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Abstract

Precisely estimating an object’s pose represents a fundamental component in many applica-
tions utilizing computer vision, including those within industrial robotics: the textureless
surface and high reflectivity of metallic objects present pose estimation challenges. The
objective of this master’s thesis is to develop a method that enables the robust and accurate
estimation of 6DoF poses for metallic and reflective objects in an industrial context.

This thesis builds on the most recent findings in this domain and employs a method-
ology incorporating contour-based object representation. The method comprises three
principal components: a network for object detection and segmentation, a diffusion model
for edge detection, and a newly developed network for estimating object poses from edge
images. Furthermore, this research entails the creation of datasets that facilitate the
training of the networks mentioned above. In this context, a novel rendering pipeline will be
developed within the framework of this study, aimed at generating photorealistic training
images alongside corresponding ground-truth edge images. The functionality of this pipeline
is based on the rendering of realistic textures and illumination conditions, which allows the
training data to be adapted to reflect the actual challenges.

The proposed method, called Edge2Pose, involves the detection of the target object by
utilizing a YOLOvVS8 segmentation model. Subsequently, the DiffusionEdge network is
employed to detect edges extracted from the scene by the specified region of interest. The
edge images are transmitted to the network for pose estimation, which predicts the 3D
coordinates based on the edges depicted in the images. This process is analogous to CDPN,
Pix2Pose, and DPOD methods. Initially, the 3D coordinates of the model are transformed
into RGB values and subsequently predicted by the network. The ultimate pose estimation
is achieved by establishing 2D-3D correspondences, which are then processed using the

PnP/RANSAC algorithm.

The results of the experiments conducted with diverse data sets (RT-Less, T-Less, and
MP-6D) illustrate that the employed methodology is a practical approach for estimating
the poses of metallic and reflective objects. Furthermore, this methodology provides consid-
erable advantages in scenarios where the camera consistently focuses on the scene, such as
pick-and-place operations.
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Kurzfassung

Die préazise Schitzung der Pose von Objekten stellt einen grundlegenden Bestandteil in einer
Vielzahl von Anwendungen der Computer Vision dar, wobei auch die Industrierobotik zu
nennen ist. Aufgrund ihrer texturlosen Oberfliche sowie ihres hohen Reflexionsvermogens
stellen diese Objekte eine besondere Herausforderung im Bereich der Posenschétzung dar.
Das Ziel dieser Masterarbeit besteht in der Entwicklung einer Methode, welche eine robuste
und prézise Schitzung von 6DoF-Posen fiir metallische, reflektierende Objekte in einem
industriellen Kontext ermoglicht.

Die vorliegende Arbeit basiert auf den jlingsten Forschungsergebnissen in diesem Bere-
ich und verwendet einen Ansatz, der die Objektrepriasentation durch Konturen umfasst.
Die Methode besteht dabei aus drei Hauptkomponenten: ein Netzwerk zur Objekterken-
nung und -segmentierung, ein Diffusionsmodell zur Erkennung von Objektkanten sowie
ein neu entwickeltes Netzwerk zur Schétzung der Objektposen aus Kantenbildern. Ein
weiterer Bestandteil dieser Forschung ist die Generierung von Datensétzen, welche das
Training der verwendeten Netzwerke ermdglicht. Um dieses Ziel zu erreichen, wird eine neue
Rendering-Pipeline implementiert, die fotorealistische Trainingsbilder in Kombination mit
Ground-Truth-Kantenbildern erzeugt. Die Funktionsweise dieser Pipeline basiert auf der
Simulation realistischer Texturen und Beleuchtungsbedingungen, wodurch eine Anpassung
der Trainingsdaten an die tatséchlichen Herausforderungen moglich ist.

Die implementierte Methode der Posenschitzung, genannt Edge2Pose, umfasst die Erken-
nung des Zielobjekts durch die Verwendung eines YOLOv8-Segmentierungsmodells. Die
FErkennung von Kanten erfolgt durch das DiffusionEdge-Netzwerk, welche aus der Szene
entsprechend der Region of Interest extrahiert werden. In der Folge werden die Kan-
tenbilder an das Netzwerk zur Posenschitzung iibermittelt, welches die 3D-Koordinaten
auf Basis der in den Bildern dargestellten Kanten prognostiziert. Die Vorgehensweise ist
vergleichbar mit der von CDPN, Pix2Pose und DPOD, wobei die 3D-Koordinaten des
Modells zunéchst in RGB-Farbwerte umgewandelt und anschlieffend durch das Netzwerk
vorausgesagt werden. Die finale Pose-Schatzung erfolgt durch die Generierung von 2D-3D-
Korrespondenzen und deren nachfolgender Berechnung mittels PnP /RANSAC-Algorithmus.

Die Resultate der Experimente, welche mit unterschiedlichen Datenséitzen (RT-Less, T-
Less und MP-6D) durchgefithrt wurden, demonstrieren, dass die implementierte Methodik
eine valide Vorgehensweise zur Posenschéitzung von metallischen, reflektierenden Objekten
darstellt. Des Weiteren demonstrieren die Resultate, dass besagte Methodik insbesondere
fiir Szenarien vorteilhaft ist, in denen die Kamera durchgingig auf die Szene fokussiert ist,
wie es beispielsweise bei Pick-and-Place-Operationen der Fall ist.
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Glossary

ADD Average Distance of Model Points.

ADD-(S) Symmetrized Average Distance of Model Points.

AR Augmented Reality.

AR Average Recall.

BOLD Binary Object Line Descriptor.
BOP Benchmark for 6D Object Pose Estimation.

CAD Computer Aided Design.
DoF Degrees of Freedom.

EMA Exponential Moving Average.
loU Intersection over Union.

MAE Mean Average Error.

mAP Mean Average Precision.

MSPD Maximum Symmetry-Aware Projection Distance.

MSSD Maximum Symmetry-Aware Surface Distance.
NOCS Normalized Object Coordinate Space.
PnP Perspective-n-Point.

RANSAC Random Sample Consensus.

Rol Region of Interest.

VSD Visible Surface Discrepancy.
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CHAPTER 1

Introduction

Precisely estimating object poses is a key component in various computer vision applications,
such as industrial robotics [1-4]. Despite significant advancements and the development of
highly effective methods for textured objects, a pressing need remains for solutions that are
capable of dealing with textureless objects and, in particular, with the challenges faced by
metallic objects [1, 5-9].

1.1 Motivation

The rapid advancement of intelligent manufacturing has made pose estimation of industrial
objects a pivotal technology for robotic grasping, unit assembly, and human-machine
collaboration [1, 4-9]. Despite notable advancements in pose estimation through numerous
methodologies, these approaches remain partially applicable to metallic objects due to
their reliance on surface-based features [2—4]. The surface properties of metallic objects
often prevent extracting distinctive features, resulting in significant deviations in position
estimation. Due to their high reflectivity, metallic objects are sensitive to environmental
influences and varying lighting conditions, further complicating the process of matching
features [1, 10-12]. To successfully address these challenges, it is necessary to establish
a reliable and robust technique that can accurately and precisely estimate the pose of
metallic objects. A promising approach is utilizing the object’s geometric properties, such
as contour and edges. [11-19]. The object’s contour is not affected by surface texture and
is less sensitive to lighting effects. Contour representation offers a promising method for
accurately determining the orientation of metallic objects.

The objective of this master’s thesis is to develop a reliable methodology for extracting
the edges of objects. This approach aims to utilize these edges to estimate poses, thereby
enhancing the accuracy of pose estimation specifically for metallic objects and capitalizing
on their properties.
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CHAPTER 1. INTRODUCTION

1.2 Problem Statement

Most current research focuses on the object’s surface. The handling of metallic objects is of
particular importance in industrial contexts. While several solutions are available for object
pose estimation of textured objects, research addressing reflective objects is limited. Depth
information is effective for estimating object poses, but specialized hardware is needed to
capture this information. Cameras have already achieved widespread integration within
industrial applications and offer a more efficient data processing advantage over depth
images [1, 8]. As a consequence, RGB has emerged as a dominant technology for object
pose estimation over the past few years [1, 5-8|.

The application of metallic objects presents a considerable challenge in the 6D pose
estimation. The optical and physical properties of metal parts require different approaches
than algorithms for textured objects. One of the main difficulties with metallic objects is
their high reflectivity. In contrast to textured surfaces, which show uniform light scattering
and thus provide reliable texture information, metallic surfaces reflect light sources and
environments. The specular reflectivity of metallic surfaces presents a significant challenge,
as the surface’s appearance highly depends on light incidence and camera position. Specular
highlights and specular reflections cause artifacts in RGB images that can introduce errors in
both classical feature-based algorithms and modern neural network-based methods. These
effects lead to visual distortions that are often not sufficiently represented in training data
[11, 14, 16, 20, 21].

Another aspect is the lack of texturing in many metallic objects, which complicates the
application of methods that rely on detecting texture-related features. The metallic
properties lead to strong specular effects that complicate the recognition of relevant object
features and restrict the generation of robust image features for pose estimation. Low-
texture surfaces provide a few visually consistent points that algorithms can use for reliable
detection and estimation. This lack of features hinders pose estimation algorithms and
methods like correspondence matching [22-31].

In addition, the spectral reflectance of metallic objects often leads to varying appearances
depending on the illumination and viewing angle. Especially in industrial applications,
where lighting conditions usually cannot be kept constant, pose estimation can be severely
affected as the visible object features change dynamically with each change in ambient
lighting. Even with steady lighting, small changes in the angle of the camera or object
can cause substantial variations in image captures, resulting in reduced reliability of
pose estimations [10]. The instances in Figure 1.1 illustrate the complexities of imaging
metallic objects. These challenges include textureless surfaces that lack distinctive features,
viewpoint-dependent reflections, surface mirroring effects, and susceptibility to overexposure
and underexposure in varying lighting conditions.

Figure 1.1: Example of metallic objects an their challenges [10]
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1.2. PROBLEM STATEMENT

Based on the preceding discussion of challenges and approaches, this work will address the
following research questions:

e RQ 1: How can a synthetic training dataset be designed to accurately replicate the
visual properties of metallic objects, such as reflections and gloss?

— The generation of synthetic datasets for metallic objects represents a significant
challenge, given the intricate light reflections and reflective surfaces that are
inherently difficult to replicate. This leads to the question of how synthetic
training data can be created to meet the actual requirements of pose estimation.

e RQ 2: How to extract edges and contours of metallic objects accurately and robustly?
— The objective is to develop a robust edge extraction technique that is not
dependent on illumination conditions or surface properties.
e RQ 3: To what extent can existing pose estimation methods be leveraged by
introducing contour-based features?

— A key question is whether existing pose estimation methods can be enhanced by
incorporating contours and to what extent this allows for more precise estimation
of metallic objects.
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CHAPTER 1. INTRODUCTION

1.3 Approach and Contribution

This thesis aims to develop a methodology to estimate the 6 Degrees of Freedom (DoF)
poses of reflective metallic objects for industrial applications. This method does not rely on
the characteristics of the object surfaces but rather utilizes the contour of the objects as a
source of information for position determination. Edges are detected using a diffusion model,
and the resulting images are subsequently leveraged to establish 2D-3D correspondences.
This process results in estimating the final 6DoF object pose. This approach is tested on
an industry-related metallic object dataset, providing various scenarios and challenges. The
scope of this work is divided into three main components: data preparation, edge detection,
and pose estimation 1.2.

EJEE|
=i

P R et
o .'E

Pose

|EE:|!!EHBHEE|

Figure 1.2: Overview of the proposed approach: The scene is converted into an edge-detected
image, from which the object is extracted. The resulting contour establishes
2D-3D correspondences, which are essential for estimating the object’s pose.

Coordinates

A dataset is required to train a pose estimation algorithm. Since the benchmark datasets
in this area (Linemod, YCB, etc.) [2, 3] do not fully meet the specific requirements,
the RT-Less [10] dataset is utilized as well as T-Less [32] dataset to further extend the
proposed method onto another state of the art dataset. The RT-Less dataset comprises
Computer Aided Design (CAD) models and real test scenes with respective ground-truth
pose annotations. The data required for training and evaluating the method of this work is
created with the introduced rendering pipeline. This pipeline enables photorealistic scene
image creation and provides ground truth edge images and segmentation masks. This novel
rendering pipeline leverages the Blender [33| software and is inspired by the functionalities
of BlenderProc [34] and the RT-Less toolkit [35].

The method presented in this thesis is split into two main sections: Edge Detection and
Pose Estimation. The edge detection stage comprises the task of object detection and edge
detection. YOLO [36] algorithm is used to perform the first task. In particular, the latest
YOLOvVS [37] model is applied. This procedure accomplishes the dual purpose of object
detection and segmentation. Based on the bounding boxes and segmentation masks derived
in this step, the object in the scene is cropped the Region of Interest (Rol), similar to the
techniques in [25, 28, 31|. A diffusion model is used to perform the secondary task in this
main section, edge detection. The so-called DiffusionEdge [38] has been specially designed
to generate precise and accurate edge images. The training of this network and YOLOvS8
[37] for object detection is conducted with the previously rendered scene images and edge
images.

The second main stage of the method contains a novel network, which receives the extracted
edge image of the object as input to predict the demanded coordinate maps. This network
is based on the approaches of GDR-Net [28], CDPN [31], Pix2Pose [25] and DPOD [29],
whereas a new decoder for edge images is introduced into a U-Net structure. This network
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1.4. ORGANIZATION

is trained on data generated with the new rendering pipeline. For this purpose, coordinate
maps of the individual objects are created together with corresponding edge images. The
normalized coordinates of each vertex of the model are transferred directly to the red,
green, and blue values of the color space. The model predicts the color-coded coordinate
maps based on the given edge images, thus enabling the creation of 2D-3D correspondences.
The final pose is estimated by applying the Perspective-n-Point (PnP) [39] algorithm with
further use of Random Sample Consensus (RANSAC) [40] to improve the estimation results.
The contributions of this thesis can be summarized as follows:

e Introduction of a rendering pipeline for creating photorealistic scenes with ground
truth edge images and generating color-coded coordinate maps enabling the transfer
of 2D-3D correspondences from color values.

e Implementation of object detection and edge detection of industrial, reflective, and
metallic objects utilizing a state-of-the-art object detection network and a state-of-
the-art diffusion model.

e Application of a 6DoF pose estimation pipeline for industrial, reflective, and metallic
objects based on their edge representation before coordinate prediction.

1.4 Organization

The organization of this thesis can be described as follows: First, chapter 2 provides a
detailed explanation of the technical background of this work. Additionally, this chapter
presents a fundamental analysis of the relevant work and carefully examines methods
that specialize in applying metallic objects. In the following chapter 3, the methodology
implemented in this thesis is presented. Subsequently, chapter 4 describes the concept’s
practical implementation and the resulting findings. The final discussion of the results and
possible subsequent applications can be found in chapter 5.
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CHAPTER 2

Background and Related Work

This chapter provides essential background information and concepts relevant to the thesis.
It outlines the fundamental methodologies and approaches while exploring the specific topic
of metallic object pose estimation to enhance understanding of the core subject. Initially,
the chapter discusses the background of pose estimation and the metrics used for evaluation.
Following this, it evaluates related and relevant works that have previously tackled this
issue and assesses their significance concerning the research question of the thesis.

2.1 Background

"Object pose estimation" refers to precisely determining an object’s position within its three-
dimensional space. This process involves finding the relative pose between the camera’s
coordinate system and that of the object. The "6 Degrees of Freedom" pose captures the
spatial orientation of an object in a reference coordinate system. The pose is composed of
both a three-dimensional translation and a three-dimensional rotation. "Translation" refers
to moving an object’s coordinates along a coordinate system’s x, y, and z axes. At the
same time, "rotation" refers to the circular motion of the object around each of these three
axes. Understanding these concepts is crucial for accurately assessing an object’s position
and orientation in any given environment. As illustrated in Figure 2.1, in an industrial
application scenario, the camera is mounted on the robot’s front end while the object is
positioned on a reference table. The camera’s coordinate system is fixed, with the z-axis
aligned with the view axis. The coordinate system of the external environment is fixed to
the center of the observed scene; thus, the z-axis is oriented vertically upward [41-43].
Numerous visual computing tasks necessitate a comprehensive understanding of scenes
and the manipulation of objects. 6DoF pose estimation is essential for providing detailed
information on both positional and orientational parameters, enabling robotic systems
to perform tasks such as object recognition, localization, and grasping with enhanced
precision and accuracy. Furthermore, 6DoF pose estimation is critical in various aspects
of autonomous driving, including environmental perception, obstacle detection, traffic
condition prediction, and decision-making. An additional significant application of 6DoF
pose estimation is in the realms of augmented reality (AR) and virtual reality (VR), where
it supports the development of spatial mappings of environments and provides essential
data for the effective integration of AR/VR content [1, 5, 6, 8].
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CHAPTER 2. BACKGROUND AND RELATED WORK

coordinate system of camera

coordinate system of pose
calibration board

Figure 2.1: An industrial robot with the camera attached to the front end of the arm [10]
(©2023 Springer Nature.
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2.1. BACKGROUND

2.1.1 Object Representation

Following the preceding discussion, the location of an object within three-dimensional space
is defined in terms of its six degrees of freedom (DOF) pose. Each object possesses its
local coordinate system, anchored at a specific point on the object. The position and
orientation of the aforementioned coordinate system describe the object’s pose relative to
the said coordinate system. The camera’s coordinate system is commonly employed as
the reference system in pose estimation. Pose estimation aims to determine the necessary
transformation to align one coordinate system with another [6]. The translation vector

t= [tx, by, tZ}T indicates the position of the origin of the object’s coordinate system in the
global coordinate system. It describes how far the object is displaced along the x, y, and z
axes. Various methods exist for representing rotation in 3D space, such as Euler angles,
rotation matrices, and quaternions. However, the most common method uses a 3x3 matrix
R, which describes the rotation of the object with respect to the global coordinate system.
The orientation of the object can be expressed by combining the translation vector ¢ and
the rotation matrix R, using the homogeneous transformation matrix 7" (2.1). This matrix
describes the complete rigid transformation in 3D space [41-43|.

T— (]g D (2.1)

In most applications, visual information is used to estimate the pose. The most prevalent
approach is to utilize images captured by the camera [1, 5, 6]. The two-dimensional image
of a three-dimensional object is generated by the projection of three-dimensional points
from the real world onto the two-dimensional image plane of a camera. This projection is
based on the principles of perspective projection, whereby each three-dimensional point
in space is mapped to a two-dimensional coordinate in the image through the lens of a
camera [10]. A camera matrix is used to model this projection, comprising the intrinsic
parameters of the camera, including the focal length and the optical center 2.2. In the
PnP method, these projected 2D points are used together with the known 3D coordinates
of the object to calculate the 6DoF pose relative to the camera. The PnP method [39]
solves an optimization problem in which the task is to find the rotation and translation
(i.e., the pose) that positions the object in 3D space so that the projected 2D points match
the observed 2D coordinates as closely as possible [41-43].

W — world coordinate system
C —camera coordinate system
I —image frame

Figure 2.2: Visualization of PnP [39] and object imaging



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

CHAPTER 2. BACKGROUND AND RELATED WORK

2.1.2 Evaluation Metrics

The accuracy and precision of six degrees of freedom (6 DoF) object pose estimation
are evaluated by comparing the predicted poses with the known ground truth poses
of the depicted object. The error metrics Average Distance of Model Points (ADD) and
Symmetrized Average Distance of Model Points (ADD-(S)) are utilized to assess the accuracy
of the pose estimate. These metrics differ in their applications and calculation procedures,
especially when dealing with symmetric objects [2, 3]. The ADD metric calculates the
average distance of model points between an object’s estimated and ground-truth pose. For
each pair of points (a point in the estimated model and the same point in the ground truth
model), the Euclidean distance is calculated, and the average of these distances equals the
ADD value. The equation 2.2, which is defined as the average distance of the pairwise
distances between the 3D model points transformed with the ground truth and estimated
poses, where M is the set of 3D model points, m is the number of points, and (Rgr, Tar)
(Rest, TrsT) are the rotation and translation of the ground truth pose and predicted pose.

1

ADD = —-
P

> " lp(Rar + ter) — p(Rest + test) || (2.2)
peP

ADD-(S) enhances ADD to effectively handle symmetrical objects as well. Since symmetrical
objects can appear identical from certain perspectives, directly pairing points may result
in errors. Therefore, ADD-(S) identifies the nearest point in the ground truth model for
each point in the estimated model. The distances to these nearest points are then averaged,
accounting for the object’s symmetries 2.3.

1 .
ADD-S = Z min ||p1(Rar + tgT) — p2(REsT + tsT)|| (2.3)
P p2€P

|P| p1

A pose is deemed correct if the ADD-(S) error is less than 10 % of the object’s diameter.
The proportion of all accurately predicted poses is referred to as the ADD-(S) recall [44].
Furthermore, to address the exact precision of the estimated poses, we use the mean error
of rotation Rp,eqn and translation Teqn between the estimated pose and the ground truth.

1
Rmean:*Za‘Vg(‘ai_ag‘+‘5i_/8z{‘+‘/7i_’71{‘) (24)
n €S
1
Trean = - Z Euclidean ((:1:1, Yir %), (2h, 9L, z{)) (2.5)
€S

Both mathematical expressions can be seen in equations 2.4 and 2.5, where S is the set of
correct estimated poses according to ADD-(S). Further, n is the number of images in S.
The values of the rotation angles in the respective axes are represented by (o, 5;, ;) for
the estimated pose and by (o, 8!,~}) for the ground truth pose. Similarly, the translations
for the predicted pose (x;, ¥, z;) and the ground truth pose (z},y}, /) are represented [10].
Another set of metrics is relevant when comparing against the results of the Benchmark
for 6D Object Pose Estimation (BOP) Challenge: Visible Surface Discrepancy (VSD),
Maximum Symmetry-Aware Surface Distance (MSSD) and Maximum Symmetry-Aware
Projection Distance (MSPD) |2, 3, 44]. These metrics measure the distance or deviation
between the estimated pose of an object and the ground truth pose, taking into account
different aspects such as visibility, symmetry, and projection. Based on depth images, the
VSD metric evaluates an object’s visible surface correspondence between the estimated and
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2.1. BACKGROUND

ground-truth pose. This metric is beneficial when the object is partially occluded, as only
the visible points are considered. The VSD metric calculates the error ey gp as the average
depth difference between the pixels visible in both poses.

1
Busn =t D 8 ({de(p) = diy(9)].7) (2.6)
peEP
1, ife>r
Nz, 7) = {O s (2.7)

Where P is the number of visible pixels in both poses, desp and dgp are the depth values
of the pixels p in the estimated and ground truth poses and 7 the misalignment threshold,
which specifies the maximum tolerance for the depth difference.

The MSSD metric measures the maximum deviation of the model surface points between
the estimated pose and a symmetrically adjusted ground truth pose to account for possible
symmetries of the object. The error eprssp is calculated by taking the maximum distance
between the point clouds of the estimated and the symmetrically adjusted ground truth
pose.

eMssD = Sglmigs max lpEST — PCT, sym| (2.8)

Where pes is a point on the surface of the model in the estimated pose, pyisym the
corresponding point in the symmetrically transformed ground truth pose, and S the set of
all possible symmetries of the object.

The MSPD metric evaluates the accuracy of the pose based on the projection of the model
points into the image plane. It calculates the maximum 2D distance between the projection
points of the estimated and the symmetry-aware ground-truth pose. The MSPD metric is
defined by the following formula:

emspp = min max || (pest) — T(PGT, sym) || (2.9)
symeS peP
Where 7 is the projection function that projects 3D points into the 2D image plane.
The Average Recall (AR) is calculated by measuring the recall for each of these metrics
(VSD, MSSD, MSPD) over a range of thresholds and then averaging them. AR indicates
how well a model predicts poses at different levels of accuracy and provides a summary
assessment of performance across different error tolerances.

AR

_ tvsD +emssp + enspp (2.10)
3 )
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CHAPTER 2. BACKGROUND AND RELATED WORK

2.2 Related Work

This section provides an overview of the most widely utilized methods and significant works
in pose estimation. It starts by discussing general methods and their foundational concepts,
which have yielded impressive results in recent years. Following that, an in-depth exploration
of techniques specifically applicable to textureless or metallic objects is presented.

2.2.1 General Pose Estimation Approaches

In computer vision, two main approaches to pose estimation are instance-level and category-
level. Instance-level pose estimation detects and estimates a known object’s pose. This
method estimates the pose of known three-dimensional objects. Category-level pose
estimation predicts an object’s pose without precise information about the object. This
approach addresses the general pose of an object within a category. This thesis examines
instance-level pose estimation [1].

The initial step in categorizing these methods is to classify them according to the underlying
data type. They can be divided into RGB-based methods, point cloud or depth-based
methods, and RGB-D-based methods [45]. While depth measurements have proven to be
reliable for estimating object poses, they often require specialized hardware. In contrast,
RGB sensors have seen widespread integration in industrial applications and provide more
efficient data processing than depth images. As a result, RGB technology has become the
preferred choice for object pose estimation in recent years [1]. This thesis delves deeper
into pose estimation using RGB images and focuses on relevant studies. These RGB-based
methods can be further classified based on functionality. In this context, Guan et al. [5],
and Marullo et al. |7] categorize the methods into three distinct groups: regression-based
methods, template-based methods, and feature-based methods.

Across the different approaches to pose estimation, several methods use Rol or crop the
object out of the image to reduce the computational load and improve accuracy. Such
methods [22, 24, 25, 28, 31| usually employ segmentation or detection networks [36, 46| to
localize the object and thus focus the image section that is then used for pose estimation.

Regression-Based Methods

In recent years, deep learning-based methods have shown their ability to handle object pose
estimation. One of the most straightforward approaches is the direct regression of the 6DoF
pose, where the estimation is performed directly on the RGB image without intermediate
steps such as segmentation or keypoint extraction. These methodologies are typically
implemented as end-to-end applications, which feature a neural network trained and used to
regress the 6DoF poses directly from the input image. To simplify pose determination, the
primary phase of these methods usually involves an object detection process that locates
the object within the scene image in advance.

E or o
2 a Regression |
o E—] j ‘— Pose
-
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Figure 2.3: Typical workflow of direct-regression-based methods
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2.2. RELATED WORK

Early methods such as PoseNet [47] and PoseCNN [24] use Convolutional Neural Networks
(CNNs) to regress the pose parameters directly. In contrast, PoseCNN introduces multi-task
learning and splits the pose regression into translation and rotation. To further improve
accuracy, Deep-6DPose [48] and 6D-VNet [49] combine CNNs with Mask R-CNN-like
[46] structures and extend them with additional branches specifically designed for pose
estimation. Hu et al. [50] estimating pose via direct regression of 3D correspondences.
This method combines the PnP algorithm with neural networks to efficiently generate
correspondences from key points obtained by PVNet [22], while the iterative RANSAC step
is embedded in the network. DeepIM [51] and CosyPose [26] rely on iterative improvements
in pose estimation by successively reducing the difference between the rendered model and
the input image. CosyPose also integrates symmetry detection and multi-view information
to refine the estimates. GDR-Net [28] proposes employing geometrically guided regression
methods and using dense correspondences to make pose estimation particularly accurate
and stable.

Although the current method of predicting dense key points achieves superior performance
for the pose estimation of ordinary objects, the surface of reflective and textureless metal
parts can provide little semantic information.

Feature-Based Methods

Feature-based methods are a commonly used approach in 6DoF pose estimation that
extracts distinctive image features and matches them with a 3D object model to establish
a 2D-3D correspondence. The general process involves detecting characteristic features in
the image that can be matched with corresponding features on the 3D model. The object’s
pose is then determined using the PnP [39] algorithm in conjunction with RANSAC [40] to
increase accuracy by iteratively filtering out mismatches.

=i EE 5"‘““
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Figure 2.4: Typical workflow of feature-regression-based methods

Methods such as Pix2Pose |25], DPOD [29], and PVNet |22] rely on pixel-wise predictions to
compute 2D-3D correspondences. Pix2Pose uses an autoencoder architecture to predict the
3D coordinates of individual object pixels without needing a textured model. These methods
are based on the approach that the 3D coordinate of each model vertex can be transferred
to the 2D RGB color space by an appropriate color coding and then predicted. These
then enable the establishment of 2D-3D correspondences for pose estimation. Additional
methods extend the classical feature-based approaches with additional representations to
extract geometric information in a more targeted way. HybridPose [15] builds on PVNet
and integrates edge vectors and symmetry correspondences as additional intermediate
representations, enabling detailed geometry analysis in the image. These hybrid representa-
tions improve accuracy but require a higher computational effort. Liu et al. [52] combine
RGB image information with a depth map created by a U-Net architecture and apply the
DenseFusion [53] network to generate dense correspondences for each pixel. This enables
detailed pose estimation and improves accuracy by combining global image features with
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CHAPTER 2. BACKGROUND AND RELATED WORK

pixel-wise poses. To estimate the pose of symmetrical objects, EPOS [54], Pix2Pose [25],
and Mei et al. [55] rely on unique symmetry treatments. EPOS segments the object into
symmetry-invariant fragments and calculates a probability distribution for each fragment
to determine the pose. Mei et al. use the spherical correlation method to learn a latent
spherical feature representation that is rotation invariant and robustly estimates the pose
of symmetric objects. Pix2Pose introduces a special loss function, the "Transformer-Loss,"
to consider all possible symmetries while training.

Template-Based Methods

Template-based pose estimation methods utilize templates created from various viewpoints
of an object to determine the object’s pose by finding the template that best matches the
input image. This process consists of two main phases. In the offline phase, a database of
templates is built by synthesizing a three-dimensional model of the object from multiple
positions and orientations. During the online phase, the input image is compared with
the templates to identify the best match, allowing for the estimation of the object’s 6D
position.
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Figure 2.5: Typical workflow of template-based methods

SSD-6D [30] extends 2D object detection (SSD) to a 6D pose estimation system and uses
an end-to-end architecture for fast and robust object pose determination. DPOD [29]
also follows a template approach but combines template detection with a dense matching
approach that establishes 2D-3D correspondences between image pixels and the 3D model
of the object. DPOD does not require perfect object segmentation and demonstrates
robustness to occlusions and light changes. Nguyen et al. [56] exceed this by generating
a large collection of templates of new objects and retrieving the pose via color template
detection. For each new object, numerous views are rendered around the 3D model, later
compared in real-time with the input image to recognize the object and determine its pose.
Template-based methodologies offer numerous advantages, such as their inherent simplicity,
rapid processing capabilities, and adaptability to variations in appearance. Furthermore,
these methods demonstrate enhanced effectiveness in handling weakly textured objects,
making them valuable in various application domains |5, 6, 9]. Template matching is a
straightforward and intuitive method that enables swift detection and localization of objects.
However, it can encounter difficulties in complex situations involving occlusions, lighting
variations, or objects lacking distinctive features [5, 6, 9].
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2.2. RELATED WORK

2.2.2 Metallic Object Approaches

The reflective nature of metal parts results in significant variation of the object’s pixel colors
depending on the lighting conditions and shooting angle. In addition, the surfaces of metal
parts are less distinguishable than those of textured objects. Therefore, traditional methods
based on texture features, color gradients, or clear geometric features have little guidance
for reliable detection and pose estimation, often resulting in inaccurate or erroneous results.
Due to this limitation, several methods have been developed specifically for applying
metallic, reflective objects. A fundamental understanding that various studies [11-19] have
concluded is that the application of edge information provided by objects is a promising
technique to improve the pose estimation of textureless objects. The extent to which
edge information is used varies across these methods. Some leverage edges directly for
iterative optimization, while others extract semantic features from the edges based on
deeper geometric relationships.

Methods such as ContourPose [11] or ER-Pose [16] use edge information directly to determine
the pose of objects and then adjust it further in an optimization step. ContourPose by
He et al. [11] combines a two-stage pipeline consisting of a neural network (ContourNet)
and an iterative pose optimization algorithm, as can be seen in Figure 2.6. In the first
stage, key points are predicted with implicit constraints on contour. In this stage, the key
points and contours of the target object are predicted. The second stage consists of pose
estimation using contour as a prior. In this stage, the contour predicted in the previous
stage is used as geometric priors to eliminate outlier poses and output the optimal pose
in the result set. ContourNet generates a heatmap with 2D nodes and contours of the
object, which implicitly constrain the nodes. The optimization algorithm then leverages
the contour information to calculate an optimized 6D pose. ER-Pose [16] is a two-stage
framework for pose estimation of reflective, textureless objects. In the first stage, the edge
representation of the object is extracted from an RGB image, where the direction and
distance to specific key points within the object’s edges are determined. This information is
used to generate 2D-3D correspondences. In the second stage, the pose is optimized using
a PnP/RANSAC |39, 40| algorithm that calculates the 6D position and orientation of the
object. The approach is particularly robust against disturbances and reflections as it is
based on stable edge features. Druskinis et al. [57] use a hybrid architecture that combines
Mask R-CNN [46] for object detection with edge-based pose estimation, where the pose
estimation part is inspired by the work of Choi and Christensen [17]. The edges of the
previously segmented object are extracted using the Canny [41] algorithm and matched
with an edge database, which enables robust matching for 6D pose estimation.
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Figure 2.6: Overview of ContourPose [11]| (©)2023 IEEE
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CHAPTER 2. BACKGROUND AND RELATED WORK

Rather than directly using edges, other methods rely on semantic features, such as pairs of
nodes or line segments that appear along the object’s edges. The method proposed by Liu et
al. [12] is based on semantic-level line matching. Unlike existing low-level feature methods,
this approach relies on semantic-level line features. The semantic-level line features are
identified by the line detection network L-CNN [18] and incorporated with a segmentation
network to extract object-level line descriptors. By matching the descriptors in a sparse
template set, the 2D-3D mapping from the actual image to the model of the metal part is
realized. Inspired by the BOLD operator [58], they propose an object-level line descriptor
to describe each feature of the line related to the object. Binary Object Line Descriptor
(BOLD) [58] features are descriptors for textureless objects based on short line segments
(instead of points). They were developed to provide stable features for object detection and
pose determination without surface structures. BOLD features use line fragments described
in a binary format, which makes them robust against light changes and reflections. The
work by He et al. [14] also leverages the contours of metal objects and extracts high-level
features for matching between real and template images. The LSD [59] method for line
detection is further improved to complete and extract straight contours of the objects.
Again, the BOLD [58] feature is used for object detection, which describes the correlation of
a set of neighboring short-line fragments. After selecting the most matched template from
the CAD template database, the absolute pose is calculated using the EPnP [39] algorithm.
Alternatively, hybrid approaches combine classic edge detection with the advantages of
neural networks. Here, networks can pre-process features that are then further processed
by classic algorithms. Such methods offer the robustness of neural networks and the
efficiency of classical algorithms. Chen et al. [20] proposed a three-step process: object
detection, feature extraction, and pose estimation. They utilize Mask R-CNN [46] to
detect objects and HRNet [60] to extract the corresponding features. This method does
not depend on continuous contours but examines distinct combinations of dense discrete
points along the edges. Hu et al. [61] proposed a cascaded neural network architecture
similar to SSD6D [30], which utilizes the size of the predicted bounding box to provide
a depth estimation. Subsequently, a two-stage rough-to-fine pose model provides a pose
estimation. The approach by Chen et al. [21] employs a three-phase framework of object
detection, feature detection, and pose optimization. They leverage the contour information
for pose estimation. They use the dense discrete points along the edges of the metal
part as semantic key points for contour detection. Afterward, the 6D pose is calculated
by exploiting both keypoint information and the CAD model. He et al. [13| propose a
generative feature-to-image framework based on generative models, whose pipeline is a
reverse mapping from feature to image. In other words, given a feature representing a
pose, this method generates an image of the object in the same pose. They also apply an
edge-based approach by regressing edge images, which are compared to templates, resulting
in the estimated pose. De Roovere et al. [19] proposed CenDerNet, which features a
three-stages-framework for 6D pose estimation from multi-view images based on center
and curvature representations. A convolutional neural network is trained to predict center
and curvature heat maps. This step eliminates task-irrelevant variations by converting
images into center and curvature representations. They detect objects and estimate their
approximate locations using center heatmaps, representing the likelihood of object center
points. In addition, they use curvature heatmaps to emphasize local geometric features,
making it easier to compare images with rendered models.
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2.2. RELATED WORK

2.2.3 Datasets

Datasets for pose estimation are central to developing and evaluating algorithms for precise
object localization. They contain various annotated images or 3D models that are used
to prepare neural networks and other methods for realistic scenarios. While general
posed datasets mostly contain everyday objects with clear textures and shapes, methods
encounter significant challenges when recognizing industrial objects, especially metallic and
reflective parts. Industrial pose datasets for such objects are characterized by scenarios with
complicated lighting conditions, reflective surfaces, and often textureless, smooth structures
that can overwhelm conventional approaches. These specialized datasets, therefore, often
include synthetic renderings and multi-modal data such as RGB and depth images to
develop and test robust algorithms for accurate pose estimation in industrial environments.
With the development of computer vision and deep learning, increasingly diverse pose
estimation datasets have been proposed, which can be categorized into containing non-
industrial objects and industrial objects [1].

Non-Industrial Datasets

Non-industrial datasets for pose estimation provide an important basis for training and
testing algorithms and include various everyday objects in different scenarios. One of the
most important resources is the BOP Challenge [2, 3|, which combines several widely used
datasets and offers standardized comparison options. The BOP datasets include LINEMOD,
LINEMOD-Occluded [62| and YCB-V [2].

LINEMOD is one of the most frequently used datasets and contains images of various
textured everyday objects with different backgrounds. It offers easily recognizable objects
thanks to precise edges and textures and is, therefore, suitable for algorithms that rely on
texture-based features. The extension to this dataset, LINEMOD-Occluded, introduces
scenes that meet the requirement for different occlusions among objects. YCB-V [2]| contains
a variety of household objects in multiple views and positions, with complex interactions
and partial occlusions. It is particularly valuable for pose estimation tasks that require
robust algorithms in highly realistic scenarios.

LM LM-O T-Less

Figure 2.7: Overview of BOP datasets [2]

Industrial Datasets

Metallic and textureless industrial datasets for pose estimation aim to address the particular
challenges of industrial contexts where smooth, reflective, and low-detail objects are often
found. Unlike datasets with everyday objects, these industrial data collections place
exceptionally high demands on pose determination algorithms, as metallic surfaces usually
lead to strong reflections and light distortions, while textureless objects offer little to no
visually distinctive features that classical algorithms rely on.

The two industrial datasets T-Less [32] and ITODD [63] are included in the collection
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CHAPTER 2. BACKGROUND AND RELATED WORK

of the BOP Challenge |2, 3]. The T-LESS [32| (Texture-Less Object Dataset) includes
objects largely made of plastic and recorded in various scenarios, some containing strong
overlaps and occlusions. T-LESS [32] allows algorithms to be trained and evaluated for
realistic production environments in which the visual characteristics of the objects are
minimal. [TODD [63] (Industrial Textureless Object Dataset and Benchmark) is another
specialized dataset focusing on textureless and reflective industrial objects. The use of
metallic materials further increases the challenge for the algorithms, as reflections and light
interferences make pose determination more difficult.

In addition to the BOP Challenge, other datasets expand the application possibilities
for textureless and metallic objects. These are based on the general format of the BOP
datasets but are not included in the collection. These include MP6D [64], RT-Less [10] and
the proposed work by De Roovere [65]. MP6D (Metallic Parts 6D Pose Dataset) [64] is
an industrial dataset that includes detailed scenes with complex shaped metal parts and
provides realistic, industrial scenarios for pose determination, taking into account the strong
reflections caused by metallic surfaces. MP6D [64] is particularly relevant for applications
in the manufacturing and automotive industries where such objects are common. The
RT-Less [10] dataset contains a variety of metallic objects captured in different lighting
conditions, reflection ratios, and from different angles. These variations simulate realistic
industrial scenarios in which strong reflections from the point or directional light sources
occur, and the object’s visual appearance changes significantly depending on the camera’s
perspective. De Roovere [65] proposed another dataset focusing on industrial objects. The
authors present a diverse dataset of industrial metal objects characterized by symmetry,
texturelessness, and high reflectivity, offering valuable insights for materials science and
object recognition research.
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Figure 2.8: Overview of industrial datasets [10, 32, 64|
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CHAPTER 3

Metallic Object Pose Estimation

This chapter presents the concept employed in estimating the poses of metallic, reflective
objects. Based on the aforementioned related work and the methods presented therein, a
workflow is developed that combines the strengths of general methods with the application-
specific characteristics of techniques designed for metallic objects. First, the procedure is
explained conceptually, resulting in a detailed explanation of the processes involved in data
preparation.

3.1 Concept

Most of the presented methods for pose estimation 2.2.1 are based on extracting and
matching features, which are extracted from the image of the object surface and compared
with the known counterparts. The resulting estimates of 3D coordinates and subsequent
2D-3D correspondences lead to accurate pose estimates. However, these approaches fail in
cases where the materials of the objects do not include suitable textures that provide such
distinctive features. Therefore, the works that have specialized in metallic or textureless
objects 2.2.2 employ an alternative approach: They utilize the contour of the objects for
their pose estimation. The edges of an object promise to be a constant source of information
due to its independence from texture and environmental influences. Since this approach has
led to good results in various applications, the question arises of how using object contours
can benefit the establishment of 2D-3D information for pose estimation.

This work proposes a model that predicts 2D-3D correspondences using edge images before
addressing the challenge of pose estimation for metallic objects. It assumes that the entire
scene is considered an edge image, and only this information is sufficient for estimating the
object’s pose. The underlying assumption is that the supposedly more straightforward edge
detection process bypasses the difficulties of metallic surfaces. The necessary steps include
object recognition, edge detection, and the subsequent prediction of 2D-3D correspondences
with pose estimation.
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Figure 3.1: Pipeline for pose estimation of metallic objects. Edge Detection: The first phase
is to detect objects and extract edge images. Pose Estimation: The second
phase predicts the coordinate maps from the edge images and generates the
2D-3D correspondences with subsequent pose estimation.

The resulting pipeline for pose estimation of metallic, reflective objects is illustrated in
figure 3.1. The entire workflow can be divided into two main components: "Edge Detection"
and "Pose Estimation." The Edge Detection section covers the first phase of the pipeline,
in which object detection and subsequent edge detection take place. In the first step, the
2D position of the object and its visibility within the obtained scene are determined. To
do this, YOLOvS [37], a method for object recognition and segmentation is applied. In
addition to the 2D bounding box, this YOLOvS [37] model also predicts the segmentation
mask and ID of the targeted object. Next, the edge detection step is performed, for which
DiffusionEdge [38] is utilized. This diffusion model generates an edge image based on the
entire scene. The following steps isolate the object from the scene using the Rol principle.
This process involves extracting the contour of the target object for focused analysis. The
object is cropped along its scaled bounding box in a fixed size of 256 x 256 from the edge
image. Only the contour of the visible object based on the segmentation mask is used to
reduce unwanted edges. This cut-out is passed to the 3D coordinate prediction model. Its
architecture is inspired by the methods of CDPN [31], DPOD [29], and Pix2Pose [25], in
which the 3D coordinates of the model vertices are normalized to RGB color space values
and subsequently predicted for pose estimation. The network provides the 3D coordinates
based on the edge image of the object and, together with the 2D information from the
previous steps, establishes the correspondences that are finally processed by PnP/RANSAC
[39, 40] to estimate the object pose.

In light of the conceptual framework and approach delineated, the developed methodology
will be designated as Edge2Pose within the context of this thesis. This term underscores
the principle that estimating the object’s pose is derived from edge-based imagery.
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3.1. CONCEPT

3.1.1 Edge Detection

This pipeline’s first phase comprises object recognition and edge detection tasks. In this
stage, information about the 2D object position, the visible part, and the object contour
is provided for the subsequent pose estimation task. In this subsection, the YOLOvVS [37]
and DiffusionEdge [38] methods applied are examined in detail, and their implementation
within the pipeline is explicitly discussed.

Object Detection

To precisely estimate an object’s pose, it is necessary to identify its location within the
scene image. Instance segmentation comprises a more sophisticated methodology than
traditional object detection. This technique is dedicated to determining individual objects
within an image and outlining them from their surrounding environment. The output of an
instance segmentation model consists of a collection of masks or contours that define the
boundaries of each object, along with class labels and confidence scores for each identified
object. This technique is particularly valuable when detailed information about the location
and shape of objects within an image is essential [37, 66].

Scene-Image Segmentation Mask

YOLOv8-Seg

|E&HE!EHEHE§|

640x480x3 640x480x1 256x256x1

Figure 3.2: Overview of the Object Detection workflow

YOLO is widely known as a robust object detection algorithm. The latest version, YOLOvS8
[37], represents the newest advancement in the YOLO series of object detectors, delivering
exceptional performance in both accuracy and speed. The YOLOvS8 [37] series offers a
diverse range of models, each specialized for specific tasks in computer vision. These models
are designed for object detection to more complex tasks like instance segmentation. The
methodology adopted for this task involves first detecting the object within the scene and
subsequently segmenting it. A specialized model from the YOLOvVS [37] catalog is utilized,
specifically designed for object instance segmentation. The "YOLOv8s-seg’ [66] model is
employed. The architecture of YOLOvVS [37] consists of two primary components: the
backbone network and the detection head. The backbone network is designed to extract
various rich features from the input image at multiple scales. Meanwhile, the detection head
integrates these features to predict bounding boxes. The backbone network of YOLOvVS [37]
is built upon EfficientNet [67], a cutting-edge neural network architecture recognized for its
remarkable efficiency and performance across a range of computer vision tasks [37|. Effi-
cientNet |67, 68] utilizes a concept known as compound scaling, which effectively balances
the scaling of the network’s width, depth, and resolution. The detection head of YOLOvS8
[37] utilizes NAS-FPN [69], a search-based neural architecture method that automatically
creates feature pyramid networks for object detection tasks. Feature pyramid networks
integrate features from various levels of the backbone network to generate predictions across
multiple scales.
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CHAPTER 3. METALLIC OBJECT POSE ESTIMATION

The object detection model is trained on a synthetic dataset that showcases various
objects under different lighting conditions and scenarios. This dataset encompasses the
RGB scene images and segmentation masks highlighting the respective objects within those
images. Only visible portions of the objects are included in these masks, ensuring that only
the actual parts of the target objects are captured for later analysis. Applying the trained
YOLOVS [37] model to actual test data involves two primary tasks: detecting the object
and generating segmentation masks, as illustrated in Figure 3.2. The object is extracted
using the bounding box from the edge image based on the region of interest principle. The
contour is subsequently refined using the segmentation mask, which exclusively considers
the overlapping entity. The size of the extracted object is fixed at 256 x 256 pixels, with
the object centered within this frame.

Edge Detection

The complex material properties of metallic objects often lead to reflections and textureless
surfaces, significantly complicating pose estimation |1, 5-8]. This thesis addresses these
challenges by outlining the contours of the objects and leveraging this information for pose
estimation. The initial step involves transforming the scene image into an edge image using
an advanced edge detection algorithm. Given that the subsequent algorithm for generating
2D-3D correspondences for pose estimation is critically dependent on the accuracy of the
detected contours, it is crucial to utilize a highly robust and precise method during this
phase. Conventional edge extraction techniques cannot reliably produce highly accurate and
clear edge maps. Consequently, an approach called DiffusionEdge [38] is employed. This
study illustrates that diffusion probabilistic models (DPMs) are particularly advantageous
for edge detection, as the noise reduction process is applied directly to the original image,
resulting in enhanced sharpness and accuracy of the edges detected.

Scene-Image Edge Image
|ﬂﬂﬁ@ﬁﬁmu 0

. s

640x480x3 640x480x1 256x256x1

DiffusionEdge Seg. Mask + BBox

Figure 3.3: Overview of the Edge Detection workflow

DiffusionEdge [38] is based on a diffusion model initially developed for generative tasks. The
network learns to gradually remove the noise in the image data, fitting the target distribution.
Unlike conventional CNN-based edge extractors based on encoder-decoder architectures,
which tend to have thicker edges, DiffusionEdge [38] performs noise reduction directly
on the original image size. Most calculations are conducted in latent space to minimize
computational effort. The model operates on images reduced to one-quarter of their original
size. An adaptive Fourier filter [38] is added to analyze and adjust the frequency components
of the image data. This technique improves edge extraction by filtering unwanted noise
components in the frequency domain. A distinctive distillation methodology has been
implemented since edge annotations frequently encompass uncertainties due to different
annotators’ marking variations. This method transfers the uncertainties to the latent space
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3.1. CONCEPT

and optimizes the gradients directly to provide a more stable and accurate prediction.
DiffusionEdge [38| can generate edge images that are both accurate and sharp without
relying on costly post-processing, such as non-maximum suppression. Combining these
techniques makes it possible to train DiffusionEdge [38] with limited computational resources
and still produce crisp and precise edge maps.

The Edge Detection section builds upon the previous Object Detection section. The
DiffusionEdge network processes the RGB scene image as input to perform edge detection,
systematically outlining the boundaries of all objects. As illustrated in Figure 3.3, the target
object is analyzed using the predicted segmentation masks and bounding boxes, enabling
its extraction from the edge image. The edge mask of the object is subsequently forwarded
to the pose estimation phase. Furthermore, the DiffusionEdge [38] network is trained on a
synthetic dataset that comprises a diverse array of rendered scenes. This dataset consists of
scene images alongside their corresponding ground-truth edge images, in which white lines
distinctly represent the boundaries of all objects. Moreover, this representation focuses on
the observable edges of the objects, disregarding any hidden or occluded edges.
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CHAPTER 3. METALLIC OBJECT POSE ESTIMATION

3.1.2 Pose Estimation

This section of the proposed methodology is dedicated to estimating the object pose. The
selected approach integrates the principles of general pose estimation techniques 2.2.1 with
insights from specialized research on textureless, metallic, and reflective objects 2.2.2. Using
an object’s contour has been shown to enhance pose estimation significantly. This concept
comprises a critical component of the methodology presented in this thesis. As discussed
previously, the edge image of an object is extracted from the scene image according to the
Rol principle, as demonstrated in the works of GDR-Net [28], CDPN [31] and Pix2Pose
[25]. The subsequent procedure for estimating the pose is likewise based on the general
methods and primarily employs the concepts of the methods proposed [31], [25] and [29].

A general method for integrating the 3D points of a CAD model into machine learning
processes involves encoding the model’s surface coordinates in the RGB color space. Initially,
the coordinates of each vertex (x, y, z) are normalized to a uniform value range of |0, 1].
This normalization is achieved by dividing the coordinates by the maximum extension
of the object along each respective axis. The normalized values are then mapped to the
color channels of an RGB image. This mapping process results in a ’color-coded image’
where each pixel value corresponds to the 3D position of a point on the object’s surface.
This representation is advantageous as it allows for the processing of 3D information using
standardized image processing tools and neural networks initially designed for RGB images
[25]. The primary distinction between color-coded 3D coordinates and Normalized Object
Coordinate Space (NOCS) [70] is their coordinate systems. Color coding normalizes original
CAD model coordinates, while NOCS [70] uses a standardized unit cube for uniformity,
aiding visualization of different object sizes. In contrast, color coding retains geometric
details, enhancing pose estimation when CAD models are available |70].

In this approach, the object is extracted from the edge image through the use of its bounding
box by using the techniques outlined in previous studies, such as [25], [31] and [28]. This
method utilizes only the contained image to estimate the coordinates, ensuring precision
and reliability. The dimensions of the bounding box, determined in the pipeline’s initial
phase, are employed to crop the object into a square mask. Subsequently, the bounding
box is scaled to a fixed size of 256 x 256 pixels, and the object is centered within it. This
results in a more efficient procedure than observing the entire scene due to smaller image
sizes. To ensure that only the visible contours of the object are considered and to prevent
inadvertently including overlapping portions of other elements in the scene, the edge image
is refined using the segmentation mask. The edges indicated by the area of the segmentation
mask are retained in the object section. The cropped section of the object now contains the
edge image, which can be utilized as input for the coordinate model. After de-normalization
of the RGB values, the predicted coordinate image provides the 3D coordinates of the
individual model points of the object. Based on the edge image and the two-dimensional
position of the object in the scene image, the model establishes the 2D-3D correspondences
and, in conjunction with the camera matrix, calculates the final pose of the object using
the PnP [39] algorithm and RANSAC [40].
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3.1. CONCEPT

Model Architecture

Most state-of-the-art methods primarily utilize encoder-decoder architectures, often in
U-Net models. In this architecture, an encoder extracts features from the RGB input image
while a decoder reconstructs the output as a coordinate image. The encoder used in [25]
and [29] is a pre-trained ResNet [71] model. Initially optimized for RGB images, the current
decoder has limitations when applied to other input types. A new encoder, which utilizes
gray-scale images, is essential to process edge images effectively.

Figure 3.4 shows an overview of the applied model. The network encoder hierarchically
extracts features from the input image. A double convolutional block initially processes the
input image, followed by a sequence of successive convolutional layers, batch normalization,
and ReLLU activation functions. These blocks are complemented by max-pooling layers that
systematically reduce the spatial resolution of the feature maps while preserving the most
salient features, thereby enhancing computational efficiency and resilience to variations
in image resolution. Residual blocks enhance neural network depth through internal skip
connections, aiding in stable gradient flow and mitigating vanishing gradient issues during
training.

Skip-Connections

256 x 256 x 3

I Conv-BN-RelLu I Residual Block Out Conv

Max Pool B Up-Sample I Double Conv

Figure 3.4: The architecture of the coordinate-map prediction network. The encoder consists
of double convolution and a sequence of convolutional layers, batch normal-
ization, ReLU activation, and max-pooling blocks, followed by the decoder
consisting of up-sampling and residual blocks with a final output convolution.

The decoder architecture is derived from the DPOD model [29], where the RGB color value
prediction is divided into three channels, each comprising a range of 0-255 values. The
three correspondence heads regress tensors with dimensions HW ', where C' is the number
of unique colors in the correspondence map. In this context, "H" and "W" refer to the
height and width of the input image, respectively. The probability values for the class
corresponding to the channel number are contained within each output tensor channel.
Subsequently, the tensors are stored as single-channel images. Each pixel represents the
class with the maximum estimated probability, generating the correspondence image’s
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CHAPTER 3. METALLIC OBJECT POSE ESTIMATION

channels U, V, and W. As the authors of [29] have demonstrated, formulating the color
regression problem as a discrete color-classification problem has proven to be a practical
approach, facilitating faster convergence and improving the quality of 2D-3D matches. The
model is trained on image pairs comprising edge images and the corresponding coordinate
images of the objects in question. The network parameters are optimized considering the
composite loss function:

Lypw = aly + BLy + vLy (3.1)

where L, L,, and L,, are the losses responsible for the quality of the U and V channels
of the coordinate image. «, § and -y are weighting factors. The L,,, L,, and L,, losses are
defined as multi-class cross-entropy functions. The transformer loss, as detailed in Pix2Pose
[25], is incorporated into the existing loss function to optimize the recognition of symmetric
objects. A set of poses is defined for each symmetric object that is identical in appearance
on either side. Rather than calculating the discrepancy between the predicted pose and
the actual ground truth pose, the transformer loss computes the difference between the
predicted and the symmetric poses, thereby identifying the pose with the smallest error.
The transformer loss is defined as follows:

L3D = pIenslyI}n L(I?,D, Rplgt) (32)

R, represents a transformation to one of the symmetric poses from the symmetry set sym.
The loss is calculated for each symmetric pose, and the smallest loss is selected. The total
loss is now the combination of the two losses, whereby their respective influence can be set
via the weighting:

Lcombined = aLypw + BLSD (33>
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3.2. DATA PREPARATION

3.2 Data Preparation

This thesis focuses on pose estimation of industrial, metallic, reflective objects for which
application the RT-Less dataset [10] is used. The provided CAD models are utilized to
generate the respective training data for each stage of the pipeline 3.1. The test data and
ground-truth pose annotations are taken from the RT-Less dataset [10].

3.2.1 RT-Less Dataset

The RT-Less dataset [10] offers a collection of reflective, metallic objects focusing on
industrial parts and scenarios. The dataset contains 3D models of 38 metal parts covering
typical features, e.g., large areas, surfaces, chamfers, and circular holes. All objects in the
dataset originate from the metal parts processing plants to ensure the authenticity of the
industrial attributes of objects. These industrial objects have a strong reflectance and no
regular texture. During machining, particular objects undergo chamfering, developing a
more intricate structure. Numerous parts were designed with high similarity to replicate
the subtle shape variations typical of different components in the manufacturing industry.
All items in this dataset are derived from actual production lines and have been machined
using standard industry practices.

Figure 3.5: Samples of RT-Less [10] test scenes. The images in each row exhibit uniform
background textures—matte, reflective, textured, and rusty—while the columns
a) through d) vary in lighting conditions.
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CHAPTER 3. METALLIC OBJECT POSE ESTIMATION

The RT-Less dataset [10] comprises a collection of reflective metallic objects, explicitly
concentrating on industrial components and scenarios. It features 3D models of 38 metal
parts that exemplify key characteristics such as expansive surfaces, chamfers, and circular
holes. The industrial components of this data set possess high reflectivity and lack regular
texture. To ensure the authenticity of the industrial attributes, each in this dataset originates
from actual production lines and has been produced using established industry standards.
Throughout the machining process, particular objects were chamfered, resulting in more
complex structures. Many parts were crafted with close similarities to capture the subtle
shape variations in the manufacturing industry. Industrial scenarios are carefully recreated
to reflect diverse factors such as part placement, part types and shapes, lighting settings,
and backgrounds. Given the relatively straightforward characteristics of machined parts,
handling similar parts is a standard application in actual industrial tasks. Consequently,
the test set includes several similar parts with identical attributes in certain scenes to
simulate realistic conditions closely. As illustrated in Figure 3.5, a selection of the test
scenes is presented, all meeting the necessary criteria. The test scenes primarily differ in
the following aspects: lighting conditions, the number of sampled objects, and background
materials. In addition to natural lighting a) - b), certain scenes were captured with artificial
overexposure ¢) and others with a less powerful light source d). The number of objects
varies throughout the scenes, as does the size of the objects collected to simulate overlaps.
There are also interfering objects that are not part of the models included in the dataset.
Four different background types are used within the scenes to simulate the environment’s
influences. These are backgrounds with the following properties: reflective, matte, textured,
and rusty.

The image acquisition setup comprises an MV-CA050-11UC industrial camera, a MELFA
RV13FD 6-DoF manipulator, a turntable, and a pose calibration board positioned above
the turntable. The industrial camera is integrated with the manipulator in an eye-in-hand
configuration, enabling the capture of realistic images synchronized with the manipulator’s
motion. This configuration facilitates precise spatial alignment and improves the accuracy
of image data acquisition in dynamic environments. To ensure that all target parts are
captured within the camera’s field of view, the manipulator is controlled to enable the
camera’s center to traverse along a quarter-section of a spherical space, with the turntable’s
rotation center serving as the sphere’s center. Three spherical spaces are established, with
diameters of 750 mm, 800 mm, and 850 mm, with a spherical angle of 130°. During the
acquisition of test images, the manipulator’s motion space comprises 104 points distributed
across different layers of the quarter-spherical spaces. The turntable rotates around the
sphere’s center to complete these layers, resulting in a comprehensive 360-degree view.

3.2.2 Data Generation

As described in the earlier concept, specific datasets are required for the two stages of the
pipeline to train the respective methodologies. As a result, a comprehensive rendering
pipeline is developed to generate the requisite ground-truth data. This pipeline leverages
the capabilities of BlenderProc [34] alongside the RT-Less Toolbox [35]. The integration of
these tools enables precise simulation of scenarios, ensuring the reliability and accuracy
of datasets crucial for analytical investigations. This methodology utilizes Blender’s 3D
modeling software [33] and Python API to create photorealistic scenes and generate
coordinate maps with corresponding ground-truth edge masks. This advancement enhances
visual accuracy and provides a solid computer vision and graphics application framework.
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3.2. DATA PREPARATION

Edge Detection

The RT-Less [10] dataset provides synthetic training data for object detection. However, it
is unsuitable for training edge detection methods due to the absence of ground truth edge
masks. The primary objective of the "Edge Detection" phase is to locate objects and identify
edges in a scene accurately. This task requires developing suitable training and testing data
with synthetic images representing various real-world conditions to enhance detection. The
rendering pipeline must effectively simulate realistic material properties for objects and
background elements, considering lighting configurations and object arrangements. This
objective requires diverse setups for photorealistic imagery to emulate light and material
interactions.

Figure 3.6: Samples of synthetic training data with RT-Less [10] models. From left to right,
the RGB scene image, edge images, and segmentation masks. The individual
masks are color-coded for improved clarity.
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CHAPTER 3. METALLIC OBJECT POSE ESTIMATION

The image generation process closely mirrors the image acquisition techniques utilized in
the RT-Less [10] dataset. During this process, the Blender camera moves along predefined
points arranged on a hemisphere. The center of this hemisphere is strategically positioned
so that, at each point, the virtual camera consistently focuses on the origin of the Blender
world coordinate system. The number of images required influences the number of points
evenly distributed across the hemisphere per the Fibonacci Theorem. The sphere has a
radius of 1 meter relative to the origin of the coordinate system. The camera matrix and
image dimensions are derived from the intrinsic camera parameters of the RT-Less [10]
dataset. The scenes are created using an internal environment in Blender, which includes
a base plate for the background, light sources, and the objects themselves. The type,
position, and intensity of light sources are randomly generated and change with each new
camera angle. This setup accommodates both overexposure and underexposure, as well
as steep and subtle illumination angles. Consequently, the shadows cast by the objects,
along with reflections and mirroring, also vary accordingly. The materials used for the
background and models are sourced from the BlenderProc texture catalog, ensuring realistic
surface properties. Similarly to the lighting, the textures of the background and objects
are randomized every time the camera is repositioned. The arrangement of objects in each
scene is randomized. Several models are selected and arranged on the base plate at the
start of each rendering cycle. These models are then repositioned for each camera view
within the current cycle, with random rotations and translations applied. The distance
between objects is controlled to ensure occlusions occur within the scene.

In addition to generating photorealistic scene images, edge images, and segmentation
masks are created. Consecutive images are generated for each camera position to maintain
consistency within the current scene. The Blender [33] module "Freestyle" captures the
edges in the scene. This tool highlights edges with distinctive colors by defining a threshold
value. This threshold value delineates the minimum angular separation required between
two surfaces to identify their intersection as a distinct edge. Edge images are created by
applying a black texture to all models and the background while highlighting visible edges
with white lines. This technique effectively outlines the contours of objects within the
camera’s field of view. Segmentation masks are generated by alternately applying white
and black color shaders to objects during the rendering step. The mask image corresponds
to the object highlighted in white. This methodology enables the assessment of model
visibility in the current scene through segmentation masks. Figure 3.6 displays selected
rendered scenes, along with their edge images and segmentation masks. For clarity, all
segmentation masks for the corresponding objects are compiled into a single image.
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3.2. DATA PREPARATION

Pose Estimation

The second component of the method, pose estimation, requires an additional dataset for
training. This approach builds upon the methodologies presented in [25, 29, 31|, where the
3D coordinates of all the vertices of the model are transformed into the RGB color space
and subsequently mapped onto an image. To implement this approach, training images
consisting of edge-coordinate image pairs are generated. The objective can be achieved by
modifying the established rendering pipeline to adapt an alternative workflow.

In contrast to creating scene images, this dataset treats individual objects separately. In
addition, the use of backgrounds and lighting is not required. Unlike the distribution of
camera viewpoints on a hemisphere, this approach utilizes the entire surface of a sphere.
The sphere is generated with its center at the origin of the Blender world coordinate system,
and the desired number of viewpoints is evenly distributed across its surface. The respective
object is then loaded into the Blender scene with the model centered in the origin of the
coordinate system. The 3D coordinates are applied to the model through a customized
vertex shader designed for it. This shader normalizes the x, y, and z coordinates of each
point on the model and converts them into an RGB color value. As a result, each model
vertex is assigned a distinct color, allowing it to be identified by its position. The object is
captured from every angle, and a coordinate map is generated for each viewpoint. Blender
settings are configured to utilize a lossless format during the image rendering. The shader
is devised to guarantee no discrepancy between the colors assigned to the vertices and
the final rendered colors of the image. In addition, edge images are produced using the
Freestyle module to align with the corresponding viewpoint.

Object 3 Object 5 Object 6 Object 7 Object 8 Object 11

Object 1 Object 2

Object 14 Object 33

Object 13

Figure 3.7: RT-Less models [10] rendered as edge-coordinate image pairs. A model processes
an edge image alongside a coordinate map of color-coded 3D values for each
viewpoint.
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CHAPTER 4

Experiments

This chapter explores the implementation and testing of the method discussed in section 3
for estimating poses of metallic reflective objects. The components of the proposed pipeline
are applied to test scenes from the RT-Less [10] dataset, with results thoroughly examined.
This methodology is extended to include other datasets, such as T-Less [32] and MP-6D
[64], highlighting its versatility.

4.1 Evaluation on RT-Less Dataset

The RT-less [10] dataset introduced in Chapter 2 serves as the foundation for the primary
application of this method. In the subsequent sections, the components for object detection,
edge detection, and pose estimation are trained using the synthetic training data outlined in
3.2. Their performance is assessed on the actual test scenes from the RT-Less [10]| dataset.
A comparative analysis is conducted to enhance the understanding of the results using
current state-of-the-art methodologies.

A comprehensive analysis is performed on a subset of objects from the RT-Less [10] dataset
to evaluate the effectiveness of Edge2Pose in real-world environments. The chosen objects
are depicted in Figure 3.7. This selection captures the wide range of challenges posed by
the diverse array of objects. It includes items with multiple symmetries, such as objects
1, 14, 17, 18, and 33, and those with distinctive reflections along their curved surfaces,
including objects 7, 13, 14, and 29. The selection features objects with flat elements and
textureless surfaces, such as objects 3, 5, and 8. Similar geometric characteristics are
represented in objects 14, 17, 29, and 32. In addition, the selection encompasses objects
with more complicated and complex geometric properties, like those seen in 7, 8, 11, 13,
and 23, alongside simpler geometric shapes found in 2, 3, 6, and 33. The objects exhibit
significant size variability. Models 7 and 8 have larger diameters of 130 to 145 mm, while
items 2, 6, and 29 are notably smaller, ranging from 90 to 115 mm.

The evaluation of the efficacy of the Edge2Pose is structured into three sections, each
focusing on a specific task within the pipeline. First, the performance of object recognition
and segmentation processes is assessed. This is followed by an analysis of the network’s
edge detection capabilities. Finally, the network’s ability to generate coordinate maps and
perform precise pose estimation is evaluated.
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CHAPTER 4. EXPERIMENTS

4.1.1 Edge Detection

The evaluation of the first stage, "Edge Detection," focuses on the accuracy of object
detection and segmentation, along with the precision of the detected edges. Additional
evaluation metrics are introduced to fulfill this purpose. The Intersection over Union (IoU),
along with Precision, Recall, and the resulting F1-Score, are commonly used metrics for
assessing the outcomes of segmentation or classification tasks [2, 36, 38|.

The IoU is a crucial image segmentation and object detection metric. It measures the
extent of overlap between predicted and actual classifications concerning their union. In
object detection, IoU is used to assess the accuracy of a predicted bounding box against the
ground truth. In the context of semantic segmentation, it quantifies the similarity between
a model’s segmentation mask and the ground truth. Typical thresholds, such as 0.5 or
0.75, are usually employed to determine a "valid" prediction. The IoU metric accounts for
false-positive and false-negative pixel values, offering a more comprehensive evaluation |2,
36]. The IoU is calculated using

|P NG|
|P UG

where |P N G| is the number of pixels marked as part of the target class in both the ground
truth G and the predicted mask P. |P U G| is the number of pixels labeled either in G or
in P as the target class.

Precision quantifies the accuracy of positive predictions, specifically defined as the ratio
of correctly predicted positive pixels to all predicted positive ones. A high precision value
suggests the model is reliable and generates fewer false positives. However, precision can
be a somewhat misleading metric if the model adopts a conservative prediction approach,
identifying only a limited number of positive pixels [2, 38].

IoU =

(4.1)

TP
Precision = ———— 4.2
) ey (4.2)
Therein, T'P denotes the accurate positive predictions, and F'P the false positive predictions.
Recall measures a model’s ability to identify valid positive pixels, calculated as the ratio of
correctly predicted positives to the total positives in the ground truth. A high recall value
indicates that the model is sensitive and capable of recognizing the majority of relevant
pixels. However, it should be noted that the recall metric can be misleading if the model
tends to make an excessive number of positive predictions, which can subsequently result
in a high false positive rate |2, 38].
TP
Recall = ———— 4.3
TP+ FN (43)
This equation contains F'/N as false negative predictions. The F1-Score is defined as the
harmonic mean of Precision and Recall. This relation is employed to achieve a balance
between the two metrics. The F1-Score ensures that neither Precision nor Recall is entirely
neglected. The F1 score ranges from 0 to 1, with 1 indicating a perfect match [2, 38|.

Precision x Recall
F1-S =2 4.4
core * Precision + Recall (44)
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4.1. EVALUATION ON RT-LESS DATASET

Quality of Object Detection and Segmentation

This proposed pipeline uses the YOLOvS8 [37] model for object detection and segmentation
tasks. Synthetic training data is generated to implement this model, as detailed in the
previous chapter 3.2. This dataset consists of 30,000 scene images, each with a 640 x 480
pixels resolution, containing various RT-Less [10] objects arranged in diverse configurations.
To enhance the diversity of the dataset, metallic materials, and backgrounds are randomly
selected for each image. The position, intensity, type, and position of the light source
are varied based on predefined criteria. Segmentation masks are created for individual
objects along with RGB scene images. These masks highlight only the visible parts of
the objects within each scene. To fulfill the requirements for training the YOLOvVS [37]
model, label files containing polygons, bounding boxes, and unique identifiers are generated
simultaneously for all scene images. The ’yolov8s-seg’ model is selected from the provided
YOLO repository and trained on the synthetic data. The dataset is enhanced through data
augmentation techniques, precisely vertical and horizontal flips, resulting in 90,000 images.
An 80:10:10 split divides the dataset into training, testing, and evaluation subsets. Data
augmentation incorporates adjustments to the brightness and contrast of the scene images.
The training process spans 50 epochs, employing the AdamW optimizer with an initial
learning rate of 1e~% and a batch size of 16.

BBox: precision(B) BBox: recall(B) BBox: mAP50(B) BBox: mAP50-95(B)
1.000 1.000 0.9950 T t 0.995
0.998 0.908 0.9945 0.9%0
0.996 0,996 EFo | 0.985
0.994 4
0.994 el 0.980
0.992
0.992 0.9930 0.975
e 0.990 - : 0.970
T T T T T T T T 0.9925 T T T T T T T T T T
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Figure 4.1: Metrics for YOLOvS8 [37] training on synthetic data. The metrics for bounding
boxes and segmentation masks use color coding: blue for precision, green for
recall, yellow for mAP50, and red for mAP50-90.
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CHAPTER 4. EXPERIMENTS

These metrics include general evaluation parameters such as Precision, Recall, and the
Mean Average Precision (mAP). Precision measures the certainty of the model’s predictions
concerning the actual presence of objects in the scene, while Recall evaluates the model’s
ability to identify relevant objects. The most crucial metric for YOLOvVS is the mAP,
calculated in two variants: mAP and mAP@0.95. The former evaluates the mean accuracy
at an IoU threshold of 0.5, which reflects the proportion of correctly localized objects
with sufficient overlap. The calculation begins with generating a precision-recall curve for
each object and class. Following this, the mean precision values across all recall levels
are computed. This procedure is repeated for each class and obtained by averaging the
values across all classes, resulting in the overall mAP. The mAP@0.95 extends the mAP
metric by varying the IoU threshold from 0.5 to 0.95 in increments of 0.05. This approach
enhances performance evaluation by establishing stricter match validity criteria. As a result,
it offers more profound insights into model effectiveness in object detection tasks. When
interpreting the results shown in Figure 4.1, it is essential to recognize that the mAP metric
evaluates the model’s ability to recognize and localize objects. In contrast, the mAP@0.95
metric assesses its ability to recognize and segment objects precisely.

The segmentation model is trained and evaluated using synthetic data, and its performance
is further assessed with actual test data from the RT-Less [10] dataset. Predictions for
these image scenes are generated and verified against the provided segmentation masks.
The results of this assessment are shown in Table 4.1. In addition, Figure 4.7 showcases an
example of the predicted segmentation masks overlaid on a real RT-Less [10] test scene. In
contrast, Figure 4.2 illustrates the individual predicted masks for the same scene alongside
the ground-truth masks.

Object 6 Object 1 Object 8 Object 11

i1 @ E =

Predicted Predicted Predicted Predicted

Figure 4.2: Comparison between ground truth and predicted masks
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4.1. EVALUATION ON RT-LESS DATASET

Table 4.1 presents the test results of the trained object detection and segmentation model.
The evaluation is conducted using genuine test scenes sourced from the RT-Less [10] dataset.
Each object is individually evaluated to assess the model’s performance across various
scenarios. Subsequently, the mean value of each metric is computed to provide an overall
performance assessment.

The results demonstrate a high level of accuracy, with scores that closely correspond to
those obtained during the synthetic testing phase of the training process. One possible
explanation for the minor discrepancies in the observed values is that real scenes generally
possess a higher density of objects, which can lead to increased occlusion for individual
objects. This fact results in slight variations in the precision of the predicted segmentation
masks compared to the ideal outcome. As illustrated in Figure 4.2, the predicted masks
exhibit a notable limitation in accurately representing the holes and bores within the
objects, which results in lower precision values. However, this shortcoming has a minimal
effect on subsequent processes, as the segmentation masks are primarily used to refine the
outer contours of the object within the Rol. It can be concluded that the test produced
positive results and that neither the diverse appearances of materials nor the variations in
lighting and backgrounds significantly impacted the outcomes.

Obj ID ‘ Precision Recall F1-Score

1 0.907 0.941 0.924
2 0.902 0.957 0.929
3 0.881 0.987 0.931
5 0.914 0.962 0.937
6 0.886 0.917 0.901
7 0.928 0.933 0.931
8 0.910 0.972 0.940
11 0.884 0.896 0.890
13 0.902 0.983 0.940
14 0.881 0.967 0.922
16 0.920 0.931 0.925
17 0.910 0.934 0.922
18 0.901 0.922 0.912
21 0.935 0.941 0.938
23 0.895 0.903 0.899
29 0.896 0.943 0.919
32 0.929 0.953 0.941
33 0.901 0.939 0.919

AVG 0.904 0.943 0.923

Table 4.1: Results of predicted segmentation masks on real RT-Less [10] scenes
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CHAPTER 4. EXPERIMENTS

Quality of Detected Edges

As the conceptual framework outlines, accurately predicting the contour of an object
is essential for pose estimation. To achieve this, the DiffusionEdge model [38] is used.
The training of DiffusionEdge [38] utilizes the generated synthetic training data. This
dataset extends the previously discussed dataset by incorporating edge images instead of
segmentation masks. It is divided into training and test sets, following an 80:20 ratio to
ensure a robust evaluation of the model’s performance. The AdamW optimizer is applied
during training, with a damped learning rate varying from 5e=> to 5e~¢ across 40,000
iterations, employing a batch size of 8. An exponential moving average (EMA) addresses
unstable model performance during training. Image patches measuring 240 x 240 pixels
are processed during inference, and overlapping regions are averaged to produce the final
results.

The accuracy of the predicted edge images is determined using the Precision, Recall,
and F1-Score, as previously described, to evaluate the segmentation masks. Test scenes
incorporating the segmentation masks and edge images of real RT-Less [10] scene images
are utilized to evaluate the system’s performance. The RT-Less dataset [10] lacks ground
truth edge images for real scenes. A custom rendering pipeline arranges objects within the
scenes according to their corresponding ground truth poses. This process generates crucial
ground truth data needed for evaluation.

The edge images obtained during the 'Edge Detection’ phase are compared to those of the
corresponding ground truth images. Each target object is evaluated individually across all
test scenes in the dataset, and the relevant assessment metrics are calculated. The mean
values of these recorded metrics are presented in Table 4.2.

Obj ID | Precision Recall F1-Score

1 0.793 0.862 0.826
2 0.842 0.846 0.844
3 0.777 0.819 0.798
5 0.860 0.874 0.867
6 0.766 0.814 0.789
7 0.801 0.843 0.822
8 0.769 0.789 0.779
11 0.863 0.867 0.865
13 0.759 0.872 0.812
14 0.845 0.872 0.858
16 0.898 0.881 0.889
17 0.858 0.871 0.864
18 0.822 0.832 0.827
21 0.838 0.854 0.846
23 0.781 0.784 0.782
29 0.835 0.843 0.839
32 0.873 0.878 0.876
33 0.827 0.859 0.843

AVG 0.822 0.847 0.834

Table 4.2: DiffusionEdge results real RT-Less scenes
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4.1. EVALUATION ON RT-LESS DATASET

The findings presented in this table demonstrate that the DiffusionEdge [38] model, trained
on synthetic scenes, performs remarkably well in edge detection within real RT-less [10]
test scenarios. The average values across all scenes indicate that the predicted edge
images closely align with the ground truth masks. It can be inferred that the model
effectively distinguishes between different objects and navigates the challenges posed by
metallic properties, allowing for stable and precise edge prediction. The gap between the
training data and real-world scenarios underscores a fundamental limitation of this testing
methodology. As it is impossible to encompass the entire spectrum of potential outcomes
within the dataset, some deviation from an ideal result is unavoidable. However, this
training method can still produce satisfactory outcomes within the model’s context. The
following section offers a comprehensive analysis of edge cases. Figure 4.3 presents an
example of the objects identified within this scene through their cut-outs, comparing them
with the ground truth edges alongside the edges predicted by DiffusionEdge [38].

Object 6 Object 1 Object 8 Object 11
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Figure 4.3: Ground truth and DiffusionEdge predicted edges on RT-Less [10]
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CHAPTER 4. EXPERIMENTS

4.1.2 Pose Estimation

After thoroughly analyzing the pipeline’s initial phase, this section focuses on the second
phase: "Pose Estimation". First, the performance of the proposed network in predicting
coordinates is evaluated. Next, the capability of Edge2Pose in estimating poses is assessed.
Finally, the results are compared with those of the state-of-the-art methods.

Evaluation of Coordinate Prediction

The original network proposed by [29] utilizes a ResNet [71] model for feature extraction
within the encoder layer. This architecture is also observed in the works of |25, 28, 31].
These studies highlight the model’s dependence on RGB images as input. However, since
the proposed approach does not depend on RGB image data of the object of interest
but instead uses edge images, it is necessary to adjust the encoder layer of the network
accordingly. As discussed in Section 3.1.2; the decoder layer remains specify unchanged
compared to the original structure.

As an ablation study, the encoder is kept in its original configuration, utilizing a pre-trained
ResNet-34 model for feature extraction. However, skip connections between the encoder and
decoder are incorporated, following the approach outlined in [25], to enhance information
flow and mitigate gradient vanishing issues. In addition, the transformer loss proposed
by [25] is integrated into the existing loss function. The data loader has been adapted
to preprocess gray-scale edge images for input into the ResNet architecture [71]. This is
accomplished by tripling the channels of the gray-scale images to conform to the expected
input format of the model. The training uses the rendered single-object dataset described
in Section 3.2, comprising 6,600 edge-coordinate image pairs for each object. Several
augmentation techniques are employed, including random zoom-ins, cut-outs, noise along
the edges, and variations in edge intensity to increase the diversity of the dataset. The
AdamW optimizer is applied with an initial learning rate of le~* and a batch size of 8,
running for 25 epochs.

Objl Pred. Edge Image Pred. Coordinate Map

!

Figure 4.4: Exemplary results of coordinate prediction with ResNet [71] encoder

Upon testing the model with RT-Less test scenes, it became clear that consistently reliable
predictions could not be achieved despite the promising results observed during the training
phase. These results indicate that utilizing a ResNet model as the encoder is ineffective and
inappropriate for the proposed approach. This limitation primarily arises because these
models are specifically designed to extract features from RGB-format images. Without the
required input, the feature extraction process encounters significant challenges, leading to
outcomes that fall short of expectations.
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4.1. EVALUATION ON RT-LESS DATASET

Modifications are applied to the encoder layer of the network, while the decoder layer for
predicting coordinate maps remains unchanged. Figure 3.4 illustrates the refined encoder
in alignment with the model architecture. The updated model is trained on the dataset
of rendered edge-coordinate images, each measuring 256 x 256 pixels, using the AdamW
optimizer with a learning rate of le~* and a batch size of 8. Augmentation techniques are
implemented to enhance the dataset further, including random zoom-ins, cut-outs, edge
noise, and variations in edge intensity. The dataset is divided into a training set and a test
set in an 80:20 ratio. The training process is completed after 25 epochs.

Noise: 0.8 Noise: 0.7 Noise: 0.6 Noise: 0.5 Noise: 0.4 Noise: 0.3 Noise: 0.2 Noise: 0.1 Noise: 0.0

Figure 4.5: Qualitative display of noise factors on input images for MAE evaluation

The quality of the predicted edges is assessed using the Mean Average Error (MAE) metric.
This metric quantifies the mean absolute difference between two images, allowing an
evaluation of the discrepancies between the predictions. The MAE serves as an indicator
of the average variation in pixel values between the two images. In this context, the pixel
color values can be understood as a representation of the three-dimensional coordinates of
the model’s vertices. New unseen pairs of edge coordinate images are generated for each
object to evaluate the network’s performance. The input images contain noise along the
edges and black spots that obscure the edges. The noise factor indicates how much noise or
overlapping elements influence each edge pixel in the image. When the factor value is set
at 1.0, every edge pixel is impacted by noise or overlap 4.5. The experiment begins with a
noise factor of 0.75, decreased by 0.05 at each subsequent iteration until reaching an image
with minimal disturbance, corresponding to a factor of 0.05. The results are illustrated in
Figure 4.6 for all objects.
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Mean Average Error

0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05
Noise Factor

Figure 4.6: MAE of predicted images over noise factors
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CHAPTER 4. EXPERIMENTS

As depicted in Figure 4.6, all observed objects exhibit an MAE of 1.0 or lower, even
with a noise factor of 0.4. The aggregate mean averages all MAEs for the evaluated
objects, calculated to be 0.55 when analyzing test images with a noise factor of 0.25 and
lower. The error is influenced by the complexity of the geometry and the symmetry of
the object in question. More significant disturbances naturally lead to increased error.
Notably, the prediction accuracy for objects 11 and 29 is adversely impacted by increased
disturbances. This behavior can be attributed to their smaller sizes, which results in the
loss of essential edge information, thus hindering accurate predictions. The predictions for
these objects are consistent with the overall trends observed in other objects under minimal
disturbance. In contrast, the more prominent objects (7, 8, 16, and 21), characterized by
more intricate contours, exhibit outstanding performance in this evaluation. Despite the
noise and increased overlap, these objects possess sufficient information to facilitate precise
predictions.
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4.1. EVALUATION ON RT-LESS DATASET

Results on Objects

After evaluating the model’s ability to predict 3D coordinates on synthetic test data,
Edge2Pose is evaluated on real test scenes from the RT-Less [10]| dataset. All pipeline
components are implemented according to the specifications in Figure 3.1. As an initial
assessment, each object is evaluated individually. The poses of the target objects are
estimated for their corresponding scenes, and the mean value is subsequently calculated
from these results. The metrics outlined in Chapter 2.1 are utilized to evaluate the pose
estimation error. The findings are summarized in Table 4.3. This table presents the success
rate for poses where the ensuing ADD-(S) error is below 10 percent of the object’s diameter.
Consistent with the methodology described in the RT-Less dataset paper [10], the mean
rotation and translation errors are computed for the correct poses.

Obj ID‘d/mm ADD-(S) R/° t/mm

123.00 86.3 1.08  2.55
116.00 98.2 0.91 247
134.20 98.7 0.89 2.36
131.00 82.5 1.08 4.86
91.30 91.4 1.85 4.43
143.00 90.9 2.86 5.30
134.20 97.8 1.02  4.18
98.00 78.3 294  T7.14
118.00 96.7 1.52 4.92
14 117.00 78.3 295 5.17
16 187.00 86.2 247  5.88
17 116.70 88.5 3.17 475
18 112.25 88.0 3.21  5.60
21 123.00 91.7 232 481
23 108.12 90.1 3.99 4.25
29 100.50 774 2.14  8.57
32 114.00 82.5 1.68 4.86
33 111.00 87.4 343  3.39

| AVG 91.4 236 4.75

—_
P D 0N oUW N

Table 4.3: Results of pose estimation of RT-Less [10] models. Including the model diameter
d dependent ADD-(S) error and the R/t error for valid poses.

Objects 2, 3, 8, and 13 have notably high values for the ADD-(S) metric. These objects
enclose a clear and straightforward geometric structure, free from intricate symmetries,
which enhances edge detection and enables accurate pose estimation. Contrarily, the results
for Objects 11, 14, and 29 fall below the average, likely due to the effects of strong reflections
or occlusions in the respective scenes, which may have adversely influenced the outcomes
for these objects. The following section will examine the results of edge cases to explore
this matter further.

The qualitative results of the predictions for an RT-Less [10] test scene are shown in
Figure 4.8, which includes the predicted edges and coordinates and the resulting 2D-3D
correspondences.
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Figure 4.7: Predicted segmentation masks on RT-Less [10] scene
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Figure 4.8: Coordinate prediction on RT-Less [10] scene
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4.1. EVALUATION ON RT-LESS DATASET

A comparison is made with recent state-of-the-art methodologies that have also been
applied to the RT-Less dataset [10] to validate the method presented in this work. Notably,
ContourPose [11] serves as a reliable benchmark, as it has produced the most successful
results for this particular RT-Less dataset [10] dataset. This method employs an edge-
based approach. The findings detailed in the related state-of-the-art studies and those of
Edge2Pose are summarized in Table 4.4.

Obj ID | AAE [72] STB [14] PSGMN [73] GFI[13] CP [11] Edge2Pose

1 76.96 64.21 94.23 95.32 100.00 86.30
2 76.43 66.49 70.86 96.77 97.54 98.20
3 84.32 54.65 82.45 92.16 95.35 98.70
6 32.42 48.90 74.95 91.49 88.14 91.30
7 64.77 36.48 79.57 87.85 90.70 90.90
13 45.32 62.36 84.34 85.03 96.71 96.80
16 49.33 29.45 74.11 76.31 91.82 86.20
18 72.12 45.49 75.89 84.22 95.31 88.00
21 67.09 62.26 79.94 89.92 93.50 90.10
32 71.32 59.23 87.30 85.11 92.30 82.50
AVG ‘ 64.91 52.85 80.36 88.42 94.14 90.90

Table 4.4: Comparison with different methods on RT-Less [10] dataset using ADD-(S)

In Table 4.5, the R/t error metric is assessed in detail for valid poses, analyzing the
respective errors along their corresponding axes. In addition, these findings are compared
with the methods employed in [11]. The two methods that yield the most favorable results
are ContourPose [11] and GFI [13].

Method ‘x/mm y/mm z/mm «/° B/ v/°
AAE [72] 1.48 1.10 7.92 525 4.99 2.23

STB [14] 147 094 749 111 144 085
PSGMN [73] | 250  1.97 845 4.00 3.74 1.52
GFI [13] 247  1.94 659 1.85 191 0.97
CP [11] 071 079 431 1.00 1.10 0.42
This | 0.86 0.82 504 137 122 0.5

Table 4.5: Comparison using R/t metric on valid ADD-(S) poses
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CHAPTER 4. EXPERIMENTS

Results on Scenes

It is essential to examine the various scenes to gain a deeper understanding of the results
from the previous experiments. As outlined in previous chapters, these scenarios differ in
terms of illumination, reflections, and the level of occlusion. In addition, the backgrounds
vary, affecting the accuracy of pose estimation. An overview of these characteristics is
illustrated in Figure 3.5.

One of the primary challenges posed by Edge2Pose is handling metallic textures. Reflections
on the object’s surface may obscure the edges of its geometry, reducing the data available for
accurately estimating the coordinates. The influence of these factors depends on the specific
lighting conditions, the camera position, and the geometry or position of the object. Figure
4.9 offers a selection of edge cases designed to demonstrate the effects and outcomes clearly
and unequivocally. In the initial example of object 1, a notable optical reflection occurs at
the interface between two distinct surfaces, resulting in a near-seamless integration of the
object’s edge with the surrounding background. The edge detection algorithm demonstrates
partial efficacy. While some edges are reliably predicted, others exhibit inaccuracies in
classification. This example highlights the complexities inherent in boundary identification
in varying optical contexts. A similar phenomenon is evident in the case of object 3, where
the inner edge is nearly entirely obscured due to reflective interference. The contour can be
utilized predominantly for pose estimation. The examples of objects 7 and 14 illustrate
that reflections can create the illusion of edges on the surface. However, DiffusionEdge [38|
does not consider these and generates only the actual contours. Multiple reflections across
various surfaces can lead to the appearance of new edges, which are overlooked mainly
during detection.

ADD-(S) = 5.29 ADD-(S) = 11.2 ADD-(S) = 1.16 ADD-(S) = 5.98 ADD-(S) = 1.93

Figure 4.9: Qualitative evaluation of RT-Less objects [10] with high reflections includes the
actual image, predicted edges, estimated 3D coordinates, and ADD-(S) error.
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4.1. EVALUATION ON RT-LESS DATASET

In addition, the test scenes feature images that are either underexposed or blurred. As
illustrated in Figure 4.10, object 7 is affected by inadequate lighting and the presence of
the light source itself. This results in indistinct edges and a textureless appearance on the
surfaces. Furthermore, there is a noticeable reflection of the light source. The images of
object 2 display a combination of a blurred camera shot and prominent shadows cast on
the object. While the outlines of the objects are predominantly captured with minimal
distortion, a significant increase in interference and noise along the edges distinguishes this
observation from the previous one.

Obj 2 Obj 2 Obj 7 Obj 7 Obj 13
‘ IFIUWI

ADD-(S) = 5.38 ADD-(S) = 0.63 ADD-(S) = 7.41 ADD-(S) = 10.9 ADD-(S) = 1.67

Figure 4.10: Qualitative evaluation of RT-Less objects [10| with illumination changes in-
cludes the actual image, predicted edges, estimated 3D coordinates, and
ADD-(S) error.
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CHAPTER 4. EXPERIMENTS

The level of occlusion present within the scene is an essential factor influencing pose
estimation. As shown in Figure 4.11, undetected edges are heightened along the objects’
actual contours, mainly seen in the examples of object 23. In the image featuring objects 6
and 14, the edges of the overlapping object are mistakenly integrated into the contour of
the actual object due to their inadequate recognition as interfering objects.

Obj 23 Obj 23 Obj 29 Obj 14 - Obj 6

O

ADD-(S) = 13.2 ADD-(S) = 4.24 ADD-(S) = 4.57 ADD-(S) = 8.03 ADD-(S) = 3.04

Figure 4.11: Qualitative evaluation of RT-Less objects [10]| with occlusion includes the
actual image, predicted edges, estimated 3D coordinates, and ADD-(S) error.
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4.2. FURTHER DATASETS

4.2 Further Datasets

The testing is extended to additional datasets to ensure a thorough validation of the
methodology outlined in this thesis. Specifically, the T-Less dataset |32] from the BOP
challenge [2, 3] is utilized for textureless but non-metallic objects and compared against the
current state of the art. The proposed pipeline is applied to a different dataset featuring
metallic and reflective objects, namely the MP-6D dataset [64].

4.2.1 T-Less Dataset

The use case has been expanded to include pose estimation for objects from the T-Less
[32] dataset to provide a more comprehensive evaluation of Edge2Pose. This dataset is
a focal point in the primary study, investigating the application of textureless objects in
an industrial setting [2, 3]. As mentioned in Chapter 2.1, the dataset mainly consists of
non-metallic items. It includes complex objects that lack distinctive textures, which can be
observed in various scenarios within the industrial context.

The configuration of the individual components within the pose estimation pipeline remains
unchanged. A new set of training data has been generated specifically for detecting and
segmenting objects in the T-Less [32] dataset and further edge detection. The rendering
pipeline was employed to create a dataset comprising 30,000 synthetic scenes. These scenes
were designed with diverse randomized lighting conditions, background environments, and
object layout configurations. This systematic variation facilitates comprehensive analysis
and modeling of visual perception in complex environments. The main difference between
these rendered scenes lies in the textures applied to the models. Instead of metallic textures,
textures representing plastic surfaces are utilized.

Figure 4.12: Samples of synthetic training data with T-Less [32] models. From left to right,
the RGB scene image, edge images, and segmentation masks. The individual
masks are color-coded for improved clarity.

49



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

CHAPTER 4. EXPERIMENTS

Evaluation of Edge Detection

The training of the YOLOvVS8 [37] model for object detection and segmentation is conducted
using the aforementioned synthetic data. Horizontal and vertical flips and brightness and
contrast adjustments are available to enhance training dataset diversity. The dataset is
divided into three categories: training, testing, and evaluation, with a distribution ratio of
80:10:10. The training process is carried out over 50 epochs, utilizing the AdamW optimizer
with an initial learning rate of le=* and a batch size of 16.

Obj 7

Pred. Mask Pred. Mask Pred. Mask

Figure 4.13: Results of YOLOvS [37] on T-Less [32]

Edge2Pose is evaluated by applying the developed model to authentic testing scenarios
derived from the T-Less [32] dataset. The Average Precision metrics from earlier work by |2,
3] are applied to evaluate the estimated poses. The results are detailed in Table 4.6, which
differentiates between average precision at various threshold values. Specifically, the metrics
AP50 and AP70 indicate the test cases in which at least 50% and 70% of the segmentation
masks align, respectively. Moreover, the runtime in seconds required for each method to
detect and segment the target object within the scene is also provided. Figure 4.13 presents
an example of the ground truth and predicted segmentation masks from T-Less [32] test
scenes.
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4.2. FURTHER DATASETS

Method Domain Det./Seg. Synth‘ AP  APsy APz5 Time(s)

CosyPose [26] RGB  Mask R-CNN v 0.886 0.925 0.847  0.080
ZebraPose [74] RGB FCOS 4 0.708 0.790 0.626 0.053

Edge2Pose RGB YOLOvS8 4 ‘0.903 0.964 0.897  0.095

Table 4.6: Average Precision, AP50, AP70 and Runtime on T-Less [32] dataset.

The generated dataset, consisting of photorealistic scenes and corresponding ground truth
edge images, is further utilized to train the edge detector. The DiffusionEdge [38] model
is trained on this dataset with a training and test data split of 80:20. To enhance data
augmentation, the scenes are flipped vertically and horizontally. The model is trained using
the AdamW optimizer with a damped learning rate ranging from 5e~° to 5e~% throughout
40,000 iterations, utilizing a batch size of 8. In addition, Exponential Moving Average
(EMA) is implemented to maintain stable model performance throughout the training
process. During inference, image patches of size 240 x 240 are utilized, and overlapping
regions are averaged to produce mean values. Exemplary results are illustrated in Figure
4.14.

Pred. Edge Pred. Edge

Figure 4.14: Results of DiffusionEdge [38] on T-Less [32]
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CHAPTER 4. EXPERIMENTS

Evaluation of Pose Estimation

The rendering process for the edge-coordinate training data remains consistent with that
of the previous dataset. A total of 6,600 images, each with a size of 256 x 256 pixels,
are captured for each object. The network is trained using the AdamW optimizer, with
a learning rate set at le~* and a batch size of 8. Training is conducted over 25 epochs.
An additional augmentation process introduces random zoom-ins, cut-outs, noise along
the edges, and variations in edge intensity to enhance the dataset further. The dataset is
divided into training and test sets, maintaining an 80:20 ratio.

The Augmented Reality (AR) metric is utilized to evaluate estimated poses, enabling
significant comparisons with other methods in the BOP challenges |2, 3]. The AR is
determined by measuring the recall for each of the VSD, MSSD, and MSPD metrics across
a range of thresholds and subsequently averaging these values. This metric indicates how
effectively a model predicts poses and assesses performance across various tolerances. Table
4.7 presents the results of Edge2Pose and other approaches evaluated on the T-Less [32]
dataset. These methods utilize an RGB-based approach and are categorized based on
whether the respective networks were trained using synthetic or real training data.

Method Domain Synth‘ AR Time(s)

GDRNPP [28] RGB X |78.7 0.23
CosyPose [26] RGB X 72.8 0.45
SurfEmb [75] RGB X 73.5 8.89
ZebraPose [74] RGB X 78.6 0.25
CDPNv2 [31]  RGB x |48 0w
Pix2Pose [25] RGB X | 344  1.22
GDRNPP [28) RGB v |79.6 0.28
CosyPose [26] RGB v 64.0 0.48
SurfEmb [75] RGB v | 741 9.05
ZebraPose [74] RGB v 72.3 0.50
CDPNv2 [31] RGB v | 407  0.98

EPOS [54]  RGB v | 467  1.87

Edge2Pose RGB v 74.4 8.40

Table 4.7: Average Recall and Runtime on T-Less [32]

In comparison to the methods outlined in Table 4.7, it is clear that the performance of
Edge2Pose on the T-Less dataset significantly declines in this experiment. A more detailed
examination of the individual scenes and objects reveals that the primary factor behind this
noticeable difference is the quality of the predicted edges. The objects within the T-Less
dataset [32| exhibit a greater complexity and variability in their contours, primarily due to
a higher edge density when compared to the RT-Less dataset [10]. The density of edges in
these objects leads to heightened noise and uncertainties along the predicted contours. This
effect increases the chances of errors occurring in pose estimation. Despite these challenges,
the AR value achieved in this experiment aligns well with established comparison methods,
suggesting that Edge2Pose remains a competitive solution within the evaluated framework.
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4.2. FURTHER DATASETS

4.2.2 MP-6D Dataset

Another dataset featuring metallic and reflective objects is the MP-6D [64] dataset. The
aim of utilizing this dataset is to expand the versatility of Edge2Pose by incorporating a
wider range of conditions. Similarly, this dataset includes metallic objects from an industrial
setting, much like the RT-Less [10] dataset. However, the scene images differ with respect
to the camera’s distance from the objects and the camera’s orientation relative to the scene.
As a result, the previously examined datasets, RT-Less [10], and T-Less [32], the grouped
objects are not necessarily centered in the images. In addition, the increased distance
between the camera and the scene leads to a significant portion of the image being taken
up by distracting background elements. These factors introduce further challenges related
to the rendering pipeline for generating training data and the methodology used for pose
estimation.

Evaluation of Object Detection

The training data for the "Edge Detection’ section is generated within the rendering pipeline
using the approved procedure. Models of various objects are placed randomly throughout
the scene, and images are captured from different camera positions along the hemisphere.
The radius of the sphere is calibrated to ensure accurate distances of the actual scenes. The
rendering pipeline employs diverse environment textures to create realistic backgrounds.
The segmentation model YOLOvVS [37] and the edge detector DiffusionEdge [38] are trained
using this synthesized data. However, testing conducted with authentic images from the
dataset has revealed that this training approach is ineffective. The DiffusionEdge [38] model
struggles to identify the edges of objects accurately.

Figure 4.15: Object Detection on MP-6D [64] test scenes

The findings from the previous experiment necessitated modifications to the training data
and the edge detection procedure. The inability of DiffusionEdge [38] to accurately detect
the edges or contours of objects in the test scenes was linked to the insufficient similarity
and diversity within the training data. The training data was aligned such that the camera
consistently focused on the center of the scene. However, this does not reflect real test
scenarios. Additionally, the size ratio between the objects and the background in the
MP-6D [64] test scenes is significantly larger than in the prior datasets.

Consequently, the following adjustments were made: DiffusionEdge [38] is modified to
predict edges based solely on a section centered on the target object rather than the entire
scene image. This change aims to minimize the influence of the surrounding environment on
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CHAPTER 4. EXPERIMENTS

the detection process. The focus has systematically shifted to each model within a scene to
enhance the effectiveness of the training data in this new approach. This targeted analysis
allows for a more detailed representation of the individual objects. Sections were created
from the original training dataset, each measuring 320 x 320 pixels. The workflow for edge
detection was adapted. Predictions are now made in these object sections to enhance the
details within the input data. Based on the detected bounding box, a 320 x 320 pixel
section is extracted from the center of the scene image, which is then utilized for edge
detection. During this experiment, the size of these cut-outs was adjusted to identify the
optimal configuration. The outcomes of this revised method are illustrated in Figure 4.16.
Only the 128 x 128 pixel size yielded recognizable edges and contours.

Obj 4 Obj 2 Obj 5 Obj 1

Pred. Edge Pred. Edge Pred. Edge Pred. Edge

Figure 4.16: Predicted edges on various objects of MP-6D [64]

The findings show that DiffusionEdge [38] has difficulties accurately predicting edges in
MP-6D [64] test scenes, even after attempts to reconstruct the workflow and adjust the
training data. The outer contours of the objects are detectable, but crucial details are
missing. This divergence makes them unsuitable for further pose estimation. One possible
explanation for this result is that the objects are too small compared to the rest of the
scene shown in the image. This imbalance means that the details of the edges are barely
distinguishable from the background and from other objects that overlap. A weak contour
can be recognized for individual objects. However, precise detection is no longer possible if
several objects are in an image section.
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CHAPTER D

Conclusion

This chapter draws conclusions based on the outcomes of the methodology presented and
its relevance to the initial research questions. It addresses how these questions could be
answered by the content of this thesis. In conclusion, a proposal is put forth regarding the
prospective enhancement of the work.

5.1 Metallic Object Pose Estimation

This thesis aims to develop a pose estimation methodology for metallic, reflective objects.
A state-of-the-art review has revealed that object contours are a promising strategy for
overcoming texture and high reflectance challenges. In light of this insight, a two-stage
pipeline for pose estimation, called Edge2Pose, has been devised and implemented. This
approach employs the prior estimation of the contours of the objects to facilitate the
subsequent pose estimation process. The initial step is detecting and segmenting objects
using the YOLOvVS8 [37] algorithm. Subsequently, edge detection is conducted using the
DiffusionEdge [38] network. In the second stage of the pipeline, the edge images are used to
perform pose estimation. A modified encoder-decoder network predicts the 3D coordinates
using RGB color coding based on the edge images. The final pose estimation is achieved by
establishing 2D-3D correspondences and their subsequent calculation using PnP/RANSAC
[39, 40].

In addition, training data generation is a crucial aspect of implementing this methodology. A
novel rendering pipeline has been introduced, which allows for the creation of photorealistic
scenes alongside corresponding ground-truth edge images and segmentation masks. The
data must be appropriately adapted to ensure the practical application of the methods
to real-world scenarios, ultimately achieving the desired outcomes. The outcomes of the
object recognition and segmentation tasks conducted using the YOLOvS [37, 66] model
and the edge detection results from the DiffusionEdge [38] network demonstrate that using
rendered training data has yielded the expected results. The incorporation of synthetic
images contributes substantial diversity, allowing the training data to effectively mirror the
real-world conditions present in the test images from the datasets.

The issues associated with metallic objects, such as reflections or lack of textures, are
addressed in this conceptual approach through the utilization of contours. It has been
demonstrated that applying a diffusion model for edge detection is particularly well suited
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CHAPTER 5. CONCLUSION

to this objective. The experiments conducted with the RT-Less [10] dataset demonstrated
that DiffusionEdge [38] is capable of robustly detecting precise object edges when being
trained on with synthetic training data. Despite varying lighting conditions and reflections,
it was proven that the generation of edge images can be accomplished with a high degree
of reliability.

The final pose estimation is based on the edge images extracted from the objects. The
network was developed using the concepts of CDPN [31], Pix2Pose [25], and DPOD [29]
and has demonstrated reliability in experimental settings. The observed results indicate
that the method can accurately estimate poses even in the presence of errors in the edge
images due to strong reflections or occlusions. The results obtained are comparable to those
of other methods, such as ContourPose [11] or SurfEmb [75], and thus provide a robust
approach for pose estimation.

In conclusion, this thesis’s scope sufficiently addressed all the initial research questions. It
significantly contributes to research in the pose estimation of metallic objects. It conceptu-
alizes and implements a contour-based approach, introducing a diffusion model and pose
estimation from extracted edge images. The rendered pipeline for generating photorealistic
training data allows the contour-based approach to be implemented. Edge2Pose effectively
addresses the challenges inherent to the task, facilitating robust pose estimation.
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5.2. FURTHER WORK

5.2 Further Work

The present section considers the potential for enhancing the quality of the work. The
initial observation is the runtime of the pose estimation pipeline. The average time required
for detecting the target object in the scene and the subsequent pose estimation is 8 to 10
seconds. The primary factor contributing to this duration is the edge detection component.
In its current version, DiffusionEdge [38] takes an average of 7 to 9 seconds to generate
the edge image. Nevertheless, deploying a real-time model, which the DiffusionEdge [3§]
developers had announced at the time of this thesis but had not yet published, is expected
to reduce the computation time. Such a model will likely considerably impact the entire
pipeline’s runtime, potentially reducing it.

A further aspect that warrants enhancement is how Edge2Pose deals with occlusions — a
challenge common to most methodologies within this domain. A substantial number of
objects in a given scene will increase interference in the edge images along the transition
between these objects. As the accuracy of the estimated pose is contingent upon the quality
of the detected contour, this can result in incorrect estimates. A potential solution to this
issue is to apply edge detection not to the entire scene image but only to the observed
sections along the scaled bounding box. This approach could also address the challenge of
accurately predicting complex objects with closely spaced edges. By explicitly considering
the target object, greater precision could be achieved. The feasibility of these approaches
depends on the availability of an appropriate training dataset.

In summary, the pose estimation pipeline presents opportunities for enhancement. As is
common in this field, further research is needed to understand the impact of occlusions
on the process. The strong correlation between the accuracy of pose estimation and the
quality of detected edges indicates potential for optimization. Implementing a real-time
model for edge detection is expected to improve runtime efficiency further. In conclusion,
Edge2Pose has successfully implemented an approach to pose estimation, demonstrating
its effectiveness for metallic and reflective objects. By expanding the application of this
method and integrating the proposed improvements, it is clear that this approach can offer
substantial added value to the current state-of-the-art.
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