
How to implement words (efficiently)

M. Anton Ertl, TU Wien

Motivation

benchgc
brainless

cd16sim
lexex

fcp
siev

bubble
matrix

fib
pentomino

sha512

speedup over Gforth 2024
Gforth 2002
Gforth 2022
SwiftForth RC87
VFX Forth

41/

21/

1

2

4

8

1

Call-pull: indirect-threaded origins

Problem

From one cfa/xt get:

• body address

• does-code address

• code address (dodoes)

: myconst (x "name" --)
 create ,
does> (-- x)
 @ ;
5 myconst five

myconst
header
docol
create

,
(does>)

call dodoes
@
;s

body=w+cell
push body on data stack
push ip on return stack
ip=pull from CPU stack
next

five
header

domyconst
5

2

Call-pull in native-code systems

Problem

five is called

no CFA in W register

Solution?

Use call-pull

also without does>

: myconst (x "name" --)
 create ,
does> (-- x)
 @ ;
5 myconst five

myconst
header

five
header

call domc
5

call create
call ,
push domc on data stack
jump (does>)

body=pull from CPU stack
tos=*body
push tos on data stack
return

3

Performance pitfall: false sharing

l2 cache

D-cache I-cache

call domc 5$1240 $1240call domc 5

tag tag

• Granularity: cache lines (64B)

• Write invalidates the line

in other cache(s)

• Usually D-caches

of different cores

• Between I and D cache:

on IA-32, AMD64, s390(x)

• Cost for round-trip:

≈ 400 cycles on Intel P

≈ 100 cycles on Ryzen 5800X

• True sharing at least as bad

slow on all architectures

4

Performance pitfall: return misprediction

call five
r:

call domc

body=pull from CPU stack

...
return

r
r

r
r

r
r

five b
five b

five b

CPU stack
return-addres stack

CPU stack
return-addres stack

CPU stack
return-addres stack

• return address-stack:

hardware for branch prediction

• call-pull results in out-of-sync stacks

usually one or more branch mispredictions

• Cost: ≈ 20–30 cycles per misprediction

5

Initial case

: d1 ("name" --)

create 0 ,

does> (-- addr)

;

d1 z1

: bench-z1-comp (--)

iterations 0 ?do

1 z1 +!

loop ;

cache misses branch
cycles inst. I D mispred system

8.2 34.0 0.0 0.0 0.0 gforth
9.0 6.6 0.0 0.0 0.0 iforth
6.4 15.0 0.0 0.0 0.0 lxf
6.5 14.0 0.0 0.0 0.0 sf RC89

434.2 15.0 2.0 2.0 1.0 sf RC87
7.7 4.6 0.0 0.0 0.0 vfx

• Based on application (CD16sim)

• Slowness due to call-pull

6

Does only SwiftForth RC87 have such problems?

: d2 ("name" --)

create 0e f,

does> (--)

1e dup f@ f+ f! ;

d2 z2

: bench-z2-exec (--)

[’] z2 iterations 0 ?do

dup execute

loop ;

cache misses branch
cycles inst. I D mispred system

10.4 49.0 0.0 0.0 0.0 gforth
449.5 49.6 2.0 2.1 0.0 iforth
13.5 19.0 0.0 0.0 0.0 lxf

428.3 26.0 2.0 2.0 1.0 sf RC89
249.5 30.0 2.0 1.0 1.0 sf RC87
228.2 16.6 1.0 1.0 1.0 vfx

• call-pull frequent for executeing xts

7

Do such problems only occur with does>?

create x 0 ,

: bench-x-exec (--)

[’] x iterations 0 ?do

1 over execute +!

loop drop ;

cache misses branch
cycles inst. I D mispred system

7.0 28.0 0.0 0.0 0.0 gforth
16.5 49.6 0.0 0.0 0.0 iforth
6.0 17.0 0.0 0.0 0.0 lxf

442.8 24.0 2.0 2.0 1.0 sf
221.1 17.6 1.0 1.0 1.0 vfx

• Created word implemented with call-pull

8

What about defer and is?

0 constant my0

defer w ’ my0 is w

: bench-w-comp (--)

[’] my0 [’] drop

iterations 0 ?do

w over is w

loop

2drop ;

cache misses branch
cycles inst. I D mispred system

7.0 22.5 0.0 0.0 0.0 gforth
9.2 19.6 0.0 0.0 0.0 iforth

427.0 21.5 2.0 1.0 0.3 lxf
435.9 19.5 2.7 2.0 1.0 sf
205.3 11.1 1.0 1.0 0.5 vfx

• True sharing on lxf thanks to jump-patching

• False sharing on SwiftForth and VFX thanks to call-pull

9

What about defer without is?

0 constant my0

defer w ’ my0 is w

: bench-w-nois-comp (--)

iterations 0 ?do

w drop

loop ;

’ z1 is w bench-w-nois-comp

cache misses branch
cycles inst. I D mispred system

8.4 35.0 0.0 0.0 0.0 gforth
15.5 42.6 0.0 0.0 0.0 iforth
6.0 12.0 0.0 0.0 0.0 lxf

29.4 16.0 0.0 0.0 1.0 sf
27.2 11.6 0.0 0.0 1.0 vfx

• Return mispredictions in SwiftForth and VFX thanks to call-pull

• Similar for other uses of call-pull without writes

10

But what about applications?

• How do you know that an application is affected?

• Compare I-cache misses with other Forth systems

• Compare branch mispredictions with other Forth systems

• Implement words using techniques without these performance pitfalls

Compare your Forth before and after

be
nc

hg
c

br
ai

nl
es

s
cd

16
si

m
le

xe
x

fc
p

si
ev

bu
bb

le
m

at
rix

fib pe
nt

om
in

o
sh

a5
12

speedup
SwiftForth

RC89/RC87

1

2

4

11

How to avoid call-pull? (1) Trampolines

: myconst (x "name" --)
 create ,
does> (-- x)
 @ ;
5 myconst five

myconst
header

five
header

5

call create
call ,
push domc on data stack
jump (does>)

tos=*body
push tos on data stack
return

body=five_body
jump domc

• Keeps code separate from data

• Get body address without pull

12

How to avoid call-pull? (2) Intelligent compile,

: myconst (x "name" --)
 create ,
does> (-- x)
 @ ;
5 myconst five
: myfive five ;

myconst
header

five
header

5

call create
call ,
push domc on data stack
jump (does>)

tos=*body
push tos on data stack
return

body=five_body
jump domc

myfive
header

5

• Compile address of body, then call to doer

call is tail-call optimized in myfive

• Keeps code separate from data

• Get body address without pull

• Can be used to generate trampoline

• Does not help for execute or defer

13

How to avoid call-pull? (3) Code field

: myconst (x "name" --)
 create ,
does> (-- x)
 @ ;
5 myconst five

myconst
header

myconst nc

five
header
domc

5

call create
call ,
push domc on data stack
jump (does>)

body=w+cell
tos=*body
push tos on data stack
return

execute:
w=pull from data stack
ca=*w
jump ca

• Set W to CFA, then perform indirect call

• Fine for execute and deferred words

• Slow for naively compile,d code

but intelligent compile, avoids that

14

How to implement deferred words

• Just use a data field and an indirect jump

• Don’t patch native-code jumps

15

Conclusion

• Call-pull slowdowns

false sharing (100+ cycles)

return mispredictions (20-30 cycles)

• Big slowdowns in microbenchmarks

• How much in applications?

You know it when you fix it

• Avoiding call-pull is possible

trampolines (used in lxf)

intelligent compile, (used everywhere)

code field

• Use data field for deferred words

• Microbenchmarks: http://www.euroforth.org/ef24/papers/ertl.fs

16

