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Preface

EuroForth is an annual conference on the Forth programming language, stack
machines, and related topics, and has been held since 1985. The 40th EuroForth
finds us in Newcastle upon Tyne; in 2023 EuroForth was in Rome, and in 2022
it was online. Information on earlier conferences can be found at the EuroForth
home page (http://www.euroforth.org/).

Since 1994, EuroForth has a refereed and a non-refereed track. This year
there have been two submissions to the refereed track, of which one was ac-
cepted (50% acceptance rate). For more meaningful statistics, I include the
numbers since 2006: 32 submissions, 23 accepts, 72% acceptance rate. The re-
views of all papers are anonymous to the author: All papers were reviewed and
the final decision taken without involving the author, including the submission
coauthored by a program-committee member. I thank the program committee
for their paper reviews and the authors for their submissions.

Several papers were submitted to the non-refereed track in time to be in-
cluded in the printed proceedings. Late papers as well as slides and links to
videos will be included in the final proceedings (http://www.euroforth.org/
ef24/papers/). I thank the authors for their papers. In addition to the pa-
pers and presentation handouts available before the conference, these online
proceedings also contain papers and presentation handouts that were provided
at or after the conference. Also, some of the papers included in the printed
proceedings were updated for these online proceedings. I thank the authors for
their papers and slide handouts.

You can find these proceedings, as well as the individual papers and slides,
and links to the presentation videos on http://www.euroforth.org/ef24/

papers/.
Workshops and social events complement the program. This year’s Euro-

Forth is organized by Bill Stoddart and Janet Nelson.

Anton Ertl

Program committee

M. Anton Ertl, TU Wien (chair)
Marcel Hendrix, Eindhoven University of Technology
Ulrich Hoffmann, FH Wedel University of Applied Sciences
Matthias Koch
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Towards a Prospective Values semantics for a
reversible Forth

Bill Stoddart, Frank Zeyda

September 5, 2024

Abstract

We describe a “prospective values” semantics for Forth, including the
backtracking extension provided by our reversible virtual machine RVM-
Forth. We use S ⋄ E to represent the value expression E would have
were it to be evaluated after the execution of program S. We call this the
prospective value of E after S. This form is expressive enough to describe
the semantics of an extended form of guarded command language that
incorporates backtracking and speculative computations. We give seman-
tics for Forth stack commands, assignments, speculative computations,
conditionals and loops. We sketch the work that remains to be done.

1 Introduction

We write S ⋄ E for the value expression E would have were it to be evaluated
after the execution of program S. We call this the prospective value of E after
S. In this paper, where we apply this idea to Forth, S is a Forth program, i.e.
some self contained Forth code, and E is a mathematical expression.

For example x 1 + to x ⋄ 10 ∗ x = 10 ∗ (x + 1)

Note the large equals = is a very low priority equals symbol. The symbol ⋄ is
next lowest in priority.

We have developed the theory of prospective value semantics (PV semantics) in
a series of papers, most recently in [DFM+23]. The presentation is via a guarded
command language bGSL (backtracking generalised substitution language), and
provides a formalism for describing backtracking and reversible computations.
Our theory is developed as an extension of the B-Method [Abr96], and uses an
unconventional version of set theory proposed by Eric Hehner [Heh93, Heh23].
The integration of Hehner’s ideas into the set theory of B requires a new the-
ory with its own logic, which we describe in [SDMZ24]. We have developed a
reversible Forth [SZL10] to act as an implementation platform, and developed
some compilation techniques that make special use of Forth’s essential features,
for example executing type tagged parse trees as Forth programs [RS10].
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The limited semantics we present here has the same level of abstraction as our
guarded command language bGSL. We do not deal with CREATE..DOES>, or
with direct access to memory locations. We deal with “values” which are held
on the stack after being obtained from obtained from named variables and data
structures or calculated from other stack values, and which may be assigned to
such variables and data structures. On the other hand the language we describe
is much more expressive than a traditional guarded command language in that
we describe program structures for backtracking and speculative computations.
Indeed, a principle motivation for providing a PV semantics for RVM-Forth
is to provide a means of checking the validity of the code produced by such a
compiler for our backtracking guarded command language bGSL which uses our
reversible Forth as its target language.

When constructing a PV semantics for Forth we have to take into account the
following:

• The way Forth expressions are written, in an extended postscript notation
with explicit stack manipulations, is so different from how expressions are
written in mathematics that we will have to abandon the convenient and
unspoken fiction that program expressions and mathematical expressions
are one and the same.

• Forth has an explicit stack so we need a way to represent the stack as a
mathematical expression,

2 The stack, part 1

Our semantics uses the typed set theory of B. A stack may hold items of different
type, and in a typed theory this prevents us from representing it as a sequence.
However, we can represent a stack containing different types of value as a tuple
1.

We use the symbol ε to represent the empty parameter stack, and in our math-
ematical universe we give the parameter stack the name s.

Here are some examples showing the value taken by the stack following some
simple Forth code. The operation SP! clears the stack to give us a defined
starting state.

SP! ⋄ s = ε
SP! 1 ⋄ s = ε 7→ 1
SP! 1 2 ⋄ s = ε 7→ 1 7→ 2
SP! 1 2 10 ⋄ s = ε 7→ 1 7→ 2 7→ 10
SP! 1 2 10 + ⋄ s = ε 7→ 1 7→ 12

Since the stack always consists of a tuple that commences with ε we can take
the liberty of omitting the ε when the stack is non-empty and replacing the

1This means the type of the stack will change every time we push or pop a value. Thus
the stack has no identifiable type, but every state of the stack does have a type.
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maplet symbol 7→ by a space. This allows the above results to be expressed as
follows.

SP! ⋄ s = ε
SP! 1 ⋄ s = 1
SP! 1 2 ⋄ s = 1 2
SP! 1 2 10 ⋄ s = 1 2 10
SP! 1 2 10 + ⋄ s = 1 12

3 Expressions and the semantics of assignment

Let E be Forth code that’s only effect is to leave one item on the stack, i.e. it
causes no change of state of program variables or any memory; we will call such
a fragment of code an “expression”. We will want to use the value left by E in
some of our semantic equations.

In the form S ⋄ E , The text to the left of the diamond is Forth code, and
that to the right is a mathematical expression, i.e. the diamond separates Forth
code from mathematical text, and we need a notation to translate the Forth
expression E into the mathematical world. We enclose E in semantic brackets
JEK to represent this translation. Some examples will make this clear.

Suppose x is a Forth VALUE holding an integer. We translate x into the math-
ematical value x

JxK = x

Next consider the translation of a simple expression:

Jx 10 +K = x + 10

In the next example we use a symbolic stack trace to perform the translation
Jx DUP DUP ∗ +K = x 2 + x

Forth commands Stack
x x
DUP DUP x x x
∗ x x 2

+ x 2 + x

Here is an symbolic trace for an example where three arguments a b c are
provided from the stack:

J a b c -- 2DUP * -ROT + SWAP -ROT * + 2* K
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Forth commands Stack
a b c - - 2DUP a b c b c
∗ a b c b∗c
−ROT a b∗c b c
+ a b∗c b+c
SWAP a b+c b∗c
−ROT b∗c a b+c
∗ b∗c a∗(b + c)
+ b∗c + a∗(b + c) = a∗b + a∗c + b∗c
2∗ 2 ∗ (a ∗ b + a ∗ c + b ∗ c) = 2 ∗ ab + 2 ∗ ac + 2 ∗ bc

4 Assignment

To avoid continual use of the semantic brackets J..K we will use a change in
typeface, by which the Forth expression E is translated as the mathematical
expression E .

The semantics of changing variable states is expressed in lambda notation. (λ x •
F )E represents the rewriting of F with with the term E substituted for each
occurrence of x in F . For example (λ x • 2 ∗ x )(y + 10) = 2 ∗ (y + 10) .

In Forth, and with E an expression as defined above (i.e. Forth code that leaves
a value on the parameter stack and causes no other change of state) E to x
represent the assignment of the value left by E to the Forth VALUE x. We can
give its semantics by describing its effect on a general expression F:

E to x ⋄ F = (λ x • F )E

For example:

x 10 + to x ⋄ 2 ∗ x + y = by rule for assignment
(λ x .2 ∗ x + y)Jx 10 +K = by semantics of expression
(λ x .2 ∗ x + y)(x + 10) = by lambda evaluation
2 ∗ (x + 10) + y

5 The stack, part 2

We represent the stack mathematically as a tuples, so let us review tuple no-
tation. We write x 7→ y for the tuple consisting of the pair of values x and y ,
x 7→ y 7→ z for the tuple consisting of the triple of values x , y , and z . The tuple
operator is a left associative binary operator, so x 7→ y 7→ z = (x 7→ y) 7→ z .

We can decompose a tuple into its first and second components with the func-
tions L (left) and R (right).

In line with Forth usage in referring to the top and next from top elements of

the stack we define the following functions. top(s) =̂ R(s)
next(s) =̂ R(L(s))

Unlike an assignment to a VALUE, e.g. 3 to X, which changes the whole of
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X, stack operations may affect only part of s. So our approach will be to use
“helper functions” to describe the whole new stack, and assign this whole new
state.

For following are examples of these helper functions:

drop(s) =̂ L(s)
twodrop(s) =̂ L2(s)
nip(s) =̂ L2(s) 7→ R(s)
swap(s) =̂ L2(s) 7→ top(s) 7→ next(s)
plus(s) =̂ L2(s) 7→ (next(s) + top(s))
minus(s) =̂ L2(s) 7→ (next(s)− top(s))

and so on

Then to describe the value of expression E after a stack operation OP we have

OP ⋄ E = (λ s.E )op(s)

Where E is a stack expression, such as L(s), or just s. An example in the next
section should help to make this clear.

6 Sequential Composition

Our semantic rule for sequential composition is:

sequential composition S T ⋄ E = S ⋄ T ⋄ E

Note that ⋄ is right associative, so:

S ⋄ T ⋄ E = S ⋄ (T ⋄ E )

We can use this rule to show that the effect of NIP on the stack s is equivalent
to that of SWAP DROP.

SWAP DROP ⋄ s = by rule for sequential composition
SWAP ⋄ DROP ⋄ s = by semantics of DROP
SWAP ⋄ (λ s • s)drop(s) = by lambda evaluation
SWAP ⋄ drop(s) = by semantics of SWAP
(λ s • drop(s))swap(s) = by lambda evaluation
drop(swap(s)) = applying swap
drop(L2(s) 7→ top(s) 7→ next(s)) = applying drop
L2(s) 7→ top(s) = semantics of NIP
NIP ⋄ s

It seems strange that we compute the effect of SWAP DROP on the stack by
first computing the effect of DROP and then computing the effect of SWAP, but
the intermediate result drop(swap(s)) in the above derivation shows the helper
function for SWAP is applied before that of DROP in obtaining the result.
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7 Guard, choice and backtracking

Let g be a condition test that leaves either a true flag or a false flag on the stack
and has no other side effect. The construct g => is a guarded no-op. If g
leaves a true flag, the flag is removes and execution continues ahead. If g leaves a
false flag, the effect is to reverse computation. In this case there is no state after
g. Mathematically. we represent this as null , where null represents nothing.
In our mathematical semantics we capture the idea of nothing by using Eric
Hehner’s Bunch Theory [Heh93]; this is a reformulation of set theory in which
the collection and packaging of elements are orthogonal activities. This gives
us access to unpackaged collections. We use ∼S to represent the unpacking
of set S . For example ∼{1, 2} = 1, 2 where 1, 2 is an unpackaged collection.
The comma in 1, 2 is now a mathematical operator, known as bunch union. We
obtain null by unpacking the empty set.

null = ∼{ }
Bunch union has the properties: S ,T = T ,S and S ,null = S , and an
additional property of null is { null } = { }.
Corresponding to the programming guard => , we have a bunch guard _ in
our mathematical notation, defined by the following equations:

true _ E = E , false _ E = null

so the expression x = 1 _ x has the value 1 if x=1, and is equal to null for
any other value of x .

Evidently, this is a very unconventional mathematical theory, and when we
began to use it we has some papers rejected by referees who were concerned
that Hehner’s bunch theory had never been formally demonstrated to be a valid
theory, in that it had never been given a “model” (a translation that re-expressed
it in terms of standard set theory). These concerns lessened after a model for a
version of bunch theory was published [MB01], and we have given a model for
our version of bunch theory in [SDMZ24].

Our semantic rule for guard is

g => ⋄ E = g _ E

here g is the mathematical translation of the Forth guard g, which for any
specific g we can represent more fully using our semantic brackets, e.g.

J x 1 = K = x = 1

Guards combined with choice can describe control structures, including back-
tracking.

We introduce a Forth choice operation. S1 [] S2 presents a choice between
executing S1 or S2. This choice has to be bracketed, rather like an IF construct,
as

<CHOICE S1 [] S2 [] ... CHOICE>
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The semantic rule for choice is:

S [] T ⋄ E = (S ⋄ E ) , (T ⋄ E )

Here the comma on the RHS is the bunch union operator that we defined above.
the rule does not say which choice is tried first.

For example:

<CHOICE 1 to x [] 2 to x CHOICE> ⋄ x = 1, 2

The combination of choice and guard allows us to express backtracking. Con-
sider:

<CHOICE 1 to x [] 2 to x CHOICE> x 2 = => ⋄ x

This has the following operational interpretation: a choice is made to assign
either 1 of 2 to x, then a guard checks if x=2. If it does computation continues
ahead, otherwise we backtrack to the previous choice and continues ahead once
more with the unused choice being selected. This time x will be set to 2 and
the guard lets computation continue ahead. This simple example shows how we
can use a guard to retrospectively select from two choices.

The semantic analysis goes as follows:

<CHOICE 1 to x [] 2 to x CHOICE> x 2 = => ⋄ x = by semantics of
sequential composition

<CHOICE 1 to x [] 2 to x CHOICE> ⋄ x 2 = => ⋄ x = by semantics of
program guard

<CHOICE 1 to x [] 2 to x CHOICE> ⋄ x = 2 _ x = by semantics of choice

1 to x ⋄ x = 2 _ x , 2 to x ⋄ x = 2 _ x = by semantics of assignment

1 = 2 _ 1 , 2 = 2 _ 2 = by property of bunch guard

null , 2 = by property of null

2.

7.1 Conditionals

We can think of g IF S ELSE T THEN ⋄ E as a bunch union of two
terms, corresponding to the two branches of the conditional, and with the term
corresponding to the branch not taken being equal to null . In our semantics
this is expressed as follows:

g IF S ELSE T THEN ⋄ E = (g _ S ⋄ E ) , (¬ g _ T ⋄ E )

Once again we note the change of typeface from g to g which represents the
conversion of the program expression g , indicating code returning a flag, and
the g in mathematical typeface, which represents the mathematical predicate
corresponding to g.
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8 Speculative computation

In our semantics S ⋄ E expresses the value E would take after executing S.
We can use the same semantics to describe a speculative computation which
executes S, evaluates and saves the result of E, then reverses, undoing any
changes made in the forward execution of S. Thus we obtain, in our program,
the value E would have after S but without incurring any of the side effects
produced by executing S.

As with choice we needs brackets to express this:

<RUN S E RUN>

is a programming structure which adds to the stack the value E produces if
executed after S, but without incurring the side effects that execution of S may
produce. Its semantics is:

<RUN S E RUN> ⋄ s = s 7→ (S ⋄ E )

If S contains choices there may be a plurality of values that E could take, and
we can collect. If these are integer values the construct to do this is:

INT { <RUN S E RUN> }

In this case S ⋄ E will be a bunch, and we have the following semantic rule,
in which, once again, s is our mathematical representation of Forth’s parameter
stack.

INT { <RUN S E RUN> } ⋄ s = s 7→ {S ⋄ E}

8.1 Example, Pythagorean triples, with a new concept of
function application

We need to introduce some additional aspects of the RVM sets package.

The mathematical notation m..n where n ≥ m, represents the set of numbers
{m, m +1, ... n} We provide this as a postfix operator in RVM Forth, used as,
e.g.

1 4 .. .SET <cr> {1,2,3,4} ok

We have CHOICE from a set, used as in the following example. CHOICE makes
a provisional choice form a set that may be revised by backtracking.

INT { <RUN 1 4 .. CHOICE 10 * RUN> } .SET <cr> {10,20,30,40} ok

We now consider a program to produce a set of Pythagorean triples {a, b, c}
where a2 + b2 = c2. In the code we choose values for a and b, calculate a2+b2

and then apply a perfect square root function PERF. This function illustrates
the "new concept of function application" we mentioned above. The idea of

n PERF

is that it returns the perfect square root of n, if that exists, or otherwise triggers
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backtracking. In the following examples we see that if backtracking continues
back to the user console, we get the prompt ko rather than ok.

0 PERF .<cr> 0 ok
1 PERF .<cr> 1 ok
2 PERF .<cr> ko
3 PERF .<cr> ko
4 PERF .<cr> 2 ok

This may seem a programming trick - we have just included the guard that
triggers backtracking within the code for PERF. However, we have mathematical
reason to claim that this is indeed a new idea of function application. Working
with integers and using

√
n to represent the perfect integer square root of n,

it is clear for example that no integer satisfies
√
2, and we capture this in our

theory by saying
√
2 = null . We also recall that from the semantics of guards,

it is a null result that triggers backtracking. The new concept of function
application is that a function application might represent “nothing”, which we
cannot express without the null of bunch theory. To express the stack effect
of PERF we need to specify that if the stack input parameter n has an integer
square root m than that will be the stack output parameter, otherwise there
will be no stack after state. To do this we use null , as follows.

PERF ( n -- if ∃m •m2 = n then m else null end )

Now for the program to produce set of Pythagorean triples with perpendicular
sides less than n. The set we are producing here is a set of sets of numbers, and
its mathematical type is P(N). This is represented in our Forth sets package, in
postfix, by the type signature INT POW. 2

: TRIPLES ( n -- s, s is a set of Pythagorean triples with adjacent sides ≤ n )
(: n :)
INT POW {

<RUN
1 n .. CHOICE to A
A n .. CHOICE to B
A B COPRIME -->
A DUP * B DUP * + PERF to C
INT { A , B , C , }

RUN>
} ;

In this code, A, B and C are global VALUEs. The COPRIME guard prevents
similar triangles being included, for example {3,4,5} and {6,8,10}.

Here is an example run

100 TRIPLES .SET <cr> {{3,4,5},{5,12,13},{7,24,25},{8,15,17},{9,40,41},
{11,60,61},{12,35,37},{13,84,85},{16,63,65},{20,21,29},{20,99,101},{28,45,53},
{33,56,65},{36,77,85},{39,80,89},{48,55,73},{60,91,109},{65,72,97}}ok

2Whilst Forth is untyped, our sets package only supports the typed sets allowed in Abrial’s
set theory.
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9 Preconditions

In general, in the field of formal semantics, operations are taken to have specific
conditions which render them safe for use. These “preconditions” are there to
protect us attempting to access the 20th element of a 10 element array, taking
the square root of a negative number, dividing by zero etc. Unlike a guard, a pre-
condition does not control whether an operation can take place, rather it is part
of the instructions of using the operation. In Forth the situation with respect
to pre-conditions is complex, because the programmer takes responsibility for
an operation being meaningful in a particular context. For example, in 32
bit arithmetic, 7FFFFFFF 1 + violates a precondition of + if we are using
signed arithmetic, but not for unsigned arithmetic. However, one universal
precondition of + is that it requires at least two elements to be on the stack.

We use the symbol ⊥ to express the effect of violating a precondition. The idea
is that ⊥ represents absolute unpredictability - more unpredictable than just
allowing any possible result - there might be no result because the computation
does not terminate, or the machine might blow up!

We use P | S to represent P as the pre-condition for S. Our rule for preconditions
is:

P | S ⋄ E = (P _ S ⋄ E ) , (¬ P _ ⊥)

We interpret ⊥ as a maximally non-deterministic bunch. We can think of the
unpackaged collections of bunch theory as representing non-determinism or un-
certainty, e.g. the bunch 1,2 representing a value that might be 1 or might be
2. In this knowledge based order the value ⊥ represents a value about which
nothing can be known, not even whether it exists, and null can be taken as the
object about which too much is known, to the point of contradicting its possible
existence. It is at the other end of the scale from ⊥.

10 Loops

We consider the treatment of a WHILE loop

BEGIN g WHILE S REPEAT

Here g is some Forth code which leaves a flag in the stack and otherwise leaves
the program state unchanged.

Following the B-Method (and adapting it to Forth) the programmer is required
to provide formal comments which identify a an invariant expression I and a
variant expression V for the loop.

The invariant expression must have the property

S ⋄ E = E

When the loop terminates the invariant expression will still have the same value,
but the condition reported by g is false. This allows us to draw a conclusion
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about the effect of the loop.

The variant expression serves the purpose of ensuring that the loop does ter-
minate. It has to be an expression that is greater than 0 and decreased by S.
Obviously this cannot continue for ever, so the existence of such an expression
implies that the loop must terminate. Its formal property is:

V > 0 ∧ (S ⋄ V ) < V

We illustrate this method using Euclid’s algorithm for the calculation of the
greatest common divisor of two numbers.

: GCD ( a b – c, a>0 ∧ b>0 | c = gcd(a,b) )
BEGIN (
INVARIANT gcd(top(s),next(s))
VARIANT top(s) + next(s) )

2DUP ̸=
WHILE

2DUP > IF SWAP THEN
OVER -

REPEAT DROP ;

First note that we have a pre-condition that requires a>0 and b>0. Since
a, b are names for the top two stack elements, this ensures that our variant
property V > 0 holds. Depending on the branch taken by the IF, we have S
⋄ V = top(s) or S ⋄ V = next(s), and since V = top(s) + next(s) in both
cases we have S ⋄ V < V . So the variant properties are satisfied and we can
be sure the loop terminates.

That the loop invariant holds follows from the mathematical property y > x ⇒
gcd(x , y) = gcd(x , y − x ). When the loop terminates the loop condition tells
us that next(s) = top(s) and the loop invariant tells us gcd(top(s),next(s) =
gcd(a, b) Thus we have two copies of the required result on the stack and just
have to drop one of them to complete the computation.

11 Pointers and immutable objects

We identify immutable objects with their pointers. This allows us to treat such
pointers as values.

Consider this floating point interaction in RVM_FORTH.

2. DUP 1. F F. F. <cr> 3 2 ok+

A floating point literal creates the floating point value in memory and leaves a
pointer to that value on the parameter stack. Floating point operations work
via these pointers.

Such an approach helps us formulate our semantics but entails a need for garbage
collection: in the above interaction garbage values 1. 2. and 3. are left in mem-
ory when the computation is complete. We address this by collecting garbage
during reverse computation, an idea first proposed by Henry Baker [Bak92].
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12 Future work

Our account of prospective values in Forth is far from complete.

One area we have not discussed is the semantics of pointers which represent
mutable objects. We recall that an array, for example, is implemented as a
mutable object because we want the ability to individually modify one of its
elements without creating a new instances of the whole array. Our semantics
regards a reference as equivalent to the object referred to, and thus has no way
of distinguishing the duplication of a reference to an object from the duplication
of the object itself. Duplicating a reference to a mutable object invalidates our
semantics, and we need to investigate restrictions, or “healthiness conditions”
[HJ98] that ensure this does not happen in a given program text.

One reason we need references to mutable objects is to pass them as parameters.
However, we recall that passing an array by reference is not the same as passing
it as a value, because, when it is passed as a reference changes to the array occur
on the original array, whereas changes to value parameters take place in the stack
frame, which is discarded on exit. To keep our semantics consistent we must
limit assignments to immutable reference parameters, and treat the passing of
such parameters using call by name [B+60]. Call by name can reserve surprises
for the unwary, but Abrial [Abr96] has given a restricted call by name semantics
for B.

It also remains to define the semantics of parameter passing in the presence of an
explicit stack, to investigate how this may be affected by how local variables are
implemented, and see whether we can define a semantics of parameter passing
that is valid for diverse implementations.

It will be interesting to explore which problems can and cannot be efficiently
solved using the reversible programming structures presented here, and to present
example case studies. In [SDMZ24] we use a chess puzzle, the circular knight’s
tour, to show the power of prospective value calculations: these are used to im-
plement a heuristic that chooses moves to the most tightly constrained squares.
This is presented in our reversible guarded command language bGSL [DFM+23],
and needs to be complemented by case studies in our reversible Forth.

13 Conclusions

We have shown how prospective value semantics provides a description of stack
based operations, speculative computations and backtracking, but a full de-
scription of Forth semantics, covering interpretation and compilation, memory
access, and the definition of defining words, is beyond the scope of the theory
presented here, even when it is extended as outlined under future work.

When transporting prospective value semantics from our usual B like environ-
ment to Forth, the extended postfix used in Forth forces us to distinguish more
clearly between programming and mathematical notations. Forth has a finer
grained semantics, where an expression is defined as as a sequence of opera-

16



tions, rather than in the mathematical notation of an expression sub-language.
This additional detail can be captured in two ways by the semantics we in-
vestigate here. Either we can translate postfix expressions to infix in order to
describe their effect (and this might require us to write our Forth in a particu-
lar way, and might be particularly useful in analysing the output of a compiler
for our backtracking guarded command language bGSL [DFM+23]), or we can
process them at the level of the individual Forth operations of which they are
comprised. In both cases we can include the effect of stack manipulations in our
analysis.

In formulating a semantics of prospective values, the mathematical expression
of nothing as the constant null plays the key role of representing expression
values arising from program branches that are not taken. We also use it to
illustrate a new form of function application, in which a mathematical function
application can yield null to indicate that the described object does not exist,
with the matching operational interpretation being that such an application
triggers backtracking.
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Using a container to provide 32 bit gcc5
compilation services on a 64bit Linux system

Bill Stoddart

June 30, 2024

Abstract

At EuroForth 2023 we mentioned that our reversible Forth had be-
come impossible to maintain because the 32 bit gcc compiler is no longer
supported. It was suggested that “containers” might provide a solution.
Here we report on where that suggestion has led us.

1 Introduction

According to Red Hat, “A Linux container is a set of processes that are isolated
from the rest of the system. All the files necessary to run them are provided
from a distinct image.”

This definition is fine so long as we don’t take the term "isolation" too seriously.
We will be using a 32 bit linux running in a container to provide 32 bit gcc
compilation services required by the 64 bit Linux host system. The source files
to be compiled and the resulting binary files will be on the 64 bit host, but all
compilation will be done within the container. This will be possible because
we are able to mount a directory of the host into the file system of the Linux
running in the container. Apart from this the processes in the container are
isolated from the host system.

Specific technologies used are the Docker package for containers, and 64 bit
Fedorer 38 as the host. The name of our reversible Forth is RVM_FORTH.

2 Overview

2.1 Building our container image

We did not have to create a container from scratch. Docker provides an archive
of pre-built container images, along with a search facility, and in the repository
we found the entry:

frankwolf/32bit-ubuntu 32bit Ubuntu docker image
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We pulled down this image from the reposotory and ran it in a container. In
the current context we run the 32 bit Linux image and set it executing bash.
At this point the prompts in the terminal window change so we can see we are
running Linux in the container.

Containers are often describes as lightweight virtual machines, and this is the
impression we have at this point. We are working on a 32 bit Ubuntu in a
terminal window, but on a 64 bit host.

The Frankwolf image did not include support for gcc1. To provide this we use
the command line to install the additional packages required for compilation of
our code, e.g. gcc5, g++5, binutils and make.

When this is complete we exit from the container by entering the command
exit and post the updated image back to the repository as

billstoddart/ubuntu32bit_gcc5:vsn0

2.2 The Forth “home” directory.

Our RVM_FORTH uses the concept of a “home” directory. During meta compi-
lation Forth source code and C packages invoked from the Forth nucleus are
located relative to this home directory. Later, when Forth runs, additional
packages containing definitions that are not included in the nucleus are also
located relative to the home directory.

The way in which a newly minted Forth gets to know where its home directory
is necessarily different when we build it on a container, and we will come to
these details in due course.

2.3 Compilation in the container

We use a bash script containing a Docker run command to pull down our saved
container image from the Docker repository and mount the Forth home directory
(which in our case is located at /home/bill/rvm/rvm) at /root/rvm in the
filesystem of the 32 bit Linux provided by the container. However, note that
due to the expansion of a symbolic link the former appears as
/home/bill/Dropbox/bill/rvm/rvm/ in some scripts.

When we run a container we are able to give it a command to execute. In our
case we set the container to run the bash script that compiles our Forth system.
When this script terminates control returns to the Bash script running on the
host.

1It has since been updated.
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2.4 Installation of the Forth system

The binary produced by the above process is left in the home directory. It is
executable as a Forth system, but is not yet findable in the search path for
executables, and does not know where its home directory is. This is fixed by
creating a script that invokes Forth and tells it where its home directroy is. This
script is then moved into a suitable directory in the search path. Again, details
will follow.

3 A closer look

3.1 Running our container, the details

To perform a meta comilation of the system we navigate to the Forth home
directory on the host machine and invoke the script ./dmcomp (“docker meta
compile”). The script requires root privlages to run docker, and since the Forth
home directory is not in the search path the invocation is via the command:

sudo ./dmcomp

The dmcomp script ensures that the Docker demon is running and removes any
present containers which might otherwise interfere with running the current
container. It then sets our container running, pulling the image from the docker
archive if it is not present locally. with no-network connection and directs it to
run bash on the script /root/rvm/dcomp0 in the container.

Here is the contents of the dmcomp script.

#! /bin/bash
echo "Checking if docker demon is active"
FRED=$(systemctl is-active docker)
echo "response is"
echo $FRED
if

[ "$FRED" != "active" ]
then

echo "issuing command: systemctl start docker"
systemctl start docker

fi
echo "Removing any present containers"
docker container prune -f
echo "Attempting to run bash in container: billstoddart/ubuntu32bit_gcc5:vsn0"
docker run -it --network none \
--name gcc5 \
-v /home/bill/rvm/rvm:/root/rvm \
billstoddart/ubuntu32bit_gcc5:vsn0 \
bash -c /root/rvm/dmcomp0
echo "Now we are back on the host in directory $(pwd)"
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Within the run command we invoke a number of switches which have the fol-
lowing effects:

• -it Specifies that the container should have an interactve terminal. This
allows us to report progress and interact with the container if an error
condition arises.

• --network none Specifies that the container should have no network
connections.

• -v ... Specifies that the Forth home directory should be mounted at
/root/rvm in the container file system.

Finally the line bash -c /root/rvm/dmcomp0 Specifies the container should
execute bash on the script /root/rvm/dmcomp0. This is the script dcomp0 in
the Forth home directory, now found at /root/rvm/dmcomp0 in the container’s
file system.

3.2 Running 32 bit compilation within the container.

The script dmcomp0 invoked as described above contains the instructions for
metacompiling the Forth system and compiling associated gcc libraries. The
only point to note is that it must navigate to the Forth home directory on the
container Linux, since it has not been invoked from that directory. So the script
dmcomp0 begins as follows:

cd /root/rvm #Navigate to Forth home directory
#A script to build RVM_FORTH
...

When the script terminates so does the Docker run command invoked in dmcomp
and control returns to that script which is running on the host machine..

3.3 Distribution and installation of RVM FORTH.

When Forth is built on a container it does not get to know where its home
directory is.

In our case the binary executable 4TH_BIN is given this information by being
run in the script RVM_FORTH with the command:

4TH_BIN SET-HOME /home/bill/Dropbox/bill/rvm/rvm/ $@

When 4TH_BIN executes it runs the Forth interpreter on the following text,
which provides commands to set the RVM_HOME directory.

For a different user, the home directory will be in a different place. We provide
an install script which is run just once when RVM_FORTH is first installed.
Typical usage is:
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sudo ./install /usr/bin

which would create the appropriate RVM_FORTH script and move it to /usr/bin

The contents of the install script are as follows:

#! /bin/bash
#Run this script when RVM Forth is first installed.
#It writes the script RVM_FORTH which invokes Forth via the binary
#4TH_BIN and sets its home directory. It places the script in the
#directory given by $1
#A typical invocation could be: install /usr/bin
#It does not need to be re-run each time Forth is meta-compiled.
#echo "STARTUP=$(pwd)/4TH_BIN SET-HOME $(pwd)/ \$@" "
STARTUP="$(pwd)/4TH_BIN SET-HOME $(pwd)/ \$@"
echo "STARTUP = $STARTUP"
echo "$STARTUP > RVM_FORTH"
echo $STARTUP > RVM_FORTH
echo "Move the newly created script to the given directory"
echo "mv RVM_FORTH " $1
mv RVM_FORTH $1
echo "set execute permissions"
echo "chmod a+x" $1"/RVM_FORTH"
chmod a+x $1/RVM_FORTH

4 Problems

We were initially working on a Ubuntu host, but the version of Docker installed
by the Ubuntu package manager had a bug which made it impossible to mount a
directory from the host within the container Linux file system. The workaround
was to provide the Forth system to the container Linux in the form of a tarball.
We found this too clumsy to be our preferred solution. Attempting to uninstall
Docker and install the version provided on the Docker website broke the package
manager. We resolved the problem by switching to Docker on Fedorer.

5 Conclusions

Containers are an interesting technology that can ease problems of software
instability on continually evolving systems. In our application they enabled us
to use a 32 bit gcc compiler which is no longer supported in current versions of
Linux.
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Abstract

For some years, a Forth binding to major version 3 of the widely used graphical user 
interface toolkit GTK has been available. The major version 4 of GTK introduces 
many incompatibilities, so that a completely different approach to the binding is 
needed. It will be shown how the unique features of Forth can be leveraged to 
overcome the difficulties introduced by GTK4.
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1. Introduction

GTK is a popular toolkit for user interfaces. It was introduced in 1998 and remains 
under active development. 

The developers have a policy of not maintaining backward compatibility across major
versions, in favour of innovation. 

Bindings and wrappers for major versions 2 and 3 have been available for some time,
for VFX Forth. 

The current version 4 of GTK has some very useful new features, which encourage 
application developers to switch to this version. 

Unfortunately, in creating version 4, the developers of GTK made no provision for a 
relatively unusual language such as Forth. This resulted in the need for major changes
in the bindings and wrapper code. Some particular difficulties have been solved in a 
way that would be possible only in Forth.
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2. Overview of existing technique - GTK3

Application GUI elements such as windows and dialog boxes are designed using an 
interface builder program. Although there have been several of these available over 
the years, in practice only the program "Glade" was developed to full functionality. 
this produces XML type files with the .glade extension. 

At an early stage in the compilation process, after compiling the GTK bindings and 
wrappers, the glade files are read in using functions in the GtkBuilder class. This 
creates all the graphical elements. 

A Forth wrapper word then scans the list of all these elements and creates a Forth 
VALUE word for every named element. These words can then be used later in the 
code to manipulate the GUI, and to define all the callbacks using the CallProc: 
function. 

Just as with Windows, GTK interacts entirely using callbacks. When all the GTK 
code has been compiled, the signals (e.g. button pressed) that were specified in the 
Glade design, can be automatically connected to the corresponding Forth CallProc: 
function, using another GtkBuilder function. 

The main application window is then displayed. The function gtk_main word is then 
called, to run an infinite loop, passing signals and events as required, until one of 
them called gtk_main_quit. This was in accordance with the example code originally 
given by GTK3. 

As GTK can operate only in a single thread, in order to preserve Forth interactivity 
while GTK is running, an extra thread was created to accept Forth input from the 
terminal.
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3. Changes to the technique required for GTK4

3.1 Changes to the Interface Builder Program

The Glade interface builder program cannot produce XML files that are compatible 
with GTK4. Instead, a new builder program "Cambalache" (by the same developers 
as Glade, but looking rather different) can be used. This uses an intermediate file 
format - the format with a .ui extension compatible with GTK4 is produced using 
export. An interesting feature is that the builder components are more modular within
Cambalache itself - the user interfaces for even a complex application could be 
accommodated into a single XML file. On the other hand, external modularity would 
be lost.
 
3.2 Changes to GtkBuilder

There is a major and most unfortunate change to the GtkBuilder class. It attempts to 
connect signals at the same time as creating the elements. This is non optional. By 
default, it tries to connect using the C symbol table. To accommodate other 
languages, there is a new class "GtkBuilderScope", but this is only briefly 
documented, with no examples. Other languages have already implemented GTK4 
support, so I chose the open source language Rust to investigate how they 
implemented signal bindings. Unfortunately, the code for GtkBuilderRustScope is 
very complex. It did not look like the kind of solution that a Forth programmer would
devise.

3.3 Changes to the GTK main loop

As GTK3 developed, the example code changed to recommend the use of a new 
GtkApplication class, which hid the main loop functions. The stated aim was the 
make it easier for application developers, but of course for a language like Forth this 
technique could not be used because Forth itself is always the application. It was 
most disconcerting to discover that in GTK4, the main loop functions gtk_main and 
gtk_main_quit had actually disappeared. 

3.4 Changes to widget naming

In GTK3, widgets could optionally have an ID and / or a "name". The ID was used to 
refer to the widget in code. The second was used to uniquely identify the widget in 
CSS. Confusingly, the function gtk_buildable_get_name actually returned the ID.This
function has disappeared in GTK4. This was very concerning because if we were 
unable to get at the name, we could not automatically create Forth VALUEs.
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4. New solutions

4.1 Forth style solution to the signal connection problem

The issue about GtkBuilder performing a mandatory attempt at signal connection at 
the same time as creating the GTK widgets seemed to be insoluble. After a great deal 
of thought, we analysed our existing workflow, as follows:

a) Define the signal in Glade, usually naming it using the convention 
on_<widget-id>_<signal name>. 
e.g. on_mybutton_clicked

b) Define the signal action, for the example above, typically:
2 0 CallProc: on_mybutton_clicked { pbutton puser -- } 
... 
;

We realised that we were typing the on_mybutton_clicked twice, and that the 
parameter list is duplicated in the 2 0 and the { pbutton puser -- }. Duplication of 
effort is not a Forth thing to do.

Perhaps, we could turn the problem to our advantage, by eliminating the signals 
completely from the Cambalache design program and instead, inventing a new word 
for signal definitions, using techniques that could only be done in Forth. As always, 
we looked at the desired end result first.

Notice that in the example above, we save around 20 characters of typing per signal. 
This does not sound much, until one realises that in our main application, there are 
594 signal definitions, and if we had used this technique from the start, we could have
saved around 12,000 characters of code.
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MYBUTTON CLICKED SIG: { pbutton puser -- } \ Defined the action for mybutton clicked
...
;

...

: MAIN ( --- ) \ Main function
...
  CONNECTUISIGS      \ Connect UI signals
...
;
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In order to implement this, we first have to define each type of signal, in the 
Gtkbindings.fth file.

Now we can define the signal handler word.

There is actually one redundant element in the chain data, in that the entry address is 
numerically related to the link itself. We have retained this for readability.

A slight complication is that in our application, we need to do things when we detect 
user inactivity (for example, automatically log users off). This requires a hook in the 
callback prelude in VFX, which results in a change in the magic number "7" in the 
above code. We will be allowing for this by making a deferred word for the entry 
position, so that it can be easily redefined when the hook is inserted.

Now we define the signal connection word, using the signal list we have created.
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\ **********************************************************************
\ Signal descriptions - all are ( ---z$,numins,numouts )
\ **********************************************************************

: CLICKED       Z" clicked"     2 0 ;       \ GtkButton clicked

...

VARIABLE SIGLIST        \ Root of UI signal list

: SIG: { pwidget psigname pins pouts | pelement pentry pcb pxt -- }
\ Compiles signal response code and adds to connection list
  pwidget GETUIELEMENT -> pelement                      \ Get UI element from value
  pelement 0= ABORT" Unrecognised widget in SIG:"       \ Only valid UI elements
  HERE 7 CELLS+ -> pentry                               
\ 1 for link, 3 for chain data, 3 for callback prelude = 7
  SIGLIST LINK,                                         \ Add address to signal list
  pelement ,                                            \ Compile UI element
  psigname ,                                            \ Compile signal name
  pentry   ,                                            \ Compile callback entry
\ Make callback data structure, save structure address
  pins pouts CALLBACK, -> pcb                           
  :NONAME -> pxt                                        \ Compile the sig definition
\ Insert the call to the signal definition into the callback structure
  pxt pcb @ SET-CALLBACK                                
;
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Note that the above solution does not allow for user data in the signal definition. All 
GTK signals allow for this, though it is required in only about 5% of actual code. A 
slightly extended SIGUSER: word could be defined, with an additional element in the
chain for the user data, and SIG: could then be redefined as 0 SIGUSER:.

4.2 Maintaining interactive Forth during GTK execution

Instead of "going by the book", we looked more deeply into what was needed for 
both an interactive (debug) program, and an executable.

For the interactive version, we went back to the same technique that was used for the 
very first binding, for GTK2, which was written by MPE. Despite the known 
aversion to hooks in VFX, one is actually provided, deep in the interpreter, 
specifically for pumping user interfaces. For example:

Where EMPTYIDLE is a deferred word, defaulting to NOOP.
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: CONNECTUISIGS ( --- ) \ Connect UI signals
  SIGLIST @                     \ Start of signal list
  BEGIN
  ?DUP WHILE                    \ There are still items in the list
    DUP CELL+                   \ Pointer to signal data
    DUP @ EXECUTE               \ Get object
    OVER CELL+ @                \ Get signal name
    ROT 2 CELLS+ @              \ Get callback entry point
    0                           \ User data (none)
    g_signal_connect DROP       \ Connect signal
    @                           \ Move to next item in list
  REPEAT
;

: key-xterm \ sid -- key
  { | temp[ cell ] -- }
  begin
    dup key?-xterm 0=
   while
    emptyidle 2 ms
  repeat
  temp[ 1 rot read-xterm drop
  temp[ c@
;
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Now we can just hook up a message pump.

For the executable version, we can simply recreate a much simplified version of 
gtk_main.

Now select which one to use, in our MAIN word.

EuroForth 2024 A Forth Binding for GTK4 - N. Nelson Page 7 of 13

: GTKEMPTYIDLE ( --- ) 
\ While messages and GTK events are available, process them - used in key etc.
  BEGIN NULL FALSE g_main_context_iteration 0= UNTIL
;

: INSTALLGTKHOOK ( --- ) 
\ Install the GTK4 version of the message pump in the Forth interpreter
  ASSIGN GTKEMPTYIDLE TO-DO EMPTYIDLE
;

: GTKMAIN ( --- ) \ Run the GTK main loop outside the Forth interpreter
  BEGIN
    gtk_window_get_toplevels g_list_model_get_n_items 0>        
  WHILE \ There are any top level windows
    NULL TRUE g_main_context_iteration DROP     \ Process messages and events
  REPEAT
;

: MAIN ( --- ) \ Main function
...
  DEBUGGING IF              \ In debug mode
    INSTALLGTKHOOK          \ Install the message pump in the Forth interpreter
  ELSE
    GTKMAIN                 \ Run the GTK main loop outside the Forth interpreter
  THEN
;
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4.3 The widget naming problem

Fortunately, there is now a function  gtk_buildable_get_id, which now does what it 
says it does. Therefore, the automatic creation of Forth VALUEs is almost unchanged
from GTK3. This was described in a previous paper but it's worth repeating because 
it is a very useful technique.

One other change from GTK3 is that all widgets now have IDs - if no ID is defined in
Cambalache, the builder creates one automatically, and returns this in the object list. 
The automatically generated names all start with three underscores, and since we 
have no use for these in Forth, we can discard them.
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: MAKEUINAMES { | pslist pobject pname -- } \ Create values for every builder object
  PBUILDER gtk_builder_get_objects -> pslist \ Make list of objects
  pslist g_slist_length 0 ?DO \ For all objects
    pslist I g_slist_nth_data -> pobject \ Get data
    pobject gtk_buildable_get_buildable_id -> pname \ Get name
    pname Z" ___" 3 S= 0= IF                          \ Filter out unnamed objects
      pname pobject ZVALUE \ Create value for each name
      pobject pname gtk_widget_set_name \ Set widget name to be same
    THEN
  LOOP
  pslist g_slist_free \ Free list
;
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5. Other changes required

We have described above the issues that are particular to Forth. Upgrading an 
application from GTK3 to GTK4 is still a major undertaking. The documentation lists
20 things that can be done in GTK3 to prepare for the change, and 93 things that must
be done at the point of change. Of course, for any particular application not all of 
these will be relevant.

In the VFX GTK4 bindings file, we have commented out using
\ ** extern: ...
all the functions that have been deleted from GTK4 and where we will have to 
rewrite code to use new functions. There are 53 of these functions in our code. Some 
of them are in our code only once or twice, but some are called on a very large 
number of occasions.

We have allocated three man-months to the conversion.
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6. Special Forth techniques that still work in GTK4

6.1 Internationalisation

In past papers I have described the techniques we use for internationalisation, with 
on-the-fly translation of the user interface. The base phrase (for example, of a label) 
is defined in Cambalache. 

When the application starts, we can go through the following process:

a) Get the object list provided by GtkBuilder
b) Identify the type of each object (e.g. GtkLabel) as potentially requiring translation 
c) Ask the object in its type appropriate way for its base phrase
d) Check that it is marked as a phrase that needs to be translated
e) Check whether that phrase is already in our database
f) If not, inserrt it into the database
g) Add the phrase reference number to the object
h) Set the phrase in the currently selected language into the object in the type 
appropriate way.

In a similar way, when the user requests a change of language, we just read back the 
phrase reference number from the object, and set the phrase for the new language.

The good news is, all of these techniques appear to still work correctly in GTK4, 
even though one of the necessary functions is not directly documented - it is in the 
header file as a macro.

6.2 Drawing using Cairo

The appears to have been no change in the ability to use Cairo Graphics within 
GTK4, even though the widgets themselves appear now to be rendered using 
OpenGL, with Vulkan in progress.
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7. The demonstration program

As with GTK3, we prepared a very small demonstration program to illustrate the 
basic principles.

The build and application files:
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\ 64 bit floating point is required for Cairo

' REC-NDPFLOAT FORTH-RECOGNIZER \ Remove default floating point recogniser
-STACK
REMOVE-FP-PACK                  \ Remove default floating point package
include FPSSE64S.fth   \ Install SSE64 floating point
$26 -> ignSSEmask         \ Mask out floating point division by zero flag

TRUE CONSTANT DEBUGGING   \ Change when compiling an executable

include gtk4.fth         \ GTK4 tools
include DemoUI.fth   \ List of UI files for this application
include Cairo.fth         \ Cairo graphics file
gtk_init          \ Initialise GTK
LOADUIS               \ Load as part of compilation process
MAKEUINAMES         \ Make values for each object
include gtk4demo.fth   \ Main program

.BadExterns cr   \ Report any library failures
checkdict         \ Report any dictionary corruption

GTK4DEMO         \ Start demo program
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1 1 CallProc: DEMOTIMER { pval  -- f } \ 2s timer event handling
  CURRCOL CASE                          \ Next colour
    0 OF 1 ENDOF
    1 OF 0 ENDOF
    2 OF 3 ENDOF
         2 SWAP
  ENDCASE -> CURRCOL
  demodrawingarea gtk_widget_queue_draw \ Redraw drawing window
  TRUE \ Return processed flag
;

5 0 CallProc: DEMODRAW { pwidget pcr pwidth pheight puser -- } \ Draw function
  pwidget -> CWIDGET \ Set current widget
  pcr -> CCR \ Set current cairo context
  CURRCOL CASE                \ Select fill colour
    0 OF RED    ENDOF
    1 OF BLUE   ENDOF
    2 OF GREEN  ENDOF
         ORANGE SWAP  
  ENDCASE BRUSH
  50 50 150 150 ELLIPSE \ Draw a circle in the middle
;

DEMOCLOSEBUTTON CLICKED SIG: { pbutton puser -- } \ Close button clicked
  demowindow gtk_window_destroy
;

DEMOCHANGEBUTTON CLICKED SIG: { pbutton puser -- } \ Change button clicked
  CURRCOL 0 1 WITHIN IF 2 ELSE 0 THEN -> CURRCOL \ Switch colour pair
;

: GTK4DEMO-WINDOW ( --- ) \ Initialise and show demo window
  demodrawingarea DEMODRAW NULL NULL gtk_drawing_area_set_draw_func \ Set function
  demowindow gtk_window_present   \ Show window
  2000 DEMOTIMER 0 g_timeout_add DROP         \ Start timer
;

: GTK4DEMO ( --- ) \ Main function
  #BADLIBS IF \ Any libraries not loaded
    Z" Libraries not loaded" FATAL
  THEN
  PBUILDER 0= IF \ UI not loaded ( in executable mode )
    gtk_init  \ Initialise GTK
    LOADUIS \ Load UI files
    SETUIVALS             \ Set values for UI objects
  THEN
  CONNECTUISIGS                     \ Connect UI signals
  gtk_init  \ Initialise GTK
  GTK4DEMO-WINDOW \ Initialise and show demo window
  DEBUGGING IF                      \ In debug mode
    INSTALLGTKHOOK                  \ Install the pump in the Forth interpreter
  ELSE
    GTKMAIN                         \ Run the GTK main loop outside interpreter
  THEN
;
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8. Conclusion

In Forth, there is always a way to overcome the problems that library developers 
inadvertently create.

Creating a new Forth application in GTK4 is very straightforward, however, updating
an existing application from GTK3 to GTK4 is a major undertaking, whichever 
language you use.

EuroForth 2024 A Forth Binding for GTK4 - N. Nelson Page 13 of 13
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Pac-Man for the DEC VT420
François Laagel ∗

Institute of Electrical and Electronics Engineers

Abstract
Pac-Man is a graphical game designed in 1979
by a team of five people and implemented in Z80
assembly language over the course of seventeen
months. This article is an evolutionary account of
my own Forth implementation in ANS94 Forth for
the Digital VT420 text terminal over a three month
period. The C port of the resulting application to
Linux and OpenVMS 9.2 will also be briefly covered.

Stress will be laid upon the value of stan-
dards throughout this paper. Various develop-
ment/prototyping tools were required for this im-
plementation to be successful. In essence, this pa-
per is a first person account of an experience in
retrocomputing.

1 Background and Motivation
Z79Forth is a single board computer I started
designing by the end of 2018. It is based on the
Hitachi HD6309 microprocessor, a much improved
implementation of the Motorola MC6809. It runs
three to five times faster, uses less current and has
an extended instruction set.

The firmware I developed for the board is a
Forth operating system originally written for the
Zilog Z80 back in 1983. Two Git branches are
available, allowing an end user to select either a
79-STANDARD subset or an ANS94 Core imple-
mentation. The latter was used as a target for this
artful endeavour (see also [1]). GNU Forth 0.7.3
under Linux was used as a development platform.
To that end, a very high degree of compatibility
was essential.

During firmware development, flow control over
the serial asynchronous communication line via
USB (FTDI-232RL based) was found to be prob-
lematic at times. UART management was initially
strictly programmed IO based. Yet even after
switching to an interrupt based scheme, characters
were occasionally lost during ”cut & paste” of
large text chunks. So, I ended up going for an

∗f.laagel@ieee.org

alternate connectivity option over RS232. In 2020,
I acquired a DEC VT420 terminal so as to be able
to communicate with the board without having
to resort to a dedicated frontend system. Worth
noticing is the fact that DEC terminals do not
support hardware flow control (RTS/CTS based)
but implement software flow control (XON/XOFF)
instead.

The DEC VT420 [2] is a technological wonder of
the nineties. It is a monochrome Intel 8031 based
text terminal equipped with an 800 by 400 pixels
display. Most importantly, it supports user defined
fonts. Which is the reason why I came across the
idea of implementing Pac-Man specifically for it.

2 Research
Pac-Man is the brainchild of Toru Iwatani. Iwatani
[3] was self-taught in computers without any formal
training in programming or graphic design. The
game aimed to appeal primarily to women and was
originally released in Japan in July 1980.

Pac-Man is driven by the player (via a joystick)
and is free to move within the confines of a maze.
Every reachable spot of the maze has to be visited
at least once. Four ghosts, initially located inside
of a pen at the center of the maze, compete
against the player for his/her life. Throughout the
maze collectible items are interspersed. These are
either dots or power pellets, which carry a greater
point value and grant Pac-Man some temporary
immunity against the ghosts.

Every substantial project begins with reference
material collection. Fortunately, Pac-Man has
been reverse engineered down to the level of
implementation bugs analysis. The ghosts moving
strategy was an early concern of mine. The
Gameinternals web site [4] supplies a thorough
documentation with respect to this. The ultimate
reference document remains Jamey Pittman’s
”Pac-Man dossier” [5].

In 1995, Roar Thornaes [6] released a C++ based
Pac-Man implementation targeting X11/POSIX
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under Linux or CYGWIN under Microsoft Win-
dows. I selected his maze’s topology–which differs
from that of the original game and decided that
Thornaes’ object oriented approach was the way
to go. To that end, I elected to go for GNU
Forth 0.7.3’s API to object orientation–which was
later on made an integral part of the Forth2012
standard [7]. I ended up adopting the specification
literally, using a cross-platform development model
from GNU Forth 0.7.3 and targeting, ultimately,
Z79Forth/A. The convenience of adherence to
standards for this purpose cannot be emphazised
strongly enough.

3 Methodology
The development approach I followed was originally
a shot in the dark. In retrospect, it still looks
to me as a very rational way to conduct such an
ambitious project.

Presentation Layer This entailed figuring out
how to draw a workable playing screen on a
text based terminal. An essential part of this
was to come up with a nice looking user de-
fined font, so as to be reasonably faithful to
the original implementation.

Basic Business Layer This covers object identi-
fication and definition. It also includes the im-
plementation of a very basic gameplay. Ini-
tially:

• A shared ghost moving/display policy–
mostly based on random direction selec-
tion. That policy also addressed the del-
icate subject of preserving erasable char-
acters items on screen.

• A specific Pac-Man moving/display pol-
icy, which had at some point to
address gathering collectibles and its
gobbling/non-gobbling state. It also han-
dles score management, collision detec-
tion and remaining lives count mainte-
nance.

Business Layer Successive Refinements At
this point, differentiated moving strategies
for each of the four ghost instances were
implemented. This also implied ghost mode
management. At any given time, the ghosts
can be in any of the following three states:
scatter, chase or frightened. A finite, par-
tially time based, state automaton drives the
changes between those states.

Testing This is the fun part, of course. Bug fixing
also comes with the territory!

Specific Support for the VT340 The VT340
has a different matrix size for user defined font
specification. The gameplay code is entirely
shared with the VT420.

Publish the Forth Code as public domain soft-
ware on Github.

Linux/C Port I am not aware of any working
Forth implementation for OpenVMS. So I went
for a straight port to C.

OpenVMS/C Adaptations OpenVMS is mostly
POSIX compliant but there are some differ-
ences.

To do: Validate the C code on OpenVMS and pub-
lish it.

4 VT420 Font Development
At some point Pablo Hugo Reda sympathized
with the utterly futile nature of my project and
suggested The spriters resource [8] as a valuable
starting point.

When I consulted him for guidance about sprite
design, Pablo mentioned Piskel [9] as the tool he
uses in the context of his side teaching activity.
He also said he designed his own sprites manually.
Obviously, I took his input and set out to develop
my own custom font for the VT420. This turned
out to be a tedious and very time consuming
operation, which ended up taking me some twelve
full-time working days.

The original Z80 based implementation resorted
to a 224 by 288 graphical display [10]. Because
I targetted a monochrome text terminal, I first
had to let the colors go and, instead, focus on
distinctive looking aspects for each of the four
ghosts. Pac-Man himself is supplied with a visible
eye which was not among the features of the
original game.

Typical text display terminals of the 1990’s
offered an 80 x 25 display capability. The VT420
is a renowned member of that class of devices.
Because user-defined fonts are specified, in sixel
terms, as a bitmap matrix 10 pixels wide and
16 pixels high, I chose to operate in a similar
mode, which amounts to 33 columns double width
characters by 23 physical rows.

This resulted in a font of 30 double width
characters. Figure 1 illustrates the bitmap design
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Figure 1: Pac-Man Going Right Sprite

for the use case Pac-Man Going Right. Figure 2
shows the corresponding Forth code, an outline of
the VT420 font definition protocol (DECDLD) and
what it amounts to in ASCII terms.

The concept of virtual rows originated from
the notion that, somehow, the aspect ratio of the
original game could be preserved, from a timing
perspective. Conceptually, a virtual row is twice
the physical line number that the terminal can
directly address. The game’s main engine works
by assuming a predictable run time environment
and updating the game’s current state based on
the notion that the game actually works in a grid
space that is four times larger than it actually is
(as visualized on the terminal): double-width char-
acters combined with a divided by two scheduling
on the verticals. Basically, the columns are handled
physically and the rows virtually.

5 An Object Oriented Ap-
proach

Although my approach to object orientation is
rather primitive–there is no need for inheritance
support and an object is little more than a way to
store state information in a centralized way–it has
proven to be effective to solve the problem at hand.
The central concept is that of an entity. An entity
is an object subjected to various methods. There
are five entity instances: Pac-Man is described in
an entity vector which resides–by convention–at
offset 0. The other entities are each of the four
ghosts: Blinky, Inky, Pinky and Clyde. Point-
ers to these reside in the same vector. Each entity
has an instance number attribute that is used to

Figure 2: Pac-Man Going Right Encoding

implement differentiated behaviour (figure 3).

The methods implemented are:

• strategy: the word stored in that field is the
address of a Forth execution token that deter-
mines how the object moves from one clock cy-
cle to the next one.

• display: a pointer to a Forth word that dis-
plays the object, taking into account its cur-
rent state attributes. This is invoked on ev-
ery clock cycle, after the strategy method has
been called.

6 Scheduling
Any kind of game requires some form of real-time
user interaction. This can be accomplished through
either an event-triggered approach or a time-based
one. Micheal J. Pont [11] strongly advocates the
latter, which relies entirely on cooperative task
switching and a timer based interrupt handler that
is supposed to be able to deal with any unexpected
condition, should the need for this ever arise. I
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Figure 3: Entity Object Specification

Figure 4: Early Engine Code

decided to go for a time-based approach with no
interrupt handler support–a reliable time basis
remains essential to the game’s playability though.

An early incarnation of the game’s main engine
is shown in figure 4. At that point, involving the
strategy method still implied an implicit reference
to the display method.

Z79Forth/A is not a multi-tasking system.
Which means the firmware does not have to com-
promise against any other running task. Prop-
erly programmed, it makes the platform ideally
suited for a real time type of application. Precisely
what was needed under the present circumstances.
The Linux kernel in its 5.4.0-150 kernel incarna-

tion (Mint 19.3) is not real time by default and this
presents a challenge that cannot be easily overcome.
The chrt(1) manual page is so poorly written as to
be almost incomprehensible by the common man.
The default Linux scheduler class will eventually
adapt itself to the actual application behaviour and
end up doing the right thing–after some time, dur-
ing which the player may very well be killed by the
ghosts!

7 Ghost Mode Management
A scheduler can hide another one. Quoth the
Pac-Man Dossier:

Ghosts alternate between scatter and
chase modes during gameplay at predeter-
mined intervals. These mode changes are
easy to spot as the ghosts reverse direction
when they occur. Scatter modes happen
four times per level before the ghosts stay
in chase mode indefinitely. [. . . ] The scat-
ter/chase timer gets reset whenever a life is
lost or a level is completed. At the start of
a level or after losing a life, ghosts emerge
from the ghost pen already in the first of
the four scatter modes.

In scatter mode, the ghosts navigate to their
home corners. They are:

Pinky top left
Blinky top right
Clyde bottom left
Inky bottom right

The gospel goes so far as to specify the reverse
engineered state transition time table (expressed in
elapsed seconds).

Mode Level 1 Levels 2-4 Levels 5+
Scatter 7 7 5
Chase 20 20 20
Scatter 7 7 5
Chase 20 20 20
Scatter 5 5 5
Chase 20 1033 1037
Scatter 5 1/60 1/60
Chase +∞ +∞ +∞

At this point, I felt the need to develop a ghost
mode simulator completely independent from the
game itself. Ultimately, I validated the concept and
integrated it into the game’s engine. I originally im-
plemented the delays in strict millisecond terms; it
later proved more useful to express those as multi-
ples of the scheduler’s timeslice unit (clkperiod).
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8 AI Integration
There is, of course, no such thing as artificial intel-
ligence. The only intelligence that can be perceived
by an end user is that of the programmers’ and the
size of their factual database–this results, at best,
in unpredictable outcome computing. And yet, the
various ghosts moving strategies, as outlined in
the Pac-Man Dossier, still refer to this as AI.
The bottom line is that, when the chase mode is
in effect, each ghost instance has a specific policy
that is involved every time a direction change
is possible. That policy set is fairly simple yet
conducive to a great gameplay experience.

Blinky targets Pac-Man’s current location.

Pinky targets a position that is four tiles ahead
of Pac-Man’s current moving direction.

Inky targets the end of a vector twice as long
as the one originating from Blinky to Pac-
Man’s moving direction extrapolated by four
half tiles.

Clyde does not know what it’s doing. Its direc-
tion changes are as unpredictable as the LFSR
based random number generator. The latter is,
by design, completely deterministic.

From a programming perspective, this all comes
down to the primitive listed as figure 5.

9 VT340 Port
This presented no real technical difficulty. The
340 has a higher resolution than the 420 and user
defined fonts on the 340 are specified via a 10 by
20 bitmap matrix, as opposed to a 10 by 16 one
for the 420. To that end I devised a C based font
scaler utility which saved me a lot of time.

I also gave fake text colour rendition a try using
ReGIS (Remote Graphic Instruction Set). It
turned out that the required overhead on both the
terminal processing abilities and the limited serial
line throughput did not make such an option viable.

10 OpenVMS C Port
Back in April 2023, VMS Software Inc. announced
the release of OpenVMS 9.2 for hobbyists (see [12]),
targeting the x86-64 platform. This was, of course,
music to my ears and I jumped on the bandwagon
as soon as I was able to.

Figure 5: Ghosts’ Navigation Code

I started with a low ball target: a Linux/gcc
7.5 implementation. I resorted to a 32 bit cell
representation for compatibility with VMS. Here
again, standards come in handy. POSIX.1 (see
[13]) naturally comes to mind when it comes to
Unix interoperability. I did base my C port on that
specification and it works reasonably well under
GNU/Linux Mint 19.3 (5.4.0-150 kernel).

I experimented with POSIX based Forth essential
primitives support via a dedicated prototyping tool.
These central words were only a simple subset:
MS ?KEY AT-XY KEY CR. The game logic inherited
from the original Forth code was entirely preserved.

Upon startup, Forth expects the terminal to be
in raw mode. In POSIX terms, this is expressed
as an ad’hoc tcgetattr/tcsetattr system call
sequence. Under OpenVMS, things are slightly dif-
ferent in that this has to have a libcurses equivalent
incantation (noecho/crmode).

VMS also departs from the POSIX specification,
although in a very marginal way, since the select
system call is not implemented as a standard
system interface but as a part of the network API.

A final note regarding C coding standards: one
should definitely not rely on the 0b prefix for spec-
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ifying binary literals in C. This is a gcc extension
and it is in no way standardized!

11 Conclusions
The final Forth code is about 2400 lines long.
This amounts to about 60 blocks of CompactFlash
storage. The user defined font requires some 600
lines for the VT420. The rest of the material
is divided about evenly between comments and
effective code. This software has been pushed into
the public domain and published on Github [14].
The C port is of the same order of magnitude.

It works reasonably well under Z79Forth,
partly because system resources do not have
to be shared between competing processes in
this environment. The Linux/C port can also,
somehow, behave itself in a satisfactorily manner,
after a few seconds. The OpenVMS/C port has
proven to be a radical failure due to my inability
to enable software flow control on the target system.

This being said, under Z79Forth, the lack
of firmware supported exceptions can lead to
disconcerting program termination at times. Cur-
rently, the traditional Unix SIGINT (emitted when
Control-C is parsed from the controlling serial
communication line) ends up being routed to the
error handler routine. The latter issues an ASCII
Shift In control character, causing the terminal to
revert to the default character set. And yet, at
the time of this writing, it still fails to restore the
cursor status as being enabled (a VT200 control
sequence). It all comes down to being able to
emit <CSI>25h when you have only nine bytes of
EEPROM available.

User-level exceptions (based on Mitch Bradley’s
CATCH/THROW model) have been successfully pro-
totyped on the platform. The underlying code
remains experimental and unpublished. Ideally,
this should be an integral part of the firmware as
supplied by default. At this point, it is clear that
more research is required!

Key takeaways:

• Standards Matter.

• Ad’hoc Tools also are essential and will cut
down your development time substantially.
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How to Implement Words (Efficiently)

M. Anton Ertl∗
TU Wien

Abstract
The implementation of Forth words has to satisfy
the following requirements: 1) A word must be rep-
resented by a single cell (for execute). 2) A word
may represent a combination of code and data (for,
e.g., does>). In addition, on some hardware, keep-
ing executed native code and (written) data close
together results in slowness and therefore should be
avoided; moreover, failing to pair up calls with re-
turns results in (slow) branch mispredictions. The
present work describes how various Forth systems
over the decades have satisfied the requirements,
and how many systems run into performance pit-
falls in various situations. This paper also discusses
how to avoid this slowness, including in native-code
systems.

1 Introduction
We all know how to implement words efficiently,
as demonstrated by our Forth system implementa-
tions. Right?

When measuring various Forth systems for an-
other work [EP24, Figure 11], I found that Swift-
Forth 4.0.0-RC87 was surprisingly slow for some
benchmarks, in particular CD16sim (written by
Brad Eckert, part of the appbench benchmark
suite1). Eventually I found the reason for the slow-
ness of CD16sim, and reported the problem and its
cause to Forth, Inc. They swiftly released Swift-
Forth 4.0.0-RC89, which fixed the CD16sim slow-
ness and also produced significant speedups for sev-
eral other application benchmarks2 (see Fig. 1).

While the fix performed in 4.0.0-RC89 is enough
to make CD16sim perform as I expect from the
small benchmarks, there are still cases where var-
ious Forth systems (including SwiftForth) experi-
ence performance pitfalls. These problems have to

∗anton@mips.complang.tuwien.ac.at
1http://www.complang.tuwien.ac.at/forth/appbench.

zip
2Interestingly, the changes doe not speed up the 6 other

benchmarks I have used recently (siev, bubble, matrix, fib,
pentomino, and sha512); the source code for these 6 bench-
marks is smaller and less typical of idiomatic Forth source
code. This is a reminder that we should also look at applica-
tion benchmarks for evaluating the performance of a Forth
system.
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Figure 1: Speedup of SwiftForth 4.0.0-RC89 over
SwiftForth 4.0.0-RC87 on a TigerLake CPU

do with the way words are implemented in these
Forth systems. So in this paper I look at various
ways to implement words, and how they are affected
by the performance pitfalls.

Section 2 discusses some of the performance pit-
falls of modern processors. Section 3 discusses re-
quirements of Forth words that have led system im-
plementors to fall into performance pitfalls. Sec-
tion 4 discusses the implementation techniques of
indirect-threaded code, which is the base of the de-
sign of many modern systems. Section 5 takes a
look at the variety of implementation techniques
in modern systems. Section 6 shows performance
results on a number of microbenchmarks, and dis-
cusses how these results stem from the performance
pitfalls. Finally, Section 7 discusses related work.

2 Performance pitfalls
There are various reasons why acceleration mecha-
nisms do not work every time. In the present work I
have encountered the following reasons, and, as we
can see, in many cases these reasons can be avoided.

2.1 False sharing between I and D-
cache

Caches do not cache each byte individually, but
larger units called cache lines, typically 64 bytes
long. This has advantages, such as reducing hard-
ware overhead and increasing the effectiveness of
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the cache for spatial locality, but also a disadvan-
tage: false sharing [SB93]. If two pieces of data are
in the same cache line, but are accessed through
different coherent caches, and at least one of these
pieces of data is written to, a phenomenon known
as false sharing happens:

The write to the line in cache A will invalidate the
cache line in cache B through the cache-coherence
protocol. When the access (even just a read) to the
cache line in cache B happens, it will fetch the mod-
ified line from cache A through the cache-coherence
protocol, but depending on the protocol it may take
some (expensive) broadcasting to discover where
the up-to-date contents of the cache line is, so this
is expensive.

This mechanism is designed for communicating
data between cores, i.e., one core writes some data
and the other reads it (true sharing). When the
data accessed in the two caches is actually non-
overlapping, and just happens to be in the same
cache line by accident, this is known as false shar-
ing.

Normally false sharing is something that plagues
programmers of multi-threaded programs. But in
Forth we have been plagued by false sharing be-
tween the I-cache and the D-cache on architec-
tures that have coherent I-caches (these days, IA-
32, AMD64, and s390x), ever since separate I and
D-caches were introduced with the Pentium in 1993.
That is because many Forth systems place code
close to written data. As we will see, it is possi-
ble to avoid that.

Many systems have taken measures to eliminate
the common reasons for executed code being close
to written data, but in the absence of complete sep-
aration the problem rears its head in various not so
common cases, as we will see.

The cost of one cache ping-pong between I and
D-cache (i.e. one cycle of executing and storing)
seems to be on the order of 400 cycles on recent
Intel P-cores.

2.2 Return misprediction
Modern processors predict branches, and if the pre-
diction is correct, the branch is executed in 0–1
cycles. One of the branch predictors used is the
(hardware) return-address stack3 [KE91]: a call
pushes the return address on the return-address
stack, and the return instruction predicts that it
will branch to the address it has from the hardware
return stack. However, this prediction is later ver-
ified when the return instruction actually sees the
real return address (coming from (cached) memory
indexed through %rsp in case of the AMD64 ret
instruction).

3This is a microarchitectural mechanism that should not
be confused with the Forth return stack.

The return-address stack predicts very well if ev-
ery call is paired with a return to the predicted
address.

However, if the return address pushed by a call
is pulled and used for something else, and the next
return should return to the return address pushed
by an earlier call, the return will mispredict, as will
all the returns to even earlier calls. So pulling one
return address can lead to multiple mispredictions.
Likewise for the push-return technique for perform-
ing indirect branches.

Using a return address for something other than
returning is a venerable Forth implementation tech-
nique, as we will see, but on systems that use
hardware call and return for colon definitions, they
lead to slowness ever since hardware return-address
stacks were introduced in the 1990s.

Another venerable Forth implementation tech-
nique is to change the return address for skipping
over some data or code (e.g., in implementations of
sliteral); this results in one misprediction when
returning to the changed return address with the
return instruction, but at least the remaining hard-
ware return-address stack will still predict correctly.

The cost of a branch misprediction is on the order
of tens of cycles.

3 Requirements
Forth has certain requirements for the implemen-
tation of words. One is that some words do not
just have an execution semantics (i.e., code), but
in a number of words that execution semantics
refers to data that can be written to: the words
defined with create (without and with does>),
variable, 2variable, fvariable, buffer:, and
defer. Words defined with, e.g., field: may also
deal with data (depending on the implementation)
in addition to code, but that data is read-only, and
therefore should at least not lead to false sharing
problems.

Both the code and the data of a word are repre-
sented in a single cell, the execution token (xt) of a
word. In particular, execute needs to jump to the
code and that code needs to access the data.

The xt is also used for compile,. One might
use the same mechanism for performing compile,d
code as for execute, and in indirect-threaded code
that is done, but one can also make compile, more
intelligent and let it generate better code. This
means that compiled code may suffer less from pit-
falls than executed code.

The xt is also used for deferred words; it’s pos-
sible to use an optimizing mechanism here, but it’s
not clear that the deferred word is performed of-
ten enough relative to the number of is/defer!
changes to justify an optimizing mechanism. And
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: bd bdoes> @ ;
: cd cdoes> @ ;
create x 0 ,
<builds y 0 , bd
create z 0 , cd

x header
dovar

0

next:
w = *ip
ip = ip+cell
ca = *w
jmp ca

dovar:
body=w+cell
push body on data stack
next

dobdoes:
body=w+2*cell
push body on data stack
push ip on return stack
doesfield = w+cell
ip=*doesfield
nexty header

dobdoes

bd-does
0

bd header
docol

(bdoes>)
@
;s

cd header
docol

(cdoes>)
call docdoes

@
;s

z header
cd-does

0

docdoes:
body=w+cell
push body on data stack
push ip on return stack
ip=pull from CPU stack
next

Figure 2: Implementation of words with associated
data in indirect-threaded code. Code field in bold,
native (pseudo-)code in red.

if we implement words, xts, and execute to avoid
performance pitfalls, a straightforward implementa-
tion of deferred words will also avoid these pitfalls.

4 Indirect-threaded code
This section explains how the requirements are met
in Forth systems that use indirect-threaded code.
The techniques used by several modern systems are
based on those used for indirect-threaded code.

Figure 2 shows the source code and implementa-
tion of three words x, y, and z and also some of the
defining words used for defining them. In indirect-
threaded code all execution, whether with execute
or running compile,d code, performs an indirect
jump to the address in the code field for every
word; the native code that is jumped to in this
way determines the behaviour of the word, so we

have docol for colon definitions, dovar for words
that push the body address (variables and created
words), docon for constants, etc.

X is a created word (without does>), so it has
dovar in the code field, which pushes the body ad-
dress of x. How does dovar achieve this? The
dispatch code of the previous word sets a register
(called W in the Forth literature) to point to the
code field. This happens on every path that jumps
to dovar, whether it is execute, dodefer, or, in com-
piled code, the next routine at the end of the pre-
vious word (next is shown in Fig. 2). Dovar then
computes the body address from w and pushes it
on the data stack. Other doers (e.g., docon) also
use w to get access to the data, or, in the case of
docol, to the threaded code.

4.1 Does>
Words with does>, such as y and z, require access
to the threaded code after the does> (the doescode)
in addition to access to the body and the native-
code doer. There have been two solutions used in
indirect-threaded code systems; this paper uses the
names bdoes> and cdoes> (and related names) to
make it clear which solution is meant.

The first one (used for y) reserves an additional
cell (the doesfield) right after the code field. The
doesfield points to the doescode. Y’s doer dobdoes
uses w to compute the body address (which starts
two cells after the code field for y) and to load the
address of the threaded code after the bdoes> from
the doesfield. Y is defined with <builds, which allo-
cates the additional cell for the doesfield. Bdoes> is
intended to be used with <builds, and you cannot
use it with create and get the usual results. Fig-
Forth provides <builds and a does> that is equiv-
alent to bdoes>.

The disadvantage of the <builds...bdoes> solu-
tion is the extra cell necessary for every word de-
fined with <builds. So Dean Sanderson [Moo80,
page 72] and Mike LaManna4 came up with the
alternative mechanism, shown here for z: Instead
of having an extra cell, let the code field of z point
right after the cdoes>; of course, there must still be
native code there, and we have to get to the doer,
so the usual approach is to put a native-code call to
the doer docdoes right after the (cdoes>), and let
that call be followed by the threaded code for the
Forth code after the cdoes>. Docdoes pulls the re-
turn address of the call, and since call is right before
the doescode, docdoes now has the doescode. As we
will see, this call-pull technique is still widespread
and is a major cause of false sharing and return
mispredictions.

The way that doescode is determined is the main
difference between docdoes and dobdoes.

4Thanks to Leon Wagner for reporting this contributor.
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cd header
docol

(cdoes>)
jmp docdoes

@
;s

z header
cd-does

0

docdoes:
body=w+cell
push body on data stack
push ip on return stack
afterdoes=*w
ip=afterdoes+jmpsize
next

Figure 3: An implementation variant for cdoes>
that uses a jmp instead of a call.

Note that in threaded code, there are no call-
return pairs around this usage of call-pull, so you do
not see mispredicted returns from this usage. And
the machines for which this technique was invented
had no caches, and therefore no false sharing.

This approach works with create, so no addi-
tional <builds is needed, and it was therefore elim-
inated. This technique was introduced in the short
time between fig-Forth and Forth-79 and apparently
took the Forth world by storm. Forth-79 already
standardized create...does>.

5 Alternative implementation
techniques

5.1 Avoiding return mispredictions
Instead of having a call right after the cdoes>, one
can have a jump. Then recovering the address of
the code after the does> is not possible with a pull.
However, you can determine the address from w (see
Fig. 3).

5.2 Direct-threaded code (ITC style)
The same techniques used for cdoes> can also be
used for the code field in order to implement direct-
threaded code: Have a jump or call at the code field
that jumps to the doer, and then get the body ad-
dress either from w or with the call-pull technique.

This approach (using jumps) has been used
for direct-threaded code in Gforth up to Gforth
0.5 [Ert93]. These versions of Gforth use
direct-threaded code on selected architectures and
indirect-threaded code on all others.

For primitives, the threaded code points directly
to the native code of the primitive, not to a jump
or call. The advantage of this direct-threaded code
over indirect-threaded code is that there is one load
less in next; this benefit works for primitives, while
for other words the load is replaced by a jump or
call.

This approach puts a piece of native code just in
front of the body of every word, and if the body
is written to, this results in false sharing between
I-cache and D-cache. Therefore Gforth switched
to indirect-threaded code for architectures with co-
herent I-cache (in particular, IA-32); after Gforth
0.5 it switched to hybrid direct/indirect threading
[Ert02], which combines the benefits of both ap-
proaches.

5.3 Subroutine-threaded code
Many native-code systems conceptually are opti-
mized subroutine-threaded code systems [For20,
Section 5.1.1], and the way words are implemented
are often based on subroutine-threaded code.

In subroutine-threaded code a primitive is in-
voked through a native-code call, both for compiled
code and for execute. For words with data, these
systems use the same approach as direct-threaded
code: a call to the doer just before the data. If
the data is written, this results in a round of cache
ping-pong.

Another problem with this approach is that the
call-pull pattern for getting the body address hurts
in a subroutine-threaded system, because such a
system actually uses return instructions that are
then mispredicted.

Both problems do not just occur with words de-
fined with does>, but, like in direct-threaded code,
with all words with a doer and data (false sharing
only results in a slowdown on modern CPUs if the
data is written to).

SwiftForth and VFX Forth use this approach,
but they often avoid calling the words with data
in the body, and therefore both performance prob-
lems. However, in some cases they fail to avoid
these problems. The CD16Sim problem of Swift-
Forth 4.0.0-RC87 was one case where the problem
was not avoided, and it was fixed in RC89 by avoid-
ing it.

Could not at least the call-pull problem be
avoided in the same way as for direct-threaded
code? Unlike in direct-threaded code, no w register
is set when running compiled subroutine threaded
code. A workaround that works for both executed
and compiled code would be quite complex, and
given that there are other options (see below), to
my knowledge nobody has used such an approach.

5.4 Avoid body
One of the ways in which subroutine-threaded and
native-code systems reduce the problems is by re-
ducing the number of words where you need a doer
and data.

In particular, colon definitions are just called di-
rectly instead of through a doer.
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x header
0 body=$2348

push body on data stack
return

cd header

z header
0

body=$3458
push body on data stack
jump $1234

tos=pull from data stack
tos=*tos
push tos on data stack
return

push $1234 on data stack
jump (does>)

Figure 4: Trampolines for x and z. While the
header points to the trampoline, this pointer is not
followed at run-time (so it is not a code field), but
at text-interpretation time. The code is shown as
pushing and popping, but usually this works with
registers

For words where the data does not change, in
particular, constants and field words, it is relatively
straightforward to generate native code for the be-
haviour of the word (including the data). E.g., a
constant c with the value 5 could be defined in a
way that results in the same code as

: c 5 ;

5.5 Trampolines
For the remaining words, instead of having just a
call or jump to the doer before the body of the
word and then needing some way to recover the
body address, we can provide the body address as
a literal and then jump to the doer. This technique
is called a trampoline in gcc, and is used there for
the same purpose: to represent a tuple of code and
data with just one address.

Once the body address is provided as a literal,
there is actually no need to put the trampoline right
in front of the data. Instead, it can be put any-
where, e.g., in a separate code section, or otherwise
away from frequently-written data (see Fig. 4).

This approach solves both the false-sharing prob-
lem and the return-misprediction problem. This is
a recommended approach. It is used by ntf/lxf (by
Peter Fälth) and by FlashForth5.

5.6 Intelligent compile,
In traditional indirect-threaded code, compile,
always performs ,, and in a simple subroutine-

5news:<c2588b8c811fd3ae75d3976c3a927fc3@www.
novabbs.com>

x header
0

cd header

z header
0

tos=pull from data stack
tos=*tos
push tos on data stack
return

push $1234 on data stack
jump (does>)

: foo z x ;

foo header

body=$3458
push body on data stack
call $1234
body=$2348
push body on data stack
return

Figure 5: Code compiled for foo with an intelligent
compile,.

threaded system, it compiles a call to the word.
An intelligent compile, generates code special-

ized for the word type or possibly even the individ-
ual word [Ert02, PE19]. In the present discussion,
an intelligent compile, can compile x as the literal
that pushes the body address of x, and z as the lit-
eral that pushes the body address followed by a call
to the doescode (not to z), see Fig. 5.

This means that in compiled code uses of x and z
result neither in false sharing nor in return mispre-
dictions. SwiftForth uses this approach for does>-
defined words since SwiftForth 4.0.0-RC89 and it
solves the CD16sim slowdown that earlier versions
suffered from.

With compile, implementations for dovar and
does>-defined words as suggested, the trampolines
for our examples can be generated by producing the
same code as:

:noname x ; \ trampoline for x
:noname z ; \ trampoline for z

In case you are wondering whether the tram-
poline is needed for this code generation: It is
not: X and z are only compile,d, not executed in
this code. Tail-call optimization is needed to turn
the call to the doescode for z into a jump to the
doescode.

One useful property of the intelligent compile,
is that it allows to use completely different mech-
anisms for compile, and execute. E.g., since
version 0.6 Gforth uses primitive-centric direct-
threaded code (plus a long list of optimiza-
tions based on that) for compile,d code, but
uses indirect-threaded dispatch for execute and
deferred words [Ert02].

If the different implementations of execute and
compile, lead to different dispatch mechanisms,
the trampoline-generating approach outlined above
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x header
dovar

0

cd header
cdnative

z header
cddoes

0

execute:
w = pull from data stack
ca = *w
jump ca

dovar:
body = w+cell
push body on data stack
return

cdnative:
push $1234 on data stack
jump (does>)
cd-does:
tos=w+cell
tos=*tos
push tos on data stack
return

Figure 6: A native-code system with a code field
containing a code address (as in ITC)

does not work or needs to change. But ideally you
design the mechanism for execute such that tram-
polines are unnecessary (see Section 5.8)

However, the difference between the mechanisms
also means that just because we don’t see perfor-
mance problems in compiled code, does not mean
that they don’t appear in executed code. We will
see examples in Section 6. In particular, Swift-
Forth’s compile, avoids the performance problems
in compiled code in RC89, but such problems still
are present when executeing words.

5.7 Deferred words

A straightforward way to implement deferred is
with a simple one-cell body that contains the xt,
and that xt is invoked with the same kind of dis-
patch as execute. This results in all the perfor-
mance pitfalls of the execute implementation on
that system, but one can build a system without
such performance pitfalls, e.g., with trampolines,
so this is the recommended approach.

Another approach is to implement a deferred
word in a native-code system as a jump to the cur-
rent target of the deferred word. This means that
is (and defer!) change the code, resulting in true
sharing between the data and instruction cache,
which causes slowdowns on all architectures, and
cannot be eliminating by separating code and data.
Lxf-1.6 uses this approach.

5.8 Native-code address field
Fforth6, which is in its infancy, is going to be a
native-code system that uses a code field that con-
tains the code address for use with execute and for
deferred words. The dispatch of execute and for
calling deferred words first sets w to the code field
address (CFA), then loads the contents of the CFA
(the code address), and jumps to the code address.
The doer then can determine the body from the
contents of w, like in indirect-threaded code. Since
Fforth is a native-code system there is no difference
between a system-defined doer and the doescode;
the doescode starts with computing the body from
w, and making the body the top-of-stack, then con-
tinues with the native code for the Forth code after
the does>.

For compiled code, Fforth uses an intelligent
compile,. A simple way to call a word is to load
the CFA of the compile,d word into w and then
call the doer, but I expect that in most cases faster
implementations will be used. See Fig. 6.

This approach can avoid all the usual perfor-
mance pitfalls of native-code systems, just like the
trampoline, but costs only one data cell per word,
whereas the trampoline approach typically con-
sumes more memory and is a little more work to
implement.

5.9 Always have a doesfield
Memory is no longer as tight as when
create...does> was introduced at the end of
the 1970s, so Gforth has had two cells between
the header of a word and its body from the get-go
in 1992; in indirect-threaded code engines before
the new header [PE19], the first cell is used for
the code field and the second cell is used for the
doesfield [Ert93], always allowing to use bdoes> for
such engines, rather than the cdoes> variants used
with direct-threaded code engines.

With the new header, there are again two cells in
the neck: the code field, and the hm field (header
methods, which we previously called vt [PE19]).
Hm points to a method table that contains the does-
field as one of its fields. This means that dodoes
performs one more indirection for getting to the
doescode than with the old header. However, in
the usual case (compiled code) the extra indirec-
tion is resolved at compile time, so it does not cost
in that case.

5.10 Double-indirect threaded code
Returning to threaded-code systems, another way
to deal with the need in does>-defined words for

6https://github.com/AntonErtl/fforth
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doer, body, and doescode without needing a does-
field is to repeat the benefit of the indirection in
indirect-threaded code by introducing another indi-
rection [Ert02]. The xt in w is close to the body,
w @ (stored in w2 ) is close to the doescode, and
w2 @ points to dodoes, which is then performed
and accesses the body through w and the doescode
through w2.

This approach would cost an additional indirec-
tion over indirect-threaded code on every execute
or deferred word, but the idea was that this would
not happen for compiled code, because that would
use direct-threaded code [Ert02]. We did not go
with this approach in Gforth, and instead stayed
with always having a doesfield. To my knowledge,
nobody has implemented this approach.

6 Measurements
This section presents some microbenchmarks and
reports how different systems perform. As always,
microbenchmarks are not intended to represent ap-
plication performance, but to shine a spotlight on
certain performance characteristics.

The measurements were done on a Xeon E-2388G
(Rocket Lake); I measured similar results on a
Golden Cove and a Tiger Lake (all three are Intel P-
cores). The Forth systems measured are gforth-fast
0.7.9_20240817 (gforth), iforth 5.1-mini (iforth),
lxf 1.6-982-823 (lxf-1.6), SwiftForth 4.0.0-RC89 (sf
RC89), SwiftForth 4.0.0-RC87 (sf RC87) and VFX
Forth 64 5.43 (vfx). When both SwiftForth versions
produced similar results, only one of them is shown,
under the name sf.

Shortly before EuroForth, I also received lxf 1.7-
172-983 from Peter Fälth, and I repeated the mea-
surements of deferred words with that, and list the
results of the new version as lxf-1.7.

The columns shown are the cycles, instructions, I-
cache load misses, D-cache load misses, and branch
mispredictions performed per iteration of the mi-
crobenchmark.

Here are the Forth words that the microbench-
marks measure:

create x 0 ,

: d1 ( "name" -- )
create 0 ,

does> ( -- addr )
;

d1 z1

: d2 ( "name" -- )
create 0e f,

does> ( -- )
1e dup f@ f+ f! ;

d2 z2

0 constant my0

defer w ’ my0 is w

For each of the words x, z1 and z2 there
is a microbenchmark that compiles it and one
that executes it. Moreover, for w we have two
comp/exec pairs of microbenchmarks: One that
changes what w performs once per invocation of w;
and one that keeps that word always the same.

6.1 The original problem
: bench-z1-comp ( -- )

iterations 0 ?do
1 z1 +!

loop ;

cache misses branch
cycles inst. I D mispred system

8.2 34.0 0.0 0.0 0.0 gforth
9.0 6.6 0.0 0.0 0.0 iforth
6.4 15.0 0.0 0.0 0.0 lxf-1.6
6.5 14.0 0.0 0.0 0.0 sf RC89

434.2 15.0 2.0 2.0 1.0 sf RC87
7.7 4.6 0.0 0.0 0.0 vfx

This is the microbenchmark inspired by CD16sim.
SwiftForth RC87 suffers from false sharing and mis-
predicted returns, and RC89 fixed that problem.

6.2 ... and it’s execute variant
: bench-z1-exec ( -- )

[’] z1 iterations 0 ?do
1 over execute +!

loop
drop ;

cache misses branch
cycles inst. I D mispred system

9.4 41.0 0.0 0.0 0.0 gforth
16.5 49.6 0.0 0.0 0.0 iforth
7.0 17.0 0.0 0.0 0.0 lxf-1.6

431.1 24.0 2.0 2.0 1.0 sf
449.8 17.6 2.0 2.0 1.0 vfx

When executeing z1, both sf and vfx suffer from
false sharing and return mispredictions thanks to
using the call-pull technique.
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6.3 Is VFX always fine on compiled
code?

: bench-z2-comp ( -- )
iterations 0 ?do

z2
loop ;

cache misses branch
cycles inst. I D mispred system

15.4 42.0 0.0 0.0 0.0 gforth
11.4 9.6 0.0 0.0 0.0 iforth
12.1 17.0 0.0 0.0 0.0 lxf-1.6
12.6 17.0 0.0 0.0 0.0 sf RC89

248.8 22.0 2.0 1.0 1.0 sf RC87
231.6 15.6 1.0 1.0 1.0 vfx

One might expect that z2 has the same performance
pitfalls as z1, and that’s roughly true for the Swift-
Forth variants. However, VFX manages to avoid
the performance pitfalls for z1 with inlining, but in
the z2 case the FP code apparently disables inlin-
ing in VFX, it calls the call in the header of z2, and
therefore suffers from the usual slowdowns of the
call-pull technique.

6.4 What about iForth?
: bench-z2-exec ( -- )

[’] z2 iterations 0 ?do
dup execute

loop ;

cache misses branch
cycles inst. I D mispred system

10.4 49.0 0.0 0.0 0.0 gforth
449.5 49.6 2.0 2.1 0.0 iforth
13.5 19.0 0.0 0.0 0.0 lxf-1.6

428.3 26.0 2.0 2.0 1.0 sf RC89
249.5 30.0 2.0 1.0 1.0 sf RC87
228.2 16.6 1.0 1.0 1.0 vfx

Looking at the code, iforth seems to use the call-
pull technique, too, and therefore suffers from false
sharing; it does not suffer from return mispredic-
tions, because it does not use ret for implementing
Forth’s exit and ;.

It’s unclear why the two sf versions produce such
differences in the number of cycles; a wild guess
is that the actual slowdown depends on the exact
placement of the word within the cache line. In any
case, neither result is good, and we should try to
avoid even the smaller slowdown.

6.5 Compiled created words are fast
: bench-x-comp ( -- )

iterations 0 ?do
1 x +!

loop ;

cache misses branch
cycles inst. I D mispred system

6.9 11.0 0.0 0.0 0.0 gforth
8.6 6.6 0.0 0.0 0.0 iforth
7.8 5.0 0.0 0.0 0.0 lxf-1.6
1.4 3.0 0.0 0.0 0.0 sf
7.7 4.6 0.0 0.0 0.0 vfx

None of the systems exhibit a big performance prob-
lem for a compiled created word, but the perfor-
mance of iforth, lxf-1.6, and vfx may still merit an
investigation.

6.6 ... but once you execute ...
: bench-x-exec ( -- )

[’] x iterations 0 ?do
1 over execute +!

loop drop ;

cache misses branch
cycles inst. I D mispred system

7.0 28.0 0.0 0.0 0.0 gforth
16.5 49.6 0.0 0.0 0.0 iforth
6.0 17.0 0.0 0.0 0.0 lxf-1.6

442.8 24.0 2.0 2.0 1.0 sf
221.1 17.6 1.0 1.0 1.0 vfx

Both sf and vfx run into false sharing here, as well
as a return misprediction.

6.7 What about defer and is?
: bench-w-comp ( -- )

[’] my0 [’] drop iterations 0 ?do
w over is w

loop
2drop ;

cache misses branch
cycles inst. I D mispred system

7.0 22.5 0.0 0.0 0.0 gforth
9.2 19.6 0.0 0.0 0.0 iforth

427.0 21.5 2.0 1.0 0.3 lxf-1.6
6.7 10.5 0.0 0.0 0.0 lxf-1.7

435.9 19.5 2.7 2.0 1.0 sf
205.3 11.1 1.0 1.0 0.5 vfx

In this benchmark sf and vfx suffer from false shar-
ing and return misprediction resulting from the call-
pull technique.

Lxf-1.6 suffers from true sharing due to writing
to the jump that is then executed. CPUs also
don’t have as good branch prediction mechanisms
for code that patches jumps as they have for indirect
branches, so the patching results in a significant in-
crease in branch mispredictions compared to, e.g.,
Gforth, which uses an indirect jump in dodefer and
lit-perform (the primitive used by the compile,
implementation of deferred words).
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Lxf-1.7 uses the indirect jump approach, and
therefore does not suffer from the performance pit-
falls of lxf-1.6.

6.8 ... in combination with execute

: bench-w-exec ( -- )
[’] w dup [’] my0 [’] drop
iterations 0 ?do

3 pick execute over is w
loop
2drop drop ;

cache misses branch
cycles inst. I D mispred system

6.9 28.5 0.0 0.0 0.0 gforth
16.4 40.6 0.0 0.0 0.0 iforth

429.0 22.5 2.0 1.0 0.3 lxf-1.6
11.1 15.5 0.0 0.0 0.0 lxf-1.7

445.2 28.5 2.5 2.0 1.0 sf
228.9 21.1 1.0 1.0 1.5 vfx

The results in this case are very similar to the
bench-w-comp case, but vfx suffers from an addi-
tional return misprediction: it’s execute implemen-
tion uses push-ret instead of an indirect branch to
branch to its target.

6.9 What about defer without is?
: bench-w-nois-comp ( -- )

iterations 0 ?do
w drop

loop ;
’ z1 is w bench-w-nois-comp

cache misses branch
cycles inst. I D mispred system

8.4 35.0 0.0 0.0 0.0 gforth
15.5 42.6 0.0 0.0 0.0 iforth
5.4 12.0 0.0 0.0 0.0 lxf-1.6
5.0 12.0 0.0 0.0 0.0 lxf-1.7

29.4 16.0 0.0 0.0 1.0 sf
27.2 11.6 0.0 0.0 1.0 vfx

In this microbenchmark no data is written, so there
is no cache-consistency traffic from false or true
sharing. This allows us to see the undiluted penalty
of the return mispredictions resulting from call-pull
in SwiftForth and VFX.

This is the best case for the lxf-1.6 defer imple-
mentation (patching jump), but the fact that the
more mainstream lxf-1.7 defer implementation is
just as fast (actually slightly faster) even in this
case means that the cost of cache consistency traf-
fic from the jump-patching implementation cannot
be compensated, even if is is used rarely.

6.10 ... in combination with execute
: bench-w-nois-exec ( xt -- )

iterations 0 ?do
dup execute drop

loop
drop ;

’ z1 is w ’ w bench-w-nois-exec

cache misses branch
cycles inst. I D mispred system

8.4 41.0 0.0 0.0 0.0 gforth
25.5 62.6 0.0 0.0 0.0 iforth
6.0 13.0 0.0 0.0 0.0 lxf-1.6

10.0 17.0 0.0 0.0 0.0 lxf-1.7
32.2 24.0 0.0 0.0 1.0 sf
65.9 21.6 0.0 0.0 2.0 vfx

With execute, vfx suffers from an additional mis-
prediction per iteration, which is reflected in the
cycle count.

Lxf-1.7 takes 4 instructions more and consumes
4 cycles more per iteration than lxf-1.6 for this mi-
crobenchmark. I looked at the resulting code, and
communicated some improvement suggestions7 to
Peter Fälth; he then produced three implementa-
tion variants for deferred words that perform this
benchmark in 13–14 instructions and 7 cycles, and
two of them perform as well or better than lxf-1.7
on the other defer-based microbenchmarks. This
demonstrates that the disadvantage of a defer im-
plementation that uses indirect jumps can be made
very small in the cases where the deferred word is
executed or called through another deferrred word,
too. The code for implementing these variants con-
sisted of a few lines each.

7 Related work
While indirect-threaded code has been used in
Forth by 1971 at the latest, the canonical papers on
direct-threaded code [Bel73] and indirect-threaded
code [Dew75] came only later.

Kogge [Kog82] describes the path from
subroutine-threaded code to indirect-threaded
code (and the benefits of these steps in the
memory-constrained systems of the time).

The Forth mainstream went the other direction
and went to direct-threaded code [Ert02] and dy-
namic superinstructions (a kind of native code)
with stack caching [EG04] in Gforth, or for native-
code compilers in iForth, lxf, SwifthForth, and VFX
Forth. The reasons are that with increasing RAM
size the pressure to minimize program memory be-
came smaller; moreover, with increasing cell size the

7Generate specialized code for the deferred word rather
than using a trampoline to a generic dodefer, and eliminate
a tail call while doing that.
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size advantage of threaded code dwindled or even
became a size disadvantage.

While there are several works describing the
header structure and execution mechanisms of
early Forth systems [Moo74, Kog82, Tin13b, Zec84,
Tin13a, Tin17], most widely-used systems since
the 1990s except Gforth [Ert93, Ert02, PE19] have
seen relatively little material published about the
parts that correspond to the inner interpreter in
a threaded-code system. Faulkner has sketched a
generator that allows exploring a variety of imple-
mentation options [Fau23].

Scott and Bolosky [SB93] quantified the cost of
false sharing. Kaeli and Emma [KE91] proposed
the return-address stack for predicting return tar-
gets, which appeared in actual hardware a few years
later.

8 Conclusion
For subroutine-threaded and native-code compil-
ers, the trampoline approach avoids problems with
cache consistency and return mispredictions. An al-
ternative is to use a code field even in a subroutine-
threaded or native-code system.

Either approach is best combined with an intelli-
gent compile, for efficient compiled code.

Deferred words should be implemented with an
indirect jump (or call) rather than a direct jump
that is patched by is.
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The Performance Effects of

Virtual-Machine Instruction Pointer Updates

2024 update

M. Anton Ertl, TU Wien
Bernd Paysan, net2o

Overview

• Background: Virtual-machine interpreter with code copying

• Every VM instruction increments the VM instruction pointer (IP)

• Question: How relevant are IP updates for performance?

• Answer: on some programs critical latency path

• Method: optimize most IP updates away

1

Is interpreter performance relevant? What about JITs?

benchgc
brainless

cd16sim
lexex

fcp
siev

bubble
matrix

fib
pentomino

sha512

speedup over baseline Gforth (interpreter), log scale, CPU: Tiger Lake

Gforth with ip-update optimization cib (interpreter)
SwiftForth-4.0.0-RC89 (JIT compiler)
VFX Forth (JIT compiler)
gcc-12 -O0
gcc-12 -O1

1

2

4

8

16

2

53



Running example: inner loop of siev

Forth Source:
do

0 i c! dup +loop

C Source:
for(p = ... ; p <= ... ; p += prime)

*p = 0;

Virtual-Machine code (Gforth):
(do)

start: lit
#0
i
c!
dup
(+loop)
#start

3

Baseline: Code-copying interpreter with static stack caching

lit

#0

i

c!

dup

(+loop)

#start

add $16,%IP

mov -8(%IP),%r15

add $8,%IP

mov (%r14),%r9

add $8,%IP

mov %r15b,(%r9)

add $8,%IP

mov %r8,%r15

add $16,%IP

mov (%r14),%rax

mov -8(%IP),%rsi

lea (%r15,%rax,1),%rdx

sub 8(%r14),%rax

btc 63,%rax

mov %rdx,(%r14)

add %r15,%rax

jo  break

mov (%rsi),%rax

mov %rsi,%IP

jmp *%rax

It’s a JIT compiler!

+ Copies native code

It’s an interpreter!

+ Portable
gcc generates code snippets

+ Fallback option
to threaded-code interpreter
without code copying

+ VM code is still needed
for immediate values
for control flow

+ ⇒ VM instruction pointer needed

4

Instruction pointer updates limit execution rate

lit

#0

i

c!

dup

(+loop)

#start

add $16,%IP
mov -8(%IP),%r15
add $8,%IP
mov (%r14),%r9
add $8,%IP
mov %r15b,(%r9)
add $8,%IP
mov %r8,%r15
add $16,%IP
mov (%r14),%rax
mov -8(%IP),%rsi
lea (%r15,%rax,1),%rdx
sub 8(%r14),%rax
btc 63,%rax
mov %rdx,(%r14)
add %r15,%rax
jo  break
mov (%rsi),%rax
mov %rsi,%IP
jmp *%rax

add $16,%IP
mov -8(%IP),%r15

mov (%r14),%r9

mov %r15b,(%r9)

mov %r8,%r15
add $40,%IP
mov (%r14),%rax
mov -8(%IP),%rsi
lea (%r15,%rax,1),%rdx
sub 8(%r14),%rax
btc 63,%rax
mov %rdx,(%r14)
add %r15,%rax
jo  break
mov (%rsi),%rax
mov %rsi,%IP
jmp *%rax

1

1

1

1

1

5

0 0

5
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c: combine instruction pointer updates

lit

#0

i

c!

dup

(+loop)

#start

add $16,%IP
mov -8(%IP),%r15
add $8,%IP
mov (%r14),%r9
add $8,%IP
mov %r15b,(%r9)
add $8,%IP
mov %r8,%r15
add $16,%IP
mov (%r14),%rax
mov -8(%IP),%rsi
lea (%r15,%rax,1),%rdx
sub 8(%r14),%rax
btc 63,%rax
mov %rdx,(%r14)
add %r15,%rax
jo  break
mov (%rsi),%rax
mov %rsi,%IP
jmp *%rax

add $16,%IP
mov -8(%IP),%r15

mov (%r14),%r9

mov %r15b,(%r9)

mov %r8,%r15
add $40,%IP
mov (%r14),%rax
mov -8(%IP),%rsi
lea (%r15,%rax,1),%rdx
sub 8(%r14),%rax
btc 63,%rax
mov %rdx,(%r14)
add %r15,%rax
jo  break
mov (%rsi),%rax
mov %rsi,%IP
jmp *%rax

1

1

1

1

1

5

1

5

00
1

6

ci: ... and optimize immediate VM instructions

lit

#0

i

c!

dup

(+loop)

#start

mov 8(%IP),%r15

mov (%r14),%r9

mov %r15b,(%r9)

mov %r8,%r15
add $56,%IP
mov (%r14),%rax
mov -8(%IP),%rsi
lea (%r15,%rax,1),%rdx
sub 8(%r14),%rax
btc 63,%rax
mov %rdx,(%r14)
add %r15,%rax
jo  break
mov (%rsi),%rax
mov %rsi,%IP
jmp *%rax

5

0

1

add $16,%IP
mov -8(%IP),%r15

mov (%r14),%r9

mov %r15b,(%r9)

mov %r8,%r15
add $40,%IP
mov (%r14),%rax
mov -8(%IP),%rsi
lea (%r15,%rax,1),%rdx
sub 8(%r14),%rax
btc 63,%rax
mov %rdx,(%r14)
add %r15,%rax
jo  break
mov (%rsi),%rax
mov %rsi,%IP
jmp *%rax

1

5

0
1

7

cib: ... and optimize VM branch instructions

lit

#0

i

c!

dup

(+loop)

#start

mov 8(%IP),%r15

mov (%r14),%r9

mov %r15b,(%r9)

mov %r8,%r15

mov    (%r14),%rax

lea    (%r15,%rax,1),%rdx
sub    8(%r14),%rax
btc    $63,%rax
mov    %rdx,(%r14)
add    %r15,%rax
jo     break
mov    (%IP),%rax

jmp    *%rax

0

mov 8(%IP),%r15

mov (%r14),%r9

mov %r15b,(%r9)

mov %r8,%r15
add $56,%IP
mov (%r14),%rax
mov -8(%IP),%rsi
lea (%r15,%rax,1),%rdx
sub 8(%r14),%rax
btc 63,%rax
mov %rdx,(%r14)
add %r15,%rax
jo  break
mov (%rsi),%rax
mov %rsi,%IP
jmp *%rax

5

0

1

8
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l: break loop dependencies

lit

#0

i

c!

dup

(+loop)

#start

add $16,%IP
mov -8(%IP),%r15
add $8,%IP
mov (%RP),%r9
add $8,%IP
mov %r15b,(%r9)
add $8,%IP
mov %r8,%r15
add $16,%IP
mov (%RP),%rax
mov -8(%IP),%rsi
lea (%r15,%rax,1),%rdx
sub 8(%RP),%rax
btc 63,%rax
mov %rdx,(%RP)
add %r15,%rax
jo  break
mov (%rsi),%rax
mov %rsi,%IP
jmp *%rax

1

1

1

1

1

5

0

add $16,%IP
mov -8(%IP),%r15
add $8,%IP
mov (%RP),%r9
add $8,%IP
mov %r15b,(%r9)
add $8,%IP
mov %r8,%r15
add $8,%IP
mov (%RP),%rax

lea (%r15,%rax,1),%rdx
sub 8(%RP),%rax
btc 63,%rax
mov %rdx,(%RP)
add %r15,%rax
jo  break
mov 16(%RP),%IP
mov 0(%IP),%rax
jmp *%rax

1

1

1

1
5

9

benchgc
brainless

cd16sim
lexex

fcp
siev

bubble
matrix

fib
fft-bench

pentomino
sha512

Speedup over baseline, log scale, Tiger Lake

l: cut IP dependences in counted loops
c: combine ip updates
ci: c+immediate opt
cb: c+branch opt
cib: ci+branch opt
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benchgcbrainlesscd16sim

lexexfcp
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bubble
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fibfft-bench

pentomino
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Intel P-core evolution
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Conclusion

• Problem: VM instruction-pointer updates can be a performance bottleneck

• Solution: Optimize instruction-pointer updates
combine them
immediate operand variants
branch to (adjusted) instruction pointer
load loop start address without using the instruction pointer

• Results
speedup factors > 2 on loop-dominated benchmarks: critical path
speedup factors 1.1–1.3 on call-dominated benchmarks

• Paper: DOI: 10.4230/LIPIcs.ECOOP.2024.14
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.14

12

Gforth (interpreter) vs. SwiftForth (JIT)
Gforth VM Gforth machine code source SwiftForth

lea -0x8(%rbp),%rbp
lit mov 0x8(%rbx),%r15 0 mov %rbx,0x0(%rbp)

#0 mov $0x0,%ebx
lea -0x8(%rbp),%rbp

i mov (%r14),%r9 i mov %rbx,0x0(%rbp)
mov %r14,%rbx
add %r15,%rbx
mov 0x0(%rbp),%eax

c! mov %r15b,(%r9) c! mov %al,(%rbx)
mov 0x8(%rbp),%rbx
lea 0x10(%rbp),%rbp

dup mov %r8,%r15 dup lea -0x8(%rbp),%rbp
mov %rbx,0x0(%rbp)

(+loop) mov (%r14),%rax add %rbx,%r14
#start lea (%r15,%rax,1),%rdx +loop mov 0x0(%rbp),%rbx

sub 0x8(%r14),%rax lea 0x8(%rbp),%rbp
btc $0x3f,%rax jno start
mov %rdx,(%r14)
add %r15,%rax
jo end
mov (%rbx),%rax
jmp *%rax

13

Why is gcc -O3 so slow for bubble?

gcc -01 gcc -O3

1c: add $0x4,%rax c0: movq (%rax),%xmm0
cmp %rsi,%rax add $0x1,%edx
je 35 pshufd $0xe5,%xmm0,%xmm1

25: mov (%rax),%edx movd %xmm0,%edi
mov 0x4(%rax),%ecx movd %xmm1,%ecx
cmp %ecx,%edx cmp %ecx,%edi
jle 1c jle e1
mov %ecx,(%rax) pshufd $0xe1,%xmm0,%xmm0
mov %edx,0x4(%rax) movq %xmm0,(%rax)
jmp 1c e1: add $0x4,%rax

35: cmp %r8d,%edx
jl c0

14
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