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ABSTRACT

In recent years, the scientific community has increasingly recognized the com-
plex multi-scale competency architecture (MCA) of biology, comprising nested lay-
ers of active homeostatic agents, each forming the self-orchestrated substrate for
the layer above, and, in turn, relying on the structural and functional plasticity of
the layer(s) below. The question of how natural selection could give rise to this
MCA has been the focus of intense research. Here, we instead investigate the
effects of such decision-making competencies of an MCA’s agential components
on the process of evolution itself, using in-silico neuroevolution experiments of
simulated, minimal developmental biology. We specifically model the process of
morphogenesis with neural cellular automata (NCAs) and utilize an evolutionary
algorithm to optimize the corresponding model parameters with the objective of
collectively self-assembling a two-dimensional spatial target pattern (reliable mor-
phogenesis). Furthermore, we systematically vary the accuracy with which an
NCA’s uni-cellular agents can regulate their cell states (simulating stochastic pro-
cesses and noise during development). This allowed us to continuously scale the
agents’ competency levels from a direct encoding scheme (no competency) to an
MCA (with perfect reliability in cell decision executions). We demonstrate that an
evolutionary process proceeds much more rapidly when evolving the functional
parameters of an MCA compared to evolving the target pattern directly. More-
over, the evolved MCAs generalize well toward system parameter changes and
even modified objective functions of the evolutionary process. Thus, the adap-
tive problem-solving competencies of the agential parts in our NCA-based in-silico
morphogenesis model strongly affect the evolutionary process, suggesting sig-
nificant functional implications of the near-ubiquitous competency seen in living
matter.
Keywords: Evolution, multi-scale competency, artificial intelligence, swarm intelli-
gence, cells, embryos, development, self-assembly
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GENERAL SUMMARY

Biological systems are composed of layers of organization, each level providing the
foundation for the next higher level of abstraction: membranes, DNA, and proteins form
cells, which then collectively organize into tissue, and, in further hierarchical steps, into
tissues, organs, bodies, swarms, ecosystems, etc. Each of these layers has a degree of
ability to adapt in real-time to new conditions to establish and maintain specific outcomes
in terms of physiological, metabolic, transcriptional, and anatomical spaces. In other
words, evolution works with material that is not passive matter but rather has a degree
of competency – an agential material that forms the layer between the genotype and the
phenotype. Many scientific studies have been dedicated to investigating how evolution
gives rise to such intriguing problem-solving machines we call organisms. In this study,
we ask the reverse question: what is it like to evolve over such a material, vs. one that
passively maps genotypes into the form and function that selection operates over – how
does it affect the process of evolution itself? We test this in-silico by utilizing evolutionary
algorithms to adapt the behavior of a swarm of virtual uni-cellular agents in large-scale
simulations of virtual embryos. In our minimal model, the cells collectively self-assemble
a predefined target tissue on a neural cellular automaton. We find that competency at
the cellular level of our multi-scale model system strongly affects the resulting evolution-
ary process, as well as the generalizability, evolvability, and transferability of the evolved
solutions, suggesting profound evolutionary implications of the highly intricate multi-scale
competency architecture of biological life.
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I. INTRODUCTION

Biological systems are organized in an exquisite architecture of layers, including
molecular networks, organelles, cells, tissues, organs, organisms, swarms, and ecosys-
tems. It is well-recognized that life exhibits complexity at every scale. Increasingly
realized however is the fact that those layers are not merely complex, but actually ac-
tive “agential matter” which has agendas and competencies of its own1,2. Elsewhere,
we have discussed examples of problem-solving in unconventional spaces, including
transcriptional, physiological, metabolic, and anatomical space3.

Especially interesting is the ability of these ubiquitous biological agents to deal with
novel situations on the fly, which is not limited to brainy animals navigating 3D space,
but also occurs with respect to injury, mutations, and other kinds of external and internal
perturbations (reviewed in Ref. 4). One example of such problem-solving capabilities are
the regenerative properties of some species that can regrow limbs, organs, or entire parts
of their bodies when amputated, and - remarkably - stop when the precisely correct tar-
get morphology is complete5–7. This can be understood as cellular collectives navigating
morphospace, until the desired target shape - or the goal - is reached again. Other ex-
amples include the ability of scrambled tadpole faces to reorganize in novel ways to result
in normal frog faces8, and the normal shape and size of structures in amphibia despite
drastic changes in cell number9 and cell size10, which are handled by exploiting different
molecular mechanisms to reach correct target morphologies despite novel changes in
internal components. Behavioral and morphological plasticity intersect, in cases such as
tadpoles made with eyes on their tails, which nevertheless can see and learn in visual
assays without needing rounds of evolutionary adaptation11.

The ability to navigate transcriptional and anatomical spaces, using perception-action
loops and homeostatic setpoints, is now being increasingly targeted by biomedical and
bioengineering efforts12,13. A fascinating body of work exists around the question of how
neural and non-neural problem-solving capacities evolved, and how neuro-behavioral in-
telligence affects evolution14–31. However, we and others have previously suggested that
somatic competency pre-dates neural intelligence32–34, and has a bi-directional interac-
tion with the evolutionary and developmental process1,3,35. Thus, here we address the
second half of the evolution-intelligence spiral: how are evolutionary processes affected
by the competency of the material? Especially important is the inclusion of the middle
layer between genotype and phenotype. Mutation operates on genomes, and selec-
tion operates on phenotypic performance, but in most organisms, the connection be-
tween them is not linear or shallow - instead, developmental physiology provides a deep
reservoir of dynamics that strongly alter the process. As a contribution to the study of
evolvability and developmental mechanisms potentiating it36–53, we established a virtual
embryogeny54 system focused on anatomical morphogenesis by cells. In this minimal
model of morphogenesis, we were able to study the effects of different degrees of cellular
competency on the evolutionary process.

The standard understanding of (Neo-Darwinian) evolution is schematized in fig. 1 (A):
The genome of an organism encodes aspects of the organism’s cellular hardware, which
together define phenotypic traits. Given a competitive environment, natural selection
then favors organisms with advantageous traits, and thus, on average, the corresponding
genes tend to get passed on to the next generations more frequently. Random mutations
may occur, consequently changing traits in the offspring phenotype. This affects the
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offspring’s reproductive success during the selection stage and, in that way, good traits
prevail, and bad ones perish over time.

This view has been revised by, e.g., Waddington55,56, and more recent works57–66, and
has been the subject of vigorous debate40,63,67–72 with respect to its capabilities for dis-
covery, its optimal locus of control, and the degree to which various aspects are random
(uncorrelated to the probability of future fitness improvements). Important open questions
concern ways in which the properties of development – the layer between the mutated
genotype and the selected phenotype – are evolved and in turn affect the evolutionary
process36,39,45,46,73–78. Specifically, significant work has been done at the interface of evo-
lution and learning - selectionist accounts of change and variational accounts of change
respectively30,61,62,66,79–85. Significant progress has been made on the question of how
evolution produces agents with behavioral competency in diverse problem spaces17,86–88.
We have focused on a particular kind of competency – that of navigating anatomical mor-
phospace3,12,89,90. More specifically, we here investigate in silico the evolutionary impli-
cations of the self-orchestrated process of morphogenesis, where local actions of single
cells need to be aligned with a global policy of a multi-cellular collective to guide the for-
mation of a large-scale tissue, in turn affecting the underlying evolutionary process. Work
on developmental plasticity, chimeras, synthetic biobots, and the ability to overcome novel
stressors has highlighted ways in which evolution seems to give rise to problem-solving
machines, not fixed solutions to specific environments91.

Thus, the problem-solving capacities of development, regeneration, and remodeling
ensure that in many (perhaps most) kinds of organisms, the mapping from genotype to
phenotype is not merely complex and indirect92 (as schematized in fig. 1 (B)), but actu-
ally enables evolution to search the space of behavior-shaping signals, not microstates,
and exploit modularity and triggers of complex downstream responses (c.f., fig. 1 (C,D)).
We have previously argued that both evolution and human bioengineers face a range of
unique problems and opportunities when dealing with the agential material of life – not
passive or even just active matter, but a substrate that has problem-solving competen-
cies and agendas at many scales93,94. What selection sees is not the actual quality of the
genome, but the quality of the form and function of the flexible physiological “software”
that runs on the genomically-specified molecular hardware, as schematically illustrated
in fig. 1 (E). This in turn suggests that the actual progress of evolution should be signifi-
cantly impacted by the degree and kind of competency in the developmental architecture.
Prior work has suggested a powerful feedback loop between the evolution of morpho-
genetic problem-solving and the effects of these competencies on the ability of evolu-
tionary search to produce adaptive complexity1,35,95. Here, we construct and analyze a
new model of evolving morphogenesis, to study how different competency architectures
within and among cells impact evolutionary metrics such as rate, robustness to noise,
and transferability to new environmental challenges.

To quantitatively study the effects different levels of competency of the decision-making
centers in a multi-scale competency architecture have on the process of evolution, we
here rely on tools from the research field of Artificial Life96 which furthers computational
and cybernetic models that mimic life-like behavior based on ideas taken from biology;
a simple example is cellular automata (CAs)97. In such CAs, the (numerical) states of
localized cells, organized on a discrete, spatial grid, change in time via local update
rules. Although typically rather simple “hardcoded” update rules are employed, CAs often
display complex dynamics (c.f., Conway’s Game of Life98 or Lenia99) but are not known
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FIG. 1: (A-C): Illustration of different ways of genetic encodings of a phenotype of, here, a two-dimensional
smiley-face tissue composed of single cells. (A) Direct encoding: Each gene encodes a specific phe-
notypic trait, here of each specific cell type of the tissue, colored blue, pink, and white. (B) Indirect en-
coding: A deterministic mapping between the genome and different phenotypic traits, here again of each
cell type (shown for completeness, but not investigated here due to reasons discussed in section IV). (C)
Multi-scale Competency Architecture: Encoding of functional parameters of the uni-cellular agents which
self-assemble a target pattern via successive local perception-action cycles1 (c.f., panel D). In all three pan-
els, we schematically illustrate from left to right the genome, the respective encoding mechanism, and the
corresponding phenotype; colors indicate cell types, and arrows indicate the flow of information and envi-
ronmental noise, affecting each cell during the developmental process. (D) Detailed information-flow-chart
of the perception-action cycle of a particular single cell agent, labeled i, in a Neural Cellular Automaton
(NCA)-based multi-scale competency architecture (c.f., panel C and section II A): Starting from a multi-
cellular phenotype configuration at time tk (left smiley-face panel), and following the thick orange arrows,
each cell i perceives cell state information about its respective local neighborhood of the surrounding tis-
sue (respectively labeled). This input is passed through an artificial neural network (ANN), substituting the
internal decision-making machinery of a single cell, until an action output is proposed that induces a (noisy)
cell state update in the next developmental step at time tk+1 (details on labeled internal ANN operation and
ANN architectures are introduced later in section II A and appendix A). (E) Schematic illustration - following
Ref. 1 - of the evolution of a morphogenesis process with a multi-scale competency architecture acting as
the developmental layer between genotypes and phenotypes (see sections II A and II B for details): The
genotype (top) encodes the structural (initial cell states) and functional parts (decision-making machinery)
of a uni-cellular phenotype (center). The cell’s decision-making machinery is represented as a potentially
recurrent ANN (yellow/orange graph) with an adjustable competency level (red knob). Through repeated lo-
cal interactions (perception-action cycles; detailed in panel D)), the multi-cellular collective self-orchestrates
the iterative process of morphogenesis and forms a final target pattern, i.e., a system-level phenotype after
a fixed number of developmental steps (bottom left to right) while being subjected to noisy cell state updates
at each step (red arrows). The evolutionary process solely selects at the level of the system-level pheno-
types (labeled Final State at the bottom right). Based on a phenotypic fitness criterion, the corresponding
genotypes - composed of the initial cell states (bottom left) and the functional ANN parameters (top right)
- are subject to evolutionary reproduction - recombination and mutation operations - to form the next gen-
eration of cellular phenotypes that successively “compute” the corresponding system-level phenotypes via
morphogenesis, etc.

to exhibit homeostatic (closed-loop) activity. An extension of CAs, termed neural cellular
automata (NCAs)100, utilize artificial neural networks (ANNs) as more flexible trainable
update rules, aiming to model the internal decision-making machinery of biological cells.
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Employing machine learning methods, such NCAs have been trained to perform self-
orchestrated pattern-formation (notably, of images from a single “seed” cell)101 and even
the co-evolution of a rigid robot’s morphology and its controller has been demonstrated
with such NCAs102.

NCAs exhibit a striking resemblance with the genome-based multi-scale competency
architecture of biological life102, as illustrated in fig. 1 (C-E): an organism’s entire building
plan is encoded in its genome (corresponding to the NCA’s parameters), while its cells
collectively run the self-orchestrated developmental program of morphogenesis (realized
by the NCA’s layout and ANN architecture) via perception-action cycles at the uni-cellular
level (cell state updates in the NCA, c.f., fig. 1 (D)). Starting from an initial cell state
configuration of the NCA, the details of a virtual organism are then, step-by-step, “re-
fined” in a collective self-organizing growth phase on the cellular level, and maintained
against cell state errors later on in the virtual organism’s lifetime. Thus, a single (train-
able) NCA guides the growth and integrity of a virtual organism’s tissue via intracellular
information processing and intercellular communication, imitating in silico the multi-scale
competency-based process of morphogenesis and morphostasis.

Here, we deploy a swarm of virtual uni-cellular agents on the spatial grid of an NCA.
As illustrated in fig. 1 (D), each uni-cellular agent’s internal decision-making machinery
is modeled by an ANN that allows each agent to independently perceive the cell states
of its adjacent neighbors on the grid and propose cell state update actions to regulate its
own cell state over time. The collective of cells thereby forms a spatial pattern or tissue
of cell states on the NCA via local communication rules.

We utilize evolutionary algorithms (EAs)103 as simulated evolutionary process to opti-
mize the parameters of such NCAs, so the uni-cellular agents evolve to collectively self-
assemble a predefined target pattern of cell states in a fixed number of developmental
steps; see fig. 1 (E) for a flow-chart of the evolutionary process. We explicitly separate
the NCA parameters into a structural and a functional part. The structural parameters
describe the initial cell state, and the functional parameters the weights and biases of the
ANN of each agent, as illustrated by the “Genome” in fig. 1 (E). Both the structural and
functional part of the genome are compiled into a swarm of uni-cellular phenotypes on the
grid of the NCA. Thus, starting from an initial cell state configuration, given by the struc-
tural part of the genome, the NCA’s uni-cellular agents run the developmental program of
morphogenesis via successive perception-action cycles (see fig. 1 (D)) to self-assemble
in successive developmental steps a system-level phenotype, i.e., a two-dimensional pat-
tern of cell states on the NCA. The deviation of these final cell state configurations from
a desired target pattern - here, a Czech flag- or smiley-face-pattern reminiscent to that of
the amphibian craniofacial prepattern104 - defines the phenotypic fitness score of a partic-
ular NCA realization. Based on an entire population of NCAs, and on the corresponding
fitness scores, the EA successively samples the genomes of the next generation of NCAs
which, over time, evolve to reliably self-assemble the target pattern.

The conceptually simple process of cell state updates of NCAs and the ANN-based
modelling of the uni-cellular decision-making allow us to interfere with (I) the reliability of
the cell state update executions, and (II) with the computational capacity of the ANNs that
guide each cell’s decision-making. To vary the former (I), we introduce a decision-making
probability, PD, that specifies the probability at which a proposed update of each individual
cell is executed in the environment (or omitted otherwise). Thus, by tuning the decision-
making probability from PD = 0 to PD = 1, we can continuously vary the behavior of the
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NCA from a direct-encoding scheme without competency to a multi-scale competency
architecture with perfect reliability in cell state update executions.

To systematically vary the computational capacity of the involved ANNs (II), we intro-
duce independent copies of a particular sub-module of the uni-cellular agents’ ANNs, i.e.,
of the policy module illustrated in fig. 1 (D) (see sections II A and III B and appendix A for
details on the ANN architectures). This increases the number of trainable parameters of
the ANNs which are responsible for performing the same operation, namely interpreting
the cell’s local environment and proposing a cell state update action. Thus, by taking the
average output of all redundant policy-modules of a single agent, a cell’s decision-making
can be biased by the several redundant paths through which signals are transmitted in
the ANN, inspired by error-correcting codes105–107. We explicitly define a redundancy
number, R, that specifies how many redundant copies of the policy module are used in
the ANNs of an NCA’s cells.

The decision-making probability (I) and the redundancy number (II) represent two
levers of competency in our system (schematically illustrated by the red know in fig. 1),
which we can scale continuously (I) or discretely (II) to systematically tune the behavior of
an NCA. Throughout the manuscript, we refer to these two parameters as “competency
levels”, but we would like to stress that many more options would have been possible
to vary the competency in our system. For instance, the particular ANN architecture can
have large effects on the competency of the uni-cellular agents; a systematic investigation
thereof is out of the scope of this work. Here, we utilize two particular ANN architectures,
one based on a feed forward (FF) and one based on a recurrent ANN architecture108 that
is inspired by gene regulatory networks (GRNs)109, which we thus term recurrent gene
regulatory network (RGRN), see appendix A for details.

To study the effects of different competency levels of the decision-making centers in
a multi-scale competency architecture on the underlying evolutionary process of a mor-
phogenesis task, we systematically vary in large-scale simulations the decision-making
probability (I) and the redundancy number (II) of NCAs with FF and RGRN ANN archi-
tectures. Furthermore, we expose the corresponding NCAs to different noise conditions
during cell state updates (III) and perform several statistically independent evolutionary
searches at each parameter combination (I-III) to investigate the performance of the evo-
lutionary process of finding solutions to such noisy pattern formation tasks.

The manuscript is organized as follows: In section II, we describe the numerical and
computational methods applied herein. More specifically, we introduce NCAs in sec-
tion II A, and describe the neuroevolution approach used to optimize the NCAs ANN
parameters based on ideas of evolution and natural selection via EAs in section II B.
We specify the particular morphogenetic problem we primarily focused on - the 8 × 8
Czech flag task - in section III A, and compare in section III B the efficiency of evolving
the target pattern via a direct encoding scheme and a multi-scale competency architec-
ture. In section III C, we functionally define and systematically vary the different tuneable
competency levels in our system to illustrate the evolutionary implications of utilizing a
multi-scale competency architecture rather than a direct encoding scheme for morpho-
genesis tasks. We then study the effects of allowing the evolutionary process to afford
competency as a gene during optimization in section III D, and eventually investigate our
multi-scale competency approach for robustness and generalizability regarding system
parameter changes in section III E, and for transferability to modified target patterns in
section III F. We conclude in section IV, and attach an Appendix.
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II. METHODS

A. Neural Cellular Automaton: A Multi-Agent Model for Morphogenesis

Cellular Automata (CAs) have been introduced by von Neumann to study self-replicating
machines97 and are simple models for Artificial Life96. In CAs, a discrete spatial grid of
cells is maintained over time, each cell i being attributed a binary, integer, real, or even
vector-valued state, ci(tk), at each step in time tk. The cell states evolve over time via
local updated rules, ci(tk+1) = fu(Ni(tk)), as a function of its own, ci(tk), and the numeri-
cal states, ciν (tk), of its iν=1,...,N neighboring cells on the grid, that we collect in the matrix
Ni(tk) = (ci(tk), ci1(tk), . . . , ciN (tk)). Although typically rather simple “hardcoded” (i.e.,
predefined) update rules fu(·) are employed, CAs often display complex dynamics and
can even be utilized for universal computation (c.f., Conway’s Game of Life98 or Wolfram’s
rule 110110,111).

Neural cellular automata (NCAs)100 extend CAs by replacing the local update rule with
more flexible112 artificial neural networks (ANNs), fu(·) → fθ(·), where θ denotes the
set of trainable parameters of the ANN (see appendix A for details). Employing Machine
Learning, such NCAs have been trained to perform self-orchestrated pattern-formation101

(notably, of RGB-images from a single “seed” pixel) and even the co-evolution of a rigid
robot’s morphology and its controller has been demonstrated recently with NCAs in sil-
ico102. Such self-orchestrated pattern-formation is reminiscent of the self-regulated devel-
opment of a biological organism, from a single fertilized egg cell to a complex anatomical
form. Thus NCAs have been proposed as toy models for morphogenesis101.

An NCA basically represents a grid of cells that are equipped with identical ANNs, each
perceiving the numerical cell states of its host’s local environment, Ni(tk), and proposing
actions, ai(tk) = fθ(Ni(tk)), to regulate its own cell state

ci(tk+1) = ci(tk) + ai(tk) + ξc, (1)

- and, in turn, the cell states of its neighbors - where we also account for potential noise ξc
in the environment during the process of morphogenesis. Thus, each cellular agent can
only perceive the numerical states of its direct neighbors, Ni(tk), at an instant of time, tk,
and, in turn, communicate with these neighbors via cell state updates, ci(tk+1), following a
policy π(Ni(tk)) ≈ fθ(Ni(tk)) that is approximated by an ANN with parameters θ. Through
the lens of Reinforcement Learning113, an NCA can thus be understood as a trainable,
locally-communicating multi-agent system that can be utilized such that the collective of
cells achieves a target system-level outcome (see appendix B for details).

In contrast to previous contributions of in silico morphogenesis experiments in NCAs101,
we here do not use standard convolutional filters in our ANN architectures but utilize per-
mutation invariant ANNs with respect to a cell’s neighbors, Ni(tk) (see fig. 1 (C) for an
illustration): Inspired by Ref. 114, this is achieved by partitioning a cell’s ANN into (i) a
sensory part, f

(s)
θ (·), preprocessing the state of each neighboring cell separately (i.e.,

its own, εi(tk) = f
(s)
θ (ci(tk)), and of all neighboring states, εiν (tk) = f

(s)
θ (ciν (tk))) into a

respective sensor embedding, E(Ni(tk)) = (εi(tk), εi1(tk), . . . , εiN (tk)). These neighbor-
wise sensor embeddings are (ii) aggregated by mean (along the neighbor dimension)
into a context vector si(tk) = ⟨E(Ni(tk))⟩N ∈ Rs of fixed size s, which is then used as the
input of (iii) a controller ANN, f (c)

θ (·), potentially with recurrent feedback connections, that
eventually outputs the cell’s action, ai(tk) = f

(c)
θ (si(tk)); for details we refer to appendix A.
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Due to the mean-aggregation of a cell’s sensory embedding, each cell completely
loses its ability to spatially distinguish between neighboring (and even its own) state inputs
and thus fully integrates into the tissue locally. We would like to stress the close relation
of our approach to the concept of breaking down the computational boundaries of a cell’s
“Self ” via forgetting93 and to the scaling of goals from a single agent’s to a system-level
objective95.

To model the developmental process of morphogenesis, we here employ NCAs on a
two-dimensional Nx × Ny square grid with the objective that all cells of the grid assume
their correct, predefined target cell type, ĝi, after a fixed number of ND developmental
time steps, starting from an initial cell state configuration ci(0). We attribute a number of
NG elements gi(tk) ∈ RNG of the NC-dimensional cell state ci(tk) ∈ RNC of an NCA as
indicators for expressing one of 1, . . . , NG discrete cell types, such that ci(tk) = gi(tk) ∪
hi(tk); the remaining NH = (NC − NG) elements of the cell state represent hidden states
hi(tk) ∈ RNH of a cell that can be utilized by the NCA for intercellular communication. We
explicitly define each cell’s type, gi(tk), as the argument (i.e., the index) of the maximum
element of the NG-dimensional indicator vector gi(tk):

gi(tk) = argmax
g∈RNG

(gi(tk)) . (2)

Training an NCA to assemble a predefined target pattern (realized by a set of Nj =
Nx × Ny target cell types {ĝ1, . . . , ĝNj

} for the entire grid) thus boils down to finding a
suitable set of NCA parameters (c.f., “Genotype” in fig. 1 (E)) that minimizes the devia-
tion of each cell i’s type gi(tD) from ĝi after tD developmental time steps, i.e., after the
developmental stage of the virtual organism (c.f., “System-level Phenotype” in fig. 1 from
left to right, and details below). Here, we are interested in the evolutionary implications
of biologically inspired multi-scale competency architectures, the latter being modeled by
our morphogenetic NCA implementation. We thus introduce in section II B, and utilize in
section III, evolutionary algorithms to evolve suitable sets of NCA parameters that maxi-
mize a fitness score based on comparing the “final” cell types of the NCA, gi(tD), with the
predefined target cell types ĝi.

B. Neuroevolution of NCAs: an Evolutionary Algorithm approach to
Morphogenesis

Evolutionary algorithms (EAs) are heuristic optimization algorithms that maintain and
optimize a set, i.e., a population, X = {x1, . . . ,xNP

}, of parameters, xj ∈ RX, also termed
individuals, over successive generations to maximize an objective function, or a fitness
score, r(xj) : RX → R. Inspired by the ideas of natural selection and the DNA-based
reproduction machinery of biological life, EAs (i) predominantly select high-fitness indi-
viduals of a given population for reproduction, and utilize (ii) crossover and (iii) mutation
operations to generate new offsprings by (ii) merging the genomic material of two high-
quality individuals from the current population, xo = xj

⊕
xk, and (iii) occasionally mu-

tating the offspring genomes, xo → xo + ξx by adding (typically Gaussian) noise to the
parameters; the

⊕
symbol indicates a genuine merging operation of two genomes, which

may depend on the particular EA implementation. In that way, a population X of individu-
als is guided towards high fitness regions in the parameter space RX, typically over many
generations of successive selection and reproduction cycles (i)-(iii).
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In contrast to biological life, many use-cases of EAs do not require a distinction be-
tween individuals in the parameter space, i.e., genotypes xj, and the corresponding or-
ganisms in their natural environment, i.e., phenotypes, pj: while the genetic crossover
and mutation operations of biological reproduction rely on bio-molecular mechanisms on
the level of RNA and DNA, i.e., are performed in the genotype space, selection typi-
cally happens at the much more abstract level of an organism’s natural environment,
i.e., in the phenotype space. Carrying this through computationally can be resource-
demanding, depending on the complexity of a simulated environment. Nevertheless, to
address the asymmetry between genotypes and phenotypes in multi-scale competency
architectures, it is essential to evaluate the EA’s fitness score in the phenotype space
instead of the genotype space, r(xj) → r(pj).

We explicitly separate the genotype and phenotype representation of individuals by
introducing a biologically inspired developmental layer 1 in between genotypes and phe-
notypes, xj

Dev.−−−→
Layer

pj, as illustrated in fig. 1. More precisely, we follow section II A and

model the developmental process of morphogenesis in silico by utilizing NCAs: We treat
an NCA j’s parameters, such as the set of i = 1, . . . , Nj initial cell states x

(S)
j = {ci(0)}j

and the corresponding ANN parameters x
(F)
j = θj, as the (virtual) organism’s genome,

xj = x
(S)
j ∪ x

(F)
j = ({ci(0)}j, θj) , (3)

explicitly partitioning the genome into a structural (S) and a functional (F) part, as indi-
cated by the superscripts. We then perform a fixed number of tD developmental steps
employing eq. (1), and interpret the corresponding set of “final” cell types {gi(tD)}j of the
entire NCA, c.f., eq. (2), as the mature phenotype,

pj = {gi(tD)}j, (4)

representing a two-dimensional tissue of cells.
In an effort to evolve the parameters, xj, of an NCA j to achieve morphogenesis of a

two-dimensional spatial pattern of cell types, pj, that resembles a pattern of predefined
target cell types, {ĝ1, . . . , ĝNj

}, of a total of Nj cells on an Nx × Ny square grid (see
section II A), we define the phenotype-based fitness score r(pj) as

r(pj) = (2n
(G)
j −Nj) + rT n

(T)
j − rS n

(S)
j , (5)

where (i) n
(G)
j is the number of correctly assumed cell types gi(tD) = ĝi after tD devel-

opmental steps, (ii) n(T)
j is the number of time steps at which the entire target cell type

pattern is correctly assumed, i.e., whenever gi(tk ≤ tD) = ĝi for all i, and (iii) n(S)
j is the

number of successive time steps, ts and ts+1 ≤ tD, where all cell types stagnate, i.e.,
where gi(ts+1) = gi(ts) for all i. With eq. (5), we thus reward the entire NCA j by counting
all correctly assumed cell types after tD developmental steps (while discounting all incor-
rect cell types gi(tD) ̸= ĝi), we reward maintaining the target pattern over time with a factor
of rT , and discount a stagnation of a suboptimal pattern over time by a factor of rS. We
consider the problem solved if a final fitness score of Nj = Nx ×Ny is reached. Notably,
there is no explicit fitness or reward feedback on the level of the uni-cellular agents in our
system; the fitness score is solely used as the selection criterion for sampling the next
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evolutionary generations, so the cellular collective needs to evolve an intrinsic signaling
mechanism to successfully perform the requested morphogenesis task.

The here proposed setting of genotypes, xj, corresponding phenotypes, pj, and as-
sociated fitness scores, r(pj), given by eqs. (3) to (5), respectively, can be used in
combination with any black-box evolutionary- or genetic algorithm. We rely on the well-
established Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES)103 to simulta-
neously evolve the set of initial cell state configurations (i.e., structural genes, x(S)

j ) and
the set of corresponding ANN parameters of an NCA (i.e., functional genes, x(F)

j ) with
the objective of a purely self-orchestrated formation of a two-dimensional spatial tissue
as illustrated by fig. 1 and described by eq. (1).

III. RESULTS

A. The System: An Agential Substrate Evolves to Self-Assemble the Czech Flag

Evolution works with an active rather than a passive substrate, i.e., with biological cells
with agendas of their own1. Thus, at every stage of development during morphogenesis
collective decisions are made at vastly different length- and time scales within an organ-
ism, guiding the formation of the mature phenotype. We aim to model exactly this process
via Neural Cellular Automata (NCAs) described in section II A and employ evolutionary
algorithms (EAs) to evolve the parameters of such NCAs, so the latter perform well on
a target morphogenesis task, see section II B. Without loss of generality, we consider an
Nx × Ny = 8 × 8–Czech flag pattern (as a more complex version of the classic French
Flag problem of morphogenesis115,116) as the target pattern for our in silico morphogen-
esis experiments, with a fixed number of Nj = 64 cells in total, NG = 3 distinct cell types
(colored blue, white and red, respectively) and NH = 1 hidden state, which renders the
dimension of the NCA’s cell state as NC = 4. We use a square grid of cells with N = 8
neighbors per cell and with fixed boundary conditions (see appendix C for details).

Starting from a genotype xj defined in eq. (3), we perform a number of tD = 25 devel-
opmental steps per morphogenesis experiment to “grow” a phenotype pj, described by
eq. (4), based on which the fitness score r(pj) is evaluated following eq. (5) (see fig. 1 for
an illustration of this process). During this entire process, we limit the magnitude of the
numerical cell state values ci(tk) at all time steps tk to the interval lc = [−3, 3], and, anal-
ogously, limit the magnitude of the proposed actions ai(t) of each uni-cellular agent to the
interval la = [−1, 1]. This is achieved by clipping the numerical values of ci(tk+1) after a
cell state update described by eq. (1), and the ANN outputs ai(t) to the respective limits lc
and la. The noise level ξc defined in eq. (1) is counted in units of the action limits, max(la),
and is thus sampled from a Gaussian distribution with zero mean and standard devia-
tion ξc independently for each of the NC = 4 cell state elements, thus affecting the cell
state updates during development; the actual numerical values for the hyperparameters
above turned out to be well suited for the problem at hand, especially to reasonably com-
pare and discuss simulation results for the means of this contribution, but are not crucial
for the more general aspects on the evolutionary implications of multi-scale intelligence
discussed here.

To study the effects of different types of decision-making machinery within a cell,
we utilize two different architectures for the NCA’s artificial neural networks (ANNs), a
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Feed Forward (FF) and a recurrent ANN inspired by gene regulatory networks117–120

(RGRNs)121. Notably, the RGRN-agent architecture augments cells with an internal mem-
ory that is independent of their states in the NCA and can thus not be accessed by
the cells’ neighbors. To balance the length of the structural genome x(S) and functional
genome x(F) defined in eq. (3), the two ANN architectures, FF and RGRN, are chosen
such that the number of parameters NFF = 192 and NRGRN = 164 is roughly the same as
the number of initial cell states Nj × NC = 64 × 4 = 256. Thus, the ANNs utilized here -
and detailed in table I of appendix A - are tiny compared to Ref. 101.

For each experiment of evolving an NCA’s parameters, i.e., for each independent run of
the EA, we typically utilize a population, X , of NP = 96 individuals and a maximum number
of NM = 2000 generations. As the EAs ultimate fitness criterion, we consider the average
Fj = ⟨r(pj)⟩NE

of NE = 8 statistically independent fitness scores r(pj) of corresponding
morphogenesis simulations starting from an individual j’s genotype xj and resulting at a
corresponding phenotype pj after tD developmental steps; the developmental program
described via eq. (1) is imperfect due to the developmental noise applied to the cell state
updates and can thus lead to different, noise-induced phenotypic realizations. Typical
values used here for the corresponding reward factors defined in eq. (5) are rT = 0.25

and rS = 0.5. We consider the problem solved if a fitness of Fj = max(n
(C)
j ) = Nj = 64 is

reached, but since we reward individuals to maintain the target pattern over time (via rT ),
the maximum possible fitness score after tD developmental time steps is max(rj(pj)) =
70.25 in this example. Further details about the hyper-parameters of the EA and afforded
computational resources can be found in appendix D.

B. Direct vs. Multi-scale Encoding: Cellular Competencies affect System Level
Evolvability

We aim in this contribution to investigate the evolutionary implications of biologically
inspired multi-scale competency architectures1,94. Thus, we compare two qualitatively dif-
ferent evolutionary processes both with the objective of morphogenetic pattern formation
but whose genomes either (i) directly encode phenotypic features of a two-dimensional
target pattern (cf. fig. 1 (A)), or (ii) encode cellular competencies of a multi-scale architec-
ture that gives rise to the same phenotypic features (cf. fig. 1 (C)). Notably, different defi-
nitions of direct and indirect encodings in multi-agent systems have been used in the liter-
ature122. Here, we specifically distinguish between structural parameters, x(S)

j = {ci(0)}j,
in the search space that directly encode features of the phenotype, i.e., specific initial cell
types, gi(0) ≈ ĝi, and functional parameters, x(F)

j = θj, that indirectly, or rather functionally
encode the target pattern by parametrizing the intercellular communication and intracel-
lular information processing competencies of the NCA that facilitate the self-orchestrated
pattern formation process.

If no ANN at all were present in our model, i.e., θj = {}, and in the absence of noise,
ξc = 0, we would re-establish a direct mapping between genotype and phenotype, as
ci(0) = ci(tD), and thus a direct encoding of the target cell type pattern can be achieved,
gi(0) = gi(tD). However, by default, we allow each cell to successively regulate its own
cell state towards a target homeostatic value via an iterative perception-action cycle de-
fined by eq. (1) and, moreover, to communicate in that way with neighboring cells. More
specifically, each cell updates its cell state solely based on its own and the states of
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FIG. 2: Typical fitness trajectory over several generations of CMA-ES103 of an NCA-based 8× 8 Czech-flag
morphogenesis task without (top) and with competency (bottom), corresponding to (i) direct and (ii ) an
multi-scale competency encoding of the target pattern as discussed in the text, representative for related
experiments at similar system parameters (c.f., fig. 3). We present the historically- (blue) and currently-
best fitness value per generation (light blue), the current structural fitness (purple), and the mean (black)
and variance (gray) of the fitness of the entire population; in the top panel, the structural and phenotypical
fitness are equivalent, thus only the latter is shown. The task is solved when a final fitness score of Fj = 64
is reached (marked by the green dashed line), i.e., when 8 × 8 = 64 cell types are correctly assumed
after tD = 25 developmental steps. The cartoon insets represent the perception-action cycle of the NCA,
assembling an initial (random) arrangement of cell types into the target pattern; for the direct case (top
panel), the NCA’s ANN is disabled, which is illustrated by masking the agential parts in the cartoon.

its adjacent neighbors which, in turn, update their states based on their respective local
environment. We explicitly avoid direct environmental feedback to the cells’ perception
(such as an individual or collective reward signal) but fully restrict the NCA to intercellular
communication (via cell state updates) and intracellular information processing. These
uni-cellular agents thus exhibit a certain level of problem-solving competencies that can
be utilized for the challenge at hand, in our case for a collective system-level objective of
forming a specific two-dimensional target pattern95,101,102.

With the explicit partitioning of the genome into a structural part, i.e., x(S)
j , and a func-

tional part, i.e., x(F)
j , we can study the effect of direct vs. multi-scale, or competency-

driven encoding of phenotypic traits in the process of evolution, and, moreover, quanti-
tatively tackle the question whether competent parts affect the process of evolution and
evolvability. In any case, the initial cell state pattern is given by the structural part of
the genome. Thus, in the absence of noise and without any active functional part in the
genome, the set of initial cell states directly represents the final pattern, while otherwise
cell states can either be modified passively by noise in the system or actively through
actions by the cells during the developmental stage. Thus, we employ CMA-ES103 to ei-
ther evolve the (i) structural, or both (ii) the structural and functional part of the genome
of an NCA simultaneously with the shared objective of self-assembling an 8 × 8 Czech-
flag pattern in tD = 25 developmental time steps in the presence of noise, ξc = 0.25 (cf.,
sections II B and III A for details). More explicitly, in case (i) we restrict the evolutionary
process to search only the space of direct phenotypic encodings, while in case (ii) we
allow evolution to evolve both a structural and a functional part of the genome, thus giv-
ing it the opportunity to prioritize one over the other (the results of this experiment are
presented in fig. 2).
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We can see in fig. 2 that both the evolution of the (i) direct and (ii) multi-scale encoding
schemes of the target pattern can be achieved with the presented framework and a fitness
threshold of Fj = 64 is reached after ≈ 300 − 600 generations, thus solving the problem.
However, depending on the encoding scheme (i) or (ii), we can identify clear qualitative
differences in the strategy and the “efficiency” of the evolutionary process i.e., how many
generations it takes to reach a certain fitness threshold and eventually converge (c.f., top
and bottom panel of fig. 2, respectively): The respective fitness score of the direct case (i)
grows steadily and almost monotonically over successive generations until the threshold
of Fj = 64 is reached after 668 generations for that particular run, and the EA converges
at a maximum fitness of maxF

(i)
j = 70.25 after 942 generations (see section III A for

details on the threshold fitness values). In contrast, the evolutionary process of the multi-
scale case (ii) undergoes significant leaps as reflected by the corresponding fitness score
which can increase rapidly if a suitable innovation, i.e., a favorable crossover or mutation
event in the functional parameters θj, occurs; the initial standard deviation of the fitness
of the entire population is significantly larger compared to the direct case (i), yet the
threshold fitness of Fj = 64 is reached in 428 generations, and the EA converges after
679 generations (although at a lower maximum fitness of maxF

(ii)
j = 69).

The results presented in section III B are based on selected evolutionary optimiza-
tion runs, that are representative of related experiments with similar parameterizations.
However, one should keep in mind that such results are always susceptible to chance in
initial conditions or mutations in the EA, but also to the developmental noise; moreover,
hyperparameters of the evolutionary search or even the specific ANN architectures can
influence the evolvability of such NCA systems. Thus, we present in section III C below a
more statistically significant analysis of the evolutionary implications of direct and multi-
scale encodings under various conditions of the cellular agents’ competency levels and
the developmental noise.

Our separation of the genotype, xj, into a structural, x(S)
j = {ci(0)}j, and into a func-

tional part, x(F)
j = θj, moreover allows us to extract the structural (or genotypic) fitness

along an entire evolutionary history: We define the structural fitness as the fitness score
r(p∗

j) of a phenotype p∗
j with evolved structural genes {ci(0)}j but with disabled agency

θj → θ∗j = {}. Notably, in the direct case (i) we have pj = p∗
j , which is illustrated in

fig. 1 (A) and reflected in the top panel of fig. 2; the structural fitness of the multi-scale
case (ii) is explicitly visualized in the bottom panel of fig. 2. In the latter case, the structural
fitness remains essentially detached from the phenotypic fitness, p∗

j ≈ 0 ≪ pj during the
entire evolutionary history (which also explains the convergence to a suboptimal maximal
fitness level of max(Fj) = 69 in this particular NCA solution, as the final Czech flag pattern
first needs to be assembled from the corresponding imperfect initial cell configurations,
x
(S)
j ). This all suggests that, in contrast to (i), the EA in (ii) can make the most use of

exploring the functional part of the genome, i.e., the space of behavior-shaping signaling
and information processing1, and, in turn, that the mere presence of competent parts
drastically changes the search space accessible to evolution3; to illustrate this explicitly,
we present in appendix E an illustration of the evolution of the morphogenesis process.

Interestingly, we still observe a slow but steady increase of the structural fitness in the
long term in case (ii) owed to the small additional reward signal, rT , reinforcing the cellular
agents to maintain the target pattern over time. This can most efficiently be achieved if
the agent starts from a perfect set of initial cell types, representing a particular sub-space
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in the parameter space that might not necessarily be easily accessible to the EA at all
stages during the evolutionary search. However, we would like to stress that such a slow
transfer of problem-specific competencies from an agential, highly adaptive functional
part, x(F)

j , to a rather rigid structural part, x(S)
j , of the genome could be a manifestation of

the Baldwin effect14. Through a computational lens, such a competency transfer would
also allow, as soon as the structural part of the genome is reliable enough, to re-purpose
the system’s competency to adapt to other, independent tasks, and thus may facilitate the
in biology ubiquitous effect of polycomputing in related systems123.

This all illustrates that an agential material1,94, or more precisely a substrate com-
posed of competent parts, can have significant effects on the process of evolution and
evolvability, especially for morphogenesis tasks. We thus conclude that, if competent
parts are available, evolution prefers exploiting competency over direct encoding - if the
environment requires competency at all (see discussion in section III C). This leads to the
conclusion, that “competency at the lowest level greatly affects evolution and evolvability
at the system level.”

C. Evolution exploits Competency over Direct Encoding, if necessary

Here, we investigate the effects of varying different levels of competency at the cellular
level of a multi-scale competency architecture on the evolutionary process of morpho-
genesis. More specifically, we introduce the decision-making probability (I), PD, which
constrains the ability of each cell individually to perform cell state updates in the environ-
ment: PD defines the probability at which a proposed cell state update of each individual
cell in the NCA is executed (or otherwise omitted). Thus, varying the decision-making
probability from PD = 0 to PD = 1 smoothly transitions the system’s behavior from a direct
encoding scheme without competency to an increasingly reliable multi-scale competency
architecture (c.f., fig. 2).

Another, somewhat hidden level of competency we already discussed in section II A
is each cell’s ANN architecture: An RGRN-agent with internal memory can acquire and
execute tasks differently than a simpler FF-agent without any feedback connections ex-
cept for its cell state ci(tk). Comparing the evolutionary implications of such functionally
different ANN architectures is, however, not trivial, and is thus kept to a minimum here.

However, we parameterize both FF and RGRN agents such that their controller part
of the ANNs (c.f., fig. 1 (C), section II A and appendix A) are (II) stacks of R redundant
copies of the same controller ANN, each copy with its own set of parameters, which take
the same pre-processed aggregated sensor embedding as input, and whose individual
outputs are averaged into a single action-output of a cell. Inspired by redundancy in
error-correcting codes105,106, we thus allow cells with higher values of this redundancy
numbers, R, i.e., with many alternative routes through the controller part of the ANN, to
- in principle - integrate environmental signals more generally compared to R = 1, thus
affecting the cells competency.

While scaling from PD = 0 to PD = 1 smoothly increases a cell’s competency to reliably
regulate its cell state, increasing R enhances the computational capacities of the uni-
cellular agents. Henceforward, we interpreter (I) PD and (II) R as two competency levels
in our system which we can vary (I) continuously and (II) discretely.

Analogous to sections III A and III B, we thus utilize CMA-ES to evolve the genotypic
parameters of an NCA to self-assemble the 8×8 Czech flag pattern under different condi-
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FIG. 3: A (B): The average fitness per generation of the best-performing individual in a population of 65
independent evolutionary processes of the 8x8 Czech flag task, evaluated from left to right at different noise
levels (decision-making probabilities) and color-coded by the decision-making probabilities (noise-levels),
respectively; solid lines mark average fitness values, the shaded area marks the standard deviation (to
lower values only), and dashed lines indicate when an average fitness threshold of 64 is crossed, solving
the problem. C: Heatmap of the average generation number when the fitness threshold of 64 is crossed at
particular combinations of the decision-making probability and noise level as detailed in A, B; green and red
arrows respectively indicate directions along PD of increasing and decreasing values of the avg. fitness at
fixed noise values. D: Same as C but partitioned by the respective FF-agent or RGRN-agent architectures
used in the respective CMA-ES runs.

tions (I-II), and expose the cells to different noise-levels (III), ξc, during cell state updates
defined in eq. (1).

In fig. 3 (A,B) we present the corresponding fitness scores of a maximum of 2000 gen-
erations of CMA-ES for different noise levels ξc ∈ [0, 0.5], averaged over different values of
the decision-making probability PD ∈ {0, 12.5%, 25%, 50%, 100%} for both FF-agents and
RGRN-agents. Moreover, for each realization of ξc and PD we utilize experiments with
different redundancy numbers R ∈ {1, 2, 4, 8, 16} and employ 15 statistically independent
EA runs for each parameter combination ξc, PD and R, and thus arrive at 75 statistically
(and functionally, with respect to an agent’s ANN architecture) independent fitness trajec-
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tories per (PD, ξc)-combination; see section III A and appendix D for more details on the
EA parameters. In fig. 3 (C) we present the average number of generations it takes to
solve the problem (to reach a fitness threshold of Fj = 64) for each combination of PD

and ξc, aggregated over the agents’ ANN architectures, FF or RGRN, and the respective
redundancy numbers R for 15 statistically independent EA-runs each; in fig. 3 (D) we
present the data from fig. 3 (C) but separately for both ANN architectures.

We observe in fig. 3 that, depending on these two parameters, PD and ξc, for no- or
very low noise levels, ξc ≈ 0, the evolutionary search is most efficient, i.e., finds the
solution in the least number of generations on average, for low values of the competency
level PD ≈ 0. Thus, in these situations, direct encoding (achieved via PD = 0) seems to
be preferable to competency-driven encodings with PD > 0 (as indicated by the bottom
red arrow in fig. 3 (C)); this is partly owed to the specific definition of the cell types gi(tk)
given by eq. (2), making a noise-less search very simple for the EA. However, for more
realistic, noise conditions ξc > 0, the situation changes drastically: With increasing noise
level, the evolutionary efficiency of NCA’s with higher competency levels is significantly
larger compared to low competency levels and, especially, to the direct encoding scheme
(as indicated by the green arrows in fig. 3 (C)); for noise levels of ξc = 0.375 and 0.5,
the EA does not even find solutions for the direct encoding case with PD = 0 in 2000
generations as cell state updates become increasingly necessary to counteract the noise
in the system. There is a clear trend of increasing the evolutionary efficiency in our in
silico morphogenesis experiments by increasing the competency level for increasingly
difficult environments with high noise levels.

Thus, we conclude that scaling competency has a strong effect on the process of
evolution, and in realistic situations (with moderate to high noise) competency may greatly
improve the evolutionary efficiency and evolvability of collective self-regulative systems.

It might be noteworthy, that for evolving the 8 × 8 Czech flag pattern, essentially no
qualitative difference in the evolutionary efficiency between FF-agents and RGRN-agents
with the given number of parameters was observed. Also, the evolutionary implications
of utilizing a number of R > 1 redundant copies within the controller ANNs of an NCA’s
cells is much less pronounced, compared to the results depicted in fig. 3, as can be seen
in fig. 11 of appendix G. However, for more advanced problems such as assembling a
9× 9 smiley-face pattern (see appendix F), RGRN-agents seems to outperform a simpler
FF-agent significantly in terms of evolutionary efficiency. Moreover, a larger redundancy
number of R ≥ 4 is required by the evolutionary process to more efficiently evolve an
NCA’s functional parameters compared to a direct encoding scheme, hinting at a capacity
bottleneck of the deployed ANNs.

D. There is a Trade-off between Competency and Direct Encoding depending on
Developmental Noise.

A careful analysis of the results shown in fig. 3 reveals, that the largest competency
level of PD = 1 does not result in the highest evolutionary efficiency for any presented
noise level. On the contrary, populations with slightly lower competency levels of PD = 0.5
or even PD = 0.25 perform best at noise levels ξc ∈ {0.25, 0.375, 0.5} and 0.125, respec-
tively (as indicated by the green and red arrow-ends in fig. 3 (C)). In fact, cells with an
initially random genome (comprising the ANN and initial cell state parameters) that are
forced to make “uninformed”, i.e., initially random, decisions at every time step can in-
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terfere with the performance of the EA, as even initially perfect cell state configurations
will be destroyed during such a randomized developmental stage. We suspect that this
leads to corresponding delays in the evolutionary search compared to situations where
populations can better rely on the structural part of the genome. Indeed, populations with
“overconfident” actions can be trapped in local optima for many generations at all stages
of the EA, which, in our system, may only be resolved by very specific but random muta-
tions of the functional part of the genome (as we show later through fig. 4 in section III D).
This is reflected in fig. 3 (A,B) by the large deviations in the average fitness trajectories
for large PD values.

FIG. 4: A: The evolved decision-making probability PD for different noise levels ξc when a fitness thresh-
old of 64 for the 8 × 8 Czech flag task is reached; each symbol represents an independent lineage with a
color-coding that indicates the number of generations it took for that particular lineage to cross the specified
fitness threshold. The green/orange/red dashed lines indicate at which value of PD the evolutionary pro-
cess crossed the fitness threshold the fastest/on average/the slowest (i.e., in the least, average, or largest
number of generations) for each noise level. B: Same as A but with a fitness threshold 70. For both A
and B, the red/green/blue frames emphasize the noise level ξc = 0, 0.125 and 0.25 corresponding to panels
C-E, respectively: The latter show the evolution of the decision-making probability/fitness (top/bottom left
panel) and the value of the decision-making probability as a function of the corresponding fitness during the
evolutionary process of each lineage (right panel) for all lineages at the specified noise level. Results are
shown for an RGRN-agent architecture with redundancy R = 1, and are qualitatively similar to an FF-agent
architecture.

The insights from above lead to the questions, of whether there is a “natural”, or optimal
competency level, with respect to the decision-making probability PD, or whether a muta-
ble competency level can be utilized by the evolutionary process to improve the efficiency
of guiding a population towards high fitness regions in the parameter space. Thus, we
include the decision-making probability as an additional competency gene, x(C)

j , into the
NCA’s genome, xj → xj = x

(S)
j ∪x

(F)
j ∪x

(C)
j , c.f., eq. (3), and we perform in silico morpho-

genesis evolution experiments of the 8×8 Czech flag pattern for different noise-levels, ξc,
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analogous to section III C. We analogously limit the numerical range of the competency
gene x

(C)
j to the interval [−3, 3], and extract the corresponding decision-making probabil-

ity via PD,j = 1
2
(tanh(x

(C)
j ) + 1). Notably, for the experiments shown in this sub-section,

we use an L2-regularization124 on the genotypic parameters xj = (xj,1, . . . , xj,Nx) through
subtracting rL2 ×

∑Nx

i=1 x
2
j,i from the fitness score defined in eq. (5), with rL2 = 0.01.

In fig. 4 (A,B) we present the evolved competency level for different noise levels after
a fitness threshold of 64 and 70 is crossed, respectively, for 10 independent lineages
per noise level for an RGRN-architecture. The problem is considered solved at a fitness
of 64, but since we reward the NCAs to maintain the target pattern over time via r(T) in
eq. (5), a higher maximal fitness score of 70.25 can be reached after tD developmental
steps for sufficiently long evolution. Thus, we here relate fig. 4 (A) to the evolutionary
stage of having achieved the process of morphogenesis, and fig. 4 (B) of having achieved
morphostasis. For both cases, we essentially see two strategies emerging (see also
fig. 4 (C-E)): (i) one, where competency is maximized very early during the evolutionary
process that then remains near the maximally possible value of PD = 1, and (ii) a hybrid
strategy where a significantly lower competency level is assumed that still allows to solve
the problem.

Notably, strategy (i) is predominantly pursued at high noise levels where large cell
state fluctuations in the environment favor informed actions by the cellular agents. In
contrast, the second strategy (ii) emerges more frequently in lineages evolved at low
noise levels where, especially at very low noise levels ξc ≈ 0, most of the evolutionary
processes result in solutions that avoid competency altogether and a direct encoding
scheme (PD=0) is evolved. Intermediate competency levels evolve in the corresponding
intermediate noise regime. Following the trend of evolving morphogenesis (by crossing
a fitness score of 64) to morphostatsis (by converging to the maximal fitness value of
≈ 70) in fig. 4 (A) through (B), we see that the two strategies, (i) and (ii), “sharpen”
during the course of the evolutionary process, such that PD predominantly converges to
the minimally or maximally possible values of 0 and 1, depending on the environmental
conditions.

We also illustrate the evolved competency level of the particular lineage at all noise
levels in fig. 4 (A,B) at which the respective fitness threshold is crossed in the least-, and
maximum number of generations (and on average) amongst all 10 independent lineages
per noise level. This clearly reveals that evolutionary processes that follow a more direct
encoding strategy (ii) can evolve the problem at hand efficiently - if this is permitted by the
developmental noise. However, when increasing the noise level, the evolutionary process
can afford to evolve - or put differently, increasingly relies on evolving - the multi-cellular
intelligence of the NCA to perform morphogenesis and morphostasis, thus following a
third strategy (iii) that integrates both strategies (i) and (ii) in a non-trivial way. We observe
in fig. 4 (A) that the most efficient strategy for evolving morphogenesis seems indeed to
be such a hybrid approach (iii), where a minimally necessary competency level is utilized
at a specific noise level such that the corresponding evolutionary process can, again, be
very efficient in solving the task.

Moreover, this also holds for the stage where morphostasis is reached, c.f., fig. 4 (B):
Lineages that efficiently evolved to solve morphogenesis in our experiments also (typi-
cally) evolve to solve morphostasis efficiently. To emphasize this, we present in fig. 4 (C-
E) the “temporal dynamics” of the population-wise highest fitness and the correspond-
ing competency level per generation for all lineages at selected noise levels ξc =
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{0, 0.125, 0.25}; we also present for all corresponding lineages that have been evolved
at these selected noise levels the genotypic competency level PD,j against the corre-
sponding phenotypic fitness scores rj, and we find an apparent yet non-trivial relation
between these two quantities: typically, an initial rise in fitness rj in early generations is
associated with a decline in PD,j which is more pronounced at lower noise levels. For
intermediate noise levels 0 < ξc ≪ 1 we find that PD,j often assumes a minimum (i.e., a
minimally required yet finite competency level) when the evolutionary process reaches a
fitness level of ≈ 64. We suspect, that this allows the evolving morphogenetic process
to establish good starting configurations based on changes in the structural genome,
which can most efficiently be done at a minimal(ly necessary) competency level given a
certain developmental noise level in the environment. However, the competency is then
quickly pulled towards a maximum level of PD,j = 1 when the EA converges at a maximum
fitness score of ≈ 70, at the morphostasis stage. For large noise levels, e.g., ξc = 0.25
as depicted in section III D(E), the competency level rises with the corresponding fitness
score in a much more monotonic way, emphasizing the necessity of the corresponding
NCAs to utilize the cellular competency to solve the problem already at an early stage of
the evolutionary process.

Curiously, we also see lineages that settle at the highest possible competency levels
throughout their evolutionary history, even in conditions without noise, as can be seen in
section III D(C): Here, an initial “frozen accident” may cause an entire lineage to maintain
high competency levels due to a lack of diversity in the corresponding gene, although this
is not even necessary to solve the task. However, these high competency levels early
on during the evolutionary process can cause the population to stagnate at sub-optimal
regions in the parameter space for many generations if the corresponding policy of the
cells is sub-optimal but rigid to strategy changes via small mutations in the genome. The
population seems “trapped”, until a favorable mutation or crossover event occurs in the
functional part of the genome of an individual, that guides the entire population towards
higher fitness scores, eventually solving the problem. We suspect that this is also the
reason for the lower evolutionary efficiency of the “most competent” configurations (with
PD = 1) compared to slightly less competent cases (with PD = 0.5) of the experiments
depicted in fig. 3125.

Thus we conclude, that if the evolutionary process can afford to evolve its own com-
petency level, there seems to be a trade-off - during the entire course of the evolutionary
process - between “going direct” or “going competent”, depending on the developmen-
tal noise. Moreover, randomly initialized starting conditions may favor either direct or
multi-scale encoding strategies, which may not only affect the “final” competency level
the evolutionary process converges to, but can also greatly influence the efficiency of
the evolutionary process itself. In general, the most efficient strategy for evolving mor-
phogenesis tasks seems to be a non-trivial tradeoff between finding a suitable initial cell
state configuration that then allows the competency-based self-assembly of the target
pattern to “kick in” and solve the task efficiently.

E. Competency can Lead to Generalization

We are ultimately interested in the question of whether a substrate of competent parts
shows abilities to generalize to environmental conditions that have never been experi-
enced by its evolutionary predecessors, and hence would allow the evolutionary process
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FIG. 5: The average fitness score of 100 independent evaluations of selected NCA results utilized at
noise (A-D) and competency-level conditions (E, F) which have not been experienced during training for an
increased total lifetime of 100 time steps. The respective NCAs have been evolved at zero-noise without
competency (A), with evolvable competency (B), and under different noise conditions and decision-making
probabilities (C-F), with a fixed number of tD = 25 developmental steps; results of all panels except for B
are based on RGRN-agent architectures with training conditions given by titles and dashed lines. The data
presented in panels (C, E) and (D, F) are respectively based on the same NCA solution (indicated by the
dashed frames), while the noise level is varied in (C, D) at a fixed competency level of PD = 0.5 and the
competency-level is varied in (E, F) at a fixed noise-level of (ξc = 0.25, ξc = 0.5)], respectively.

to adapt an organism to changing environmental conditions more efficiently compared to
a direct encoding scheme. Thus, we systematically vary in fig. 5 the system parameters,
i.e., the noise level and the decision-making probability competency level, for selected
NCA solutions of the Czech flag problem that have been trained with certain sets of the
system parameters above.

For instance, we utilize NCA solutions that have been evolved to solve the 8× 8 Czech
flag problem in tD = 25 developmental steps (see above) under zero-noise conditions
without and with evolvable competency. Here, we utilize such solutions for larger noise
levels of ξc ∈ [0, 0.5] and for lifetimes of 100 time-steps and present the average fitness val-
ues of 100 statistically independent simulations at each particular noise level in fig. 5 (A,
B), respectively - without any further evolutionary optimization. Analogously, we expose
NCA solutions that have evolved with a competency level of PD = 0.5 and noise levels of
ξc = 0.25 and 0.5, respectively, to vastly different noise levels of ξc ∈ [0, 1] compared to
the conditions during their respective evolutionary processes, and present the results in
fig. 5 (C-D). Eventually, we again deploy the latter NCA solutions but vary the competency
level PC ∈ [0, 1] instead, at respectively fixed noise levels of ξc = 0.25 and 0.5, with results
depicted in fig. 5 (E-F). Notably, we only consider the “correctness” part of the fitness
score, i.e., the first term in eq. (5) by setting rT = 0 and rS = 0.

The results in fig. 5 demonstrate that the performance of the here evolved NCAs, op-
timized with evolutionary methods to assemble and maintain a target morphology over
time at particular system parameters, differs greatly between NCA solutions that follow
the direct- or multi-scale encoding paradigms when subjected to novel environmental con-
ditions: The typical fitness over the lifetime of an NCA without competency that encodes
the target phenotype pattern directly (c.f., fig. 5 (A)) is constantly affected by random fluc-
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tuations and thus decreases in fewer time steps with increasing noise levels in a diffusive
process; the duration of how long the corresponding maximum fitness score of 64 can be
maintained, and the speed at which the fitness eventually decays during the lifetime of
the here discussed 8×8 Czech flag NCA depends on the particular noise-level and on the
values of the initial cell states, which are limited numerically to the interval [−3, 3] for each
cell. In contrast, NCA solutions with larger competency levels that have been evolved
at finite noise-level conditions still perform well - and can maintain the target pattern for
exceptionally long times - also when changing the system parameters dramatically, (c.f.,
fig. 5 (B-F)); note the noise-level axis of ξc = 0 to 1, compared to maximum noise-levels
of ξc = 0.5 during training.

The results in panel fig. 5 (B) are especially curious, as the corresponding NCA has
been trained to evolve its decision-making probability alongside the structural and func-
tional parts of the genome at zero noise conditions. While no competency at all would
have been required to solve this task, the presented NCA solution evolved to afford a
maximum competency of PD = 1 (c.f., fig. 4 (C)). Strikingly, this particular NCA is capable
of resisting much larger noise levels of ξc ≈ 0.25 while maintaining the pattern perfectly
for at least tD = 25 steps, and the average fitness score of 100 independent solutions
does still not drop below a certain threshold of ≈ 40− 50 for even higher noise levels and
for 100 time steps. Notably, there appears to be a bifurcation of the long-term behavior of
these NCA solutions (not shown here) where the NCA - in some realizations - maintains
the target pattern perfectly for long times, while in other independent runs, the fitness
drops quickly.

In this sub-section, we thus show that NCAs that have evolved to assembly and main-
tain a target pattern within a relatively short developmental stage are capable of main-
taining the corresponding target pattern over much longer time scales - without any fur-
ther optimization - and thus show great signs of functional, morphostatic generalizability.
Moreover, the here-discussed in silico morphogenesis and morphostasis model systems
are capable of handling - essentially on the fly - system-parameter combinations neither
they, nor their evolutionary ancestors ever experienced before. Thus, we conclude that
such multi-scale competency architectures1, whose substrate is composed of competent
rather than passive parts, can be more than capable of generalizing to changes in their
environment - within reasonable boundaries, of course - by allocating robust problem-
solving competencies at many scales93,94.

F. Competency can Augment Transferability to New Problems

Deducing from the discussion in section III E about the generalizability of multi-scale
competency architectures1 towards changing environmental conditions, such systems
should also exhibit increased evolvability and transferability properties to new problems: if
such multi-scale competency architectures are capable of adapting their behavior towards
changing environmental conditions on the fly during a single lifetime (c.f., fig. 5), this has
great consequences for the evolutionary process when environmental conditions change.

Thus, we utilized the NCA solution discussed in fig. 4 (C) and fig. 5 (D) and performed
subsequent CMA-ES on the 8 × 8 Czech flag problem at changed environmental condi-
tions, i.e., at higher noise levels: only a single or at most a handful of generations are
necessary for solving the task even at intermediate and high noise levels of ξc = 0.25
and 0.5 (not shown here).
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FIG. 6: The average number of generations it takes for the CMA-ES to adapt a pre-evolved NCA solution
that can solve the 8×8 Czech-flag morphogenesis task to adapt, respectively, to the 8×8 blue-, white-, red-,
and Viennese-, blue\white-, and blue/red-flag morphogenesis tasks instead (c.f., panel insets) and reach
a correctness fitness score of 64. We specifically adapted Czech-flag NCA solutions that have been pre-
evolved at a noise level of ξc = 0.25, but with corresponding competency levels according to the horizontal
axis in fig. 3, and deploy CMA-ES for 1000 generations at the corresponding noise/competency-levels
depicted here on the vertical/horizontal axis, and average over multiple CMA-ES runs and corresponding
redundancy numbers, R = 1, 2, 4, 8, 16.

To emphasize the potential of transferability of multi-scale competency architectures,
we here investigate the adaptation-capability of pre-evolved NCAs when their objective
function is suddenly changed, i.e., when the environment starts selecting for different
target patterns than the one they have originally been evolved for. More specifically, we
utilize NCA solutions from section III C, and discussed through fig. 3, which successfully
solve the 8 × 8 Czech-flag task, and additionally perform 1000 evolutionary cycles of
CMA-ES on a related 8 × 8 blue-, white-, red-, and Viennese-, blue\white, and blue/red-
flag morphogenesis task for various noise and competency levels. We allow changes to
both the structural and functional parts of the genomes of the pre-evolved NCA.

In fig. 6, we present the corresponding number of generations it takes for 10−60 CMA-
ES runs on average to adapt a pre-evolved, i.e., “informed”, NCA solution that can solve
the 8 × 8 Czech-flag morphogenesis task to then solve the respective new morphogen-
esis task under different environmental conditions. We see a clear advantage in terms
of evolvability and adaptability of pre-evolved individuals at high-competency levels (in
contrast to individuals with lower competency levels) so that adaptation can happen in as
few as ≈ 10 generations. While the Czech→blue-, white- , and red-flag tasks are rather
trivial (see top panels in fig. 6), computationally, the Czech→Viennese-, blue\white, and
blue/red-flag adaptation tasks (bottom panels in fig. 6) are more complicated. Still, the
latter can be solved in as few as ≈ 20 generations compared to ≫ 100 generations of
evolving a corresponding randomly initialized NCA to solve the Czech-flag problem from
scratch, as shown in sections III B and III C.

Thus we conclude, that pre-evolved (or “informed”) competency at subordinate scales
of a multi-scale competency architecture greatly enhances a collective system’s capability
of adaptation. Thus, a competent and informed substrate has great effects on a multi-
scale competency architecture’s evolvability towards changing environmental conditions
and on the transferability of already acquired (evolved) solutions to new problems.
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IV. CONCLUSION

We have investigated the evolutionary implications of multi-scale intelligence on the
example of in silico morphogenesis of a two-dimensional tissue of locally interacting cells
that are equipped with tuneable decision-making machinery. More specifically, we have
utilized evolutionary algorithms (EAs)103 to evolve the parameters of Neural Cellular Au-
tomata (NCAs)100 on morphogenesis tasks under various conditions of the competency
level of the uni-cellular agents and the developmental noise in the system.

In this model of a multi-scale competency architecture1, a two-dimensional grid of
locally interacting cells is tasked to self-assemble and maintain a global spatial target
pattern of predefined cell types, here primarily of a two-dimensional, 8 × 8 Czech flag
pattern126. Each uni-cellular agent’s internal decision-making machinery is modeled by
an artificial neural network (ANN), allowing these cells to independently perceive the
cell states of their adjacent neighbors on the grid and propose actions to regulate their
own cell state over time, thereby communicating with their neighbors. Both the ANN
parameters and the initial cell states of all permanent cells represent the parameters of
the NCA and are optimized by EAs for a specific in silico morphogenesis task at hand,
thus forming the functional and structural part of the system’s genome, respectively.

To investigate the effects of competency in a multi-scale competency architecture on
the underlying evolutionary process, we vary (I) the reliability an NCA’s uni-cellular agents
can independently regulate their cell types during a noisy developmental stage. We thus
specifically define a “competency level” parameter in our system as the decision-making
probability at which proposed actions of uni-cellular agents are considered in the NCA’s
corresponding cell state updates (or omitted otherwise). This allows us to continuously
scale the NCA’s competency level from a direct encoding scheme of the target pattern
(no competency) to a multi-scale competency architecture that self-assembles the pat-
tern with perfect reliability in cell decision executions. Furthermore, we introduce (II) a
variable number of redundant sub-modules in the NCA’s ANN, each with an independent
set of functional parameters, which we can control in our system as another “axis” of com-
petency based on redundancy and computational capacity of the cells’ decision-making
machinery.

In large-scale simulations, we systematically vary these two competency levels (I, II),
expose the corresponding NCA to different noise conditions (III), and perform several
statistically independent evolutionary searches at each parameter combination (I-III). In
that way, we demonstrate that an evolutionary process proceeds significantly more rapidly
(on average) on noisy pattern formation tasks when evolving the parameters of a multi-
scale competency architecture compared to evolving the target pattern directly (with no
competency involved).

Our multi-scale competency architecture model and the corresponding evolutionary
optimization process comprise several scales: At the smallest scale (1), each structural
and functional gene is represented by a floating point number. The functional genes
parameterize the behavior of artificial neurons (2), our atomic decision-making centers,
which are then hierarchically arranged into layers of artificial neurons (3), sub-modules of
interconnected layers (4), to an ANN with a predefined architecture (5). Thus, even the
uni-cellular phenotypes (6) in our system - ANN-based agents that maintain a particular
internal cell state - are composites of smaller (proto-competent) decision-making centers
down the hierarchical ladder. The composite uni-cellular agents perceive the cell states
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of their grid neighbors (7) on the NCA, perform potentially several cycles of internal cal-
culations, and eventually update their own cell state in a single developmental step. In
that way, clusters of different tissue types (8) may be formed in successive developmen-
tal steps. A fixed number of developmental steps comprise the lifetime of a single NCA,
giving rise to a self-assembled phenotypic tissue of cell types on the entire grid of the
NCA (9), e.g., as in our case, to the Czech flag pattern. The quality of each individual
in an evolutionary population of NCAs (10) is evaluated via a phenotypic fitness score,
quantifying the deviation of the assumed cell types from a target pattern. Based on the
fitness scores of a particular generation of NCAs, the genotypes of potentially better-
adapted successor generations are successively sampled by the EA, closing the loop (1)
and forming the largest scale in our system, an evolutionary lineage (11). Eventually,
on a meta-scale (12), we compare the efficiency of the evolutionary process at different
system parameters (I-III), i.e., at different competency- and noise levels, by analyzing
the fitness trajectories of statistically independent lineages evaluated at the same system
parameters.

We demonstrate that especially in the presence of developmental noise, affecting
cell state updates during morphogenesis, the evolutionary process favors a multi-scale
competency-based realization over a direct encoding scheme of the target pattern. More-
over, when the competency level itself was left as an evolvable parameter to the EA, there
appeared to be a non-trivial dynamical tradeoff in the evolutionary process’ efficiency be-
tween exploiting the competency level of its components or the direct, prepatterning-like
encoding of the target pattern. We thus report that under realistic conditions (i.e., at
moderate noise levels), an evolutionary process can be significantly more efficient when
working with an agential- rather than a passive material1,94.

Notably, we explicitly omit a reward or fitness feedback from the environment to the
NCAs’ uni-cellular agents’ perception, restricting the cells’ decision-making solely to local
communication of cell state updates between grid neighbors. Thus, the cells need to fig-
ure out their own communication protocol such that their single-agent decisions align with
the global (multi-agent) system-level objectives of assembling the correct target pattern.
These uni-cellular competencies are acquired over evolutionary time scales and can be
understood as emergent behavior-shaping signaling1.

On a more technical note, we specifically employ permutation invariant ANNs as train-
able update functions of the NCAs and successfully evolve the corresponding models to
perform the here studied pattern formation tasks. We thus show that, contrary to previous
assumptions101,127, a perfect spatial resolution of neighboring cell states in an NCA is not
necessary but that a mean-aggregated neighboring cell state can be sufficient for single
cells to reliably contribute to the objective of a larger scale collective. Strikingly, we show
that such uni-cellular agents do not even need to distinguish between their own states
and the states of their neighbors to achieve this task, thus fully integrating into the tissue
locally and essentially losing their individuality93,95.

Also in contrast to Ref. 101 and similar work, we do not start our morphogenesis exper-
iments from a single “alive” cell but instead evolve the initial cell states of all permanent
cells on the grid of an NCA, while the uni-cellular agents are constantly challenged to
correct their state from developmental noise (notably, a process reminiscent to the de-
noising steps of Diffusion Models128–132). This allows us to explicitly distinguish between
the evolutionary implications of (i) direct and (ii) multi-scale competency-based encod-
ings of the target pattern, where we either constrain the evolutionary process to (i) only
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evolve the structural part of the genome, or to (ii) evolve both the structural and functional
part simultaneously. Admittedly, the choice of the structural part of the genome limits the
scalability of the approach, as the size of the structural genome will grow correspond-
ingly with the number of cells in the system. However, as occurs with biomechanical133,
biochemical134,135 and bioelectric prepatterning8,94,136, the initial states of an NCA of mod-
erate size could be seen as a coarse-grained scaffold, based on which an NCA of po-
tentially much higher resolution can run its multi-scale competency-based developmental
program to self-assemble a high-resolution target pattern137. Alternatively, we suggest
utilizing a Compositional Pattern Producing Network (CPPN)120,138 to indirectly encode
the initial states of all cells on the grid of an NCA, allowing such a hybrid approach to
perform in-silico morphogenesis at scale. Unfortunately, it has been proven difficult, if not
unfeasible, to exactly reproduce predefined target patterns reliably with neuroevolution
of CPPNs alone139, which is why we here refrained from this approach; we emphasize,
however, that gradient-based methods such as Neural Radiance Fields (NeRF)140 to train
CPPN-like architectures might be an interesting workaround.

We find that fully evolved NCA solutions, capable of performing the morphogenesis
tasks discussed above, show great signs of generalizability toward changing the system
parameters, and can - without any further evolutionary optimization or training - han-
dle noise and competency levels that are vastly different from the training conditions.
Consequently, this leads to increased evolvability of such competency-based models to
changing environmental conditions: a subsequent evolutionary process can adapt a pre-
evolved solution to altered environmental conditions within a handful or sometimes even
a single generation. Moreover, we demonstrate that such pre-evolved NCA solutions can
even quickly adapt to new, yet related problems. Specifically, we modified the objective
function of our evolutionary process from the 8 × 8 Czech flag task to self-assemble a
blue-, red-, white-, Viennese-, diagonal blue\white and blue/red flag instead, respectively.
In most of these situations, an adaptation of an existing NCA solution to the new problem
can be done in significantly fewer generations than evolving the initial 8 × 8 Czech flag
task from a randomly initialized configuration. Typically, these adaptations happen the
faster the larger the competency level of the NCA, while for the direct encoding scheme
(or in situations with low competency) the structural part of the genome is too domi-
nant to allow quick adaptations by the EA. This suggests that multi-scale competency
architectures allow the underlying evolutionary process to not over-train on priors, thus
augmenting adaptability through a competent substrate.

We conclude that not only can evolutionary processes efficiently utilize and bring forth
the intriguing multi-scale problem-solving machines of biological life, but that the effi-
ciency of such evolutionary processes, as well as the generalization abilities, evolvability,
and transferability of the corresponding phenotypic outcomes, are strongly affected by
the level of competency of the underlying agential material. An intriguing open ques-
tion is whether this implies a positive feedback loop that enhances that quality over time.
Judging from the considerable effects of scaling the competency in the here studied still
shallow multi-scale system on a rather simple in silico evolutionary process (i.e., CMA-
ES103), it becomes increasingly evident that the vastly more complex multi-scale compe-
tency architecture of biological life cycles back and thus affects the process of evolution
itself.

For future directions, our multi-scale competency framework is easily extendable to
simulate tissue growth via cell migration or division actions proposed by the NCA’s under-
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lying ANNs. More specifically, our framework allows for a minimal set of biologically rel-
evant uni-cellular actions, such as a cell state update, cell division, migration, cell death,
and an identity operation, only constrained by the NCA’s spatial grid. Furthermore, the
framework is capable of handling flexible ANN architectures, potentially allowing us to
investigate intriguing competencies such as active inference141 through utilizing world
model architectures142 in a (neuro)evolutionary context. Our system, so far, has a fixed
hierarchical architecture that deviates from the scale-free competency architecture of bi-
ological life with open-ended functional adaptation (where any abstraction layer becomes
the basis for the next one). Thus, in future work, we aim to model precisely this behavior
by introducing multiple layers of horizontal communication pathways in an NCA that the
ANN-based agents can dynamically traverse in the vertical direction. Moreover, by choos-
ing a proper fitness function related to measuring scale-invariant pattern formation107,143,
critical dynamics144–149, or applying the free-energy principle141,150, we are confident to
achieve a biologically more accurate model of the scale-free dynamics and open-ended
evolution of life. Such computational models could thus further quantitative studies of the
communication strategies and boundaries of individual- and groups of cells in an agen-
tial, potentially adversarial Umwelt, with possible applications in individual- and collective
aging (as morphostasis defects)151,152 or cancer research93,94,136.
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Appendix A: Artificial Neural Networks

Inspired by biological neural circuits, an Artificial Neural Network (ANN) is an inter-
connected network of artificial neurons (AN)153–156. Each such AN maps a set of inputs,
x ∈ Rn, onto a single number, y ∈ R, usually through a non-linear filter, σ(.): The output of
an AN can be defined as a parameterized function, y = σ(w · x+ b), with weights w ∈ Rn

and bias b ∈ R157.
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Commonly organized in layers of ANs, a Feed Forward ANN represents a parameter-
ized non-linear function, y(out) = f (FF)

θ (x(1)), transforming an input, x(1) ∈ RN0, over i =
1, . . . , NL consecutive hidden layers of ANs, y(i) ∈ RNi , to an output vector, y(out) ∈ RNL.
More specifically, the output y(i) ∈ RNi of layer i, defined by

y(i) = σ
(
W(i) · x(i) + b(i)

)
(A1)

becomes the input, x(i+1) = y(i), to the next deeper layer, i+1, through layer-wise filtered
dot-products with the weight matrices W(i) = {w(i)

jk } ∈ RNi×Ni−1 and bias vectors b(i) =

(b
(i)
1 , . . . , b

(i)
Ni
) ∈ RNi .

Training an ANN thus boils down to optimizing a set of parameters, θ = {w(i)
jk , b

(i)
k }, i.e.,

the entire network’s weights and biases, such that an input is mapped (with minimal de-
viation) to a desired output113,158–160. In this manuscript, we utilize ANNs as the trainable
update function of a neural cellular automaton (NCA)100 and optimize the correspond-
ing ANN parameters via evolutionary algorithms to study the evolutionary implications of
multi-scale intelligence on the example of morphogenesis.

Notably, in contrast to previous contributions of NCA-based morphogenesis101, we
do not rely on predefined convolutional filters in our ANN architectures to preprocess
a cell’s local environment based on its own cell state, ci(tk), and the states of its
ν = 1, . . . , N direct neighbors, ciν (tk), at a given time step tk, which we formally col-
lect in Ni = (ci(tk), ci1(tk), . . . , ciN (tk)). Instead, we utilize a trainable sensory ANN,
f
(s)
θ (·), that is applied individually to its own and every neighboring cell state, εi(tk) =

f
(s)
θ (ci(tk)) and εiν (tk) = f

(s)
θ (ciν (tk)), to evaluate a sensor embedding, E(Ni(tk)) =

(εi(tk), εi1(tk), . . . , εiN (tk)). The latter is averaged along the neighbor dimension to form a
context vector si(tk) = ⟨E(Ni(tk))⟩N ∈ Rs of fixed size s that is permutation invariant with
respect to the cell’s neighborhood on the NCA (also see section II A). This context vector
si(tk) represents the cell’s internal representation of its local environment on the cellular
grid of the NCA.

Each cell i independently proposes an update, ai(tk), to its own state, ci(tk), potentially
at every time step tk following eq. (1). This update is computed by a controller ANN,
ai(tk) = f

(c)
θ (si(tk)), based on the cell-specific context vector, si(tk). Thus, the set of ANN

parameters of the NCA comprises the sensory and controller network parameters, f (s)
θ (·)

and f
(c)
θ (·).

So far, we have not specified a particular architecture for either f (s)
θ or f (c)

θ . Although the
presented approach is agnostic to the particularly chosen ANN architecture, we here rely
on rather simple implementations of ANNs: For the sensory ANN, f (s)

θ , we utilize a Feed
Forward architecture with hyperbolic tangent activation function σ(·) = tanh (·), with 4
input units, 8 neurons in a single hidden layer, and 8 output neurons (defining the (s = 8)-
dimensional context vector), resulting in a total of 112 parameters. For the controller ANN
we utilize two different architectures, a Feed Forward (c.f., FF-agent in section III A and
eq. (A1)) and a recurrent ANN that is inspired by both, Recurrent ANNs (RNNs)108 and
Gene Regulatory Networks109 (c.f., RGRN-agent in section III A and eqs. (A2) and (A3)
below).

The Feed Forward controller architecture consists of 8 input units (i.e., the context vec-
tor from the sensory ANN), a single hidden layer with 6 neurons and a hyperbolic tangent
activation function, and 4 output neurons without activation function, resulting in 82 param-
eters in total; thus the genuine FF-agent architecture in the main text comprises a total

28



number of NFF = 194 parameters (c.f., section III A). The RGRN controller architecture
(see details below) consists of 8 input units, a single self-regulated recurrent state with
3 neurons (with an internal hyperbolic tangent activation), and 4 output neurons (without
an activation function), resulting in 52 parameters in total; thus the genuine RGRN-agent
architecture in the main text comprises a total number of NRGRN = 164 parameters (c.f.,
section III A). In table I we summarize the FF-agent and RGRN-agent’s architectures and
parameter counts.

Sensory ANN (Num. Param.) Controller ANN (Num. Param.) Total Num. Param.
FF-agent Feed Forward (112) Feed Forward (82) 112 +R× 82

RGRN-agent Feed Forward (112) RGRN (52) 112 +R× 52

TABLE I: Architecture and number of parameters in sensory and controller ANNs of the two different agent
architectures used in this contribution. The total number of parameters depends on the redundancy number
R of the controller ANN (c.f., section III A).

Finally, we define the RGRN architecture, y(tk) = f (RGRN)
θ (x(tk),h(tk−1)), that relies on

both an instantaneous input, x(tk) ∈ RI, and a recurrent state, h(tk−1) ∈ RR, from the
previous iteration of the network to generate an output, y(tk) ∈ RO: First, we define the
self-regulated recurrent state h(tk) as

h(tk) = (1− τ1)× h(tk−1) + τ2 × [(U · x(tk) + bU) + tanh(V · h(tk−1) + bV)] , (A2)

which thus is maintained over time by a factor of (1− τ1) and updated by a factor of τ2 via
integrating external stimuli, x(tk), and recurrent memory, h(tk−1), through the trainable
matrices U ∈ RH×I, V ∈ RH×H and bias vectors bU,bV ∈ RH , respectively. Second, we
evaluate the network’s output, y(tk) ∈ RO, based on the RGRN’s recurrent state h(tk),
following

y(tk) = σ(W · h(tk) + bW), (A3)

having introduced the weight matrix W ∈ RO×R and bias vector bW ∈ RO, and a non-linear
activation function σ(·).

Following ideas from Ref. 109, we thus utilize with eq. (A2) an ANN that maintains a
self-regulated (or “gene regulated”) state, h(tk). However - and dropping the bias vectors
for convenience below - the second term in eq. (A2), i.e., [U · x(tk) + tanh(V · h(tk−1))],
is reminiscent to the kernel of an RNN108, thus allowing the RGRN to integrate new in-
formation (i.e., external stimuli) into its regulatory behavior. Thus, the state update of
h(tk) corresponds to regulating the network’s recurrent state (or “gene expression”) con-
ditional to external stimuli. Furthermore, explicitly separating the self-regulated recurrent
state from the RGRN’s output allows us to utilize the RGRN as a controller, i.e., to use its
output, y(tk), for updating the cell state of an NCA in eq. (1).

Here, we set τ1 = 0.75, τ2 = 0.25 and chose σ(·) as the identity transformation (i.e.,
no, or linear activation of the RGRN’s output), and we apply eq. (A2) 3 times (updating
h(tk) in every cycle) before forwarding the final value of h(tk) to eq. (A3) to generate the
RGRN’s output.

For all ANN implementations we here relied on PyTorch161.
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Appendix B: A Reinforcement Learning Agent’s Perception-Action Cycle

We utilize a Neural Cellular Automaton (NCA)100 for morphogenesis tasks of two-
dimensional target patterns. In such a setting, each cell of the NCA represents an au-
tonomous agent that perceives details about its local environment (i.e., the cell states
of its direct neighbors on the NCA’s spatial grid) and proposes actions to update its
own state . Here, we summarize the terminology behind this perception-action cycle
of an agent in an arbitrary environment of a Reinforcement Learning (RL) setting113 (see
fig. 1 (B) for an illustration):

Based on an agent’s perception of the environment, i.e., a state sk measured at time
step tk, the agent’s goal is to manipulate the environment by taking an action ak - resulting
in a state update sk+1 in the next time step - to collect as much reward, rk ∈ R (provided
by the environment), as possible.

Formally, an agent picks its actions according to a policy πθ(sk′≤k) → ak, i.e., a typi-
cally complicated function which might be parameterized via hidden variables θ. Artificial
Neural Networks (ANNs) as universal function approximators112 are promising candidates
that can be trained to fit an agent’s optimal policy (mapping states sk to optimal actions
ak

113). Here, we thus utilize ANNs as a trainable update function of an NCA and deploy
evolutionary algorithms (see section II B) to find the optimal policy (here, of morphogen-
esis tasks), πθ∗(sk′≤k) via optimizing θ∗ = argmaxθ(

∑
k′≤k rk′ ). This enables an agent

to choose actions aiming at maximizing the expected cumulative reward (or maximum
fitness, in our terms).

The particular functional choice of the reward signal defines the agent’s task via posi-
tive (or negative) reinforcement. In our case, the cumulative reward, Ra of all Na agents
(i.e., of all cells on the grid) after tD time steps is summed up to the fitness f =

∑
Ra of

the entire NCA. There is no general procedure for creating effective reward signals.
Crucially, we here do not provide the cellular agents with environmental reward feed-

back directly, but only use the cumulative reward, Ra, as a fitness criterion for the evo-
lutionary algorithm. Thus, the collective of cells needs to evolve a signaling strategy to
communicate desirable or prohibitive cell state updates during the corresponding devel-
opmental stage.

Appendix C: Fixed Boundary Condition Handling of the Neural Cellular Automaton

We employ Neural Cellular Automata (NCAs) with fixed boundary conditions on a two-
dimensional square grid (see section II A). Each cell i is associated with integer grid-
coordinates (xi, yi) on the NCA’s grid of size Nx ×Ny, with xi ∈ [1, Nx] and yi ∈ [1, Ny].

The neighborhood of cell i is defined by all directly adjacent cells iν=1,...,N , i.e., that
share a border or a corner with cell i. Since we consider a square grid in this contribution,
the grid coordinates of all N = 8 neighbor cells (xiν , yiν ) are given by the permutations of
(xi ±m, yi ± n), with m,n ∈ {0, 1}, excluding the identity m = n = 0.

For cells at the boundaries of the grid, some neighbors with coordinates xiν , yiν < 1 or
> Nx, Ny, respectively, will be out of bounds. Thus, we clip all neighbor coordinates to the
intervals [1, Nx] and [1, Ny], respectively, via xiν → xi′ν = min(max(xiν , 1), Nx), and yiν →
yi′ν = min(max(yiν , 1), Ny), and replace the neighbor index iν with the correspondingly in-
dex i′ν of the respectively clipped coordinates (xi′ν , yi′ν ). Collecting the numerical state val-
ues of the neighborhood of cell i thus yields Ni(tk) → N ′

i (tk) = (ci(tk), ci′1(tk), . . . , ci′N (tk)).
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The matrix N ′
i (tk) then represents the input of the sensory part of the NCA’s artificial neu-

ral network (c.f., section II A).

Appendix D: Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES)

Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES)103 is a popular evolu-
tionary algorithm: a multivariant normal distribution is utilized to model the (genotypic-)
distribution of a set or a population of parameters that are evaluated against an objective
function. Roughly speaking, this evaluated fitness score of an individual is associated
with its probability of survival, and thus for participating in the reproduction of the next
generation. The parameters of the multivariant normal distribution, i.e., the mean and co-
variance matrix, are successively updated based on selecting the best individuals from a
given population (or, more precisely, by weighting the relative importance of an individual
by its fitness score) such that high-fitness individuals are generated with high likelihood by
the Gaussian model. Thus, iteratively sampling “offspring” generations and adapting the
model covariance matrix (and its mean) based on the population’s fitness scores guides
the evolutionary population toward high fitness regions in the parameter space over suc-
cessive generations. Typically, also the numerical step size of the parameter update is
adapted according to some inter- and intra-generation fitness measures. In a nutshell103:

• 1) CMA-ES typically starts with a standard (or parameterized) multi-variant normal
distribution with the dimension given by the number of parameters (or genes).

• 2) At each evolutionary cycle, a new population of a fixed number of individuals is
sampled from the model.

• 3) Each individual is evaluated against a fitness function, which quantifies the corre-
sponding individual’s probability of being selected for reproduction to form the next
generation.

• 4) The mean and covariance matrix of the normal distribution, and a step-size pa-
rameter, are updated such that high-quality individuals are generated with high like-
lihood by the generative model.

• 5) The process (2-5) is repeated until a convergence criterion is met.

In the CMA-ES experiments presented in this contribution, we used an initial normal
distribution with zero mean, µ0 = 0, and a standard deviation of typically σ0 = 2−4, and
we disable step-size adaptation.

We specifically utilized the open-source pycma Python implementation of CMA-ES
from Ref. 162.

Appendix E: Direct vs. Multi-scale Encoding: Morphogenetic Development over
Evolutionary Time-Scales

In fig. 7, we explicitly illustrate the developmental process of the 8× 8-Czech flag task
over evolutionary time-scales for an NCA evolved at noise-level of ξc = 0.25, decision-
making probability PD = 50%, and redundancy number R = 4; in fig. 8, we illustrate the
same developmental process for an NCA without competency, i.e., with PD = 0.
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FIG. 7: The developmental process of the 8 × 8-Czech flag task (vertical axis) of selected generations
over evolutionary time-scales (horizontal axis) for an NCA evolved with system parameters ξc = 0.25,
PD = 50%, and R = 4. Each pixel corresponds to a cell of the NCA, at a given developmental step and
generation, in an RGB notation corresponding to the numerical values of the first three cell states, scaled
to values between [0, 1]. The top panel shows the current fitness of the respective generations (blue), and
the structural fitness at tk = 0 (purple); the green vertical dashed line marks the generation crossing the
fitness threshold of Fj = 64 where we consider the problem solved.

These two figures illustrate how the evolutionary process learns how to construct the
target pattern over generations, depending on the competency of the underlying sub-
strate: either driven by intercellular communication-based self-assembly of the target
pattern that continuously corrects potential errors of the developmental program, or via
directly encoding the target pattern into the structural part of the genome to resist de-
velopmental noise for as long as possible. Moreover, while the target pattern for the
competent first case is quickly (and robustly) self-assembled and maintained over time -
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FIG. 8: Same as fig. 7 but for an NCA without competency (i.e., PD = 0).

potentially much longer as the tD = 25 developmental time steps the phenotypes have
been selected for - in the direct case the initial cell state eventually gets destroyed by the
noise during the developmental process.

Thus, in the former case, illustrated in fig. 7, the structural fitness of the initial cell
states (at tk = 0) remains decoupled and rather low compared to the highest fitness of
the population of the phenotypes, even long after the problem is solved. In contrast,
in the latter case, illustrated in fig. 8, the initial cell state needs to evolve towards the
target pattern directly, resulting in high structural fitness values at tk = 0, which are
then progressively decreased by the noise during the developmental process, resulting in
correspondingly lower phenotypic fitness values.
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Appendix F: Direct vs. Multi-scale Encoding: Evolution and Morphogenesis of a
Smiley Face Pattern

In the main text, we primarily investigate the evolutionary implications of multi-scale
intelligence on the example of morphogenesis of an 8 × 8 Czech flag pattern. To test,
whether our findings in section III C generalize to different target patterns, we here present
results for a much more involved task, namely a 9×9-smiley face pattern (c.f., fig. 1), which
has several internal boundaries of (i) the face, (ii) the eyes, and (iii) the mouth; all other
parameters are the same as for the 8× 8 Czech flag task.

FIG. 9: Same as fig. 3 (C) but for a different target pattern, namely a 9× 9 smiley face (inset in left panel).
Moreover, we here aggregate over R ≥ 4.

We thus perform an analogous study to section III C, and present the results in fig. 9
(reminiscent to fig. 3 (C)), but for redundancy numbers R ≥ 4 (as we found that smaller
controller networks perform systematically worse on the task, suggesting a capacity bot-
tleneck of ANNs with R < 4 in this case). Analogously to the much simpler 8 × 8 Czech
task, we can learn from fig. 9 that, while in the low noise regime, direct encoding can
lead to a more efficient evolutionary process, in situations with increasing developmental
noise higher competency levels (here again realized via the decision-making probability)
can significantly enhance the efficiency of the evolutionary process of a morphogenesis
task. Notably, and due to computational reasons, we evaluated only two to three inde-
pendent evolutionary processes for every combination of the system parameters (noise-
level, decision-making probability, and redundancy number) for the results depicted in
fig. 9. However, the overall trend of the evolutionary efficiency of (i) directly encoding the
target pattern and (ii) encoding the functional parameters of a multi-scale competency
architecture is consistent with our previous results discussed in section III C. Due to the
increased complexity of the 9 × 9-smiley face task, the critical noise level that separates
the evolutionary efficiency of (i) and (ii) is correspondingly shifted to larger values of here
ξc ≥ 0.25 (c.f., fig. 3 (C)).

Analogous to fig. 7, we illustrate in fig. 10 the developmental process of the 9×9-smiley
face task over evolutionary time-scales for an NCA evolved at noise-level of ξc = 0.25,
decision-making probability PD = 50%, and redundancy number of R = 4 in an RGB
scheme attributing the numerical values of the first three cell states, scaled to values
between [0, 1], respectively (c.f., section II A).
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FIG. 10: Same as fig. 7 but for the 9 × 9-Smiley face task, with a fitness threshold of Fj = 81 (c.f., green
vertical dashed line).

Appendix G: Evolution exploits Redundancy at the Cost of a More Complex
Search Space

Analogous to section III C, we here present the evolutionary efficiency of the same
morphogenesis experiments of the 8×8 Czech flag problem depicted in fig. 3, but present
as a function of the redundancy number R - instead of the decision-making probability PD

- and the noise level ξc; for a given combination of R and ξc, we additionally utilized
different values for PD = {0.25, 0.5, 1.0} and performed 15 statistically independent runs
of the EA for each parameter combination, resulting in 45 independent evolutionary runs
per (R, ξc)-tuple.
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FIG. 11: Same as fig. 3 but presented for the redundancy number R vs. noise level ξc and aggregated over
all values of the decision-making probability PD ≥ 0.25.

Although there appears to be an effect of R on the evolutionary efficiency (c.f., panels
A and C, D of fig. 11), the results are less pronounced compared to fig. 11. Despite
considerable uncertainty in the evolutionary efficiency, as shown in fig. 11 (A, B), we can
learn from the heatmaps, fig. 11 (C, D), that at low noise levels of ξc = 0 or 0.125, large
R values appear favorable over lower ones, whereas, at larger noise levels of ξc = 0.5,
populations with lower values of R perform better on average. For intermediate noise
levels of ξc = 0.25 and 0.375, we observe an “optimal” redundancy number of 4, in this
particular example.

This suggests a trade-off in the evolutionary efficiency of redundancy - as an affor-
dance of competency - and the corresponding increase in the number of overall parame-
ters of the functional genome.
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Appendix H: Morphogenesis at Scale with a hybrid Compositional
Pattern-Producing Network - Neural Cellular Automata Model

The particular choice of especially the structural part of the genome x
(S)
j in eq. (3) limits

the scalability of our multi-scale competency approach of morphogenesis to significantly
larger systems, as the size of the structural genome will grow correspondingly with the
number of cells in the system. However, by utilizing Compositional Pattern Producing
Networks (CPPNs)120,138 the parameters, θH , of a hyper-network, f (H)

θ (·), could replace
the structural genes in eq. (3) such that the initial states of each cell i are indirectly
encoded by the hyper-network based on their relative spatial positions, (xi/Nx, yi/Ny), on
the Neural Cellular Automaton’s (NCA’s) grid via ci(0) = f

(H)
θ (xi/Nx, yi/Ny).

However, it has proven to be difficult, if not numerically infeasible, to reliably and exactly
reproduce a two-dimensional target pattern using CPPNs139. Thus, we here propose a
hybrid approach for morphogenesis at scale of a CPPN indirectly encoding the initial
cell states of an NCA, whose uni-cellular agents are then challenged to self-assemble
the desired target pattern in a morphogenetic developmental stage. This would allow
for scaling the target pattern arbitrarily either during training or during deployment since
the number of cells on the NCA’s grid does not affect the size of the (structural part of)
genome.
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