violating prior compatibility
or veriĄcation results?

Central to the development of interface theories is the assumption that the environment
is helpful, as it will be composed of components willing to meet each otherŠs assumptions.
For this reason, interfaces do not constrain the environment. An interface is well-
formed if its speciĄcation (assumptions together with guarantees) is satisĄable. Then, an
interface well-formedness is a conjunction between their environment and implementation
constraints instead of an implication. Moreover, well-formedness is an input-existential
property: it suffices that an environment exists that satisĄes a given interface assumption.

Interfaces theories adopt the game view on the design of systems. Then, interface
reĄnement is deĄned as alternating reĄnement: while reĄning an interface, we can weaken
its assumptions or strengthen its guarantees.

Example: Assume/Guarantee Well-formedness and Refinement

Assume/Guarantee (A/G) interfaces, introduced in [dAH01b], deĄne a simple
interface theory with a strong separation between environment and implementations
responsibilities. An A/G interface is deĄned by a tuple (X,Y,A,G) where X and
Y are two disjoint sets of input and output variables, respectively; A is a predicate
over input variables, called assumption; and G is a predicate over output variables,
called guarantee.

An A/G interface is well-formed iff the Ąrst-order formula ∃X A ∧G holds. Due
to assumptions and guarantees not sharing variables, A/G well-formedness is
equivalent to requiring assumptions and guarantees to be satisĄable predicates.
We depict, in Figure 2.2, and A/G interface F with the assumption that its input
variable x is a natural number and its output variable y is divisible by 4.

Y = ¶y♢

X = ¶x♢x ∈ N

F

(y mod 4) = 0 x ∈ Q

Y = ¶y♢

X = ¶x♢

F ′

(y mod 2) = 0

Figure 2.2: Example of A/G interfaces.

An A/G interface F ′ = (X,Y,A′, G′) reĄnes an interface F = (X,Y,A,G), denoted
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2.2. Interface Theory

F ′ ⪯ F , iff (AF → AF ′) ∧ (GF ′ → GF ) holds. The interface F ′, in Figure 2.2, is
an example of an interface that reĄnes F in the same Ągure, i.e., F ′ ⪯ F . As all
natural numbers are also rational (x ∈ N → x ∈ Q) , then F ′ is compatible with
all environments compatible with F . From the guarantee side, all even numbers
are also divisible by 4 ((y mod 2) = 0 → (y mod 4) = 0), which means that F ′

guarantees at least the same output behaviors of F .

Interface theories are equipped with a compatibility predicate to check whether the
composed interfaces satisfy each other assumptions, and the resulting composite deĄnes
a well-formed interface. Compatibility check reduces to solving a game between an
Input player playing to avoid incompatibilities between the interfaces being composed
(i.e., avoiding violating assumptions) and an Output player, which can play any move
within interfacesŠ guarantees. Then, two interfaces are compatible if the Input player
has a winning strategy over this game, i.e., an environment must exist that works for
all compositions of the two interfacesŠ implementations. The set of all such strategies
deĄnes the assumption of the interfacesŠ composite.

Example: Assume/Guarantee Compatibility and Composition

The Ąrst check we do between interfaces we want to compose is whether they
are composable, which requires their output variables to be disjointed. We then
proceed to make a semantic check: two interfaces are compatible whenever one
provides outputs to the other, then they must satisfy the assumptions related to
that output. Then, two A/G interfaces F = (X,Y,A,G) and F ′ = (X ′, Y ′, A′, G′)
are compatible iff the following formula holds:

φF,F ′
def
= ∀Y, Y ′ : (G ∧G′) → (A ∧A′).

Note that all free variables in this formula are input variables. These are the
variables that are still available for future compositions. For this reason, the
compatibility formula φF,F ′ deĄnes the assumption of the composition of F with
F ′. Then, the composition of F and F ′ deĄnes the tuple F⊗F ′ = (X⊗, Y⊗, A⊗, G⊗)
where Y⊗ = Y ∪ Y ′, X⊗ = (X ∪X ′) \ Y⊗, A⊗ = φF,F ′ and G = G ∧G′.

Once we deĄne reĄnement, compatibility and composition, we want to be sure that the
deĄned interface theory supports a systemŠs modular design and veriĄcation, i.e., to deĄne
an interface language. In [dAH05], de Alfaro and Henzinger propose that an interface
theory must satisfy incremental design and independent implementability and to be an
interface language. Independent implementability requires that compatible interfaces
can be reĄned independently without becoming incompatible. Incremental design states
that the compatibility of partially deĄned systems can be evaluated without further
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2. Contract-based Design

knowledge about the complete system. Formally, for an interface theory deĄned by a
tuple (I,⊗,∼,⪯), where I is a set of interfaces, ⊗ is composition, ∼ is a compatibility
relation and ⪯ is a reĄnement relation, then it satisĄes:

Incremental Design: for all interfaces F , H and J in I, if F ∼ H and (F ⊗H) ∼ J ,
then H ∼ J and F ∼ (H ⊗ J);

Independent Implementability: for all interfaces F , F ′ and H in I, if F ∼ H and
F ′ ⪯ F , then F ′ ∼ H and F ′ ⊗H ⪯ F ⊗H.

Example: Incremental Design and Independent Implementability

We illustrate the principles of incremental design and independent implementability
with an abstract representation of a system design in 2.3. The interface F speciĄes
the closed system we want to design and is reĄned as a composition between two
interfaces: F1 and F2.

By the independent implementability principle, F1 and F2 can be reĄned inde-
pendently (possibly by different teams or providers) while guaranteeing that their
composition remains a reĄnement of F (i.e., satisĄes the original requirements).
In our example, F1 is reĄned by F ′

1, deĄned by the composition of three other
interfaces, and F2 is reĄned by F ′

2, deĄned as the composition of two interfaces.
Independent implementability speciĄes a top-down compositionality principle.

Now consider F ′
1, by the incremental design principle, we know that compatibility

between F11 and F12 is independent of F13. Incremental design allows to work
with incomplete system speciĄcations.

F11

F12

F13

F1

F21 F22

F2

F

F ′
2F ′

1

Figure 2.3: Modular design.
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CHAPTER 3
Information-flow Interfaces

This chapter presents an interface theory for the structural view of information Ćow.
Our focus is on the reachability of information within a system abstracting away from
concrete trace semantics, which allows us to identify difficulties transversal to the design
of information Ćow policies. This framework supports both the top-down design and
the bottom-up veriĄcation of information-Ćow policies. While this view is orthogonal to
work on information Ćow control, it can be used as a divide-and-conquer procedure for
organizing information Ćow control tasks.

We start this chapter by introducing stateless information-Ćow interfaces and proving
that they deĄned an interface language. The section 3.2 extends our theory to handle
stateful speciĄcations. In it, we introduce stateful information-Ćow interfaces, which are
transition systems with nodes labeled with stateless interfaces, and prove that they also
deĄne an interface language.

This chapter is based on a collaboration with Ezio Bartocci, Thomas Ferrère, Thomas
Henzinger and Dejan Nickovic. From this collaboration, we report here results published
in the conference paper:

[BFH+22b] Ezio Bartocci, Thomas Ferrère, Thomas A. Henzinger, Dejan Nickovic,
and Ana Oliveira da Costa. Information-Ćow interfaces. In International Conference
on Fundamental Approaches to Software Engineering (FASE), volume 13241 of LNCS,
pages 3Ű22, 2022.

which was later extended to a journal version:

[BFH+24] Ezio Bartocci, Thomas Ferrère, Thomas A. Henzinger, Dejan Nickovic,
and Ana Oliveira da Costa. Information-Ćow interfaces. Formal Methods in System
Design, 2024.

.
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3. Information-flow Interfaces

Example: Integrity of a Shared Communication Infrastructure (SCI)

We will showcase some concepts of our interface theory with a running example
from the automotive industry adapted from an industrial case study by Marcus
Mikulcak et al. [MHGG19]. This example introduces a stepwise design of a shared
communication infrastructure (a bus) from distance warners and a wheel sensor to
the braking system and the odometer. Our design goal is to guarantee the integrity
of a communication channel that performs a safety-critical functionality. The
integrity of sensitive information is one of the main goals of information security
(for more details, see Section 5.1).

Braking

Odometer

Bus
Warners

Distance

Wheel

Tick

Figure 3.1: High-level view of SCI architecture.

In this example, the wheel sensors (which keep track of the wheel rotations) use the
shared bus to communicate with the carŠs odometer. The bus is also used by two
distance warners, at the front and back of the car, to send their data to the braking
system. A distance warner is responsible for sensing and analyzing the proximity
of the car to other objects. The communication channel to the braking system
must have high integrity since it carries out safety-critical information. Hence, the
distance warners and the braking system communication are classiĄed with high
integrity, while the communication between the wheel sensor and the odometer is
of low integrity. We want to guarantee that data sent by the wheel sensor does not
interfere with the high-integrity channel, which could lead to distance warnings
sent to the braking system being delayed or lost. The main goal of our design
process is to guarantee that the closed system requirement that information from
the wheel sensor does not flow to the braking system is propagated accordingly to
subsystems through successive steps of decomposition and reĄnement.

While in this example, we focus on the top-down design of our system, we could
use our approach to do bottom-up veriĄcation. In the bottom-up direction, we
start with several components (which could be implementations or mathematical
models as done in [MHGG19]), and proceed by successive steps of composition
and abstraction to verify the same property over the closed system.

3.1 Stateless

We introduce a stateless interface theory to reason about secure information Ćow. By
stateless, we mean that the speciĄcation does not change over time, i.e., it remains the
same during the systemŠs execution. The interface theory we propose focuses on the
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3.1. Stateless

structural aspect of information Ćow. In other words, it captures requirements about
where information can Ćow rather than specifying what is a Ćow of information.

We abstract Ćows in systems with flow relations that are reĆexive and transitively closed
relations. A system (or subsystem) is then represented by an information-flow component
that includes the corresponding systemŠs Ćow relation. An information-flow interface
speciĄes forbidden information Ćows in a (possibly open) system. As for classic interface
theory, our interfaces specify a no-Ćow assumption on the environment and a no-Ćow
guarantee for its implementations.

As Ćows are transitive, an interaction between Ćows from an interface environment
and one of its implementations can deĄne Ćows outside the scope of the interfaceŠs
assumption and guarantee. For this reason, we introduce a third no-Ćow requirement over
all the closed systems deĄned by a composition of one of the interfaceŠs environments
and implementations. We refer to it as closed-guarantee and to the guarantees local to
the systemŠs implementations as open-guarantee. Each no-Ćow in an interface closed
guarantee can be supported by a combination of no-Ćows from the interfaceŠs assumption
and open guarantee. The main advantage of having an explicit requirement over the
closed systems is that the designer can decide how to split the responsibilities between
the environment and the implementations to support it. We use closed guarantees to
determine which interfaces are well-formed (formalized later in DeĄnition 3.1.4), i.e.,
what interfaces can be independently speciĄed and implemented while satisfying the
closed systemsŠ no-Ćow requirements.

Definition 3.1.1. Let X and Y be disjoint sets of input and output variables, respectively,
with Z = X ∪ Y the set of all variables. A relation M ⊆ Z × Y is a Ćow relation iff it is
a transitive relation, and reflexive over Y × Y . A stateless information-Ćow component
is a tuple (X,Y,M) where M ⊆ Z × Y is a flow relation, called Ćows. A stateless
information-Ćow interface is a tuple (X,Y,A,G,P) where A ⊆ Z×X is a relation, called
assumption; G ⊆ Z×Y is a relation, called open-guarantee; and P ⊆ Z×Y is a relation,
called closed-guarantee.

Example: SCI assumption and guarantees

In Figure 3.2, we show an interface named Bus′ specifying no-Ćow requirements
for the shared communication infrastructure. This interface has three input
variables: two for the data received (source) from the distance warners Ű distw_f_s
and distw_b_s Ű and one for the wheel sensor Ű wheel_tick. It also has three
output variables: two for the target of the distance warners data Ű distw_f_t
and distw_b_t Ű and one for the odomoter Ű odometer. The Bus′ assumption
requires no-Ćow from wheel_tick and odometer to the input ports for distance
warners source data. Additionally, it is required as both an open and a closed
guarantee that there are no Ćows from wheel_tick to the output ports for the
distance warners data.
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3. Information-flow Interfaces

The same Ągure presents the key for the graphical representation of both interfaces
and components. No-Ćow requirements on the open system are depicted with
dashed arrows, while closed system no-Ćows are represented as dotted arrows. To
improve the readability of the drawings, it is implicit that for each drawn closed-
guarantee, we have the same open-guarantee over the open system. Additionally,
for components, we do not draw arrows in the reĆexive and transitive closure of
the arrows depicted. We may omit variable(s) names when clear from the context.

distw_b_t
distw_f_t

Bus′

odometerwheel_tick

distw_f_s
distw_b_s

interface component

assumption no-flow
open-guarantee no-flow
closed-guarantee no-flow
component flow

input
output

Figure 3.2: Example of an interface with the key for the graphical representation
of information-Ćow interfaces and components.

The composition between flow relations is deĄned straightforwardly: given two Ćow
relations M and M′, their composition is the transitive closure of all their Ćows, formally,
(M ∪ M′)∗. We say that a Ćow relation M includes only flows allowed by a relation N
when they deĄne disjoint sets, M ∩ N = ∅. Given an interface, a component implements
it when the interfaceŠs open-guarantee allows all of its Ćows; and a component is one
of its permissible environments when it includes only Ćows allowed by the interfaceŠs
assumption. Implementations of an interface F have the same inputs and outputs as F ,
while permissible environments have the same sets but with switched roles.

Definition 3.1.2. Let F = (X,Y,A,G,P) be an information-flow interface. A component
fE = (Y,X, E) is an environment of F . We say that fE is a permissible environment of
F , denoted fE ♣=A F , iff E ⊆ A, where A = (Z ×X) \ A. A component f = (X,Y,M)
implements the interface F , denoted f ♣=G F , iff M ⊆ G, where G = (Z × Y ) \ G.

As we explained intuitively before, closed-guarantees do not play a role in deĄning
implementations and permissible environments. They will be, however, essential to deĄne
well-formed interfaces, which we will explain next.

Example: SCI implementations and environments

In Figure 3.3, we present a different interface from our previous example for the
shared communication channel, called Bus. This interface requires only, as both
open- and closed- guarantee, that information of the wheel sensor does not Ćow to
the distance warners target.

22

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


3.1. Stateless

The component sending (bottom left) specify a permissible environment for the
Bus interface. Note, however, that the sending component is not a permissible
environment for the Bus′ interface in the previous example because the Ćow from
the wheel sensor to the source for the front distance warner is in the interface
assumption. The bus component (bottom right) is an implementation of Bus
because it has only a Ćow from distw_f_s to distw_f_t, which is not in the
open-guarantee of the Bus interface.

distw_b_t
distw_f_t

odometerwheel_tick

sending

distw_b_s
distw_f_s

wheel_tick
distw_b_t
distw_f_t

odometer

bus

Bus

distw_b_s
distw_f_s

Figure 3.3: Interface Bus implementa-
tion Ű bus Ű with one of its permissible
environments Ű sending.

As Bus has no assumptions, all envi-
ronments are permissible. The com-
position of the Ćow relations from
sending and bus includes the pair
(wheel_tick, distw_f_t) because there
is information Ćow from wheel_tick to
distw_f_s through the environment
and then to distw_f_t through the im-
plementation. This Ćow, from wheel_tick
to distw_f_t, is forbidden by the closed
guarantees. We will see next that the
Bus interface is an ill-formed interface:
when we independently implement its en-
vironments and implementations, we may
inadvertently violate a requirement over
the closed system.

An interface must deĄne at least one implementation and one permissible environment
to avoid vacuous solutions. Then, as Ćows are reĆexive, assumptions and guarantees
must be speciĄed by irreĆexive relations, which we will refer to as no-flow relations. A
well-formed interface ensures, additionally, that its closed-guarantee is consistent with its
open-guarantee and assumption, i.e., the composition of any permissible environment
with any implementation does not include a Ćow forbidden by the closed-guarantee.
To formalize this notion of consistency, we need Ąrst to deĄne composition of no-flow
relations, which is naturally deĄned as the union of all compositions between Ćow relations
that only include Ćows allowed by one of given no-Ćow relations.

Definition 3.1.3. The set of Ćows deĄned by the complement-Ćow composition of
relations N ⊆ U × V and N ′ ⊆ U ′ × V ′ is:

N • N ′ = ¶(z, z′) ∈ (M ∪ M′)∗ ♣ M ⊆ N ,M′ ⊆ N ′,

and M and M′are flow relations♢.

A well-formed interface is speciĄed only with no-Ćow relations such that the set of all Ćows
in one of its closed systems (i.e., A • G) is disjoint from the interfaceŠs closed-guarantee.
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3. Information-flow Interfaces

Definition 3.1.4. An information-flow interface (X,Y,A,G,P) is well-formed iff A,
G and P are no-Ćow relations (i.e., irreflexive relations); and the closed-guarantee is
consistent with the open-guarantee and assumption, i.e. (A • G) ∩ P = ∅.

We prove below that our deĄnition of interface well-formedness captures the intended
relationship between the interfaceŠs closed-guarantees with its permissible environments
and implementations.

Proposition 3.1.1. For all well-formed interfaces F = (X,Y,A,G,P), and for all
components f = (X,Y,M) and fE = (Y,X, E): if f implements F , f ♣=F , and fE is an
permissible environment of F , fE ♣=F , then their combined flows are consistent with the
closed-guarantee of F , (M ∪ E)∗ ∩ P = ∅.

Proof. Consider an arbitrary interface F , and components f = (X,Y,M) and fE =
(Y,X, E), s.t.: (i) F is a well-formed interface, (ii)f ♣=F , and (iii) fE ♣=F . Let (z, z′) ∈
(M ∪ E)∗. By DeĄnition 3.1.3 and assumptions (ii) and (iii), (z, z′) ∈ A • G, and by our
initial assumption (i), (z, z′) /∈ P. Hence (M ∪ E)∗ ∩ P = ∅.

Though intuitive, the deĄnition of no-Ćows composition does not offer an easy and
economical way to compute it. Note that it requires computing the reĆexive and
transitive closure over all possible Ćow relations satisfying the no-Ćow relations being
composed. We will now discuss how to characterize the composition of no-Ćow relations
syntactically, i.e., as a regular expression over the no-Ćow relations being composed. Our
Ąrst challenge is that the complement of a no-Ćow relation does not necessarily deĄne
a Ćow relation because it is not necessarily transitively closed. The biggest challenge,
however, is that not all no-Ćow relations have a maximal Ćow relation that satisĄes
it. Concretely, for an interface open-guarantee and assumption, there may not exist
an implementation or environment that is maximal, i.e., all other implementations or
environments are their subsets, respectively.

Example: SCI maximal implementations

bussbuss

bust

distw_f_s
distw_b_s
wheel_tick odometer

distw_f_t
distw_b_t

distw_f_s
distw_b_s
wheel_tick odometer

distw_f_t
distw_b_t

Figure 3.4: Incomparable BusŠ
implementations.

In Figure 3.4, we depict two implementations
for the interface Bus from the previous exam-
ple, buss and bust. Their composition does not
deĄne an implementation of Bus because it in-
cludes a Ćow from wheel_tick to distw_f_t,
violating the Bus open-guarantee. Therefore
buss and bust are incomparable (no implemen-
tation subsumes both), so there is no maximal
implementation of Bus.
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3.1. Stateless

Without maximal Ćow relations for a given no-Ćow, we cannot characterize the Ćows in
the closed systems deĄned by an interface F by the transitive closure of the complement
of its assumption and open-guarantee, i.e., Ćows in the closed system deĄned by F are
not the same as (A ∪ G)∗. This deĄnition would yield more Ćows than the actual Ćows
of the closed system deĄned by F . However, we know that all allowed Ćows of a given
no-Ćow relation are in its complement. Then, we just need to be careful not to compose
pairs in the complement of the same no-Ćow relation while computing the composition of
two no-Ćow relations.

The set with all Ćows in the closed systems deĄned by an interface F includes all pairs of
variables (z, z′) such that there exists a path from z to z′ deĄned by alternating between
Ćows in the complement of the assumption, A, and the complement of the open-guarantee,
G. We formalize this below and prove it precisely characterizes the composition between
two no-Ćow relations. We provide a step-by-step example of how to evaluate no-Ćow
relationship composition when we introduce later composite open-guarantees in DeĄnition
3.1.5.

Lemma 3.1.2. Let N ⊆ U × V and N ′ ⊆ U ′ × V ′ be no-flow relations, with V and V ′

being disjoint sets, V ∩ V ′ = ∅, and the set of all variables being Z = U ∪ U ′ ∪ V ∪ V ′.
Then, N • N ′ = (IdZ ∪ N ) ◦ (N ′ ◦ N )∗ ◦ (IdV ∪V ′ ∪ N ′), where IdZ is the identity
relation over all variables in N and N ′, IdV ∪V ′ is the identity relation over V ∪ V ′

and R ◦ R′ = ¶(z, z′′) ♣ (z, z′) ∈ R and (z′, z′′) ∈ R′♢ is the usual composition between
relations.

Proof. Consider arbitrary no-Ćow relations N ⊆ U × V and N ′ ⊆ U ′ × V ′ where V and
V ′ are disjoint sets.

We start by proving that N • N ′ ⊆ (IdZ ∪ N ) ◦ (N ′ ◦ N )∗ ◦ (IdV ∪V ′ ∪ N ′). Let
(z, z′) ∈ N • N ′. Then, there exists two Ćow relations M ⊆ U × V and M′ ⊆ U ′ × V ′

s.t. (i) M ⊆ N , (ii) M′ ⊆ N ′ and (iii) (z, z′) ∈ (M ∪ M′)∗ or, equivalently, (z, z′) ∈
(IdZ ∪M+)◦(M′+ ◦M+)∗ ◦(IdV ∪V ′ ∪M′+). The identity relation in the rightmost side of
the expression is deĄned over the domain V ∪V ′ (i.e., IdV ∪V ′) because z′ ∈ V ∪V ′. By Ćow
relations being transitively closed, it follows: (z, z′) ∈ (IdZ∪M)◦(M′◦M)∗◦(IdV ∪V ′∪M′).
By the initial assumptions (i) and (ii), (z, z′) ∈ (IdZ ∪ N ) ◦ (N ′ ◦ N )∗ ◦ (IdV ∪V ′ ∪ N ′).

We prove the other direction: (IdZ ∪ N ) ◦ (N ′ ◦ N )∗ ◦ (IdV ∪V ′ ∪ N ′) ⊆ N • N ′. We
start with the case N ′ ◦ (N ◦ N ′)∗ ⊆ N • N ′. We remark that all sequences deĄned by
N ′ ◦ (N ◦ N ′)∗ have elements of N ′ in the odd positions and elements of N in the even
positions. We choose this to simplify the presentation of the proof. The other cases can
be proved analogously. We prove this case by proving Ąrst the stronger property below
for all sequences deĄned by N ′ ◦ (N ◦ N ′)∗:

(⋆) for all n ∈ N and all sequences (z1, z2) · (z2, z3) · . . . · (zn, zn+1)
where (z2i−1, z2i) ∈ N ′ and (z2i, z2i+1) ∈ N , with 1 ≤ i ≤ ⌈n/2⌉,

25

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


3. Information-flow Interfaces

there is 1 ≤ m ≤ n s.t. z1 = zm and (z1, zn+1) ∈ (M ∪ M′)∗

for Ćow relations M′ = ¶(zj , zj+1) ♣ m ≤ j ≤ n and j is odd♢+ ∪ IdB′ and
M = ¶(zj , zj+1) ♣ m ≤ j ≤ n and j is even♢+ ∪ IdB, with M′ ⊆ N ′ and M ⊆ N .

The property above tell us that for any alternating sequence between elements in the
complement of N and N ′ deĄning a path from z1 to zn+1, we can use this sequence to
deĄne two Ćow relations that are allowed by either N or N ′ such that (z1, zn+1) is in
composition of the deĄned Ćow relations. From this property, it follows that for all pair
of variables (z, z′) ∈ N ′ ◦ (N ◦ N ′)∗, we can deĄne two Ćow relations M and M′ that
witness (z, z′) ∈ N • N ′.

We prove now (⋆) by natural induction on the size of the sequences. We start with the
base case, n = 1, i.e., we consider a sequence of the form (z1, z2) where (z1, z2) ∈ N ′.
Then, for k = 1, we have (M′ = ¶(z1, z2)♢ ∪ IdU ′) ⊆ N ′ and (M = IdU ) ⊆ N (no-Ćow
relations are irreĆexive).

For the induction step, we assume by induction hypothesis (IH) that (⋆) holds for an
arbitrary n ∈ N. Consider arbitrary sequence σ = (z1, z2) · . . . · (zn+1, zn+2) of size n+ 1.
By (IH), there exists 1 ≤ mn ≤ n deĄning Mn and M′

n over the σŠs sub-sequence
(z1, z2) · (z2, z3) · . . . · (zn, zn+1) of size n, as speciĄed in (⋆), s.t. M′

n ⊆ N ′ and Mn ⊆ N .
We proceed by cases on the parity of n+ 1.

Let n+ 1 be an odd number, then (zn+1, zn+2) ∈ N ′. Consider the case that the last pair
in the sequence, (zn+1, zn+2), together with M′

n deĄnes a Ćow relation that is a subset of
N ′, i.e., (M′

n ∪ ¶(zn+1, zn+2)♢)∗ ⊆ N ′. Then, by (IH) there exists m = mn that satisĄes
(⋆) for the sequence of size n+ 1. Otherwise, there exists a sequence using (zn+1, zn+2)
and elements of M′

n deĄning a path between a pair of variables in N ′. Formally, there
exists a sequence for (z′

1, z
′
k+1) ∈ N ′:

(z′
1, z

′
2) · . . . · (zn+1, zn+2) · . . . · (z′

k, z
′
k+1)

where k ∈ N and ¶(z′
1, z

′
2) · · · (z′

k, z
′
k+1)♢ ⊆ ¶(zj , zj+1) ♣ m ≤ j ≤ n and j is odd♢. Note

that both the sequence before and the sequence after (zn+1, zn+2) may be empty, i.e.,
the path may start or end with (zn+1, zn+2). As M′

n is transitively closed, the sequence
above can be simpliĄed to:

(†) (z′
1, zn+1) · (zn+1, zn+2) · (zn+2, z

′
2)

where ¶(z′
1, zn+1), (zn+2, z

′
2)♢ ∈ M′

n. Recall that, N ⊆ U × V and N ′ ⊆ U ′ × V ′.
By V and V ′ being disjoint sets and (zn, zn+1) ∈ N , it follows that zn+1 ∈ V and
zn+1 /∈ V ′. Then, for all variables z, (z, zn+1) /∈ M′

n. Hence the sequence (†) must start
with the pair (zn+1, zn+2). As (zn+2, z

′
2) ∈ M′

n then there exists a pair in the original
sequence that starts with zn+2 and another pair that ends with z′

2. In particular, for
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3.1. Stateless

mn ≤ h ≤ h′ ≤ (n+ 1), we have the following sub-sequence of σ:

zn+2
=

z′
2
=

(zmn
, zmn+1) ·. . .·(zh−1, zh)·( zh , zh+1) ·. . .· (zh′ , zh′+1) ·. . .· (zn+1, zn+2).

By (zn+1, zn+2) ∈ N ′ and V disjoint from V ′, then zn+2 ∈ V ′ and zn+2 /∈ V . Then,
as zh = zn+2, there is no pair (zh−1, zh) ∈ N and the sequence above must start with
(zh, zh+1). So, mn = h and zmn

= zh = zn+2 and the previous sequence simpliĄes as
follows:

zn+2
=

z′
2

=
( zmn

, zmn+1) · . . . · (zh′ , zh′+1) · . . . · (zn+1, zn+2).

By (IH), z1 = zmn
. Let m = n + 1. As n + 1 is an odd number, it deĄnes the Ćow

relations M′
n+1 = ¶(zn+1, zn+2)♢ ∪ IdV ′ and Mn+1 = IdV . Then, (z1, zn+2) ∈ M′

n+1

because z1 = zmn
= zn+2 and (zn+2, zn+2) ∈ IdV ′ . By both N and N ′ being no-Ćow

relations and (zn+1, zn+2) ∈ N ′, then M′
n+1 ⊆ N ′ and Mn+1 ⊆ N .

If n+ 1 is an even number, then (zn+1, zn+2) ∈ N and the argument is analogous.

We can prove analogously that N ◦ (N ′ ◦N )∗ ⊆ N •N ′. Finally, note that IdZ ◦ IdV ∪V ′ ⊆
N • N ′ follows directly from N and N ′ being no-Ćow relations and their domain.

3.1.1 Composition and Incremental Design

This section introduces component and interface composition, together with a predicate
for interfaces’ compatibility for composition. We prove that our notions of composition
and compatibility support incremental design of systems.

From now on, to simplify the presentation, elements of an interface or component
are annotated with the interface name, for example, F = (XF , YF ,AF ,GF ,PF ). The
different types of variables between two interfaces F and F ′ are YF,F ′ = YF ∪ YF ′ ,
XF,F ′ = (XF ∪XF ′) \ YF,F ′ , and ZF,F ′ = YF,F ′ ∪XF,F ′ . The same deĄnition applies to
components f and f ′.

Variables between interfaces (components) deĄne the set of variables in the composition
of interfaces (components). We will often denote XF,F ′ as XF ⊗F ′ , YF,F ′ as YF ⊗F ′ ,
and ZF,F ′ as ZF ⊗F ′ . The composition of components f and f ′ deĄnes the component
f ⊗ f ′ = (Xf,f ′ , Yf,f ′ , (Mf ∪ Mf ′)∗). We present interface composition by deĄning the
open- and closed-guarantee, and the assumption of the composite separately.

We compose components and interfaces through their shared variables, i.e., all variables
that are input for one of the interfaces (or components) while being output for the
other. Formally, the set of shared variables for interfaces F and F ′, is SharedF,F ′ =
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3. Information-flow Interfaces

(XF ∪XF ′) ∩ YF,F ′ . We say that two interfaces F and F ′ are composable when their set
of output variables are disjoint, YF ∩ YF ′ = ∅.

The composition of components f and f ′ is deĄned with respect to the composition
between their Ćow relations, i.e., f ⊗ f ′ = (Xf,f ′ , Yf,f ′ , (Mf ∪ Mf ′)∗).

Example: Confidentiality Over a Controller Area Network (CAN)

We introduce our second running example: the design of an electronic vehicle im-
mobilizer (EVI) functionality. An EVI is a security device handling a transponder
key used by car manufacturers to prevent hot wiring a car [LSS05, BRLEK17]. The
engine control unit (ECU) only starts the car when the transponder authentication
succeeds. The ECU and the immobilizer communicate through a controller area
network (CAN), which is a serial communication technology commonly used in au-
tomobile architectures. Figure 3.5 presents a high-level view of the communication
architecture between the immobilizer and the ECU, adapted from the architecture
described in [LSS05].

ecu

key

deb

can

imm
Immobilizer

ECU

CAN BusSecret key

Figure 3.5: High-level view on immobilizer high-level architecture.

A CAN bus does not include native support for security-related features. So it is
the responsibility of the components using the bus to enforce the conĄdentiality
and integrity of the data sent over the CAN. In our example, the immobilizerŠs
authentication follows a challenge-response protocol: the session starts with the
ECU sending a freshly generated random number encrypted with a secret key
known to both of the devices Ű challenge, which must be followed by the immobilizer
sending an appropriate message encrypted with the same key Ű response. Our
design goal is to guarantee the conĄdentiality policy: the secret key shared by the
ECU and immobilizer shall never leak to the environment via the CAN bus.

In Figure 3.6 below, we depict an information-Ćow interface for a carŠs ECU Ű
Fecu, an immobilizer Ű Fimm, and for a CAN bus Ű F ′

can. Interface Fimm only
requires from the environment (i.e., its assumption) that there is no information
Ćow from the secret key Ű key Ű to the input variable for the CAN bus Ű can; while
it guarantees that none of its implementations has an information Ćow from key

to the imm variable that connects the immobilizer to the CAN. The interface for
the CAN requires that none of their implementations has a Ćow from both the
input port for the ECU Ű ecu Ű and the immobilizer Ű immŰ to the output debug
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3.1. Stateless

port Ű deb. In the same Ągure, we show the result of composing Fimm with Fecu

and F ′
can, which we will explain in detail in this section.

ecu

key

can

Fecu F ′
can

can

debimm

ecu
imm

Fimm

key

can

imm

deb

can
ecu

imm

key

can

key

ecu

Fimm ⊗ F ′
canFecu ⊗ Fimm

Figure 3.6: Interfaces for an ecu, an immobilizer and a CAN bus, and their
composition.

Composite Open- and Closed-guarantee

The composition of two interfaces includes all information Ćows in the composition of any
of the interfacesŠ implementations. Then, the composite open-guarantee of two interfaces
is just the complement-Ćow composition of the interfacesŠ open-guarantees.

Definition 3.1.5. Let F and F ′ be two interfaces with open-guarantees GF and GF ′.
The composite open-guarantee of F and F ′ is GF ⊗F ′ = (ZF,F ′ × YF,F ′) \ (GF • GF ′), also
denoted GF ⊗F ′.

In the proposition below, that follows directly from deĄnitions, we prove that a composite
open-guarantee preserves all implementations of the interfaces being composed.

Proposition 3.1.3. For all interfaces F and F ′ with open-guarantees G and G′, and
all components f = (X,Y,M) and f ′ = (X ′, Y ′,M′) that implements them, f ♣=G F and
f ′ ♣=G′ F ′, then the composition of the components satisfies the restriction imposed by
the open-guarantee defined by both interfaces, i.e., (M ∪ M′)∗ ⊆ GF ⊗F ′.

Example: CAN bus Information Flows in Composite Implementations

We present a step-by-step evaluation of the composite open-guarantees deĄned by
Fimm and F ′

can depicted in Figure 3.6. From Lemma 3.1.2, we know that,

GFimm
• GF ′

can
= (IdZ ∪ GFimm

) ◦ (G
′
F ′

can
◦ GFimm

)∗ ◦ (IdY ∪ G
′
F ′

can
),

where Id = ¶(z, z) ♣ z ∈ ¶key, ecu, can, deb, imm♢♢ and IdYimm,can
= ¶(z, z) ♣ z ∈

¶can, deb, imm♢♢.

The set of Ćows that can be in some implementation of the immobilizer and the
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3. Information-flow Interfaces

can bus are:

GFimm
= ¶(can, imm), (imm, imm)♢ and

GF ′
can

= ¶(ecu, can), (imm, can), (can, deb), (deb, can), (can, can), (deb, deb)♢.

When we consider paths with two steps between implementations of immobilizer
we get the following sets:

GFimm
◦ GF ′

can
= ¶(can, can), (imm, can)♢ and

GF ′
can

◦ GFimm
= ¶(ecu, imm), (imm, imm), (deb, imm), (can, imm)♢.

For example, the pair (ecu, imm) is deĄned by the path that starts with (ecu, can)
from F ′

can followed by (can, imm) in Fimm. The two-step paths added two new
possible Ćows: from the ECU input port and the debug output port of the CAN
bus to the imm output port in the immobilizer. We consider next three step paths
and will see that there are no new Ćows:

(GFimm
◦ GF ′

can
) ◦ GFimm

= ¶(can, imm), (imm, imm)♢ = GFimm
,

GFimm
◦ (GF ′

can
◦ GFimm

) = ¶(can, imm), (imm, imm)♢ = GFimm
,

(GF ′
can

◦ GFimm
) ◦ GF ′

can
= ¶(ecu, can), (imm, can), (deb, can), (can, can)♢ ⊆ GF ′

can
and

GF ′
can

◦ (GFimm
◦ GF ′

can
) = ¶(ecu, can), (imm, can), (can, can)(deb, can)♢ ⊆ GF ′

can
.

We can now stop our evaluation, as considering longer paths will not deĄne
new Ćows. The set of Ćows in the composition between implementations of the
immobilizer and the CAN bus are all their individual Ćows together with the two
new ones we found:

GFimm
• GF ′

can
= GFimm

∪ GF ′
can

∪ ¶(ecu, imm), (deb, imm)♢.

In Figure 3.6, we see that the composite open-guarantees are exactly the set with
the pair of variables that are not in GFimm

• GF ′
can

.

The complement of the composite open-guarantee of two interfaces F and F ′ and their
open-guarantees no-Ćow composition deĄne the same sets. Formally, GF ⊗F ′ = GF • GF ′

because GF ⊗F ′ = (Z×Y ) \ ((Z×Y ) \ GF • GF ′). By the deĄnition of no-Ćow composition,
it follows that it deĄnes a monotonic and associative operation. Then, the complement
of a composite open-guarantee is also monotonic and associative, i.e., GF ⊆ GF ⊗F ′ and
GF ⊗F ′ = GF ′⊗F .

We prove below that the composite open-guarantee deĄned by composable interfaces
is also associative, i.e., the order we compute with different interfaces does not change
the set of implementations their composition deĄnes. We denote multiple iterations
of evaluating composite open-guarantees as, for example, G(F ⊗F ′)⊗F ′′ = (ZF ⊗F ′,F ′′ ×
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3.1. Stateless

YF ⊗F ′,F ′′) \ (GF ⊗F ′ • GF ′′) which is the composite open-guarantee from Ąrst computing it
for F with F ′ followed by the open-guarantee of F ′′.

Lemma 3.1.4. Let F , F ′ and F ′′ be composable. Then, G(F ⊗F ′)⊗F ′′ = GF ⊗(F ′⊗F ′′).

Proof. Consider arbitrary interfaces F , F ′ and F ′′ with pairwise disjoint set of output
variables. By deĄnition of variables between different interfaces:

ZF ⊗F ′,F ′′ × YF ⊗F ′,F ′′ =(ZF ∪ ZF ′ ∪ ZF ′′) × (YF ∪ YF ′ ∪ YF ′′) = ZF,F ′⊗F ′′ × YF,F ′⊗F ′′ .

In what follows, we denote the set of all variables over the three interfaces as Z (i.e.,
Z = ZF ∪ ZF ′ ∪ ZF ′′), and the set of output variables as Y (i.e., Y = YF ∪ YF ′ ∪ YF ′′).
By deĄnition of composite open-guarantees:

G(F ⊗F ′)⊗F ′′ = (Z × Y ) \ (GF ⊗F ′ • GF ′′) and

GF ⊗(F ′⊗F ′′) = (Z × Y ) \ (GF • GF ′⊗F ′′).

Then, what we want to prove is equivalent to proving:

GF ⊗F ′ • GF ′′ = GF • GF ′⊗F ′′ .

We start by proving that GF ⊗F ′ • GF ′′ ⊆ GF • GF ′⊗F ′′ . By Lemma 3.1.2, this is equivalent
to prove that for all pair of variables (z, y) ∈ Z × Y and all n ∈ N:

if (z, y) ∈ (IdZ ∪ GF ′′) ◦ (GF ⊗F ′ ◦ GF ′′)n ◦ (IdY ∪ GF ⊗F ′),

there exists m ∈ N s.t. (z, y) ∈ (IdZ ∪ GF ′⊗F ′′) ◦ (GF ◦ GF ′⊗F ′′)m ◦ (IdY ∪ GF ).

To simplify the presentation of the proof, we start by proving for the case that y ∈ YF ′′ .
Note that, if y ∈ YF ′′ , by output variables being disjoint, then, for all variables z′ ∈ Z,
(z′, y) /∈ (GF ⊗F ′ ∪ GF ). Moreover, GF ′′ ◦ IdYF ′′ = GF ′′ . Then, we want to prove by
induction on n ∈ N that:

if (z, y) ∈ (IdZ ∪ GF ′′) ◦ (GF ⊗F ′ ◦ GF ′′)n,

there exists m ∈ N s.t. (z, y) ∈ (IdZ ∪ GF ′⊗F ′′) ◦ (GF ◦ GF ′⊗F ′′)m ◦ IdYF ′′ .

For the base case, n = 0, we consider arbitrary (z, y) ∈ (IdZ ∪ GF ′′). By monotonicity
of composite open-guarantees GF ′′ ⊆ GF ′⊗F ′′ , and by y ∈ YF ′′ , it follows (z, y) ∈
(IdZ ∪ GF ′⊗F ′′) ◦ IdYF ′′ .

For the induction step, we assume as induction hypothesis (IH) that the property holds
for n. Now, consider arbitrary (z, y) s.t. (z, y) ∈ (IdZ ∪ GF ′′) ◦ (GF ⊗F ′ ◦ GF ′′)n+1. Then,
(z, y) = ¶(z, s)♢ ◦ ¶(s, y)♢ with:

(⋆) (z, s) ∈ (IdZ ∪ GF ′′) ◦ (GF ⊗F ′ ◦ GF ′′)n and (s, y) ∈ GF ⊗F ′ ◦ GF ′′ .
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3. Information-flow Interfaces

By induction hypothesis, exists m∈N s.t.:

(z, s) ∈ (IdZ ∪ GF ′⊗F ′′) ◦ (GF ◦ GF ′⊗F ′′)m ◦ IdYF ′′ .

We proceed by cases on (z, s).

If (z, s) ∈ IdZ ◦ IdYF ′′ , then (z, y) ∈ IdYF ′′ ◦ GF ⊗F ′ ◦ GF ′′ and, more generally, (z, y) ∈
GF ⊗F ′ ◦GF ′′ . By deĄnition of composite open-guarantees, (z, y) ∈ (GF •GF ′)◦GF ′′ . Then,
by Lemma 3.1.2:

(z, y) ∈ (IdZ ∪ GF ) ◦ (GF ′ ◦ GF )∗ ◦ (IdY ∪ GF ′) ◦ GF ′′ .

By monotonicity of open-guarantees, GF ′ ⊆ GF ′⊗F ′′ , GF ′′ ⊆ GF ′⊗F ′′ and GF ′ ◦ GF ′′ ⊆
GF ′⊗F ′′ , so (z, y) ∈ (Id ∪ GF ) ◦ (GF ′⊗F ′′ ◦ GF )∗ ◦ GF ′⊗F ′′ . Equivalently, (z, y) ∈ (Id ∪
GF ′⊗F ′′) ◦ (GF ◦ GF ′⊗F ′′)∗.

If (z, s) /∈ IdZ then, by (⋆), s ∈ YF ′′ . By F ′ and F ′′ having disjoint sets of output
variables, GF ′⊗F ′′ = GF ′ • GF ′′ and Lemma 3.1.2:

(z, s)∈(IdZ ∪ GF ′⊗F ′′) ◦ (GF ◦ GF ′⊗F ′′)m−1 ◦ GF ◦ (IdZ ∪ GF ′) ◦ (GF ′′ ◦ GF ′)∗ ◦ GF ′′ .

By (⋆), GF ⊗F ′ = GF • GF ′ and Lemma 3.1.2:

(s, y) ∈ (IdZ ∪ GF ) ◦ (GF ′ ◦ GF )∗ ◦ (IdZ ∪ GF ′) ◦ GF ′′ .

Then,

(z, y)∈(IdZ ∪ GF ′⊗F ′′) ◦ (GF ◦ GF ′⊗F ′′)m−1◦ GF ◦ (Id ∪ GF ′) ◦ (GF ′′ ◦ GF ′)∗◦ GF ′′

◦ (IdZ ∪ GF ) ◦ (GF ′ ◦ GF )∗ ◦ (Id ∪ GF ′) ◦ GF ′′

Equivalently, (z, y) ∈ (Id ∪ GF ′⊗F ′′) ◦ (GF ◦ GF ′⊗F ′′)m′

for some m′ > m.

The case y ∈ YF,F ′ is analogous. We prove by a similar inductive argument that
GF ⊗F ′ • GF ′′ ⊇ GF • GF ′⊗F ′′ .

We deĄne composite closed-guarantee by introducing derived closed-guarantee: the set
with all pairs of variables with no information Ćow in all closed systems deĄned by a
given interface. Formally, given an interface, we remove from its open-guarantee all pairs
that deĄne a Ćow in some of the closed systems deĄned by that interface. Note that, in a
well-formed interface, all pairs in the closed-guarantee must be in the open-guarantee.

Definition 3.1.6. Let F be an interface with assumption A and open-guarantee G. The
derived closed-guarantee from A and G is P̂A,G = G \ (A • G).
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3.1. Stateless

Example: CAN bus Composite Closed-guarantee

We consider the composition between Fecu and Fimm, depicted in Figure 3.6. The
composite open-guarantee of Fecu ⊗Fimm has four no-Ćow requirements. Note that
there are no shared variables between the interfaces being composed, so there are no
new Ćows in their composition. In particular, all no-Ćows in the open-guarantee of
Fecu and Fimm will be in their open-guarantee composite, too. Additionally, there is
no way for information to Ćow between ecu and imm only through implementations
of Fecu and Fimm, formally, ¶(ecu, imm), (imm, ecu)♢ ∩ (GFecu

• GFimm
) = ∅.

There can be, however, Ćows between ecu and imm if we consider the environ-
ment. For example, information from ecu can Ćow to can through the environ-
ment and then from can can Ćow to imm by an implementation of Fimm. Hence
¶(ecu, imm), (imm, ecu)♢ ⊆ AFecu⊗Fimm

• GFecu⊗Fimm
, and so, it is not a requirement

of the composite closed-guarantee. The other no-Ćows in the open-guarantee Ű
from key to ecu and imm Ű cannot be deĄned by Ćow paths going through the
environment because we assume that the environment does not include a Ćow from
key to can. Then, they are in the derived closed-guarantee.

Composite Assumption

We use interfacesŠ assumptions to determine whether interfaces are compatible for
composition. Intuitively, we must check that the composite interface fulĄlls all no-Ćows
requirements over the environment pointing to shared variables. Note that, as shared
variables will be output variables of the composite interface, all pairs in the assumptions
pointing to a shared variable will not be in the assumption of the composite.

Given two interfaces, their composite assumption is the weakest condition in the environ-
ment, allowing the interfaces to work together. In particular, we can add new assumptions
during composition as we assume that the environment is helpful. However, we need to
be careful not to unnecessarily restrict the environment because we want to support the
incremental design of systems (i.e., interfacesŠ compatibility for composition needs to be
independent of the order they are composed). We introduce next derived assumptions
as the set of all no-Ćow requirements necessary to guarantee that no assumption to a
shared variable goes unfulĄlled after composition.

Example: CAN bus Derived Assumptions

The interface Fimm in Figure 3.6 has as it only no-Ćow requirement in the envi-
ronment that there should be no information Ćow from the input variable key to
the output variable can. The variable can is a shared variable with F ′

can, in the
same Ągure. Note that, F ′

can cannot guarantee that no information Ćow from key

to can because key is not one of its output variables. Additionally, key will remain
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3. Information-flow Interfaces

an input variable of the composition of Fimm and F ′
can. Hence we need to add a

new no-Ćow requirement to the compositeŠs assumption to guarantee that FimmŠs
assumption is satisĄed by the environment of the composite. In particular, we
need to require that keyŠs information does not Ćow to an input port in F ′

can that
allow Ćows to can. In this example, in F ′

can information in ecu can Ćow to can and
so the composite interface must include the assumption that key does not Ćow to
ecu. This new requirement in the environment is called a derived assumption.

Definition 3.1.7. Let F and F ′ be two interfaces with assumptions AF and AF ′,
respectively. The assumption derived from F and F ′ is:

ÂF,F ′ = ¶(z, z′) ♣ ∃s ∈ SharedF,F ′ s.t. (z, s) ∈ AF ∪ AF ′ and (z′, s) ∈ GF ⊗F ′♢

where SharedF,F ′ = (XF ∪XF ′) ∩ YF,F ′ . The composite assumption between F and F ′ is

AF ⊗F ′ = (AF ∪ AF ′ ∪ ÂF,F ′) ∩ (ZF,F ′ ×XF,F ′).

As composite open-guarantees are commutative, then composite assumptions are also
commutative. We prove below that derived assumptions between composable interfaces
are also monotonic and associative.

Lemma 3.1.5. Let F , F ′ and F ′′ be information-flow interfaces that are pairwise
composable. (a) If (z, z′) ∈ ÂF ′,F ′′, then (z, z′) ∈ ÂF ⊗F ′,F ′′. (b) If (z, z′) ∈ ÂF,F ′⊗F ′′,

then (z, z′) ∈ ÂF ⊗F ′,F ′′ ∪ ÂF,F ′.

Proof. Consider arbitrary information-Ćow interfaces F , F ′ and F ′′ that are pairwise
composable, i.e., all three interfaces have pairwise disjoint sets of output variables.

We start by proving item (a). Consider arbitrary (z, z′) ∈ ÂF ′,F ′′ . By deĄnition of
derived assumptions, there exists a variable s s.t.:

(z, s) ∈ AF ′ ∪ AF ′′ and (z′, s) ∈ GF ′⊗F ′′ .

Note that, by deĄnition of interface and domain of composite open-guarantee, s is a
shared variable, i.e., s ∈ SharedF ′,F ′′ , where SharedF ′,F ′′ = (XF ′ ∪XF ′′) ∩ (YF ′ ∪ YF ′′).
Then, by s ∈ SharedF ′,F ′′ , s ∈ YF ′,F ′′ and, by output variables being disjoint, s cannot
be an output variable of F (i.e., s /∈ YF ). We proceed by cases on the domain of s. If
s ∈ YF ′ , then, by s ∈ XF ′ ∪XF ′′ and deĄnition of information-Ćow interfaces, s must an
input variable of F ′′; hence, (z, s) ∈ AF ′′ . By monotonicity, associativity (Lemma 3.1.4)
and deĄnition of of composite open-guarantee, (z,′ s) ∈ GF ⊗F ′ • GF ′′ . So, by deĄnition of
derived assumptions, (z, z′) ∈ ÂF ⊗F ′,F ′′ . If s ∈ YF ′′ , then, by s ∈ XF ′ ∪XF ′′ and deĄni-
tion of information-Ćow interfaces, s must an input variable of F ′ and (z, s) ∈ AF ′ . As for
the previous case, it follows that (z′, s) ∈ GF ⊗F ′ •GF ′′ and consequently (z, z′) ∈ ÂF ⊗F ′,F ′′ .
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3.1. Stateless

We now prove item (b). Assume that (z, z′) ∈ ÂF,F ′⊗F ′′ . By deĄnition of derived
assumptions, there exists a variable s s.t.:

(z, s) ∈ AF ∪ AF ′⊗F ′′ and (z′, s) ∈ GF,F ′⊗F ′′ , where s ∈ SharedF,F ′⊗F ′′ .

By (z′, s) ∈ GF ⊗(F ′⊗F ′′) and associativity of composite open-guarantees (Lemma 3.1.4), it
follows (b1) (z′, s) ∈ G(F ⊗F ′)⊗F ′′ . We proceed now by cases on the domain of the shared
variable s ∈ (XF ∪XF ′⊗F ′′) ∩ YF,F ′⊗F ′′ .

If s ∈ XF ∩ YF ′′ , by all three interfaces having disjoint sets of output variables, then
s /∈ YF ′ , s ∈ XF,F ′ and s is a shared variable between F ⊗ F ′ and F ′′. Moreover, by
(z, s) ∈ AF ∪ AF ′⊗F ′′ and s ∈ YF ′′ , then s /∈ XF ′⊗F ′′ and the only relevant case for (z, s)
is it being in the assumption of F , i.e., (z, s) ∈ AF ⊗F ′ . Then, by (b1) and deĄnition of
derived assumptions, (z, z′) ∈ ÂF ⊗F ′,F ′′ .

If s ∈ XF ∩ YF ′ , then, s is a shared variable between F and F ′. By s ∈ YF ′ , then
s /∈ XF ′⊗F ′′ . Then, we can assume (z, s) to be in the assumption of F , i.e., (z, s) ∈ AF .
By associativity of composite open-guarantees, (z′, s) ∈ GF ⊗F ′ • GF ′′ . By output variables
of all three interfaces being disjoint, s ∈ YF ′ and Lemma 3.1.2, then the last Ćow from
any path from z′ to s must be in GF ⊗F ′ . Formally, (z′, s) = (IdZF ⊗F ′,F ′′ ∪ GF ′′) ◦ (GF ⊗F ′ ◦

GF ′′)∗ ◦ GF ⊗F ′ . Then, there exists a variable s′ s.t. (z′, s) = (z′, s′) · (s′, s) with:

(z′, s′) ∈ (IdZF ⊗F ′,F ′′ ∪ GF ′′) ◦ (GF ⊗F ′ ◦ GF ′′)∗ and (s′, s) ∈ GF ⊗F ′ .

By (z, s) ∈ AF , s ∈ SharedF,F ′ and (s′, s) ∈ GF ⊗F ′ , then (z, s′) ∈ ÂF,F ′ . If (z′, s′) ∈
IdZF ⊗F ′,F ′′ , then (z′, s) = (s′, s). Hence (z′, s) ∈ GF ⊗F ′ and, by (z, s) ∈ AF , (z, z′) ∈

ÂF,F ′ . Otherwise, s′ must be an output variable of F ′′ (s′ ∈ YF ′′) and an input variable
of the other interface (s′ ∈ XF ⊗F ′). Then, (z, s′) ∈ AF ⊗F ′ . By (z′, s′) ∈ G(F ⊗F ′)⊗F ′′ and

deĄnition of derived assumptions, (z, z′) ∈ ÂF ⊗F ′,F ′′ .

If s ∈ XF ′⊗F ′′ ∩ YF , then it can only be the case that (z, s) ∈ AF ′⊗F ′′ and we proceed by
cases on AF ′⊗F ′′ deĄnition. If (z, s) ∈ AF ′ , then s ∈ XF ′ ∩ YF . The rest is analogous
to the previous case where s ∈ XF ∩ YF ′ . If (z, s) ∈ AF ′′ , then, by (z′, s) ∈ GF ⊗F ′,F ′′

and deĄnition of derived assumptions, (z, z′) ∈ ÂF ⊗F ′,F ′′ . Lastly, if (z, s) ∈ ÂF ′,F ′′ ,
by deĄnition of derived assumptions: (z, s′) ∈ AF ′ ∪ AF ′′ and (s, s′) ∈ GF ′,F ′′ , with
s′ ∈ SharedF ′,F ′′ . By s being an output variable of F , (z′, s) ∈ GF,F ′⊗F ′′ and Lemma 3.1.2,
(z′, s) ∈ (IdZF,F ′⊗F ′′ ∪GF ′⊗F ′′)◦(GF ◦GF ′⊗F ′′)∗◦GF . As (s, s′) ∈ GF ′,F ′′ then we know that

a Ćow from s to s′ can be deĄned by an alternating composition of elements of GF ′ and GF ′′ ,
i.e. without using elements of GF . Hence (z′, s) · (s, s′) ∈ GF,F ′⊗F ′′ and, by associativity
of composite open-guarantees (Lemma 3.1.4), (z′, s′) ∈ GF ⊗F ′,F ′′ . If (z, s′) ∈ AF ′ , then
s′ ∈ YF ′′ and, by (ii), s′ /∈ YF . Then, s′ ∈ XF ⊗F ′ and so (z, s′) ∈ AF ⊗F ′ . Hence, by
(z′, s′) ∈ GF ⊗F ′,F ′′ and (z, s′) ∈ AF ⊗F ′ , (z, z′) ∈ ÂF ⊗F ′,F ′′ . If (z, s′) ∈ AF ′′ , then, by
(z, s′) ∈ GF ⊗F ′,F ′′ , (z, z′) ∈ ÂF ⊗F ′,F ′′ .
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3. Information-flow Interfaces

Composition and Compatibility

We now have all the ingredients to deĄne interface composition, which we do below.
Not all compositions will result in a well-formed interface, for this reason, we introduce
the concept of two interfaces being compatible for composition: all requirements on
the environment concerning the interfacesŠ shared variables must be satisĄed by their
composite. In particular, we require that for all pairs in the interfacesŠ assumptions that
are not in the assumption of the composite (they point to shared variables), the composite
open-guarantee includes them (the Ćows are not in the composition of any of the interfacesŠ
implementations). Note that our notion of derived assumptions adds environmental
requirements that affect future compatibility checks. We add these requirements for all
pairs in the interfacesŠ assumptions, for which we cannot guarantee that the current
composite fully satisĄes them, ensuring that no no-Ćow requirement on the environment
is lost during composition.

Definition 3.1.8. The composition of two interfaces F and F ′ is the interface F ⊗F ′ =
(XF,F ′ , YF,F ′ ,AF ⊗F ′ ,GF ⊗F ′ ,PF ⊗F ′), where AF ⊗F is as in Definition 3.1.7, GF ⊗F is as

in Definition 3.1.5, and PF ⊗F ′ = PF ∪ PF ′ ∪ P̂AF ⊗F ′ ,GF ⊗F ′ . The interfaces F and F ′

are composable iff YF ∩ YF ′ = ∅; and they are compatible, denoted F ∼ F ′ iff they are
composable and ((AF ∪ AF ′) ∩ (ZF,F ′ × YF,F ′)) ⊆ GF ⊗F ′ .

Example: SCI Compatibility

wheel_tick
distw_b_s
distw_f_s

Sending

Sending′

wheel_tick
distw_b_s
distw_f_s

distw_b_t
distw_f_t

Bus′

odometerwheel_tick

distw_f_s
distw_b_s

Figure 3.7: Two interfaces Ű Sending
and Sending′ Űto specify components
sending data to the shared bus Ű Bus′.

In Figure 3.7, we depict two possible spec-
iĄcations for the components sending data
through the shared bus together with the
Bus′ interface from Figure 3.2. The inter-
face Sending has no guarantees, so it is
not compatible for composition with Bus′.
An interface is compatible for composition
with Bus′ if their composite open-guarantee
is sufficient to satisfy the Bus′ assumption
concerning their shared variables. In par-
ticular, it needs to guarantee that there are
no information Ćows from the wheel sensor
Ű wheel_tick Ű to both distance warners
source Ű distw_b_s and distw_f_s.

A system designer can use our theory to identify the source of incompatibility and
change the design accordingly. In this example, the designer reĄned the Sending
interface by adding to the open-guarantee the missing requirements (depicted by
Sending′).
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3.1. Stateless

Incremental Design of Systems

It is clear from our deĄnitions that both the composition operator and the compatibility
relation are commutative. The Ąrst property we prove about our composition operator is
that it preserves well-formedness, i.e., the composite of two well-formed interfaces is a
well-formed interface.

Theorem 3.1.6. Let F and F ′ be well-formed interfaces. If they are compatible, F ∼ F ′,
then their composition, F ⊗ F ′, defines a well-formed interface.

Proof. Consider arbitrary well-formed interfaces F and F ′, and assume they are com-
patible, F ∼ F ′. By deĄnition of composition, it follows that the composite assumption,
AF ⊗F ′ , and both the composite open- and closed-guarantee, GF ⊗F ′ and PF ⊗F ′ , are no-
Ćow relations (i.e. irreĆexive). We are only missing to prove that the closed-guarantee is
consistent with the assumption and the open-guarantee, i.e., (AF ⊗F •GF ⊗F ′)∩PF ⊗F ′ = ∅.

Before we proceed, we observe that any path alternating between elements in AF ⊗F ′ and
GF ⊗F ′ from any variable of F (or F ′) to an output variable of the same interface can be
translated to a path using only the complements of assumptions and open-guarantees of
F (or F ′). Formally, for compatible interfaces F and F ′:

(⋆) if (z, z′) ∈ ZF × YF and,
for some n ∈ N, (z, z′) ∈ (IdF,F ′ ∪ AF ⊗F ′) ◦ (GF ⊗F ′ ◦ AF ⊗F ′)n ◦ GF ⊗F ′ ,

then exists m ∈ N s.t. (z, z′) ∈ (IdZF
∪ AF ) ◦ (GF ◦ AF )m ◦ GF .

This property relies on the interfacesŠ compatibility requirement that assumptions to their
shared variables are covered by Ćows allowed by their composite open-guarantee. We prove
(⋆) by natural induction on n for compatible interfaces F and F ′. Let (z, z′) ∈ ZF × YF .

For the base case, n = 0, (z, z′) ∈ GF ⊗F ′ ∪ (AF ⊗F ′ ◦ GF ⊗F ′). We proceed by cases on the
(z, z′) domain.

If (z, z′) ∈ GF ⊗F ′ and, by z′ ∈ YF and Lemma 3.1.2, then the last Ćow of any path
from z to z′ must be in GF , i.e., (z, z′) ∈ (IdF,F ′ ∪ GF ′) ◦ (GF ◦ GF ′)∗ ◦ GF . Let (z, s) ∈
(IdF,F ′ ∪GF ′)◦(GF ◦GF ′)∗ and (s, z′) ∈ GF . If (z, s) = (s, s), then (z, z′) ∈ GF . Otherwise,
by the interfaces being compatible, their set of output variables are disjoint, and s ∈ YF ′

and s ∈ XF . Again by interfaces compatibility, (z, s) ∈ ZF,F ′ × YF,F ′ and (z, s) ∈ GF ⊗F ′ ,
then (z, s) /∈ ((AF ∪ AF ′) ∩ ZF ⊗F ′ × YF ⊗F ′). So, in particular, (z, s) /∈ AF and, by
s ∈ XF , (z, s) ∈ AF Hence, (z, z′) ∈ AF ◦ GF .

If (z, z′) ∈ AF ⊗F ′ ◦ GF ⊗F ′ , then, by z′ ∈ YF and Lemma 3.1.2, (z, z′) ∈ AF ⊗F ′ ◦ (IdF,F ′ ∪
GF ′) ◦ (GF ◦ GF ′)∗ ◦ GF . Consider arbitrary:

(z, s) ∈ AF ⊗F ′ , (s, s′) ∈ (IdF,F ′ ∪ GF ′) ◦ (GF ◦ GF ′)∗ and (s′, y) ∈ GF .
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3. Information-flow Interfaces

If (s, s′) = (s′, s′), then (z, s′) ∈ AF ⊗F ′ and (s′, y) ∈ GF . As (z, s′) ∈ AF ⊗F ′ , then s′ is
an input variable of both interfaces (s′ ∈ XF ⊗F ′) and, by (s′, y) ∈ GF and deĄnition
of interface, s′ must be an input variable of F (s′ ∈ XF ). Then, by (z, s′) ∈ AF ⊗F ′

and deĄnition of composite assumptions, (z, s′) /∈ AF . So, by s′ ∈ XF , (z, s′) ∈ AF . If
(s, s′) ̸= (s′, s′), by interfaces compatibility, s′ ∈ YF ′ and s′ ∈ ZF , then s′ ∈ XF . Assume
towards a contradiction that (z, s′) ∈ AF . Then, by deĄnition of derived assumptions and
(s, s′) ∈ GF ⊗F ′ , (z, s) ∈ ÂF,F ′ . As (z, s) ∈ AF ⊗F ′ , then s ∈ XF ⊗F ′ and (z, s) ∈ AF ⊗F ′ .
This contradicts (z, s) ∈ AF ⊗F ′ . Hence (z, s′) /∈ AF and so (z, z′) ∈ AF ◦ GF .

The induction step is proved by applying the induction hypothesis followed by a proof
analogous to the base case.

With (⋆) proved, we proceed to prove (AF ⊗F • GF ⊗F ′) ∩ PF ⊗F ′ = ∅. Consider arbitrary
(z, z′) ∈ AF ⊗F • GF ⊗F ′ . By deĄnition of derived closed-guarantee, (z, z′) /∈ P̂AF ⊗F ′ ,GF ⊗F ′ .
We are only missing to prove that (z, z′) /∈ PF ∪ PF ′ . Note that the domain of PF and
PF ′ is ZF ×YF and ZF ′ ×YF ′ , respectively. If (z, z′) is not in the union of these domains,
then (z, z′) /∈ PF ∪PF ′ . Let (z, z′) ∈ (ZF ×YF )∪ (ZF ′ ×YF ′). Note that, by Lemma 3.1.2,
(z, z′) ∈ (IdZF,F

∪ AF ⊗F ′) ◦ (GF ⊗F ′ ◦ AF ⊗F ′)∗ ◦ GF ⊗F ′ .

Now, if we consider the case that z′ ∈ YF , then, by the interfaces being compatible,
z′ /∈ YF ′ . Thus, (z, z′) ∈ ZF × YF , (z, z′) /∈ ZF ′ × YF ′ and, by deĄnition of interface,
(z, z′) /∈ PF ′ . By (z, z′) ∈ ZF ×YF , F ∼ F and (⋆), (z, z′) ∈ (IdZF,F ′ ∪AF )◦(GF ◦AF )∗◦GF ,
i.e., (z, z′) ∈ AF • GF . Hence, by F being well-formed, (z, z′) /∈ PF , as well. The case for
z′ ∈ YF ′ is analogous.

We prove next that well-formed interfaces support the incremental design of systems.

Theorem 3.1.7 (Incremental design). Let F , F ′ and F ′′ be interfaces. If F ∼ F ′ and
(F ⊗ F ′) ∼ F ′′, then F ′ ∼ F ′′ and F ∼ (F ′ ⊗ F ′′).

Proof. Consider arbitrary interfaces F , F ′ and F ′′, such that (i) F ∼ F ′; and (ii)
F ⊗F ′ ∼ F ′′. Note that from our initial assumptions (iii) all three interfaces have disjoint
sets of output variables.

We start by proving that F ′ ∼ F ′′. As noted in (iii), YF ′ ∩ YF ′′ = ∅, i.e. F ′ and F ′′

are composable. We are missing to prove that their assumptions are supported by
the composite open-guarantees, i.e., ((AF ′ ∪ AF ′′) ∩ (ZF ′,F ′′ × YF ′,F ′′)) ⊆ GF ′⊗F ′′ . Let
(z, s) ∈ XF ′,F ′′ ×YF ′,F ′′ and (z, s) ∈ AF ′ ∪AF ′′ . Note that by (i) and (ii), s /∈ YF . We want
to prove that (z, s) is in the composite open-guarantee. As s /∈ YF and, by deĄnition of
composite assumptions, if (z, s) ∈ AF ′ , then (z, s) ∈ AF ⊗F ′ . Then, (z, s) ∈ AF ⊗F ′ ∪ AF ′′

and, by the compatibility between the interfaces (ii), (z, s) ∈ GF ⊗F ′,F ′′ . By monotonicity
of composite open-guarantees, GF ′⊗F ′′ ⊆ GF,F ′⊗F ′′ and, by their associativity (Lemma
3.1.4), GF ′⊗F ′′ ⊆ GF ⊗F ′,F ′′ . Then, by (z, s) /∈ GF ⊗F ′,F ′′ , we have (z, s) /∈ GF ′⊗F ′′ and, so,
(z, s) ∈ GF ′⊗F ′′ .
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3.1. Stateless

We prove now that F ∼ F ′ ⊗ F ′′. From (iii), YF ∩ YF ′⊗F ′′ = ∅, i.e. F and F ′ ⊗ F ′′ are
composable. We are missing to prove that ((AF ∪ AF ′⊗F ′′) ∩ (XF,F ′⊗F ′′ × YF,F ′⊗F ′′)) ⊆
GF,F ′⊗F ′′ . Consider arbitrary (z, s) ∈ XF,F ′⊗F ′′ ×YF,F ′⊗F ′′ s.t. (z, s) ∈ AF ∪ AF ′⊗F ′′ . We
prove that (z, s) ∈ GF,F ′⊗F ′′ by cases in the (z, s) domain.

We start with the case that (z, s) ∈ AF . Then, s is an input variable of F , s ∈ XF , and,
by deĄnition of information-Ćow interfaces, s /∈ YF . If s ∈ YF ′ , then, s is a shared variable
between F and F ′ and, by their compatibility (assumption (i)), (⋆) (z, s) ∈ GF ⊗F ′ . Assume
towards a contradiction that (z, s) /∈ GF,F ′⊗F ′′ . So, (z, s) ∈ GF,F ′⊗F ′′ . By associativity of
composite open guarantees (Lemma 3.1.4), (z, s) ∈ GF ⊗F ′,F ′′ . By s ∈ YF ⊗F ′ and Lemma
3.1.2, there exists a variable s′ s.t. (z, s) = (z, s′) · (s′, s) with:

(⋆⋆) (z, s′) ∈ (IdZF ⊗F ′,F ′′ ∪ GF ′′) ◦ (GF ⊗F ′ ◦ GF ′′)∗ and (s′, s) ∈ GF ⊗F ′ .

By (z, s) ∈ AF and (s′, s) ∈ GF ⊗F ′ , then (z, s′) ∈ ÂF,F ′ . If (z, s′) ∈ IdZF ⊗F ′,F ′′ , then z =

s′ and (z, s) ∈ GF ⊗F ′ , which contradicts (⋆). Otherwise, s′ ∈ YF ′′ and, by the interfaces
compatibility (assumption (ii)), then s′ ∈ XF ⊗F ′ . Then, by (z, s′) ∈ ÂF,F ′ and deĄnition
of composition, (z, s′) ∈ AF ⊗F ′ . As s′ ∈ XF ⊗F ′ ∩ YF ′′ and by (ii), (z, s′) ∈ GF ⊗F ′,F ′′ ,
which contradicts (⋆⋆). Hence (z, s) /∈ GF,F ′⊗F ′′ , i.e. (z, s) ∈ GF,F ′⊗F ′′ . For the case that
(z, s) ∈ AF and s ∈ YF ′′ , by (ii), s ∈ XF ⊗F ′ , (z, s) ∈ AF ⊗F ′ and (z, s) ∈ GF ⊗F ′,F ′′ . Then,
by associativity of composite Ćows (Lemma 3.1.4), (z, s) ∈ GF,F ′⊗F ′′ .

When (z, s) ∈ AF ′⊗F ′′ , then, s ∈ XF ′⊗F ′′ and we proceed by cases on the deĄnition of
composite assumption. Note that, by the sets of output variables being disjoint, we
are only interested in the cases where s ∈ YF . If (z, s) ∈ AF ′ , then it is analogous to
the previous case where (z, s) ∈ AF and s ∈ YF ′ . If (z, s) ∈ AF ′′ , then previous case
where (z, s) ∈ AF and s ∈ YF ′′ . Otherwise, (z, s) ∈ ÂF ′,F ′′ , and, by monotonicity of
derived assumptions (Lemma 3.1.5), (z, s) ∈ ÂF ⊗F ′,F ′′ . Then, by (ii) and s ∈ YF ⊗F ′,F ′′ ,
(z, s) /∈ GF ⊗F ′,F ′′ , i.e., (z, s) /∈ GF,F ′⊗F ′′ (Lemma 3.1.4).

We go now a step further from incremental design of systems and prove that composition
between well-formed interfaces is also associative. Note that incremental design only
requires interfacesŠ compatibility for composition to be independent of the order we check
for compatibility. By satisfying associativity, we guarantee additionally that we always
get the same outcome no matter the order in which we compose the interfaces.

Theorem 3.1.8. If F ∼ F ′ and F ⊗ F ′ ∼ F ′′, then (F ⊗ F ′) ⊗ F ′′ = F ⊗ (F ′ ⊗ F ′′).

Proof. Consider arbitrary interfaces F , F ′ and F ′′. Assume that F ∼ F ′ and F⊗F ′ ∼ F ′′.
Then, by Theorem 3.1.7, (⋆) F ′ ∼ F ′′ and F ∼ F ′ ⊗ F ′′. By deĄnition of composition,
(†) XF ⊗F ′,F ′′ = XF,F ′⊗F ′′ , YF ⊗F ′,F ′′ = YF,F ′⊗F ′′ , and ZF ⊗F ′,F ′′ = ZF,F ′⊗F ′′ . And, by
Lemma 3.1.4, GF ⊗F ′,F ′′ = GF,F ′⊗F ′′ . Using our initial assumptions, (⋆), Lemma 3.1.5 and
(†), it follows: AF ⊗F ′,F ′′ = AF,F ′⊗F ′′ . Then, (⋆⋆) P̂AF ⊗F ′,F ′′ ,GF ⊗F ′,F ′′ = P̂AF,F ′⊗F ′′ ,GF,F ′⊗F ′′ .
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3. Information-flow Interfaces

And, by our initial assumptions and (⋆), it follows:

PF ⊗F ′,F ′′ =PF ∪ PF ′ ∪ PF ′′ ∪ P̂AF ′⊗F ′′ ,PF ′⊗F ′′ ∪

P̂AF,F ′⊗F ′′ ,PF,F ′⊗F ′′ = PF,F ′⊗F ′′ .

Note that by (⋆⋆) and deĄnition of derived closed-guarantees:

P̂AF ′⊗F ′′ ,PF ′⊗F ′′ ⊆ P̂AF,F ′⊗F ′′ ,PF,F ′⊗F ′′ .

Example: SCI Top-down Design

We present a step-by-step top-down design of our Ąrst running example Ű the
shared communication infrastructure Ű depicted in the Figure 3.8 below.

distw_b_t
distw_f_t

odometer

distw_f_s
distw_b_s
wheel_tick

Bus

wheel_tick
distw_b_s
distw_f_s distw_f_t

distw_b_t
odometer

Receiving

distw_f_t
distw_b_t

odometer

Braking System

Odometer

distw_f_t
distw_b_t
odometer

distw_f_s

wheel_tick
distw_b_s

Bus′

Sending

distw_b_t
distw_f_t

Bus′

odometer

distw_f_s

wheel_tick
distw_b_s

distw_f_t
distw_b_t

odometer

ReceivingSending′

wheel_tick
distw_b_s

distw_f_s odometerdistw_b_tdistw_b_s distw_f_twheel_tick

distw_f_s

Sending′

distw_f_s

distw_b_s

wheel_tick

Receiving

1.

2.

3.

d
ec
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e
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d
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fi
n
e

Figure 3.8: Top-down design of a shared communication infrastructure.

The top-most interface is a closed-interface (i.e., all of its variables are output
variables) that speciĄes our main design goal: information from the wheel sensor
– wheel_tick– should not flow to the target of the distance warners – distw_b_t
and distw_b_s.

In the Ąrst design step, the designer splits the closed-system into three interfaces:
one for the shared communication infrastructure Ű Bus; one for the components

40

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


3.1. Stateless

that send information to the bus Ű Sending; and one for the components that
receive information from the bus Ű Receiving. This is a naive split, as the designer
just keeps the (open- and closed-) guarantees from the closed-system speciĄcation.
However, because Bus interface speciĄes an open-system, assumptions are missing
to support its closed-guarantee. Note that information from the wheel sensor can
Ćow from one of the distance warnersŠ targets by a Ćow from the wheel sensor to
one of the distance warnersŠ sources through the environment. Hence Bus is not a
well-formed interface.

To Ąx this issue, identiĄed by our framework, the designer adds new requirements
to the Bus assumption, as shown in Bus′ in the second reĄnement step. Now, for
the Sending interface to be compatible with Bus′, it needs to guarantee that there
are no Ćows from the wheel sensor to the source of the distance warners. In the
second design step, we add this requirement as an open-guarantee, speciĄed in the
interface Sending′.

The Ąnal step splits the Sending′ and Receiving into their functional roles. Note
that if we compose the three interfaces at the sending side, our composition
operator derives that there are no information Ćows between all output variables.
Using the reĄnement relation that we will deĄne in the next section, we infer that
the composition of the interfaces inside the Sending′ box in the third step is indeed
a reĄnement of Sending′ in the second step.

3.1.2 Refinement and Independent Implementability

Intuitively, an interface F ′ reĄnes an interface F , denoted F ′ ⪯ F , when F ′ admits all
environments of F (and maybe more) while guaranteeing a subset of F Šs implementations.
As we specify information-Ćow interfaces with no-Ćow relations and components with
Ćow relations, then F ′ admits a superset of F Šs environments if the assumption of F ′ is
a subset of F Šs assumption (i.e., the subset relation direction is reversed).

Definition 3.1.9. Interface F ′ = (X,Y,A′,G′,P ′) reĄnes F = (X,Y,A,G,P), written
F ′ ⪯ F , when AF ′ ⊆ AF , GF ⊆ GF ′ and PF ⊆ PF ′.

By deĄnition of implementations and reĄnement, it follows directly that for all components
f that implement reĄnements of F , F ′ ⪯ F and f ♣=′

F , then they are an implementation
of F , f ♣=F , too. And, likewise, for permissible environments: for all components fE that
are permissible environments of F , fE ♣=F , and all of F Šs reĄnements, F ′ ⪯ F , then the
component fE is permissible environment of F ′, fE ♣=′

F , too.

We prove below that the reĄnement relation is preserved during composition, i.e., they
support independent implementability of systems.

Theorem 3.1.9 (Independent implementability). For all well-formed interfaces F ′
1, F1

and F2, if F ′
1 ⪯ F1 and F1 ∼ F2, then F ′

1 ∼ F2 and F ′
1 ⊗ F2 ⪯ F1 ⊗ F2.
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3. Information-flow Interfaces

Proof. Consider arbitrary interfaces F1, F ′
1 and F2. Assume that F ′

1 ⪯ F1 and F1 ∼ F2.
By F ′

1 ⪯ F1: (i) AF ′
1

⊆ AF1
; (ii) GF1

⊆ GF ′
1
; and (iii) PF1

⊆ PF ′
1
.

By (i), (AF ′
1

∪ AF2
) ⊆ (AF1

∪ AF2
). By (ii), GF ′

1
⊆ GF1

and, by deĄnition of no-Ćows
composition, GF ′

1
• GF2

⊆ GF1
• GF2

. So by deĄnition of composite open-guarantees,
GF1⊗F2

⊆ GF ′
1
⊗F2

. So, by F1 ∼ F2, it follows ((AF ′
1

∪ AF2
) ∩ (XF1,F2

× YF1,F2
)) ⊆ GF ′

1
⊗F2

.
Hence F ′

1 ∼ F2.

We prove now that F ′
1 ⊗ F2 ⪯ F1 ⊗ F2. First, we note that above we prove that

(⋆) GF1⊗F2
⊆ GF ′

1
⊗F2

. Then, by (i) and deĄnition of derived assumptions, ÂF ′
1
,F2

⊆ ÂF1,F2
.

So, (⋆⋆) AF ′
1
⊗F2

⊆ AF1⊗F2
. We are only missing to prove that PF1⊗F2

⊆ PF ′
1
⊗F2

. Consider
arbitrary (z, y) ∈ PF1⊗F2

. If (z, y) ∈ PF1
∪ PF2

, then, by (iii), (z, y) ∈ PF ′
1

∪ PF2
. If

(z, y) ∈ P̂AF1⊗F2
,GF1⊗F2

, then, by deĄnition of derived closed-guarantees: (i) (z, y) ∈

GF1⊗F2
, and (ii) (z, y) /∈ (IdZF1,F2

∪ AF1⊗F2
) ◦ (GF1⊗F2

◦ AF1⊗F2
)∗ ◦ GF1⊗F2

. We showed
earlier that GF1⊗F2

⊆ GF ′
1
⊗F2

, then (z, y) ∈ GF ′
1
⊗F2

, as well. We want to prove that if
(z, y) is not in the Ćows of the closed system deĄned by F1 ⊗ F2, then changing F1 with
one of its reĄnements will not change that. Formally, we prove by induction that for all
n ∈ N and (z, y) ∈ GF1⊗F2

:

if (z, y) /∈ (Id ∪ AF1⊗F2
) ◦ (GF1⊗F2

◦ AF1⊗F2
)n ◦ GF1⊗F2

then (z, y) /∈ (Id ∪ AF ′
1
⊗F2

) ◦ (GF ′
1
⊗F2

◦ AF ′
1
⊗F2

)n ◦ GF ′
1
⊗F2

.

We start with the base case n = 0. Consider arbitrary (z, y) ∈ GF1⊗F2
s.t. (z, y) /∈

(AF1⊗F2
◦ GF1⊗F2

) ∪ GF1⊗F2
. If (z, y) /∈ GF1⊗F2

, then, by (⋆), the statement holds. If
(z, y) /∈ (AF1⊗F2

◦ GF1⊗F2
), then, for all (z, s) ∈ AF1⊗F2

we have (s, y) /∈ GF1⊗F2
(i.e.,

(s, y) ∈ GF1⊗F2
). Then, by (⋆) and (⋆⋆), for all (z, s) ∈ AF ′

1
⊗F2

we have (s, y) /∈ GF ′
1
⊗F2

.

Thus, (z, y) /∈ AF ′
1
⊗F2

◦ GF ′
1
⊗F2

, as well.

For the induction step, we assume as induction hypothesis (IH) that the statement
holds for n. Let (z, y) /∈ (Id ∪ AF1⊗F2

) ◦ (GF1⊗F2
◦ AF1⊗F2

)n+1 ◦ GF1⊗F2
. By (IH),

(z, y) /∈ (Id∪AF ′
1
⊗F2

)◦(GF ′
1
⊗F2

◦AF ′
1
⊗F2

)n◦GF ′
1
⊗F2

◦AF1⊗F2
◦GF1⊗F2

. Then, for all (z, s) ∈

(Id∪AF ′
1
⊗F2

)◦(GF ′
1
⊗F2

◦AF ′
1
⊗F2

)n ◦GF ′
1
⊗F2

we have (s, y) /∈ AF1⊗F2
◦GF1⊗F2

. By the same

reasoning applied to the base case, then for all (z, s) ∈ (Id∪AF ′
1
⊗F2

)◦(GF ′
1
⊗F2

◦AF ′
1
⊗F2

)n◦

GF ′
1
⊗F2

with (s, y) /∈ AF ′
1
⊗F2

◦GF ′
1
⊗F2

. Thus, (z, y) /∈ (Id∪AF ′
1
⊗F2

)◦(GF ′
1
⊗F2

◦AF ′
1
⊗F2

)n+1

◦GF ′
1
⊗F2

. Hence by deĄnition of derived closed-guarantees, PF1⊗F2
⊆ PF ′

1
⊗F2

. And, by
deĄnition of reĄnement, F ′

1 ⊗ F2 ⪯ F1 ⊗ F2.
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3.1. Stateless

Example: CAN bus Bottom-up Verification

We illustrate in Figure 3.9 how our framework can aid the bottom-up veriĄcation
of the communication between the immobilizer and the ECU using a CAN bus.
We start by extracting four components: for the key storage implementation Ű fkey;
for the ECU functionality related to the immobilizer Ű fecu; for the immobilizer Ű
fimm; and for the CAN bus Ű fcan.

ecu

key

can

imm

key

can

ecu

imm

can

deb

Fkey FcanFecu Fimm

key ecu

key

can

imm

key

can

ecu

imm

can

deb

fkey fecu fimm fcan

key

Fcan

can

deb

ecu

immcan

key
ecu

imm
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key

ecu immcan debkey

F

im
p
le

m
en

ts

1.

2.
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e
an

d
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st
ra

ct

Figure 3.9: Bottom-up veriĄcation of a CAN bus implementation.

In this example, the key storage solution and the CAN bus are provided by
third parties (depicted with white boxes). We assume that they have all possible
Ćows between their variables. In contrast, both the ECU and the immobilizer
are implemented in-house. We derive, using other tools like model checking or
simulation, that in current implementations information only Ćows from the input
can to both the ecu and the imm output variables. The designer speciĄes the
interfaces Fecu and Fimm with the respective components implementing them.

After specifying the information-Ćow interfaces for each component, we use our
composition operator to compose the two interfaces specifying in-house components,
deĄning the interface Fteam. We are then able to identify four no-Ćows of the
open system speciĄed by Fteam, with two of them remaining no-Ćows in the closed
system. Finally, in the last step, we compose the remaining three interfaces
using our framework to guarantee that our in-house implementation is compatible
with any possible implementation of the key storage and the CAN bus, with the
guarantee that there will be no information-Ćow from key to can and deb.
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3. Information-flow Interfaces

3.1.3 Shared Refinement

We introduce a shared refinement operator that supports the shared implementability of
interfaces: the same interface may specify different parts of a design or even different
parts from different designs. The goal is to allow the seamless reuse of implementations.
Two interfaces, F and F ′, are shared refinable if an interface that reĄnes them both
exist. A shared interface between F and F ′ must work on all the environments they
permit, while their implementations must satisfy both interfacesŠ guarantees. The shared
reĄnement operator computes the greatest lower bound in the lattice deĄned by the
reĄnement relation on information-Ćow interfaces.

To guarantee that a shared reĄnement between two information-Ćow interfaces F and F ′

can be placed in any of their environments, the shared interface assumption must be a
subset of the intersection of F and F ′ assumptions. As the shared interface must satisfy
all requirements on F and F ′ guarantees, it may be the case that the shared interface
misses a pair in its assumption that is necessary to satisfy one of the no-Ćows in the
closed-guarantee of either F or F ′. For this reason, we introduce derived open-guarantees:
for each no-Ćow pair (z, x) in the assumption of either F and F ′ that cannot be in their
shared interface and is necessary to satisfy a no-Ćow (x, y) requirement on the closed
systems, we derive the no-Ćow (x, y) requirement over implementations.

Definition 3.1.10. Let F and F ′ be two interfaces such that XF = XF ′ and YF = YF ′.
The derived open-guarantee of F and F ′ is:

ĜF,F ′ = ¶(x, y) ♣ (z, x) /∈ AF ∩ AF ′ and (z, y) ∈ PF ∪ PF ′♢.

The shared reĄnement of F and F ′, denoted F ⊓ F ′, is:

F ⊓ F ′ = (XF , YF ,AF ∩ AF ′ ,GF ∪ GF ′ ∪ ĜF,F ′ ,PF ∪ PF ′).

We prove that if interfaces are well-formed, then their shared reĄnement is well-formed,
as well. Additionally, we show that the shared reĄnement between two interfaces is the
most abstract well-formed interface reĄning the given interfaces.

Theorem 3.1.10. Let F , F ′ and F ′ be well-formed interfaces. F ⊓ F ′ is a well-formed
interface; and if F ′′ ⪯ F and F ′′ ⪯ F ′, then F ′′ ⪯ F ⊓ F ′.

Proof. Consider arbitrary well-formed interfaces F , F ′ and F ′′. We start by proving that
F ⊓ F ′ is a well-formed interface. By deĄnition of shared reĄnement:

(⋆) GF ⊓F ′ ⊆ GF ∩ GF ′ and AF ∪ AF ′ = AF ⊓F ′ .

Consider arbitrary (z, y) ∈ PF ⊓F ′ . We start with the case that (z, y) ∈ PF . Assume
towards a contradiction that: (z, y) ∈ ((IdZ ∪ AF ⊓F ′) ◦ (GF ⊓F ′ ◦ AF ⊓F ′)∗ ◦ GF ⊓F ′). We
prove next that (z, y) ∈ ((IdZ ∪ AF ) ◦ (GF ◦ AF )∗ ◦ GF ), which contradicts our initial
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3.2. Stateful

assumption that F is well-formed. SpeciĄcally, we prove the following statement about
alternated paths, for all well-formed interfaces F with (z, y) ∈ PF , and for all n ∈ N:

if (z, y) ∈ ((IdZ ∪ AF ⊓F ′) ◦ (GF ⊓F ′ ◦ AF ⊓F ′)n ◦ GF ⊓F ′),

then (z, y) ∈ ((IdZ ∪ AF ) ◦ (GF ◦ AF )n ◦ GF ).

For the base case (n = 0), we assume that (z, y) ∈ GF ⊓F ′ ∪ (AF ⊓F ′ ◦ GF ⊓F ′).

If (z, y) ∈ GF ⊓F ′ , then by (⋆), (z, y) ∈ GF .

If (z, y) ∈ AF ⊓F ′ ◦ GF ⊓F ′ , then we consider arbitrary (z, s) ∈ AF ⊓F ′ with (s, y) ∈ GF ⊓F ′ .
Then, (s, y) ∈ GF . By our assumption that F is well-formed and (z, y) ∈ PF , then,
by deĄnition of derived open-guarantees, (s, y) ∈ ĜF,F ′ . Thus, by deĄnition of shared
reĄnement, it cannot be the case that (s, y) ∈ GF ⊓F ′ , and so (z, y) /∈ AF ⊓F ′ ◦ GF ⊓F ′ .

For the induction step, we assume as induction hypothesis the statement to hold for n.
Consider arbitrary (z, y) ∈ ((IdZ ∪ AF ⊓F ′) ◦ (GF ⊓F ′ ◦ AF ⊓F ′)n+1 ◦ GF ⊓F ′). By induction
hypothesis: (z, y) ∈ ((IdZ ∪ A) ◦ (G ◦ A)n ◦ G ◦ AF ⊓F ′ ◦ GF ⊓F ′). Then, we can prove
analogously to the base case that for all (z, s) ∈ ((IdZ ∪ AF ) ◦ (G ◦ AF )n ◦ GF and
(s, y) ∈ AF ⊓F ′ ◦ GF ⊓F ′ , we have (s, y) ∈ AF ◦ GF .

We prove analogously for the case that (z, y) ∈ PF ′ .

We prove now that F ′′ ⪯ F ⊓ F ′. Consider arbitrary F ′′ s.t. F ′′ ⪯ F and F ′′ ⪯ F ′.
Then, by deĄnition of reĄnement: (i) AF ′′ ⊆ AF and AF ′′ ⊆ A′

F ; and (ii) PF ⊆ PF ′′ and
PF ′ ⊆ PF ′′ . Then, AF ′′ ⊆ AF ∩ AF ′ and PF ∪ PF ′ ⊆ PF ′′ . We are missing to prove that
GF ∪ GF ′ ∪ ĜF,F ′ ⊆ GF ′′ .

Assume towards a contradiction that there exists (z, y) ∈ GF ∪GF ′ ∪ĜF,F ′ s.t. (z, y) /∈ GF ′′ .

If (z, y) ∈ GF ∪ GF ′ then, by F ′′ ⪯ F and F ′′ ⪯ F ′, (z, y) ∈ GF ′′ . This is a contradiction.

Consider the case that (z, y) ∈ ĜF,F ′ . Then, by deĄnition of derived open-guarantees, there
exists (z′, z) /∈ AF ∩ AF ′ s.t. (z′, y) ∈ PF . By F ′′ ⪯ F , (z′, y) ∈ PF ′′ and (z′, z) /∈ AF ′′ .
Then, by (z′, z) ∈ AF ′′ and (z, y) ∈ GF ′′ , (z′, y) ∈ AF ′′ ◦ GF ′′ . This contradicts our
assumption that F ′′ is well-formed because (z′, y) ∈ PF ′′ . Hence F ′′ ⪯ F ⊓ F ′.

3.2 Stateful

In this section, we extend our theory to allow dynamic changes in the requirements of
secure information Ćow. In particular, we introduce stateful information-Ćow interfaces
and components, which are transition systems where each state is a stateless component
or interface, respectively.

Definition 3.2.1. Let X and Y be disjoint sets of input and output variables, respectively,
with Z = X∪Y the set of all variables. Let Q be a set of states with q̂ ∈ Q being the initial
state and δ : Q → 2Q be a transition relation. A stateful information-Ćow component
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3. Information-flow Interfaces

❢ is a tuple (X,Y,Q, q̂, δ,M), where M : Q → 2Z×Y is a state labeling such that for
all states q ∈ Q, M(q) defines a flow relation. We denote by ❢(q) = (X,Y,M(q)) the
stateless component implied by the labeling of q. A stateful information-Ćow interface F is
a tuple (X,Y,Q, q̂, δ,A,G,P), where A : Q → 2Z×X is called assumption; G : Q → 2Z×Y

is called open-guarantee; and P : Q → 2Z×Y is called closed-guarantee. For each state
q ∈ Q we denote by F(q) = (X,Y,A(q),G(q),P(q)) the stateless interface defined by the
assumption, open-guarantee and closed-guarantee of q.

A stateful interface F is well-formed iff F(q̂) is a well-formed stateless interface, and
for all states q ∈Q reachable from the intial state q̂ the stateless interface deĄned
by the state q, F(q), is well-formed. In what follows, F = (X,Y,Q, q̂, δ,A,G,P) and
F′ = (X ′, Y ′, Q′, q̂′, δ′,A′,G′,P′) are stateful interfaces, and ❢ = (X,Y,Q❢ , q̂❢ , δ❢ ,M) and
❢E = (Y,X,QE , q̂E , δE ,E) are stateful components.

We say that a stateful component ❢ implements a stateful interface F if there exists a
simulation relation from ❢ to F, where each stateless component implements the stateless
interface they are related to by the simulation relation. As for permissible environments,
we require a simulation relation from the interface they are permissible on to the stateful
component we want to check if it is a permissible environment.

Definition 3.2.2. Let F = (X,Y,Q, q̂, δ,A,G,P) be a stateful information-flow interface.
A component ❢ = (X,Y,Q❢ , q̂❢ , δ❢ ,M) implements the interface F, denoted by ❢ ♣=G F, iff
there exists H ⊆ Q❢ ×Q s.t. (q̂❢ , q̂) ∈H and for all (q❢ , q) ∈ H:

• ❢(q❢) ♣=G(q) F(q) with F(q) = (X,Y,A(q),G(q),P(q)); and

• if q′
❢

∈ δ❢(q❢), then there exists a state q′ ∈ δ(q) s.t. (q′
❢
, q′) ∈H.

A component ❢E = (Y,X,QE , q̂E , δE ,E) is an permissible environment for the interface F,
denoted by ❢E ♣=A F, iff there exists a relation H ⊆ Q × QE s.t. (q̂, q̂E) ∈H and for all
(q, qE) ∈ H:

• ❢(qE) ♣=A(q) F(q) with F(q) = (X,Y,A(q),G(q),P(q)); and

• if q′ ∈ δF(q), then there exists a state q′
E ∈ δE(qE) s.t. (q′, q′

E) ∈H.

As for stateless interfaces, a well-formed stateful interface guarantees that its closed-
guarantee holds under the composition between any of its implementations ❢ with any of
its permissible environments ❢E .

Proposition 3.2.1. For all well-formed interfaces F, and all relations H ⊆ Q❢ ×Q and
HE ⊆ Q×QE that witness ❢ ♣=G F and ❢E ♣=A F, respectively, it holds:

(a) (M(q̂❢) ∪ E(q̂E))∗ ∩ P(q̂) = ∅; and

(b) for all q ∈ Q that are reachable from q̂, if (q❢ , q) ∈H and (q, qE) ∈HE , then (M(q❢)∪
E(qE))∗ ∩ P(q) = ∅.
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3.2. Stateful

Proof. Consider arbitrary well-formed interface F = (X,Y,Q, q̂, δ,A,G,P), and compo-
nents ❢ = (X,Y,Q❢ , q̂❢ , δ❢ ,M) and ❢E = (Y,X,QE , q̂E , δE ,E). We assume that (i) ❢ ♣=G F

and H ⊆ Q❢ ×Q witnesses it; and (ii) ❢E ♣=A F and HE ⊆ Q×QE is a relation witnessing it.
Item (a) follows from Proposition 3.1.1 for stateless interfaces. For the item (b), consider
arbitrary state q ∈ Q that is reachable from the initial state q̂. Additionally, consider
arbitrary q❢ and qE s.t. (q❢ , q) ∈ H and (q, qE) ∈ HE . By our initial assumptions (i) and
(ii), ❢(q❢) ♣=G(q) F(q) and ❢E(qE) ♣=A(q) F(q). By F being well-formed and by q being
accessible from the initial state q̂, then F(q) is a well-formed (stateless) interface. Hence,
by Proposition 3.1.1 for stateless interfaces, it follows that (M(q❢)∪E(qE))∗∩P(q) = ∅.

3.2.1 Composition and Incremental Design

The composition between stateful interfaces or components is simply the synchronous
product between their states.

Definition 3.2.3. Let F = (X,Y,Q, q̂, δ,A,G,P) and F = (X ′, Y ′, Q′, q̂′, δ′,A′,G′,P′) be
stateful information-flow interfaces. Their composition is defined as the tuple:

F ⊗full F
′ = (XF,F′ , YF,F′ , QF,F′ , q̂F,F′ , δF,F′ ,AF,F′ ,GF,F′ ,PF,F′)

where: q̂F,F′ = (q̂, q̂′) and QF,F′ = ¶q̂F,F′♢ ∪ ¶(q, q′) ♣ F(q) ∼ F′(q′)♢; (q2, q
′
2) ∈

δF,F′(q1, q
′
1) iff q2 ∈ δ(q1) and q′

2 ∈ δ′(q′
1); assumption and guarantees are defined by

the stateless composition of their respective states, formally for all (q, q′) ∈QF,F′ we have
(XF,F′ , YF,F′ ,A(q, q′),G(q, q′),P(q, q′)) = F(q) ⊗ F′(q′).

As we proved before for stateless interfaces in Proposition 3.1.3, we prove below that the
composition of stateful information-Ćow interfaces preserves all the implementations of
the interfaces being composed. The proof below exempliĄes how to deĄne the relation
witnessing the composite implementation by combining the relations of the composed
interfaces.

Proposition 3.2.2. Let F and F′ be stateful information-flow interfaces with open-
guarantees G and G′, respectively. If ❢ ♣=G F and ❢

′ ♣=G F′, then ❢ ⊗ ❢
′ ♣=G

F,F′ F ⊗full F
′,

where GF,F′ is the composite open-guarantee of F and F′.

Proof. Assume that: (i) ❢ ♣=G F and (ii) ❢
′ ♣=G F′. Then, there exists H❢ and H❢′ that

witnesses (i) and (ii), respectively. Consider the relation: H = ¶((q❢ , q❢′), (qF, qF′)) ♣
qF ∈ H❢(q❢) and qF′ ∈ H❢′(q❢′)♢. Clearly, by (i) and (ii), ((q̂❢ , q̂❢′), (q̂F, q̂F′)) ∈ H. Then,
❢(q̂❢) ♣=G(q̂F) F(q̂F) and ❢(q̂❢′) ♣=G′(q̂

F′ ) F′(q̂F′). So, by Proposition 3.1.3 for stateless
interfaces, it follows that ❢(q̂❢) ⊗ ❢

′(q̂❢′) ♣=G
F,F′ (q̂F,F′ ) F(q̂F) ⊗ F′(q̂F′). Consider arbitrary

((q❢ , q❢′), (qF, qF′)) ∈ H. Then, by (i) and (ii), there exists (q❢ , qF) ∈ H❢ s.t. ❢(q❢) ♣=G(qF)

F(qF), and there exists (q❢′ , qF′) ∈ H❢′ s.t. ❢(q❢′) ♣=G(q
F′ ) F(qF′). Thus, by deĄnition of H,

((q❢ , q❢′), (qF, qF′)) ∈ H. And, by by Proposition 3.1.3, q❢ ⊗q❢′ ♣=G
F,F′ (qF,q

F′ ) F(qF)⊗F′(qF′).

Hence, H is a simulation relation for ❢ ⊗ ❢
′ ♣=G′ F ⊗full F

′.
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3. Information-flow Interfaces

Compatibility between two stateful interfaces boils down to checking if all stateless inter-
faces reachable from the initial state that will be composed together during composition
are themselves compatible. Recall that we keep only states deĄned by the composition
of compatible stateless interfaces during the composition of stateful interfaces. Hence,
to check for compatibility, we only need to check if the initial state of the composite
is deĄned by compatible stateless interfaces. Formally, two stateful information-Ćow
interfaces, F and F′, are compatible, denoted F ∼full F

′, iff F(q̂) ∼ F′(q̂′), where q̂ is the
initial state of F and q̂′ is the initial state of F′.

Using the proof schema from Proposition 3.2.2, we can lift some of the stateless interfaceŠs
results related to composition and compatibility to the stateful case. In particular, we can
lift the results that compatibility is commutative, composition preserves well-formedness,
and stateful interfaces support incremental design of systems.

Theorem 3.2.3. Let F, F′ and F′′ be stateful information-flow interfaces. If F ∼full F
′

and (F ⊗full F
′) ∼full F

′′, then F′ ∼full F
′′ and F ∼full (F′ ⊗full F

′′).

Proof. By deĄnition of compatibility between stateful information-Ćow interfaces, we
only need to prove the following statement for the intial states q̂, q̂′ and q̂′′ of arbitrary
interfaces F, F′ and F′′:

If F(q̂) ∼ F′(q̂′) and (F(q̂) ⊗ F′(q̂′)) ∼ F′′(q̂′′),
then F′(q̂′) ∼ F′′(q̂′′) and F(q̂) ∼ (F′(q̂′) ⊗ F′′(q̂′′)).

Which follows from Theorem 3.1.7 for stateless information-Ćow interfaces.

3.2.2 Refinement and Independent Implementability

We deĄne reĄnement between stateful information-Ćow interfaces as an alternating
reĄnement relation [AHKV98]. Broadly, we say that a stateful interface FR reĄnes FA,
if all output steps of FR can be simulated by FA, while all input steps of FA can be
simulated by FR. To capture this deĄnition, we need to deĄne input and output steps.
We introduce below two functions that return all assumptions and open-guarantees that
can be reached in one step for each state q of a given stateful interface. Having this
function in place, we can compute the set of statesŠ sets, with one state set for each
reachable assumption and reachable open- and closed-guarantee, effectively deĄning input
and output steps, respectively.

Definition 3.2.4. Let F = (X,Y,Q, q̂, δ,A,G,P) be an stateful information-flow interface.
Input steps from a given state q ∈Q are defined as:

δX(q) = ¶δX(q,A) ♣ A ⊆ Z ×X♢ with δX(q,A) = ¶q′ ∈ δ(q) ♣ A(q′) = A♢.
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3.2. Stateful

While output steps from a given state q ∈ Q are defined as:

δY (q) = ¶δY (q,G,P) ♣ G ⊆ Z × Y and P ⊆ Z × Y ♢

with δY (q,G,P) = ¶q′ ∈ δ(q) ♣ G(q′) = G and P(q′) = P♢.

We can now deĄne reĄnement as an alternating reĄnement relation, using the above
functions to specify input and output steps.

Definition 3.2.5. The stateful information-flow interface FR = (X,Y,QR, q̂R, δR,
AR,GR,PR) reĄnes FA = (X,Y,QA, q̂A, δA,AA,GA,PA), written FR ⪯full FA, iff there
exists a relation H ⊆ QR ×QA s.t. (q̂R, q̂A) ∈ H and for all (qR, qA) ∈ H:

• FR(qR) ⪯ FA(qA);

• for all set of states O∈ δY
R (qR), there exists O′ ∈ δY

A (qA) s.t. for all set of states
I ′ ∈ δX

A (qA), there exists I ∈ δX
R (qR) defining a non-empty (O ∩ I) × (O′ ∩ I ′) ⊆ H.

Example: Refinement of Stateful Information-flow Interfaces

In our Ąrst example of reĄnement between stateful interfaces (depicted below in
Figure 3.10) we focus on the speciĄcation of dynamic information-Ćow requirements
over a closed-system.

z

y

x

x

y

z

z

y

x

z

y

x

z

y

x

q′
3

q′
2

q̂′
1q̂1

q2

Fclosed: F′
closed:

⪯full

Figure 3.10: Stateful interface Fclosed reĄnes the stateful interface F′
closed, witnessed

by the relation H1 = ¶(q̂1, q̂
′
1), (q2, q

′
2)♢.

The stateful information-Ćow interface Fclosed reĄnes F′
closed, by removing a nonde-

terministic choice on the transition function of the second interface.

Our Ąrst step to prove the reĄnement relation between the two interfaces in
Figure 3.10, is to check whether their initial states are in the matching stateless
information-Ćow reĄnement relation. This is trivial, as their initial states, q̂1 and
q̂′

1, deĄne the same stateless information-Ćow interface. Formally, q̂1 ⪯ q̂′
1 and,
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3. Information-flow Interfaces

naturally, (q̂1, q̂
′
1) is in the relation H1 witnessing the reĄnement between the two

interfaces. The next step is to evaluate the output and input steps from each initial
state in the stateful interfaces depicted above. We present them below with δclosed

and δclosed′ being the transition relations from Fclosed and F′
closed, respectively.

δY
closed(q̂1) = ¶δY

closed(q̂1, ¶(x, y)♢, ¶(x, y)♢)♢ = ¶¶q2♢♢

δY
closed′(q̂′

1) = ¶δY
closed′(q̂′

1, ¶(x, y)♢, ¶(x, y)♢), δY
closed′(q̂′

1, ¶(x, z)♢, ¶(x, z)♢)♢

= ¶¶q′
2♢, ¶¶q′

3♢♢

δX
closed′(q̂′

1) = ¶δX
closed′(q̂′

1, ¶♢)♢ = ¶¶q′
2, q

′
3♢♢

δX
closed(q̂1) = ¶δX

closed(q̂1, ¶♢)♢ = ¶¶q2♢♢.

Then, for the only element of δY
closed(q̂1), deĄning O = ¶q2♢, we chose the set

O′ = ¶q′
2♢ from δY

closed′(q̂′
1), as it has exactly the same open- and closed-guarantees

(i.e., q′
2 simulates the output requirements of q2). As for the only element of

δX
closed′(q̂′

1) (we deĄne I ′ = ¶q′
2, q

′
3♢), there is also only one option for I in δX

closed(q̂1),
i.e., I = ¶q2♢. With no assumptions in any of the interfaces, this choice trivially
satisĄes the requirement for a reĄnement between the stateless interfaces in each
state. Hence (O ∩ I) × (O′ ∩ I ′) = ¶q2♢ × ¶q′

2♢ = ¶(q2, q
′
2)♢. With no more

transitions in the stateful interfaces, we have that H1 = ¶(q̂1, q̂
′
1), (q2, q

′
2)♢ witnesses

the reĄnement between the two interfaces.

We present a second example of the stateful information-Ćow interfaceŠs reĄnement
in Figure 3.11 below. In this example, the interface F reĄnes F′ by specifying an
alternative transition from the initial state that allows more environments while
restricting the implementation and preserving the closed-guarantee.

y

y′x′
x

x y

y′

x′

y

y′x′
x

x y

y′

x′

x y

y′

x′

q′
2q̂′

1q̂1

q2

q3

F: F′:
⪯full

Figure 3.11: Stateful interface F reĄnes the stateful interface F′, witnessed by the
relation H2 = ¶(q̂1, q̂

′
1), (q2, q

′
2), (q3, q

′
2)♢.

As in the previous example, the initial states in the interfaces above deĄne the
same stateless information-Ćow interface, thus, clearly (q̂1, q̂

′
1) are in the relation
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3.2. Stateful

witnessing the reĄnement. We present below the input and output steps derived
from the initial states, where δR and δA are the transition functions from F and
F′, respectively.

δY
R (q̂1) = ¶δY

R (q̂1, ¶(x, y)♢, ¶(x, y)♢), δY
R (q̂1, ¶(x, y), (x′, y)♢, ¶(x, y)♢)♢ =

= ¶¶q2♢, ¶q3♢♢

δY
A (q̂′

1) = ¶δY
A (q̂′

1, ¶(x, y)♢, ¶(x, y)♢)♢ = ¶¶q′
2♢♢

δX
A (q̂′

1) = ¶δX
A (q̂′

1, ¶(x, x′), (y′, x′)♢)♢ = ¶¶q′
2♢♢

δX
R (q̂1) = ¶δX

R (q̂1, ¶(x, x′), (y′, x′)♢, ¶(y′, x′)♢)♢ = ¶¶q2♢, ¶q3♢♢

The reĄned interface has two possible output transitions from the initial state q̂1:
it can either move to state q2 that speciĄes a stateless interface with both open-
and closed-guarantee requiring only a no-Ćow form x to y; or it can move to state
q3 that speciĄes the set of no-Ćows ¶(x, y), (x′, y)♢ as its stateless open-guarantee
and ¶(x, y)♢ as the closed-guarantee. The abstract interface, F′, can simulate any
of these possibilities by its transition from its initial state q̂′

1 to its only successor,
q′

2 because the stateless interface in q′
2 does have new no-Ćow requirements in its

open- and closes-guarantees when compared to the interfaces in q2 and q3.

As for the input steps, the abstract interface only has one possible input transition
from its initial state, to the state q′

2. In this state, the stateless interface speciĄes
the assumption that x does not Ćow to x′ and y′ does not Ćow to x. Both input
steps from q̂1 simulate the input step from q̂′

1 because,for both states accessible
from the initial state in the reĄned interface, A(q2) ⊆ A′(q′

2) and A(q3) ⊆ A′(q′
2).

Hence H2 = ¶(q̂1, q̂
′
1), (q2, q

′
2), (q3, q

′
2)♢ witnesses the reĄnement between F and F′.

In the theorem below, we prove that a reĄned stateful information-Ćow interface may
accepted less implementations while allowing more environments.

Theorem 3.2.4. Let F1=(X,Y,Q1, q̂1, δ1,A1,G1,P1) and F2=(X,Y,Q2, q̂2, δ2,A2, G2,P2)
be stateful information-flow interfaces s.t. F1 ⪯full F2. For all components ❢ and ❢E :

(a) If ❢ ♣=G1
F1, then ❢ ♣=G2

F2.

(b) If ❢E ♣=A2
F2, then ❢E ♣=A1

F1.

Proof. Assume that F1 ⪯full F2. Then, there exists a simulation relation H⪯ ⊆ Q1 ×Q2

that witnesses it.

For the item (a), assume that ❢ ♣=G1
F1. Then, there exists a simulation relation

H♣= ⊆ Q❢ ×Q1 that witnesses it. Consider the relation H = H♣= ◦H⪯. By deĄnitions
of reĄnement and implementation, (q̂❢ , q̂1) ∈ H♣= and (q̂1, q̂2) ∈ H⪯. So, (q̂❢ , q̂2) ∈ H.
Additionally, F1(q̂1) ⪯ F2(q̂2) and ❢(q̂❢) ♣=G1(q̂1) F1(q̂1). Then, ❢(q̂❢) ♣=G2(q̂2) F2(q̂2).
Consider arbitrary (q❢ , q2) ∈ H. By construction of H there exists (q❢ , q1) ∈ H♣=
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3. Information-flow Interfaces

and (q1, q2) ∈ H⪯. We want to prove that: if q′
❢

∈ δ❢(q❢), then there exists q′
2 ∈

δ2(q2) s.t. (q′
❢
, q′

2) ∈ H and ❢(q′
❢
) ♣=G2(q′

2
) F2(q′

2).

Assume that q′
❢

∈ δ❢(q❢). By (q❢ , q1) ∈ H♣= , then there exists a state q′
1 ∈ δ1(q1) s.t.

(q′
❢
, q′

1) ∈ H♣= . So, M(q′
❢
) ⊆ GF1

(q′
1). Additionally, by (q1, q2) ∈ H⪯ and q′

1 ∈ δ1(q1),
there exists q′

2 ∈ δ2(q2) s.t. GF2
(q′

2) ⊆ GF1
(q′

1). Thus, (q′
❢
, q′

2) ∈ H and M(q′
❢
) ⊆ G1(q′

1) ⊆
G2(q′

2). So, by deĄnition of implements for stateless interfaces, ❢(q′
❢
) ♣=G2(q′

2
) F2(q′

2).
Hence H witnesses ❢ ♣=G F.

For the second item, assume that ❢E ♣=A2
F2. Then, there exists a simulation relation

H♣= ⊆ Q2 ×QE that witnesses it. Consider the relation H = H⪯ ◦H♣= . We can prove
analogously to the previous case that H witnesses ❢E ♣=A1

F1.

We can now prove that stateful information-Ćow interface satisĄes the independent
implementation of systems.

Theorem 3.2.5. For all well-formed interfaces F′
1, F1 and F2, if F′

1 ⪯full F1 and F1 ∼ F2,
then F′

1 ∼ F2 and F′
1 ⊗ F2 ⪯full F1 ⊗ F2.

Proof. Assume that: (i) F′
1 ⪯full F1; and (ii) F1 ∼ F2. F′

1 ∼ F2 follows from (i) and
Theorem 3.1.9 for stateless interfaces. We prove now that F′

1 ⊗ F2 ⪯full F1 ⊗ F2. From
(i), there exists a relation H⪯ ⊆ Q′

1 × Q1 that witnesses the reĄnement. Consider the
relation: H = ¶((qF′

1
, qF2

), (qF1
, qF2

)) ♣ (qF′
1
, qF1

) ∈ H⪯ and F1(qF1
) ∼ F2(qF2

)♢.

By (i) and (ii), ((q̂F′
1
, q̂F2

), (q̂F1
, q̂F2

)) ∈ H. Additionally, F′
1(q̂F′

1
) ⪯ F1(q̂F1

). Then, by
Theorem 3.1.9 for stateless interface, F′

1(q̂F′
1
) ⊗ F2(q̂F2

) ⪯ F1(q̂F1
) ⊗ F2(q̂F2

).

Consider arbitrary ((qF′
1
, qF2

), (qF1
, qF2

)) ∈ H and arbitrary O ∈ δY
F′

1
⊗F2

((qF′
1
, qF2

)). Then,

there exists G′ and P ′ s.t. O = δY
F′

1
⊗F2

((qF′
1
, qF2

),G′,P ′). By H⪯ witnessing (i) and

DeĄnition 3.2.4, there exists G ⊆ G′ and P ⊆ P ′ s.t. O′ = δY
F1⊗F2

((qF1
, qF2

),G,P).

Consider arbitrary I ∈ δX
F1⊗F2

((qF1
, qF2

)). Then, by H⪯ witnessing (i) and DeĄnition
3.2.4, there exists A s.t. I ′ = δX

F1⊗F2
((qF1

, qF2
),A). By H⪯ witnessing (i), there exists

A′ ⊆ A s.t. I = δX
F′

1
⊗F2

((qF′
1
, qF2

),A′).

Consider arbitrary ((q′
F′

1

, q′
F2

), (q′
F1
, q′

F2
)) ∈ (O ∩ I) × (O′ ∩ I ′). Then, by (i) and H

deĄnition, F′
1(q′

F′
1

) ⪯ F1(q′
F1

) and F1(q′
F1

) ∼ F2(q′
F2

) So, by Theorem 3.1.9 for stateless

interfaces, F′
1(q′

1) ⊗ F2(q2) ⪯ F1(q1) ⊗ F2(q2).

Hence H is a witness relation for F′
1 ⊗ F2 ⪯ F1 ⊗ F2.
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3.3. Related Work

3.3 Related Work

The interface theory introduced in this chapter adopts the contract-based design approach
(explained in Chapter 2) and, as the name suggests, follows the interface theory philosophy
(c.f., Section2.2) In particular, our theory assumes an optimistic view on composition
(i.e., all parts involved are willing to collaborate to meet other partsŠ requirements) and
an alternating view on reĄnement. The novelty of this work is that it presents the
Ąrst interface language that speciĄes information-Ćow requirements while supporting
the incremental design of systems and their independent implementability. Our main
contribution was to introduce the notion of closed-guarantees, allowing the designer to
express its intended requirements for the closed system without interfering with the
compositional Ćavor of the interface theory. Closed-guarantees act as a consistency check
between the interaction of assumptions and open-guarantees, which can be used to steer
the reĄnement process to satisfy the intended global behavior of the system.

Language-based techniques, like type systems [FM11] to program analysis using program-
dependency graphs (PDGs) [HS09, GHM13], are a successful approach to the veriĄcation
and enforcement information Ćow policies [SM03]. These techniques are tailored for
speciĄc implementation languages, while our goal is to introduce composition and reĄne-
ment deĄnitions that are independent of the language adopted for the implementations.
Therefore, language oriented techniques are orthogonal to our work.

The theory introduced here focuses on the structural aspect of information Ćow. Thus, it
abstracts away from the speciĄcs of the model, like their interaction or semantics. This
is distinct from Interface Automata (IA), whose primary focus is specifying the iteration
between the systemŠs parts. Another prominent approach to deĄning interface languages
are Assume/Guarantee interfaces. However, this approach requires a complete separation
between input and output requirements, which is not possible when reasoning about the
Ćow of information.

More recently, Lee and DŠArgenio propose interface for structure and security [LD10b],
extending IA with actions labelled as having either low or high conĄdentiality. They
enforce a bisimulation-based variant of non-interference that checks if the systemŠs
behaviour does not change when actions labelled with high conĄdentiality occur. Later,
in [LD10a], the same authors extend their approach to enforcing an alternative reĄnement-
based notion of non-interference. Our approach is orthogonal to both works. Instead of
labeling variables, our theory speciĄes no-Ćow requirements directly with the variables.
Additionally, to aid the compositional design, we introduce closed-guarantees as a meta-
speciĄcation over all systemŠs parts assumptions and open-guarantees.

Closer to our approach are relational interfaces (RIs) [TLHL11], specifying for each legal
componentŠs input the output it generates. As for information-Ćow interfaces, RIs do not
require assumptions and guarantees to be deĄned solely over inputs and output variables.
A RI speciĄed the desired input-output behavior over traces. Hence they have limited
expressive power to capture information-Ćow policies, which often require comparing
multiple traces at a time.
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3. Information-flow Interfaces

In a recent work, Incer et al. [IBSS22] introduced Hypercontracts as a meta-theory for
assumption-guarantee contracts supporting hyperproperties. In a nutshell, a hypercon-
tract is deĄned by a pair of assumptions and guarantees of the closed system. Both
assumptions and guarantees are interpreted as set of components. To compute the guar-
antees of the open system, the authors introduce a notion of quotient between component
sets, deĄning open guarantees as the quotient between the guarantee of the closed system
and the assumption. Our theory can also be interpreted as the set of components derived
by the no-Ćow relations specifying the interface. The main difference between these two
approaches, is that we include both the open and closed system requirements at the
interface level. The explicit speciĄcation of guarantees for both the open and the closed
system allows the designer to specify further assumptions and open-guarantees, even if
they are not necessary to support the requirements of the closed-system.

3.4 Final Remarks

This chapter introduced a framework for stateless and stateful interfaces to specify
information-Ćow requirements. The main contribution lies in the stateless information-
Ćow interfaces. Stateful interfaces naturally extend the previous, allowing for dynamic
speciĄcations by labeling states with stateless interfaces and deĄning appropriate tran-
sitions between different speciĄcation states. Both kinds of interfaces are deĄned by
specifying assumptions, open-guarantees, and closed-guarantees. We introduce a reĄne-
ment and compatibility predicate, together with a composition operator for the stateless
and stateful versions. We then prove that our calculus of information-Ćow interfaces
adheres to the principles of incremental design and independent implementability.

In later work that followed the results described in this chapter, we focused on studying
semantics view of this theory. In particular, in the journal version [BFH+24], we include a
section where we present information-Ćow contracts where assumptions and guarantees are
deĄned with sets of Ćow relations. We introduce the composition and reĄnement of such
contracts and show that they deĄne an appropriate semantic interpretation for stateless
information-Ćow interfaces. This work was followed by a short paper [BHNOdC24] where
we deĄne how to go from information-Ćow contracts to contracts over sets of security
lattices. With these semantic investigations and future work that may follow, we hope to
close the gap between the modeling phase of security requirements and their concrete
implementation into software or hardware components.
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Part II

Information-flow Specification
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CHAPTER 4
Trace Properties and

Hyperproperties

In this work, we abstract systems by their observable behavior. In particular, we represent
each system execution by a trace, i.e., a sequence of assignments of the systemŠs variables
(also referred to as program variables) describing how they evolve during a system
execution. A system is then characterized by a set of traces.

This chapter introduces deĄnitions and notations related to traces, which are used
throughout this document. We start the chapter by introducing trace properties, which
are sets of traces. As trace properties are not expressive enough to specify information-
Ćow requirements, we then present hyperproperties, which generalize trace properties
to sets of trace sets. This chapter focuses on trace properties and hyperproperties as
speciĄcation formalisms, highlighting their relation to linear-temporal logic. We assume
the reader to be familiar with classical logic (propositional and Ąrst-order). Otherwise,
a good introduction to classical logic can be found in the book by Elliott Mendelson
[Men09].

4.1 Trace Properties

We model the systemŠs executions as traces, which are sequences of valuations. A
valuation assigns a value of a Ąnite domain to a system (or program) variable.

Traces. Let X be a Ąnite set of variables, ranging over a Ąnite domain Σ. A valuation
(or variable assignment) for variables in X over a domain Σ is a partial mapping v : X → Σ
assigning a value in Σ to a variable in X. For a given assignment v, its domain is the
set of all variables that have an assignment in v, denoted by X(v) ⊆ X, and its size
is the size of its domain, that is, ♣v♣ = ♣X(v)♣. We denote by v[x 7→ b] the valuation
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4. Trace Properties and Hyperproperties

resulting from updating the value assigned to the variable x in v to the value b, i.e., all
the assignments in v to other variables remain unchanged and only the assignment to
x is changed to b ∈ Σ. To simplify notation, we may represent a Ąnite set of variables
¶x0, . . . , xn♢ as a string [x0 . . . xn] and their valuations v by the string [v(x0) . . . v(xn)].
The set of all valuations from X to Σ is denoted by ΣX .

A trace τ over the set of variables X with domain Σ is a sequence of valuations in ΣX ,
i.e., τ ∈(ΣX)∗. The alphabet of a trace over X and Σ is ΣX . For traces deĄned over
boolean domains (i.e., Σ = ¶0, 1♢) and a set of variables X, we may abuse of notation
and refer to X as their domain. The length of a Ąnite trace τ = v0v1 . . . vn is deĄned
as ♣τ ♣ = n+ 1, while for an inĄnite trace τ we deĄne ♣τ ♣ = ω. For a trace τ = v0v1 . . .
and an index i within its length (i.e., i < ♣τ ♣), we adopt the following indexing notations:
τ [i] = vi, τ [i . . .] = vivi+1 . . ., and τ [. . . i] = v0v1 . . . vi−1. When an index falls outside a
trace length (i.e., j ≥ ♣τ ♣), we adopt the following convention: τ [j . . .] is the empty trace,
and τ [. . . j] = τ . The set of all finite traces over X and Σ is denoted (ΣX)∗, while the
set of all infinite traces over X is denoted by (ΣX)ω.

Example: Traces

The program P, shown in Algorithm 4.1, is the running example for concepts related
to traces. In a later chapter, we use the same program to highlight the impact of
asynchronous state changes in the expressivity of information-Ćow requirements.
In a nutshell, our goal later will be to prove that the program satisĄes the stateful
information-Ćow policy that the value of y must be independent of the secret
variable x until the state changes and the value of z must now be independent of x.

Algorithm 4.1: Program P

1 state := 0;

2 do
3 if (state = 0) then
4 read(c1, state in ¶0, 1♢);

5 end

6 read(c0, x in ¶0, 1♢);

7 if (state = 0) then
8 z := x; y = default;

9 else
10 y := x; z = default;

11 end

12 output(c2, y);

13 output(c3, z);

14 while True;
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4.1. Trace Properties

The program P starts with the state variable set to 0 (state = 0). In every
while loop iteration, the state value is non-deterministically assigned via the input
channel with address c1. When the value of state changes from 0 to 1, the program
will stop updating state, which will remain as 1 for the subsequent iterations.

Regarding the variable x, its value is non-deterministically assigned via the input
channel c0. If the value of state is 0, then the program P assigns x to z while it
sets y a default value. Otherwise, when the value of state is 1, the inverse occurs:
the program P assigns x to y while it sets z a default value. The default value is a
boolean value set at the start of the program execution. At the end of each loop
iteration program exposes y and z via the output channels c2 and c3, respectively.

The set of (program) variables of P is X = ¶x, y, z, state♢. We assume that all
variables are boolean, so the domain of the traces derived by P is ¶0, 1♢X . We
do not include c1, c2 and c3 as program variables because they are constants that
encode the address of three communication channels.

0 1 2 3
x y z x y z x y z x y z

τ1 0 0 0 1 1 0 1 1 0 1 1 0
τ2 1 0 1 1 1 0 1 1 0 1 1 0
τ3 1 0 1 1 0 1 0 0 0 0 0 0
τ4 0 0 0 1 0 1 0 0 0 1 1 0

Table 4.1: A set of traces over the variables x, y, and z of P, with default = 0,
transparent cells indicating that state = 0, and gray cells, that state = 1.

In Table 4.1, we depict four traces derived from program P. Each step in a trace
represents the variable values at the end of the respective while loop iteration. We
represent the traces in Table 4.1 as, for the string of program variables [x y z state]:

τ1 = [0000] [1101] [1101] [1101]

τ2 = [1010] [1101] [1101] [1101]

τ3 = [1010] [1010] [0001] [0001]

τ4 = [0000] [1010] [0000] [1101].

Trace Properties. A trace property is a set of traces containing all traces that satisfy
the behavior it speciĄes. Formally, a trace property T over a set X of variables and
domain Σ is a set of inĄnite traces over ΣX , that is, T ⊆ (ΣX)ω. A trace τ satisĄes a
trace property T iff it is one of its elements (τ ∈T ).

We refer to the set of all trace properties as T = 2(ΣX)ω

. Note that both systems and
trace properties deĄne sets of traces. The distinction between these two types of sets
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4. Trace Properties and Hyperproperties

is semantics: the Ąrst (trace properties) speciĄes intended behavior, while the second
(systems) speciĄes observed behavior. Then, a system S satisfies a trace property T iff
all behaviors of S are included in the set of intended behaviors in T , i.e., S ⊆ T .

LTL. A successful formalism to specify trace properties is Linear Temporal Logic (LTL),
introduced by Pnueli in [Pnu77]. LTL formulas are deĄned by the following grammar:

φ ::= a ♣ ¬φ ♣φ ∨ φ ♣ Xφ ♣φU φ

where a ∈ X is a propositional variable, and X (ŞnextŤ) and U (ŞuntilŤ) are temporal
modalities.

LTL formulas are interpreted over inĄnite traces and boolean domains. Given a LTL
formula φ and an inĄnite trace τ ∈(¶0, 1♢X)ω, we deĄne that the trace τ satisĄes φ,
denoted τ ♣=LTL φ, inductively over the structure of φ, as follows:

τ ♣=LTL a iff τ [0](a) = 1;

τ ♣=LTL ¬ψ iff τ ̸♣=LTL ψ;

τ ♣=LTL ψ1 ∨ ψ2 iff τ ♣=LTL ψ1 or τ ♣=LTL ψ2;

τ ♣=LTL Xψ iff τ [1 . . .] ♣=LTL ψ;

τ ♣=LTL ψ1Uψ2 iff exists j≥ 0 s.t. τ [j . . .] ♣=LTL ψ2 and for all 0 ≤ j′<j, τ [j′ . . .] ♣=LTL ψ1.

When it is clear from the context, we may omit the LTL subscript from ♣=LTL. We adopt
the usual abbreviations for common boolean and temporal operators: conjunction is

deĄned as ψ1 ∧ ψ2
def
= ¬ψ1 ∨ ¬ψ2; and the temporal operators G (ŞgloballyŤ, also called

ŞalwaysŤ) and F (ŞeventuallyŤ) are deĄned as Gψ
def
= ψ U false and Fψ

def
= true U ψ.

Given a set of traces T and an LTL formula φ, the model-checking problem asks whether
all traces in T satisfy the formula φ. Formally, a set of traces T is a model of an LTL
formula φ iff, for all traces τ ∈T , τ ♣=LTL φ.

Example: LTL Semantics

The LTL formula below speciĄes how the value of y and z changes depending on
state:

φ
def
= (¬state ∧ ¬y) U (G (state ∧ ¬z)).

In particular, φ states that the variable state has value 0 until its its value changes
to 1 and, for then on, it will always be 1. Additionally, the formula speciĄes that
depending on the state of the program (identiĄed by the value of the variable
state), either y or z is assigned to 0. We observe that all executions of the program
P in the previous example satisfy the property speciĄed by φ, i.e., the set of traces
derived from P are a model of φ.
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4.2. Hyperproperties

First-order Logic of Order. In his seminal work [Kam68], Kamp initiated the study
of relative expressiveness between the classical Ąrst-order approach to specify linear-time
(the Ąrst-order logic of order, which we denote by FO[<]) and LTL. The Ąrst-order logic
FO[<] is interpreted over labeled linear orders with all uninterpreted predicates being
unary. Formally, FO[<] formulas φ are deĄned by the grammar:

ψ ::= P (i) ♣ i < i ♣ i = i

φ ::= ψ ♣ ¬φ ♣ φ ∨ φ ♣ ∃i φ

where i is a Ąrst-order variable, = is equality, < is the order, and P is predicate from a
given set of monadic predicates. We interpret this logic over labeled linear-orders, which
are deĄned by a tuple (Λ, <, I) where < deĄnes a linear order over the domain Λ, and I
is a function from predicates to sets of elements of Λ interpreting the predicates over the
given domain.

From a trace τ , deĄned over the set of propositional variables X, we can derive the
labeled linear-order (N, <, Iτ ) over the set of unary predicates ¶Pa ♣ a∈X♢, where < is
interpreted as usual for natural numbers and I(Pa) = ¶j ♣ τ [j](a) = 1♢. Given such a
translation from a trace to a labelled linear order, it becomes clear how to effectively
translate LTL formulas (with the semantics introduced above) to a FO[<] interpreted
over (N, <) (where < is interpreted as usual over the natural numbers). Hence, FO[<]
subsumes LTL. The only question remaining is whether LTL subsumes FO[<] interpreted
over (N, <), i.e., whether LTL is expressively complete for this fragment of FO[<].

Kamp started by proving in [Kam68] that LTL with both past and future temporal
operators is complete for FO[<] over the integers with order (i.e., (Z, <)). Later, in
[GPSS80], Gabbay et al. proved that when considering only future operators (as in the
LTL deĄnition introduced here), LTL is complete for FO[<] over the natural numbers.
For the remaining of the manuscript, we are only interested in the linear order over
natural numbers1.

4.2 Hyperproperties

A general formalism to specify security policies must allow to specify relations between
multiple system executions. Consider, for example, the program below, which has a
variable with high-conĄdentiality (secret) and with low-conĄdentiality (public):

if secret>0 then public:=public+1

In our policy, we want to prevent an attacker from learning about the value of secret
from observing the public behavior of the program. The program above violates this
requirement because an attacker can compare the values of public before and after the

1For an overview of results comparing other versions of LTL with FO[<] interpreted over different
linear orders, a good source is the manuscript by Rabinovich [Rab14].
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4. Trace Properties and Hyperproperties

program execution and observe that the observed behavior differs for the same public
input (which the attacker controls). This is an example of an implicit flow of information.
In this example, the information Ćows through program control.

Trace properties cannot express requirements across multiple executions [McL96, CS10].
For this reason, Clarkson and Schneider introduced, in [CS10], hyperproperties that
generalize trace properties to sets of trace sets, setting the foundations for a general
theory to specify security-related properties.

Formally, a hyperproperty T ⊆ T is a set of trace properties, i.e., a set of trace sets. In
trace semantics, a system S is characterized by the set of its execution traces; hence
systems and trace properties have the same type: S ∈ T. A hyperproperty characterizes
a set of systems.

HyperLTL. HyperLTL, introduced in [CFK+14], extends LTL with trace quantiĄers.
It has emerged as a popular formalism for both the speciĄcation and veriĄcation of
hyperproperties with tools supporting important reasoning tasks, from model check-
ing [FRS15, BF23, HSB21], to satisĄability checking [FHS17] and runtime veriĄcation
[Bon16].

Let V = ¶π, π′, . . . , π0, π1, . . .♢ be a set of trace variables and X = ¶a, b, . . . , x, y, . . .♢ be
a set of propositional variables. HyperLTL formulas φ are deĄned by the grammar:

ψ ::= aπ ♣ ¬ψ ♣ ψ ∨ ψ ♣ Xψ ♣ ψ U ψ

φ ::= ∃π φ ♣ ∀π φ ♣ ψ

where π ∈ V is a trace variable and a ∈ X is a propositional variable.

We evaluate HyperLTL formulas over sets of traces. To keep track of the current
assignment to trace variables, we deĄne trace assignments, ΠT : V → T , which are partial
functions from traces in a given set of traces T to trace variables in V. We denote by
ΠT [π 7→ τ ] updating the assignment to π by a trace τ , i.e., only the value assigned
to π changes while all the others remain the same. We deĄne the models relation for
HyperLTL formulas over pairs with a trace assignment ΠT and a time i ∈ N inductively
over the structure of HyperLTL formulas as follows:

(ΠT , i) ♣=H ∃π ψ iff there exists τ ∈ T : (ΠT [π 7→ τ ], i) ♣=H ψ;

(ΠT , i) ♣=H ∀π ψ iff for all τ ∈ T : (ΠT [π 7→ τ ], i) ♣=H ψ;

(ΠT , i) ♣=H aπ iff ΠT (π)[i](a) = 1;

(ΠT , i) ♣=H ¬ψ iff (ΠT , i) ̸♣=H ψ;

(ΠT , i) ♣=H ψ1 ∨ ψ2 iff (ΠT , i) ♣=H ψ1 or (ΠT , i) ♣=H ψ2;

(ΠT , i) ♣=H Xψ iff (ΠT , i+ 1) ♣=H ψ;

(ΠT , i) ♣=H ψ1 U ψ2 iff there exists i ≤ j : (ΠT , j) ♣=H ψ2

and for all i ≤ j′ < j : (ΠT , j
′) ♣=H ψ1.
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4.2. Hyperproperties

A set T of traces is a model of a HyperLTL formula φ, denoted T ♣=H φ, iff there exists
an assignment ΠT such that (ΠT , 0) ♣=H φ. A formula is closed (a sentence) when all
occurrences of trace variables are in the scope of a quantiĄer. For all closed formulas φ,
T ♣=H φ iff (Π∅

T , 0) ♣=H φ, where Π∅
T is the empty assignment. We may omit the subscript

H in ♣=H when it is clear from context.

Example: HyperLTL

We specify with the HyperLTL formula below that for all two executions (π and π′)
it always hold that if they agree on the state variable value then either they agree
also in the value of y or in the value of z:

∀π∀π′
G(stateπ = stateπ′ → (yπ = yπ′ ∨ zπ = zπ′)).

The Program P in the Ąrst example satisĄes this HyperLTL formula.

Other Liner-time Hyperlogics. HyperLTL [CFK+14] was not the Ąrst extension to
LTL proposed to reason about security properties. Earlier instances include epistemic
temporal logic (ETL) [FMHV95], which extends LTL with modal operators for knowledge;
and SecLTL [DFK+12], which introduces the hide operator. We now delve into literature
results comparing these formalisms with HyperLTL.

The Ąrst attempt to compare HyperLTL and ETL was presented in the seminal HyperLTL
paper [CFK+14]. In this paper, the authors proved that HyperLTL subsumes ETL when
HyperLTL is extended with the possibility to quantify over propositional variables that
are not part of the system. This extension deĄnes, indeed, a formalism that is strictly
more expressive than HyperLTL[CFHH19a], called HyperQPTL. It was proved later
by Bozzelli et al. in [BMP15] that HyperLTL and ETL have incomparable expressive
power. In [BMP15], they proved the stronger result that HyperCTL* (extending CTL*
with trace quantiĄers) and KCTL* (extending CTL* with the knowledge operator) have
incomparable expressive power. Note that LTL is subsumed by CTL*. Thus, the results
transfer seamlessly to HyperLTL and ETL. To prove that HyperLTL does not subsume
ETL, they observe that all trace quantiĄcation in ETL is done implicitly through the
knowledge operator. Then, no ETL formula can specify the requirement that two traces
in a set of traces differ only at a time point, while we can do it with HyperLTL formulas.
As for the other direction, in HyperLTL formulas, trace quantiĄers always precede time
quantiĄcation (done implicitly with the time operators). Then, existentially quantiĄed
time variables always depend on universally quantiĄed trace variables. Following this
observation, they show that HyperLTL cannot express synchronized behavior across all
traces in a trace set, while ETL can. Synchronized termination requires that there exists
a unique time point for which all traces agree on the value of a propositional variable.

The hide modality in SecLTL expresses that the systemŠs observable behavior must
be independent of secret values. The semantic interpenetration of hiding compares all
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4. Trace Properties and Hyperproperties

possible outcomes from execution paths starting with the same secret value. As SecLTL
is deĄned in terms of execution paths, in [CFK+14], the authors point out that there
are SecLTL formulas that distinguish systems deĄning the same set of traces but with
different computation paths. Hence, SecLTL is not subsumed by HyperLTL (as HyperLTL
with only one existential quantiĄer is equivalent to LTL).

A different approach to change LTL to support security policies is to change the semantics
interpretation of LTL from the classical Ąrst-order view to the alternative team semantics
approach [Vää07]. In the team semantics perspective, formulas are evaluated over sets of
assignments (referred to as teams) instead of single assignments. In [KMVZ18], Krebs et
al. propose to reinterpret LTL under team semantics, proposing both a synchronous and
an asynchronous interpretation for the temporal operators. The two semantics differ only
on how they slice the teams while interpreting time: in synchronous semantics, the slicing
is done simultaneously for all traces, while in the asynchronous case, the slicing time is
local to each trace. In the same work, they prove that HyperLTL and LTL interpreted
with team semantics and synchronous entailment have incomparable expressive power.
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CHAPTER 5
Specifying Information-flow

This chapter presents an overview on the speciĄcation of information-Ćow requirements.
We Ąrst introduce information-flow policies, which are high-level descriptions of required
and forbidden Ćows within a system. In particular, we introduce policies deĄned for sets
of security labels, which, under reasonable assumptions, deĄne security lattices. We then
present different trace-based semantics interpretations for information-Ćow policies with
a focus on non-interference related properties.

5.1 Policies

Information security is a Ąeld of computer science concerned with protecting information
from being compromised or misused. Its main goals can be summarized by the CIA
(Confidentiality Integrity Availability) triad explained below [San93]:

Confidentiality concerns protecting private information from unauthorized agents, i.e.,
it enforces that secret information (high-conĄdentiality) can not be learned through
a public channel (low-conĄdentiality);

Integrity concerns preserving the quality of information by preventing untrusted agents
(low-integrity) from interfering with trusted channels (high-integrity);

Availability assures that information with high-availability requirements is available
when needed.

These goals cut across different computational layers, from hardware and software to
communication between them, with information being the common denominator between
these concepts, as depicted in Figure 5.1. Information security policies are often speciĄed

1Figure derived from file CIAJMK1209-en.svg by Michel Bakni under license CC BY-SA 4.0 https:

//creativecommons.org/licenses/by-sa/4.0 via Wikimedia Commons.
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5. Specifying Information-flow

Figure 5.1: CIA triad of information security. 1

as information-Ćow requirements on a system. In this work, we abstract from the speciĄcs
of each layer (for example, hardware vs software), referring to the target entities of an
information Ćow policy as systems.

Instead of deĄning security policies over concrete objects of a system, it is common
practice to deĄne them over a set of security labels or, equivalently, security classes. The
systemŠs objects are later assigned a label (for example, at design time or dynamically
while the system runs) reĆecting their role within the policy.

The seminal work by Bell and LaPadula [BL75, Bel05] introduced a state-based model to
enforce access control policies deĄned over security labels. Their model focused primarily
on the conĄdentiality dimension of information security. Later, Biba [Bib77] introduced
a similar approach to capture integrity, which behaves inversely from conĄdentiality (i.e.,
conĄdentiality prevents information Ćow from a high to a low level of conĄdentiality,
while integrity prevents Ćows from a low to a high level of integrity). Denning, in [Den76],
showed that under reasonable assumptions, these models deĄne (Ąnite) security lattices
that are now a fundamental notion across multiple information security mechanisms.
Notable examples of such techniques are type systems for security [FM11], static analysis
to identify problematic information-Ćows [HYH+04] or the runtime enforcement of security
policies with secure multi-execution of systems [DGDNP12, AF12].

Security Lattices. In this work, we focus on security policies deĄned over a set of
security labels, SC, with the allowed Ćows speciĄed as a label can-flow relation,2 denoted
⊑, over SC. Then, L ⊑ L′ speciĄes the requirement that information from entities labeled
with label L ∈ SC can Ćow to entities labeled with L′ ∈ SC. For an entity x, its labeling
with L is denoted as xL or, equivalently, we may say that x is in the label L and denote
it as x∈L. To support dynamic assignment of labels, a policy must provide a joint

2In the literature, label can-flow relations are referred to as flow or can-flow relations. We, however,
define flow relations in terms of objects and not labels later in this manuscript in Section 3.1.
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5.1. Policies

operator ⊕ ⊆ SC × SC specifying how to combine entities assigned with different labels.
In summary, a policy is speciĄed by a tuple (SC,⊑,⊕). In [Den76], Denning proposed
the following axioms for security policies (SC,⊑,⊕):

• Finiteness: the set of security classes SC is Ąnite;

• Order : (SC,⊑) deĄnes a partial order;

• Public information: there exists an unique lower bound in SC with respect to ⊑;

• All information can be combined: the joint operator ⊕ is a least upper bound
operator deĄned for every pair of security classes.

When a security policy satisĄes these assumptions, it deĄnes a bounded lattice [Den76].
We denote by high its unique upper bound and by low its unique lower bound.

Example: Security Lattices

We depict security lattices as Hasse diagrams, with reĆexive and transitive arrows
omitted. Below, we depict three security lattices encoding the basic requirements
for conĄdentiality, integrity and their constraints combined. As illustrated by the
lattices, conĄdentiality and integrity adopt inverse views: the Ąrst lattice does not
allow Ćows from high to low conĄdentiality, while the second does not allow Ćows
from low to high integrity.

Secret (HighC)

Public (LowC)

Confidentiality

ca
n

-fl
o
w

Untrusted (LowI)

Trusted (HighI)

Integrity

(HighC, LowI)

(HighC, HighI) (LowC, LowI)

(LowC, HighI)

Confidentiality & Integrity

Dynamic Policies. It is often necessary to specify how security policies change during
a system execution. For example, a user password should not be leaked to the system
before a successful login. However, this requirement must be relaxed once the login is
successful. Otherwise, the policy would prevent the user from being informed that the
login was successful, as this leaks the information that the input password is correct.
This is an example of declassification of information [SS05], where information previously
secret to a user becomes available to the same user. Other use cases may be related, for
example, to a change in the systemŠs overall status from a normal operation state to a
repair/debug state.
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5. Specifying Information-flow

5.2 Properties

An information-Ćow property instantiates a security policy by providing a semantic
interpretation for the can-Ćow relation over the systemŠs observations. In this work, we
refer to policies as the structural view on information-flow (deĄning where information
can Ćow), and properties as the semantic view on information-flow (deĄning what is to
Ćow).

A property speciĄcation depends on many factors, from how the system is observed
and represented to the systemŠs computational and thread model. For simplicity of
presentation, we do not elaborate further on these considerations (for a more in-depth
discussion, see the monograph by Kozyri et.al. [KCM+22]). For what follows, we assume
the system is conveniently abstracted as a set of traces T and follow the approach of
Clarkson and Schneider in [CS10] of using set comprehension and Ąrst-order logic to
introduce our properties of interest.

Non-interference. Given a security policy deĄning a can-Ćow relation between a
set of security labels, non-interference properties require that behavior visible to a
security label L should not depend on the behavior of a higher security label (i.e., a label
that is not in the can-Ćow relation with L). For example, non-interference, as deĄned
originally by Goguen and Meseguer [GM82], requires that removing inputs labeled with
high-conĄdentiality should not change what users holding a low-conĄdentiality security
clearance observe.

In the seminal work by Zdancewic and Myers [ZM03], the authors propose to deĄne
non-interference for concurrent programs as observational determinism. In particular,
they deĄne a program to be observational deterministic iff, for all program executions that
start with equivalent observations for a low-level security user, they remain equivalent to
the same user along their execution.

While this deĄnition is simple and intuitive, its formalization can be subtle, and it is
particularly challenging for multi-threaded programs. Note that the observable behavior
from different executions of a multi-thread program is not easily comparable because
(i) they depend on the scheduling policy (which may differ signiĄcantly between different
executions of the system) and (ii) program state changes may not occur at the same time
in all executions. To address this misalignment between different system observations,
Zdancewic and Myers [ZM03] propose to interpret equivalence between traces up to their
stuttering and prefixing (i.e., one execution may run for longer). Other authors later
reĄned this deĄnition [HWS06, Ter08], always keeping the requirement to compare traces
modulo their stuttering.
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5.2. Properties

Side Note: Specifying Observational Determinism

In this example, we show how to specify different versions of observational deter-
minism depending on our assumptions about the system and how we observe it.
We consider the case of conĄdentiality with only two security labels, low and high,
where, as expected, low ⊑ high.

We start by considering a synchronous interpretation of observational determinism.
Here we assume that the time of the observations between different systemŠs
executions is synchronized, i.e., each time point corresponds to that same execution
time of the system. We specify observational determinism over the programŠs
public input and output variable, denoted inlow and outlow, respectively. In our
Ąrst speciĄcation, we assume that the behavior of each iteration of the program
corresponds to one time point in the trace (i.e., in the same time point we see
the input and output for that program iteration). Then, we deĄne observational
determinism as a globally property as follows:

ODsync,G =¶T ♣ ∀τ ∈T ∀τ ′ ∈T ∀i∈N :

τ [i](inlow) = τ ′[i](inlow) → τ [i](outlow) = τ ′[i](outlow)♢.

This speciĄcation is equivalent to the following HyperLTL formula:

φsync,G
def
= ∀π∀π′

G
(

(inlow
π ↔ inlow

π′ ) → (outlow
π ↔ outlow

π′ )
)

.

Alternatively, it may be the case that the input value is only relevant at the
beggining of the traces, and from then on we are only interested in the output
behavior. We specify this variant below:

ODsync,X =¶T ♣ ∀τ ∈T ∀τ ′ ∈T ′ : τ [0](inlow) = τ ′[0](inlow) →

(∀i∈N : i> 0 ∧ τ [i](outlow) = τ ′[i](outlow)♢,

which is equivalent to the following HyperLTL formula:

φsync,X
def
= ∀π∀π′(inlow

π ↔ inlow
π′ ) → X G(outlow

π ↔ outlow
π′ ).

If we do not assume the program executions to be synchronous (i.e., they are
asynchronous), then we can not compare each time point directly. Instead, we
can follow the approach by Zdancewic and Myers and require that every publicly
visible variable (i.e., x∈ low) must be stutter-equivalent up-to preĄxing:

ODasync =¶T ♣ ∀τ ∈T ∀τ ′ ∈T :
∧

x∈low

(τ(x)≾ τ ′(x) ∨ τ ′(x)≾ τ(x))♢
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5. Specifying Information-flow

where ≾ represents the stutter-equivalence up-to preĄxing relation and τ(x) is the
projection of all values of x in a given trace τ .

The original deĄnition of non-interference by Goguen and Meseguer is for systems
represented as deterministic state machines. McCullough in [McC87] introduce generalized
non-interference (GNI) extending the original deĄnition of non-interference to handle
non-deterministic systems. In this work, we adopt the deĄnition by McLean [McL96] of
GNI, requiring that for any two executions there exists a third execution that has the
same high-level inputs (with respect to given can-Ćow relation) as the Ąrst execution and
the same low-level outputs of the second execution. Formally, generalized non-interference
can be speciĄed as follows:

GNI = ¶T ♣ ∀τ ∈T ∀τ ′ ∈T ∃τ∃ ∈T ∀i∈N :

τ [i](inhigh) = τ∃[i](inhigh) ∧ τ ′[i](outlow) = τ∃[i](outlow)♢.

We remark that this deĄnition of generalized non-interference is akin to the notion of
independence, which is ubiquitous across multiple scientiĄc disciplines [GV13].
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CHAPTER 6
Expressing Information-flow

with Linear Hyperlogics

Motivated by the observation that specifying hyperproperties requires both quantiĄcation
over time and traces (as opposed to trace properties with quantiĄcation only over time),
we study in this chapter how constraints over these two types of quantiĄers affect the
expressiveness of logics for linear-time hyperproperties.

We Ąrst introduce a Ąrst-order logic, called Hypertrace Logic, with an explicit distinction
between trace and time quantiĄcation as different sorts. We then use this logic to specify
variants of a two-state information-Ćow policy. In particular, we look into sequential
generalized non-interference (with non-interference speciĄed as independence), allowing
us to explore different quantiĄcation alternation patterns in depth. Guided by this
example, we propose fragments of Hypertrace Logic by restricting the order of the trace
and time quantiĄers. A fragment of particular importance is the one that forces all trace
quantiĄers to occur before time quantiĄers, which is equivalent to HyperLTL.

For the fragments of Hypertrace logic identiĄed, we introduce relations characterizing
indistinguishability between sets of traces for the said fragments. Using these relations,
we prove that HyperLTL cannot specify most of the studied two-state information Ćow
variants, including variants with an asynchronous transition between the two states of
the speciĄcation.

This chapter extends on the invited paper below, which results from a collaboration with
Ezio Bartocci, Thomas Ferrère, Thomas Henzinger and Dejan Nickovic:

[BFH+22a] Ezio Bartocci, Thomas Ferrère, Thomas A. Henzinger, Dejan Nickovic,
and Ana Oliveira da Costa. Flavors of sequential information Ćow. In Bernd
Finkbeiner and Thomas Wies, editors, Verification, Model Checking, and Abstract
Interpretation (VMCAI), pages 1Ű19. Springer International Publishing, 2022.
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6. Expressing Information-flow with Linear Hyperlogics

6.1 Hypertrace Logic

Hypertrace Logic, denoted FO[<,T], extends the Ąrst-order logic of linear order with
equality, denoted FO[<], with a time sort N< and a trace sort T. The logic FO[<],
introduced previously in Section 4.1, is a Ąrst-order logic interpreted over labeled linear
orders allowing only unary uninterpreted predicates. We are interested in discrete linear
time (i.e., systemsŠ executions abstracted as traces), so we adopt the interpretation of
FO[<] over the theory of natural numbers (i.e., the linear order (N, <) where < is deĄned
as usual over the set of natural numbers). Under this theory, FO[<] is expressively
equivalent to LTL as introduced in this manuscript (i.e., only future operators) [GPSS80].

While FO[<] allows only unary uninterpreted predicates (i.e., all predicates that are not
equality, =, or the linear order, <); in hypertrace logic, we allow binary uninterpreted
predicates deĄned over pairs of a trace and a time variable. Formally, all hypertrace
formulas φ are deĄned by the grammar:

ψ ::= P (π, i) ♣ i < i ♣ i = i

φ ::= ψ ♣ ¬φ ♣ φ ∨ φ ♣ ∃π φ ♣ ∃i φ

where π is a trace variable, i is a time variable and Q is a binary predicate over pairs of
trace and time variables. From now on, VT = ¶π, π′, . . ., π1, . . .♢ is a set of trace variables,
and VN = ¶i, i′, . . ., j, . . .♢ is a set of time variables.

Let T be a set of traces and ΠT be a trace assignment over it. We deĄne V(ΠT ) =
¶π ♣ ΠT (π) is deĄned♢ as the set of trace variables with an assignment in ΠT ; and
♣ΠT ♣ = ♣V(ΠT )♣ as the trace assignment size. Another useful deĄnitions in what follows
are of sequential update of two valuations v and v′, where X(v′) = ¶x1, . . . , xn♢, which is
deĄned as v · v′ = v[x1 7→ v′(x1)] . . . [xn 7→ v′(xn)]; and of sequential update of two two
traces τ = v0v1 . . . and τ ′ = v′

0v
′
1 . . . deĄned as τ · τ ′ = (v0 · v′

0)(v1 · v′
1) . . ..

Model-checking. In the model-checking problem, we check whether a set of traces is
a model of a hypertrace formula. As Hypertrace Logic is a Ąrst-order formalism, we start
by deĄning how to go from a set of traces to a Ąrst-order structure.

In the translation from LTL to FO[<], each propositional variable a∈X is translated to
a monadic predicate Pa(k), asserting that Şvariable a is true at time k∈N<Ť. Hypertrace
formulas are deĄned with binary predicates over pairs of trace and time variables, i.e., with
type T×N<. Then, we translate each propositional variable a∈X to the binary predicate
Pa(τ, k), asserting that Şvariable a is true in trace τ ∈T at time k∈N<Ť. Additionally,
to accommodate for Ąnite traces, we include the binary predicate def including all time
positions within the length of a given trace. Formally, given a set T of traces, we translate
T to a structure T with signature:

(N, T ; < : N × N, (Pa : T ×N)a ∈ X , def : T ×N)

where N and T are the time and trace sort domains, respectively. The predicate < is
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6.1. Hypertrace Logic

interpreted as the usual partial order over the theory of natural numbers, while for all
variables a∈X, we have:

Pa = ¶(τ, k) ♣ τ ∈ T, k ∈ N, and τ [k](a) = 1♢

def = ¶(τ, k) ♣ τ ∈ T, k ∈ N, and 0 ≤ k < ♣τ ♣♢.

As we have two sorts of variables in hypertrace formulas, we evaluate whether a set of
traces T satisĄes a hypertrace formula over pair of assignments:

(ΠT
T ,Π

N) : (VT → T ) × (VN → N).

We denote an assignment update as (ΠT
T ,Π

N)[x 7→ v] where x is mapped to v, and
other variables remain unchanged. Then, a set T of traces is a model of a hypertrace
formula φ ∈ FO[<,T], denoted T ♣=T φ, iff T models φ under the standard Ąrst-order
semantics. Formally, T ♣=T φ, iff there exists a pair of assignments (ΠT

T ,Π
N) such that

(T , (ΠT
T ,Π

N)) ♣= φ, where ♣= is the standard Ąrst-order logic models relation. For the
hypertrace formula φ we deĄne the hyperproperty containing all sets of traces that are
models of φ, denoted JφK, as JφK = ¶T ♣ T ♣=T φ♢. From now on, we refer to Pa as a,
and omit the subscript T in ♣=T when clear from context.

Example: Hypertrace Logic Semantics

The hypertrace formula φ below speciĄes that “there exists a time point i such
that for all traces, the proposition a holds at that time i” :

φ
def
= ∃i∀π a(π, i).

An example of a formula with a different order for the trace and time quantiĄers
is the formula φ′ below requiring that “there exist two traces that are each other
complement with respect to the value of a” :

φ′ def
= ∃π∃π′∀i a(π, i) ↔ ¬a(π′, i).

Now consider, for example, the two trace sets below deĄned with traces over a
represented as strings of length 1 (i.e., [v(a)]):

T = ¶[0][1][0][1][0]ω, T ′ = ¶([0][1])ω,

[0][0][0][1]ω♢ ([1][0])ω,

[0]ω♢

The set T satisĄes the formula φ (T ♣=T φ) because for both traces in T at time 3
the value of a is 1. While the set T ′ satisĄes the formula φ′ (T ′ ♣=T φ

′) with the
two top most traces witnessing the satisfaction of the existential requirement of φ′.
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6. Expressing Information-flow with Linear Hyperlogics

On the other hand, the set T does not satisfy φ′ (T ̸♣=T φ
′) and the set T ′ does

not satisfy φ (T ′ ̸♣=T φ).

Linear Logic with Equal-level Predicate. Finkbeiner and Zimmermann introduce
in [FZ17] an alternative extension of FO[<] to express linear-time hyperproperties. They
add to FO[<] the equal-level predicate E [Tho92] and denoted it by FO[<,E]. Their
domain of interpretation are pairs of type T × N, where T is a set of traces. We call
the domain elements time positions. The equal-level predicate is a binary predicate over
time positions specifying which positions correspond to the same time point. Besides
the binary equal-level predicate, FO[<,E] allows only unary predicates. To solve the
model-checking problem for FO[<,E] we translate sets of traces T to the Ąrst order

structure T
E

with signature:

(T × N;<E : (T × N) × (T × N), E : (T × N) × (T × N), (Pa : T × N)a∈X)

where:

<E= ¶((τ, n), (τ, n′)) ♣ τ ∈ T and n < n′♢,

E = ¶((τ, n), (τ ′, n)) ♣ τ, τ ′ ∈ T and n ∈ N♢ and

Pa = ¶(τ, n) ♣ τ [n](a) = 1♢.

As usual, the direct successor predicate is deĄned as Succ(x, y)
def
= x < y∧¬∃z(x < z < y).

To allow to distinguish between trace and time quantiĄcation, we deĄne minimal pairs as

min(x)
def
= ¬∃y Succ(y, x) as the time positions that mark the beginning of each trace.

Given a set T of traces, formulas φ of FO[<,E] are interpreted over assignments
ΠE

T : V → (T × N). Then, T ♣=E φ iff there exists an assignment ΠE
T that witnesses

the model relation, i.e., (T
E
,ΠE

T ) ♣= φ under the standard Ąrst-order semantics. While
there is no explicit distinction between trace and time quantiĄers, it is possible to encode
this distinction implicitly. In [FZ17], the authors introduce minimal-time quantifiers
to deĄne implicit quantiĄcation over traces. Minimal-time quantiĄers are denoted by
QMxφ, with Q ∈ ¶∀,∃♢, and deĄned by the following shorthands:

∀Mxφ
def
= ∀x (min(x) → φ) and ∃Mxφ

def
= ∃x (min(x) ∧ φ).

Example: From Hypertrace Formulas to Equal-level Formulas

The hypertrace formula φ
def
= ∃i∀π a(π, i) from our previous example is equivalent

to the equal-level formula below, which we will explain next:

∃xi ∀Mxπ ∃x(π,i)E(x(π,i), xi) ∧ xπ ≤ x(π,i) ∧ Pa(x(π,i)).
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6.1. Hypertrace Logic

To help distinguish between time quantiĄers and minimal-time quantiĄers, we
annotate the time-position variables (denoted by x) with either a time reference
(denoted by i), a trace reference (denoted by π or π′) or a pair of them. We use
the predicate E(x(π,i), xi) to guarantee that x(π,i) has the same time index as xi,
i.e., we make sure our annotation is correct and both time-position variables refer
to the time i. Moreover, since xπ is in the scope of a minimal time quantiĄer, the
predicate xπ ≤ x(π,i) guarantees that x(π,i) has the same trace identiĄer as xπ.

The hypertrace formula ∃π∃π′∀i (a(π, i) ↔ ¬a(π′, i)) is equivalent to the equal-level
formula:

∃Mxπ ∃Mxπ′ ∀xi ∃x(π,i) E(x(π,i), xi) ∧ xπ ≤ x(π,i) ∧

∃x(π′,i)E(x(π′,i), xi) ∧ xπ′ ≤ x(π′,i) ∧ (Pa(x(π,i)) ↔ ¬Pa(x(π′,i))).

We prove next that Hypertrace Logic and FO[<,E] are equally expressive for sets of
inĄnite traces. Translating from equal-level formulas to hypertrace formulas is straight-
forward due to the explicit trace and time quantiĄcation in FO[<,T]. The other direction
is more challenging. We deĄne in the proof below a translation that Ąrst encodes binary
predicates of FO[<,T] into unary predicate over variables named with the intended
trace and time variables (i.e., a predicate x(π, i) will deĄne the variable x(π,i)). We then
introduce minimal quantiĄers appropriately to guarantee that x(π,i) has the same trace
identiĄer as a minimal variable xπ with xπ ≤ x(π,i), and has the same time variable as xi

using the equal-level predicate E(xi, x(π,i)).

Theorem 6.1.1. For all equal-level sentences φE ∈ FO[<,E] there exists a hypertrace
sentence φ ∈ FO[<,T] such that for all sets T ⊆ Vω

X of infinite traces, we have T ♣=E φE

iff T ♣=T φ. For all hypertrace sentences φ ∈ FO[<,T] there exists an equal-level sentence
φE ∈ FO[<,E] such that for all sets T ⊆ Vω

X of infinite traces, we have T ♣=T φ iff
T ♣=E φE.

Proof. For what follows, V is a set of variables (as used by equal-level formulas), T is a
set of traces, VT = ¶vπ ♣ v ∈ V♢ is a set of trace variables and VN<

= ¶vi ♣ v ∈ V♢ is a set
of time variables. We start with the ⇒-direction and start by deĄning a translation from
equal-level formulas to hypertrace formulas, trT, recursively as follows:

trT(∀xφ) = ∀xi∀xπtrT(φ) trT(∃xφ) = ∃xi∃xπtrT(φ)

trT(E(x, y)) = (xi = yi) trT(x < y) = (xπ = yπ ∧ xi < yi).

Additionally, we deĄne below a translation from equal-level assignments to hypertrace
assignments with type: tr : (V → (T × N)) → ((VT → T ) × (VN<

→ N)). Then, given an
equal-level assignment ΠE

T : V → (T ×N) its translation for all variables x ∈ V where the
assignment is deĄned, i.e. ΠE

T (x) = (τ, i), is just the assignment of each element of the
pair to the respective sort, formally tr(Π)(xπ) = τ and tr(Π)(xi) = i. Then, it follows by
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6. Expressing Information-flow with Linear Hyperlogics

structural induction on equal-level formulas φE that for all set of traces T and equal-level

assignments ΠE
T , (T

E
,ΠE

T ) ♣= φE iff (T , tr(ΠE
T )) ♣= trT(φE).

We proceed now to the ⇐-direction. We translate hypertrace sentences φ ∈ FO[<,T] to
equal-level predicate sentence φE ∈ FO[<,E] recursively with trE as follows:

trE(∀π φ) = ∀Mxπ trE(φ) trE(∃π φ) = ∃Mxπ trE(φ)

trE(∀i φ) = ∀xi trE(φ) trE(∃i φ) = ∃xi trE(φ)

trE(def(π, i)) = true trE(a(π, i)) = ∃x(π,i)E(x(π,i), xi) ∧ xπ ≤ x(π,i) ∧ Pa(x(π,i)).

We deĄne below a translation from hypertrace assignments to equal-level assignments
with type tr : ((VT → T ) × (VN<

→ N)) → (V(T,N<) → (T × N)). We use the same name
as in the other direction of the proof to avoid introducing more notation. Then, we deĄne
the translation between assignments recursively as follows, for all pair of variables π ∈ VT

and i ∈ VN<
that are deĄned in a given (ΠT

T ,Π
N<), i.e., ΠT

T (π) = τ and ΠN<(i) = n:

tr((ΠT
T ,Π

N<))(xπ) = (τ, 0)

tr((ΠT
T ,Π

N<))(xi) = (τ ′, n), for some τ ′ ∈ T

tr((ΠT
T ,Π

N<))(x(π,i)) = (τ, n).

It follows by structural induction on hypertrace formulas φ that for all set of traces T and

pair assignments (ΠT
T ,Π

N<), (T , (ΠT
T ,Π

N<) ♣= φ iff (T
E
, tr((ΠT

T ,Π
N<))) ♣= trE(φ).

Fragments of Hypertrace Logic. In this work, we focus on two fragments of
hypertrace logic with restrictions on the type of quantiĄersŠ relative ordering. For
example, in the speciĄcation of the two variants of stateless independence in DeĄnition
6.2.1, the only difference between them is the relative ordering between the trace and time
quantiĄers: segment semantics has trace quantiĄers Ąrst, followed by a time quantiĄer,
while for point semantics, it is the other way around. For each fragment, we will
present an equivalence relation over sets of traces, establishing which sets of traces are
indistinguishable for the respective hypertrace logic fragment. Our goal is to provide a
framework to study the expressive power of linear-time hyperlogics, like HyperLTL.

6.1.1 Trace-prefixed

We start by studying the fragment where trace quantiĄers occur Ąrst, followed by time
quantiĄers. We call this the trace-prefixed hypertrace logic, denoted T-FO[<,T]. Formally,
trace-preĄxed formulas φ ∈ T-FO[<,T] are deĄned by the grammar:

ψ ::= ∀i ψ ♣ ψ ∨ ψ ♣ ¬ψ ♣ i < i ♣ i = i ♣ P (π, i)

φ ::= ∀π φ ♣ ∃π φ ♣ ψ
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6.1. Hypertrace Logic

where π is a trace variable, i is a time variable, and P is a binary predicate.

Without surprise, T-FO[<,T] is expressively equivalent to HyperLTL [CFK+14] when
interpreted over sets of inĄnite traces. We prove this result in Theorem 6.1.3 below,
lifting the equivalence between FO[<] and LTL by Gabbay et.al. [GPSS80].

Our Ąrst observation is that a quantiĄer-free HyperLTL formula φ over trace variables V
and propositions X is a LTL formula over the alphabet ¶aπ ♣ a ∈ X,π ∈ V♢. So, to prove
our results we Ąrst need to deĄne a translation between assignments over sets of traces
and propositional variables, and assignments only over propositional variables. Formally,
for a set of traces T and an assignment ΠT : V → T over it and variables in V , we deĄne
its flattening as:

⟨ΠT ⟩[i](aπ) = ΠT (π)[i](a)

for all time variables i ∈ N, trace variables π ∈ V and propositional variables a ∈ X.
We prove below that a trace assignment over a set of traces satisĄes a quantiĄer-free
HyperLTL formula iff its Ćattening satisĄes the same formula under the LTL semantics.

Proposition 6.1.2. Let φ be a quantifier-free HyperLTL formula. For all i ∈ N, all trace
sets T , and all corresponding trace assignments ΠT , (ΠT , i) ♣=H φ iff ⟨ΠT ⟩[i . . .] ♣= φ.

Proof. We prove the result by structural induction on quantiĄer-free HyperLTL formulas.
The inductive cases follow directly from induction hypothesis. As for the base case, it
follows directly from deĄnition of Ćattening.

Using the results by Gabbay et.al. [GPSS80] and the proposition above, we prove below
that hypertrace logic and HyperLTL are equivalent.

Theorem 6.1.3. For all HyperLTL sentences φH there exists a trace-prefixed hypertrace
sentence φ such that for all sets of infinite traces T ⊆ Vω

X , we have T ♣=H φH iff T ♣=T φ.
For all trace-prefixed hypertrace sentences φ there exists a HyperLTL sentence φH such
that for all sets of infinite traces T ⊆ Vω

X , we have T ♣=H φH iff T ♣=T φ.

Proof. The translation from HyperLTL formulas to an equivalent trace-preĄxed hyper-
trace formula works as follows. We keep the trace quantiĄers as they are and we use the
translation from LTL to FO[<] introduced in [GPSS80] to translate the quantiĄer-free
part. Then, we apply the following change in the quantiĄer-free part: Pa(π, i) = Paπ

(i).
Let us call this translation trH . It follows from structural induction on HyperLTL formu-
las that for all sets of traces and their assignments they satisfy an HyperLTL formula
iff they satisfy its translation to the trace-preĄxed hypertrace formula. This follows
from the result by Gabbay et al. in [GPSS80] and Proposition 6.1.2 for the base case
of this induction. Hence for all HyperLTL formulas φH there exists the trace-preĄxed
hypertrace formula trH(φH) s.t. T ♣=H φH iff T ♣=T trH(φH).

The translation from trace-preĄxed hypertrace formulas to HyperLTL is similar. We use
instead the translation from FO[<] to LTL from [GPSS80].
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6. Expressing Information-flow with Linear Hyperlogics

From now on, when dealing with inĄnite traces, we may refer to trace-preĄxed hyperlogic
as HyperLTL. This name convention emphasises its direct connection to LTL and, by
doing so, allows us to seamlessly lift LTL results to this fragment of hypertrace logic.

From LTL to HyperLTL Indistinguishable Models

We recall that quantiĄer-free HyperLTL formulas are LTL formulas. Moreover, we know
that the number of quantiĄers determines an upper bound on the number of traces that
can be simultaneously compared while evaluating HyperLTL formulas. From these two
remarks, it is a natural step to deĄne equivalences on trace sets for HyperLTL formulas
by lifting results from the LTL literature. We formalize this intuition below.

Let C be a class of LTL formulas and ≈ be an equivalence relation on traces. We say
that ≈ is C-preserving if for all LTL formulas in that class, φ ∈ C, and all traces τ and
τ ′ in the equivalence relation, τ ≈ τ ′, we have τ ♣= φ iff τ ′ ♣= φ. For example, if C is
the set of LTL formulas without next (X) operator, and the equivalence classes of ≈ are
closed under stuttering, then ≈ is C-preserving, i.e., stutter-invariant [PW97].

Let let φ = Q0π0 . . . Qkπkψ be a HyperLTL formula with ψ being quantiĄer-free and
Qi ∈ ¶∀,∃♢ for all 0 ≤ i ≤ k. For a class of LTL formulas C, φ is in the k-extension of C,
denoted φ ∈ 2Ck , if ψ ∈ C. We can now lift a C-preserving equivalence ≈ on traces to
a 2Ck -preserving equivalence on trace sets, by requiring a bijective translation between
trace sets which preserves ≈ for all assignments of size k.

Definition 6.1.1. Let k ∈ N, let C be a class of LTL formulas, and let ≈ be a C-
preserving equivalence on traces. Two sets T and U of traces are (k,C)-equivalent,
denoted T ≈(k,C) U , iff there exists a bijective and total function f : T → U , such that
for all sets V of k trace variables and all trace assignments Π : V → T and Π′ : V → U ,
we have ⟨Π⟩ ≈ ⟨f(Π)⟩ and ⟨Π′⟩ ≈ ⟨f−1(Π′)⟩, where f(Π)(π) = f(Π(π)) for all π ∈ V.

We prove below that the lift from indistinguishability relations for LTL formulas deĄned
above speciĄes a proper indistinguishability relation between sets of traces concerning
HyperLTL formulas.

Theorem 6.1.4. Let C be a class of LTL formulas and ≈ a C-preserving equivalence on
traces. Let φ ∈ 2Ck be a HyperLTL sentence in the k-extension of C, for some k ∈ N. For
all sets T and U of traces with T ≈(k,C) U , we have T ♣= φ iff U ♣= φ.

The theorem follows from Lemma 6.1.5 below, which is shown by induction on the number
k of trace quantiĄers.

Lemma 6.1.5. Let C be a class of LTL formulas and k ∈ N. For all HyperLTL formulas
φ ∈ 2Ck , all trace sets T and U with T ≈(k,C) U , all functions f : T → U that witness
the (k,C)-equivalence of T and U , and all trace assignments Π : free(φ) → T and
Π′ : free(φ) → U to the free variables in φ, we have

(Π, 0) ♣= φ iff (f(Π), 0) ♣= φ, and (Π′, 0) ♣= φ iff (f−1(Π′), 0) ♣= φ.
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6.1. Hypertrace Logic

Proof. We prove this statement by structural induction on HyperLTL formulas on a class
2C. The class C affects only the quantiĄer-free part of the formula.

We start with the base case where φ ∈ 2C is quantiĄer-free, i.e., free(φ) = V(φ). Note
that φ can be interpreted as an LTL formula over the set of propositional variables XV(ϕ)

with φ ∈ C. Consider arbitrary set of traces s.t. T ≈(♣V(ϕ)♣,C) U with f being a function
that witnesses it. Now, consider an arbitrary ΠT and ΠU over U and T , respectively,
s.t. V(ΠT ) = V(ΠU ) = free(φ). By deĄnition of ≈(♣V(ϕ)♣,C), ⟨ΠT ⟩ ≈C ⟨f(ΠT )⟩ and, by
deĄnition of ≈C: (⋆) ⟨ΠT ⟩ ♣= φ iff ⟨f(ΠT )⟩ ♣= φ. By Proposition 6.1.2, (ΠT , 0) ♣= φ
iff ⟨ΠT ⟩[0 . . .] ♣= φ; and (f(ΠT ), 0) ♣= φ iff ⟨f(ΠT )⟩[0 . . .] ♣= φ. Thus, (ΠT , 0) ♣= φ iff
(f(ΠT ), 0) ♣= φ. Analogously, (ΠU , 0) ♣= φ iff (⟨f−1(ΠU )⟩, 0) ♣= φ.

We proceed now to the induction steps and assume by induction hypothesis (IH) that
the statement holds for arbitrary φ ∈ 2C. We start with the case for the universal
quantiĄer Ű ∀π φ. Assume that (i) T ≈(♣V(∀π ϕ)♣,C) U . Note that, wlog we can assume
that quantiĄers bind a variable already occurring in φ, i.e. ♣V(∀π φ)♣ = ♣V(φ)♣. Then,
(i’) T ≈(♣V(ϕ)♣,C) U , and it has the same witnesses as assumption (i). Let f : T → U be
a function that witnesses (i). Now, consider arbitrary ΠT and ΠU , over T and U , s.t.
V(ΠT ) = V(ΠU ) = free(∀π φ) = free(φ) \ ¶π♢. We prove next that:

(ΠT , 0) ♣= ∀π φ iff (f(ΠT ), 0) ♣= ∀π φ.

We start with the ⇒-direction of the statement. Assume that (ΠT , 0) ♣= ∀π φ, then
by HyperLTL satisfaction: (⋆) for all τ ∈ T : (ΠT [π 7→ τ ], 0) ♣= φ. By DeĄnition 6.1.1,
V(f(ΠT )) = V(ΠT ). Thus, V(f(ΠT )[π 7→ τ ′]) = V(ΠT ) ∪ ¶π♢ = free(φ). We can apply
the (IH), because T ≈(♣V(ϕ)♣,C) U , f witnesses it, and for all τ ∈ T then ΠT [π 7→ τ ] is an
assignment over T . So, it follows: for all τ ∈ T : (f(ΠT [π 7→ τ ]), 0) ♣= φ.

Assume towards a contradiction that (f(ΠT ), 0) ̸♣= ∀π φ. Then, by deĄnition of HyperLTL
satisfaction: there exists τ ′ ∈ U : (f(ΠT )[π 7→ τ ′], 0) ̸♣= φ. We can apply the (IH), because
V(f(ΠT )[π 7→ τ ′]) = free(φ), (i’) with f being one of its witnesses, and for all τ ′ ∈ U the
f(ΠT )[π 7→ τ ′] is an assignment over U . So, it follows:

there exists τ ′ ∈ U : (f−1(f(ΠT )[π 7→ τ ′]), 0) ̸♣= φ.

And by DeĄnition 6.1.1: there exists τ ′ ∈ U : (f−1(f(ΠT ))[π 7→ f−1(τ ′)], 0) ̸♣= φ. As
f is a bijective function, (f−1(f(ΠT )) = ΠT , and so: there exists τ ′ ∈ U : (ΠT [π 7→
f−1(τ ′)], 0) ̸♣= φ. And this is equivalent to:

there exists τ ′ ∈ U : τ = f−1(τ ′) and (ΠT [π 7→ τ ], 0) ̸♣= φ.

Given that f is a surjective function, then: there exists τ ∈ T : (ΠT [π 7→ τ ], i) ̸♣= φ. This
contradicts (⋆). So, the ⇒-direction holds.
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6. Expressing Information-flow with Linear Hyperlogics

We now prove the ⇐-direction by contra-position. Assume that (ΠT , 0) ̸♣= ∀π φ, then
by HyperLTL satisfaction: there exists τ ∈ T : (ΠT [π 7→ τ ], 0) ̸♣= φ. We can apply
now the (IH), because V(f(ΠT )[π 7→ τ ′]) = free(φ), (i’) with f being one of its wit-
nesses, and for all τ ∈ T the ΠT [π 7→ τ ] is an assignment over T . Then, it follows:
there exists τ ∈ T : (f(ΠT [π 7→ τ ]), 0) ̸♣= φ. By DeĄnition 6.1.1: there exists τ ∈ T : τ ′ =
f(τ) and (f(ΠT )[π 7→ τ ′]), 0) ̸♣= φ. By f being surjective, it follows: there exists τ ′ ∈ U :
(f(ΠT )[π 7→ τ ′]), 0) ̸♣= φ. And by DeĄnition of HyperLTL satisfaction: (f(ΠT ), 0) ̸♣= ∀π φ.
Thus, the ⇐-direction of the statement holds, as well. Hence (ΠT , 0) ♣= ∀π φ iff
(f(ΠT ), 0) ♣= ∀π φ.

Now, we prove (ΠU , 0) ♣=∀π φ iff (f−1(ΠU ), 0) ♣=∀π φ. We start with the ⇒-direction of
the statement. Like in the previous case, we assume that (ΠU , 0) ♣= ∀π φ, and then we
assume towards a contradiction that (f−1(ΠU ), 0) ̸♣= ∀π φ. The proof is analogous to
the previous case up to the point that we infer:

there exists τ ∈ T : τ ′ = f(τ) and (ΠU [π 7→ τ ′], i) ̸♣= φ.

Then, by f being total, there exists τ ′ ∈ U : (ΠU [π 7→ τ ′], i) ̸♣= φ. And this contradicts
the assumption that (ΠU , i) ♣= ∀π φ.

The ⇐- direction is analogous to the previous case, as well, up to the point that we infer:

there exists τ ′ ∈ U : τ = f(τ ′) and (f−1(ΠT )[π 7→ τ ]), 0) ̸♣= φ.

Then, by f being total we infer: there exists τ ∈ T : (f−1(ΠT )[π 7→ τ ]), 0) ̸♣= φ. So,
f−1(ΠT ), 0) ̸♣= ∀π φ. Hence the ⇐- direction holds.

We consider now the induction case ∃π φ. We assume that (i) T ≈(♣V(∃π ϕ)♣,C) U .
Note that, wlog we can assume that quantiĄers bind a variable already occurring in
φ, i.e. ♣V(∃π φ)♣ = ♣V(φ)♣. So, (i’) T ≈(♣V(ϕ)♣,C) U , and it has the same witnesses as
assumption (i). Let f : T → U be a function that witnesses (i). Now, consider arbitrary
ΠT and ΠU , over T and U , s.t. V(ΠT ) = V(ΠU ) = free(∃π φ) = free(φ) \ ¶π♢. We prove
next that (ΠT , 0) ♣= ∃π φ iff (f(ΠT ), 0) ♣= ∃π φ.

We start with the ⇒-direction of the statement. Assume that (ΠT , 0) ♣= ∃π φ, then by
HyperLTL satisfaction: there exists τ ∈ T : (ΠT [π 7→ τ ], 0) ♣= φ.

By DeĄnition 6.1.1, V(f(ΠT )) = V(ΠT ), and thus V(f(ΠT )[π 7→ τ ′]) = V(ΠT ) ∪ ¶π♢ =
free(φ). Then, we can apply the (IH), because T ≈(♣V(ϕ)♣,C) U with f being one of its
witnesses, and for all τ ∈ T the ΠT [π 7→ τ ] is an assignment over T . So, we get:

there exists τ ∈ T : (f(ΠT [π 7→ τ ]), 0) ♣= φ.

By DeĄnition 6.1.1, there exists τ ∈ T, τ ′ =f(τ) and (f(ΠT )[π 7→ τ ′], 0) ♣=φ. Then, by f
being a total function: there exists τ ′ ∈ U : (f(ΠT )[π 7→ τ ′], 0) ♣= φ. Hence by HyperLTL
satisfaction deĄnition: (f(ΠT ), 0) ♣= ∃π φ.
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6.1. Hypertrace Logic

We now prove the ⇐-direction of the statement.

Assume that (f(ΠT ), 0) ♣= ∃π φ, then by HyperLTL satisfaction:

there exists τ ∈ T : (f(ΠT [π 7→ τ ]), 0) ♣= φ.

By DeĄnition 6.1.1, V(ΠT ) = V(f(ΠT )), and thus V(ΠT [π 7→ τ ′]) = V(f(ΠT )) ∪ ¶π♢ =
free(φ). Then, we can apply the (IH), because T ≈(♣V(ϕ)♣,C) U with f being one of its
witnesses, and for all τ ∈ T the f(ΠT [π 7→ τ ]) is an assignment over U . So, there exists
τ ∈ T : (ΠT [π 7→ τ ], 0) ♣= φ. And by HyperLTL satisfaction deĄnition, (ΠT , 0) ♣= ∃π φ.

Finally, we prove: (ΠU , 0) ♣= ∃π φ iff (f−1(ΠU ), 0) ♣= ∃π φ.

We start with the ⇒-direction of the statement. It is analogous to the previous case, up to
the point that we infer: there exists τ ′ ∈ U : τ = f−1(τ ′) and (f−1(ΠU )[π 7→ τ ], 0) ♣= φ.
Then, by f being surjective, there exists τ ∈ T : (f−1(ΠU )[π 7→ τ ], 0) ♣= φ. Hence by
HyperLTL satisfaction deĄnition: (f−1(ΠU ), 0) ♣= ∃π φ.

The ⇐-direction is analogous to the previous case.

Side note: Incompleteness of the lift

The other direction of the implication in Theorem 6.1.4 does not hold. We support
this claim with an example next. Consider the following trace sets with valuations
over a single variable x:

T = ¶[1][0][1][0]ω♢

U = ¶[1][0][0][1][0]ω, [1][0][0][0][1][0]ω♢

We Ąrst observe that as the two trace sets have different number of elements, there
is no natural number k and class of LTL formulas C for which they are (k,C)-
equivalent. According to DeĄnition 6.1.1, the function witnessing the equivalence
must be bijective and total. Thus, the sets must have the same number of
elements. However, they are indeed indistinguishable for all HyperLTL formulas
with only one trace quantiĄer and no next operator because the two traces in U
are stutter-equivalent to the trace in T .

6.1.2 Time-prefixed

In this section, we look into the fragment of Hypertrace Logic with time constraints
deĄned before trace quantiĄers, denoted by <-FO[<,T]. The formulas φ ∈ <-FO[<,T]
are deĄned by the following grammar:

ψ ::= ∀π ψ ♣ i < i ♣ i = i ♣ ψ ∨ ψ ♣ ¬ψ ♣ P (π, i)

φ ::= ∀i φ ♣ ∃i φ ♣ ψ
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6. Expressing Information-flow with Linear Hyperlogics

where π is a trace variable, i is a time variable, and P is a binary predicate.

Example: Time-prefixed hypertrace formulas

We can use time-preĄxed hypertrace logic to specify synchronized behavior across
all traces, i.e., require that all executions of a system agree on a variable (or
multiple variables) assignment at the same time. For example, if we want all traces
to agree on p at the same time, we specify it with the formula: ∃i∀π p(π, i).

Bozelli et al. in [BMP15], proved that HyperLTL cannot express a similar property.

Indistinguishable Time Points

Intuitively, time-preĄxed hypertrace formulas cannot distinguish trace sets with the
same projection at each time point because time-preĄxed formulas cannot Ąx a trace
assignment before quantifying over time. Formally, for a time-preĄxed formula that
quantiĄes over k time points, two sets of traces are k-point equivalent if there exists a
bijection relating all k-tuple of time points in the two sets.

Definition 6.1.2. Let T and U be sets of traces. We say that T and U are k-point
equivalent, denoted T ≈point

k U , iff for all k-tuples (i1, · · · ik) ∈ Nk of time positions, there
exists a bijective and total function f : T → U such that for all traces τ ∈ T and τ ′ ∈ U ,
and all 1 ≤ j ≤ k, we have τ [ij ] = f(τ)[ij ] and τ ′[ij ] = f−1(τ)[ij ].

We prove below that this deĄnition captures trace sets indistinguishability for time-
preĄxed hypertrace formulas.

Theorem 6.1.6. For all time-prefixed hypertrace sentences φ ∈ <-FO[<,T], and all sets
T and U of traces with T ≈point

k U , where k is the number of time variables in φ, we
have T ♣= φ iff U ♣= φ.

Proof. We evaluate time-preĄxed formulas as in FOL with sorts. We denote by (ΠN,ΠT )
a pair with the assignments for variables over the sort time and the sort of traces,
respectively. Wlog, we can assume that the variables can be identiĄed by the position
they are quantiĄed. Then, given a k-point equivalence and an assignment over time,
ΠN that has assignments for the variables I(ΠN) = ¶π1, . . . πn♢ with n ≤ k, then there
exists a witness function for the tuple (π1, . . . , πn) which we denote by fΠN

. We prove
the theorem by proving the following lemma Ąrst:

For all time-prefixed Hypertrace formulas φ ∈ <-FO[<,T] and all sets of traces, T and U ,
that are ♣I(φ)♣-point equivalent, T ≈point

♣I(ϕ)♣ U , where ♣I(φ)♣ is the number of time variables
in φ, then for all time assignments ΠN, and for all trace assignments ΠT and ΠU , which
are over free(φ), we have: (ΠN,ΠT ) ♣= φ iff (ΠN, fΠN

(ΠT )) ♣= φ; and (ΠN,ΠU ) ♣= φ iff
(ΠN, f

−1
ΠN

(ΠT )) ♣= φ;
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6.2. Flavors of Two-state Independence

We prove this lemma by structural induction on time-preĄxed formulas. The induction
step for the time preĄx part is trivial, as the assignment over time variables in both sides
of the implication is the same. For the trace quantiĄer part, the proof in analogous to
Lemma 6.1.5. The only difference is the base case, that follows from the deĄnition of
k-point equivalence.

6.2 Flavors of Two-state Independence

In this section, we present different speciĄcation variants of the following sequential
information-Ćow policy:

The value of observable variable y is independent of the value of observable variable x
until state changes, and from then on

the value of observable variable z is independent of the value of x.

Stateless. We start by deĄning variants for independence without state change with
hypertrace logic. Independence between two variables x and y requires that for any two
traces τ and τ ′ there exists a third trace τ∃ that has the same values for x as the Ąrst
trace τ and the same values for y as the second trace τ ′. The variants we will discuss
differ in how we deĄne the notion of ‘having the same values’.

In our Ąrst variant, we require the comparison to consider the complete sequence of values
altogether. It adopts a trace-based view for the comparison, which we call the segment
semantics of independence. An alternative semantics is of time-invariant combinational
independence. Under this interpretation, we compare values at each time independently.
This variant adopts a time-point view, which we refer to as the point semantics of
independence.

We specify point and segment independence with hypertrace formulas below. We use the
predicate def to accommodate for the bounds of Ąnite traces.

Definition 6.2.1. Two variables x and y are point independent, indpoint(x, y), iff

∀i∀π∀π′∃π∃
(

def(π, i) ∧ def(π′, i)
)

→
(

def(π∃, i) ∧ (x(π, i) ↔ x(π∃, i)) ∧ (y(π′, i) ↔ y(π∃, i))
)

.

Two variables x and y are segment independent, indseg(x, y), iff:

∀π∀π′∃π∃∀i
(

def(π, i) ∧ def(π′, i)
)

→
(

def(π∃, i) ∧ (x(π, i) ↔ x(π∃, i)) ∧ (y(π′, i) ↔ y(π∃, i))
)

.

Stateful. We look now at the state change. First, we distinguish between the state
change being either observable or hidden in the set of traces abstracting the systemŠs
behavior. Besides the visibility of the state change, we distinguish between systems
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6. Expressing Information-flow with Linear Hyperlogics

in which the state change occurs at the same time in all of its traces (i.e., the state
change is synchronous across all traces) and systems without any guarantees on the state
changes (i.e., the change is asynchronous across all traces). In the speciĄcation below,
the propositional variable a indicates the state change (it becomes true after the change).

We start by deĄning a slicing operator over sets of traces with two variants: the preĄx and
the suffix slicer. We use these slicers to get preĄxes (or suffixes) of all traces in a given set
of traces, characterizing all that happens before (or after) a given propositional variable
becomes true for the Ąrst time. We formalize the statement that a ‘propositional variable
a becomes true for the first time at time i in a trace τ ’ with the following formula:

min(τ, a, i)
def
= a(τ, i) ∧ ∀j a(τ, j) → j ≥ i.

The slicing of a set of traces T for a propositional variable a, is deĄned as follows:

T [a . . . ] = ¶τ [k . . . ] ♣ τ ∈ T, k < ♣τ ♣, and min(τ, a, k)♢;

T [. . . a] = ¶τ [. . . k] ♣ τ ∈ T, if exists l s.t. min(τ, a, l) then k = l else k = ω♢.

We now have all the deĄnitions we need to deĄne the different variants of sequential
independence we introduced so far.

Definition 6.2.2. Two-state local independence is defined with regard to a propositional
variable a and to an independence interpretation ind ∈ ¶indpoint, indseg♢.

Observable asynchronous state change:

Tasync
ind = ¶T ♣T [. . . a] ♣= ind(x, y) and T [a . . .] ♣= ind(x, z)♢.

Observable synchronous state change:

Tsync
ind = ¶T ♣ T ∈ Tasync

ind and T ♣= ∃i∀π min(π, a, i)♢.

Hidden asynchronous state change:

Tasync,hidden
ind =¶T ♣a ♣ ∃a T [. . . a] ♣= ind(x, y) and T [a . . .] ♣= ind(x, z)♢.

Hidden synchronous state change:

Tsync,hidden
ind =¶T ♣ ∃k T [. . . k] ♣= ind(x, y) and T [k . . .] ♣= ind(x, z)♢.

Here T ♣a is the same set of traces as T except for the assignments of a being removed.

Example: Two-state independence

We use the program P, described in Algorithm 4.1, to illustrate the differences
between the two-state independence deĄnitions. Recall that, we abstract the
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6.3. Expressing Two-State Independence

behavior of the program P by the updates of four variables: state, x, y and z. In
each programŠs loop iteration, stateŠs value determines the values of y and z, while
the variable x is non-deterministically assigned via an input channel.

The program P starts with the state variable set to 0 (state = 0) and, at each
iteration, the state value is non-deterministically assigned via an input channel.
When the value of state changes from 0 to 1, the program stops updating state,
which remains as 1 for the subsequent iterations. If the value of state is 0, then
the program P assigns x to z while it sets y with a default value. Otherwise, when
the value of state is 1, the inverse occurs: the program P assigns x to y while it
sets z with a default value. At the end of each loop iteration, the program outputs
y and z.

We Ąrst observe that the program does not satisfy the two-state independence
property for observable synchronous state change because the state change is non-
deterministically determined in each execution. As for the observable asynchronous
state change variant, the program intuitively satisĄes it for both the segment and
point-based interpretation.

Recall the four traces depicted in Table 4.1, deĄned over the sequence of variables
[x y z state]. We depict below the result of applying the preĄx and the suffix
slicers for the action state over the set with the four traces:

¶τ1, τ2, τ3, τ4♢[. . . state] ¶τ1, τ2, τ3, τ4♢[state . . .]
τ1 : [0000] [1101] [1101] [1101]
τ2 : [1010] [1101] [1101] [1101]
τ3 : [1010] [1010] [0001] [0001]
τ4 : [0000] [1010] [0000] [1101]

In these traces, we can observe that indseg(x, y) holds in the Ąrst slice, while
indseg(x, z) holds in the second slice.

6.3 Expressing Two-State Independence

After introducing different natural variants of the two-state independence property using
hypertrace formulas combined with a trace set slicing operator, the next natural step is
to investigate which variants can be expressed only using hypertrace logic formulas. In
particular, in this section, we focus on the most successful fragment of hypertrace logic:
the trace-preĄx, known as HyperLTL.

In our negative expressiveness results for HyperLTL, we use the fact that HyperLTL
formulas build from LTL formulas belonging to a class C with up to k trace quantiĄers
cannot distinguish trace sets that are (k,C)-equivalent (see DeĄnition 6.1.1), as proved
in Theorem 6.1.4. The proof process follows the following steps:
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6. Expressing Information-flow with Linear Hyperlogics

1. we identify the class of LTL formulas (i.e., the class of formulas in the quantiĄer-free
part of an HyperLTL formula) we are interested in;

2. we deĄne two families of trace sets parameterized by a natural number k;

3. we prove that, for one of the families, all its trace sets satisfy the property we are
interested in, while for the other family, all its trace sets do not satisfy it;

4. we prove that for each k, the trace sets from each family are (k,C)-equivalent.

Finally, once we have all those results, it follows from Theorem 6.1.4 that HyperLTL (or
the fragment of it we are working with) cannot express the property of interest.

Can HyperLTL express the variants of two-state independence?

In the table below, we summarize the Ąndings presented in this section, where we
explore which variants of two-state independence can be expressed using HyperLTL.

Independence State change
semantics Sync Async Hidden async Hidden sync

Point No? [Thm 6.3.4] No [Thm 6.3.11] No [Thm 6.3.11] No? [Thm 6.3.4]
Segment Yes [Thm 6.3.6] No [Thm 6.3.11] No [Thm 6.3.11] ?

Table 6.1: Summary of results on expressing variants of two-state independence
with HyperLTL.

In a nutshell, for point semantics and synchronous state change, we prove in
Theorem 6.3.4 that HyperLTL formulas with a single globally (G) operator cannot
express both the visible and the hidden variants of two-state independence. We
conjecture this result extends to the full HyperLTL. In Theorem 6.3.11, we prove
that HyperLTL cannot express asynchronous state change. This is unsurprising
because, in HyperLTL formulas, time evaluation is done synchronously over the
traces assigned to the trace variables. Finally, we show that HyperLTL can express
the segment semantics variant with visible synchronous state change, while for the
hidden and synchronous state change the problem remains open.

6.3.1 Two-state Point Semantics

We start by considering the point semantics of independence, i.e., independence predicates
of the form indpoint(x, y) as in DeĄnition 6.2.1. We observe that indpoint(x, y) is a time-
preĄxed hypertrace formula, and the only time quantiĄer is a universal quantiĄer.

A natural HyperLTL fragment to capture point semantics is the fragment where time is
also only universally quantiĄed. So, we are interested in the HyperLTL fragment where
the inner LTL formula belongs to the class LTL formulas that start with the globally
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6.3. Expressing Two-State Independence

(G) operator and contain no other modal operators, which we refer to as Global LTL
and denote by G. Formally, G = ¶Gψ ♣ ψ is a propositional formula♢. Global HyperLTL
extends global LTL with trace quantiĄers.

We prove next that Global HyperLTL cannot express one-state independence with point
semantics. We denote the hyperproperty specifying one-state independence with point
semantics as T1

point, i.e., T1
point = Jindpoint(x, y)K.

As we are interested in Global LTL (G), we need to Ąrst deĄne an relation between all
pair of traces that cannot be distinguished by formulas in the class G. We say that traces
τ and τ ′ are ≈G-equivalent if for all formulas φ∈G: τ ♣= φ iff τ ′ ♣= φ.

Proposition 6.3.1. For all traces τ and τ ′, we have τ ≈G τ
′ iff ¶τ [i] ♣ i ∈ N♢ =

¶τ ′[j] ♣ j ∈ N♢.

Proof. Consider arbitrary traces τ and τ ′. We start with the ⇒-direction. Assume that
τ ≈G τ

′. Consider an arbitrary φ ∈ G, so φ = Gψ where ψ is a propositional formula.
Then, τ ̸♣= φ iff there exists i ∈ N s.t. τ [i] ̸♣= ψ. And this is equivalent to, there exists
v ∈ ¶τ [i] ♣ i ∈ N♢ s.t. v ̸♣= ψ. By τ ≈G τ

′, v ∈ ¶τ [i] ♣ i ∈ N♢ iff v ∈ ¶τ ′[j] ♣ j ∈ N♢. Then
from an analogous reasoning, the former is equivalent to τ ′ ̸♣= φ.

For the ⇐-direction, we assume that for all φ ∈ G we have (⋆) τ ♣= φ iff τ ′ ♣= φ. Now,
assume towards a contradiction that τ ̸≈G τ

′. Consider Ąrst the case that there exists
i ∈ N s.t. τ [i] /∈ ¶τ ′[j] ♣ j ∈ N♢. This contradicts (⋆), because it entails that there exists
φ ∈ G with φ = Gψ s.t. τ [i] ♣= ψ and for all j ∈ N τ [j] ̸♣= ψ. The case that there exists
j ∈ N s.t. τ ′[j] /∈ ¶τ ′[i] ♣ i ∈ N♢ is analogous.

Our next step to prove that Global HyperLTL cannot express T1
point is to deĄne two

families of trace sets that are equivalent for Global HyperLTL formulas with one of the
families being in T1

point while the other is not.

Example: Trace Sets Witnessing Inexpressibility of T1
point with One

Trace Quantifier Global HyperLTL

Consider the set of traces:

T point
1 = ¶[11] [11] [11] [00]ω, Upoint

1 = ¶[11] [11] [11] [00]ω,

[10] [00] [00] [00]ω, [10] [00] [00] [00]ω,

[01] [00] [00] [00]ω, [01] [00] [00] [00]ω,

[00] [10] [10] [00]ω, [00] [10] [00] [00]ω,

[00] [01] [01] [00]ω♢ [00] [01] [00] [00]ω♢

We Ąrst observe that T point
1 satisĄes the condition that x is independent of y: at
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6. Expressing Information-flow with Linear Hyperlogics

all times, we have all possible combinations of observations for x and y. While
the set T point

1 does not fulĄl the independence condition because at time 2 we are
missing traces with valuations [10] and [01] for [x y].

When there is only one trace quantiĄer in a Global HyperLTL formula, then two
trace sets are (1,G)-equivalent iff there is a bijective mapping between their traces
s.t. the traces in the relation are G-equivalent. The mapping here is evident: each
trace in T point

1 is mapped to the trace to their right in Upoint
1 . We observe that for

both trace sets, we get the following set of valuations from their traces (which we
present below in the same order as the traces above):

¶[11], [00]♢

¶[10], [00]♢

¶[01], [00]♢

¶[00], [10]♢

¶[00], [01]♢

Then, T point
1 ≈(1,G) U

point
1 .

Given enough trace quantiĄers, we can distinguish the two trace sets with a Global
HyperLTL formula. One example of such a formula is:

∀π ∃π0 ∃π1 ∃π2 G
(

(xπ ∧ yπ) → (yπ0
∨ yπ1

∨ yπ2
)
)

.

We generalize the construction presented in the example to accommodate any number
of quantiĄers. Our goal is to ensure that there are enough traces in the sets such that
no n-tuple of them can be distinguished by a Global HyperLTL formula with up to n
quantiĄers.

Definition 6.3.1. For all n∈N, the sets T point
n and Upoint

n of traces with valuations over
[x y] are defined as:

En = ¶[11]n+2[00]ω♢ ∪
⋃

0≤j<n

¶[00]j [10] [00]ω, [00]j [01] [00]ω♢;

T point
n = En ∪ ¶[00]n [10] [10] [00]ω, [00]n [01] [01] [00]ω♢;

Upoint
n = En ∪ ¶[00]n [10] [00] [00]ω, [00]n [01] [00] [00]ω♢.

As expected, the family of sets T point
n satisĄes one-state point-wise independence, while

Upoint
n does not.

Lemma 6.3.2. For all n ∈ N, we have T point
n ∈ T1

point and Upoint
n /∈ T1

point.
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6.3. Expressing Two-State Independence

Proof. T ∈ T1
point iff for all i ∈ N:

T [i]∈¶M ♣M ♣= (x(π, i) ↔ x(π∃, i)) ∧ (y(π′, i) ↔ y(π∃, i)).♢

Consider arbitrary n ∈ N. We represent the valuations in (x, y).

For all n+ 1 < i, T point
n [i] = T ′point

n [i] = ¶00♢.

For all i < n+ 1, T point
n [i] = T ′point

n [i] = ¶00, 01, 10, 11♢.

As T point
n [n+ 1] = ¶00, 01, 10, 11♢, then T point

n ∈ T1
point. And, as T ′point

n [n+ 1] = ¶10, 00♢,

then T point
n /∈ T1

point.

We prove next that T point
n and Upoint

n are (n,G)-equivalent, for all natural numbers n.

Lemma 6.3.3. For all n ∈ N, we have T point
n ≈(n,G) U

point
n .

Proof. Consider arbitrary n ∈ N. We deĄne the witness function fn : T point
n → T ′point

n

below:

fn(τ) =















(00)n 10 00ω if τ = (00)n 10 10 00ω

(00)n 01 00ω if τ = (00)n 01 01 00ω

τ otherwise.

Clearly, this function is both bijective and total.

By deĄnition of fn and T point
n , then for all assignments of size n over it, Π

T
point
n

:

(a) for all i ̸= n+ 1, ⟨Π
T

point
n

⟩[i] = ⟨fn(Π
T

point
n

)⟩[i]; and

(b) for all π ∈ V, if Π
T

point
n

(π) /∈ ¶(00)n 10 10 00ω, (00)n 01 01 00ω♢, then Π
T

point
n

(π) =
fn(Π

T
point
n

(π)).

Analogously for all assignments over T ′point
n of size n and f−1.

It follows from the deĄnition of T point
n , that for all assignments of size m < n over T point

n ,
Πm

T
point
n

, there exists 0 ≤ k < n s.t. for all π ∈ V, Πm
T

point
n

(π) /∈ ¶(00)k 10 00ω, (00)k 01 00ω♢.

Then, (†) Πm
T

point
n

[k] ∈ ¶¶11♢, ¶00♢, ¶11, 00♢♢, because the only way to get valuations 10

and 10 at time k is with the missing traces.

Consider arbitrary n ∈ N and assignment over T point
n of size n, Π

T
point
n

. If for all
π ∈ V, Π

T
point
n

(π) /∈ ¶(00)n 10 10 00ω, (00)n 01 01 00ω♢, then by (b), for all i ∈ N,
⟨fn(Π

T
point
n

)⟩[i] = ⟨Π
T

point
n

⟩[i]. Now we assume that there exists Y = ¶π0, . . . , πl♢, with
0 ≤ l < n s.t. Π

T
point
n

(π) ∈ ¶(00)n 10 10 00ω, (00)n 01 01 00ω♢, with π ∈ Y , and for all
π /∈ Y , Π

T
point
n

(π) /∈ ¶(00)n 10 10 00ω, (00)n 01 01 00ω♢. We can prove from (†) that
there exists k s.t. ⟨Π

T
point
n

♣Y ⟩[n + 1] = ⟨Π
T

point
n

♣Y ⟩[k], where Π
T

point
n

♣Y is Π
T

point
n

without
the assignments to the variables in Y . Moreover, it follows as well, that for all π ∈ Y ,
⟨Π

T
point
n

⟩[k] = 00, and so there exists k s.t. ⟨fn(Π
T

point
n

)⟩[n+ 1] = ⟨Π
T

point
n

⟩[k]. Thus, (⋆)
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6. Expressing Information-flow with Linear Hyperlogics

for all assignments over T point
n of size n, Π

T
point
n

and all i ∈ N there exists j ∈ N s.t.
⟨fn(Π

T
point
n

)⟩[i] = ⟨Π
T

point
n

⟩[j].

By ⟨Π
T

point
n

⟩[n+ 1] = ⟨fn(Π
T

point
n

)⟩[n] and (a), then (⋆⋆) for all assignments of size n over

T point
n , Π

T
point
n

and for all i ∈ N there exists j ∈ N s.t. ⟨Π
T

point
n

⟩[i] = ⟨fn(Π
T

point
n

)⟩[j].

By (⋆) and (⋆⋆), for all assignments of size n over T point
n , Π

T
point
n

, we have ⟨Π
T

point
n

⟩[i] ≈G

⟨fn(Π
T

point
n

)⟩[j].

We prove analogously that for all assignments of size n over T ′point
n , Π

T ′point
n

, we have

⟨Π
T ′point

n
⟩[i] ≈G ⟨f−1

n (Π
T ′point

n
)⟩[j].

Finally, we combine all the results above to conclude that Global HyperLTL cannot
express the point semantics variant of two-state independence.

Theorem 6.3.4. Global HyperLTL cannot express neither one-state independence, nor
synchronous two-state local independence under point semantics for both observable and
hidden action: for all global HyperLTL formulas φ, we have JφK ̸= T1

point, JφK ≠ Tsync
point

and JφK ̸= Tsync,hidden
point .

Proof. From Lemma 6.3.2, Lemma 6.3.3, and Theorem 6.1.4, it follows that for all global
HyperLTL formulas φ, we have JφK ̸= T1

point. Assume towards a contradiction that there
exists a global HyperLTL formula φ with JφK = Tsync

point. DeĄne φy = φ[z 7→ y], where

[z 7→ y] replaces all occurrence of z by y. Then JφyK = T1
point, which is a contradiction.

Analogously, the assumption that there exists a global HyperLTL formula φ that speciĄes
hidden synchronous change JφK = Tsync,hidden

point lead us to a contradiction.

We conjecture that this result extends to full HyperLTL due to the requirement of
reasoning over unbound possibilities over time, which, for HyperLTL, must be done by a
bounded trace assignment. It is not surprising, however, that we can express two-state
independence under point semantics with a synchronous state change with a time-preĄxed
hypertrace formula, which we prove below.

Theorem 6.3.5. Consider the following time-prefixed hypertrace formula:

φsync
time ≡ ∃j∀i < j∀k ≤ j∀π∀π′∃π∃

(

¬a(π, i) ∧ ¬a(π′, i) ∧ (x(π, i) ↔ x(π∃, i)) ∧ (y(π′, i) ↔ y(π∃, i))
)

∧
(

a(π, j) ∧ a(π′, j) ∧ (x(π, k) ↔ x(π∃, k)) ∧ (z(π′, k) ↔ z(π∃, k))
)

Then Jφsync
timeK = Tsync

point.

Proof. Note that T ♣= φsync
time iff T ♣= ∃j∀i < j∀π ¬a(π, i) ∧ a(π, j). Thus, it only includes

sets of traces with synchronous action.
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6.3. Expressing Two-State Independence

Additionally, for all T that have synchronous action:

T ♣= φsync
time iff T ♣= ∃j∀i < j∀π∀π′∃π∃

(

¬a(π, i) ∧ ¬a(π′, i) ∧ (x(π, i) ↔ x(π∃, i)) ∧ (y(π′, i) ↔ y(π∃, i))
)

∧ a(π, j)

and

T ♣= ∃j∀k ≤ j∀π∀π′∃π∃

a(π, j) ∧ a(π′, j) ∧ (x(π, k) ↔ x(π′
∃, k)) ∧ (z(π′, k) ↔ z(π′

∃, k))
)

iff T [. . .a] ♣= ∀i∀π∀π′∃π∃
(

def(π, i) ∧ def(π′, i)
)

→
(

def(π∃, i) ∧ (x(π, i) ↔ x(π∃, i)) ∧ (y(π′, i) ↔ y(π∃, i))

and

T [a. . .] ♣= ∀k∀π∀π′∃π∃
(

def(π, k) ∧ def(π′, k)
)

→
(

def(π∃, k) ∧ (x(π, k) ↔ x(π∃, k)) ∧ (z(π′, k) ↔ z(π∃, k)).

6.3.2 Segment semantics

In this section, we prove that HyperLTL can express two-state local independence
under segment semantics (i.e., independence predicates of the type indseg(x, y)) with
a synchronous state change; while the asynchronous state change variants (both the
observable and the hidden) are not expressible in HyperLTL.

First, as the segment semantics of independence compares complete traces with trace
quantiĄers occurring before time quantiĄers, the HyperLTL formula for independence is
straightforward. Second, the synchronous state change can be easily captured by the
until operator, as we illustrate in the theorem below.

Theorem 6.3.6. Consider the following HyperLTL formula:

φsync
seg ≡ ∀π∀π′∃π∃∃π′

∃ (¬aπ ∧ ¬aπ′ ∧ xπ = xπ∃
∧ yπ′ = yπ∃

)

U (aπ ∧ aπ′ ∧ G(xπ = xπ∃
∧ zπ′ = zπ′

∃
)).

Then Jφsync
seg K = Tsync

seg .

Proof. Note that x(π, i) ↔ x(π∃, i) in Hypertrace Logic corresponds to xπ = xπ∃
in

HyperLTL. By DeĄnition 6.2.2, T ∈ Tsync
seg iff: (i) T ♣= ∃i ∀π min(τ, a, i); (ii) T [. . . a] ♣=

indseg(x, y); and (iii) T [a . . .] ♣= indseg(x, z). Then, by HyperLTL satisfaction, for all set
of traces T :

T ♣= φsync
seg iff

T ♣=∀π∀π′(¬aπ ∧ ¬aπ′) U (aπ ∧ aπ′),

T ♣=∀π∀π′∃π∃ (¬aπ ∧ ¬aπ′ ∧ xπ = xπ∃
∧ yπ′ = yπ∃

) U (aπ ∧ aπ′), and

T ♣=∀π∀π′∃π′
∃ (¬aπ ∧ ¬aπ′) U (aπ ∧ aπ′ ∧ □(xπ = xπ∃

∧ zπ′ = zπ′
∃
)).

91

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


6. Expressing Information-flow with Linear Hyperlogics

We can prove, by satisfaction for HyperLTL and Hypertrace Logic formulas, that:

T ♣=H ∀π∀π′(¬aπ ∧ ¬aπ′) U (aπ ∧ aπ′) iff T ♣= ∃i∀π a(π, i) ∧ ∀0 ≤ j < i ¬a(π, j)

Hence Jφsync
seg K = Tsync

seg .

For the asynchronous state change, the challenge is in expressing the unpredictable time
difference between the state change in two different traces. In fact, in general HyperLTL
cannot compare arbitrarily distant time points from different traces. To prove this
shortcoming we use the trace equivalence introduced by Kučera and Strejček [KS05] for
the class of LTL formulas with up to n nested next (X) operators, denoted Xn.

In [KS05], the authors deĄne that a valuation τ [i] at time i is n-redundant in a trace τ
if it is repeated consecutively for at least n + 1 times, that is, if τ [i] = τ [i + j] for all
1 ≤ j ≤ n. We then say that traces τ and τ ′ are n-stutter equivalent, denoted τ ≈n τ ′,
if they are equal up to the removal of n-redundant valuations. We can now deĄne the
relation ≈n has the least equivalence over the set of all Ąnite or inĄnite traces containing
≺n, where τ ≺n τ ′ iff there is a time i such that the valuation τ ′[i] is n-redundant in
τ ′, and τ is obtained from τ ′ by removing τ ′[i]. The following proposition is a direct
consequence of the results in [KS05].

Proposition 6.3.7 ([KS05]). For all formulas φ ∈ Xn and all traces τ and τ ′ with
τ ≈n τ ′, we have τ ♣= φ iff τ ′ ♣= φ.

For the families we want to use for the proof, our goal is to parameterize them by an
upper bound on the number of next operators (X) in the HyperLTL formula that is
insufficient to encode the distance between the state change in the current assigned traces.
In a nutshell, in the construction deĄned below, the traces in the sets from the family that
does not satisfy the property are equal to those in the family that does satisfy it, except
for the position 2n+ 1, which is deleted. The deleted position deĄnes, by construction, a
n-stuttering step over all traces in the family that satisĄes the property.

Definition 6.3.2. For each n ∈ N, we define two sets T async
n = ¶t1, t2, t3, t4♢ and

Uasync
n = ¶u1, u2, u3, u4♢ of trace sets with valuations over [a x y z]:

τ0 =[1110] [1000]n+4 [1001]n+4 [1111] [1001]n+4 [1000]n+4,

τ1 =[1111] [1001]n+4 [1000]n+4 [1110] [1000]n+4 [1001]n+4,

t1 =[0000] τ1 [1001]ω, t2 = [0010] τ1 [1001]n+4 [1111]ω,

t3 =[0000]n+4 τ0 [1001]ω, t4 = [0010]n+4 τ0 [1111]ω,

ui = ti[0]ti[1] . . . ti[2n+ 10]ti[2n+ 12] . . . for 1 ≤ i ≤ 4.

We start by proving that the position that differs in the family of traces introduced above
indeed deĄnes a n-redundancy in the family T async

n .
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6.3. Expressing Two-State Independence

Lemma 6.3.8. For all n∈N and all valuations Π over T async
n , the valuation at time

2n+ 11 is n-redundant in the trace ⟨Π⟩.

Proof. We prove this by induction on the size of trace assignments Π over T async
n .

For the case case ♣Π♣ = 1, wlog, let V(Π) = ¶π♢ for some π ∈ V. If Π(π) ∈ ¶t1, t2♢, then
at 2n + 11 we have the block (1001)n+4. Hence t1[2n + 11] = t1[2n + 11 + j] for all
1 ≤ j ≤ n+ 1. If Π(π) ∈ ¶t3, t4♢, then at 2n+ 10 we have the block (1000)n+4. Hence
t2[2n+ 11] = t1[2n+ 11 + j] for all 1 ≤ j ≤ n+ 1.

For the inductive case, assume as induction hypothesis (IH) that the statement holds for
all assignments of size k.

Consider an arbitrary assignment Πk+1 with size k + 1 Then, there exists an assignment
Πk with size k s.t. Πk+1 = Πk[π 7→ τ ] and Πk(π) is undeĄned, for some π ∈ V and
τ ∈ T async

n . By (IH), the valuation at position 2n+ 11 in ⟨Πk⟩ is n-redundant. As argued
in the base case, the letter at position 2n+ 11 for all τ ∈ T async

n is n-redundant, as well.

As Πk(π) is undeĄned, then ⟨Πn+1[π 7→ τ ]⟩ = ⟨Πn⟩ ⊗ ⟨Π∅[π 7→ τ ]⟩ where ⊗ is the
composition of traces. Then, by the 2n+ 1 letter being n-redundant in both ⟨Πn⟩ and τ ,
it follows that the letter at 2n+ 11 in ⟨Πn+1[π 7→ τ ]⟩ is n-redundant,as well.

With the result above, it follows directly that both families and (k,Xn)-equivalent, where
k speciĄes an upper-bound on the number of trace quantiĄers and n is an upper-bound
on the number of nested next operators on HyperLTL formulas.

Lemma 6.3.9. For all k, n ∈ N, we have T async
n ≈(k,Xn) U

async
n and T async

n ♣a ≈(k,Xn)

Uasync
n ♣a.

Proof. Consider arbitrary k, n ∈ N. We deĄne the witness function f : T async
n → Uasync

n

as f(ti) = t′i for 1 ≤ i ≤ 4. Clearly, the function is both bijective and total. Let Π
be an arbitrary valuation over T async

n such that ♣Π♣ = k. We proved in Lemma 6.3.8
that the valuation at time 2n + 11 in trace ⟨Π⟩ is n-redundant. By the deĄnition of
Uasync

n , the trace ⟨f(Π)⟩ is the same as ⟨Π⟩ except that the valuation at time 2n+ 11 is
deleted. Therefore ⟨Π⟩ ≈n ⟨f(Π)⟩. We prove analogously that for all valuations Π′ of
size k over Uasync

n , we have ⟨Π′⟩ ≈n ⟨f−1(Π′)⟩. Hence T async
n ≈(k,Xn) U

async
n . We use the

same witness function to prove that T async
n ♣a ≈(k,Xn) U

async
n ♣a. Note that for all n ∈ N,

since T async
n ♣a is the same as T async

n except for the values of a that are removed, Lemma
6.3.8 holds for T async

n ♣a as well.

Finally, we are only missing to prove that, for all natural numbers n, T async
n satisĄes

two-state independence under segment semantics and with asynchronous state change,
while Uasync

n does not.

Lemma 6.3.10. For all n ∈ N, T async
n ∈ Tasync

seg , Uasync
n ̸∈ Tasync

point , and Uasync
n ♣a ̸∈ Thidden

point .

93

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


6. Expressing Information-flow with Linear Hyperlogics

Proof. We start by proving T async
n ∈ Tasync

seg .

First, we prove that T async
n [. . . a] ♣= indseg(x, y). By deĄnition of slicing of sets of traces:

T async
n [. . . a] = ¶0000, 0010, (0000)n+4, (0010)n+4♢.

Then, by DeĄnition 6.2.1, T async
n [. . . a] ♣= indseg(x, y) holds because we can choose π∃ = π′.

Now, we prove that T async
n [a . . .] ♣= indseg(x, z). By deĄnition of slicing of sets of traces,

T async
n [a . . .] = ¶τ0(1000)ω, τ1(1000)ω, τ0(1110)ω, τ1 (1000)n+4 (1110)ω♢, where τ0 and τ1

are as in DeĄnition 6.3.2. Then, as in the previous case, we can choose π∃ = π′ to show
that T async

n [. . . a] ♣= indseg(x, z) holds.

We prove now that T ′async
n ̸∈ Tasync

point .

We show that T ′async
n [. . . a] ̸♣= indpoint(x, z). By DeĄnition 6.3.2 and deĄnition of slicing:

t′1[a . . .] = t1[1]t1[2] . . . t1[2n+ 10]t1[2n+ 12] . . .

= τ1[0]τ1[1] . . . τ1[2n+ 9]τ1[2n+ 11] . . .

= t′2[a . . .]

t′3[a . . .] = t3[n+ 4]t3[n+ 5] . . . t3[2n+ 10]t3[2n+ 12] . . .

= τ0[0]τ1[1] . . . τ0[n+ 6]τ0[n+ 8] . . .

= t′4[a . . .]

Note that, 2n+ 10 − (n+ 4) = n+ 6.

Note that (⋆) (t′1[a . . .])[2n + 9] = (t′2[a . . .])[2n + 9] = 1000 and (t′3[a . . .])[2n + 9] =
(t′4[a . . .])[2n + 9] = 1111. If we chose i = 2n + 9, π = t′3 and π′ = t′1, then there
should exist a trace t∃ ∈ T ′async

n s.t. (t∃[a . . .])[2n+ 9](x) = (t′3[a . . .])[2n+ 9](x) = 1 and
(t∃[a . . .])[2n+ 9](z) = (t′1[a . . .])[2n+ 9](z) = 0. However, by (⋆) we know that there is
not such trace in T ′async

n . Hence T ′async
n ̸∈ Tasync

point .

The set of set of traces T ′async
n ♣a is the set T ′async

n where all valuations of a are removed.
We need to prove that there is no extension of T ′async

n ♣a with (possibly new) valuations
in a that makes it an element of Thidden

point . We will abstract the extension of T ′async
n ♣a

by deĄning a function g : T ′async
n ♣a → N that given a set of traces in T ′async

n ♣a returns
the index where a Ąrst holds. We then redeĄne the slicing operator to slice w.r.t. this
function, as follows: T [. . . g] = ¶τ [. . . g(τ)] ♣ τ ∈ T♢.

We refer to the elements of T ′async
n ♣a by the same names as in the deĄnition of T ′async

n .
By construction of T ′async

n ♣a, the function g needs to guarantee the following conditions
for T [. . . g] ♣= indpoint(x, y) to hold: g(t′1) ≤ 5n + 23 and g(t′3) ≤ 5n + 23, because
t′1[5n+ 23] = 000 = t′3[5n+ 23] and t′2[4n+ 23] = 111 = t′4[5n+ 23]. So, we are missing
valuations 10 and 01 in (x, y), to prove the independence of y w.r.t. x.

If g(t′1) = g(t′2) = g(t′3) = g(t′4) = 1, then T [g . . .] ̸♣= indpoint(x, z), because T ′async
n ♣a[1] =

¶000, 010, 111♢ and so we are missing the valuation 01 in (x, z).
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6.3. Expressing Two-State Independence

We proceed by case analysis.

Case g(t′3) = g(t′4) = 1: We show below the Ąrst n+ 4 steps of the slice of t′3 and t′4:

τ ′
3[1 . . . n+ 4] = (000)n+3 110

τ ′
4[1 . . . n+ 4] = (010)n+3 110

To Ąnd a compatible slicing of t′1 and t′2 we need it to satisfy the following:

• for the Ąrst n+ 3 we can only have the valuation 00 in (x, z), as there is no time
point where we can get at the same time 10 and 11;

• at the n+ 4 we cannot have 01 as it is not possible with only one trace left cover
all the valuations missing (00 and 11).

Then, the time n + 7 is the only slicing of t′1 and t′2 that satisĄes this conditions and
guarantees that x is independent of z for the Ąrst n+ 4 elements of the slicing suffix, as
we show below:

τ ′
1[n+ 7 . . . 2n+ 10] = (000)n+3 110

τ ′
2[n+ 7 . . . 2n+ 10] = (000)n+3 110

τ ′
3[1 . . . n+ 4] = (000)n+3 110

τ ′
4[1 . . . n+ 4] = (010)n+3 110

However, if g(t′1) = g(t′2) = n+7, then τ ′
1[4n+20] = τ ′

2[4n+20] = 000 while τ ′
3[3n+13] =

τ ′
4[3n + 13] = 111. So, we are missing valuations 01 and 10 in (x, z). Hence, for
g(t′3) = g(t′4) = n+ 7, T [g . . .] ̸♣= indpoint(x, z). So, g(t′3) = g(t′4) > 1.

Case g(t′1) = g(t′2) > 1: As g(t′3) = g(t′4) > 1, then the preĄx of a slicing with
g(t′1) = g(t′2) > 1 does not satisfy indpoint(x, y). Note that t′1[1] = t′2[1] = 111 while
t′3[1] = 000 and t′4[1] = 010, so we are missing the valuation 10 in (x, y). Hence
g(t′1) = g(t′2) = 1.

Case 1 < g(t′3) ≤ 5n+ 23 and 1 < g(t′4) ≤ 5n+ 23: If g(t′3) < n+ 4 and g(t′4) < n+ 4,
then we will be missing the assignment 01 in (x, z). If g(t′3) = n+4 = g(t′4), then we know
from the case with visible action that the property does not hold. If n+4 < g(t′3) < 2n+9
and n+ 4 < g(t′4) < 2n+ 9, then we will be missing the assignment 01 in (x, z). If either
g(t′4) = 2n+ 9, then g(t′4)[2n+ 9...(2n+ 9) + 3n+ 12] = 111 while g(t′1)[1...3n+ 13] = 000
and we will be missing the assignment 10 on (x, z). Then, g(t′3) ̸= 2n+9 because the suffix
of the trace starts with 000, so there will be not enough traces to cover for observation
111. The same reasoning holds for the next 3 positions. The next 2n+ 9 positions cover
the deleted letter from t′1 and t′2, while the deleted letter from t′3 and t′4 happens in a
earlier part of the trace. So, the position 2n+ 11 of t′1 and t′2, with assignment 110, will
miss the assignment 11 on (x, z). Note that at that point in the slice of t′3 and t′4 z is
constantly 1.
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6. Expressing Information-flow with Linear Hyperlogics

It is clear that all trace sets that are models under the segments semantics are models
under the point semantics, as well. Therefore Tasync

seg ⊆ Tasync
point .

Theorem 6.3.11. For all HyperLTL sentences φ, we have JφK ̸=Tasync
point , JφK ̸= Tasync

seg ,

JφK ̸= Thidden
point , and JφK ̸= Thidden

seg .

Proof. From Tasync
seg ⊆ Tasync

point and Lemma 6.3.10, it follows that for all n ∈ N, we have
T async

n ∈ Tasync
seg and Uasync

n ̸∈ Tasync
seg , as well as T async

n ∈ Tasync
point and Uasync

n ̸∈ Tasync
point . Let

φ be a closed HyperLTL formula, let n be the nesting depth of its next operators, and
let k ∈ N be the number of trace quantiĄers in φ. It follows from Lemma 6.3.9 and
Theorem 6.1.4 that T async

n ∈ JφK iff Uasync
n ∈ JφK. Hence for all HyperLTL sentences

φ, we have JφK ̸= Tasync
point and JφK ̸= Tasync

seg . For all n ∈ N, since T async
n ♣a is the same

as T async
n except for the values of a that are removed, we have T async

n ♣a ∈ Thidden
seg and

T async
n ♣a ∈ Thidden

point . Lemma 6.3.10 implies that Uasync
n ♣a ̸∈ Thidden

point , and thus Uasync
n ♣a ̸∈

Thidden
seg , for all n ∈ N. As in the previous case, from Lemma 6.3.9 and Theorem 6.1.4, it

follows that for all HyperLTL sentences φ, we have JφK ̸= Thidden
point and JφK ≠ Thidden

seg .

6.4 Related Work on HyperLTL Expressive Power

In Section 4.2, we introduced several LTL extensions to reason about hyperproperties.
The Ąrst HyperLTL inexpressibility result is by Bozzelli et al. in [BMP15], where they
prove that HyperLTL and ETL have incomparable expressive power. In this result, the
authors prove that HyperLTL cannot express the requirement that there exists a global
time-point such that a property holds for all traces at that time, which we refer to as the
globally synchronized behavior property. In [FZ17], the authors use the same property to
prove that FO[<,E] is strictly more expressive than HyperLTL. As for LTL interpreted
with team semantics [KMVZ18], Krebs et al. prove that HyperLTL and LTL under team
semantics with synchronous entailment have incomparable expressive power. As for the
hyperlogics before, they use the globally synchronized behavior property to prove their
result. In [CFHH19b], the authors present an overview of the relative expressiveness
results for linear-time hyperlogics.

We observe that besides the natural result that HyperLTL cannot distinguish systems that
generate the same sets of traces [FR14], up to our work, all expressive comparisons rely on
the result by Bozelli et al. [BMP15]. Unfortunately, their result is difficult to generalize
to properties beyond the globally synchronized behavior property. In the proof by Bozelli
et al. [BMP15], they deĄne an equivalence relation for a speciĄc family of models to show
that no HyperCTL* can distinguish them. In the work we presented in this section, we
showcase a proof strategy that easily generalizes to sets of indistinguishable traces for
classes of HyperLTL formulas parameterized by their quantiĄer-free part.
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CHAPTER 7
Hypernode Automata

This chapter introduces hypernode automata, a formalism to specify asynchronous hyper-
properties that has a decidable model-checking problem. Asynchronous hyperproperties
are hyperproperties where the portions we need to compare in different traces may be arbi-
trarily far. Such asynchronicity may arise for various reasons, like differences in scheduling
decisions in a concurrent system or how the system is observed or abstracted. Hypernode
automata explicitly support synchronicity and asynchronicity between different traces by
combining automata and logic.

A hypernode automaton is a Ąnite automaton with nodes labeled with hypernode logic
formulas and transitions labeled with actions. Hypernode logic is a fully asynchronous
logic that allows specifying properties comparing how variablesŠ values evolve in different
traces independently of their concrete timing. We use actions in the transitions in a
hypernode automaton to re-synchronize traces.

We start the chapter presenting hypernode logic and automata, followed by a section in
which we introduce and solve their respective model-checking problems. To solve the
model checking problem for hypernode logic, we deĄne stutter-free automata, a formalism
that encodes stutter-free and independent value progressing of program variables. We
Ąnish this chapter by comparing hypernode automata with related formalisms and
presenting our conjecture that they are expressively incomparable.

This chapter is based on a collaboration with Ezio Bartocci, Thomas Henzinger and
Dejan Nickovic, which resulted in the conference paper published in CONCUR 2023
proceedings:

[BHNOdC23] Ezio Bartocci, Thomas A. Henzinger, Dejan Nickovic, and Ana Oliveira da
Costa. Hypernode Automata. In Guillermo A. Pérez and Jean-François Raskin,
editors, International Conference on Concurrency Theory (CONCUR), volume 279 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 21:1Ű21:16. Schloss
Dagstuhl Ű Leibniz-Zentrum für Informatik, 2023.
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7. Hypernode Automata

We extended the work mentioned above by adding more examples, presenting the complete
proofs, and expanding on the sections about stutter-free automata and how to translate
from Kripke structures to stutter-free automata.

Example: Mutually Exclusive Declassification

In this example, we specify a mutually exclusive declassification policy using
hypernode automata. The policy we are interested in requires that y and z only
expose the secret value of x when it is necessary to debug the system and that
they do not do it at the same time.

We depict below, in Figure 7.1, a possible speciĄcation of this policy as a automaton
with labeled states. In the automaton below, transitions between states are labeled
with the actions that signal when the system starts debugging using variable y
(action Deby) or with variable z (action Debz), or when it is not in debug mode
(action Clear). As for the states, they are labeled with a formula specifying what
is expected from the system at that point. In this example, at different states
we require the system to be observationally deterministic for a subset of ¶y, z♢.
When we instantiate the observational determinism requirements with hypernode
formulas, the automaton in Figure 7.1 can be interpreted as a hypernode automaton.

φod(¶y, z♢) φod(¶z♢)φod(¶y♢)

Debz Deby

Clear Clear

Clear

Deby

Debz

Deby

Debz

Figure 7.1: Hypernode automaton H specifying the mutually exclusive declassiĄ-
cation of secure information in x by y and z.

When interpreting the declassiĄcation policy presented above, we assume that the
time of each system execution may not be aligned (i.e., the executions may be
asynchronous) and use actions to synchronize the dynamic transitions to different
speciĄcation states across the systemŠs executions.

We can interpret the observational determinism requirement as introduced by
Zdancewic-Myers[ZM03], which can be speciĄed by the following hypernode formula
for a given set of (output public) variables L:

φod(L)
def
= ∀π∀π′

∧

l∈L

(l(π)≾ l(π′) ∨ l(π′)≾ l(π)).

We observe that we have only output variables; thus, we only need to guarantee that
they are deterministic. In this deĄnition of observational determinism, we require
that for any two system executions (speciĄed by ∀π∀π′), their projections of each
publicly visible program variable (all variables l in the set L) are equivalent up to
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7.1. Hypernode Automata

stuttering and preĄxing (speciĄed by l(π)≾ l(π′) ∨ l(π′)≾ l(π)). This speciĄcation
accommodates the asynchronicity between executions by removing repeating steps
(i.e., stuttering) and comparing executions of different durations (i.e., preĄxing).

7.1 Hypernode Automata

Hypernode automata are transition systems with states labeled with hypernode formulas
(which we introduce in Section 7.1.1) and transitions labeled with (synchronizing) actions.
In what follows, we work with program executions abstracted as Ąnite or inĄnite sequences
of trace segments with synchronization actions. Unless mentioned otherwise, X is a
Ąnite set of program variables over a domain Σ, and A is a Ąnite set of (synchronizing)
actions A, with Aε = A ∪ ¶ε♢ where ε is the empty action.

A hypernode automaton reads simultaneously all traces in an input set of action-labeled
traces, with actions dictating when each trace transitions to a new state in the automaton.
An action-labeled trace ρ is a Ąnite or inĄnite sequence of pairs, each consisting of a
valuation and an action label (which can be the empty action). Formally, an action-
labeled trace is either ρ∈(ΣX × Aε)∗ or ρ∈(ΣX ×Aε)ω. For technical simplicity, we
require that inĄnite action-labeled traces have inĄnitely many non-empty action labels.

7.1.1 Hypernode Logic

Hypernode logic adopts a maximally asynchronous view on Ąnite traces (which we may
refer to as trace segments). In particular, hypernode formulas specify hyperproperties
where each program variableŠs progress is fully independent from each other.

Formally, hypernode logic is a Ąrst-order logic with quantiĄcation over Ąnite traces and
the binary relation x(π)≾ y(π′), for trace variables π and π′, and system (or program)
variables x and y. The predicate x(π)≾ y(π′), with ≾ referred to as stuttering-prefix
relation, holds when the ordered value changes of x in the trace assigned to π is equivalent
to the changes of the values y in the trace in π′. As the name of ≾ suggests, while
comparing x(π) with y(π′) we allow their value changes to happen at different times (i.e.,
they must be equal up to stuttering), and values of y in π′ to include additional changes
(i.e., x(π) only needs to deĄne a preĄx of y(π) changes). The formulas of hypernode logic
are deĄned by the following grammar:

φ ::= ∃π φ ♣ ¬φ ♣φ ∧ φ ♣x(π)≾x(π)

where the Ąrst-order variable π ranges over the set V of trace variables and the unary
function symbol x ranges over the set X of program variables.

We interpret hypernode formulas over sets of unzipped trace segments. A trace segment
is just a Ąnite trace, i.e., a Ąnite sequence of valuations in ΣX , where each valuation
v :X → Σ maps program variables to domain values. While an unzipped trace segment τ
maps program variables to Ąnite strings of values (i.e., τ :X → Σ∗), with each variable
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7. Hypernode Automata

progressing independently of the others. We refer to the trace of each variable mapped in
an unzipped trace as a variable-trace. The unzipping of a trace segment τ = v0v1 · · · vn over
X =¶x0, . . . , xm♢ is deĄned as: unzip(τ) =¶x0 : v0(x0)· · ·vn(x0), . . . , xm : v0(xm)· · ·vn(xm)♢.
We extend this notion to unzipping of a set of traces T as Unzip(T ) = ¶unzip(τ) ♣ τ ∈ T♢.

Hypernode logic formulas are interpreted over assignments of trace variables to unzipped
trace segments. Given a set T ⊆ (Σ∗)X of unzipped trace segments, an assignment
ΠT : V → T maps trace variables in V to an unzipped trace segment in T . As usual,
we denote by ΠT [π 7→ τ ] the update of ΠT , where π is assigned to τ and all other trace
assignments remain the same. The satisfaction relation for a hypernode formula φ over
an assignment ΠT is deĄned inductively as follows:

ΠT ♣= ∃πφ iff there exists τ ∈ T : ΠT [π 7→ τ ] ♣= φ;

ΠT ♣= ψ1 ∧ ψ2 iff ΠT ♣= ψ1 and ΠT ♣= ψ2;

ΠT ♣= ¬ψ1 iff ΠT ̸♣= ψ1;

ΠT ♣= x(π)≾ y(π′) iff ΠT (π)(x) ∈σ+
0 . . . σ

+
n and ΠT (π′)(y) ∈σ+

0 . . . σ
+
n Σ∗

with σi ̸= σi+1, for 0 ≤ i < n.

A set T is a model of a hypernode formula φ, T ♣= φ, iff there exists an assignment ΠT such

that ΠT ♣= φ. We adopt the usual abbreviations ∀πφ
def
= ¬∃π¬φ and φ∧φ′ def

= ¬(¬φ ∨ ¬φ′).

Example: Specifying Non-interference with Hypernode Formulas

In this example, we show how to use hypernode formulas to specify different
variants of non-interference proposed in the literature.

Our Ąrst variant is from the foundational work by Zdancewic and Myers [ZM03],
where they explore how to use observational determinism to capture non-interference
over concurrent programs. In this work, they observe that for the public behavior
of a program to be deterministic, the programŠs execution does not necessarily need
to be deterministic. Instead, they point out that some degree of non-determinism
may be unavoidable (for example, it may not be possible to control how the runtime
environment affects the programŠs scheduling) and advocate that the challenge is
in identifying permissible non-determinism that does not open the possibility for a
security exploit. They propose to compare different programsŠ executions up to
their stuttering and the duration of the shortest one. Formally, for every pair of
program executions, all their publicly visible variables (speciĄed by a set L) must
be stutter-equivalent up to preĄxing, which we specify as follows:

∀π∀π′
∧

l∈L

(l(π)≾ l(π′) ∨ l(π′)≾ l(π)).

The use of preĄxing in the deĄnition above allows leakage of information related
to the termination of the program. To address this limitation. Huisman, Worah,
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7.1. Hypernode Automata

and Sunesen [HWS06] proposed to strengthen the previous deĄnition by requiring
every publicly visible variable to be stutter-equivalent, which we express below:

∀π∀π′
∧

l∈L

l(π)≾ l(π′).

The universal quantiĄcation forces the relation l(π)≾ l(π′) to be symmetric, practi-
cally enforcing l(π) and l(π′) to have the same size (i.e., to be stuttering equivalent).

A third variant of observational determinism in the literature was presented by
Terauchi[Ter08], requiring that combined behavior of all publicly visible variables
to be stutter-equivalent up to preĄxing. To compare all public variables combined,
we exploit the fact that hypernode logic allows for arbitrary Ąnite domains, and
combine all values of public variables in a variable L. We can then express their
property with hypernode logic, as follows:

∀π∀π′ (L(π)≾L(π′) ∨ L(π′)≾L(π)).

We can also specify independence [BFH+22b], also known as generalized non-
interference. We say that the values in variables x and y are independent if for
all sequence of value changes of x witnessed by a trace π, and sequence of value
changes for y witnessed by a trace π′, there exists a third trace that witnesses their
combination (x(π), y(π′)). In this encoding, we required that the trace witnessing
the value combinations is equivalent to them up to stuttering and preĄxing:

∀π∀π′∃π∃ (x(π)≾x(π∃) ∧ y(π′)≾ y(π∃)).

Stutter-reduced traces

In the semantic interpretation of hypernode formulas presented above, the stuttering-
preĄx predicate cares only about how variablesŠ values progress, disregarding the number
of consecutive steps the variables stay in the same value. In fact, as we will prove below,
hypernode formulas cannot distinguish sets of unzipped traces where the only difference
is in the number of stuttering valuations in the variable-traces.

Given variable x∈X and an unzipped trace τ s.t. τ(x) ∈σ+
0 . . . σ

+
n , where σi ≠ σi+1 for

0 ≤ i < n, its x-stutter-reduction is ⌊τ(x)⌋ = σ0 . . . σn. We extend this notion naturally
to the stutter-reduction of an unzipped trace τ as ⌊τ⌋(x) = ⌊τ(x)⌋, for all variables
x ∈ X; and to the stutter reduction of a set of unzipped traces T as ⌊T ⌋ = ¶⌊τ⌋ ♣ τ ∈ T♢.
We prove below that hypernode formulas cannot distinguish between a set of unzipped
trace segments T and its stutter-reduction ⌊T ⌋.

Proposition 7.1.1. Let T ⊆ (Σ∗)X be a set of unzipped trace segments and φ a formula
of hypernode logic. Then, T ♣= φ iff ⌊T ⌋ ♣= φ.
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7. Hypernode Automata

Proof. We prove this statement by proving the analogous for open formulas and trace
assignments. The only interesting case is the base case for atomic formulas x(π)≾ y(π′),
which follows from both deĄnitions of satisfaction of hypernode formulas and stutter-
reduction of unzipped traces.

7.1.2 Hypernode Automata

A hypernode automaton is a Ąnite automaton with transition labeled with actions and
states (which we refer to as hypernodes) labeled with hypernode formulas.

Definition 7.1.1. A deterministic and finite hypernode automaton (HNA) defined over
a set of actions A and program variables X is a tuple H =(Q, q̂, γ, δ), where:

• Q is a finite set of states (also called hypernodes) with q̂ ∈ Q being the initial state;

• the state labeling function γ assigns a closed formula of hypernode logic over the
program variables X to each state in Q; and

• the transition relation δ : Q×A → Q is a total function that assigns to each state
and action a unique successor state.

We deĄne HNA as complete and deterministic automata to ease the presentation of the
results in this chapter. For the same reason, in this work we assume that all states in a
HNA are accepting (such automata are often called safety automata).

A run of the HNA H is a Ąnite or inĄnite sequence r= q0a0 q1a1 q2a2 . . . of alternating
hypernodes and actions, starting in the initial hypernode q0 = q̂ and satisfying the
transition function, δ(qi, ai) = qi+1 with i ≥ 0. We refer to the sequence of actions
p= a0a1a2 . . . derived from a run r as the action sequence of r. Given that HNA are
deterministic and complete, then each action sequence p identiĄes a unique run in each
HNA H, denoted by H[p].

Hypernode automata read sets of action-labeled traces. Let ρ=(v0, a0)(v1, a1)(v2, a2) . . .
be an action-labeled trace with vi ∈ ΣX and ai ∈Aε for all i ≥ 0. Its action sequence is
the projection of its actions with all empty labels ε removed. Formally, ρ♣A = a′

0a
′
1 . . .

with a0a1 . . .∈ a
′
0ε

∗a′
1ε

∗ . . . and a′
i ∈ A for all i ≥ 0. We extend this deĄnition to sets R

of action-labeled traces, and deĄne the projection of a set of traces R with respect to a
finite action sequence p∈A∗ as R[p]=¶ρ∈R ♣ ρ♣A = p p′ for some suffix p′ ∈A∗ ∪Aω♢.

We assume that actions in action-labeled traces synchronize observable system behavior
with speciĄcation states, with each new non-empty action deĄning a segment (or slice)
in its trace. Additionally, we assume our actions to be enabled, i.e., while reading
a set of action-labeled traces, as soon as a hypernode automaton reads a non-empty
action, it must transition accordingly. Then, each step in a hypernode automaton
run deĄnes a slicing on the set of action-labeled traces it reads. Let p = a0a1 . . . an

be a Ąnite action sequence, and ρ = (v0, a
′
0)(v1, a

′
1) . . . be an action-labeled trace that
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7.1. Hypernode Automata

has preĄx p. We write ρ(∅, a0) for the initial trace segment of ρ which ends with
the action label a0. Formally, ρ(∅, a0) = v0 . . . vk such that a′

k = a0, and a′
i = ε

for all 0 ≤ ai < k. For the trace segments of ρ that follow the initial one, we write
ρ(a0a1 . . . ai−1, ai), specifying the segment ending with the action label ai after having seen
the action sequence a0a1 . . . ai−1. Formally, we deĄne ρ(a0a1 . . . ai, ai+1) = vk+1 . . . vm

inductively, where ρ(a0a1 . . . ai−1, ai) = v0 . . . vk, and a′
j = ε for all k < j < m, and

a′
m = ai+1. We extend the slicing sets of action-labeled traces naturally, where, for

example, R(∅, a) =¶ρ(∅, a) ♣ ρ ∈ R♢.

Definition 7.1.2. Let H =(Q, q̂, γ, δ) be an HNA, and R a set of action-labeled traces.
Let p be a finite action sequence in A∗. The set R is accepted by H with respect to
the pattern p, denoted R ♣=p H, iff for the run H[p] = q0a0 q1a1 . . . qnan, all slices of
R induced by p are models of the formulas that label the respective hypernodes; that is,
Unzip(R[p](∅, a0)) ♣= γ(q0), and Unzip(R[p](a0 . . . ai−1, ai)) ♣= γ(qi) for all 0 < i ≤ n.

A set R of action-labeled traces is accepted by the HNA H iff for all Ąnite action sequences
p∈A∗, if R[p] ̸= ∅, then R ♣=p H. The language accepted by H is the set of all sets of
action-labeled traces that are accepted by H, denoted L(H).

Example: Hypernode Automata Runs

In this example, we illustrate how hypernode automata read sets of traces. In
particular, we consider the hypernode automaton H, in Figure 7.1, specifying a
mutually exclusive declassiĄcation property and the set of traces generated by the
program Qv in Algorithm 7.1.

Algorithm 7.1: Program Qv

1 do
2 v := 0;

3 read(x);

4 read(status);

5 if (status = Debv) then
6 v := x;

7 end

8 output(v);

9 while true;

Table 7.1: Executions of Qy ♣♣ Qz.
τ1 x: 0 0 0

y: 0 0 0
z: 0 0 0

status: ε Deby Debz

τ2 x: 1 1 1 1
y: 0 0 1 1
z: 0 0 0 1

status: ε ε Deby Debz

Figure 7.2: Path induced by pattern Deby

Debz on H depicted in Figure 7.1.

φod(¶y, z♢) φod(¶z♢)

Deby

Deby, Debz

The program Qv is a reactive program parameterized by a variable v. The
functionality of Qv is to expose the value of x directly through the value of v to
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7. Hypernode Automata

its output channel when it is notiĄed that variable v is responsible to debug x,
i.e., status = Debv. Note that v is a parameter and can be instantiated with any
variable name. Each iteration of the program loop reads the input variable x and
action status from an input channel, and when the program reads the status Debv,
it behaves as described above.

Consider the set of traces shown in Figure 7.1. We Ąrst observe that the set of
traces T exhibit the same sequence of actions: Deby followed by Debz. This action
pattern partitions each trace into three trace segments, called slices, which we
distinguish in Table 7.1 using different cell colors. Moreover, the action sequence
deĄnes a unique sequence of hypernodes, which we depict in Figure 7.2.

The next step in our veriĄcation process is to map each of the slices to the
corresponding hypernodes. The mapping is straightforward: the slice colored with
white in Table 7.1 is mapped to the initial node; the light-gray portion is mapped
to the hypernode labeled with φod(¶z♢) with the dark-gray fragment also mapped
to the same hypernode.

7.2 Model-Checking Hypernode Logic and Automata

This section presents a novel approach to model-check asynchronous hyperproperties
speciĄed by hypernode automata. In particular, we focus on the problem of checking if a
given hypernode automaton accepts a set of inĄnite traces generated by an action-labeled
Kripke structure. Our algorithm works at two levels. First, it uses the action labels to slice
the Kripke structure (the model) and synchronize each slice with the matching step in the
hypernode automata (the specification). Then, in each step, we solve the model-checking
problem for the hypernode formula in the hypernode assigned to the step over the matching
slice of the original Kripke structure. This approachŠs novelty lies in the combination of
the model slicing and the introduction of new automata-theoretic constructions over a
new type of automata, called stutter-free automata. Stutter-free automata is a simple
formalism that allows seamless reasoning about variablesŠ independent value progression.

In what follows, we assume that all program variables are propositional; that is, Σ = ¶0, 1♢
is boolean. Note that all Ąnite domains can be encoded by propositional variables.

7.2.1 Problem Statement

A Kripke structure is deĄned by a tuple K =(W,X,∆, V ) where W is a set of worlds, X is
a set of atomic propositions, ∆⊆W×W is a transition relation, and V :W ×X→¶0, 1♢
is a function assigning a truth value to each proposition in each world. We denote by
(K,w0) the pointed Kripke structure where the world w0 ∈W is the structure initial world.
Our Kripke structures are labeled with actions from a set A. In particular, for a Kripke
structure with a transition relation ∆, an action labeling for K over A is a function
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7.2. Model-Checking Hypernode Logic and Automata

A : ∆ → 2Aε that assigns a set of action labels (including possibly the empty label ε) to
each transition.

A path in the Kripke structure K with action labeling A is a Ąnite or inĄnite sequence
w0a0w1a1w2a2 . . . of alternating worlds and actions which respects both the transition
relation, (wi, wi+1) ∈ ∆, and the action labeling, ai ∈A(wi, wi+1), for all i ≥ 0. We
denote by Paths(K,A) the set of all such paths. The path r=w0a0w1a1 . . . deĄnes the
action-labeled trace sync(r) =V (w0)a0 V (w1)a1 . . .. We denote by Zip(K,A) the set of
action-labeled traces deĄned by paths in Paths(K,A). Naturally, Paths(K,A, w0) denotes
the set of all paths in Paths(K,A) that start at the world w0, and Zip(K,A, w0) refers
to the set of all action-labeled traces deĄned by paths in Paths(K,A, w0).

We now have all the necessary deĄnitions to formalize the central veriĄcation question
solved in this section: the model-checking problem for speciĄcations given as hypernode
automata over pointed Kripke structures with an action labeling.

Model-checking problem for hypernode automata

Let (K,w0) be a pointed Kripke structure with the set X of propositions, and
let A an action labeling for K over a set A of actions. Let H be a hypernode
automaton over the set X of boolean program variables and the set A of actions.
Is the set of initialized action-labeled traces generated by (K,A, w0) accepted by
H; that is, Zip(K,A, w0) ∈ L(H)?

Example: Model-checking Hypernode Automata

In this example, we show how to model-check the set of traces generated by a
program against the mutually exclusive declassiĄcation property speciĄed by the
hypernode automaton in Figure 7.1. As in the original example, we interpret
observational determinism as proposed by a Zdancewic and Myers [ZM03], i.e.:

φod(L)
def
= ∀π∀π′

∧

l∈L

(l(π)≾ l(π′) ∨ l(π′)≾ l(π)).

The set of traces generated by the parallel composition Qy ♣♣ Qz, where Qv is deĄned
in is not a model of the hyperproperty speciĄed by the hypernode automaton H,
in Figure 7.1. The set of traces T = ¶τ1, τ2♢ shown in the previous example in
Table 7.1, witness the speciĄcation violation.

Starting from the sequence of hypernodes derived from the action pattern DebyDebz

(illustrated in Figure 7.2), the next step is to show that the slicing of T induced by
DebyDebz satisĄes the matching hypernode formulas in H. The violation occurs
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7. Hypernode Automata

because the dark-gray slice of T (the third slice) does not satisfy φod(¶z♢). More
speciĄcally, the variable z evaluates to 0 in the dark-gray segment of the trace τ1,
while it evaluates to 1 in the dark-gray segment of τ2.

To solve the model-checking problem stated above, we need to solve the model-checking
problem for hypernode logic over Kripke structures, as this constitutes the key subroutine
for model-checking hypernode automata. Due to the need to slice the Kripke structure
before we model check it against the formula in the respective hypernode, we are interested
in open Kripke structures. Open Kripke structures are Kripke structures extended with
two sets of worlds: the entry worlds, signalling where the segment (or slice) begins, and
the exit worlds, marking where the segment ends. Formally, an open Kripke structure
consists of a Kripke structure K = (W,X,∆, V ), and a pair W = (Win,Wout) consisting
of a set Win ⊆ W of entry worlds, and a set Wout ⊆ W of exit worlds.

A path of the open Kripke structure (K,W) is Ąnite sequence of worlds w0 . . . wn that starts
in a entry world, w0 ∈Win, ends in an exit world, wn ∈Wout, and is consistent with the
transition relation, (wi, wi+1) ∈ ∆ for all 0 ≤ i < n. Similar to the deĄnition over Kripke
structures, we denote by Paths(K,W) the set with all paths deĄned by the open Kripke
structure (K,W). Let X =¶x0, . . . , xm♢. The set of unzipped trace segments generated by
the open Kripke structure (K,W) is deĄned as Unzip(K) =¶¶x0:V (w0, x0)..V (wn, x0),. . .,
xm:V (w0, xm)..V (wn, xm)♢ ♣ w0. . .wn ∈ Paths(K,W)♢.

Model-checking problem for hypernode logic

Let (K,W) be an open Kripke structure, and φ a formula of hypernode logic over
the same set of propositional variables. Is the set of unzipped trace segments
generated by (K,W) a model for φ; that is, Unzip(K,W) ♣= φ?

7.2.2 Stutter-free Automata

Before we dive into the model-checking procedure, we introduce its main building block:
stutter-free automata. We proved in Proposition 7.1.1 that when we want to check
if a set of traces is a model of a given hypernode formula, it suffices to consider the
stutter reduction of the given set. Likewise, to model-check hypernode formulas over
the set of traces a given Kripke structure generates, we can instead reason about all
variable-traces generated by paths with no stuttering steps. Stutter-free automata is
a formalism to represent and reason about such (independent) stutter-free paths. In
particular, stutter-free automata are a restricted form of nondeterministic Ąnite automata
(NFA) that read unzipped trace segments and guarantee that, for each state, there are
no repeated variable assignments on their incoming and outgoing transitions.
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7.2. Model-Checking Hypernode Logic and Automata

In what follows, ΣX denotes all assignments of variables in X to values in Σ or the
termination symbol #, i.e., for X =¶x0, . . . , xm♢:

ΣX =¶x0 :σ0, . . . , xm :σm ♣ ∀0 ≤ i ≤ m with σi ∈ Σ ∪ ¶#♢♢ \ ¶x0 : #, . . . , xm : #♢.

Definition 7.2.1. Let X be a finite set of variables over Σ. A nondeterministic stutter-
free automaton (NSFA) over the alphabet ΣX is a tuple A =(Q, Q̂, F, δ) with a finite set
Q of states, a set Q̂ ⊆ Q of initial states, a set F ⊆ Q of final states, and a transition
relation δ : Q× ΣX → 2Q that satisfies the following for all states q ∈ Q and variables
x ∈ X:

• stutter-freedom requiring In(q, x) ∩ Out(q, x) ⊆ ¶#♢, and

• termination requiring that if # ∈ In(q, x), then Out(q, x) = ¶#♢,

where In(q, x) is the set of all x-valuations incoming to state q and Out(q, x) is the set
of all x-valuations outgoing from state q; formally:

In(q, x) =¶v(x) ♣ q ∈ δ(q′, v) for some q′ ∈ Q♢ and Out(q, x) =¶v(x) ♣ δ(q, v) ̸=∅♢.

A run of the stutter-free automaton A is a Ąnite sequence q0v0q1v1 . . . vn−1qn alternating
between states and variable assignments starting with an initial state, q0 ∈ Q̂, and
following A transition function δ (i.e., qi+1 ∈ δ(qi, vi) for all i < n); with a run being
accepting if it ends in a Ąnal state.

A stutter-free automaton reads unzipped Ąnite traces. Let τ be an unzipped trace segment
over a set of variables X with domain Σ. The trace τ is accepted by the stutter-free
automaton A iff there exists an accepting run q0v0 . . . vn−1qn where the sequence of
assignments for x in that sequence deĄnes the x-trace in τ ; formally, for all variables
x ∈ X, τ(x) = v0(x) . . . vn−1(x). Then, naturally, the language of A, denoted L(A), is
the set with all unzipped trace segments accepted by A.

Without loss of generality, we will often refer to the language of a stutter-free automaton
as the accepted language with the termination symbol removed,i.e., L(A)♣# =¶τ ♣# : X →
Σ∗ ♣ τ ∈ L(A)♢, where τ ♣# removes all occurrences of # in a trace segment τ . When A
is a stutter-free automaton, then the accepted language is already stutter-reduced, i.e.,
L(A)♣# = ⌊L(A)♣#⌋.

Example: Stutter-free Automata

In Figure 7.3 below, we depict a stutter-free automaton that accepts all unzipped
trace segments for the boolean variables ¶x, y♢, where all x-trace segments are of
odd size, while all y-trace segments are of even size, and the Ąrst value for both x
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7. Hypernode Automata

and y is 0. The language accepted by the automaton A from Figure 7.3 is:

L(A)=¶x : τx, y : τy ♣ tx ∈ (01)∗0 and ty ∈ (01)∗01♢.

s 01

12

y12 y01

x01 x12

x : 0
y : 0

x : 1
y : 1

x : 0
y : 0

x : #
y : 1

x : #
y : 1

x : #
y : 0

x : 0
y : # x : 1

y : #

x : 0
y : #

Figure 7.3: Stutter-free automaton A where x-traces are of odd size while y-traces
are of even size, and the Ąrst valuation for both x and y is 0.

The union, intersection, and determinization for NSFA are as usual for NFA. Let A1 =
(Q1, Q̂1, F1, δ1) and A2 = (Q2, Q̂2, F2, δ2) be stutter-free automata over the same alphabet
ΣX . We deĄne:

• their union as A1 ∪ A2 = (Q1∪̇Q2, Q̂1∪̇Q̂2, F1∪̇F2, δ∪) over the same alphabet ΣX

where ∪̇ is disjoint union, and δ∪(q) = δi(q) when q ∈Qi with i∈¶1, 2♢;

• their intersection as A1 ∩ A2 = (Q1 ×Q2, Q̂∩, F∩, δ∩) over the same alphabet ΣX

where Q̂∩ = ¶(q1, q2) ♣ q1 ∈ Q̂1 and q2 ∈ Q̂2♢, F∩ = ¶(q1, q2) ♣ q1 ∈ F1 and q2 ∈ F2♢
and δ∩((q1, q2), l) = (q′

1, q
′
2) iff δ1(q1, l) = q′

1 and δ2(q2, l) = q′
2; and

• the determinization of A1 as det(A1) = (2Q1 , Q̂1, Fd, δd) where Fd =¶S∈2Q1 ♣S ∩
F1 ̸=∅♢ and δd(S, v)=

⋃

q∈S

δ1(q, v) with v ∈ ΣX .

We prove below that stutter-free automata are closed under the operators deĄned above.

Proposition 7.2.1. Let A1 and A2 be two stutter-free automata over the propositional
variables X. Then, both A1∪A2 and A1∩A2 are stutter-free automata over X with L(A1∪
A2) = L(A1)∪L(A2) and L(A1 ∩A2) = L(A1)∩L(A2). Moreover, for a nondeterministic
stutter-free automaton A, the determinization det(A) is a deterministic stutter-free
automaton over X with the same language, that is, L(det(A)) = L(A).

Proof. We observe that union and disjunction do not affect the stutter-free condition.
Then, the result follows from a direct translation from stutter-free automata to NFA.
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7.2. Model-Checking Hypernode Logic and Automata

Let A1 be an arbitrary stutter-free automata. We start by proving that det(A1) satisĄes
stutter-freedom, i.e. In(S, x) ∩ Out(S, x) = ∅, for all states S of det(A1) and variables
x ∈ X. By deĄnition:

In(S, x) = ¶v(x) ♣ S ∈ δd(S′, v) for some S′ ∈ Qd♢ ⇔

In(S, x) = ¶v(x) ♣ S =
⋃

q1 ∈ S1

δ(q1, v) for some S′ ∈ Qd♢ ⇔

In(S, x) = ¶v(x) ♣ ∀q ∈S ∃q1 ∈S′ s.t. q ∈ δ(q1, v) for some S′ ∈Qd♢.

Thus, (⋆) for all q ∈ S, In(q, x) = In(S, x). From A1 being a stutter-free automaton
we know that, for all q ∈ S, In(q, x) ∩ Out(q, x) = ∅. Assume towards a contradiction
that there exists a value that is in both the incoming and outgoing transitions of S for a
variable x, i.e. l ∈ In(S, x) ∩ Out(S, x). Then, by deĄnition of Out(S, x), there exists a
state in S, q ∈ S, s.t. δ(q, x : l) ̸= ∅. This contradicts our conclusion (⋆).

We prove now that det(A1) satisĄes the #-ending requirement. By (⋆), it follows that if
# ∈ In(x) then # ∈ In(x) for all q ∈ S. So, by A being a stutter-free automaton, for all
q ∈ S we have Out(x) = ¶#♢. Hence Out(x) = ¶#♢.

Finally, L(det(A1)) = L(A). follows directly from the same result for NFA.

To complement a stutter-free automaton, we follow the same approach as for NFA:
we start by transforming it into an equivalent deterministic automaton, followed by
completing it, and, in a Ąnal step, we swap the role of Ąnal and nonĄnal states. The
only challenging step is completing the automaton, as we must ensure that all added
transitions satisfy the stutter-freedom requirement. In particular, when completing a
stutter-free automaton, we must add a sink state representing all the missing transitions.
By deĄnition, all missing transitions lead to non-accepting runs, independently of what
is read next by the automaton. The stutter-freedom condition prevents us from adding
a non-Ąnal sink state with a self-loop to which we connect all missing transitions. The
solution we present here, introduces universal stutter-free automata, to represent such
sink states.

A stutter-free automaton A =(Q, Q̂, F, δ) over ΣX is complete iff In(q) ∪ Out(q) is a
maximal subset of ΣX according to the conditions in DeĄnition 7.2.1. Note that we
generalize the set of all incoming and outgoing variable valuations as follows:

In(q) = ¶v(x) ♣ x∈X, v(x) ∈ In(q, x)♢ and Out(q) = ¶v(x) ♣x∈X, v(x) ∈ Out(q, x)♢.

The universal stutter-free automaton UΣX over ΣX is a deterministic and complete
automaton, accepting stutter-free unzipped traces over ΣX . This means that the UΣX

accepts the language L(UΣX )♣# = ⌊(Σ∗)X⌋.

Definition 7.2.2. Let X = ¶x0, . . . , xm♢ be a set of variables over the finite domain Σ.
The universal stutter-free automaton over ΣX is UΣX =(QU , QU , QU , δU ), where QU = ΣX
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7. Hypernode Automata

and

δU (¶xi :σi♢i∈[0,m],

¶xi :σ′
i♢i∈[0,m]) =

{

¶xi :σ′
i♢i∈[0,m] if ∀0 ≤ i ≤ m, if σi = # then σ′

i = # else σi ̸= σ′
i;

∅ otherwise.

Example: Universal Stutter-free Automaton

In the Figure 7.4 below, we depict the universal stutter-free automaton UX for the
set of boolean variables X = ¶x, y♢.

s(0,0) s(1,1)

s(#,1) s(#,0)

s(0,1) s(1,0)

s(1,#) s(0,#)

x : 1 y : 1

x : 0 y : 0

x : # y : 1

x : # y : 0

x : #
y : 1

x : #
y : 0

x : 1 y : 0

x : 0 y : 1

x : 1 y : #

x : 0 y : #

x : 1
y : #

x : 0
y : #

x : 1
y : #

x : 0
y : #

x : #
y : 0

x : #
y : 1

Figure 7.4: The universal stutter-free automaton U¶x,y♢ over the boolean variables
¶x, y♢. It accepts all stutter-free unzipped trace segments over ¶x, y♢. All states
are both initial and final.

Definition 7.2.3. Let A =(Q, Q̂, F, δ) be a stutter-free automaton over the set of variables
X with domain Σ. The completion of A defines the stutter-free automaton complete(A) =
(Q∪QU , Q̂, F, δ

′) over the same variables, where QU are the states of the universal stutter-
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7.2. Model-Checking Hypernode Logic and Automata

free automaton UΣX , and for all states q ∈Q ∪QU and all valuations v ∈ ΣX :

δ′(q, v) =















δU (q, v) if q ∈ QU ,

δ(q, v) ∪ ¶v′ ♣ for all x∈X if v(x) = # then v′(x) = # if q ∈ Q.

otherwise v′(x) ∈ (Σ \ In(q, x) ∪ Out(q, x))♢

where In and Out are defined with respect to the transition relation δ of A, and δU is the
transition relation of the universal stutter-free automaton UΣX .

We can now prove that our completion procedure returns an automaton accepting the
same language and the input automaton.

Proposition 7.2.2. Let A be a stutter-free automaton. Then, complete(A) is a complete
stutter-free automaton with the same language as A, i.e., L(complete(A)) = L(A).

Proof. Consider arbitrary stutter-free automaton A. Both A and the universal automaton
are stutter-free automata, satisfying the stutter-free and termination requirements. To
prove that complete(A) is a stutter-free automaton is only missing to prove that extension
of the A transition relation (pointing to states in the universal automaton) preserves both
requirements. By deĄnition, if a variable trace is terminated, it will remain terminated
( if v(x) = # then v′(x) = #), so termination is satisĄed; and if it is not terminated, we
only add the transitions labeled with values not seen in the incoming and outgoing edges of
a state (for all x ∈ X, v′(x) /∈ In(q)∪Out(q)), hence it satisĄes the stutter-free requirement.
We now prove that complete(A) is complete. By deĄnition of universal automaton, it
follows that universal automata are complete. For all non-complete transitions in A (i.e.,
variables that are not terminated yet), we add the missing transition pointing to the
matching universal automaton state; hence complete(A) is complete.

Finally, we prove that both automata deĄne the same language. As we kept all A tran-
sitions, it follows that L(complete(A)) ⊇ L(A). We now prove that L(complete(A)) ⊆
L(A). First, we note that no transition connects states from the universal automaton
to states from A. Then, when a run reaches a state from the universal automaton, all
the following steps are within the universal automaton. Additionally, the Ąnal states
do not include states from the universal automaton. Thus, accepting runs include only
transitions in A.

Finally, to complement a deterministic and complete stutter-free automaton we just Ćip
Ąnal with non-Ąnal states, i.e., the complement of A =(Q, Q̂, F, δ) is A =(Q, Q̂,Q \ F, δ).

Proposition 7.2.3. Let A be a deterministic and complete stutter-free automaton over
ΣX . Then, A is a stutter-free automaton and L(A) =⌊(Σ∗)X⌋ \ L(A).

Proof. Let A be an arbitrary stutter-free automaton. It follows directly from A being
a stutter-free automaton that A is also stutter-free automaton (complementing an
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7. Hypernode Automata

Theorem 7.2.7:

φ+[An
K,W]

Unzip(K,W) ♣= φ iff L(φ+[An
K,W]) ̸= ∅

An
K,W

An unzipped trace segment τ accepted by An
K,W defines

trace assignment from ¶π1, . . . , πn♢ to traces accepted by AK,W.

AK,W =(Q, Q̂, F, δ)

L(AK,W)♣# = ⌊Unzip(K,W)⌋.

Lemma 7.2.6:

Filter AK,W with φ

Derive stutter-free automaton

n-selfcomposition of AK,W

φ over n trace variables

Hypernode Formula

W = (Win, Wout)
K =(W, ΣX , ∆, V )

Open Kripke Structure

Figure 7.5: Model-checking algorithm for hypernode formulas with relevant results.

automaton does not change its transition function). For the same reason, A is a
deterministic and complete stutter-free automaton, as well. Then, for all unzipped traces
τ ∈⌊(Σ∗)X⌋ there exists a run r in A for τ (from completeness); and it this the only run
for τ (from determinism). As A and A share the same transition function, then r is also
only run in A for τ . Finally, as the Ąnal states are Ćipped, it follows that r is an accepting
run for τ in A iff r is not an accepting run for τ in A. Hence L(A) = ⌊(Σ∗)X⌋\L(A).

7.2.3 Model-checking Hypernode Formulas

We start by showing how to model-check hypernode formulas over stutter-free automata.
Our algorithm is based on a Ąltration of hypernode automata by a hypernode formula.
The Ąltration guarantees that if its input automaton is a model for the given formula,
then the language of the resulting automaton is non-empty. With the model-checking
problem of stutter-free automata solved, the next step is to show how to translate Kripke
structures to stutter-free automata. In particular, we deĄne a translation from an open
Kripke structure (K,W) to a stutter-free automaton such that the automaton accepts
the same unzipped trace segments as the stutter reduction of the set of trace segments
generated by (K,W). We give an overview of the model-checking algorithm in Fig. 7.5.
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7.2. Model-Checking Hypernode Logic and Automata

When deĄning the Ąltration of stutter-free automata, all boolean entities (both operators
and quantiĄers) are deĄned using the stutter-free automata operators introduced in the
previous section. The only ingredient missing is the Ąltration by atomic formulas, i.e.,
formulas of the form x(π)≾ y(π′). Below, we introduce a sub-automaton of the universal
automaton that captures the requirement speciĄed by an atomic hypernode formula,
which we use later in the Ąltration deĄnition.

Definition 7.2.4. Let UX =(QU , QU , QU , δU) be the universal stutter-free automaton
over the set X of propositional variables, and let x, y ∈ X. The stutter-free automa-
ton for the atomic formula x≾ y of hypernode logic is defined as the stutter-free au-
tomaton Ax≾ y =(Q,Q,Q, δ) over X, where Q=¶v ∈QU ♣ v(x) =V (y) or v(x) = #♢, and
δ(q, v) = δU (q, v) for all q ∈ Q and v ∈ ΣX .

We extend the set X of propositional variables with reference to trace variables in V as
X(V) =¶x(π) ♣x ∈ X and π ∈ V♢. Given an accepting run ρ= q0σ0q1σ1 . . . σn−1qn of the
stutter-free automaton Ax(π)≾ y(π′) over ΣX(V), the trace assignment generated by ρ is
deĄned as Πρ(π, x) =σ0(x(π)) . . . σn−1(x(π)), for all π ∈ V and x ∈ X. We prove that all
accepting run for the automaton derived forx≾ y deĄne assignments that satisfy x≾ y.

Lemma 7.2.4. An unzipped trace segment τ over (ΣXV )∗ is accepted by Axπ ≾ yπ′
over

the same variables and domain, τ ∈ L(Axπ ≾ yπ′
)♣#, iff Πτ ♣= x(π)≾ y(π′).

Proof. Consider arbitrary unzipped trace segment τ over (ΣXV )∗. We start with the
⇒-direction and assume that τ ∈ L(Axπ ≾ yπ′

)♣#. Then, there exists an accepting run
q0σ0q1σ1 . . . σnqn+1 where, for all xπ ∈ XV , if 0 ≤ i < ♣τ(xπ)♣, then σi(xπ) = τ(xπ, i),
otherwise σi(xπ) = # . By deĄnition of universal stutter-free automaton and Axπ ≾ yπ′

,
it follows that for all 0 ≤ j ≤ n, σj(xπ) =σj(yπ′) or σj(xπ) = #. Moreover, by the
termination requirement of stutter-free automaton, if there exists j s.t. σj(x) = #, then
the value of x will not change anymore (i.e, for all k ≥ j, σk(x) = #). We can then prove
by induction of the trace τ size that Πτ ♣= x(π)≾ y(π′). For the ⇐-direction, we assume
that τ is not accepted by Axπ ≾ yπ′

. As all states in Axπ ≾ yπ′
are Ąnal, then there exists a

step 0 ≤ i ≤ n where σi(xπ) ̸= σi(yπ′) and σi(xπ) ̸= #. Given that τ is stutter-free, then
Πτ ̸♣= x(π)≾ y(π′).

We now deĄne the main component of the model-checking algorithm: the Ąltration of
stutter-free automata over hypernode formulas.

Definition 7.2.5. Let A be a stutter-free automaton, and φ a formula of hypernode
logic. We define the positive and negative filtration of A by φ, denoted φ+[A] and
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7. Hypernode Automata

φ−[A],respectively, inductively over the structure of φ as follows:

(x(π)≾ y(π′))+[A] = A ∩ Axπ ≾ yπ′
(x(π)≾ y(π′))−[A] = A ∩ Axπ ≾ yπ′

(φ1 ∧ φ2)+[A] =φ+
1 [A] ∩ φ+

2 [A] (φ1 ∧ φ2)−[A] =φ−
1 [A] ∪ φ−

2 [A]

(¬φ)+[A] =φ−[A] (¬φ)−[A] =φ+[A]

(∃πφ)+[A] =φ+[A] (∃πφ)−[A] = A \ φ+[A].

W reduce the problem of model checking a stutter-free automaton A over a formula φ
with n trace variables to filtering the n-self-composition of A by φ. The n-self-composition
of A, denoted by An, is the standard synchronous product construction of A with itself
for n times.

Theorem 7.2.5. Let A be a stutter-free automaton, and φ a formula of hypernode logic
with n trace variables. Then, L(φ+[An]) ̸= ∅ iff L(A) ♣= φ, and L(φ−[An]) ̸= ∅ iff
L(A) ̸♣= φ.

Proof. Follows from the lemma we prove below for open formulas:

Let τ be an unzipped trace segment over (ΣXV )∗.
Then, τ ∈ L(φ+[An])♣# iff Πτ ♣= φ; and τ ∈ L(φ−[An])♣# iff Πτ ̸♣= φ.

We prove the lemma by induction on the structure of the hypernode formula. To
prove the base case, xπ ≾ yπ′ we use Lemma 7.2.4. In particular, τ ∈ L(xπ ≾ y+

π′ [An])♣#
iff τ ∈ L(An)♣# and τ ∈ L(Axπ ≾ yπ′

)♣# ⇔. As τ ∈ L(An)♣#, then Πτ defines a trace
assignment from ¶π1, . . . πn♢ to traces accepted by A and, by Lemma 7.2.4, Πτ ♣= xπ ≾ yπ′ .
We prove analogously for τ ∈ L(xπ ≾ y−

π′ [An])♣#.

We proceed to the inductive steps and assume as IH that the property holds for arbitrary
hypernode formulas φ and φ′. The inductive case φ∧φ′ follows from IH and Proposition
7.2.1. While the inductive case ¬φ follows from IH and Proposition 7.2.3.

The case for the existential quantifier – ∃πφ – is more challenging. We first prove the pos-
itive filtration and start with the ⇒-direction. Consider arbitrary τ ∈ L((∃πφ)+[An])♣#.
By definition of filtration, this is equivalent to τ ∈ L(φ+[An])♣#. By IH, Πτ ♣= φ, and
so Πτ ♣= ∃πφ. We now prove the ⇐-direction. Assume a trace assignment exists s.t.
Π ♣= ∃πφ. Then, by definition of the satisfaction relation for hypernode formulas, there
exists an unzipped trace τ ′ over ΣX accepted by A (i.e., τ ′ ∈ L(A)♣#) s.t. Π[π 7→ τ ′] ♣= φ.
Note that the function to derive a trace assignment (mapping trace variables V to
unzipped traces over ΣX) from an unzipped trace segment τ over (ΣXV )∗ is invertible.
Then, by IH, the trace τπ derived from the assignment extension Ππ = Π[π 7→ τ ′] is in
L(φ+[An])♣#. And, by definition of filtration, τπ ∈ ∃πφ+[An].

We now prove the negative filtering. We start with the ⇒-direction, which we prove by
contra-position. Assume that for an arbitrary trace assignment Π we have Π ♣= ∃πφ,
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7.2. Model-Checking Hypernode Logic and Automata

then there exists an extension Ππ = Π[π 7→ τ ′] with τ ′ ∈ L(A)♣# s.t. Ππ ♣= φ. By IH, the
trace τπ derived by Ππ is accepted by φ+[An]. Thus, τπ is not accepted by An \ φ+[An],
and, by deĄnition, τπ /∈ L((∃πφ)−[An]). For the ⇐-direction, consider arbitrary trace
assignment s.t. Π ♣= ¬∃πφ. Then, Π ♣= ∀π¬φ. Equivalently, for all extensions of Π, i.e.
Ππ = Π[π 7→ τ ′] for all τ ′ ∈ L(A)♣#, we have Ππ ̸♣= φ. Consider an arbitrary of such
extensions Ππ, then, by IH, for the trace τπ derived by it we have τπ ∈ L(An)♣# and
τπ /∈ L(φ+[An]). Equivalently, τπ ∈ L(An \ φ+[An]) and, so τπ ∈ L((∃πφ)−[An]).

From open Kripke structures to stutter-free automata

Our Ąnal step is to translate open Kripke structures to stutter-free automata. In a nutshell,
the generated stutter-free automaton keeps an independent record of how each variable
value changes along the paths deĄned by the Kripke structure. To build the record of
the independent variable progression, we use the function deĄned below, returning the
next stutter-free transition for each variable x from state w of a given Kripke structure.
Formally, for a Kripke structure K =(W,X,∆, V ) over the set of variables X with domain
Σ, the set with all worlds reachable from w∈W with a transition to a world where x∈X
is not labeled with σ ∈ Σ ∪ ¶#♢ is:

N(w, σ, x) =¶w′ ♣ Unzip(K,w,w′)[x] ∈σ+, (w′, w′′) ∈ ∆ and V (w′′, x) ̸= σ♢,

where Unzip(K,w,w′) is the set of unzipped traces deĄned by paths in K from w to w′.
We deĄne a set of terminated states, W# =¶w# ♣w∈W♢, to encode early termination
of some of the variable value progression. We deĄne below the transition relation
next(w∈W ∪W#, σ ∈ Σ ∪ ¶#♢, x∈X) that puts all of this together:

next(w, σ, x) =















¶w#♢ if V (w, x) =σ and N(w, σ, x) = ∅,

¶w♢ if σ= # and w∈W#,

N(w, σ, x) otherwise.

We introduce below the reduction of open Kripke structures to stutter-free automata and
prove in Lemma 7.2.6 that the language accepted by the stutter-free automaton induced
by a Kripke structure accepts the same set of traces as the stutter-reduction of the set of
unzipped trace segments deĄned by the Kripke structure.

Definition 7.2.6. Let (K,W) with W = (Win,Wout) be an open Kripke structure defined
over the set of variables X =¶x1, . . . , xm♢. The stutter-free automaton induced by (K,W)
is AK,W =(Q, Q̂, F, δ), where:

• Q=(W ∪W#)m;

• Q̂=¶(w1, . . . , wm) ♣wi ∈Win for all 1 ≤ i ≤ m♢;

• F =¶(w1, . . . , wm) ♣ wi ∈ Wout ∪W#
out for all 1 ≤ i ≤ m♢;

• δ((w1, . . . , wm), v) = ¶(w′
1, . . . , w

′
m) ♣w′

i ∈ next(wi, v[i], xi) for all i ♢.
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7. Hypernode Automata

Lemma 7.2.6. For all open Kripke structures (K,W), L(AK,W)♣# = ⌊Unzip(K,W)⌋.

Proof. L(AK,W)♣# ⊆ ⌊Unzip(K,W)⌋ : Let τ be an unzipped trace segment over (ΣX)∗

accepted by AK,W. Then, there exists an accepting AK,W run q0σ0q1σ1 . . . σnqn+1 where
σi = τ [i], for i ≥ n. We prove that the property holds by induction on the size of
run independently for each variable xi with i ≤ m. By definition of next, we prove
that for the current step j ≤ n – qj [i] σj [i] qj+1[i] – either (i) N(qj [i], σj [i], xi) ̸= ∅ and
then there exists a path ϱ from qj [i] to qj+1[i] where the value of xi remains σj [i]; (ii)

N(qj [i], σj [i], xi) = ∅ and the next state is terminated (qj+1[i] = q#
j [i]); or (iii) qj [i] is a

terminated stated and so σj [i] = # and qj+1[i] = q#
j+1[i]. Using this we build a path in the

Kripke structure by extending the partial path given by the stutter-free automata with ϱ
when (i) holds and not doing anything when (ii) and (iii) holds. Note that we made sure
to include the terminated exited paths in the final states of the stutter-free automaton,
guaranteeing the the accepting condition matches the definition of a complete path over
an open Kripke structure. When we stutter reduce the new path we get τ [xi].

L(AK,W) ⊇ ⌊Unzip(K,W)⌋ : Let τ be an unzipped stutter-free trace segment in
⌊Unzip(K,W)⌋. Then, there exists a path in (K,W) that generates that trace seg-
ment. From that path, for each variable, we build a sequence of wolds that removes all
stutter transitions. We prove then, by induction, that that sequence defines an accepting
run of AK,W.

Using the translation of open Kripke structures to stutter-free automata (Definition
7.2.6) and the filtration from Definition 7.2.5, we have an effective way to solve the
model-checking problem for hypernode logic over Kripke structures.

Theorem 7.2.7. Let (K,W) be an open Kripke structure, and φ a formula of hypernode
logic over the same set of variables. Let n be the number of trace variables in φ. Then,
Unzip(K,W) ♣= φ iff L(φ+[An

K,W]) ̸= ∅.

The proof follows from Theorem 1 and 2, and Lemma 3. This gives us our main result.

Theorem 7.2.8. Model checking of hypernode logic over open Kripke structures is
decidable.

With the presented algorithm, the running time of model checking a hypernode formula
over an open Kripke structure depends doubly exponentially on the number of vari-
ables, singly exponentially on the number of worlds of the Kripke structure, and singly
exponentially on the length of the formula.

Corollary 7.2.9. The time complexity of model checking a formula φ of hypernode logic
with n trace variables and m variables, over an open Kripke structure with k worlds, is
O(2n·km

).
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7.2. Model-Checking Hypernode Logic and Automata

K =(W, ΣX , ∆, V )

w0 ∈ W

Pointed Kripke Structure

A : ∆ → 2Aε

Action labelling

H =(Q, q̂, γ, δ)

Hypernode Automaton

Slice(K,A, w0) =(Q, Q̂, δ)

Paths(Wi) = Paths(K,A, w0)(a0 . . . ai−1, ai), for i ≤ n.
For a run W0a0 · · ·Wnan of Slice(K,A, w0):
Lemma 7.2.10:

Zip(K,A, w0) ∈ L(H) iff L(Join(H,A, w0)) = ∅.

Theorem 7.2.11:

Join(H, K,A, w0)

Slicing of K w.r.t A

Model-check slices against hypernodes

Figure 7.6: Model-checking algorithm for hypernode automata with relevant results.

Proof. The encoding of the open Kripke Structure by a stutter-free automaton has O(km)
states. The determinized stutter-free automaton has O(2km

) states. Completing the
deterministic stutter-free automaton 2m states. The n-self-composition of the resulting
automaton has O(2n·km

) states.

7.2.4 Model Checking Hypernode Automata

Model-checking hypernode automata require slicing the model according to its action-
labelled steps and matching the different slices to their respective hypernode speciĄcation.
We introduce the slicing of a pointed Kripke structure (K,A, w0) with action labeling A,
as a Ąnite automaton, called Slice(K,A, w0). We then solve the model-checking problem
by composing the slicing of our model, (K,A, w0), with the speciĄcation automaton,
H, and checking whether the result, Join(H,K,A, w0), is non-empty. In a nutshell, the
composite automaton accepts all sequence of actions that witness a violation of the
speciĄcation of the hypernode automaton by the Kripke structure and action label given
as a model. We depict an overview of the model-checking algorithm in Fig. 7.6.

The building blocks of the slicing are Kripke substructures induced by a subset of
the transition relation in the input model for the model-checking algorithm. For-
mally, for a Kripke structure K =(W,X,∆, V ) and action labeling A, the substruc-
ture induced by a transition relation ∆′ ⊆ ∆ is K[∆′] =(W ′, X,∆′, V (W ′)), where W ′ =
¶w ♣ (w,w′) ∈ ∆ or (w′, w) ∈ ∆ for some w′ ∈W♢.

We are interested in open sub-structures that contain all transitions needed to deĄne
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7. Hypernode Automata

the paths from a given entry set of worlds to the next transition labeled with action a,
using only transitions labeled with an empty action. The transition relation deĄned by
all transitions in a path of the action-labeled Kripke structure (K,A) from a world in
Win to the Ąrst step labeled with action a∈A is deĄned as:

(K,A,Win) ↓ a = ¶(wj , wj+1) ♣w0ε. . .wn−1εwna∈ Paths(K,A)), w0 ∈Win and 0≤j<n♢.

Once we have all transitions from a given initial set of worlds to the next step labeled with
action a, we can straightforwardly deĄne the open substructure induced by (K,A,Win) ↓ a,
which we denote by K[(K,A,Win) ↓ a]. Formally, K[(K,A,Win) ↓ a] = (Ks, (Win,Wout))
where Ks = K[(K,A,Win) ↓ a] and the set Wout = ¶w ♣w∈W and A(w, a) ̸= ∅♢ contains
all possible exit points for action a.

We deĄne now the Ąnite automaton Slice(K,A, w0) encoding all possible slicings of
the pointed action-labeled Kripke structure (K,A, w0). The states of the automaton
Slice(K,A, w0) are all open substructures induced by paths from any set of entry worlds to
the next step with a matching action a∈A. Then, the transition relation of Slice(K,A, w0)
connects, for all actions a, open substructures where the exit worlds of the source open
structure can transition with action a (in the original Kripke structure) to the entry
worlds the source structure.

Definition 7.2.7. Let (K,w0) be a pointed Kripke structure with worlds W , and let A
be an action labeling for K with actions A. The slicing Slice(K,A, w0) =(Q, Q̂, δ) is a
finite automaton where:

• Q = ¶K[(K,A,Win) ↓ a] ♣ a ∈ A and Win ⊆ W♢ is a set of states with initial states
Q̂ = ¶(K, (¶w0♢,Wout)) ∈ Q♢;

• δ :Q×A → Q is a transition function s.t. δ((K, (Win,Wout)), a) =(K ′, (W ′
in,W

′
out))

iff:

– (K, (Win,Wout)) exits with action a, that is, for all w∈Wout there exists
w′ ∈W such that a∈A(w,w′); and

– the set of entry worlds W ′
in define a maximal subset of the worlds accessible

with action a from the exit worlds in W, that is, for all (K ′′, (W ′′
in,W

′′
out)) ∈ Q

that are different from (K ′, (W ′
in,W

′
out)):

if W ′′
in ⊆¶w ♣ a∈A(w′, w) for some w′ ∈Wout♢, then W ′

in ̸⊆W ′′
in.

We remark that, for all open Kripke structures K and action a, there is an unique
maximal set of worlds accessible from the exit worlds of K through a transition labeled
with a. Note that, for every open Kripke substructures deĄned as K[(K,A,Win) ↓ a]) and
K[(K,A,W ′

in) ↓ a], their union deĄnes K[(K,A,Win ∪ W ′
in) ↓ a], which is a state of the

slicing.
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7.2. Model-Checking Hypernode Logic and Automata

We prove, in Lemma 7.2.10 below, that every Ąnite action sequence p deĄnes a unique
path in this automaton, and the slices in each path contain the same trace segments as
the of traces derived from the action-labeled Kripke structure with action pattern p.

Lemma 7.2.10. Let (K,w0) be a pointed Kripke structure, and A an action labeling for K
with actions A. For every finite action sequence p = a0 . . . an in A∗, if Zip(K,A, w0)[p] ̸=
∅, then p defines a unique run K0a0 · · ·Knan of Slice(K,A, w0) such that for all 0 ≤ i ≤ n,
Paths(Ki) = Paths(K,A, w0)(a0 . . . ai−1, ai).

Proof. Consider an arbitrary Kripke structure K =(W,ΣX ,∆, V ), world w0 ∈ K and
action labeling A : (W ×A) → W . From the transition function of Slice(A(K,w0)) being
deterministic, it follows that all action sequences p ∈ A∗ in (K,w0) with labeling A, i.e.
Zip(A(K,w0))[p] ̸= ∅, deĄne an unique path in Slice(A(K,w0)).

We still need to prove that paths deĄned by a slice are the same as slicing the paths
generated by A(K,w0), which we prove by induction on the size of the sequence. For the
base case, for all sequence actions of size 1, a0, the induced path in Slice(A(K,w0)) is
K0, then we need to prove that Paths(K0) = Paths(A(K))(∅, a0). By DeĄnition 7.2.7,
Paths(K0) = Paths((K[(K, ¶w0♢) ↓A a0])). And, by deĄnition open substructure induced
by a, Paths(K[(K, ¶w0♢) ↓A a0]) = ¶w0. . .wn ♣ (w0, ε). . .(wn−1, ε)(wn, a0) ∈ Paths(K)♢.
Thus, Paths(K[(K, ¶w0♢) ↓A a0]) = Paths(A(K))(∅, a0).

Now for the induction step, we assume as induction hypothesis (IH) that the statement
holds for sequences of size n. Consider now a sequence of size n + 1, a0 . . . an. By
IH, we know that Paths(Ki) = Paths(A(K))(a0 . . . ai−1, ai) for all 0 ≤ i < n. We
are only missing to prove that Paths(Kn) = Paths(A(K))(a0 . . . an−1, an). By IH,
we know that Paths(Kn−1) and Paths(A(K))(a0 . . . an−2, an−1) have the same termi-
nal states. Then, it follows that Paths(Kn) and Paths(A(K))(a0 . . . an−1, an) have
the same initial states Win. And, from an analogous reasoning from the base case,
Paths(Kn) = Paths(K[(K,Win) ↓A an]) = Paths(A(K))(a0 . . . an−1, an)

The Ąnal step in the model-checking procedure is the synchronous composition of the
slicing automaton (derived from our model) with the hypernode automaton given as
our speciĄcation. Naturally, the states of this composition are pairs of open Kripke
substructures and hypernode logic formulas. Our goal is to reduce the model-checking
problem to check if the composite automaton is non-empty. In particular, we say that the
Kripke structure is not a model of the speciĄcation automaton H, if we can reach a Ąnal
state in the composite automaton. For this reason, in the composition deĄned below, the
Ąnal states are all the states deĄned by a pair with an open Kripke substructure that is
not a model of its paired hypernode formula.

Definition 7.2.8. Let H = (Qh, q̂, γ, δh) be an hypernode automaton. The intersec-
tion of H with the slicing of a pointed, action-labeled Kripke structure (K,A, w0),
Slice(K,A, w0)=(Qs, Q̂s, Fs, δs), is the finite automaton Join(H,K,A, w0)=(Q, Q̂, F,A, δ)
where:
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7. Hypernode Automata

• Q=¶(K, q) ♣K∈Qs, q ∈Qh and W ♣=γ(q)♢ ∪ ¶(K, q) ♣K∈Qs, q ∈Qh and K ̸♣=γ(q)♢
is the set of states; with initial state Q̂ = ¶(K, q̂) ∈Q ♣ K∈ Q̂s♢∪¶(K, q̂) ∈Q ♣ K∈ Q̂s♢
and final state F = ¶(K, q) ♣ (K, q) ∈Q♢; and

• transition function δ : Q×A → Q, where for all (K, q) ∈ Q, we have δ((K, q), a) =
¶(K′, q′) ∈ Q ♣ δ(q) = (q′, a) and K′ ∈ δs(W, a)♢.

The finite automaton Join(H,K,A, w0) reads sequences of actions with run and accepting
run defined as usual. The language of the automaton is empty, if there are no accepting
runs.

Theorem 7.2.11. Let (K,w0) be a pointed Kripke structure with action labeling A. Let
H be a hypernode automaton over the same set of propositions and actions as (K,A).
Then, Zip(K,A, w0) ∈ L(H) iff the language of the finite automaton Join(H,K,A, w0) is
empty.

Proof. Consider arbitrary K = (W,ΣX ,∆, V ) over a domain Σ, a world w0 ∈ W and
a action labeling A : (W ×A)→W . We want to prove that Zip(A(K,w0)) /∈ L(H) iff
L(Join(H,A(K,w0))) ̸= ∅.

Zip(A(K,w0)) /∈ L(H) iff there exists a sequence of actions p = a0 . . . an that is in
Zip(A(K,w0)), i.e. Zip(A(K,w0))[p] ̸= ∅, and Zip(A(K,w0))[p] ̸♣= H[p]. Wlog, we
can assume that only the last slice does not satisfy the corresponding node in H.
Let H[p] = q0a0 . . . qnan. Then, Zip(A(K,w0))[p] ̸♣= H[p] iff (⋆) for all 0 ≤ j < n,
Zip(A(K,w0))(a0 . . . aj−1, aj) ♣= qj while Zip(A(K,w0))(a0 . . . an−1, an) ̸♣= qn. By Lemma
7.2.10, Zip(A(K,w0))[p] ̸= ∅ defines an unique path in Slice(A(K,w0)), K0a0 . . .Knan

that preserves the path slicing defined by A(K,w0). Thus, from (⋆), definition of
Join(H,A(K,w0)) and Lemma 7.2.10, (K0, q0)a0 . . . (Kn, qn)an defines an accepting run
in Join(H,A(K,w0)). Note that (Kn, qn) is in Join(H,A(K,w0)) (and it is final) because
Zip(A(K,w0))(a0 . . . an−1, an) ̸♣= qn.

The following theorem puts all results from this section together.

Theorem 7.2.12. Model checking of hypernode automata over pointed Kripke structures
with action labelings is decidable.

Proof. We have seen that the model checking of hypernode logic over open Kripke
structures is decidable (Theorem 7.2.8). Evaluating Join(H,K,A, w0) is also decidable.
The main challenge is the slicing of A(K,w0). Note that there is a finite number of states
that can be in A(K,w0), as they are all substructures of the Kripke structure K.

As the most expensive computation of model checking a hypernode automaton is model-
checking the hypernodes, then the running time for model checking hypernode automata
is also dominated by a doubly exponential dependency on the number of propositional
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7.3. Related Work

variables. Additionally, the model-checking algorithm depends singly exponentially on
both the size of the Kripke structure and the size of the hypernode automaton.

Corollary 7.2.13. Let A be a set of actions and X a set of m propositional variables.
Let (K,w0) be a pointed Kripke structure over X, and A an action labeling for K over
A. Let H be a hypernode automaton over X and A. The time complexity of checking
whether Zip(K,A, w0)) ∈ L(H) is O(♣H♣ · 2♣A♣+n·♣K♣m), where n is the largest number of
trace quantifiers that occurs in any hypernode formula in H.

7.3 Related Work

The Ąrst general approaches to reason about hyperproperties [CFHH19b] (like HyperLTL)
adopted semantic interpretations with synchronous analysis of trace sets, evaluating
temporal modalities in lock-step over the traces currently assigned to the trace vari-
ables. As proved in [BFH+22a], and presented in Section 6.3, HyperLTL cannot express
asynchronous transition of speciĄcation states, which is an example of an asynchronous
hyperproperty. This intrinsic limitation to synchronous tracesŠ traversal hinders the
applicability of such approaches to reason about security properties in real-world systems.
Recently, many formalisms have been presented to address this limitation, which we will
introduce next. The general problem of model-checking asynchronous hyperproperties
turned out to be highly undecidable [GMO21].

The Ąrst logic studied to express asynchronous hyperproperties was hyper µ-calculus
[GMO21], called Hµ. It extends the linear-time µ-calculus [Var88] by adding explicit
quantiĄcation over traces and annotating propositional variables with trace variables
(in a similar fashion as done for LTL by HyperLTL). Additionally, the next operator is
parameterized by a trace variable, specifying which trace variable progresses one step
at that point of the formula evaluation, thus supporting an asynchronous analysis of
traces. In the same paper, the authors introduce the parity multi-tape Alternating
Asynchronous Word Automata (AAWA), which they prove to be expressively equivalent
to trace-quantiĄer free formulas of Hµ.

Both Hµ and AAWA turned out to have highly undecidable model-checking problems
[GMO21]. The undecidability of asynchronous hyperproperties veriĄcation techniques is
often caused by the interaction of having to compare time positions that are arbitrarily
far apart with the possibility for an unbounded number of traces. In [GMO21], the
authors introduce two semantic fragments of Hµ, each limiting one of the two sources of
unboundedness. The k-synchronous fragment imposes a distance up to k between positions
of any traces being compared. In contrast, the k-context-bound requires the traces to be
partitioned in at most k contexts (traces in the same context progress synchronously).
In comparison, with hypernode automata, we achieve decidability by entirely different
means: we decouple the asynchronous progress of program variables, while allowing
resynchronization through automaton-level transitions. The synchronization feature
reduces the problem of model-checking asynchronous hyperproperties (which may deĄne
sets of inĄnite traces) to the problem of model-checking sequences of sets of Ąnite traces.
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7. Hypernode Automata

Side note: Relative Expressiveness

As for HyperLTL formulas, the trace quantiĄers always precede time operators in
Hµ formulas. Hypernode automata, however, allow a restricted form of quantiĄer
alternation between time operators and trace quantiĄers by mixing automata and
logic in the same formalism. Earlier in this document, and in [BFH+22b], we
showed that a change in the order between trace and time quantiĄers proved to
be problematic for HyperLTL, turning a hyperproperty that can be expressed in
HyperLTL to not be expressible with a HyperLTL formula anymore.

Inspired by the insights of that result, we conjecture that Hµ and hypernode
automata have incomparable expressive power and support our claim with the
hypernode automaton in Figure 7.7. The hypernode automaton speciĄes that the
asynchronous progress of a propositional variable p is fully described by a Ąnite
trace π within each slice induced by a repeated action a.

∃π∀π′ p(π′)≾ p(π) a

Figure 7.7: Hypernode automaton specifying that within each slice of a trace set
induced by observing action a, there exists a trace in each slice that describes the
progress of the propositional variable p in the slice.

We observe that each new slice induced by observing the action a may have a
different trace τ assigned to the trace variable π, witnessing the asynchronous
progress of p, with the length of the traces in each slice being Ąnite but unbounded.
Additionally, as there is no bound on how many times we will observe the action a,
the number of slices is also unbounded. This means that we do not have a bound
on the number of outermost existential trace quantiĄers that would be necessary
for the Hµ formula to guarantee we can have a different trace witness for each
slice in any set of traces.

An alternative approach to specifying asynchronous hyperproperties is to enrich HyperLTL
with asynchronous reasoning. Stuttering HyperLTL (HyperLTLS) and context HyperLTL
(HyperLTLC), both introduced in [BPS21], extend HyperLTL with new asynchronous
operators; while, Asynchronous HyperLTL (A-HyperLTL) [BCB+21] adds quantiĄers
over trajectories mapping at each step which traces progress (the others will stutter).
Stuttering HyperLTL introduces annotation of temporal operators with LTL formulas,
describing indistinguishable time sequences (i.e., a sequence is indistinguishable as long
as the LTL formula valuation does not change). Then, the next time considered while
evaluating a stuttering HyperLTL formula over a set of traces is when the valuation
of the annotated LTL formula changes its value, introducing asynchronous traversal
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7.3. Related Work

of traces. Context HyperLTL follows a different route: it includes a unary modality
parameterized by a set of trace variables, called context. Traces within a context progress
together, while traces outside a context stutter. Asynchronous HyperLTL introduces a
new type of quantiĄcation (instead of a new operator like in the previous two formalisms),
which, together with trace quantiĄers, must occur before any temporal formula. In
particular, A-HLTL adds quantiĄcation over trajectories, which are sequences of sets
of trace variables, with each step deĄning the set of trace variables progressing in that
step with all the other variables stuttering. Following similar strategies as done for Hµ,
the authors presented fragments with decidable model-checking for all the HyperLTL
extensions mentioned above.

Bozelli et al. studied in [BPS22] the relative expressiveness of all the mentioned formalisms
and proved that all of them are subsumed by Hµ [BPS22]. Due to trace-related quantiĄers
always preceding time quantiĄcation in all formalisms above, we conjecture that there
are hyperproperties that hypernode automata can specify while Hµ can not. Hence,
hypernode automata are not subsumed by Hµ and, due to the results in [BPS22], the
same holds for all the asynchronous HyperLTL extensions. We elaborate on this point in
the Side Note: Relative Expressiveness above.

More recently, Beutner et al. introduced an extension of HyperLTL with second-order
quantiĄcation, called Hyper2LTL [BFFM23]. First-order quantiĄers in Hyper2LTL assign
traces to trace variables (as in HyperLTL), while second-order quantiĄers range over sets
of traces. The full Hyper2LTL (i.e., second-order quantiĄers ranging over all possible
trace sets) has a highly-undecidable model-checking problem [BFFM23]. To remedy
this problem, they introduce Hyper2LTLfp where sets are constrained to satisfy given
minimality or maximality requirements. For this fragment, the authors present an
algorithm to approximate solutions to the model-checking problem. Hypernode automata
reasoning is at the Ąrst-order level. This means that, while model-checking hypernode
formulas, we only care about the set of traces generated by the model, and we do not
need to reason about sets of possible trace sets to check for asynchronous properties.
Hence, the Hyper2LTL approach is, in this sense, more general than hypernode automata.
However, for the same reason as in previous HyperLTL extensions, we conjecture that
there are hypernode speciĄcations that Hyper2LTL cannot express.

Finally, in the team semantics reinterpretations of LTL presented by Krebs et al. [KMVZ18],
the authors introduced an asynchronous variant. However, they prove that the asyn-
chronous team semantics of LTL is subsumed by universal HyperLTL. (where all trace
quantiĄers are universal quantiĄers). Hence, this is not a suitable formalism to express
asynchronous hyperproperties.
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CHAPTER 8
Conclusion and Future Work

The work presented in this thesis was prompted by the following general research question:

Are there classes of hyperproperties suitable for the
compositional design and verification of information-flow requirements?

From a high-level point of view, the work in this thesis falls into the study of the
foundational aspects of languages to express information-Ćow constraints, with a focus
on general languages (i.e., allowing user-deĄned security properties) that are independent
of implementation details of the system to be veriĄed. Orthogonal to this line of research
is the rich landscape of formalisms and techniques addressing different facets of security
veriĄcation and enforcement (e.g., language-based approaches like type systems and
taint-analysis [SM03]) and tailored for speciĄc systems or security properties.

Our Ąrst step in this research journey was to question how we could lift the interface
theory approach to support hyperproperties in a way that is also useful to help design
secure systems. At this point, we observed that an interface theory for the trace-based
view on information-Ćow (i.e., having assumptions and guarantees in our interfaces
deĄned in terms of the set of trace sets it accepts) would require the designer to Ąx early
on assumptions on how the system is observed, which may not be possible at early stages
of the design process or, at all, for heterogeneous systems. Following this insight, we
decided to focus on the design of the structural aspect of information-Ćow. We devised the
information-Ćow interfaces, presented in Chapter 3, which support a step-wise design on
information Ćow requirements across the different components of the system to guarantee
that the whole system satisĄes the intended security policy. Information-Ćow interfaces
also support the speciĄcation of dynamic information-Ćow policies deĄned as transition
systems with states annotated with stateless information-Ćow interfaces. In Figure 8.1,
we illustrate an example of a stateful speciĄcation.
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8. Conclusion and Future Work

z

y

x x

y

z

Figure 8.1: Example of a stateful information-Ćow speciĄcation: information in x do not
Ćow to y until information in x do not Ćow to z.

The natural next research step was to go back to the semantic considerations and investi-
gate whether we could use formalisms for hyperproperties in the current state-of-the-art
to instantiate the no-Ćow requirements in our interface theory. We started by considering
simple stateful policies like the one illustrated in Figure 8.1, where the speciĄcation
changes during the system execution. As we are working with hyperproperties, we need
to take into account that such a speciĄcation state change may not coincide in all system
executions, i.e., the change is asynchronous, and it may happen at arbitrary time points in
each execution. The dominant formalism to express hyperproperties, HyperLTL, adopts
a synchronous analysis of traces, which is incompatible with such asynchronous state
changes. This limitation stems from HyperLTL formulas starting with trace quantiĄers,
with the time quantiĄcation being implicit in its inner LTL formula. Having identiĄed
this limitation, our goal was to formalize it and highlight the importance of studying other
possible combinations between time and trace quantiĄcation to support asynchronous
hyperproperties.

We introduced hypertrace logic (c.f., Chapter 6), a two-sorted Ąrst-order logic, and an
operator to slice trace sets to specify the two-state information-Ćow policy in Figure 8.1.
Hypertrace formulas have explicit quantiĄcation over both traces and time, allowing us
to identify and study fragments with different relative ordering between the two types of
quantiĄcation. Using hypertrace logic, we lifted ideas and techniques from the model
theory of Ąrst-order logic to prove expressivity results for semantic variants of the policy
in Figure 8.1. In particular, we proved that, in general, we cannot express asynchronous
speciĄcation state changes with HyperLTL formulas.

When we look at stateless information-Ćow interfaces, we face various sources of asyn-
chronicity between observations of system executions, like different scheduling decisions,
the granularity of observations or active waiting for external input. Therefore, for our
stateless speciĄcations, we are interested in a language that supports as much asyn-
chronicity between executions as possible without compromising the quality of its security
analysis outcome. Inspired by our stateful information-Ćow interfaces, we proposed hyper-
node automata (c.f., Chapter 7), which mixes automata with logic, where the automata
structure synchronizes transitions between states labeled with the fully asynchronous
logic. This novel approach in the literature opens new possible research directions to deal
with the highly undecidable problem of model-checking asynchronous hyperproperties.

In the end, to answer the question we introduced at the beginning of this chapter, we
collected the following insights addressed in this thesis:
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i) before we specify an information-Ćow requirement as a hyperproperty, it may
be useful to Ąrst reason about it from the structural point of view, enabling a
divide-and-conquer approach by Ąrst organizing the veriĄcation process into smaller
tractable tasks;

ii) we should focus our study on asynchronous hyperproperties because, otherwise, we
may compromise on the ability to specify dynamic security policies and security
properties that are independent of how we observe the system;

iii) hybrid speciĄcation languages for hyperproperties, for example, combining automata
with logic, may turn intractable problems into tractable ones.

Future Work. The work we present here opened new research directions with many
interesting problems left for future work. For the information-Ćow interfaces, we would
like to investigate further how to interpret its requirements with trace-based semantics.
Our Ąrst step in this direction was the introduction of hypernode automata, which seems
a good candidate for interpreting stateful information-Ćow interfaces. In future work, we
want to study and formalize the connection between these two formalisms. A different
related line of research is to study if the results on compositionality between trace-based
security policies [Man00, Man02, MSS11] can be lifted to the be a trace-based semantics
for our interface theory. Related to asynchronous hyperproperties, we would like to
further investigate expressiveness-related questions in this area. In particular, we would
like to work on Ąnding a classiĄcation within asynchronous hyperproperties capturing the
nature of their asynchronicity (for example, whether the misalignment between traces is
bounded or can be solved by slicing the trace appropriately). With such classiĄcation,
we could design and identify adequate speciĄcation languages for different systems and
observation settings. Finally, for the hypernode automata, we would like to extend its
expressiveness, for example, by looking into different acceptance conditions or making
the hypernode logic more expressive.

129

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


List of Figures

2.1 Timeline of foundational results in contract-based veriĄcation and design. 10
2.2 Example of A/G interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Modular design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 High-level view of SCI architecture. . . . . . . . . . . . . . . . . . . . . . 20
3.2 Example of an interface with the key for the graphical representation of

information-Ćow interfaces and components. . . . . . . . . . . . . . . . . . 22
3.3 Interface Bus implementation Ű bus Ű with one of its permissible environments

Ű sending. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Incomparable BusŠ implementations. . . . . . . . . . . . . . . . . . . . . . 24
3.5 High-level view on immobilizer high-level architecture. . . . . . . . . . . . 28
3.6 Interfaces for an ecu, an immobilizer and a CAN bus, and their composition. 29
3.7 Two interfaces Ű Sending and Sending′ Űto specify components sending data

to the shared bus Ű Bus′. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.8 Top-down design of a shared communication infrastructure. . . . . . . . . 40
3.9 Bottom-up veriĄcation of a CAN bus implementation. . . . . . . . . . . . 43
3.10 Stateful interface Fclosed reĄnes the stateful interface F′

closed, witnessed by the
relation H1 = ¶(q̂1, q̂

′
1), (q2, q

′
2)♢. . . . . . . . . . . . . . . . . . . . . . . . 49

3.11 Stateful interface F reĄnes the stateful interface F′, witnessed by the relation
H2 = ¶(q̂1, q̂

′
1), (q2, q

′
2), (q3, q

′
2)♢. . . . . . . . . . . . . . . . . . . . . . . . 50

5.1 CIA triad of information security. . . . . . . . . . . . . . . . . . . . . . . . 66

7.1 Hypernode automaton H specifying the mutually exclusive declassiĄcation of
secure information in x by y and z. . . . . . . . . . . . . . . . . . . . . . 100

7.2 Path induced by pattern Deby Debz on H depicted in Figure 7.1. . . . . 105
7.3 Stutter-free automaton A where x-traces are of odd size while y-traces are of

even size, and the Ąrst valuation for both x and y is 0. . . . . . . . . . . . 110
7.4 The universal stutter-free automaton U¶x,y♢ over the boolean variables ¶x, y♢.

It accepts all stutter-free unzipped trace segments over ¶x, y♢. All states are
both initial and Ąnal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.5 Model-checking algorithm for hypernode formulas with relevant results. . 114
7.6 Model-checking algorithm for hypernode automata with relevant results. . 119

131

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


7.7 Hypernode automaton specifying that within each slice of a trace set induced
by observing action a, there exists a trace in each slice that describes the
progress of the propositional variable p in the slice. . . . . . . . . . . . . 124

8.1 Example of a stateful information-Ćow speciĄcation: information in x do not
Ćow to y until information in x do not Ćow to z. . . . . . . . . . . . . . . 128

132

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


List of Tables

4.1 A set of traces over the variables x, y, and z of P , with default = 0, transparent
cells indicating that state = 0, and gray cells, that state = 1. . . . . . . . 59

6.1 Summary of results on expressing variants of two-state independence with
HyperLTL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.1 Executions of Qy ♣♣ Qz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

133

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


List of Algorithms

4.1 Program P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.1 Program Qv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

135

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


Bibliography

[AF12] Thomas H Austin and Cormac Flanagan. Multiple facets for dynamic
information Ćow. In Proceedings of ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL), pages 165Ű178, 2012.

[AFRP15] Mohammad Al Faruque, Francesco Regazzoni, and Miroslav Pajic. Design
methodologies for securing cyber-physical systems. In Proceedings of the
10th International Conference on Hardware/Software Codesign and System
Synthesis, pages 30Ű36. IEEE Press, 2015.

[AHKV98] Rajeev Alur, Thomas A Henzinger, Orna Kupferman, and Moshe Y Vardi.
Alternating reĄnement relations. In CONCUR’98 Concurrency Theory,
volume 1466 of LNCS, pages 163Ű178. Springer, 1998.

[AL93] Martín Abadi and Leslie Lamport. Composing speciĄcations. ACM Trans.
Program. Lang. Syst., 15(1):73Ů-132, 1993.

[ALW89] Martín Abadi, Leslie Lamport, and Pierre Wolper. Realizable and unreal-
izable speciĄcations of reactive systems. In Giorgio Ausiello, Mariangiola
Dezani-Ciancaglini, and Simonetta Ronchi Della Rocca, editors, Automata,
Languages and Programming, pages 1Ű17. Springer, 1989.

[BCB+21] Jan Baumeister, Norine Coenen, Borzoo Bonakdarpour, Bernd Finkbeiner,
and César Sánchez. A temporal logic for asynchronous hyperproperties.
In Alexandra Silva and K. Rustan M. Leino, editors, Computer Aided
Verification (CAV), pages 694Ű717. Springer International Publishing, 2021.

[BCF+08] Albert Benveniste, Benoît Caillaud, Alberto Ferrari, Leonardo Mangeruca,
Roberto Passerone, and Christos Sofronis. Multiple viewpoint contract-
based speciĄcation and design. In Proc. of FMCO 2007: the 6th Interna-
tional Symposium on Formal Methods for Components and Objects, volume
5382 of Lecture Notes in Computer Science, pages 200Ű225. Springer, 2008.

[BCN+18] Albert Benveniste, Benoît Caillaud, Dejan Nickovic, Roberto Passerone,
Jean-Baptiste Raclet, Philipp Reinkemeier, Alberto L. Sangiovanni-
Vincentelli, Werner Damm, Thomas A. Henzinger, and Kim G. Larsen.

137

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


Contracts for system design. Foundations and Trends in Electronic Design
Automation, 12(2-3):124Ű400, 2018.

[BDH+12] Sebastian S. Bauer, Alexandre David, Rolf Hennicker, Kim Guldstrand
Larsen, Axel Legay, Ulrik Nyman, and Andrzej Wasowski. Moving from
speciĄcations to contracts in component-based design. In Proc. of FASE
2012, volume 7212 of Lecture Notes in Computer Science, pages 43Ű58.
Springer, 2012.

[Bel05] David Elliott Bell. Looking back at the bell-la padula model. In 21st
Annual Computer Security Applications Conference (ACSAC’05), pages
15Űpp. IEEE, 2005.

[BF23] Raven Beutner and Bernd Finkbeiner. AutoHyper: Explicit-State Model
Checking for HyperLTL. In Sriram Sankaranarayanan and Natasha Shary-
gina, editors, Tools and Algorithms for the Construction and Analysis of
Systems, pages 145Ű163. Springer Nature Switzerland, 2023.

[BFFM23] Raven Beutner, Bernd Finkbeiner, Hadar Frenkel, and Niklas Metzger.
Second-order hyperproperties. In Constantin Enea and Akash Lal, edi-
tors, Computer Aided Verification (CAV), pages 309Ű332. Springer Nature
Switzerland, 2023.

[BFH+22a] Ezio Bartocci, Thomas Ferrère, Thomas A. Henzinger, Dejan Nickovic,
and Ana Oliveira da Costa. Flavors of sequential information Ćow. In
Bernd Finkbeiner and Thomas Wies, editors, Verification, Model Checking,
and Abstract Interpretation (VMCAI), pages 1Ű19. Springer International
Publishing, 2022.

[BFH+22b] Ezio Bartocci, Thomas Ferrère, Thomas A. Henzinger, Dejan Nickovic,
and Ana Oliveira da Costa. Information-Ćow interfaces. In International
Conference on Fundamental Approaches to Software Engineering (FASE),
volume 13241 of LNCS, pages 3Ű22, 2022.

[BFH+24] Ezio Bartocci, Thomas Ferrère, Thomas A. Henzinger, Dejan Nickovic,
and Ana Oliveira da Costa. Information-Ćow interfaces. Formal Methods
in System Design, 2024.

[BHNOdC23] Ezio Bartocci, Thomas A. Henzinger, Dejan Nickovic, and Ana Oliveira da
Costa. Hypernode Automata. In Guillermo A. Pérez and Jean-François
Raskin, editors, International Conference on Concurrency Theory (CON-
CUR), volume 279 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 21:1Ű21:16. Schloss Dagstuhl Ű Leibniz-Zentrum für Infor-
matik, 2023.

138

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


[BHNOdC24] Ezio Bartocci, Thomas A. Henzinger, Dejan Nickovic, and Ana Oliveira da
Costa. Information-Ćow interfaces and security lattices. FestschriftŠ Engi-
neering Safe and Trustworthy Cyber Physical Systems Ű Essays Dedicated
to Werner Damm on the Occasion of His 71st Birthday, 2024. Accepted
for publication.

[Bib77] Kenneth J Biba. Integrity considerations for secure computer systems.
Technical report, MITRE CORP BEDFORD MA, 1977.

[BL75] David E Bell and Leonard J LaPadula. Computer security model: UniĄed
exposition and multics interpretation. MITRE Corp., Bedford, MA, Tech.
Rep. ESD-TR-75-306, June, 1975.

[BMP15] Laura Bozzelli, Bastien Maubert, and Sophie Pinchinat. Unifying hyper
and epistemic temporal logics. In Foundations of Software Science and
Computation Structures (FoSSaCS), volume 9034 of LNCS, pages 167Ű182,
2015.

[Bon16] Bonakdarpour, Borzoo and Finkbeiner, Bernd. Runtime VeriĄcation
for HyperLTL. In Falcone, Yliès and Sánchez, César, editor, Runtime
Verification, pages 41Ű45. Springer International Publishing, 2016.

[BPS21] Laura Bozzelli, Adriano Peron, and César Sánchez. Asynchronous exten-
sions of hyperltl. In 2021 36th Annual ACM/IEEE Symposium on Logic
in Computer Science (LICS), pages 1Ű13, 2021.

[BPS22] Laura Bozzelli, Adriano Peron, and Cesar Sanchez. Expressiveness and
decidability of temporal logics for asynchronous hyperproperties. In Proc.
of 33nd International Conference on Concurrency Theory (CONCUR 2022)
(To appear), 2022.

[BRLEK17] Ryad Benadjila, Mathieu Renard, José Lopes-Esteves, and Chaouki Kasmi.
One car, two frames: attacks on hitag-2 remote keyless entry systems
revisited. In 11th USENIX Workshop on Offensive Technologies, 2017.

[CDAHM02] Arindam Chakrabarti, Luca De Alfaro, Thomas A. Henzinger, and
Freddy YC Mang. Synchronous and bidirectional component interfaces. In
International Conference on Computer Aided Verification, pages 414Ű427.
Springer, 2002.

[CdAHS03] Arindam Chakrabarti, Luca de Alfaro, Thomas A. Henzinger, and Mariëlle
Stoelinga. Resource interfaces. In Embedded Software, volume 2855 of
LNCS, pages 117Ű133, 2003.

[CFHH19a] Norine Coenen, Bernd Finkbeiner, Christopher Hahn, and Jana Hofmann.
The hierarchy of hyperlogics. In 2019 34th Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS), pages 1Ű13. IEEE, 2019.

139

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


[CFHH19b] Norine Coenen, Bernd Finkbeiner, Christopher Hahn, and Jana Hof-
mann. The hierarchy of hyperlogics. In Proc. of LICS: the 34th Annual
ACM/IEEE Symposium on Logic in Computer Science, pages 1Ű13. IEEE,
2019.

[CFK+14] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K.
Micinski, Markus N. Rabe, and César Sánchez. Temporal logics for
hyperproperties. In Principles of Security and Trust (POST), volume 8414
of LNCS, pages 265Ű284, 2014.

[CS10] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. Journal of
Computer Security, 18(6):1157Ű1210, 2010.

[dA03] Luca de Alfaro. Game Models for Open Systems, pages 269Ű289. Springer
Berlin Heidelberg, 2003.

[dAH01a] Luca de Alfaro and Thomas A. Henzinger. Interface automata. In European
Software Engineering Conference/Foundations on Software Engineering
(ESEC/FSE), page 109Ű120, 2001.

[dAH01b] Luca de Alfaro and Thomas A. Henzinger. Interface theories for component-
based design. In Embedded Software, volume 2211 of LNCS, pages 148Ű165,
2001.

[dAH05] Luca de Alfaro and Thomas A. Henzinger. Interface-based design. In
Engineering Theories of Software Intensive Systems, volume 195 of NATO
Science Series (Series II: Mathematics, Physics and Chemistry), pages
83Ű104, 2005.

[dAHS02] Luca de Alfaro, Thomas A. Henzinger, and Mariëlle Stoelinga. Timed
interfaces. In Embedded Software, volume 2491 of LNCS, pages 108Ű122,
2002.

[Den76] Dorothy E. Denning. A lattice model of secure information Ćow. Commu-
nications of the ACM, 19(5):236Ű243, may 1976.

[DFK+12] Rayna Dimitrova, Bernd Finkbeiner, Máté Kovács, Markus N Rabe, and
Helmut Seidl. Model checking information Ćow in reactive systems. In
International Workshop on Verification, Model Checking, and Abstract
Interpretation, pages 169Ű185. Springer, 2012.

[DGDNP12] Willem De Groef, Dominique Devriese, Nick Nikiforakis, and Frank
Piessens. Flowfox: A web browser with Ćexible and precise information
Ćow control. In Proceedings of the 2012 ACM Conference on Computer
and Communications Security (CCS), page 748Ű759, 2012.

[Dil89] David L. Dill. Trace Theory for Automatic Hierarchical Verification of
Speed-Independent Circuits. The MIT Press, 09 1989.

140

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


[DLL+10] Alexandre David, Kim G. Larsen, Axel Legay, Ulrik Nyman, and Andrzej
Wasowski. Timed I/O automata: a complete speciĄcation theory for real-
time systems. In Proceedings of the 13th ACM International Conference on
Hybrid Systems: Computation and Control (HSCC), pages 91Ű100, 2010.

[FHS17] Bernd Finkbeiner, Christopher Hahn, and Marvin Stenger. EAHyper:
SatisĄability, Implication, and Equivalence Checking of Hyperproperties",
booktitle="Computer Aided VeriĄcation. pages 564Ű570. Springer Interna-
tional Publishing, 2017.

[Flo67] Robert W. Floyd. Assigning meanings to programs. Proceedings of
Symposium on Applied Mathematics, 19:19Ű32, 1967.

[FM11] Riccardo Focardi and Matteo Maffei. Types for security protocols. Formal
Models and Techniques for Analyzing Security Protocols, 5:143Ű181, 2011.

[FMHV95] Ronald Fagin, Yoram Moses, Joseph Y Halpern, and Moshe Y Vardi.
Reasoning about knowledge. MIT Press, 1995.

[FR14] Bernd Finkbeiner and Markus N Rabe. The linear-hyper-branching spec-
trum of temporal logics. it Inf. Technol., 56(6):273Ű279, 2014.

[FRS15] Bernd Finkbeiner, Markus N. Rabe, and César Sánchez. Algorithms for
Model Checking HyperLTL and HyperCTL∗. In Daniel Kroening and
Corina S. Păsăreanu, editors, Computer Aided Verification, pages 30Ű48.
Springer International Publishing, 2015.

[FZ17] Bernd Finkbeiner and Martin Zimmermann. The Ąrst-order logic of
hyperproperties. In 34th Symposium on Theoretical Aspects of Computer
Science, 2017.

[GHM13] Jürgen Graf, Martin Hecker, and Martin Mohr. Using JOANA for in-
formation Ćow control in Java programs - a practical guide. In Software
Engineering 2013 - Workshopband, volume P-215 of LNI, pages 123Ű138,
2013.

[GM82] J. A. Goguen and J. Meseguer. Security policies and security models. In
1982 IEEE Symposium on Security and Privacy, pages 11Ű11, April 1982.

[GMO21] Jens Oliver Gutsfeld, Markus Müller-Olm, and Christoph Ohrem. Au-
tomata and Ąxpoints for asynchronous hyperproperties. Proc. ACM Pro-
gram. Lang., 5(POPL):1Ű29, 2021.

[GPSS80] Dov Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan Stavi. On the
temporal analysis of fairness. In Proceedings of the 7th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 163Ű
173, 1980.

141

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


[GV13] Erich Grädel and Jouko Väänänen. Dependence and independence. Studia
Logica, 101(2):399Ű410, 2013.

[Hel18] Edward Helmore. Uber shuts down self-driving op-
eration in arizona after fatal crash. https://

www.theguardian.com/technology/2018/may/23/

uber-shuts-down-self-driving-operation-in-arizona-two-months-after-

2018. Accessed: 2019-10-10.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Commu-
nications of the ACM, 12(10):576Ű580, 1969.

[Hoa80] Charles Antony Richard Hoare. A model for communicating sequential
process. 1980.

[HS09] Christian Hammer and Gregor Snelting. Flow-sensitive, context-sensitive,
and object-sensitive information Ćow control based on program dependence
graphs. International Journal of Information Security, 8(6):399Ű422, 2009.

[HSB21] Tzu-Han Hsu, César Sánchez, and Borzoo Bonakdarpour. Bounded Model
Checking for Hyperproperties. In Jan Friso Groote and Kim Guldstrand
Larsen, editors, Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), pages 94Ű112. Springer International Publishing, 2021.

[HWS06] M. Huisman, P. Worah, and K. Sunesen. A temporal logic characteri-
sation of observational determinism. In 19th IEEE Computer Security
Foundations Workshop (CSFW’06), pages 13 pp.Ű3, 2006.

[HYH+04] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai, Der-Tsai
Lee, and Sy-Yen Kuo. Securing web application code by static analysis and
runtime protection. In Proceedings of the 13th International Conference
on World Wide Web, WWW Š04, page 40Ű52, 2004.

[IBSS22] Inigo Incer, Albert Benveniste, Alberto L. Sangiovanni-Vincentelli, and
Sanjit A. Seshia. Hypercontracts. In Proc. of NFM 2022: the 14th
International Symposium, volume 13260 of LNCS, pages 674Ű692, 2022.

[JHC15] Cliff B Jones, Ian J Hayes, and Robert J Colvin. Balancing expressiveness
in formal approaches to concurrency. Formal Aspects of Computing, 27:475Ű
497, 2015.

[Jon81] Cliff B Jones. Development methods for computer programs including a
notion of interference. Oxford University Computing Laboratory, 1981.

[Kam68] Hans Kamp. Tense Logic and the Theory of Linear Order. PhD thesis,
UCLA, 1968.

142

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.theguardian.com/technology/2018/may/23/uber-shuts-down-self-driving-operation-in-arizona-two-months-after-fatal-crash
https://www.theguardian.com/technology/2018/may/23/uber-shuts-down-self-driving-operation-in-arizona-two-months-after-fatal-crash
https://www.theguardian.com/technology/2018/may/23/uber-shuts-down-self-driving-operation-in-arizona-two-months-after-fatal-crash
https://www.tuwien.at/bibliothek


[KCM+22] Elisavet Kozyri, Stephen Chong, Andrew C Myers, et al. Expressing
information Ćow properties. Foundations and Trends® in Privacy and
Security, 3(1):1Ű102, 2022.

[KMVZ18] A Krebs, A Meier, J Virtema, and M Zimmermann. Team semantics for
the speciĄcation and veriĄcation of hyperproperties. Leibniz International
Proceedings in Informatics, LIPIcs, 117, 2018.

[KS05] Antonín Kučera and Jan Strejček. The stuttering principle revisited. Acta
Informatica, 41(7-8):415Ű434, 2005.

[LD10a] M. Lee and P. R. DŠArgenio. A reĄnement based notion of non-interference
for interface automata: Compositionality, decidability and synthesis. In
International Conference of the Chilean Computer Science Society, pages
280Ű289, Nov 2010.

[LD10b] Matias Lee and Pedro R. DŠArgenio. Describing secure interfaces with
interface automata. Electronic Notes in Theoretical Computer Science,
264(1):107Ű123, 2010.

[LD10c] Matias Lee and Pedro R. DŠArgenio. A reĄnement based notion of non-
interference for interface automata: Compositionality, decidability and
synthesis. In 2010 XXIX International Conference of the Chilean Computer
Science Society, pages 280Ű289, 2010.

[Lee08] Edward A. Lee. Cyber physical systems: Design challenges. In 2008
11th IEEE International Symposium on Object and Component-Oriented
Real-Time Distributed Computing (ISORC), pages 363Ű369, 2008.

[LNW07] Kim G. Larsen, Ulrik Nyman, and Andrzej Wasowski. Modal I/O au-
tomata for interface and product line theories. In European Symposium
on Programming, pages 64Ű79. Springer, 2007.

[LSS05] Kerstin Lemke, Ahmad-Reza Sadeghi, and Christian Stüble. An open
approach for designing secure electronic immobilizers. In Proc. of ISPEC
2005, volume 3439 of LNCS, pages 230Ű242, 2005.

[LT87] Nancy A. Lynch and Mark R. Tuttle. Hierarchical correctness proofs for
distributed algorithms. In Proceedings of the Sixth Annual ACM Symposium
on Principles of Distributed Computing, PODC Š87, page 137Ű151, New
York, NY, USA, 1987. Association for Computing Machinery.

[LV12] Gerald Lüttgen and Walter Vogler. Modal interface automata. In IFIP
International Conference on Theoretical Computer Science, pages 265Ű279.
Springer, 2012.

143

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


[Man00] Heiko Mantel. Possibilistic deĄnitions of security-an assembly kit. In
Proceedings 13th IEEE Computer Security Foundations Workshop. CSFW-
13, pages 185Ű199, 2000.

[Man02] Heiko Mantel. On the composition of secure systems. In IEEE Symposium
on Security and Privacy, pages 88Ű101, 2002.

[McC87] Daryl McCullough. SpeciĄcations for multi-level security and a hook-up.
In 1987 IEEE Symposium on Security and Privacy, pages 161Ű161, 1987.

[McL96] John McLean. A general theory of composition for a class of ŞpossibilisticŤ
properties. IEEE Transactions on Software Engineering, 22(1):53Ű67, 1996.

[Men09] Elliott Mendelson. Introduction to mathematical logic. CRC press, 2009.

[Mey92] Bertrand Meyer. Applying Śdesign by contractŠ. Computer, 25(10):40Ű51,
1992.

[Mey09] Bertrand Meyer. Touch of class: Learning to program well with Object
Technology and Design by Contract. Springer, 2009.

[MHGG19] Marcus Mikulcak, Paula Herber, Thomas Göthel, and Sabine Glesner.
Information Ćow analysis of combined simulink/stateĆow models. Infor-
mation Technology And Control, 48(2):299Ű315, 2019.

[MSS11] Heiko Mantel, David Sands, and Henning Sudbrock. Assumptions and
guarantees for compositional noninterference. In IEEE Computer Security
Foundations Symposium (CSF), pages 218Ű232, 2011.

[Pnu77] Amir Pnueli. The temporal logic of programs. In Annual Symposium on
Foundations of Computer Science (FOCS), pages 46Ű57, 1977.

[PW97] Doron Peled and Thomas Wilke. Stutter-invariant temporal properties
are expressible without the next-time operator. Information Processing
Letters, 63(5):243Ű246, 1997.

[Rab14] Alexander Rabinovich. A Proof of KampŠs theorem. Logical Methods in
Computer Science, Volume 10, Issue 1, February 2014.

[RKG+19] Denise Ratasich, Faiq Khalid, Florian Geissler, Radu Grosu, Muhammad
ShaĄque, and Ezio Bartocci. A roadmap toward the resilient internet of
things for cyber-physical systems. IEEE Access, 7:13260Ű13283, 2019.

[San93] R.S. Sandhu. Lattice-based access control models. Computer, 26(11):9Ű19,
1993.

[SDK19] Florian Sommer, Jürgen Dürrwang, and Reiner Kriesten. Survey and
classiĄcation of automotive security attacks. Information, 10(4), 2019.

144

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


[SM03] Andrei Sabelfeld and Andrew C Myers. Language-based information-Ćow
security. IEEE Journal on Selected Areas in Communications, 21(1):5Ű19,
2003.

[SS05] A. Sabelfeld and D. Sands. Dimensions and principles of declassiĄcation. In
18th IEEE Computer Security Foundations Workshop (CSFW’05), pages
255Ű269, 2005.

[SVDP] Alberto Sangiovanni-Vincentelli, Werner Damm, and Roberto Passerone.
Taming dr. frankenstein: Contract-based design for cyber-physical systems.

[Ter08] Tachio Terauchi. A type system for observational determinism. In 2008
21st IEEE Computer Security Foundations Symposium, pages 287Ű300,
2008.

[Tho92] Wolfgang Thomas. InĄnite trees and automaton- deĄnable relations over
ω-words. Theoretical Computer Science, 103(1):143Ű159, 1992.

[TLHL11] Stavros Tripakis, Ben Lickly, Thomas A. Henzinger, and Edward A. Lee.
A theory of synchronous relational interfaces. ACM Transactions on
Programming Languages and Systems (TOPLAS), 33(4):14, 2011.

[Tri16] Stavros Tripakis. Compositionality in the science of system design. Pro-
ceedings of the IEEE, 104(5):960Ű972, 2016.

[Vää07] Jouko Väänänen. Dependence Logic: A New Approach to Independence
Friendly Logic. London Mathematical Society Student Texts. Cambridge
University Press, 2007.

[Var88] M. Y. Vardi. A temporal Ąxpoint calculus. In Symposium on Princi-
ples of Programming Languages (POPL), page 250Ű259. Association for
Computing Machinery (ACM), 1988.

[Wol96] Elizabeth Susan Wolf. Hierarchical models of synchronous circuits for
formal verification and substitution. Stanford University, 1996.

[ZM03] S. Zdancewic and A.C. Myers. Observational determinism for concurrent
program security. In 16th IEEE Computer Security Foundations Workshop,
2003. Proceedings., pages 29Ű43, 2003.

145

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

	Kurzfassung
	Abstract
	Contents
	Introduction
	Organization and Contributions

	Information-flow Design
	Contract-based Design
	Contracts for Systems Design
	Interface Theory

	Information-flow Interfaces
	Stateless
	Stateful
	Related Work
	Final Remarks


	Information-flow Specification
	Trace Properties and Hyperproperties
	Trace Properties
	Hyperproperties

	Specifying Information-flow
	Policies
	Properties

	Expressing Information-flow with Linear Hyperlogics
	Hypertrace Logic
	Flavors of Two-state Independence
	Expressing Two-State Independence
	Related Work on HyperLTL Expressive Power


	  Information-flow Verification
	Hypernode Automata
	Hypernode Automata
	Model-Checking Hypernode Logic and Automata
	Related Work

	Conclusion and Future Work
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography


